Obsolescence Notice This product is obsolete. This information is available for your convenience only. For more information on Zarlink’s obsolete products and replacement product lists, please visit http://products.zarlink.com/obsolete_products/ P R E L I M I N A R Y Distinctive Characteristics t Highly integrated central switch controller I N F O R M A T I O N SC220 – XpressFlow Engine XpressFlow 2020 Ethernet Routing Switch Chipset t State of the art 0.35 micron 3.3 Volt CMOS process t 256-PIN PQFP package t Operating frequency ◊ -40 40 MHz maximum ◊ -50 50 MHz maximum ◊ -66 66 MHz maximum CAM (Optional) ADDRESS MAPPING TABLE SC220 16 t 16-bit external CAM interface ◊ Supports ½k to 16k MAC addresses t 32-bit Control Buffer Memory interface ◊ Supports 128k to 1M bytes ◊ Utilize high performance 32-bit Synchronous Burst SRAM XpressFlow CONTROL BUFFER 32 MEMORY t Hardware assisted Buffer and Queue Management to minimize CPU overhead 32 t 32-bit Management Bus I/O interface ◊ Allows host to access CAM and Control Buffer Memory ◊ Supports Big and Little Endian CPUs ◊ Direct interface with various different standard microprocessors including 386, 486 families and Motorola MPC series embedded processors Switching bandwidth 32 XpressFlow BUS XpressFlow BUS SC220 - XpressFlow Engine t 32-bit XpressFlow Bus Interface ◊ ENGINE General Description −1.28 Gbps @ 40 MHz system clock −1.60 Gbps @ 50 MHz system clock −2.10 Gbps @ 66.67 MHz system clock ◊ Supports up to 8 Multi-port Network Access Controllers ◊ XpressFlow Bus access arbitration ◊ XpressFlow Bus data transfer load regulation t Full IP Switching ◊ Addresses resolved by SC220 The XpressFlow Engine contains the switching data base interface and buffer management logic in order to do the switching decision making for unicast, multicast, and broadcast frames. Hardware assisted queue manager is incorporated to facilitate buffer management. It also provides a generic Management Bus interface to allow external processor to do initialization, learning, VLAN, and RMON support, etc. In addition, a XpressFlow Bus interface block is responsible for communicating with the Network Access Controllers through the XpressFlow message passing protocol. t MAC Address Mapping Table ◊ Supports either CAM based or SRAM based Switching data base Related Components: t EA218E – 8-port 10Mbps Ethernet Access Controller t EA218 – 6-port 10 + 2-port 10/100 Ethernet Access Controller t EA234 – 4-port 10/100 Fast Ethernet © 1998 Vertex Networks, Inc. 1999 1 Rev. 4.5 – February P R E L I M I N A R Y I N F O R M A T I O N SC220 XpressFlow Engine XpressFlow-2020 Series – Ethernet Switch Chipset Characteristics Continue SC220 XpressFlow Engine ◊ Embedded 32-bit HISC™ (High density Instruction Set Core) Processor ◊ Optimized architecture for switch applications ◊ Loadable firmware for easy upgrade t Supports unicast, multicast, and broadcast frames t Address Filtering ◊ Destination & Source MAC address matching & filtering CAM ADDRESS MAPPING TABLE CAM Interface 16 Up to 62 groups ◊ Level 1 and 2 mapping ◊ VLAN ID tagging & stripping ◊ Auto padding if necessary after stripping 16 16 SRAM CONTROL BUFFER MEMORY 32 32 Control Buffer Memory Interface 32 Mngmt Bus Interface HISC I/O Registers 32 32 32 32 32 t VLAN classification & verification ◊ HISC Core MANAGEMENT-BUS t Built-in address to port resolution 32 32 32 Automatic Buffer Manager XpressFlow Bus Interafce 32 XpressFlow BUS t Supports Store-&-Forward Frame Forwarding Mode Block Diagram – SC220 XpressFlow Engine t Collects statistics for RMON Typical Application: ◊ A 16-port Ethernet Switch with 4-Fast Ethernet Address Mapping Table Buffer RAM RS232 Local Control Console SC220 XpressFlow Engine Switch Manager CPU Flash ROM DRAM Management Bus XpressFlow Bus Buffer RAM EA208E 8-Port Ethernet Access Controller 8 Ethernet ports Buffer RAM EA208E 8-Port Ethernet Access Controller 8 Ethernet ports Buffer RAM EA234 4-Port Ethernet Access Controller Four 100M Fast Ethernet ports System Block Diagram -16-Port Ethernet Switch with 4 Fast Ethernet Up-Links © 1998 Vertex Networks, Inc. 1999 2 Rev. 4.5 – February P R E L I M I N A R Y I N F O R M A T I O N SC220 XpressFlow Engine XpressFlow-2020 Series – Ethernet Switch Chipset 1. PIN ASSIGNMENT 1.1 Logic Symbol L_WE[3:0]# L_OE[3:0]# L_ADSC# L_CLK 4 P_D[31:0] P_A[11:1] P_CS# P_ADS# P_RWC P_RDY# P_BS16# P_INT P_RSTIN# P_RSTOUT P_CLK Note: 4 T_MODE CAM Interface L_BWE[3:0]# 4 Test Pin C_D[15:0] XpressFlow Bus Interface L_A[18:2] Management Bus Interface L_D[31:0] Control Buffer Memory Interface SC220 S_D[31:0] C_CE# C_WE# C_CM# C_EC# C_MF# C_FF# S_MSGEN# S_EOF# S_IRDY S_TABT# S_OVLD# 8 8 S_HPREQ# S_REQ[8:1]# S_GNT[8:1]# S_CLK The SC220 is pin compatible to the SC201 with only one exception: The RSTOUT pin of SC201 is defined as a synchronous RESET output pin which follows the RSTIN input and re-synchronous with P_CLK for meeting the 80386 timing requirement. The RSTOUT pin for SC220 has a totally different function. It is no longer related with the RSTIN input. The RSTOUT is a watchdog output from SC220 to keep track of the active state of the host processor. Host processor needs to access the Keep Alive register periodically to prevent the setting of the RSTOUT output. The RSTOUT output can be use as Reset input to the host processor. © 1998 Vertex Networks, Inc. 1999 3 Rev. 4.5 – February P R E L I M I N A R Y I N F O R 1.2 M A T I O N SC220 XpressFlow Engine XpressFlow-2020 Series – Ethernet Switch Chipset Pin Assignment (Preliminary) Note: # Input I-ST Output Out-OD I/O-TS I/O-OD 5VT Active low signal Input signal Input signal with Schmitt-Trigger Output signal (Tri-State driver) Output signal with Open-Drain driver Input & Output signal with Tri-State driver Input & Output signal with Open-Drain