ZL50012 Flexible 512-ch Digital Switch Data Sheet Features July 2004 • 512 channel x 512 channel non-blocking switch at 2.048 Mb/s, 4.096 Mb/s or 8.192 Mb/s operation • Rate conversion between the ST-BUS inputs and ST-BUS outputs • Per-stream ST-BUS input with data rate selection of 2.048 Mb/s, 4.096 Mb/s or 8.192 Mb/s • Per-stream ST-BUS output with data rate selection of 2.048 Mb/s, 4.096 Mb/s or 8.192 Mb/s; the output data rate can be different than the input data rate Ordering Information ZL50012/QCC ZL50012/GDC 160 Pin LQFP 144 Ball LBGA -40°C to +85°C • Per-channel high impedance output control • Per-channel message mode • Per-stream high impedance control output for every ST-BUS output with fractional bit advancement Per-channel pseudo random bit sequence (PRBS) pattern generation and bit error detection • Control interface compatible to Motorola nonmultiplexed CPUs • Per-stream input channel and input bit delay programming with fractional bit delay • Connection memory block programming capability • Per-stream output channel and output bit delay programming with fractional bit advancement • IEEE-1149.1 (JTAG) test port • 3.3V I/O with 5 V tolerant input • Multiple frame pulse outputs and reference clock outputs • Per-channel constant throughput delay VDD STi0-15 S/P Converter FPi CKi Input Timing VSS RESET Data Memory ODE P/S Converter Output HiZ Control Output Timing Registers CKo2 IC0 - 4 CLKBYPS ICONN0 - 2 TCK TRST TDI TDO TMS DTA D15 - 0 A11 - 0 CS R/W DS TM1 TM2 FPo0 CKo0 FPo1 CKo1 FPo2 Test Port SG1 STOHZ0-15 Internal APLL VSS_APLL STo0-15 Connection Memory Microprocessor Interface and VDD_APLL • Figure 1 - ZL50012 Functional Block Diagram 1 Zarlink Semiconductor Inc. Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc. Copyright 2002-2004, Zarlink Semiconductor Inc. All Rights Reserved. ZL50012 Data Sheet Applications • Small and medium digital switching platforms • Access Servers • Time Division Multiplexers • Computer Telephony Integration • Digital Loop Carriers Description The device has sixteen ST-BUS inputs (STi0-15) and sixteen ST-BUS outputs (STo0-15). It is a non-blocking digital switch with 512 64 kb/s channels and performs rate conversion between the ST-BUS inputs and ST-BUS outputs. The ST-BUS inputs accept serial input data streams with the data rate of 2.048 Mb/s, 4.096 Mb/s or 8.192 Mb/s on a per-stream basis. The ST-BUS outputs deliver serial output data streams with the data rate of 2.048 Mb/s, 4.096 Mb/s or 8.192 Mb/s on a per-stream basis. The device also provides sixteen high impedance control outputs (STOHZ 0-15) to support the use of external high impedance control buffers. The ZL50012 has features that are programmable on per-stream or per-channel basis including message mode, input bit delay, output bit advancement, constant throughput delay and high impedance output control. 2 Zarlink Semiconductor Inc. ZL50012 Data Sheet Table of Contents Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.0 Device Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.0 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.1 ST-BUS Input Data Rate and Input Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.1.1 ST-BUS Input Operation Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.1.2 Frame Pulse Input and Clock Input timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.1.3 ST-BUS Input Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2 ST-Bus Output Data Rate and Output Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2.1 ST-Bus Output Operation Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2.2 Frame Pulse Output and Clock Output Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2.3 ST-BUS Output Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3 Serial Data Input Delay and Serial Data Output Offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3.1 Input Channel Delay Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3.2 Input Bit Delay Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3.3 Fractional Input Bit Delay Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.3.4 Output Channel Delay Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.3.5 Output Bit Delay Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.3.6 Fractional Output Bit Advancement Programming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.3.7 External High Impedance Control, STOHZ 0 to 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.4 Data Delay Through The Switching Paths. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.5.1 Connection Memory Block Programming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.6 Bit Error Rate (BER) Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.7 Quadrant frame programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.8 Microprocessor Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.0 Device Reset and Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.0 JTAG Support. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.1 Test Access Port (TAP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.2 Instruction Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.3 Test Data Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.4 BSDL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 5.0 Register Address Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 6.0 Detail Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3 Zarlink Semiconductor Inc. ZL50012 Data Sheet List of Figures Figure 1 - ZL50012 Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Figure 2 - 24 mm x 24 mm LQFP (JEDEC MS-026) Pinout Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Figure 3 - 13 mm x 13 mm 144 Ball LBGA Pinout Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Figure 4 - Input Timing when (CKIN2 to CKIN0 bits = 010) in the Control Register . . . . . . . . . . . . . . . . . . . . . . . 16 Figure 5 - Input Timing when (CKIN2 to CKIN0 bits = 001) in the Control Register . . . . . . . . . . . . . . . . . . . . . . . 16 Figure 6 - Input Timing when (CKIN2 to CKIN0 bits = 000) in the Control Register . . . . . . . . . . . . . . . . . . . . . . . 16 Figure 7 - ST-BUS Input Timing for Various Input Data Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Figure 8 - FPo0 and CKo0 Output Timing when the CKFP0 bit = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Figure 9 - FPo0 and CKo0 Output Timing when the CKFP0 bit = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Figure 10 - FPo1 and CKo1 Output Timing when the CKFP1 bit = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Figure 11 - FPo1 and CKo1 Output Timing when the CKFP1 bit = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Figure 12 - FPo2 and CKo2 Output Timing when the CKFP2 bit = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Figure 13 - FPo2 and CKo2 Output Timing when the CKFP2 bit = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Figure 14 - ST-BUS Output Timing for Various Output Data Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Figure 15 - Input Channel Delay Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Figure 16 - Input Bit Delay Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Figure 17 - Output Channel Delay Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Figure 18 - Output Bit Delay Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Figure 19 - Fractional Output Bit Advancement Timing Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Figure 20 - Example: External High Impedance Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Figure 21 - Data Throughput Delay when input and output channel delay are disabled for Input Ch0 switched to Output Ch0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Figure 22 - Data Throughput Delay when input channel delay is enabled and output channel delay is disabled for Input Ch0 switched to Output Ch0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Figure 23 - Data Throughput Delay when input channel delay is disabled and output channel delay is enabled for Input Ch0 switch to Output Ch0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Figure 24 - Data Throughput Delay when input and output channel delay are enabled for Input Ch0 switched to Output Ch0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Figure 25 - Frame Pulse Input and Clock Input Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Figure 26 - Frame Boundary Timing with Input Clock (cycle-to-cycle) Variation . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Figure 27 - Frame Boundary Timing with Input Frame Pulse (cycle-to-cycle) Variation . . . . . . . . . . . . . . . . . . . . 56 Figure 28 - Input and Output Frame Boundary Offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Figure 29 - FPo0 and CKo0 Timing Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Figure 30 - FPo1 and CKo1 Timing Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Figure 31 - FPo2 and CKo2 Timing Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Figure 32 - ST-BUS Inputs (STi0 - 15) Timing Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Figure 33 - ST-BUS Outputs (STo0 - 15) Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Figure 34 - Serial Output and External Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Figure 35 - Output Driver Enable (ODE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Figure 36 - Motorola Non-Multiplexed Bus Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Figure 37 - JTAG Test Port Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Figure 38 - Reset Pin Timing Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4 Zarlink Semiconductor Inc. ZL50012 Data Sheet List of Tables Table 1 - FPi and CKi Input Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Table 2 - FPo0 and CKo0 Output Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Table 3 - FPo1 and CKo1 Output Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Table 4 - FPo2 and CKo2 Output Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Table 5 - Variable Range for Input Streams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Table 6 - Variable Range for Output Streams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Table 7 - Data Throughput Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Table 8 - Connection Memory in Block Programming Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Table 9 - Definition of the Four Quadrant Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Table 10 - Quadrant Frame 0 LSB Replacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Table 11 - Quadrant Frame 1 LSB Replacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Table 12 - Quadrant Frame 2 LSB Replacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Table 13 - Quadrant Frame 3 LSB Replacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Table 14 - Address Map for Device Specific Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Table 15 - Control Register (CR) Bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Table 16 - Internal Mode Selection (IMS) Register Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Table 17 - BER Start Receiving Register (BSRR) Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Table 18 - BER Length Register (BLR) Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Table 19 - BER Count Register (BCR) Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Table 20 - Stream Input Control Register 0 to 7 (SICR0 to SICR7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Table 21 - Stream Input Control Register 8 to 15 (SICR8 to SICR15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Table 22 - Stream Input Delay Register 0 to 7 (SIDR0 to SIDR7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Table 23 - Stream Input Delay Register 8 to 15 (SIDR8 to SIDR15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Table 24 - Stream Output Control Register 0 to 7 (SOCR0 to SOCR7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Table 25 - Stream Output Control Register 8 to 15 (SOCR8 to SOCR15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Table 26 - Stream Output Offset Register 0 to 7 (SOOR0 to SOOR7). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Table 27 - Stream Output Offset Register 8 to 15 (SOOR8 to SOOR15). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Table 28 - Address Map for Memory Locations (512 x 512 DX, MSB of address = 1). . . . . . . . . . . . . . . . . . . . . . 51 Table 29 - Connection Memory Bit Assignment when the CMM bit = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Table 30 - Connection Memory Bits Assignment when the CMM bit = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 5 Zarlink Semiconductor Inc. ZL50012 Data Sheet 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 NC NC STo12 STo13 STo14 STo15 STOHZ 12 STOHZ 13 STOHZ 14 STOHZ 15 VSS VDD D0 D1 D2 D3 D4 D5 D6 D7 VSS VDD D8 D9 D10 D11 D12 D13 D14 D15 DTA VSS VDD CS R/W DS A0 A1 NC NC NC NC A2 A3 A4 VSS VDD A5 A6 A7 A8 A9 A10 A11 VSS VDD STi0 STi1 STi2 STi3 STi4 STi5 STi6 STi7 VSS VDD STi8 STi9 STi10 STi11 STi12 STi13 STi14 STi15 VSS VDD RESET TDo NC NC 160 Pin LQFP 24 mm x 24 mm 0.5mm pin pitch JEDEC MS-026 (Top View) NC NC VSS CKo1 FPo1 CKo0 FPo0 VDD VSS ICONN3 ICONN2 NC IC4 IC3 IC2 IC1 IC0 VDD CLKBYPS VSS ICONN1 NC3 VSS VDD_APLL VSS_APLL NC2 NC1 TM2 TM1 SG1 VDD VSS CKi FPi TDi TRST TCK TMS NC NC 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Figure 2 - 24 mm x 24 mm LQFP (JEDEC MS-026) Pinout Diagram 9 Zarlink Semiconductor Inc. NC NC VDD VSS STOHZ 11 STOHZ 10 STOHZ 9 STOHZ 8 STo11 STo10 STo9 STo8 VDD VSS STOHZ 7 STOHZ 6 STOHZ 5 STOHZ 4 STo7 STo6 STo5 STo4 VDD VSS STOHZ 3 STOHZ 2 STOHZ 1 STOHZ 0 STo3 STo2 STo1 STo0 VDD VSS ODE CKo2 FPo2 VDD NC NC 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 ZL50012 Data Sheet PINOUT DIAGRAM: (as viewed through top of package) A1 corner identified by metallized marking, mould indent, ink dot or right-angled corner 1 2 3 4 5 6 7 8 9 10 11 12 A ODE FPo2 FPo0 ICONN 3 IC1 IC0 ICONN 1 NC3 TM1 CKi TDi TCK B CKo2 CKo1 FPo1 CKo0 IC3 IC2 CLK BYPS VDD_ APLL SG1 FPi TRST TMS C STo2 STo1 STOHZ 0 ICONN 2 NC NC IC4 NC2 NC1 TM2 TDo STi15 D STo3 STo0 STOHZ 1 VSS VDD VDD VDD VSS_ APLL VSS STi8 RESET STi14 E STo5 STo4 STOHZ STOHZ 3 2 VSS VSS VSS VSS VDD STi9 STi13 STi12 F STo6 STo7 STOHZ 4 VDD VSS VSS VSS VSS VDD STi7 STi10 STi11 STOHZ STOHZ STOHZ 6 7 5 VDD VSS VSS VSS VSS STi1 STi6 STi5 STi4 VDD VSS VSS VSS VSS STi0 DS STi2 STi3 VSS D2 VDD VDD VDD A10 A9 A8 A11 G H STo9 STo10 STo8 J STo11 STOHZ STOHZ 11 8 K STOHZ STOHZ 9 15 STo15 STOHZ 13 D1 D5 CS D10 D11 A5 A4 A7 L STOHZ 10 STo12 STo13 D3 D15 D4 D7 D12 D14 A2 A3 A6 M STo14 STOHZ STOHZ 12 14 D0 DTA D6 D8 D9 D13 A0 A1 R/W Figure 3 - 13 mm x 13 mm 144 Ball LBGA Pinout Diagram 10 Zarlink Semiconductor Inc. ZL50012 Data Sheet Pin Description LQFP Pin Number LBGA Ball Number 10, 23, 33, 43, 48, 58, 68, 78, 92, 102, 113, 127, 136, 146, 156 D5, D6, D7 E9 F4, F9 G4 H4 J6, J7, J8 VDD 9, 18, 21, 32, 38, 47, 57, 67, 77, 91, 101, 112, 126, 135, 145, 155 D4, D9 E5, E6, E7, E8 F5, F6, F7, F8 G5, G6, G7, G8 H5, H6, H7, H8 J4 Vss (GND) 3 B12 TMS Test Mode Select (3.3 V Tolerant Input with internal pullup): JTAG signal that controls the state transitions of the TAP controller. This pin is pulled high by an internal pull-up resistor when it is not driven. 