driver Input with 5V Tolerance Pin No(s). Symbol XpressFlow Bus Interface 122,121,119,118, 116 S_D[31:27] / P_C[0:4] 114,113,111,109,108, 106,105,104,103,101, 100,98,97,96,95,93,92, 90,89,88,87,85,84,82, 80,79,77 71 69 72 70 123 140,138,135,133,131, 129,126,124 141,139,137,134,132, 130,128,125 73 75 © 1998 Vertex Networks, Inc. 1999 Type Name & Functions S_D[26:0] CMOS I/O-TS XpressFlow Bus – Data Bit [31:28] or Processor Interface Configuration Bit [0:4] CMOS I/O-TS XpressFlow Bus – Data Bit [27:0] S_MSGEN# S_EOF# S_IRDY S_TABT# S_HPREQ# S_REQ[8:1]# CMOS I/O-TS CMOS I/O-TS CMOS I/O-TS CMOS I/O-OD CMOS I/O-OD CMOS Input ** S_GNT[8:1]# CMOS Output XpressFlow Bus – Bus Grant [8:1] S_OVLD# S_CLK CMOS Output XpressFlow Bus – Bus Overload CMOS Input XpressFlow Bus – Clock 4 XpressFlow Bus – Message Envelope XpressFlow Bus – End of Frame XpressFlow Bus – Initiator Ready XpressFlow Bus – Target Abort XpressFlow Bus – High Priority Request XpressFlow Bus – Bus Request [8:1] Rev. 4.5 – February P R E L I M I N A R Y I N F Pin No(s). Symbol XpressFlow Bus Interface 185,184,183,182,180, P_D[31:0] 179,177,176,175,174, 172,171,169,168,167, 166,164,163,160,159, 157,156,154,153,151, 150,149,148,146,145, 143,142 211,210,208,207,205, P_A[11:1] 204,203,202,201,199, 198 196 P_ADS# 191 P_RWC 183 P_RDY# 184 P_BS16# 185 P_CS# 189 P_RSTIN# 190 192 187 P_RSTOUT P_INT P_CLK Control Buffer Memory Interface 60,59,58,57,56,54,53,51, L_D[31:0] 50,49,48,47,46,45,43,42, 40,39,38,37,36,34,33,30, 29,27,26,25,24,23,22,21, 8,6,5,3,2,1,256,255,254, L_A[18:2] 253,251,250,248,247, 246,245,244 9 L_A[19] / L_OE[3]# 63, 11, 19 L_OE[2:0]# 242, 62, 10, 18 12,13,14,15 16 66 © 1998 Vertex Networks, Inc. 1999 O R M A T I O N SC220 XpressFlow Engine XpressFlow-2020 Series – Ethernet Switch Chipset Type TTL I/O-TS (5VT) TTL Input (5VT) TTL Input (5VT) TTL Input (5VT) CMOS OutOD CMOS OutOD TTL Input (5VT) TTL In-ST (5VT) CMOS Output CMOS Output TTL Input (5VT) TTL I/O-TS Name & Functions Management Bus – Data Bit [31:0] Management Bus – Address Bit [11:1] Management Bus – Address Strobe Management Bus – Read/Write Control Management Bus – Data Ready Management Bus – 16 bit Data Bus Management Bus – Chip Select System RESET Input CPU RESET Output Management Bus – Interrupt Request CPU Clock Local Memory Bus – Data Bit [31:0] CMOS Output Local Memory Bus – Address Bit [17:2] CMOS Output Local Memory Bus – Address Bit [19:18] or Memory Read Chip Select [3] CMOS Output Local Memory Bus- Read Chip Select [2:0] L_WE[3:0]#, CMOS Output Local Memory Bus – Write Chip Select [3:0] L_BWE[3:0]# CMOS Output Local Memory Bus – Byte Write Enable [3:0] L_ADSC# CMOS Output Local Memory Bus – Controller Address Status L_CLK CMOS Output Local Memory Bus – Synchronous Clock 5 Rev. 4.5 – February P R E L I M I N A R Y I N F Pin No(s). CAM Interface 214,215,217,218,219, 220,221,222,223,225, 226,228,229,220.221, 239 241 233 234 236 237 Symbol C_D[15:0] C_WE# C_CE# C_EC# C_CM# C_FF# C_MF# Test & Reserved Pins 65 TEST 62,63,64,67,242 n/c Power Pins 32,78,115,161,206,243 VDD (Core) 7,20,31,44,55,68,76,86, VDD 94,102,110,120,144, 152,162,170,178,186, 197,216,227,238,252 35,81,112,158,209,240 VSS (Core) 4,17,28,41,52,61,66,74, VSS 83,91,99,197,117,127, 136,147,155,165,173, 181,188,200,213,224, 235,249 © 1998 Vertex Networks, Inc. 1999 O R M A T I O N SC220 XpressFlow Engine XpressFlow-2020 Series – Ethernet Switch Chipset Type TTL I/O-TS (5VT) CMOS Output CMOS Output CMOS Output CMOS Output TTL Input (5VT) TTL Input (5VT) Name & Functions CAM Interface – Data Bus bit [15:0] CAM Interface – Write Enable CAM Interface – Chip Enable CAM Interface – Enable Comparison CAM Interface – Data/Command Select CAM Interface – Full Flag CAM Interface – Match Flag CMOS I/O-TS Test Pin – Set Test Mode upon Reset, and provides test status output during test mode --Reserved Pins (5 pins) Input Input Input Input 6 +3.3 Volt DC Supply for Core Logic (6 pins) +3.3 Volt DC Supply for I/O Pads (23 pins) Ground for Core Logic (6 pins) Ground for I/O Pads (26 pins) Rev. 4.5 – February P R E L I M I N A R Y I N F O R M A T I O N SC220 XpressFlow Engine XpressFlow-2020 Series – Ethernet Switch Chipset 1.1 1.2 P_A[11] P_A[10] VSS (Core) P_A[9] P_A[8] VDD (Core) P_A[7] P_A[6] P_A[5] P_A[4] P_A[3] VSS P_A[2] P_A[1] VDD P_ADS# P_CS# P_BS16# P_RDY# Connection Diagram – 256-PQFP Package (Top View) L_A[12] L_A[11] L_A[10] L_A[9] VDD L_A[8] L_A[7] L_A[6] VSS L_A[5] L_A[4] L_A[3] L_A[2] VDD (Core) L_WE[3]# C_CE# VSS (Core) C_WE# VDD C_MF# C_FF# VSS C_CM# C_EC# C_D[0] C_D[1] C_D[2] C_D[3] C_D[4] VDD C_D[5] C_D[6] VSS C_D[7] C_D[8] C_D[9] C_D[10] C_D[11] C_D[12] C_D[13] VDD C_D[14] C_D[15] VSS 1.3 256 193 1 192 Control Buffer Memory Interface Pin 1 I.D. Test P_INT P_RWC P_RSTOUT P_RSTIN# VSS P_CLK VDD P_D[31] P_D[30] P_D[29] P_D[28] VSS P_D[27] P_D[26] VDD P_D[24] P_D[25] P_D[23] P_D[22] VSS P_D[21] P_D[20] VDD P_D[19] P_D[18] P_D[17] P_D[16] VSS P_D[15] P_D[14] VDD VDD (Core) P_D[13] P_D[12] VSS (Core) P_D[11] P_D[10] VSS P_D[9] P_D[8] VDD P_D[7] P_D[6] P_D[5] P_D[4] VSS P_D[3] P_D[2] VDD P_D[1] P_D[0] S_GNT[8]# S_REQ[8]# S_GNT[7]# S_REQ[7]# S_GNT[6]# VSS S_REQ[6]# S_GNT[5]# S_REQ[5]# S_GNT[4]# S_REQ[4]# S_GNT[3]# S_REQ[3]# CAM Interface Management Bus Interface L_A[13] L_A[14] L_A[15] VSS L_A[16] L_A[17] VDD L_A[18] L_A[19] / L_OE[3]# L_WE[1]# L_OE[1]# L_BWE[3]# L_BWE[2]# L_BWE[1]# L_BWE[0]# L_ADSC# VSS L_WE[0]# L_OE[0]# VDD L_D[0] L_D[1] L_D[2] L_D[3] L_D[4] L_D[5] L_D[6] VSS L_D[7] L_D[8] VDD VDD (Core) L_D[9] L_D[10] VSS (Core) L_D[11] L_D[12] L_D[13] L_D[14] L_D[15] VSS L_D[16] L_D[17] VDD L_D[18] L_D[19] L_D[20] L_D[21] L_D[22] L_D[23] L_D[24] VSS L_D[25] L_D[26] VDD L_D[27] L_D[28] L_D[29] L_D[30] L_D[31] VSS L_WE[2]# L_OE[2]# XpressFlow Bus Interface 64 129 128 T_MODE VSS L_CLK VDD S_EOF# S_TABT# S_MSGEN# S_IRDY