4 A12 TCK Test Clock (5 V Tolerant Input): Provides the clock to the JTAG test logic. 5 B11 TRST Test Reset (3.3 V Tolerant Input with internal pull-up): Asynchronously initializes the JTAG TAP controller by putting it in the Test-Logic-Reset state. This pin should be pulsed low during power-up to ensure that the device is in the normal functional mode. When JTAG is not being used, this pin should be pulled low during normal operation. 6 A11 TDi Test Serial Data In (3.3 V Tolerant Input with internal pullup): JTAG serial test instructions and data are shifted in on this pin. This pin is pulled high by an internal pull-up resistor when it is not driven. 7 B10 FPi ST-BUS Frame Pulse Input (5 V Tolerant Input): This pin accepts the frame pulse which stays low for 61 ns, 122 ns or 244 ns at the frame boundary. The frame pulse associating with the highest input data rate has to be applied to this pin. The frame pulse frequency is 8 kHz. The device also accepts positive frame pulse if the FPINP bit is high in the Internal Mode Selection register. 8 A10 CKi ST-BUS Clock Input (5 V Tolerant Input): This pin accepts a 4.096 MHz, 8.192 MHz or 16.384 MHz clock. The input clock frequency has to be equal to or greater than twice of the highest input data rate. The clock falling edge defines the input frame boundary. The device also allows the clock rising edge to define the frame boundary by programming the CKINP bit in the Internal Mode Selection register. Name Description Power Supply for the device: +3.3 V Ground. 11 Zarlink Semiconductor Inc. ZL50012 Data Sheet Pin Description (continued) LQFP Pin Number LBGA Ball Number Name Description 11 B9 SG1 APLL Test Control (3.3 V Input with internal pull-down): For normal operation, this input MUST be low. 12 A9 TM1 APLL Test Pin 1: For normal operation, this input MUST be low. 13 C10 TM2 APLL Test Pin 2: For normal operation, this input MUST be low. 14, 15, 19 C9, C8, A8 NC1, NC2, NC3 16 D8 Vss_APLL Ground for the APLL Circuit. 17 B8 VDD_APLL Power Supply for the on-chip Analog Phase Lock Loop (APLL) Circuit: +3.3 V 20 A7 ICONN1 Internal Connection: In normal mode, this pin must be low. 22 B7 CLKBYPS Test Clock Input: For device testing only, in normal operation, this input MUST be low. 24 - 28 A6, A5, B6, B5, C7 IC0 - 4 Internal connection (3.3 V Tolerant Inputs with internal pull-down): In normal mode, these pins must be low. 30, 31 C4, A4 ICONN2 - 3 Internal Connection: In normal mode, these pins must be low. 34 A3 FPo0 ST-BUS Frame Pulse Output 0 (5 V Tolerance Three-state Output): ST-BUS frame pulse output which stays low for 244 ns or 122 ns at the output frame boundary. Its frequency is 8 KHz. The polarity of this signal can be changed using the Internal Mode Selection register. 35 B4 CKo0 ST-BUS Clock Output 0 (5 V Tolerant Three-state Output): A 4.094 MHz or 8.192 MHz clock output. The clock falling edge defines the output frame boundary. The polarity of this signal can be changed using the Internal Mode Selection register. 36 B3 FPo1 ST-BUS Frame Pulse Output 1 (5 V Tolerant Three-state Output): ST-BUS frame pulse output which stays low for 61 ns or 122 ns at the output frame boundary. Its frequency is 8 KHz. The polarity of this signal can be changed using the Internal Mode Selection register. 37 B2 CKo1 ST-BUS Clock Output 1 (5 V Tolerant Three-state Output): A 16.384 MHz or 8.192 MHz clock output. The clock falling edge defines the output frame boundary. The polarity of this signal can be changed using the Internal Mode Selection register. No Connection: These pins MUST be left unconnected. 12 Zarlink Semiconductor Inc. ZL50012 Data Sheet Pin Description (continued) LQFP Pin Number LBGA Ball Number Name Description 44 A2 FPo2 ST-BUS Frame Pulse Output 2 (5V Tolerant High Speed Three-state Output): ST-BUS frame pulse output which stays low for 30 ns or 61 ns at the frame boundary. Its frequency is 8 KHz. The polarity of this signal can be changed using the Internal Mode Selection register. 45 B1 CKo2 ST-BUS Clock Output 2 (5 V Tolerant High Speed Threestate Output): A 32.768 MHz or 16.384 MHz clock output. The clock falling edge defines the output frame boundary. The polarity of this signal can be changed using the Internal Mode Selection register. 46 A1 ODE Output Drive Enable (5 V Tolerant Input): This is the asynchronously output enable control for the STo0 - 15 and the output driven high control for the STOHZ 0 - 15 serial outputs. When it is high, the STo0 - 15 and STOHZ 0 - 15 are enabled. When it is low, the STo0 - 15 are in the high impedance state and the STOHZ 0 - 15 are driven high. 49 - 52 59 - 62 69 - 72 83 - 86 D2, C2, C1, D1 E2, E1, F1, F2 H3, H1, H2, J1 L2, L3, M1, K3 STo0 - 3 STo4 - 7 STo8 - 11 STo12 - 15 Serial Output Streams 0 to 15 (5 V Tolerant Three-state Outputs): The data rate of these output streams can be selected independently using the stream control output registers. In the 2.048 Mb/s mode, these pins have serial TDM data streams at 2.048 Mb/s with 32 channels per stream. In the 4.096 Mb/s mode, these pins have serial TDM data streams at 4.096 Mb/s with 64 channels per stream. In the 8.192 Mb/s mode, these pins have serial TDM data streams at 8.192 Mb/s with 128 channels per stream. 53 - 56 63 - 66 73 - 76 87 - 90 C3, D3, E4, E3 F3, G3, G1, G2 J3, K1, L1, J2 M2, K4, M3, K2 STOHZ 0 - 3 STOHZ 4 - 7 STOHZ 8 11 STOHZ 12 15 Serial Output Streams High Impedance Control 0 to 15 (5 V Tolerant Three-state Outputs): These pins are used to enable (or disable) external three-state buffers. When a output channel is in the high impedance state, the STOHZ drives high for the duration of the corresponding output channel. When the STo channel is active, the STOHZ drives low for the duration of the corresponding output channel. 93 - 96 97 - 100 103 - 106 107 - 110 M4, K5, J5, L4 L6, K6, M6, L7 M7, M8, K8, K9 L8, M9, L9, L5 D0 - D3 D4 - D7 D8 - D11 D12 - D15 Data Bus 0 - 15 (5 V Tolerant I/Os): These pins form the 16-bit data bus of the microprocessor port. 111 M5 DTA Data Transfer Acknowledgment (5 V Tolerant Three-state Output): This active low output indicates that a data bus transfer is complete. A pull-up resistor is required to hold this pin at HIGH level. 114 K7 CS Chip Select (5 V Tolerant Input): Active low input used by the microprocessor to enable the microprocessor port access. 13 Zarlink Semiconductor Inc. ZL50012 Data Sheet Pin Description (continued) LQFP Pin Number LBGA Ball Number Name Description 115 M12 R/W Read/Write (5 V Tolerant Input): This input controls the direction of the data bus lines (D0-D15) during a microprocessor access. 116 H10 DS Data Strobe (5 V Tolerant Input): This active low input works in conjunction with CS to enable the microprocessor port read and write operations. 117, 118 123 - 125 128 - 130 131 - 134 M10, M11 L10, L11, K11 K10, L12, K12 J11, J10, J9, J12 A0 - A1 A2 - A4 A5 - A7 A8 - A11 Address 0 - 11 (5 V Tolerant Inputs): These pins form the 12bit address bus to the internal memories and registers. 137 - 139 140 - 142 143, 144 147 - 149 150 - 152 153, 154 H9, G9, H11 H12, G12, G11 G10, F10 D10, E10, F11 F12, E12, E11 D12, C12 STi0 - 2 STi3 - 5 STi6 - 7 STi8 - 10 STi11- 13 STi14 - 15 Serial Input Streams 0 to 15 (5 V Tolerant Inputs): The data rate of these input streams can be selected independently using the stream input control registers. In the 2.048 Mb/s mode, these pins accept serial TDM data streams at 2.048 Mb/s with 32 channels per stream. In the 4.096 Mb/s mode, these pins accept serial TDM data streams at 4.096 Mb/s with 64 channels per stream. In the 8.192 Mb/s mode, these pins accept serial TDM data streams at 8.192 Mb/s with 128 channels per stream. Unused serial input pins are required to connect to either Vdd or ground, through an external pull-up resistors or external pulldown resistor. 157 D11 RESET Device Reset (5 V Tolerant Input): This input (active LOW) puts the device in its reset state that disables the STo0 - 15 drivers and drives the STOHZ 0 - 15 outputs to high. It also clears the device registers and internal counters. To ensure proper reset action, the reset pin must be low for longer than 1 ms. Upon releasing the reset signal to the device, the first microprocessor access can take place after 600 µs due to the time required to stabilize the APLL block from the power down state. 158 C11 TDo Test Serial Data Out (3 V Tolerant Three-state Output): JTAG serial data is output on this pin on the falling edge of TCK. This pin is held in high impedance state when JTAG is not enabled. 1, 2, 29, 39 - 42, 79 - 82, 119 - 122, 159, 160 C5, C6 NC No Connection Pins. These pins are not connected to the device internally. 14 Zarlink Semiconductor Inc. ZL50012 1.0 Data Sheet Device Overview The device uses the ST-BUS input frame pulse and the ST-BUS input clock to define the input frame boundary and timing for the ST-BUS input streams with various data rates (2.048 Mb/s, 4.096 Mb/s and/or 8.192 Mb/s). The output frame boundary is defined by the output frame pulses and the output clock timing for the ST-BUS output streams with various data rates (2.048 Mb/s, 4.096 Mb/s and/or 8.192 Mb/s). By using Zarlink’s message mode capability, microprocessor data can be broadcast to the data output streams on a per channel basis. This feature is useful for transferring control and status information for external circuits or other ST-BUS devices. A non-multiplexed microprocessor port allows users to program the device with various operating modes and switching configurations. Users can use the microprocessor port to perform register read/write, connection memory read/write and data memory read operations. The microprocessor port has a 12-bit address bus, a 16-bit data bus and four control signals. The device also supports the mandatory requirements of the IEEE-1149.1 (JTAG) standard via the test port. 2.0 Functional Description A functional block diagram of the ZL50012 is shown in Figure 1 on page 1. 2.1 ST-BUS Input Data Rate and Input Timing The device has sixteen ST-BUS serial data inputs. Any of the sixteen inputs can be programmed to accept different data rates, 2.048 Mb/s, 4.096 Mb/s or 8.192 Mb/s. 2.1.1 ST-BUS Input Operation Mode Any ST-BUS input can be programmed to accept the 2.048 Mb/s, 4.096 Mb/s or 8.192 Mb/s data using Bit 0 to 2 in the stream input control registers, SICR0 to SICR15 as shown in Table 20 on page 41 and Table 21 on page 43. The maximum number of input channels is 512 channels. External pull-up or pull-down resistors are required for any unused ST-BUS inputs. 2.1.2 Frame Pulse Input and Clock Input timing The frame pulse input FPi accepts the frame pulse used for the highest input data rate. The frame pulse is an 8 kHz input signal which stays low for 244 ns, 122 ns or 61 ns for the input data rate of 2.048 Mb/s, 4.096 Mb/s or 8.192 Mb/s respectively. The frequency of CKi must be twice the highest data rate. For example, if users present the ZL50012 with 2.048 Mb/s and 8.192 Mb/s input data, the device should be programmed to accept the input clock of 16.384 MHz and the frame pulse which stays low for 61 ns. Users have to program the CKIN2 - 0 bits in the Control Register (CR), for the width of the frame pulse low cycle and the frequency of the input clock. See Table 1 for the programming of the CKIN0, CKIN1 and CKIN2 bits in the Control Register. CKIN2 - 0 bits FPi Low Cycle CKi Highest Input Data Rate 000 61 ns 16.384 MHz 8.192 Mb/s 001 122 ns 8.192 MHz 4.096 Mb/s 010 244 ns 4.096 MHz 2.048 Mb/s 011 - 111 Reserved Table 1 - FPi and CKi Input Programming 15 Zarlink Semiconductor Inc. ZL50012 Data Sheet The device also accepts positive or negative input frame pulse and ST-BUS input clock formats via the programming of the FPINP and CKINP bits in the Internal Mode Selection (IMS) register. By default, the device accepts the negative input clock format. Figure 4, Figure 5 and Figure 6 describe the usage of CKIN2 - 0, FPINP and CKINP in the Internal Mode Selection (IMS) register: FPi (8kHz) FPINP = 0 FPi FPINP = 1 CKi (4.096MHz) CKINP = 0 CKi (4.096MHz) CKINP = 1 Input Frame Boundary Input Frame Boundary Figure 4 - Input Timing when (CKIN2 to CKIN0 bits = 010) in the Control Register FPi FPINP = 0 FPi FPINP = 1 CKi (8.192MHz) CKINP = 0 CKi (8.192MHz) CKINP = 1 Input Frame Boundary Input Frame Boundary Figure 5 - Input Timing when (CKIN2 to CKIN0 bits = 001) in the Control Register FPi FPINP = 0 FPi FPINP = 1 CKi (16.384MHz) CKINP = 0 CKi (16.384MHz) CKINP = 1 Input Frame Boundary Input Frame Boundary Figure 6 - Input Timing when (CKIN2 to CKIN0 bits = 000) in the Control Register 16 Zarlink Semiconductor Inc. ZL50012 2.1.3 Data Sheet ST-BUS Input Timing When the negative input frame pulse and negative input clock formats are used, the input frame boundary is defined by the falling edge of the CKi input clock while the FPi is low. When the input data rate is 2.048 Mb/s, 4.096 Mb/s or 8.192 Mb/s, there are 32, 64 or 128 channels per every ST-BUS frame respectively. Figure 7 shows the details: FPi (8kHz) CKi (4.096MHz) FPi CKi (8.192MHz) FPi CKi (16.384MHz) Channel 31 Channel 0 STi (2.048Mb/s) 7 0 5 6 3 4 2 1 0 7 6 5 Channel 0 STi (8.192Mb/s) 4 3 7 0 Channel 63 Channel 0 STi (4.096Mb/s) 1 2 1 0 Channel 1 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 Input Frame Boundary 6 5 4 Channel 126 3 2 1 Channel 127 Figure 7 - ST-BUS Input Timing for Various Input Data Rates Zarlink Semiconductor Inc. 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 Input Frame Boundary 17 0 ZL50012 2.2 Data Sheet ST-Bus Output Data Rate and Output Timing The device has sixteen ST-Bus serial data outputs. Any of the sixteen outputs can be programmed to deliver different data rates at 2.048 Mb/s, 4.096 Mb/s or 8.192 Mb/s. 2.2.1 ST-Bus Output Operation Mode Any ST-Bus output can be programmed to deliver the data at 2.048 Mb/s, 4.096 Mb/s or 8.192 Mb/s mode using Bit 0 to 2 in the Stream Output Control Register, SOCR0 to SOCR15 as shown in Table 24 on page 47 and Table 25 on page 48. 2.2.2 Frame Pulse Output and Clock Output Timing The device offers three frame pulse outputs, FPo0, FPo1 and FPo2. All output frame pulses are 8kHz output signals. By default, output frame boundary is defined by the falling edge of the CKo0, CKo1 or CKo2 output clocks while the FPo0, FPo1 or FPo2 output frame pulse goes low respectively. In addition to the default settings, users can also select different output frame pulse low cycles and output clock frequencies by programming the CKFP0, CKFP1 and CKFP2 bits in the Control Register. See Table 2, Table 3 and Table 4 for the bit usage in the Control Register: CKFP0 FPo0 Low Cycle CKo0 0 244 ns 4.096 MHz 1 122 ns 8.192 MHz Table 2 - FPo0 and CKo0 Output Programming CKFP1 FPo1 CKo1 0 61 ns 16.384 MHz 1 122 ns 8.192 MHz Table 3 - FPo1 and CKo1 Output Programming CKFP2 FPo2 CKo2 0 30 ns 32.768 MHz 1 61 ns 16.384 MHz Table 4 - FPo2 and CKo2 Output Programming 18 Zarlink Semiconductor Inc. ZL50012 Data Sheet The device also delivers positive or negative output frame pulse and ST-BUS output clock formats via the programming of the FP0P, FP1P, FP2P, CK0P, CK1P and CK2P bits in the Internal Mode Selection (IMS) register. By default, the device delivers the negative output frame pulse and negative output clock formats. Figure 8 to Figure 13 describe the usage of the CKFP0, CKFP1, CKFP2, FP0P, FP1P, FP2P, CK0P, CK1P and CK2P in the Control Register and Internal Mode Selection Register: FPo0 (8 kHz) FP0P = 0 FPo0 FP0P = 1 CKo0 (4.096 MHz) CKOP = 0 CKo0 (4.096 MHz) CKOP = 1 Figure 8 - FPo0 and CKo0 Output Timing when the CKFP0 bit = 0 FPo0 FPOP = 0 FPo0 FPOP =1 CKo0 (8.192 MHz) CKOP = 0 CKo0 (8.192 MHz) CKOP = 1 Figure 9 - FPo0 and CKo0 Output Timing when the CKFP0 bit = 1 FPo1 FP1P = 0 FPo1 FP1P = 1 CKo1 (16.384 MHz) CK1P = 0 CKo1 (16.384 MHz) CK1P = 1 Figure 10 - FPo1 and CKo1 Output Timing when the CKFP1 bit = 0 19 Zarlink Semiconductor Inc. ZL50012 FPo1 FP1P = 0 FPo1 FP1P =1 CKo1 (8.192 MHz) CK1P = 0 CKo1 (8.192 MHz) CK1P = 1 Figure 11 - FPo1 and CKo1 Output Timing when the CKFP1 bit = 1 FPo2 FP2P = 0 FPo2 FP2P = 1 CKo2 (32.768 MHz) CK2P = 0 CKo2 (32.768 MHz) CK2P = 1 Figure 12 - FPo2 and CKo2 Output Timing when the CKFP2 bit = 0 FPo2 FP2P = 0 FPo2 FP2P = 1 CKo2 (16.384 MHz) CK2P = 0 CKo2 (16.384 MHz) CK2P = 1 Figure 13 - FPo2 and CKo2 Output Timing when the CKFP2 bit = 1 20 Zarlink Semiconductor Inc. Data Sheet ZL50012 2.2.3 Data Sheet ST-BUS Output Timing By default, the output frame boundary is defined by the falling edge of the CKo0, CKo1 or CKo2 output clock while the FPo0, FPo1 or FPo2 output frame pulse goes low respectively. When the output data rates are 2.048 Mb/s, 4.096 Mb/s and 8.192 Mb/s, there are 32, 64 or 128 output channels per every ST-BUS frame respectively. Figure 14 describes the details. FPo0 (8 kHz) CKo (4.096 MHz) FPo0 or FPo1 CKo0 or CKo1 (8.192 MHz) FPo1 or FPo2 CKo1 or CKo2 (16.384 MHz) FPo2 CKo2 (32.768 MHz) Channel 31 Channel 0 STo (2.048 Mb/s) 7 0 5 6 3 4 2 1 0 7 6 5 Channel 0 STo (8.192 Mb/s) 4 3 7 0 Channel 63 Channel 0 STo (4.096 Mb/s) 1 2 1 0 Channel 1 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 Output Frame Boundary 6 5 Channel 126 4 3 2 1 Channel 127 Figure 14 - ST-BUS Output Timing for Various Output Data Rates Zarlink Semiconductor Inc. 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 Output Frame Boundary 21 0 ZL50012 2.3 Data Sheet Serial Data Input Delay and Serial Data Output Offset Various registers are provided to adjust the input and output delays for every input and every output data stream. The input and output channel delay can vary from 0 to 31, 0 to 63 and 0 to 127 channel(s) for the 2.048 Mb/s, 4.096 Mb/s and 8.192 Mb/s modes respectively. The input and output bit delay can vary from 0 to 7 bits. The fractional input bit delay can vary from 1/4, 1/2, 3/4 to 4/4 bit. The fractional output bit advancement can vary from 0, 1/4, 1/2 to 3/4 bit. 2.3.1 Input Channel Delay Programming This feature allows each input stream to have a different input frame boundary with respect to the input frame boundary defined by the FPi and CKi. By default, all input streams have channel delay of zero such that Ch0 is the first channel that appears after the input frame boundary (see Figure 15). The input channel delay programming is enabled by setting Bit 3 to 9 in the Stream Input Delay Register (SIDR). The input channel delay can vary from 0 to 31, 0 to 63 and 0 to 127 for the 2.048 Mb/s, 4.096 Mb/s and 8.192 Mb/s modes respectively. FPi Last Channel 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 Delay = 1 Last Channel STiX Channel Delay = 1 Last Channel -1 Ch 1 Ch 0 STiX Channel Delay = 0 (Default) Last Channel -2 Ch 0 Last Channel -1 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 Delay = 2 Last Channel -1 STiX Channel Delay = 2 Note: X = 0 to 15 Last Channel Ch0 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 Last Channel -2 7 6 5 4 3 2 1 0 7 6 Note: Last Channel = 31, 63, 127 for 2.048 Mb/s, 4.096 Mb/s and 8.192 Mb/s mode respectively Input Frame Boundary Figure 15 - Input Channel Delay Timing Diagram 2.3.2 Input Bit Delay Programming In addition to the input channel delay programming, the input bit delay programming feature provides users with more flexibility when designing the switch matrices at high speed, in which the delay lines are easily created on PCM highways which are connected to the switch matrix cards. By default, all input streams have zero bit delay such that Bit 7 is the first bit that appears after the input frame boundary, see Figure 16. The input delay is enabled by Bit 0 to 2 in the Stream Input Delay Registers (SIDR). The input bit delay can vary from 0 to 7 bits. 22 Zarlink Semiconductor Inc. ZL50012 2.3.3 Data Sheet Fractional Input Bit Delay Programming In addition to the input bit delay feature, the device allows users to change the sampling point of the input bit. By default, the sampling point is at 3/4 bit. Users can change the sampling point to 1/4, 1/2, 3/4 or 4/4 bit position by programming Bit 3 and 4 of the Stream Input Control Registers (SICR). FPi Ch0 Last Channel STiX Bit Delay = 0 (Default) 3 2 1 0 7 6 5 4 Ch1 3 2 1 0 7 6 5 3 2 1 0 7 6 4 Bit Delay = 1 STiX Bit Delay = 1 4 3 Ch1 Ch0 Last Channel 2 1 0 7 6 5 4 5 Note: X = 0 to 15 Input Frame Boundary Note: Last Channel = 31, 63, 127 for 2.048 Mb/s, 4.096 Mb/s and 8.192 Mb/s mode respectively Figure 16 - Input Bit Delay Timing Diagram 2.3.4 Output Channel Delay Programming This feature allows each output stream to have a different output frame boundary with respect to the output frame boundary defined by the output frame pulse (FPo0, FPo1 and FPo2) and the output clock (CKo0, CKo1 or CKo2). By default, all output streams have zero channel delay such that Ch 0 is the first channel that appears after the output frame boundary as shown in Figure 17. Different output channel delay can be set by programming Bit 5 to 11 in the Stream Output Offset Registers (SOOR). The output channel delay can vary from 0 to 31, 0 to 63 and 0 to 127 for the 2.048 Mb/s, 4.096 Mb/s and 8.192 Mb/s modes respectively. FPo Ch 0 SToX Channel Delay = 0 (Default) SToX Channel Delay = 2 Last Channel -2 Ch 0 Delay = 2 Last Channel Last Channel -1 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 Last Channel -1 Last Channel 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 Delay = 1 Last Channel SToX Channel Delay = 1 Last Channel -1 Ch 1 Ch0 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 Last Channel -2 7 6 5 4 3 2 1 0 7 6 Note: X = 0 to 15 Note: Last Channel = 31, 63, 127 for 2.048 Mb/s, 4.096 Mb/s and 8.192 Mb/s mode respectively Output Frame Boundary Figure 17 - Output Channel Delay Timing Diagram 23 Zarlink Semiconductor Inc. ZL50012 2.3.5 Data Sheet Output Bit Delay Programming This feature is used to delay the output data bit of individual output streams with respect to the output frame boundary. Each output stream can have its own bit delay value. By default, all output streams have zero bit delay such that Bit 7 is the first bit that appears after the output frame boundary (see Figure 18 on page 24). Different output bit delay can be set by programming Bit 2 to 4 in the Stream Output Offset Registers. The output bit delay can vary from 0 to 7 bits. FPo Last Channel SToX Bit Delay = 0 (Default) 3 2 1 Ch0 0 7 6 5 4 Ch1 3 2 1 0 7 6 5 4 Bit Delay = 1 SToX Bit Delay = 1 3 4 2 Ch1 Ch0 Last Channel 1 7 0 6 5 4 3 2 1 0 7 6 5 Note: X = 0 to 15 Output Frame Boundary Note: Last Channel = 31, 63, 127 for 2.048Mb/s, 4.096Mb/s and 8.192Mb/s mode respectively Figure 18 - Output Bit Delay Timing Diagram 2.3.6 Fractional Output Bit Advancement Programming In addition to the output bit delay, the device is also capable of performing fractional output bit advancement. This feature offers a better resolution for the output bit delay adjustment. The fractional output bit advancement is useful in compensating for various parasitic loadings on the serial data output pins. By default, all output streams have zero fractional bit advancement such that Bit 7 is the first bit that appears after the output frame boundary as shown in Figure 19. The fractional output bit advancement is enabled by Bit 0 to 1 in the Stream Output Offset Registers. The fractional bit advancement can vary from 0, 1/4, 1/2 or 3/4 bit. FPo Ch0 Last Channel SToY Fractional Bit Adv. = 0 (Default) Bit 1 Bit 7 Bit 0 Bit 6 Fractional Bit Advancement = 1/4 bit Last Channel SToY Fractional Bit Adv. = 1/4 bit Bit 1 Ch0 Bit 7 Bit 0 Bit 6 Note: Y = 0 to 15 Output Frame Boundary Note: Last Channel = 31, 63, 127 for 2.048 Mb/s, 4.096 Mb/s and 8.192 Mb/s mode respectively Figure 19 - Fractional Output Bit Advancement Timing Diagram 24 Zarlink Semiconductor Inc. ZL50012 2.3.7 Data Sheet External High Impedance Control, STOHZ 0 to 15 The STOHZ 0 to 15 outputs are provided to control the external tristate ST-BUS drivers for per-channel high impedance operations. The STOHZ outputs are sent out in 32, 64 or 128 timeslots corresponding to the output channels for 2.048 Mb/s, 4.096 Mb/s and 8.192 Mb/s output streams respectively. Each control timeslot lasts for one channel time. When the ODE pin is high, the STOHZ 0 - 15 are enabled. When the ODE pin or the RESET pin is low, the STOHZ 0 - 15 are driven high. STOHZ outputs are also driven high if their corresponding ST-BUS outputs are not in use. Figure 20 gives an example when channel 2 of a given ST-BUS output is programmed in the high impedance state, the corresponding STOHZ pin drives high for one channel time at the channel 2 timeslot. By default, the output timing of the STOHZ signals follow the same timing as their corresponding STo signals including any user-programmed output channel and bit delay and fractional bit advancement. In addition, the device allows users to advance the STOHZ signals from their default positions to a maximum of four 15.2 ns steps (or four 1/4 bit steps) using Bit 3 to 5 of the Stream Output Control Register (SOCR). Bit 6 in the Stream Output Control Register selects the step resolution as 15.2 ns or 1/4 data bit. The additional advancement feature allows the STOHZ signals to better match the high impedance timing required by the external ST-BUS drivers. FPo HiZ SToY Last Ch Ch0 Ch1 Ch2 Ch3 Last Ch -2 Last Ch-1 STOHZ Y (Default = No Adv.) STOHZ Advancement (Programmable in 4 steps of 15.2 ns or 1/4 bit) STOHZ Y (With Adv.) Note: Y = 0 to 15 Output Frame Boundary Note: Last Channel = 31, 63, 127 for 2.048 Mb/s, 4.096 Mb/s and 8.192 Mb/s mode respectively Figure 20 - Example: External High Impedance Control Timing 25 Zarlink Semiconductor Inc. Last Ch Ch0 ZL50012 2.4 Data Sheet Data Delay Through The Switching Paths To maintain the channel integrity in the constant delay mode, the usage of the input channel delay and output channel delay modes affect the data delay through various switching paths due to additional data buffers. The usage of these data buffers is enabled by the input and output channel delay bits (STIN#CD6-0 and STO#CD6-0) in the Stream Input Delay and Stream Output Offset Registers. However, the input and output bit delay or the input and output fractional bit offset have no impact on the overall data throughput delay. In the following paragraphs, the data throughput delay (T) is expressed as a function of ST-BUS frames, input channel number (m), output channel number (n), input channel delay (α) and output channel delay (β). Table 5 describes the variable range for input streams and Table 6 describes the variable range for output streams. Table 7 summarizes the data throughput delay under various input channel and output channel delay conditions. Input Stream Data Rate Input Channel Number (m) Possible Input channel delay (α) 2 