S_OVLD# VSS S_CLK VDD S_D[0] VDD (Core) S_D[1] S_D[2] VSS (Core) S_D[3] VSS S_D[4] S_D[5] VDD S_D[6] S_D[7] S_D[8] S_D[9] VSS S_D[10] S_D[11] VDD S_D[12] S_D[13] S_D[14] S_D[15] VSS S_D[16] S_D[17] VDD S_D[18] S_D[19] S_D[20] S_D[21] VSS S_D[22] S_D[23] VDD S_D[24] VSS (Core) S_D[25] S_D[26] VDD (Core) S_D[27] VSS S_D[28] / P_C[3] S_D[29] / P_C[2] VDD S_D[30] / P_C[1] S_D[31] / P_C[0] S_HPREQ# S_REQ[1]# S_GNT[1]# S_REQ[2]# VSS S_GNT[2]# 65 © 1998 Vertex Networks, Inc. 1999 7 Rev. 4.5 – February P R E L I M I N A R Y I N F O R M A T 1.4 O N Connection Diagram – 256-BGA Package (Top View) 1 2 3 A L_A [13] L_A [12] L_A [10] B L_A [14] C L_A [18] L_A [16] D L_OE L_OE [1]# [3]# 4 5 6 7 L_A[5] / L_A[2] / P_C[3] P_C[0] 11 12 13 14 15 16 17 18 C_ C_ EC# C_D MF# [2] 8 9 10 C_D [3] C_D [6] C_D [10] C_D [13] P_A [11] P_A [8] P_A [6] P_A [3] C_ CM# C_D [1] C_D [4] C_D [7] C_D [11] C_D [14] P_A [10] P_A [7] P_A [4] P_ ADS# L_A L_A[3] / C_ CE# [6] P_C[1] L_A [15] L_A [9] L_A L_A[4] / L_WE [7] P_C[2] [3] C_ WE# C_ FF# C_D [0] C_D [5] C_D [9] C_D [12] C_D [15] P_A [9] P_A [5] P_A P_ CS# P_ P_RST [1] RWC OUT L_A [17] VDD (Core) VSS VDD VSS VSS C_D [8] VDD VSS VDD VDD (Core) VSS VDD P_RST IN# VDD VSS P_ CLK P_D [29] P_D [28] P_D [27] VDD (Core) P_D [26] P_D [25] P_D [24] VDD VSS G L_D P_ INT P_D [30] L_ L_BWE L_BWE VDD ADSC# [0]# [1]# [1]# P_A [2] P_D [31] VSS [3]# 20 P_ P_ BS16# RDY# L_A [8] VSS [2]# 19 L_A [11] E L_BWE L_BWE L_WE F I SC220 XpressFlow Engine XpressFlow-2020 Series – Ethernet Switch Chipset [0] L_OE [0]# H L_D [3] L_D [2] L_D [1] L_WE [0]# VSS P_D [23] P_D [22] P_D [21] J L_D [7] L_D [6] L_D [4] L_D [5] VDD P_D [20] P_D [19] P_D [18] K L_D [9] L_D [8] VDD VSS P_D [17] P_D [16] P_D [15] L L_D [10] L_D [11] L_D [12] VSS P_D [12] P_D [13] M L_D [13] L_D [14] L_D [15] VDD (Core) VSS P_D [9] P_D [10] P_D [11] N L_D [16] L_D [17] L_D [18] VSS P_D [3] P_D [6] P_D [7] P_D [8] P L_D [19] L_D [20] L_D [21] VDD VDD (Core) P_D [2] P_D [4] P_D [5] R L_D [22] L_D [23] L_D [24] L_D [26] VDD P_D [0] P_D [1] T L_D [25] L_D [27] L_D [28] VSS VSS S_REQ S_REQ S_GNT [7]# [8]# [8]# U L_D [29] L_D [30] L_D [31] VDD VSS S_D [4] VSS VDD VDD (Core) VSS VDD VSS S_D [25] S_D S_REQ S_GNT S_GNT S_GNT S_GNT [29] [1]# [4]# [5]# [6]# [7]# L_WE [2]# L_ S_ CLK TABT# S_D [0] S_D [3] S_D [7] S_D [10] S_D [13] VDD S_D [20] S_D [23] S_D [26] VDD W L_OE S_MSG S_ S_ EOF# OVLD# S_D [1] S_D [5] S_D [8] S_D [11] S_D [14] S_D [17] S_D [19] S_D [22] VSS S_D [27] S_ IRDY S_D [2] S_D [6] S_D [9] S_D [12] S_D [15] S_D [16] S_D [18] S_D [21] S_D [24] V [2]# Y T_ MODE EN# S_ CLK © 1998 Vertex Networks, Inc. 1999 P_D [14] 8 S_D [30] VDD S_REQ S_REQ [4]# [5]# S_HP S_GNT S_REQ S_GNT REQ# [1]# [6]# [3]# S_D [28] S_D S_REQ S_GNT S_REQ [31] [2]# [2]# [3]# Rev. 4.5 – February P R E L I M I N A R Y I N F O R M 1.5 A T I O N SC220 XpressFlow Engine XpressFlow-2020 Series – Ethernet Switch Chipset Pin Reference Table: (256 Pin PQFP& 256-BGA) Pin No. Signal Name Pin No. Signal Name Pin No. Signal Name Pin No. Signal Name 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 L_A[13] L_A[14] L_A[15] VSS L_A[16] L_A[17] VDD L_A[18] L_A[19] / L_OE[3]# L_WE[1]# L_OE[1]# L_BWE[3]# L_BWE[2]# L_BWE[1]# L_BWE[0]# L_ADSC# 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 TEST VSS L_CLK VDD S_EOF# S_TABT# S_MSGEN# S_IRDY S_OVLD# VSS S_CLK VDD S_D[0] VDD (Core) S_D[1] S_D[2] 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 S_REQ[3]# S_GNT[3]# S_REQ[4]# S_GNT[4]# S_REQ[5]# S_GNT[5]# S_REQ[6]# VSS S_GNT[6]# S_REQ[7]# S_GNT[7]# S_REQ[8]# S_GNT[8]# P_D[0] P_D[1] VDD 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 P_RDY# P_BS16# P_CS# P_ADS# VDD P_A[1] P_A[2] VSS P_A[3] P_A[4] P_A[5] P_A[6] P_A[7] VDD (Core) P_A[8] P_A[9] 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 VSS L_WE[0]# L_OE[0]# VDD L_D[0] L_D[1] L_D[2] L_D[3] L_D[4] L_D[5] L_D[6] VSS L_D[7] L_D[8] VDD VDD (Core) 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 VSS (Core) S_D[3] VSS S_D[4] S_D[5] VDD S_D[6] S_D[7] S_D[8] S_D[9] VSS S_D[10] S_D[11] VDD S_D[12] S_D[13] 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 P_D[2] P_D[3] VSS P_D[4] P_D[5] P_D[6] P_D[7] VDD P_D[8] P_D[9] VSS P _D[10] P_D[11] VSS (Core) P_D[12] P_D[13] 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 VSS (Core) P_A[10] P_A[11] 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 L_D[9] L_D[10] VSS (Core) L_D[11] L_D[12] L_D[13] L_D[14] L_D[15] VSS L_D[16] L_D[17] VDD L_D[18] L_D[19] L_D[20] L_D[21] 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 S_D[14] S_D[15] VSS S_D[16] S_D[17] VDD S_D[18] S_D[19] S_D[20] S_D[21] VSS S_D[22] S_D[23] VDD S_D[24] VSS (Core) 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 VDD (Core) VDD P_D[14] P_D[15] VSS P_D[16] P_D[17] P_D[18] P_D[19] VDD P_D[20] P_D[21] VSS P_D[22] P_D[23] P_D[24] 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 C_D[6] C_D[5] VDD C_D[4] C_D[3] C_D[2] C_D[1] C_D[0] C_EC# C_CM# VSS C_FF# C_MF# VDD C_WE# VSS (Core) 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 L_D[22] L_D[23] L_D[24] VSS L_D[25] L_D[26] VDD L_D[27] L_D[28] L_D[29] L_D[30] L_D[31] VSS L_WE[2]# L_OE[2]# 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 S_D[25] S_D[26] VDD (Core) S_D[27] VSS S_D[28] S_D[29] VDD S_D[30] S_D[31] S_HPREQ# S_REQ[1]# S_GNT[1]# S_REQ[2]# VSS S_GNT[2]# 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 P_D[25] VDD P_D[26] P_D[27] VSS P_D[28] P_D[29] P_D[30] P_D[31] VDD P_CLK VSS P_RSTIN# P_RSTOUT P_RWC P_INT 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 C_CE# L_WE[3] VDD (Core) L_A[2] / P_C[0] L_A[3] / P_C[1] L_A[4] / P_C[2] L_A[5] / P_C[3] L_A[6] VSS L_A[7] L_A[8] VDD L_A[9] L_A[10] L_A[11] L_A[12] © 1998 Vertex Networks, Inc. 1999 9 VSS C_D[15] C_D[14] VDD C_D[13] C_D[12] C_D[11] C_D[10] C_D[9] C_D[8] C_D[7] VSS