Mb/s 0 to 31 1 to 31 4 Mb/s 0 to 63 1 to 63 8 Mb/s 0 to 127 1 to 127 Table 5 - Variable Range for Input Streams Output Stream Data Rate Output Channel Number (n) Possible Output channel delay (β) 2 Mb/s 0 to 31 1 to 31 4 Mb/s 0 to 63 1 to 63 8 Mb/s 0 to 127 1 to 127 Table 6 - Variable Range for Output Streams Input Channel Delay OFF Output Channel Delay OFF T = 2 frames + (n-m) Input Channel Delay ON Output Channel Delay OFF Input Channel Delay OFF Output Channel Delay ON Input Channel Delay ON Output Channel Delay ON T = 3 frames - α + (n-m) T = 2 frames + β + (n-m) T= 3 frames - α + β + (n-m) Table 7 - Data Throughput Delay 26 Zarlink Semiconductor Inc. ZL50012 Data Sheet By default, when the input channel delay and output channel delay are set to zero, the data throughput delay (T) is: T = 2 frames + (m-n). Figure 21 shows the throughput delay when the input Ch0 is switched to the output Ch0. Frame Serial Input Data (No Delay) Frame N+1 Frame N Frame N Data Frame N+2 Frame N+1Data Frame N+3 Frame N+4 Frame N+5 Frame N+2 Data Frame N+3 Data Frame N+4 Data Frame N+5 Data Frame N Data Frame N+1 Data Frame N+2 Data Frame N+3 Data 2 Frames + 0 Serial Output Data (No Delay) Frame N-2 Data Frame N-1 Data Figure 21 - Data Throughput Delay when input and output channel delay are disabled for Input Ch0 switched to Output Ch0 When the input channel delay is enabled and the output channel delay is disabled, the data throughput delay is: T = 3 frames - α + (m-n). Figure 22 shows the data throughput delay when the input Ch0 is switched to the output Ch0. Frame Serial Input Data (α = 1) Frame N Frame N+1 Frame N Data Frame N+2 Frame N+1 Data Frame N+3 Frame N+2 Data Frame N+3 Data Frame N+4 Frame N+4 Data Frame N+5 Frame N+5 Data Input Channel Delay (from 1 to max# of channels, programmed by the STIN#CD6-0 bit) Serial Input Data (α > 1) Frame N-1 Data Frame N Data Frame N+1 Data Frame N+2 Data Frame N+3 Data Frame N+4 Data 3 Frames - α + 0 3 Frames - 1 channel + 0 Serial Output Data (No Delay) Frame N-3 Data Frame N-2 Data Frame N-1 Data Frame N Data Frame N+1 Data Frame N+2 Data Figure 22 - Data Throughput Delay when input channel delay is enabled and output channel delay is disabled for Input Ch0 switched to Output Ch0 When the input channel delay is disabled and the output channel delay is enabled, the throughput delay is: T = 2 frames + β + (m-n). Figure 23 shows the data throughput delay when the input Ch0 is switched to the output Ch0. Frame Serial Input (No Delay) Frame N Frame N Data Frame N+1 Frame N+2 Frame N+1 Data Frame N+2 Data Frame N+3 Frame N+3 Data Frame N+4 Frame N+4 Data Frame N+5 Frame N+5 Data 2 Frames + 1 + 0 Serial Output Data (β = 1) Frame N-2 Data Frame N-1 Data Frame N Data Frame N+1 Data Frame N+2 Data Frame N+3 Data Output Channel Delay:(from 1 to max# of channels, programmed by the STO#CD6-0 bit) 2 Frames + β + 0 Serial Output Data (β > 1) Frame N-3 Data Frame N-2 Data Frame N-1 Data Frame N Data Frame N+1 Data Frame N+2 Data Figure 23 - Data Throughput Delay when input channel delay is disabled and output channel delay is enabled for Input Ch0 switch to Output Ch0 27 Zarlink Semiconductor Inc. ZL50012 Data Sheet When the input channel delay and the output channel delay are enabled, the data throughput delay is: T = 3 frames - α + β + (m-n). Figure 24 shows the data throughput delay when the input Ch0 is switched to the output Ch0. Frame Serial Input Data (α = 1) Frame N Frame N+1 Frame N Data Frame N+1 Data Frame N+2 Frame N+3 Frame N+2 Data Frame N+3 Data Frame N+4 Frame N+4 Data Frame N+5 Frame N+5 Data Input Channel Delay:(from 1 to max# of channels, programmed by the STIN#CD6-0 bit) Serial Input Data (α > 1) Frame N-1 Data Frame N Data Frame N+1 Data Frame N+2 Data Frame N+3 Data Frame N+4 Data 3 Frames - α + 1 + 0 3 Frames - 1 + 1 + 0 Serial Output Data (β = 1) Frame N-3 Data Frame N-2 Data Frame N-1 Data Frame N Data Frame N+1 Data Frame N+2 Data Output Channel Delay:(from 1 to max# of channels, programmed by the STO#CD6-0 bit) 3 Frames - α + β + 0 3 Frames - 1 + β + 0 Serial Output Data (β > 1) Frame N-4 Data Frame N-3 Data Frame N-2 Data Frame N-1 Data Frame N Data Frame N+1 Data Figure 24 - Data Throughput Delay when input and output channel delay are enabled for Input Ch0 switched to Output Ch0 28 Zarlink Semiconductor Inc. ZL50012 2.5 Data Sheet Connection Memory Description The connection memory is 12-bit wide. There are 512 memory locations to support the ST-BUS serial outputs STo0-15. The address of each connection memory location corresponds to an output destination stream number and an output channel address. See Table 28 on page 51 for the connection memory address map. When Bit 0 of the connection memory is low, Bit 1 to 7 define the source (input) channel address and Bit 8 to 11 define the source (input) stream address. Once the source stream and channel addresses are programmed by the microprocessor, the contents of the data memory at the selected address are switched to the mapped output stream and channel. See Table 29 on page 52 for details on the memory bit assignment when Bit 0 of the connection memory is low. When Bit 0 of the connection memory is high, Bit 1 and 2 define the per-channel control modes of the output streams, the per-channel high impedance output control, the per-channel message and the per-channel BER test modes. In the message mode, the 8-bit message data located in Bit 3 to 10 of the connection memory will be transferred directly to the mapped output stream. See Table 30 on page 52 for details on the memory bit assignment when Bit 0 of the connection memory is high. 2.5.1 Connection Memory Block Programming This feature allows fast initialization of the entire connection memory after power up. When block programming mode is enabled, the content of Bit 1 to 3 in the Internal Mode Selection (IMS) Register will be loaded into Bit 0 to 2 of all the 512 connection memory locations. The other bit positions of the connection memory will be loaded with zeros. Memory block programming procedure: (Assumption: The MBPE and MBPS bits are both low at the start of the procedure) • Program Bit 1 to 3 (BPD0 to BPD2) in the IMS (Internal Mode Selection) register. • Set the Memory Block Programming Enable (MBPE) bit in the Control Register to high to enable the block programming mode. • Set the Memory Block Programming Start (MBPS) bit to high in the IMS Register to start the block programming. The BPD0 to BPD2 bits will be loaded into Bit 0 to 2 of the connection memory. The other bit positions of the connection memory will be loaded with zeros. The memory content after block programming is shown in Table 8. • It takes 50µs for the connection memory to be loaded with the bit pattern defined by the BPD0 to BPD2 bits. • After loading the bit pattern to the entire connection memory, the device will reset the MBPS bit to low, indicating that the process has finished. • Upon completion of the block programming, set the MBPE bit from high to low to disable the block programming mode. Note: Once the block programming is started, it can be terminated at any time prior to completion by setting the MBPS bit or the MBPE bit to low. If the MBPE bit is used to terminate the block programming before completion, users have to set the MBPS bit from high to low before enabling other device operation. 11 10 9 8 7 6 5 4 3 2 1 0 0 0 0 0 0 0 0 0 0 BPD2 BPD1 BPD0 Table 8 - Connection Memory in Block Programming Mode 29 Zarlink Semiconductor Inc. ZL50012 2.6 Data Sheet Bit Error Rate (BER) Test The ZL50012 has one on-chip BER transmitter and one BER receiver. The transmitter can transmit onto a single STo output stream only. The transmitter provides a BER sequence (215-1 Pseudo Random Code) which can start from any channel in the frame and lasts from one channel up to one frame time (125 µs). The transmitter output channel(s) are specified by programming the connection memory location(s) corresponding to the channel(s) of the selected output stream: Bit 0 to 2 of the connection memory location(s) should be programmed to the BER test mode (see Table 30 on page 52). Multiple connection memory locations can be programmed for BER test such that the BER patterns can be transmitted for several output channels which are consecutive. If the transmitting output channels are not consecutive, the BER receiver will not compare the bit patterns correctly. The number of output channels which the BER transmitter occupies also has to be the same as the number of channels defined in the BER Length Register. The BER Length Register defines how many BER channels to be monitored by the BER receiver. Registers used for setting up the BER test are as follows: • Control Register (CR) - The CBER bit is used to clear the bit error counter and the BER Count Register (BCR). The SBER bit is used to start or stop the BER transmitter and BER receiver. • BER Start Receiving Register (BSRR) - Defines the input stream and channel from where the BER sequence will start to be compared. • BER Length Register (BLR) - Defines how many channels the sequence will last. • BER Count Register (BCR) - Contains the number of counted errors. When the error count reaches Hex FFFF, the bit error counter will stop so that it will not overflow. Consequently the BER Count Register will also stop at FFFF. The CBER bit in the Control Register is used to reset the bit error counter and the BER Count Register. As described above, the SBER bit in the control register controls the BER transmitter and receiver. To carry out the BER test, users should set the SBER bit to zero to disable the BER transmitter during the programming of the connection memory for the BER test. When the BER transmitter is disabled, the transmitter output is all ones. Hence any output channel whose connection memory has been programmed to BER test mode will also output all ones. Upon the completion of programming the connection memory for the BER test, set the SBER bit to one to start the BER transmitter and receiver for the BER testing. They must be allowed to run for several frames (2 frames plus the network delay between STo and STi) before the BER receiver can correctly identify errors in the pattern. Thus after this time the bit error counter should be reset by using the CBER bit in the Control Register - set CBER to one then back to zero. From now on, the count will be the actual number of errors which occurred during the test. The count will stop at FFFF and the counter will not increment even if more errors occurred. 30 Zarlink Semiconductor Inc. ZL50012 2.7 Data Sheet Quadrant frame programming By programming the input stream control registers (SICR0 to 15), users can divide one frame of input data into four quadrant frames and can force the Least Significant Bit (LSB, bit 0 in Figure 7 on page 17), of every input channel in these quadrants into "1" for the bit robbed signaling purpose. The four quadrant frames are defined as shown in Table 9. Data Rate Quadrant 0 Quadrant 1 Quadrant 2 Quadrant 3 2.048 Mb/s Ch 0 to 7 Ch 8 to 15 Ch 16 to 23 Ch 24 to 31 4.096 Mb/s Ch 0 to 15 Ch 16 to 31 Ch 32 to 47 Ch 48 to 63 8.192 Mb/s Ch 0 to 31 Ch 32 to 63 Ch 64 to 95 Ch 96 to 127 Table 9 - Definition of the Four Quadrant Frames When a quadrant frame enable bit (STIN#QEN0, STIN#QEN1, STIN#QEN2 or STIN#QEN3) is set to high, the LSB of every input channels in the quadrant is forced to "1". See Table 10 to Table 13 for details: STIN#QEN0 Action 1 Replace LSB of every channel in Quadrant 0 with "1" 0 No bit replacement occurs in Quadrant 0 Table 10 - Quadrant Frame 0 LSB Replacement STIN#QEN1 Action 1 Replace LSB of every channel in Quadrant 1 with "1" 0 No bit replacement occurs in Quadrant 1 Table 11 - Quadrant Frame 1 LSB Replacement STIN#QEN2 Action 1 Replace LSB of every channel in Quadrant 2 with "1" 0 No bit replacement occurs in Quadrant 2 Table 12 - Quadrant Frame 2 LSB Replacement STIN#QEN3 Action 1 Replace LSB of every channel in Quadrant 3 with "1" 0 No bit replacement occurs in Quadrant 3 Table 13 - Quadrant Frame 3 LSB Replacement 31 Zarlink Semiconductor Inc. ZL50012 2.8 Data Sheet Microprocessor Port The device supports the non-multiplexed microprocessor. The microprocessor port consists of a 16-bit parallel data bus (D0 to 15), a 12-bit address bus (A0 to 11) and four control signals (CS, DS, R/W and DTA). The parallel microprocessor port provides fast access to the internal registers, the connection and the data memories. The connection memory locations can be read or written via the 16-bit microprocessor port. On the other hand, the data memory locations can only be read (but not written) from the microprocessor port. For the connection memory write operation, D0 to 11 of the data bus will be used and D12 to 15 are ignored (D12 to 15 should be driven low). For the connection memory read operation, D0 to D11 will be used and D12 to D15 will output zeros. For the data memory read operation, D0 to D7 will be used and D8 to D15 will output zeros. See Table 28 on page 51 for the address mapping of the data memory. Refer to Figure 36 on page 64 for the microprocessor port timing. 3.0 Device Reset and Initialization The RESET pin is used to reset the device. When the pin is low, it synchronously puts the device in its reset state. It disables the STo0 - 15 outputs, drives the STOHZ 0 - 15 outputs to high, clears the device registers and the internal counters. Upon power up, the device should be initialized as follows: • Set ODE pin to low to disable the STo0-15 output and to drive the STOHZ 0-15 to high. • Set the TRST pin to low to disable the JTAG TAP controller. • Reset the device by pulsing the RESET pin to low for longer than 1ms. • After releasing the RESET pin from low to high, wait for 600 µs for the APLL module to be stabilized before starting the first microprocessor port access cycle. • Program the register to define the frequency of the CKi input. • Wait for 600 µs for the APLL module to be stabilized before starting the next microprocessor port access cycle. • Use the memory block programming mode to initialize the connection memory. • Release the ODE pin to high after the connection memory is programmed such that bus contention will not occur at the serial stream outputs STo0-15. 4.0 JTAG Support The ZL50012 JTAG interface conforms to the Boundary-Scan IEEE1149.1 standard. The operation of the boundary-scan circuitry is controlled by an external Test Access Port (TAP) Controller. 4.1 Test Access Port (TAP) The Test Access Port (TAP) accesses the ZL50012 test functions. It consists of three input pins and one output pin as follows: • Test Clock Input (TCK) - TCK provides the clock for the test logic. The TCK does not interfere with any onchip clock and thus remains independent in the functional mode. The TCK permits shifting of test data into or out of the Boundary-Scan register cells concurrently with the operation of the device and without interfering with the on-chip logic. • Test Mode Select Input (TMS) - The TAP Controller uses the logic signals received at the TMS input to control test operations. The TMS signals are sampled at the rising edge of the TCK pulse. This pin is internally pulled to Vdd when it is not driven from an external source. 32 Zarlink Semiconductor Inc. ZL50012 Data Sheet • Test Data Input (TDi) - Serial input data applied to this port is fed either into the instruction register or into a test data register, depending on the sequence previously applied to the TMS input. Both registers are described in a subsequent section. The received input data is sampled at the rising edge of TCK pulses. This pin is internally pulled to Vdd when it is not driven from an external source. • Test Data Output (TDo) - Depending on the sequence previously applied to the TMS input, the contents of either the instruction register or data register are serially shifted out towards the TDO. The data out of the TDO is clocked on the falling edge of the TCK pulses. When no data is shifted through the boundary scan cells, the TDO driver is set to a high impedance state. • Test Reset (TRST) - Resets the JTAG scan structure. This pin is internally pulled to Vdd when it is not driven from an external source. 4.2 Instruction Register The ZL50012 uses the public instructions defined in the IEEE 1149.1 standard. The JTAG Interface contains a fourbit instruction register. Instructions are serially loaded into the instruction register from the TDI when the TAP Controller is in its shifted-IR state. These instructions are subsequently decoded to achieve two basic functions: to select the test data register that may operate while the instruction is current and to define the serial test data register path that is used to shift data between TDI and TDO during data register scanning. 4.3 Test Data Register As specified in IEEE 1149.1, the ZL50012 JTAG Interface contains three test data registers: • The Boundary-Scan Register - The Boundary-Scan register consists of a series of Boundary-Scan cells arranged to form a scan path around the boundary of the ZL50012 core logic. • The Bypass Register - The Bypass register is a single stage shift register that provides a one-bit path from TDI to its TDO. • The Device Identification Register - The JTAG device ID for the ZL50012 is 0C35C14BH. Version<31:28>: 0000 Part No. <27:12>: 1100 0011 0101 1100 Manufacturer ID<11:1>: 0001 0100 101 LSB<0>: 1 4.4 BSDL A BSDL (Boundary Scan Description Language) file is available from Zarlink Semiconductor to aid in the use of the IEEE 1149 test interface. 33 Zarlink Semiconductor Inc. ZL50012 5.0 Data Sheet Register Address Mapping External Address A11 - A0 CPU Access 000H R/W Control Register, CR 001H R/W Internal Mode Selection, IMS 010H R/W BER Start Receive Register, BSRR 011H R/W BER Length Register, BLR Register 012H Read Only BER Count Register, BCR 030H Read Only Reserved 031H Read Only Reserved 032H Read Only Reserved 100H R/W Stream0 Input Control Register, SICR0 101H R/W Stream0 Input Delay Register, SIDR0 102H R/W Stream1 Input Control Register, SICR1 103H R/W Stream1 Input Delay Register, SIDR1 104H R/W Stream2 Input Control Register, SICR2 105H R/W Stream2 Input Delay Register, SIDR2 106H R/W Stream3 Input Control Register, SICR3 107H R/W Stream3 Input Delay Register, SIDR3 108H R/W Stream4 Input Control Register, SICR4 109H R/W Stream4 Input Delay Register, SIDR4 10AH R/W Stream5 Input Control Register, SICR5 10BH R/W Stream5 Input Delay Register, SIDR5 10CH R/W Stream6 Input Control Register, SICR6 10DH R/W Stream6 Input Delay Register, SIDR6 10EH R/W Stream7 Input Control Register, SICR7 10FH R/W Stream7 Input Delay Register, SIDR7 110H R/W Stream8 Input Control Register, SICR8 111H R/W Stream8 Input Delay Register, SIDR8 112H R/W Stream9 Input Control Register, SICR9 113H R/W Stream9 Input Delay Register, SIDR9 114H R/W Stream10 Input Control Register, SICR10 115H R/W Stream10 Input Delay Register, SIDR10 116H R/W Stream11 Input Control Register, SICR11 117H R/W Stream11 Input Delay Register, SIDR11 118H R/W Stream12 Input Control Register, SICR12 119H R/W Stream12 Input Delay Register, SIDR12 11AH R/W Stream13 Input Control Register, SICR13 Table 14 - Address Map for Device Specific Registers 34 Zarlink Semiconductor Inc. ZL50012 Data Sheet External Address A11 - A0 CPU Access 11BH R/W Stream13 Input Delay Register, SIDR13 11CH R/W Stream14 Input Control Register, SICR14 11DH R/W Stream14 Input Delay Register, SIDR14 11EH R/W Stream15 Input Control Register, SICR15 11FH R/W Stream15 Input Delay Register, SIDR15 200H R/W Stream0 Output Control Register, SOCR0 Register 201H R/W Stream0 Output Delay Register, SOOR0 202H R/W Stream1 Output Control Register, SOCR1 203H R/W Stream1 Output Delay Register, SOOR1 204H R/W Stream2 Output Control Register, SOCR2 205H R/W Stream2 Output Delay Register, SOOR2 206H R/W Stream3 Output Control Register, SOCR3 207H R/W Stream3 Output Delay Register, SOOR3 208H R/W Stream4 Output Control Register, SOCR4 209H R/W Stream4 Output Delay Register, SOOR4 20AH R/W Stream5 Output Control Register, SOCR5 20BH R/W Stream5 Output Delay Register, SOOR5 20CH R/W Stream6 Output Control Register, SOCR6 20DH R/W Stream6 Output Delay Register, SOOR6 20EH R/W Stream7 Output Control Register, SOCR7 20FH R/W Stream7 Output Delay Register, SOOR7 210H R/W Stream8 Output Control Register, SOCR8 211H R/W Stream8 Output Delay Register, SOOR8 212H R/W Stream9 Output Control Register, SOCR9 213H R/W Stream9 Output Delay Register, SOOR9 214H R/W Stream10 Output Control Register, SOCR10 215H R/W Stream10 Output Delay Register, SOOR10 216H R/W Stream11 Output Control Register, SOCR11 217H R/W Stream11 Output Delay Register, SOOR11 218H R/W Stream12 Output Control Register, SOCR12 219H R/W Stream12 Output Delay Register, SOOR12 21AH R/W Stream13 Output Control Register, SOCR13 21BH R/W Stream13 Output Delay Register, SOOR13 21CH R/W Stream14 Output Control Register, SOCR14 21DH R/W Stream14 Output Delay Register, SOOR14 21EH R/W Stream15 Output Control Register, SOCR15 21FH R/W Stream15 Output Delay Register, SOOR15 Table 14 - Address Map for Device Specific Registers 35 Zarlink Semiconductor Inc. ZL50012 6.0 Data Sheet Detail Register Description External Read/Write Address: 000H Reset Value: 0000H 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 FBD EN CKIN 2 CKIN 1 CKIN 0 CKFP 2 CKFP 1 CKFP 0 CBER SBER MBPE OSB MS2 MS1 MS0 Bit Name Description 15 - 14 Unused Reserved. In normal functional mode, these bits MUST be set to zero. 13 FBDEN Frame Boundary Determination Disable. When this bit is low, the long term frame boundary determination mode is disabled. When it is high, the determination mode is enabled. Set this bit from low to high after waiting for 600 µs upon device power up. 12 - 10 CKIN2-0 Input ST Bus Clock (CKi) and Frame Pulse (FPi) Selection. CKIN2 - 0 FPi Low Cycle CKi 000 61 ns 16.384 MHz 001 122 ns 8.192 MHz 010 244 ns 4.096 MHz 011 - 111 Reserved 9 CKFP2 Output ST Bus clock CKo2 and frame pulse FPo2 Selection. When this bit is low, CKo2 is 32.768 MHz clock and FPo2 is 30 ns wide frame pulse When this bit is high, CKo2 is 16.384 MHz clock and FPo2 is 61 ns wide frame pulse 8 CKFP1 Output ST Bus clock CKo1 and frame pulse FPo1 Selection. When this bit is low, CKo1 is 16.384 MHz clock and FPo1 is 61 ns wide frame pulse When this bit is high, CKo1 is 8.192 MHz clock and FPo1 is 122 ns wide frame pulse 7 CKFP0 Output ST Bus clock CKo0 and frame pulse FPo0 Selection. When this bit is low, CKo0 is 4.096 MHz clock and FPo0 is 244 ns wide frame pulse When this bit is high, CKo0 is 8.192 MHz clock and FPo0 is 122 ns wide frame pulse 6 CBER Bit Error Rate Counter Clear: When this bit is high, it resets the internal bit error counter and the content of the bit error count register (BCR) to zero. Upon completion of the reset, set this bit to zero. 5 SBER Bit Error Rate Test Start: When this bit is high, it enables the BER transmitter and receiver; starts the bit error rate test. The bit error test result is kept in the bit error count (BCR) register. Upon the completion of the BER test, set this bit to zero. 4 MBPE Memory Block Programming Enable: When this bit is high, the connection memory block programming mode is enabled to program Bit 0 to Bit 2 of the connection memory. When it is low, the memory block programming mode is disabled. Table 15 - Control Register (CR) Bits 36 Zarlink Semiconductor Inc. ZL50012 Data Sheet External Read/Write Address: 000H Reset Value: 0000H 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 FBD EN CKIN 2 CKIN 1 CKIN 0 CKFP 2 CKFP 1 CKFP 0 CBER SBER MBPE OSB MS2 MS1 MS0 Bit Name 3 OSB 2-0 MS2-0 Description Output Stand By Bit: This bit enables the STo0 - 15 and the STOHZ 0 -15 serial outputs. The following table describes the HiZ control of the serial data outputs: RESET Pin ODE Pin OSB Bit STo0-15 STOHZ 0-15 0 X X HiZ Driven High 1 0 X HiZ Driven High 1 1 0 HiZ Driven High 1 1 1 Active Active Memory Select Bit. These bits are used to select connection memory or data memory: MS2 - 0 Memory Selection 000 Connection Memory Read/Write 001 Data memory Read 010 - 111 Reserved Table 15 - Control Register (CR) Bits (continued) 37 Zarlink Semiconductor Inc. ZL50012 Data Sheet External Read/Write Address: 001H Reset Value: 0000H 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 0 0 CKINP FPINP CK2P FP2P CK1P FP1P CK0P FP0P BPD 2 BPD 1 BPD 0 MBPS Bit Name Description 15 - 12 Unused Reserved. In normal functional mode, these bits MUST be set to zero. 11 CKINP ST Bus Clock Input (CKi) Polarity. When this bit is low, the CKi falling edge aligns with the frame boundary. When this bit is high, the CKi rising edge aligns with the frame boundary. 10 FPINP Frame Pulse Input (FPi) Polarity. When this bit is low, the input frame pulse FPi should have the negative frame pulse format. When this bit is high, the input frame pulse FPi should have the positive frame pulse format. 9 CK2P ST Bus Clock Output (CKo2) Polarity. When this bit is low, the output clock CKo2 falling edge aligns with the frame boundary. When this bit is high, the output clock CKo2 rising edge aligns with the frame boundary. 8 FP2P Frame Pulse Output (FPo2) Polarity. When this bit is low, the output frame pulse FPo2 has the negative frame pulse format. When this bit is high, the output frame pulse FPo2 has the positive frame pulse format. 7 CK1P ST Bus Clock Output (CKo1) Polarity. When this bit is low, the output clock CKo1 falling edge aligns with the frame boundary. When this bit is high, the output clock CKo1 rising edge aligns with the frame boundary. 6 FP1P Frame Pulse Output (FPo1) Polarity. When this bit is low, the output frame pulse FPo1 has the negative frame pulse format. When this bit is high, the output frame pulse FPo1 has the positive frame pulse format. 5 CK0P ST Bus Clock Output (CKo0) Polarity. When this bit is low, the output clock CKo0 falling edge aligns with the frame boundary. When this bit is high, the output clock CKo0 rising edge aligns with the frame boundary. 4 FP0P Frame Pulse Output (FPo0) Polarity. When this bit is low, the output frame pulse FPo0 has the negative frame pulse format. When this bit is high, the output frame pulse FPo0 has the positive frame pulse format. 