Rev. 4.5 – February P R E L I M I N A R Y I N F O Note: R M A T I O N SC220 XpressFlow Engine XpressFlow-2020 Series – Ethernet Switch Chipset • For 256-BGA package: F4, K4, P4, U5, U9, U12, V11, V15, V17, R17, J17, F17, D17, D14, D12, D8 and D6 are VDD. ‚ For 256-BGA package: D4, M4, U10, P17, G17 and D15 are VDD(Core). ƒ For 256-BGA package: E4, G4, L4, N4, T4, U6, U8, U11, U13, W14, T17, M17, K17, H17, E17, D16, D13, D10, D9, D7, and D5 are VSS. © 1998 Vertex Networks, Inc. 1999 10 Rev. 4.5 – February P R E L I M I N A R Y I N F O R M A T I O N SC220 XpressFlow Engine XpressFlow-2020 Series – Ethernet Switch Chipset 2 FUNCTIONAL DESCRIPTION 2.1 CAM Interface t Direct interface with MUSIC MU9C1480 1k x 64 bit Content Addressable Memory (CAM) ◊ Expandable to support 8k MAC Addresses t Two access masters: HISC in XpressFlow CAM Engine, and Switch Manager CPU CAM Interface Logic Command Block From HISC Response Data Block To HISC Command Block From CPU Response Data Block To CPU t Master interface with CAM Interface logic via two dedicated CAM Command Blocks ◊ One for HISC ◊ One for Switch Manager CPU Block Diagram – CAM Interface t Both HISC and Switch Manager CPU can ac- cess the CAM by setting up their corresponding CAM Command Blocks, and read the return information from their own Response Data Block 2.1.1 Pin Description Symbol C_D[15:0] C_CE# C_WE# C_CM# C_EC# C_MF# C_FF# © 1998 Vertex Networks, Inc. 1999 Type Name & Functions TTL I/O-TS CMOS Output CAM Data Bus bit [15:0] – a 16-bit data bus for Data/Command input/output. CAM Chip Enable – Enables the CAM by registers the control signals on its falling edge and release them on its rising edge. Also used for locking and unlocking the cascaded daisy chain. CMOS CAM Write Enable – allows to write data or command to CAM Output CMOS CAM Data/Command Select – defines data or command operations Output CMOS CAM Enable Comparison – latches and enables the MF and FF outputs Output during a comparison cycle. TTL CAM Match Flag – indicates a valid match during a comparison cycle. Input TTL CAM Full Flag – indicates there is no empty location in the CAM. Input 11 Rev. 4.5 – February P R E L I M I N A R Y I N F O R M A 2.1.2 T I O N SC220 XpressFlow Engine XpressFlow-2020 Series – Ethernet Switch Chipset Bus Cycle Waveforms S_CLK C_CE# C_CM# C_EC# C_WE# C_MF# C_D[15:0] Write MAC Address Byte 0, & 1 Write MAC Address Byte 2, & 3 Write MAC Address Byte 4, & 5 Read MAC Control Buffer Pointer Typical MAC Address Compare Operation Note: Refer to MUSIC MU9C1480 CAM data sheet for detailed timing parameters. © 1998 Vertex Networks, Inc. 1999 12 Rev. 4.5 – February P R E L I M I N A R Y I N F O R M A T I 2.2 O N SC220 XpressFlow Engine XpressFlow-2020 Series – Ethernet Switch Chipset Local Memory (Control Buffer Memory) Interface t Uses industry standard Synchronous Burst SRAM (Pipe-lined Mode) ◊ Supports 64k x 32, 128k x 32, or 256k x 32 chips up to maximum 2M bytes t Provides 4 individual Byte Write Enable controls t Supports back to back Read or Write operations 2.2.1 Pin Description Symbol Type Name & Functions L_D[31:0] TTL Local Memory Data Bus Bit [31:0] – a 32-bit synchronous data bus. I/O-TS L_A[18:2] CMOS Local Memory Address Bus Bit [18:2] – Bit [17:2] of a synchronous adOutput dress bus. The memory address is sampled when L_CS# is enabled and L_ADSC# is asserted. L_A[19] / CMOS Local Memory Address Bus Bit [19] or Local Memory Write Chip Select L_WE[3]# Output [3] – Depends on memory configuration, this pin can be used as the Local Memory Address Bit [19] or as the Local Memory Write Chip Select [3]. L_WE[2:0]# CMOS Local Memory Write Chip Select [2:0] – allows up to write one of the 4 Output banks of memory. L_OE[3:0]# CMOS Local Memory Read Chip Select [3:0] – allows up to read one of the 4 Output banks of memory. L_BWE[3:0]# CMOS Local Memory Byte Write Enable [3:0] – use to write individual bytes. Output L_ADSC# CMOS Local Memory Controller Address Status – to load a new address. Output L_CLK CMOS Local Memory Clock – a synchronous clock to memory devices. Output © 1998 Vertex Networks, Inc. 1999 13 Rev. 4.5 – February P R E L I M I N A R Y I N F O R M A T I O N SC220 XpressFlow Engine XpressFlow-2020 Series – Ethernet Switch Chipset Supported Memory Configurations Read/Write Chip Select and High Address Bits Chip #3 Chip #2 RAM Chip Size # of RAM Chips 64k x 32 1 256k bytes ---- ---- ---- ---- 2 512k bytes ---- ---- ---- ---- 256k x32 2.2.2 Chip #0 Total Buffer L_A[19] / L_OE[3]# L_WE[2]# L_OE[2]# L_WE[1]# L_OE[1]# L_WE[0]# L_OE[0]# Memory L_WE[3]# Size 4 128k x 32 Chip #1 ---- ---- L_WE[0]# L_OE[0]# L_WE[1]# L_OE[1]# L_WE[0]# L_OE[0]# 1M bytes L_WE[3]# L_OE[3]# L_WE[2]# L_OE[2]# L_WE[1]# L_OE[1]# L_WE[0]# L_OE[0]# 1 256k bytes ---- ---- ---- ---- ---- ---- L_WE[0]# L_OE[0]# 2 1M bytes ---- ---- ---- ---- 4 2M bytes L_WE[3]# L_OE[3]# L_WE[2]# L_OE[2]# L_WE[1]# L_OE[1]# L_WE[0]# L_OE[0]# 1 1M bytes L_A[19] ---- ---- ---- 2 2M bytes L_A[19] ---- ---- ---- L_WE[1]# L_OE[1]# L_WE[0]# L_OE[0]# ---- ---- L_WE[0]# L_OE[0]# L_WE[1]# L_OE[1]# L_WE[0]# L_OE[0]# Bus Cycle Waveforms L_CLK L_ADSC# L_CS# L_A[19:2] A1 A2 A3 A3+1 A3+2 A3+3 A4 A4+1 A4+2 A4+3 A5 A6 L_WE[3:0]# L_BWE[3:0]# L_OE[3:0]# L_D[31:0] (Wr) D1 L_D[31:0] (Rd) D3 D3+1 D3+2 D3+3 D2 D6 D4 D4+1 D4+2 D4+3 D5 Typical Local Memory Access Operations Note: Refer to manufacturer’s data sheet for detailed timing parameters. © 1998 Vertex Networks, Inc. 1999 14 Rev. 4.5 – February P R E L I M I N A R Y I N F O R M A 2.3 I O N Management Bus Interface t Supports various industry standard micro- processors including: t Provides separate Address and Data bus t Supports Big & Little Endian byte ordering ◊ Intel 186/486 family or equivalent ◊ Motorola MPC series embedded processors t Supports 16- or 32-bit Data Bus