3-1 BPD2 - 0 Block Programming Data: These bits refer to the value to be loaded into the connection memory. Whenever the memory block programming feature is activated. After the MBPE bit in the control register is set to high and the MBPS bit is set to high, the contents of the bits BPD0 to BPD2 are loaded into Bit 0 to Bit 2 of the connection memory. Bit 3 to Bit 11 of the connection memory are zeroed. Table 16 - Internal Mode Selection (IMS) Register Bits 38 Zarlink Semiconductor Inc. ZL50012 Data Sheet External Read/Write Address: 001H Reset Value: 0000H 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 0 0 CKINP FPINP CK2P FP2P CK1P FP1P CK0P FP0P BPD 2 BPD 1 BPD 0 MBPS Bit Name Description 0 MBPS Memory Block Programming Start: A zero to one transition of this bit starts the memory block programming function. The MBPS, BPD0 to BPD2 bits in this register must be defined in the same write operation. Once the MBPE bit in the control register is set to high, the device requires 50 µs to complete the block programming. After the programming function has finished, the MBPS bit returns to low indicating the operation is completed. When the MBPS is high, the MBPS or MBPE can be set to low to abort the programming operation. To ensure proper block programming operation, when MBPS is high the BPD0 to BPD2 bits in this register must not be changed. Whenever the microprocessor writes a one to the MBPS bit, the block programming function is started, the user must maintain the same logical value to the other bits in this register to avoid any change in the device setting. Table 16 - Internal Mode Selection (IMS) Register Bits (continued) External Read/Write Address: 010H Reset Value: 0000H 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 0 BR SA3 BR SA2 BR SA1 BR SA0 0 0 BR CA6 BR CA5 BR CA4 BR CA3 BR CA2 BR CA1 BR CA0 Bit Name Description 15 - 13 8-7 Unused 12 - 9 BRSA3 - 0 BER Receive Stream Address Bits: The binary value of these bits refers to the input stream which receives the BER data. 6-0 BRCA6 - 0 BER Receive Channel Address Bits: The binary value of these bits refers to the input channel in which the BER data starts to be compared. Reserved. In normal functional mode, these bits MUST be set to zero. Table 17 - BER Start Receiving Register (BSRR) Bits 39 Zarlink Semiconductor Inc. ZL50012 Data Sheet External Read/Write Address: 011H Reset Value: 0000H 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 0 0 0 0 0 0 BL7 BL6 BL5 BL4 BL3 BL2 BL1 BL0 Bit Name Description 15 - 8 Unused Reserved. In normal functional mode, these bits MUST be set to zero. 7-0 BL7 - 0 BER Length Bits: The binary value of these bits refers to the number of channels. The maximum numbers of BER channels are 32, 64 and 128 for the data rate of 2.048 Mb/s, 4.096 Mb/s and 8.192 Mb/s modes respectively. The minimum number of BER channel is 1. If these bits are set to zero, no BER test will be performed. Table 18 - BER Length Register (BLR) Bits External Read Address: 012H Reset Value: 0000H 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 BC 15 BC 14 BC 13 BC 12 BC 11 BC 10 BC 9 BC 8 BC 7 BC 6 BC 5 BC 4 BC 3 BC 2 BC 1 BC 0 Bit Name Description 15 - 0 BC15 - 0 BER Count Bits: The binary value of these bits refers to the bit error counts. When it reaches its maximum value of Hex FFFF, the value will not be changed any more Table 19 - BER Count Register (BCR) Bits 40 Zarlink Semiconductor Inc. ZL50012 External Read/Write Address: 100H, Reset Value: 0000H 102H, 104H, 106H, 108H, 10AH, Data Sheet 10CH, 10EH, 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 SICR0 0 0 0 0 0 0 0 STIN0 QEN3 STIN0 QEN2 STIN0 QEN1 STIN0 QEN0 STIN0 SMP1 STIN0 SMP0 STIN0 DR2 STIN0 DR1 STIN0 DR0 SICR1 0 0 0 0 0 0 0 STIN1 QEN3 STIN1 QEN2 STIN1 QEN1 STIN1 QEN0 STIN1 SMP1 STIN1 SMP0 STIN1 DR2 STIN1 DR1 STIN1 DR0 SICR2 0 0 0 0 0 0 0 STIN2 QEN3 STIN2 QEN2 STIN2 QEN1 STIN2 QEN0 STIN2 SMP1 STIN2 SMP0 STIN2 DR2 STIN2 DR1 STIN2 DR0 SICR3 0 0 0 0 0 0 0 STIN3 QEN3 STIN3 QEN2 STIN3 QEN1 STIN3 QEN0 STIN3 SMP1 STIN3 SMP0 STIN3 DR2 STIN3 DR1 STIN3 DR0 SICR4 0 0 0 0 0 0 0 STIN4 QEN3 STIN4 QEN2 STIN4 QEN1 STIN4 QEN0 STIN4 SMP1 STIN4 SMP0 STIN4 DR2 STIN4 DR1 STIN4 DR0 SICR5 0 0 0 0 0 0 0 STIN5 QEN3 STIN5 QEN2 STIN5 QEN1 STIN5 QEN0 STIN5 SMP1 STIN5 SMP0 STIN5 DR2 STIN5 DR1 STIN5 DR0 SICR6 0 0 0 0 0 0 0 STIN6 QEN3 STIN6 QEN2 STIN6 QEN1 STIN6 QEN0 STIN6 SMP1 STIN6 SMP0 STIN6 DR2 STIN6 DR1 STIN6 DR0 SICR7 0 0 0 0 0 0 0 STIN7 QEN3 STIN7 QEN2 STIN7 QEN1 STIN7 QEN0 STIN7 SMP1 STIN7 SMP0 STIN7 DR2 STIN7 DR1 STIN7 DR0 Bit Name Description 15 - 9 Unused 8 STIN#QEN3 Quadrant Frame 3 Enable. When this bit is low, the device is in normal operation mode. When this bit is high, the LSB of every channel in this quadrant frame is replaced by "1". This quadrant frame is defined as Ch24 to 31, Ch48 to 63 and Ch96 to 127 for the 2.048 Mb/s, 4.096 Mb/s and 8.192 Mb/s mode respectively. 7 STIN#QEN2 Quadrant Frame 2 Enable. When this bit is low, the device is in normal operation mode. When this bit is high, the LSB of every channel in this quadrant frame is replaced by "1". This quadrant frame is defined as Ch16 to 23, Ch32 to 47 and Ch64 to 95 for the 2.048 Mb/s, 4.096 Mb/s and 8.192 Mb/s mode respectively. 6 STIN#QEN1 Quadrant Frame 1 Enable. When this bit is low, the device is in normal operation mode. When this bit is high, the LSB of every channel in this quadrant frame is replaced by "1". This quadrant frame is defined as Ch8 to 15, Ch16 to 31 and Ch32 to 63 for the 2.048 Mb/s, 4.096 Mb/s and 8.192 Mb/s mode respectively. 5 STIN#QEN0 Quadrant Frame 0 Enable. When this bit is low, the device is in normal operation mode. When this bit is high, the LSB of every channel in this quadrant frame is replaced by "1". This quadrant frame is defined as Ch0 to 7, Ch0 to 15 and Ch0 to 31 for 2.048 Mb/s, the 4.096 Mb/s and 8.192 Mb/s mode respectively. Reserved. In normal functional mode, these bits MUST be set to zero. Table 20 - Stream Input Control Register 0 to 7 (SICR0 to SICR7) 41 Zarlink Semiconductor Inc. ZL50012 External Read/Write Address: 100H, Reset Value: 0000H 102H, 104H, 106H, 108H, 10AH, Data Sheet 10CH, 10EH, 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 SICR0 0 0 0 0 0 0 0 STIN0 QEN3 STIN0 QEN2 STIN0 QEN1 STIN0 QEN0 STIN0 SMP1 STIN0 SMP0 STIN0 DR2 STIN0 DR1 STIN0 DR0 SICR1 0 0 0 0 0 0 0 STIN1 QEN3 STIN1 QEN2 STIN1 QEN1 STIN1 QEN0 STIN1 SMP1 STIN1 SMP0 STIN1 DR2 STIN1 DR1 STIN1 DR0 SICR2 0 0 0 0 0 0 0 STIN2 QEN3 STIN2 QEN2 STIN2 QEN1 STIN2 QEN0 STIN2 SMP1 STIN2 SMP0 STIN2 DR2 STIN2 DR1 STIN2 DR0 SICR3 0 0 0 0 0 0 0 STIN3 QEN3 STIN3 QEN2 STIN3 QEN1 STIN3 QEN0 STIN3 SMP1 STIN3 SMP0 STIN3 DR2 STIN3 DR1 STIN3 DR0 SICR4 0 0 0 0 0 0 0 STIN4 QEN3 STIN4 QEN2 STIN4 QEN1 STIN4 QEN0 STIN4 SMP1 STIN4 SMP0 STIN4 DR2 STIN4 DR1 STIN4 DR0 SICR5 0 0 0 0 0 0 0 STIN5 QEN3 STIN5 QEN2 STIN5 QEN1 STIN5 QEN0 STIN5 SMP1 STIN5 SMP0 STIN5 DR2 STIN5 DR1 STIN5 DR0 SICR6 0 0 0 0 0 0 0 STIN6 QEN3 STIN6 QEN2 STIN6 QEN1 STIN6 QEN0 STIN6 SMP1 STIN6 SMP0 STIN6 DR2 STIN6 DR1 STIN6 DR0 SICR7 0 0 0 0 0 0 0 STIN7 QEN3 STIN7 QEN2 STIN7 QEN1 STIN7 QEN0 STIN7 SMP1 STIN7 SMP0 STIN7 DR2 STIN7 DR1 STIN7 DR0 Bit Name 4-3 STIN#SMP1 - 0 2-0 STIN#DR2 - 0 Description Input Data Sampling Point Selection Bits: STIN#SMP1-0 Sampling Point 00 3/4 point 01 4/4 point 10 1/4 point 11 2/4 point Input Data Rate Selection Bits: STIN#DR2-0 Data Rate 000 Disabled - External pull-up or pull-down is required for ST-BUS input 001 2.048 Mb/s 010 4.096 Mb/s 011 8.192 Mb/s 100 - 111 Reserved Note: # denotes input stream from 0 to 7 Table 20 - Stream Input Control Register 0 to 7 (SICR0 to SICR7) (continued) 42 Zarlink Semiconductor Inc. ZL50012 External Read/Write Address: 110H, Reset Value: 0000H 112H, 114H, 116H, 118H, 11AH, Data Sheet 11CH, 11EH, 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 SICR8 0 0 0 0 0 0 0 STIN8 QEN3 STIN8 QEN2 STIN8 QEN1 STIN8 QEN0 STIN8 SMP1 STIN8 SMP0 STIN8 DR2 STIN8 DR1 STIN8 DR0 SICR9 0 0 0 0 0 0 0 STIN9 QEN3 STIN9 QEN2 STIN9 QEN1 STIN9 QEN0 STIN9 SMP1 STIN9 SMP0 STIN9 DR2 STIN9 DR1 STIN9 DR0 SICR10 0 0 0 0 0 0 0 STIN10 QEN3 STIN10 QEN2 STIN10 QEN1 STIN10 QEN0 STIN10 SMP1 STIN10 SMP0 STIN10 DR2 STIN10 DR1 STIN10 DR0 SICR11 0 0 0 0 0 0 0 STIN11 QEN3 STIN11 QEN2 STIN11 QEN1 STIN11 QEN0 STIN11 SMP1 STIN11 SMP0 STIN11 DR2 STIN11 DR1 STIN11 DR0 SICR12 0 0 0 0 0 0 0 STIN12 QEN3 STIN12 QEN2 STIN12 QEN1 STIN12 QEN0 STIN12 SMP1 STIN12 SMP0 STIN12 DR2 STIN12 DR1 STIN12 DR0 SICR13 0 0 0 0 0 0 0 STIN13 QEN3 STIN13 QEN2 STIN13 QEN1 STIN13 QEN0 STIN13 SMP1 STIN13 SMP0 STIN13 DR2 STIN13 DR1 STIN13 DR0 SICR14 0 0 0 0 0 0 0 STIN14 QEN3 STIN14 QEN2 STIN14 QEN1 STIN14 QEN0 STIN14 SMP1 STIN14 SMP0 STIN14 DR2 STIN14 DR1 STIN14 DR0 SICR15 0 0 0 0 0 0 0 STIN15 QEN3 STIN15 QEN2 STIN15 QEN1 STIN15 QEN0 STIN15 SMP1 STIN15 SMP0 STIN15 DR2 STIN15 DR1 STIN15 DR0 Bit Name Description 15 - 9 Unused 8 STIN#QEN3 Quadrant Frame 3 Enable. When this bit is low, the device is in normal operation mode. When this bit is high, the LSB of every channel in this quadrant frame is replaced by "1". This quadrant frame is defined as Ch24 to 31, Ch48 to 63 and Ch96 to 127 for the 2.048 Mb/s, 4.096 Mb/s and 8.192 Mb/s mode respectively. 7 STIN#QEN2 Quadrant Frame 2 Enable. When this bit is low, the device is in normal operation mode. When this bit is high, the LSB of every channel in this quadrant frame is replaced by "1". This quadrant frame is defined as Ch16 to 23, Ch32 to 47 and Ch64 to 95 for the 2.048 Mb/s, 4.096 Mb/s and 8.192 Mb/s mode respectively. 6 STIN#QEN1 Quadrant Frame 1 Enable. When this bit is low, the device is in normal operation mode. When this bit is high, the LSB of every channel in this quadrant frame is replaced by "1". This quadrant frame is defined as Ch8 to 15, Ch16 to 31 and Ch32 to 63 for the 2.048 Mb/s, 4.096 Mb/s and 8.192 Mb/s mode respectively. 5 STIN#QEN0 Quadrant Frame 0 Enable. When this bit is low, the device is in normal operation mode. When this bit is high, the LSB of every channel in this quadrant frame is replaced by "1". This quadrant frame is defined as Ch0 to 7, Ch0 to 15 and Ch0 to 31 for 2.048 Mb/s, the 4.096 Mb/s and 8.192 Mb/s mode respectively. Reserved. In normal functional mode, these bits MUST be set to zero. Table 21 - Stream Input Control Register 8 to 15 (SICR8 to SICR15) 43 Zarlink Semiconductor Inc. ZL50012 External Read/Write Address: 110H, Reset Value: 0000H 112H, 114H, 116H, 118H, 11AH, Data Sheet 11CH, 11EH, 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 SICR8 0 0 0 0 0 0 0 STIN8 QEN3 STIN8 QEN2 STIN8 QEN1 STIN8 QEN0 STIN8 SMP1 STIN8 SMP0 STIN8 DR2 STIN8 DR1 STIN8 DR0 SICR9 0 0 0 0 0 0 0 STIN9 QEN3 STIN9 QEN2 STIN9 QEN1 STIN9 QEN0 STIN9 SMP1 STIN9 SMP0 STIN9 DR2 STIN9 DR1 STIN9 DR0 SICR10 0 0 0 0 0 0 0 STIN10 QEN3 STIN10 QEN2 STIN10 QEN1 STIN10 QEN0 STIN10 SMP1 STIN10 SMP0 STIN10 DR2 STIN10 DR1 STIN10 DR0 SICR11 0 0 0 0 0 0 0 STIN11 QEN3 STIN11 QEN2 STIN11 QEN1 STIN11 QEN0 STIN11 SMP1 STIN11 SMP0 STIN11 DR2 STIN11 DR1 STIN11 DR0 SICR12 0 0 0 0 0 0 0 STIN12 QEN3 STIN12 QEN2 STIN12 QEN1 STIN12 QEN0 STIN12 SMP1 STIN12 SMP0 STIN12 DR2 STIN12 DR1 STIN12 DR0 SICR13 0 0 0 0 0 0 0 STIN13 QEN3 STIN13 QEN2 STIN13 QEN1 STIN13 QEN0 STIN13 SMP1 STIN13 SMP0 STIN13 DR2 STIN13 DR1 STIN13 DR0 SICR14 0 0 0 0 0 0 0 STIN14 QEN3 STIN14 QEN2 STIN14 QEN1 STIN14 QEN0 STIN14 SMP1 STIN14 SMP0 STIN14 DR2 STIN14 DR1 STIN14 DR0 SICR15 0 0 0 0 0 0 0 STIN15 QEN3 STIN15 QEN2 STIN15 QEN1 STIN15 QEN0 STIN15 SMP1 STIN15 SMP0 STIN15 DR2 STIN15 DR1 STIN15 DR0 Bit Name 4-3 STIN#SMP1 - 0 2-0 STIN#DR2 - 0 Description Input Data Sampling Point Selection Bits: STIN#SMP1-0 Sampling Point 00 3/4 point 01 4/4 point 10 1/4 point 11 2/4 point Input Data Rate Selection Bits: STIN#DR2-0 Data Rate 000 Disabled - External pull-up or pull-down is required for ST-BUS input 001 2.048 Mb/s 010 4.096 Mb/s 011 8.192 Mb/s 100 - 111 Reserved Note: # denotes input stream from 8 to 15 Table 21 - Stream Input Control Register 8 to 15 (SICR8 to SICR15) (continued) 44 Zarlink Semiconductor Inc. ZL50012 External Read/Write Address: 101H, Reset Value: 0000H 103H, 105H, 107H, 109H, 10BH, Data Sheet 10DH, 10FH, 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 SIDR0 0 0 0 0 0 0 STIN0 CD6 STIN0 CD5 STIN0 CD4 STIN0 CD3 STIN0 CD2 STIN0 CD1 STIN0 CD0 STIN0 BD2 STIN0 BD1 STIN0 BD0 SIDR1 0 0 0 0 0 0 STIN1 CD6 STIN1 CD5 STIN1 CD4 STIN1 CD3 STIN1 CD2 STIN1 CD1 STIN1 CD0 STIN1 BD2 STIN1 BD1 STIN1 BD0 SIDR2 0 0 0 0 0 0 STIN2 CD6 STIN2 CD5 STIN2 CD4 STIN2 CD3 STIN2 CD2 STIN2 CD1 STIN2 CD0 STIN2 BD2 STIN2 BD1 STIN2 BD0 SIDR3 0 0 0 0 0 0 STIN3 CD6 STIN3 CD5 STIN3 CD4 STIN3 CD3 STIN3 CD2 STIN3 CD1 STIN3 CD0 STIN3 BD2 STIN3 BD1 STIN3 BD0 SIDR4 0 0 0 0 0 0 STIN4 CD6 STIN4 CD5 STIN4 CD4 STIN4 CD3 STIN4 CD2 STIN4 CD1 STIN4 CD0 STIN4 BD2 STIN4 BD1 STIN4 BD0 SIDR5 0 0 0 0 0 0 STIN5 CD6 STIN5 CD5 STIN5 CD4 STIN5 CD3 STIN5 CD2 STIN5 CD1 STIN5 CD0 STIN5 BD2 STIN5 BD1 STIN5 BD0 SIDR6 0 0 0 0 0 0 STIN6 CD6 STIN6 CD5 STIN6 CD4 STIN6 CD3 STIN6 CD2 STIN6 CD1 STIN6 CD0 STIN6 BD2 STIN6 BD1 STIN6 BD0 SIDR7 0 0 0 0 0 0 STIN7 CD6 STIN7 CD5 STIN7 CD4 STIN7 CD3 STIN7 CD2 STIN7 CD1 STIN7 CD0 STIN7 BD2 STIN7 BD1 STIN7 BD0 Bit Name Description 15 - 10 Unused 9-3 STIN#CD6 - 0 Input Stream# Channel Delay Bits: The binary value of these bits refers to the number of channels that the input stream will be delayed. This value should not exceed the maximum channel number of the stream. Zero means no delay. 2-0 STIN#BD2 - 0 Input Stream# Bit Delay Bits: The binary value of these bits refers to the number of bits that the input stream will be delayed. This maximum value is 7. Zero means no delay. Reserved. In normal functional mode, these bits MUST be set to zero. Note: # denotes input stream from 0 to 7 Table 22 - Stream Input Delay Register 0 to 7 (SIDR0 to SIDR7) 45 Zarlink Semiconductor Inc. ZL50012 External Read/Write Address: 111H, Reset Value: 0000H 113H, 115H, 117H, 119H, 11BH, Data Sheet 11DH, 11FH, 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 SIDR8 0 0 0 0 0 0 STIN8 CD6 STIN8 CD5 STIN8 CD4 STIN8 CD3 STIN8 CD2 STIN8 CD1 STIN8 CD0 STIN8B BD2 STIN8B BD1 STIN8B BD0 SIDR9 0 0 0 0 0 0 STIN9 CD6 STIN9 CD5 STIN9 CD4 STIN9 CD3 STIN9 CD2 STIN9 CD1 STIN9 CD0 STIN9B BD2 STIN9B BD1 STIN9B BD0 SIDR10 0 0 0 0 0 0 STIN10 CD6 STIN10 CD5 STIN10 CD4 STIN10 CD3 STIN10 CD2 STIN10 CD1 STIN10 CD0 STIN10 BD2 STIN10 BD1 STIN10 BD0 SIDR11 0 0 0 0 0 0 STIN11 CD6 STIN11 CD5 STIN11 CD4 STIN11 CD3 STIN11 CD2 STIN11 CD1 STIN11 CD0 STIN11 BD2 STIN11 BD1 STIN11 BD0 SIDR12 0 0 0 0 0 0 STIN12 CD6 STIN12 CD5 STIN12 CD4 STIN12 CD3 STIN12 CD2 STIN12 CD1 STIN12 CD0 STIN12 BD2 STIN12 BD1 STIN12 BD0 SIDR13 0 0 0 0 0 0 STIN13 CD6 STIN13 CD5 STIN13 CD4 STIN13 CD3 STIN13 CD2 STIN13 CD1 STIN13 CD0 STIN13 BD2 STIN13 BD1 STIN13 BD0 SIDR14 0 0 0 0 0 0 STIN14 CD6 STIN14 CD5 STIN14 CD4 STIN14 CD3 STIN14 CD2 STIN14 CD1 STIN14 CD0 STIN14 BD2 STIN14 BD1 STIN14 BD0 SIDR15 0 0 0 0 0 0 STIN15 CD6 STIN15 CD5 STIN15 CD4 STIN15 CD3 STIN15 CD2 STIN15 CD1 STIN15 CD0 STIN15 BD2 STIN15 BD1 STIN15 BD0 Bit Name Description 15 - 10 Unused 9-3 STIN#CD6 - 0 Input Stream# Channel Delay Bits: The binary value of these bits refers to the number of channels that the input stream will be delayed. This value should not exceed the maximum channel number of the stream. Zero means no delay. 2-0 STIN#BD2 - 0 Input Stream# Bit Delay Bits: The binary value of these bits refers to the number of bits that the input stream will be delayed. This maximum value is 7. Zero means no delay. Reserved. In normal functional mode, these bits MUST be set to zero. Note: # denotes input stream from 8 to 15 Table 23 - Stream Input Delay Register 8 to 15 (SIDR8 to SIDR15) 46 Zarlink Semiconductor Inc. ZL50012 External Read/Write Address: 200H, Reset Value: 0000H 202H, 204H, 206H, 208H, 20AH, Data Sheet 20CH, 20EH, 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 SOCR0 0 0 0 0 0 0 0 0 0 STOHZ0 AC STOHZ0 A2 STOHZ0 A1 STOHZ0 A0 STO0 DR2 STO0 DR1 STO0 DR0 SOCR1 0 0 0 0 0 0 0 0 0 STOHZ1 AC STOHZ1 A2 STOHZ1 A1 STOHZ1 A0 STO1 DR2 STO1 DR1 STO1 DR0 SOCR2 0 0 0 0 0 0 0 0 0 STOHZ2 AC STOHZ2 A2 STOHZ2 A1 STOHZ2 A0 STO2 DR2 STO2 DR1 STO2 DR0 SOCR3 0 0 0 0 0 0 0 0 0 STOHZ3 AC STOHZ3 A2 STOHZ3 A1 STOHZ3 A0 STO3 DR2 STO3 DR1 STO3 DR0 SOCR4 0 0 0 0 0 0 0 0 0 STOHZ4 AC STOHZ4 A2 STOHZ4 A1 STOHZ4 A0 STO4 DR2 STO4 DR1 STO4 DR0 SOCR5 0 0 0 0 0 0 0 0 0 STOHZ5 AC STOHZ5 A2 STOHZ5 A1 STOHZ5 A0 STO5 DR2 STO5 DR1 STO5 DR0 SOCR6 0 0 0 0 0 0 0 0 0 STOHZ6 AC STOHZ6 A2 STOHZ6 A1 STOHZ6 A0 STO6 DR2 STO6 DR1 STO6 DR0 SOCR7 0 0 0 0 0 0 0 0 0 STOHZ7 AC STOHZ7 A2 STOHZ7 A1 STOHZ7 A0 STO7 DR2 STO7 DR1 STO7 DR0 Bit Name 15 - 7 Unused 6 STOHZ#AC 5-3 STOHZ#A2 - 0 Description Reserved. In normal functional mode, these bits MUST be set to zero. STOHZ Advancement Control. When this bit is low, the advancement unit is 15.2ns. When this bit is high, the advancement unit is 1/4 bit. STOHZ Additional Advancement Bits: Additional Advancement (STOHZ#AC = 0) STOHZ#A2-0 2-0 STO#DR2 - 0 Additional Advancement (STOHZ#AC = 1) 000 0.0 ns 0 bit 001 15.2 ns 1/4 bit 010 30.5 ns 1/2 bit 011 45.7 ns 3/4 bit 100 61.0 ns 4/4 bit 101-111 Reserved Reserved Output Data Rate Selection Bits: STO#DR2-0 Output Data Rate 000 STo HiZ STOHZ driven high 001 2.048 Mb/s 010 4.096 Mb/s 011 8.192 Mb/s 100 - 111 Reserved Note: # denotes input stream from 0 to 7 Table 24 - Stream Output Control Register 0 to 7 (SOCR0 to SOCR7) 47 Zarlink Semiconductor Inc. ZL50012 External Read/Write Address: 210H, Reset Value: 0000H 212H, 214H, 216H, 218H, 21AH, Data Sheet 21CH, 21EH, 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 SOCR8 0 0 0 0 0 0 0 0 0 STOHZ8 AC STOHZ8 A2 STOHZ8 A1 STOHZ8 A0 STO8 DR2 STO8 DR1 STO8 DR0 SOCR9 0 0 0 0 0 0 0 0 0 STOHZ9 AC STOHZ9 A2 STOHZ9 A1 STOHZ9 A0 STO9 DR2 STO9 DR1 STO9 DR0 SOCR10 0 0 0 0 0 0 0 0 0 STOHZ10 AC STOHZ10 A2 STOHZ10 A1 STOHZ10 A0 STO10 DR2 STO10 DR1 STO10 DR0 SOCR11 0 0 0 0 0 0 0 0 0 STOHZ11 AC STOHZ11 A2 STOHZ11 A1 STOHZ11 A0 STO11 DR2 STO11 DR1 STO11 DR0 SOCR12 0 0 0 0 0 0 0 0 0 STOHZ12 AC STOHZ12 A2 STOHZ12 A1 STOHZ12 A0 STO12 DR2 STO12 DR1 STO12 DR0 SOCR13 0 0 0 0 0 0 0 0 0 STOHZ13 AC STOHZ13 A2 STOHZ13 A1 STOHZ13 A0 STO13 DR2 STO13 DR1 STO13 DR0 SOCR14 0 0 0 0 0 0 0 0 0 STOHZ14 AC STOHZ14 A2 STOHZ14 A1 STOHZ14 A0 STO14 DR2 STO14 DR1 STO14 DR0 SOCR15 0 0 0 0 0 0 0 0 0 STOHZ15 AC STOHZ15 A2 STOHZ15 A1 STOHZ15 A0 STO15 DR2 STO15 DR1 STO15 DR0 Bit Name 15 - 7 Unused 6 STOHZ#AC 5-3 STOHZ#A2 - 0 Description Reserved. In normal functional mode, these bits MUST be set to zero. STOHZ Advancement Control. When this bit is low, the advancement unit is 15.2 ns. When this bit is high, the advancement unit is 1/4 bit. STOHZ Additional Advancement Bits: Additional Advancement (STOHZ#AC = 0) STOHZ#A2-0 2-0 STO#DR2 - 0 Additional Advancement (STOHZ#AC = 1) 000 0.0 ns 0 bit 001 15.2 ns 1/4 bit 010 30.5 ns 1/2 bit 011 45.7 ns 3/4 bit 100 61.0 ns 4/4 bit 101-111 Reserved Reserved Output Data Rate Selection Bits: STO#DR2-0 Output Data Rate 000 STo HiZ STOHZ driven high 001 2.048 Mb/s 010 4.096 Mb/s 011 8.192 Mb/s 100 - 111 Reserved Note: # denotes input stream from 8 to 15 Table 25 - Stream Output Control Register 8 to 15 (SOCR8 to SOCR15) 48 Zarlink Semiconductor Inc. ZL50012 External Read/Write Address: 201H, Reset Value: 0000H 203H, 205H, 207H, 209H, 20BH, Data Sheet 20DH, 20FH, 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 SOOR0 0 0 0 0 STO0 CD6 STO0 CD5 STO0 CD4 STO0 CD3 STO0 CD2 STO0 CD1 STO0 CD0 STO0 BD2 STO0 BD1 STO0 BD0 STO0 FA1 STO0 FA0 SOOR1 0 0 0 0 STO1 CD6 STO1 CD5 STO1 CD4 STO1 CD3 STO1 CD2 STO1 CD1 STO1 CD0 STO1 BD2 STO1 BD1 STO1 BD0 STO1 FA1 STO1 FA0 SOOR2 0 0 0 0 STO2 CD6 STO2 CD5 STO2 CD4 STO2 CD3 STO2 CD2 STO2 CD1 STO2 CD0 STO2 BD2 STO2 BD1 STO2 BD0 STO2 FA1 STO2 FA0 SOOR3 0 0 0 0 STO3 CD6 STO3 CD5 STO3 CD4 STO3 CD3 STO3 CD2 STO3 CD1 STO3 CD0 STO3 BD2 STO3 BD1 STO3 BD0 STO3 FA1 STO3 FA0 SOOR4 0 0 0 0 STO4 CD6 STO4 CD5 STO4 CD4 STO4 CD3 STO4 CD2 STO4 CD1 STO4 CD0 STO4 BD2 STO4 BD1 STO4 BD0 STO4 FA1 STO4 FA0 SOOR5 0 0 0 0 STO5 CD6 STO5 CD5 STO5 CD4 STO5 CD3 STO5 CD2 STO5 CD1 STO5 CD0 STO5 BD2 STO5 BD1 STO5 BD0 STO5 FA1 STO5 FA0 SOOR6 0 0 0 0 STO6 CD6 STO6 CD5 STO6 CD4 STO6 CD3 STO6 CD2 STO6 CD1 STO6 CD0 STO6 BD2 STO6 BD1 STO6 BD0 STO6 FA1 STO6 FA0 SOOR7 0 0 0 0 STO7 CD6 STO7 CD5 STO7 CD4 STO7 CD3 STO7 CD2 STO7 CD1 STO7 CD0 STO7 BD2 STO7 BD1 STO7 BD0 STO7 FA1 STO7 FA0 Bit Name 15 - 12 Unused 11 - 5 STO#CD6-0 Description Reserved. Output Stream# Channel Delay Bits: The binary value of these bits refers to the number of channels that the output stream is to be advanced. This value should not exceed the maximum channel number of the stream. Zero means no advancement. 4-2 STO#BD2-0 Output Stream# Bit Delay Selection Bits: The binary value of these bits refers to the number of bits that the output stream is to be advanced. The maximum value is 7. Zero means no advancement. 1-0 STO#FA1-0 Output Stream# Fractional Advancement Bits STO#FA1-0 Advanced By 00 0 01 1/4 bit 10 2/4 bit 11 3/4 bit Note: # denotes input stream from 0 to 7 Table 26 - Stream Output Offset Register 0 to 7 (SOOR0 to SOOR7) 49 Zarlink Semiconductor Inc. ZL50012 External Read/Write Address: 211H, Reset Value: 0000H 213H, 215H, 217H, 219H, 21BH, Data Sheet 21DH, 21FH, 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 SOOR8 0 0 0 0 STO8C D6 STO8 CD5 STO8 CD4 STO8 CD3 STO8 CD2 STO8 CD1 STO8 CD0 STO8B BD2 STO8 BD1 STO8 BD0 STO8 FA1 STO8 FA0 SOOR9 0 0 0 0 STO9C D6 STO9 CD5 STO9 CD4 STO9 CD3 STO9 CD2 STO9 CD1 STO9 CD0 STO9 BD2 STO9 BD1 STO9 BD0 STO9 FA1 STO9 FA0 SOOR10 0 0 0 0 STO10 CD6 STO10 CD5 STO10 CD4 STO10 CD3 STO10 CD2 STO10 CD1 STO10 CD0 STO10 BD2 STO10 BD1 STO10 BD0 STO10 FA1 STO10 FA0 SOOR11 0 0 0 0 STO11 CD6 STO11 CD5 STO11 CD4 STO11 CD3 STO11 CD2 STO11 CD1 STO11 CD0 STO11 BD2 STO11 BD1 STO11 BD0 STO11 FA1 STO11 FA0 SOOR12 0 0 0 0 STO12 CD6 STO12 CD5 STO12 CD4 STO12 CD3 STO12 CD2 STO12 CD1 STO12 CD0 STO12 BD2 STO12 BD1 STO12 BD0 STO12 FA1 STO12 FA0 SOOR13 0 0 0 0 STO13 CD6 STO13 CD5 STO13 CD4 STO13 CD3 STO13 CD2 STO13 CD1 STO13 CD0 STO13 BD2 STO13 BD1 STO13 BD0 STO13 FA1 STO13 FA0 SOOR14 0 0 0 0 STO14 CD6 STO14 CD5 STO14 CD4 STO14 CD3 STO14 CD2 STO14 CD1 STO14 CD0 STO14 BD2 STO14 BD1 STO14 BD0 STO14 FA1 STO14 FA0 SOOR15 0 0 0 0 STO15 CD6 STO15 CD5 STO1 CD4 STO15 CD3 STO15 CD2 STO15 CD1 STO15 CD0 STO15 BD2 STO15 BD1 STO15 BD0 STO15 FA1 STO15 FA0 Bit Name 15 - 12 Unused 11 - 5 STO#CD6-0 Description Reserved. Output Stream# Channel Delay Bits: The binary value of these bits refers to the number of channels that the output stream is to be advanced. This value should not exceed the maximum channel number of the stream. Zero means no advancement. 4-2 STO#BD2-0 Output Stream# Bit Delay Selection Bits: The binary value of these bits refers to the number of bits that the output stream is to be advanced. The maximum value is 7. Zero means no advancement. 1-0 STO#FA1-0 Output Stream# Fractional Advancement Bits STO#FA1-0 Advanced By 00 0 01 1/4 bit 10 2/4 bit 11 3/4 bit Note: # denotes input stream from 8 to 15 Table 27 - Stream Output Offset Register 8 to 15 (SOOR8 to SOOR15) 50 Zarlink Semiconductor Inc. ZL50012 7.0 Data Sheet Memory Address Mappings When A11 is high, the data or the connection memory can be accessed by the microprocessor port. The Bit 0 to Bit 2 in the control register determine the access to the data or connection memory MSB (Note 1) Stream Address (ST. 0-15) External Address (A11) A10 A9 A8 A7 1 1 1 1 1 1 1 1 1 . . . . . 1 1 0 0 0 0 0 0 0 0 0 . . . . . 1 1 0 0 0 0 1 1 1 1 1 . . . . . 1 1 0 0 1 1 0 0 1 1 0 . . . . . 1 1 0 1 0 1 0 1 0 1 0 . . . . . 0 1 Channel Address (Ch 0-127) Stream # Stream 0 Stream 1 Stream 2 Stream 3 Stream 4 Stream 5 Stream 6 Stream 7 Stream 8 . . . . . Stream 14 Stream 15 A6 A5 A4 A3 A2 A1 A0 0 0 . . 0 0 0 0 . . 0 0 . . 1 1 0 0 . . 0 0 1 1 . . 1 1 . . 1 1 0 0 . . 1 1 0 0 . . 1 1 . . 1 1 0 0 . . 1 1 0 0 . . 1 1 . . 1 1 0 0 . . 1 1 0 0 . . 1 1 . . 1 1 0 0 . . 1 1 0 0 . . 1 1 . . 1 1 0 1 . . 0 1 0 1 . . 0 1 . . 0 1 Channel # Ch 0 Ch 1 . . Ch 30 Ch 31 (Note 2) Ch 32 Ch 33 . . Ch 62 Ch 63 (Note 3) . . Ch 126 Ch 127 (Note 4) Notes: 1. MSB of address must be high for access to data and connection memory positions. MSB must be low for access to registers. 2. Channels 0 to 31 are used when serial stream is at 2.048 Mb/s. 3. Channels 0 to 63 are used when serial stream is at 4.096 Mb/s. 4. Channels 0 to 127 are used when serial stream is at 8.192 Mb/s. Table 28 - Address Map for Memory Locations (512 x 512 DX, MSB of address = 1) 51 Zarlink Semiconductor Inc. ZL50012 8.0 Data Sheet Connection Memory Bit Assignment When the CMM bit (Bit0) is zero, the connection is in normal switching mode. When the CMM bit is one, the connection memory is in special transmission mode. 11 10 9 8 7 6 5 4 3 2 1 0 SSA3 SSA2 SSA1 SSA0 SCA6 SCA5 SCA4 SCA3 SCA2 SCA1 SCA0 CMM =0 Bit Name Description 11 - 8 SSA3-0 Source Stream Address. The binary value of these 4 bits represents the input stream number. 7-1 SCA6-0 Source Channel Address. The binary value of these 7 bits represents the input channel number. 0 CMM=0 Connection Memory Mode = 0. If this bit is set low, the connection memory is in normal switching mode. Bit 1 to 11 represent the source stream number and channel number. Table 29 - Connection Memory Bit Assignment when the CMM bit = 0 11 10 9 8 7 6 5 4 3 2 1 0 0 MSG7 MSG6 MSG5 MSG4 MSG3 MSG2 MSG1 MSG0 PCC1 PCC0 CMM =1 Bit Name 11 Unused Reserved. 10 - 3 MSG7-0 Message Data Bits: 8-bit data for the message mode. 2-1 PCC1-0 Per-Channel Control Bits: These two bits control outputs. 0 CMM=1 Description PCC PCC0 Output 0 0 Per Channel Tristate 0 1 Message Mode 1 0 BER Test Mode 1 1 Reserved Connection Memory Mode = 1. If this bit is set high, the connection memory is in the per-channel control mode which is per-channel tristate, per-channel message mode or per-channel BER mode. Table 30 - Connection Memory Bits Assignment when the CMM bit = 1 52 Zarlink Semiconductor Inc. ZL50012 Data Sheet Absolute Maximum Ratings* Parameter Symbol Min. Max Units 1 I/O Supply Voltage VDD -0.5 5.0 V 2 Input Voltage VI_3V -0.5 VDD + 0.5 V 3 Input Voltage (5 V tolerant inputs) VI_5V -0.5 7.0 V 4 Continuous Current at digital outputs Io 15 mA 5 Package power dissipation PD 0.75 W 6 Storage temperature TS - 55 +125 * Exceeding these values may cause permanent damage. Functional operation under these conditions is not implied. °C Recommended Operating Conditions - Voltages are with respect to ground (VSS) unless otherwise stated. Characteristics Sym. Min. Typ.‡ Max Units 1 Operating Temperature TOP -40 25 +85 °C 2 Positive Supply VDD 3.0 3.3 3.6 V 3 Input Voltage VI 0 VDD V 4 Input Voltage on 5 V Tolerant Inputs VI_5V 0 5.5 V ‡ Typical figures are at 25°C and are for design aid only: not guaranteed and not subject to production testing. DC Electrical Characteristics† - Voltages are with respect to ground (Vss) unless otherwise stated. Characteristics Sym. Min. Typ‡ Max Units 250 mA Test Conditions Output unloaded 1 Supply Current IDD 2 Input High Voltage VIH 3 Input Low Voltage VIL 0.8 V 4 Input Leakage (input pins) Input Leakage (bi-directional pins) IIL IBL 5 5 µA µA 0≤<VIN≤VDD_IO See Note 1 5 Weak Pullup Current IPU -33 µA Input at 0 V 6 Weak Pulldown Current IPD 33 µA Input at VDD_IO 7 Input Pin Capacitance CI 3 pF 8 Output High Voltage VOH 9 Output Low Voltage 2.0 V 2.4 V IOH = 10mA VOL 0.4 V IOL = 10mA 10 Output High Impedance Leakage IOZ 5 µA 0 < V < VDD 11 Output Pin Capacitance CO 10 pF 5 † Characteristics are over recommended operating conditions unless otherwise stated. ‡ Typical figures are at 25°C, VDD at 3.3 V and are for design aid only: not guaranteed and not subject to production testing. * Note 1: Maximum leakage on pins (output or I/O pins in high impedance state) is over an applied voltage (VIN). 53 Zarlink Semiconductor Inc. ZL50012 Data Sheet AC Electrical Characteristics† - Timing Parameter Measurement Voltage Levels Characteristics Sym. Level Units 1 CMOS Threshold VCT 0.5VDD_IO V 2 Rise/Fall Threshold Voltage High VHM 0.7VDD_IO V 3 Rise/Fall Threshold Voltage Low VLM 0.3VDD_IO V Conditions † Characteristics are over recommended operating conditions unless otherwise stated. AC Electrical Characteristics† - FPi and CKi Timing when CKIN2 to 0 bits = 000 Characteristic Sym. Min. Typ.‡ 61 1 FPi Input Frame Pulse Width tFPIW 40 2 FPi Input Frame Pulse Setup Time tFPIS 3 FPi Input Frame Pulse Hold Time 4 Max. Units Notes 115 ns 20 40 ns tFPIH 20 40 ns CKi Input Clock Period tCKIP 55 67 ns 5 CKi Input Clock High Time tCKIH 27 33 ns 6 CKi Input Clock Low Time tCKIL 27 33 ns 61 trCKi, tfCKi 0 3 7 CKi Input Clock Rise/Fall Time † Characteristics are over recommended operating conditions unless otherwise stated. ‡ Typical figures are at 25°C, VDD at 3.3 V and are for design aid only: not guaranteed and not subject to production testing. ns AC Electrical Characteristics† - FPi and CKi Timing when CKIN2 to 0 bits = 001 Characteristic Sym. Min. Typ.‡ 122 1 FPi Input Frame Pulse Width tFPIW 90 2 FPi Input Frame Pulse Setup Time tFPIS 3 FPi Input Frame Pulse Hold Time 4 Max. Units Notes 220 ns 45 90 ns tFPIH 45 90 ns CKi Input Clock Period tCKIP 110 135 ns 5 CKi Input Clock High Time tCKIH 63 69 ns 6 CKi Input Clock Low Time tCKIL 63 69 ns 122 trCKi, tfCKi 0 3 7 CKi Input Clock Rise/Fall Time † Characteristics are over recommended operating conditions unless otherwise stated. ‡ Typical figures are at 25°C, VDD at 3.3 V and3 are for design aid only: not guaranteed and not subject to production testing. ns AC Electrical Characteristics - FPi and CKi Timing when CKIN2 to 0 bits = 010 Characteristic Sym. Min. Typ.‡ 244 1 FPi Input Frame Pulse Width tFPIW 90 2 FPi Input Frame Pulse Setup Time tFPIS 3 FPi Input Frame Pulse Hold Time 4 Max. Units Notes 420 ns 110 135 ns tFPIH 120 145 ns CKi Input Clock Period tCKIP 220 270 ns 5 CKi Input Clock High Time tCKIH 110 135 ns 6 CKi Input Clock Low Time tCKIL 110 135 ns 7 CKi Input Clock Rise/Fall Time trCKi, tfCKi 0 3 ns 244 † Characteristics are over recommended operating conditions unless otherwise stated. ‡ Typical figures are at 25°C, VDD at 3.3 V and are for design aid only: not guaranteed and not subject to production testing. 