t Provides a single interrupt signal to Switch t Easily adapts to other industry standard CPUs 2.3.1 T SC220 XpressFlow Engine XpressFlow-2020 Series – Ethernet Switch Chipset Manager CPU Pin Description Symbol Type P_C[4:0] Name & Functions CMOS Input Processor Configuration bit [4:0]: – During the Reset Cycle, the P_C[4:0] pins provides the processor configuration. By using external weak pull-up or -down resistors, they define the External Management Bus Interface Configuration. These inputs are sampled at the trailing edge of the Reset cycle. C[0] – Defines the CPU Clock input is 1X or 2X clock C[1] – Selects either Big or Little Endian byte ordering C[2] – Defines the polarity of the P_RWC (Rd/Wr Control) input C[3] – Defines the CPU Data Bus width – 16-bit or 32-bit C[4] – Defines the timing relationship between P_RDY and P_D[15:0] valid. If C[4] is High, the P_D[15:0] are valid along in the same clock period as P_RDY is asserted. If C[4] is Low, the P_RDY is asserted one clock period early ahead of the P_D[15:0] are valid. Lo Hi P_A[11:1] TTL In (5VT) TTL I/O-TS (5VT) TTL In (5VT) TTL Input (5VT) P_D[15:0] P_ADS# P_RWC P_RDY# P_BS16# P_CS# P_INT • P_RSTIN# P_RSTOUT P_CLK Note: TTL OutOD TTL Out-OD TTL In (5VT) TTL Output TTL In-ST (5VT) CMOS Output TTL In (5VT) • © 1998 Vertex Networks, Inc. 1999 C[0] CPU Clock C[1] Byte Order C[2] RWC C[3] Bus Width C[4] RDY Timing 1X Clock 2x Clock Little Endian Big Endian P_R/W# P_W/R# 16-bit 32-bit Normal Early After RESET, these pins are used as XpressFlow Bus Data bit [31:27]. Address Bus Bit [11:1] – I/O port address Data Bus Bit [15:0] – a 16-bit synchronous data bus. Address Strobe – indicates valid address is on the bus Read/Write Control – indicates the current bus cycle is a read or write cycle. C[1] defines the polarity of this signal during the Reset cycle. C[1]=Low P_R/W# is used for PowerPC or other similar processors. C[1]=High P_W/R# is used for 386, 486 or other similar processors Data Ready – timing indicates for bus data valid Bus Size 16 – response to bus master that the SC-201 only supports 16-bit data bus width. Chip Select – indicates the XpressFlow Engine is the target for the current bus operation. Interrupt Request to Switch Manager CPU The polarity of this signal output is programmable via chip configuration register. Power Up Reset Input – Asynchronous Reset Input from either Power-Up Reset circuit or from Switch Manager CPU (except 386) Synchronous Reset Output – Synchronous Reset Output for i386 family as the Switch Manager CPU CPU Clock – 1X Clock for the others Output signal with programmable polarity. 15 Rev. 4.5 – February P R E L I M I N A R Y I N F O R M A T I 2.3.2 O N SC220 XpressFlow Engine XpressFlow-2020 Series – Ethernet Switch Chipset Motorola MPC801 Processor Interface P_CLK {CLKOUT} P_ADS# {TS#} P_A[11:1] {A[20:30]} P_CS# P_RWC {RD/WR#} P_RDY# {TA#} P_D[31:0] {D[0:31]} (in) P_D[31:0] {D[0:31]} (out) Note: Mnemonics within {} are the equivalent signals defined by MPC801 Typical Motorola MPC801 CPU I/O Access Operations 2.3.3 Intel 486 Processor Interface P_CLK P_ADS# P_A[11:1] P_CS# P_W/R# P_RDY# P_D[31:0] (in) P_D[31:0] (out) Typical 486 CPU I/O Access Operations © 1998 Vertex Networks, Inc. 1999 16 Rev. 4.5 – February P R E L I M I N A R Y I N F O R M A T I O N SC220 XpressFlow Engine XpressFlow-2020 Series – Ethernet Switch Chipset 2.3.4 Intel 386 Processor Interface P_CLK PH2 (internal) PH2 P_ADS# P_A[11:1] P_CS# P_W/R# P_RDY# P_D[15:0] (in) P_D15:0] (out) Typical 386 CPU I/O Access Operations P_CLK PH2 (internal) PH2 PH1 PH2 PH2 or PH1 P_RSTIN# P_RSTOUT# Internal PH2 Clock Synchronization Note: © 1998 Vertex Networks, Inc. 1999 See Intel 386 Processor Data Book for more details 17 Rev. 4.5 – February P R E L I M I N A R Y I N F O R M A T I O N SC220 XpressFlow Engine XpressFlow-2020 Series – Ethernet Switch Chipset 2.3.5 Register Map Note: All 32-bit registers are D-word aligned. All 16-bit registers are also D-word aligned and right justified. For the Little Endian CPUs, register offset bit [1,0] are always set to be 00. For the Big Endian CPUs, register offset bit [1,0] are always set to be 10. This is a Global Register. CPU is allowed to write the Global Register of all devices by a single operation. These registers are reserved for system diagnostic usage only. I/O Offset Little Big Reg. Endian Endian Size Register Description W/R Device Configuration Registers (DCR) GCR Global Control Register DCR0 Device Status Register DCR1 Signature & Revision Register DCR2 ID Register DCR3 Local Control Register DCR4 Interface Status Register DCR5 Bus Credit Register hF00 hF00 hF10 hF20 hF30 hF40 hF50 hF02 hF02 hF12 hF22 hF32 hF42 hF52 16-bit 16-bit 16-bit 16-bit 16-bit 16-bit 16-bit W/---/R --/R W/R W/R --/R W/R Interrupt Controls ISR Interrupt Status Register – Unmasked ISRM Interrupt Status Register – Masked IMSK Interrupt Mask Register IAR Interrupt Acknowledgment Register hF80 hF90 hFA0 hFB0 hF82 hF92 hFA2 hFB2 16-bit 16-bit 16-bit 16-bit --/R --/R W/R W/-- hE08 hE18 hE28 hE40 hE50 hE68 hE6C hE68 hE6C hE08 hE18 hE28 hE42 hE52 hE68 hE6C hE68 hE6C 32-bit 32-bit 32-bit 16-bit 16-bit 32-bit 32-bit 32-bit 32-bit W/R W/R W/R W/R W/R W/-W/---/R --/R hD00 hD20 hD20 hD30 hD80 hD90 hDA0 hDB0 hD02 hD22 hD22 hD32 hD82 hD92 hDA2 hDB2 16-bit 16-bit 16-bit 16-bit 16-bit 16-bit 16-bit 16-bit W/R --/R W/---/R W/R W/R W/R --/R Buffer Memory Interface MWAR Memory Write Address Register – Single Cycle MRAR Memory Read Address Register – Single Cycle MBAR Memory Address Register – Burst Mode MWBS Memory Write Burst Size (in D-words) MRBS Memory Read Burst Size (in D-words) MWDR Memory Write Data Register MWDX Memory Write Data Register – Byte Swapping MRDR Memory Read Data Register MRDX Memory Read Data Register – Byte Swapping Buffers & Stacks Management Frame Control Buffers FCBBA Frame Control Buffer – Base Address FCBA Frame Control Buffer – Buffer Allocation FCBR Frame Control Buffer – Buffer Release FCBAG Frame Control Buffer – Buffer Aging Status FCBSA Frame Ctrl Buffer Stack – Base Address FCBSL Frame Ctrl Buffer Stack – Size Limit FCBST Frame Ctrl Buffer Stack – Buffer Low Threshold FCBSS Frame Ctrl Buffer Stack – Allocation Status © 1998 Vertex Networks, Inc. 1999 18 Note: Rev. 4.5 – February P R E L I M I N A R Y I N F O R M A T I O N SC220 XpressFlow Engine XpressFlow-2020 Series – Ethernet Switch Chipset I/O Offset Little Big Reg. Endian Endian Size Register Description Buffers & Stacks Management (Continue) Switch Control Buffers SCBBA Switch Control Buffer – Base Address SCBA Switch Control Buffer – Buffer Allocation SCBAG Switch Control Buffer – Buffer Aging Status SCBSA Switch Ctrl Buffer Stack – Base Address SCBSL Switch Ctrl Buffer Stack – Size Limit SCBST Switch Ctrl Buffer Stack – Buffer Low Threshold SCBSS Switch Ctrl Buffer Stack – Allocation Status MAC Control Tables MCTA MAC Control Table – Table Allocation MCTR MAC Control Table – Table Release MCTSA MAC Ctrl Table Stack – Base Address MCTSS MAC Ctrl Table Stack – Allocation Status W/R hC00 hC20 hC30 hC80 hC90 hCA0 hCB0 hC02 hC22 hC32 hC82 hC92 hCA2 hCB2 16-bit 16-bit 16-bit 16-bit 16-bit 16-bit 16-bit W/R --/R --/R W/R W/R W/R --/R hB20 hB20 hB80 hBB0 hB22 hB22 hB82 hBB2 16-bit 16-bit 16-bit 16-bit --/R W/W/R --/R Queue Management QSBA Queue Structure – Base Address MFTA Multicast Frame Table – Base Address CINQ CPU Input Queue COTQ CPU Output Queue CSQ0 CPU Status Queue – 1st D-word CSQ1 CPU Status Queue – 2nd D-word CSQ2 CPU Status Queue – 3rd D-word hA00 hA10 hA88 hA88 hA98 hAA8 hAB8 hA02 hA12 hA88 hA88 hA98 hAA8 hAB8 16-bit 16-bit 32-bit 32-bit 32-bit 32-bit 32-bit W/R W/R W/---/R --/R --/R --/R CAM Interface CCWR CAM Command/Data Write Register CSRL CAM Status/Data Read Register Low CSRH CAM Status/Data Read Register High h908 h928 h938 h908 h928 h938 32-bit 32-bit 32-bit W/---/R --/R HISC Control HPCR HISC Processor Control Register HMCL HISC Micro-Code Loading Port HPRC HISC Priority Control Register h980 h998 h9B0 h982 h998 h9B2 16-bit 32-bit 16-bit W/R W/R W/R © 1998 Vertex Networks, Inc. 1999 19 Note: Rev. 4.5 – February P R E L I M I N A R Y I N F O R M A T 2.4 I O N SC220 XpressFlow Engine XpressFlow-2020 Series – Ethernet Switch Chipset XpressFlow Bus Interface ◊ Data Messages for forwarding an Ethernet frame from receiving port to transmission port t Vertex Networks’ optimized XpressFlow Bus architecture t Provides 1G bps switching bandwidth t Full multi bus master structure t Allows XpressFlow Engine to communicate with Access Controllers via a message passing protocol t Built-in intelligent bus load regulator for data traffic balancing t Provides centralized bus arbitration with two level request priorities ◊ High priority for Data Messages ◊ Command Messages for passing control information between devices ◊ Low priority for Command Messages 2.4.1 Pin Description Symbol Type Name & Functions S_D[31:0] CMOS Data Bus Bit [31:0] – a 32-bit synchronous data bus. I/O-TS Note: During the system RESET period, Data Bit [31:28] are used as Processor Interface Configuration bit [0:3] S_MSGEN# CMOS Message Envelope – encompasses the entire period of a message I/O-TS transfer. Targets use the leading edge of this signal to detect the beginning of a message transfer, and to decode the message header for the intended target(s). S_EOF# CMOS End of Frame – only used by frame data transfer messages to identify I/O-TS the end of frame condition. This signal is synchronous with the Rx Frame Status word appended to the end of the message. S_IRDY CMOS Initiator Ready – a normal true signal. When negated, it indicates the I/O-TS initiator had asserted wait state(s) in between command words. Target should use this signal as enable signal for latching the data from the bus. S_TABT# CMOS Target Abort – when asserted, the target had aborted the reception of I/O-OD current message on the bus. S_HPREQ# CMOS High Priority Request – indicates one or more Bus Requester is reI/O-OD questing for high priority message transfer. S_REQ[8:1]# CMOS Bus Request [8:1] – Bus Request signals from Access Controllers to Input Bus Access Arbitrator in XpressFlow Engine S_GNT[8:1]# CMOS Bus Grant [8:1] – Bus Grant signals from Bus Arbitrator to Bus ReOutput questers S_OVLD# CMOS Bus Overload – when asserted all data forwarding bus bandwidth has Output been allocated. Cannot support additional load for data forwarding traffic S_CLK CMOS XpressFlow Bus Clock – 33MHz system clock Input © 1998 Vertex Networks, Inc. 1999 20 Rev. 4.5 – February P R E L I M I N A R Y I N F O R M T I O N SC220 XpressFlow Engine XpressFlow-2020 Series – Ethernet Switch Chipset 2.4.2 A Bus Cycle Waveforms S_CLK S_MSGEN# S_D[31:0] C0 C1 D0 D1 D2 D3 D4 D5 EoF S_EOF# S_IRDY XpressFlow Bus Data Transfer Cycle S_CLK S_MSGEN# S_D[31:0] C0 C1 C0 C1 EOF C0 C1 S_EOF# S_TABT# Command Cycle Data Xfer w/o Data Aborted Command Other XpressFlow Bus Cycles S_CLK S_REQ[k]# S_REQ[j]# S_HPREQ# High Priority Request pre-empts the low priority request © 1998 Vertex Networks, Inc. 1999 21 Rev. 4.5 – February P R E L I M I N A R Y I N F O R M A T I O N SC220 XpressFlow Engine XpressFlow-2020 Series – Ethernet Switch Chipset S_CLK S_MSGEN# S_REQ[j]# S_GNT[j]# S_HPREQ# S_REQ[I]# S_GNT[I]# XpressFlow Bus arbitration S_CLK S_REQ[k]# S_OVLD# Bus Overload pre-empts the data transfer request 2.5 Test Pins Symbol TEST © 1998 Vertex Networks, Inc. 1999 Type Name & Functions CMOS Test Mode Selection & Test Output – Set Test Mode upon Reset, I/O and provides test status output during test mode 22 Rev. 4.5 – February P R E L I M I N A R Y I N F O R M A T I O N SC220 XpressFlow Engine XpressFlow-2020 Series – Ethernet Switch Chipset 3 DC SPECIFICATION 3.1 ABSOLUTE MAXIMUM RATINGS Storage Temperature Operating Temperature -65C to +150C 0C to +70C Supply Voltage VDD with Respect to VSS Voltage on 5V Tolerant Input Pins Voltage on Other Pins +3.0 V to +3.6 V -0.5 V to (VDD + 2.5 V) -0.5 V to (VDD + 0.3 V) Stresses above those listed may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to Absolute Maximum Ratings for extended periods may affect device reliability. 