54 Zarlink Semiconductor Inc. ZL50012 Data Sheet tFPIW FPi tFPIS tFPH tCKIP tCKIL tCKIH CKi Input Frame Boundary Figure 25 - Frame Pulse Input and Clock Input Timing Diagram AC Electrical Characteristics† - Frame Boundary Timing with Input Clock Cycle-to-cycle Variation Characteristic Sym. Min. Typ‡ Max. Units Notes 1 CKi Input Clock cycle-to-cycle variation tCKV 0 50 ns † Characteristics are over recommended operating conditions unless otherwise stated. ‡ Typical figures are at 25°C, VDD at 3.3 V and are for design aid only: not guaranteed and not subject to production testing. Input Frame Boundary N+1 Input Frame Boundary N FPi CKi tCKV tCKV Figure 26 - Frame Boundary Timing with Input Clock (cycle-to-cycle) Variation 55 Zarlink Semiconductor Inc. ZL50012 Data Sheet AC Electrical Characteristics† - Frame Boundary Timing with Input Frame Pulse Cycle-to-cycle Variation Characteristic Sym. Typ.‡ Min. Max. Units FPi Input Frame Pulse cycle-to-cycle variation tFPV 0 50 † Characteristics are over recommended operating conditions unless otherwise stated. ‡ Typical figures are at 25°C, VDD at 3.3 V and are for design aid only: not guaranteed and not subject to production testing. 1 Notes ns Input Frame Boundary N+1 Input Frame Boundary N FPi CKi tFPV tFPV Figure 27 - Frame Boundary Timing with Input Frame Pulse (cycle-to-cycle) Variation AC Electrical Characteristics - Input and Output Frame Boundary Alignment Characteristic 2 Input and Output Frame Offset Sym. Min. tFBOS 1 Typ. 56 Zarlink Semiconductor Inc. Max. Units 18 ns Notes Measured when there is no jitter on the CKi and FPi inputs. ZL50012 FPi CKi (16.384 MHz) FPi CKi (8.192 MHz) FPi CKi (4.096 MHz) Input Frame Boundary tFBOS Output Frame Boundary FPo2 CKo2 (32.768 MHz) FPo2 or FPo1 CKo2 or FPo1 (16.384 MHz) FPo1 or FPo0 CKo1 or CKo0 (8.192 MHz) FPo0 CKo0 (4.096 MHz) Figure 28 - Input and Output Frame Boundary Offset 57 Zarlink Semiconductor Inc. Data Sheet ZL50012 Data Sheet AC Electrical Characteristics† - FPo0 and CKo0 Timing when CKFP0 = 0 Characteristic Sym. Min. Typ.‡ Max. Units 244 270 ns 1 FPo0 Output Pulse Width tFPW0 220 2 FPo0 Output Delay from the CKo0 falling edge to the output frame boundary tFODF0 115 130 ns 3 FPo0 Output Delay from the output frame boundary to the CKo0 Rising edge tFODR0 115 130 ns 4 CKo0 Output Clock Period tCKP0 220 270 ns 5 CKo0 Output High Time tCKH0 115 130 ns 6 CKo0 Output Low Time tCKL0 115 130 ns 244 Notes CL=30pF CL=30pF 7 CKo0 Output Rise/Fall Time trCK0, tfCK0 10 ns † Characteristics are over recommended operating conditions unless otherwise stated. ‡ Typical figures are at 25°C, VDD at 3.3 V and are for design aid only: not guaranteed and not subject to production testing. AC Electrical Characteristics† - FPo0 and CKo0 Timing when CKFP0 = 1 Characteristic Sym. Min. Typ.‡ Max. Units 122 140 ns 1 FPo0 Output Pulse Width tFPW0 108 2 FPo0 Output Delay from the CKo0 falling edge to the output frame boundary tFODF0 54 68 ns 3 FPo0 Output Delay from the output frame boundary to the CKo0 Rising edge tFODR0 54 68 ns 4 CKo0 Output Clock Period tCKP0 108 140 ns 5 CKo0 Output High Time tCKH0 54 69 ns 6 CKo0 Output Low Time tCKL0 54 69 ns 122 Notes CL=30pF CL=30pF 7 CKo0 Output Rise/Fall Time trCK0, tfCK0 10 ns † Characteristics are over recommended operating conditions unless otherwise stated. ‡ Typical figures are at 25°C, VDD at 3.3 V and are for design aid only: not guaranteed and not subject to production testing. tFPW0 VTT FPo0 tFODF0 tFODR0 tCKP0 tCKH0 tCKL0 VTT CKo0 tfCK0 Output Frame Boundary Figure 29 - FPo0 and CKo0 Timing Diagram 58 Zarlink Semiconductor Inc. trCK0 ZL50012 Data Sheet AC Electrical Characteristics† - FPo1 and CKo1 Timing when CKFP1 = 0 Characteristic Sym. Min. Typ.‡ Max. Units 61 75 ns 1 FPo1 Output Pulse Width tFPW1 47 2 FPo1 Output Delay from the CKo1 falling edge to the output frame boundary tFODF1 20 40 ns 3 FPo1 Output Delay from the output frame boundary to the CKo1 Rising edge tFODR1 20 40 ns 4 CKo1 Output Clock Period tCKP1 47 75 ns 5 CKo1 Output High Time tCKH1 20 40 ns 6 CKo1 Output Low Time tCKL1 20 40 ns 61 Notes CL=30pF CL=30pF 7 CKo1 Output Rise/Fall Time trCK1, tfCK1 10 ns † Characteristics are over recommended operating conditions unless otherwise stated. ‡ Typical figures are at 25°C, VDD at 3.3 V and are for design aid only: not guaranteed and not subject to production testing. AC Electrical Characteristics† - FPo1 and CKo1 Timing when CKFP1 = 1 Characteristic Sym. Min. Typ.‡ Max. Units 122 140 ns 1 FPo1 Output Pulse Width tFPW1 108 2 FPo1 Output Delay from the CKo1 falling edge to the output frame boundary tFODF1 54 68 ns 3 FPo1 Output Delay from the output frame boundary to the CKo1 Rising edge tFODR1 54 68 ns 4 CKo1 Output Clock Period tCKP1 108 140 ns 5 CKo1 Output High Time tCKH1 54 69 ns 6 CKo1 Output Low Time tCKL1 54 69 ns 122 Notes CL=30pF CL=30pF 7 CKo1 Output Rise/Fall Time trCK1, tfCK1 10 ns † Characteristics are over recommended operating conditions unless otherwise stated. ‡ Typical figures are at 25°C, VDD at 3.3 V and are for design aid only: not guaranteed and not subject to production testing. tFPW1 FPo1 VTT tFODF1 tFODR1 tCKP1 tCKH1 tCKL1 VTT CKo1 tfCK1 Output Frame Boundary Figure 30 - FPo1 and CKo1 Timing Diagram 59 Zarlink Semiconductor Inc. trCK1 ZL50012 Data Sheet AC Electrical Characteristics† - FPo2 and CKo2 Timing when CKFP2 = 0 Characteristic Sym. Min. Typ.‡ Max. Units 30 45 ns 1 FPo2 Output Pulse Width tFPW2 15 2 FPo2 Output Delay from the CKo2 falling edge to the output frame boundary tFODF2 8 22 ns 3 FPo2 Output Delay from the output frame boundary to the CKo2 Rising edge tFODR2 8 22 ns 4 CKo2 Output Clock Period tCKP2 15 45 ns 5 CKo2 Output High Time tCKH2 8 22 ns 6 CKo2 Output Low Time tCKL2 8 22 ns 30 Notes CL=30pF CL=30pF 7 CKo2 Output Rise/Fall Time trCK2, tfCK2 7 ns † Characteristics are over recommended operating conditions unless otherwise stated. ‡ Typical figures are at 25°C, VDD at 3.3 V and are for design aid only: not guaranteed and not subject to production testing. AC Electrical Characteristics† - FPo2 and CKo2 Timing when CKFP2 = 1 Characteristic Sym.. Min. Typ.‡ Max. Units 61 75 ns 1 FPo2 Output Pulse Width tFPW2 47 2 FPo2 Output Delay from the CKo2 falling edge to the output frame boundary tFODF2 20 40 ns 3 FPo2 Output Delay from the output frame boundary to the CKo2 Rising edge tFODR2 20 40 ns 4 CKo2 Output Clock Period tCKP2 47 75 ns 5 CKo2 Output High Time tCKH2 20 40 ns 6 CKo2 Output Low Time tCKL2 20 40 ns 61 Notes CL=30pF CL=30pF 7 CKo2 Output Rise/Fall Time trCK2, tfCK2 10 ns † Characteristics are over recommended operating conditions unless otherwise stated. ‡ Typical figures are at 25°C, VDD at 3.3 V and are for design aid only: not guaranteed and not subject to production testing. tFPW2 FPo2 VTT tFODF2 tFODR2 tCKP2 tCKH2 tCKL2 VTT CKo2 tfCK2 Output Frame Boundary Figure 31 - FPo2 and CKo2 Timing Diagram 60 Zarlink Semiconductor Inc. trCK2 ZL50012 Data Sheet AC Electrical Characteristics† - ST-BUS Input Timing Characteristic 1 2 Typ.‡ Sym. Min. STi Setup Time 2.048 Mb/s 4.096 Mb/s 8.192 Mb/s tSIS2 tSIS4 tSIS8 3 3 3 ns ns ns STi Hold Time 2.048 Mb/s 4.096 Mb/s 8.192 Mb/s tSIH2 tSIH4 tSIH8 3 3 3 ns ns ns Max. Units Test Conditions † Characteristics are over recommended operating conditions unless otherwise stated. ‡ Typical figures are at 25°C, VDD at 3.3 V and are for design aid only: not guaranteed and not subject to production testing. FPi CKi (16.384 MHz) FPi CKi (8.192 MHz) FPi CKi (4.096 MHz) tSIS2 tSIH2 STi0 - 15 2.048 Mb/s Bit0 Ch31 Bit7 Ch0 Bit6 Ch0 VTT tSIS4 tSIH4 STi0 - 15 4.096 Mb/s Bit0 Ch63 Bit7 Ch0 Bit6 Ch0 Bit5 Ch0 Bit4 Ch0 VTT tSIS8 tSIH8 STi0 - 15 8.192 Mb/s Bit1 Ch127 Bit0 Ch127 Bit7 Ch0 Bit6 Ch0 Bit5 Ch0 Bit4 Ch0 Bit3 Ch0 Bit2 Ch0 Bit1 Ch0 Input Frame Boundary Figure 32 - ST-BUS Inputs (STi0 - 15) Timing Diagram 61 Zarlink Semiconductor Inc. Bit0 Ch0 VTT V TT ZL50012 Data Sheet AC Electrical Characteristics† - ST-BUS Output Timing Characteristic 1 Sym. STo Delay - Active to Active @2.048 Mb/s @4.096 Mb/s @8.192 Mb/s Typ.‡ Min. Max. Units 10 10 10 ns ns ns tSOD2 tSOD4 tSOD8 Test Conditions CL = 30pF † Characteristics are over recommended operating conditions unless otherwise stated. ‡ Typical figures are at 25°C, VDD at 3.3 V and are for design aid only: not guaranteed and not subject to production testing. FPo2 CKo2 (32.768 MHz) FPo2 or FPo1 CKo2 or FPo1 (16.384 MHz) FPo1 or FPo0 CKo1 or CKo0 (8.192 MHz) FPo0 CKo0 (4.096 MHz) tSOD2 STo0 - 15 2.048 Mb/s Bit7 Ch0 Bit7 Ch31 Bit7 Ch0 VTT tSOD4 STo0 - 15 4.096 Mb/s Bit7 Ch63 Bit7 Ch0 Bit7 Ch0 Bit7 Ch0 Bit7 Ch0 VTT tSOD8 STo0 - 15 8.192 Mb/s Bit0 Ch127 Bit7 Ch0 Bit6 Ch0 Bit5 Ch0 Bit4 Ch0 Bit3 Ch0 Bit2 Ch0 Bit1 Ch0 Output Frame Boundary Figure 33 - ST-BUS Outputs (STo0 - 15) Timing Diagram 62 Zarlink Semiconductor Inc. Bit0 Ch0 VTT ZL50012 Data Sheet AC Electrical Characteristics† - ST-BUS Output Tristate Timing Characteristic 1 2 2 Sym. Typ.‡ Min. Max. Units 15 15 15 ns ns ns 45 45 45 ns ns ns 30 30 30 ns ns ns Test Conditions tDZ, tZD STo Delay - Active to High-Z STo Delay - High-Z to Active 2.048 Mb/s 4.096 Mb/s 8.192 Mb/s Output Driver Enable (ODE) Delay - High-Z to Active 2.048 Mb/s 4.096 Mb/s 8.192 Mb/s tZD_ODE Output Driver Disable (ODE) Delay - Active to High-Z 2.048 Mb/s 4.096 Mb/s 8.192 Mb/s tDZ_ODE RL=1K, CL=30pF, See Note 1. † Characteristics are over recommended operating conditions unless otherwise stated. ‡ Typical figures are at 25°C and are for design aid only: not guaranteed and not subject to production testing. * Note 1: High Impedance is measured by pulling to the appropriate rail with RL, with timing corrected to cancel the time taken to discharge C L. VTT CKo0-2 tDZ Tri-state VTT Valid Data VTT Valid Data STo tZD Tri-state STo Figure 34 - Serial Output and External Control VTT ODE tDZ_ODE tZD_ODE STo HiZ Valid Data HiZ VTT Figure 35 - Output Driver Enable (ODE) 63 Zarlink Semiconductor Inc. ZL50012 Data Sheet AC Electrical Characteristics - Motorola Non-Multiplexed Bus Mode Characteristics Sym. Min. Typ. Max. Test Conditions2 Units 1 CS setup from DS falling tCSS 0 ns 2 R/W setup from DS falling tRWS 10 ns 3 Address setup from DS falling tADS 5 ns 4 DS delay from the rising edge of DTA to the falling edge of the DS tDSD 50 ns 5 CS delay from the rising edge of DTA to the falling edge of the CS tCSD 50 ns 6 CS hold after DS rising tCSH 0 ns 7 R/W hold after DS rising tRWH 0 ns 8 Address hold after DS rising tADH 0 ns 9 Data setup from DTA Low on Read tDDR 20 ns CL=30pF 10 Data hold on read tDHR 3 ns CL=30pF, RL=1K (Note 1) 11 Data setup from DS falling on write tWDS 10 ns 12 Data hold on write tDHW 0 ns 13 Acknowledgment Delay: Reading/Writing Registers Reading/Writing Memory tAKD Acknowledgment Hold Time tAKH 14 9 120/105 200/150 ns ns CL=30pF CL=30pF 20 ns CL=30pF, RL=1K (Note 1) Note 1: High Impedance is measured by pulling to the appropriate rail with R L, with timing corrected to cancel time taken to discharge C L. Note 2: A delay of 600 microseconds must be applied before the first microprocessor access is performed after the RESET pin is set high. tDSD VTT DS tCSD tCSH tCSS VTT CS tRWH tRWS VTT R/W tADH tADS VTT VALID ADDRESS A0-A11 tDHR D0-D15 READ VTT VALID READ DATA tWDS tDHW VTT VALID WRITE DATA D0-D15 WRITE tDDR VTT DTA tAKD Figure 36 - Motorola Non-Multiplexed Bus Timing 64 Zarlink Semiconductor Inc. tAKH ZL50012 Data Sheet AC Electrical Characteristics† - JTAG Test Port and Reset Pin Timing Characteristic Sym. Min. Typ. Max. Units 1 TCK Clock Period tTCKP 100 ns 2 TCK Clock Pulse Width High tTCKH 80 ns 3 TCK Clock Pulse Width Low tTCKL 80 ns 4 TMS Set-up Time tTMSS 10 ns 5 TMS Hold Time tTMSH 10 ns 6 TDi Input Set-up Time tTDIS 20 ns 7 TDi Input Hold Time tTDIH 60 ns 8 TDo Output Delay tTDOD 9 TRST pulse width tTRSTW 200 ns 10 Reset pulse width tRSTW 1.0 ms 25 ns †Characteristics are over recommended operating conditions unless otherwise stated. tTCKL tTCKH tTCKP TCK tTMSS tTMSH TMS tTDIS tTDIH TDi tTDOD TDo tTRSTW TRST Figure 37 - JTAG Test Port Timing Diagram tRSTW Reset Figure 38 - Reset Pin Timing Diagram 65 Zarlink Semiconductor Inc. Notes CL=30pF Package Code c Zarlink Semiconductor 2002 All rights reserved. ISSUE ACN DATE APPRD. Previous package codes Package Code c Zarlink Semiconductor 2002 All rights reserved. 1 2 ACN 213740 213834 DATE 15Nov02 11Dec02 ISSUE APPRD. Previous package codes For more information about all Zarlink products visit our Web Site at www.zarlink.com Information relating to products and services furnished herein by Zarlink Semiconductor Inc. or its subsidiaries (collectively “Zarlink”) is believed to be reliable. However, Zarlink assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual property rights owned by Zarlink or licensed from third parties by Zarlink, whatsoever. Purchasers of products are also hereby notified that the use of product in certain ways or in combination with Zarlink, or non-Zarlink furnished goods or services may infringe patents or other intellectual property rights owned by Zarlink. This publication is issued to provide information only and (unless agreed by Zarlink in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other information appearing in this publication are subject to change by Zarlink without notice. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user’s responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to Zarlink’s conditions of sale which are available on request. Purchase of Zarlink’s I2C components conveys a licence under the Philips I2C Patent rights to use these components in and I2C System, provided that the system conforms to the I2C Standard Specification as defined by Philips. Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc. Copyright Zarlink Semiconductor Inc. All Rights Reserved. TECHNICAL DOCUMENTATION - NOT FOR RESALE