3.2 DC CHARACTERISTICS VDD = 3.0 V to 3.6 V; T AMBIENT = 0C to +70C Preliminary Symbol f osc IDD VOH-CMOS VOL-CMOS VOH-TTL VOL-TTL VIH-CMOS VIL-CMOS VIH-TTL VIL-TTL VIH-5VT VIL-5VT ILI ILO IIH IIL CIN COUT CI/O Parameter Description Min Frequency of Operation ( -40) Frequency of Operation ( -50) Frequency of Operation (-66) Supply Power – @ 33.3333 MHz (VDD =3.3 V) Supply Power – @ 40 MHz (VDD =3.3 V) Supply Power – @ 50 MHz (VDD =3.3 V) Output High Voltage (CMOS) IOH = -1.0 mA Output Low Voltage (CMOS) IOL = 1.0 mA Output High Voltage (TTL) IOH = -1.0 mA Output Low Voltage (TTL) IOL = 1.0 mA Input High Voltage (CMOS) Input Low Voltage (CMOS) Input High Voltage (TTL) Input Low Voltage (TTL) Input High Voltage (TTL 5V tolerant) Input Low Voltage (TTL 5V tolerant) Input Leakage Current (0.1 V V IN V DD) (all pins except those with internal pullup/pull-down resistors) Output Leakage Current (0.1 V V OUT VDD) Input Leakage Current VIH = VDD - 0.1 V (pins with internal pull-down resistors) Input Leakage Current VIL = 0.1 V (pins with internal pull-up resistors) Input Capacitance Output Capacitance I/O Capacitance © 1998 Vertex Networks, Inc. 1999 23 Typ Max Unit 300 40.0000 50.0000 66.6666 500 MHz MHz MHz mA 300 300 500 500 mA mA V V V V V V V V V V A 20 20 20 VDD - 0.5 0.45 2.4 VDD x 70% -0.5 2.0 -0.3 2.0 -0.3 0.45 VDD + 0.3 VDD x 30% VDD + 0.3 +0.8 VDD + 2.5 +0.8 10 15 A 60 A -60 A 8 8 10 pF pF pF Rev. 4.5 – February P R E L I M I N A R Y I N F O R M T I O N SC220 XpressFlow Engine XpressFlow-2020 Series – Ethernet Switch Chipset 4 A AC SPECIFICATION 4.1 XpressFlow Bus Interface: S_CLK S_CLK S12 S1-min S1-max S1-min S_D[31:0] S_D[31:0] S13 S2-min S2-max S2-min S_MSGEN# S_MSGEN# S14 S3-min S3-max S3-min S_EOF# S_EOF# S15 S4-min S4-max S4-min S_IRDY S_IRDY XpressFlow Bus Interface – Output float delay timing S6-max S6-min S_TABT# S7-max S7-min S_CLK S_HPREQ# S17 S8-max S8-min S18 S_D[31:0] S_GNT[7:0]# S19 S9-max S9-min S20 S_MSGEN# S_OVLD# S21 S22 XpressFlow Bus Interface – Output valid delay timing S_EOF# S23 S24 S_IRDY S27 S28 S_TABT# S29 S30 S_HPREQ# S31 S32 S_REQ[7:0]# XpressFlow Bus Interface – Input setup and hold timing © 1998 Vertex Networks, Inc. 1999 24 Rev. 4.5 – February P R E L I M I N A R Y I N F O R M A T I N SC220 XpressFlow Engine XpressFlow-2020 Series – Ethernet Switch Chipset -40 Symbol O Parameter -50 -66 Min (ns) Max (ns) Min (ns) Max (ns) Min (ns) Max (ns) Note: S1 S_D[31:0] output valid delay 6 14 5 11 4 8.5 CL = 50pf S2 S_MSGEN# output valid delay 6 14 5 11 4 8.5 CL = 50pf S3 S_EOF# output valid delay 6 14 5 11 4 8.5 CL = 50pf S4 S_IRDY output valid delay 6 14 5 11 4 8.5 CL = 50pf S6 S_TABT# output valid delay 6 14 5 11 4 8.5 CL = 50pf S7 S_HPREQ# output valid delay 6 14 5 11 4 8.5 CL = 50pf S8 S_GNT[7:0]# output valid delay 6 14 5 11 4 8.5 CL = 20pf S9 S_OVLD# output valid delay 6 14 5 11 4 8.5 CL = 50pf S12 S_D[31:0] output float delay 18 15 12 S13 S_MSGEN# output float delay 18 15 12 S14 S_EOF# output float delay 18 15 12 S15 S_IRDY output float delay 18 15 12 S17 S_D[31:0] input set-up time S18 S_D[31:0] input hold time S19 S_MSGEN# input set-up time S20 S_MSGEN# input hold time S21 S22 2 1.5 1 5.5 4.5 3.5 2 1.5 1 5.5 4.5 3.5 S_EOF# input set-up time 2 1.5 1 S_EOF# input hold time 5.5 4.5 3.5 S23 S_IRDY input set-up time 2 1.5 1 S24 S_IRDY input hold time 5.5 4.5 3.5 S27 S_TABT# input set-up time 5.5 4.5 3.5 S28 S_TABT# input hold time 5.5 4.5 3.5 S29 S_HPREQ# input set-up time 4.5 3.5 2.5 S30 S_HPREQ# input hold time 5.5 4.5 3.5 S31 S_REQ[7:0]# input set-up time 6 5 4 S32 S_REQ[7:0]# input hold time 5.5 4.5 3.5 AC Characteristics -- XpressFlow Bus Interface © 1998 Vertex Networks, Inc. 1999 25 Rev. 4.5 – February P R E L I M I N A R Y I N F O R M A T N P_CLK CPU Bus Interface: P1 P_CLK P_D[31:0] O SC220 XpressFlow Engine XpressFlow-2020 Series – Ethernet Switch Chipset 4.2 I P2 P_RST# P15 P16-min P3 P4 P_ADS# P5 CPU Bus Interface – Output float delay timing P6 P_W/R# P7 P8 P_CLK P_CS# P16-max P16-min P9 P_D[31:0] P10 P_A[11:1] P17-max P17-min P11 P_RDY# P12 P_D[31:0] P18-max P18-min P_INT CPU Bus Interface – Input setup and hold timing CPU Bus Interface – Output valid delay timing -40 Symbol Parameter Min (ns) -50 Max (ns) Min (ns) -66 Max (ns) Min (ns) Max (ns) Note: P1 P_RST# input setup time 13 10 8 P2 P_RST# input hold time 3.5 2.5 2 P3 P_ADS# input set-up time 13 10 8 P4 P_ADS# input hold time 3.5 2.5 2 P5 P_W/R# input set-up time 13 10 8 P6 P_W/R# input hold time 3.5 2.5 2 P7 P_CS# input set-up time 13 10 8 P8 P_CS# input hold time 3.5 2.5 2 P9 P_A[11:1] input set-up time 13 10 8 P10 P_A[11:1] input hold time 3.5 2.5 2 P11 P_D[31:0]# input set-up time 13 10 8 P12 P_D[31:0]# input hold time 3.5 P15 P_D[31:0]# output float delay 17 13 10 P16 P_D[31:0]# # output valid delay 17 13 10 CL = 60pf P17 P_RDY# output valid delay 13 10 8 CL = 60pf P18 P_INT# output valid delay 8.5 6.5 5 CL = 20pf 2.5 2 AC Characteristics -- CPU Bus Interface © 1998 Vertex Networks, Inc. 1999 26 Rev. 4.5 – February P R E L I M I N A R Y I N F O R M A T I N SC220 XpressFlow Engine XpressFlow-2020 Series – Ethernet Switch Chipset 4.3 O Local Memory Interface: Local Memory Interface: L_CLK L_CLK L3-max L3-min L1 L2 L_D[31:0] L_D[31:0] L4-max L4-min Local Memory Interface – Input setup and hold timing L_A[19:2] L5-max L5-min L_CS[3:0]# L_CLK L6-max L6-min L10 L3-min L_ADSC# L_D[31:0] L7-max L7-min L_BWE[3:0]# Local Memory Interface – Output float delay timing L8-max L8-min L_WE#] L9-max L9-min L_OE# Local Memory Interface – Output valid delay timing -40 Symbol -50 Max (ns) Parameter Min (ns) L1 L_D[31:0]# input set-up time 6.5 5.5 4 L2 L_D[31:0]# input hold time 3 2.5 2 L3 L_D[31:0]# output valid delay 5 17 4 13 3 10 CL = 30pf L4 L_A[19:2] output valid delay 5 17 4 13 3 10 CL = 30pf L6 L_ADSC# output valid delay 5 17 4 13 3 10 CL = 30pf L7 L_BWE[3:0]# output valid delay 5 17 4 13 3 10 CL = 30pf L8 L_WE# output valid delay 5 17 4 13 3 10 CL = 10pf L9 L_OE# output valid delay 5 17 4 13 3 10 CL = 10pf L10 L_D[31:0]# output float delay 22 Min (ns) -66 Max (ns) Min (ns) 18 Max (ns) Note: 14 AC Characteristics – Local Memory Interface © 1998 Vertex Networks, Inc. 1999 27 Rev. 4.5 – February P R E L I M I N A R Y I N F O R M A T I N SC220 XpressFlow Engine XpressFlow-2020 Series – Ethernet Switch Chipset 4.4 O CAM Memory Interface: S_CLK C1 S_CLK C2 C_D[15:0] C7-max C7-min C3 C4 C5 C6 C_D[15:0] C_MF# C8-max C8-min C_CE# C_FF# C9-max C9-min CAM Memory Interface – Input setup and hold timing C_WE# C10-max C10--min C_CM# S_CLK C11-max C11-min C_EC# C12 C7-min C_D[15:0] CAM Memory Interface – Output valid delay timing CAM Memory Interface – Output float delay timing -40 Symbol Parameter -50 -66 Min Max Min Max Min Max (ns) (ns) (ns) (ns) (ns) (ns) C1 C_D[15:0]# input set-up time 4.5 4 5 C2 C_D[15:0]# input hold time 1.5 1.5 2 C3 C_MF# input set-up time 4.5 4 5 C4 C_MF# input hold time 1.5 1.5 2 C5 C_FF# input set-up time 4.5 4 5 C6 C_FF# input hold time 1.5 1.5 2 C7 C_D[15:0]# output valid delay 5 18 4 15 6 20 C8 C_CE# output valid delay 5 18 4 15 6 20 C9 C_WE# output valid delay 5 18 4 15 6 20 C10 C_CM# output valid delay 5 18 4 15 6 20 C11 C_CE# output valid delay 5 18 4 15 6 20 C12 C_D[16:0]# output float delay 13 10 Note: 15 AC Characteristics – CAM Memory Interface © 1998 Vertex Networks, Inc. 1999 28 Rev. 4.5 – February P R E L I M I N A R Y I N F O R M A T 5.1 O N SC220 XpressFlow Engine XpressFlow-2020 Series – Ethernet Switch Chipset 5 I PACKAGING INFORMATION 256-PIN PQFP 30.6 ± 0.20 25.2 REF 256 193 192 1 Pin 1 I.D. A B 64 25.2 REF 28.0 30.6 ± 0.20 ± 0.20 129 65 0.40 TYP 128 D 0.14/0.22 28.0 ± 0.20 4.10 MAX. 3.40 ± 0.20 C 0.25 MIN. 1.30 REF. 0.50/0.75 © 1998 Vertex Networks, Inc. 1999 29 Rev. 4.5 – February P R E L I M I N A R Y I N F O R M A T I N SC220 XpressFlow Engine XpressFlow-2020 Series – Ethernet Switch Chipset 5.2 O 256- Pin BGA B Pin 1 I.D. 20 18 19 16 17 14 15 12 13 10 11 8 9 6 7 4 5 2 3 1 A B C D E F G H J K L M N P R T U V W Y A 1.27 27.00 C 2.50 max 24.13 0.50 / 0.70 Ordering Information Part Number SC220 Description XpressFlow Switch Engine Environmental – C = Commercial I = Industrial Speed grade - 0 = 40 MHz 5 = 50 MHz 6 = 66 MHz Package - Identification Vertex Networks Use Revision C 0 B TAV rrr Revision 001 = Rev.1 For latest revision, leave blank B = BGA P= PQFP This document contains preliminary information on our product. Vertex reserves the right to make any changes without notice. 16842 Von Karman Ave, Suite 250 Irvine, CA 92606-4950 Tel. 1-714-252-8880, FAX: 1-714-252-8868 Web Site: www.vertex-networks.com Rev. 4.5- February, 1999 1998 VERTEX NETWORKS E1 DIMENSION A A1 A2 D D1 E E1 b e MIN MAX 2.20 2.46 0.50 0.70 1.17 REF 27.20 26.80 24.00 REF 27.20 26.80 24.00 REF 0.60 0.90 1.27 256 Conforms to JEDEC MS - 034 E e D1 D A2 A1 A 1. CONTROLLING DIMENSIONS ARE IN MM 2. DIMENSION "b" IS MEASURED AT THE MAXIMUM SOLDER BALL DIAMETER 3. PRIMARY DATUM -C- AND SEATING PLANE ARE DEFINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS. 4. N IS THE NUMBER OF SOLDER BALLS 5. NOT TO SCALE. 6. SUBSTRATE THICKNESS IS 0.56 MM Package Code c Zarlink Semiconductor 2003 All rights reserved. ISSUE ACN DATE APPRD. Previous package codes: INDEX CORNER PIN 1 D D1 E1 E = 0°-7° A A2 A1 L Previous package codes: Notes: 1. Pin 1 indicator may be a corner chamfer, dot or both. 2. Controlling dimensions are in millimeters. 3. The top package body size may be smaller than the bottom package body size by a max. of 0.15 mm. 4. Dimension D1 and E1 do not include mould protusion. c Zarlink Semiconductor 2003 All rights reserved. ISSUE ACN DATE APPRD. Package Code For more information about all Zarlink products visit our Web Site at www.zarlink.com Information relating to products and services furnished herein by Zarlink Semiconductor Inc. or its subsidiaries (collectively “Zarlink”) is believed to be reliable. However, Zarlink assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual property rights owned by Zarlink or licensed from third parties by Zarlink, whatsoever. Purchasers of products are also hereby notified that the use of product in certain ways or in combination with Zarlink, or non-Zarlink furnished goods or services may infringe patents or other intellectual property rights owned by Zarlink. This publication is issued to provide information only and (unless agreed by Zarlink in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other information appearing in this publication are subject to change by Zarlink without notice. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user’s responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to Zarlink’s conditions of sale which are available on request. Purchase of Zarlink’s I2C components conveys a licence under the Philips I2C Patent rights to use these components in and I2C System, provided that the system conforms to the I2C Standard Specification as defined by Philips. Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc. Copyright Zarlink Semiconductor Inc. All Rights Reserved. TECHNICAL DOCUMENTATION - NOT FOR RESALE