LM341,LM78M05,LM78M12,LM78M15 LM341/LM78MXX Series 3-Terminal Positive Voltage Regulators Literature Number: SNVS090E LM341/LM78MXX Series 3-Terminal Positive Voltage Regulators General Description Features The LM341 and LM78MXX series of three-terminal positive voltage regulators employ built-in current limiting, thermal shutdown, and safe-operating area protection which makes them virtually immune to damage from output overloads. With adequate heatsinking, they can deliver in excess of 0.5A output current. Typical applications would include local (on-card) regulators which can eliminate the noise and degraded performance associated with single-point regulation. Output current in excess of 0.5A No external components Internal thermal overload protection Internal short circuit current-limiting Output transistor safe-area compensation Available in TO-220, TO-39, and TO-252 D-PAK packages n Output voltages of 5V, 12V, and 15V n n n n n n Connection Diagrams TO-39 Metal Can Package (H) 01048405 Bottom View Order Number LM78M05CH, LM78M12CH or LM78M15CH See NS Package Number H03A TO-220 Power Package (T) 01048406 Top View Order Number LM341T-5.0, LM341T-12, LM341T-15, LM78M05CT, LM78M12CT or LM78M15CT See NS Package Number T03B TO-252 01048419 Top View Order Number LM78M05CDT See NS Package Number TD03B © 2005 National Semiconductor Corporation DS010484 www.national.com LM341/LM78MXX Series 3-Terminal Positive Voltage Regulators August 2005 LM341/LM78MXX Series Absolute Maximum Ratings (Note 1) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications. Operating Junction Temperature Range −40˚C to +125˚C Power Dissipation (Note 2) Internally Limited Input Voltage 5V ≤ VO ≤ 15V 35V ESD Susceptibility TBD Lead Temperature (Soldering, 10 seconds) TO-39 Package (H) 300˚C TO-220 Package (T) 260˚C Storage Temperature Range −65˚C to +150˚C Electrical Characteristics Limits in standard typeface are for TJ = 25˚C, and limits in boldface type apply over the −40˚C to +125˚C operating temperature range. Limits are guaranteed by production testing or correlation techniques using standard Statistical Quality Control (SQC) methods. LM341-5.0, LM78M05C Unless otherwise specified: VIN = 10V, CIN = 0.33 µF, CO = 0.1 µF Symbol VO Parameter Output Voltage Conditions Min Typ Max Units IL= 500 mA 4.8 5 mA ≤ IL ≤ 500 mA 4.75 5.0 5.2 V 5.0 5.25 PD ≤ 7.5W, 7.5V ≤ VIN ≤ 20V VR LINE Line Regulation 7.2V ≤ VIN ≤ 25V VR LOAD Load Regulation 5 mA ≤ IL ≤ 500 mA IQ Quiescent Current IL = 500 mA ∆IQ Quiescent Current Change 5 mA ≤ IL ≤ 500 mA IL = 100 mA 50 IL = 500 mA 100 100 4 VIN Output Noise Voltage f = 10 Hz to 100 kHz Ripple Rejection f = 120 Hz, IL = 500 mA Input Voltage Required IL = 500 mA 10.0 mA 0.5 7.5V ≤ VIN ≤ 25V, IL = 500 mA Vn mV 1.0 40 µV 78 dB 7.2 V to Maintain Line Regulation ∆VO www.national.com Long Term Stability IL = 500 mA 20 2 mV/khrs Limits in standard typeface are for TJ = 25˚C, and limits in boldface type apply over the −40˚C to +125˚C operating temperature range. Limits are guaranteed by production testing or correlation techniques using standard Statistical Quality Control (SQC) methods. (Continued) LM341-12, LM78M12C Unless otherwise specified: VIN = 19V, CIN = 0.33 µF, CO = 0.1 µF Symbol VO Parameter Output Voltage Conditions Min Typ Max Units IL= 500 mA 11.5 12 12.5 V 5 mA ≤ IL ≤ 500 mA 11.4 12 12.6 PD ≤ 7.5W, 14.8V ≤ VIN ≤ 27V VR LINE Line Regulation 14.5V ≤ VIN ≤ 30V VR LOAD Load Regulation 5 mA ≤ IL ≤ 500 mA IQ Quiescent Current IL = 500 mA ∆IQ Quiescent Current Change 5 mA ≤ IL ≤ 500 mA IL = 100 mA 120 IL = 500 mA 240 240 4 VIN Output Noise Voltage f = 10 Hz to 100 kHz Ripple Rejection f = 120 Hz, IL = 500 mA Input Voltage Required 10.0 mA 0.5 14.8V ≤ VIN ≤ 30V, IL = 500 mA Vn mV IL = 500 mA 1.0 75 µV 71 dB 14.5 V to Maintain Line Regulation ∆VO Long Term Stability IL = 500 mA 48 mV/khrs LM341-15, LM78M15C Unless otherwise specified: VIN = 23V, CIN = 0.33 µF, CO = 0.1 µF Symbol VO Parameter Output Voltage Min Typ Max Units IL= 500 mA Conditions 14.4 15 15.6 V 5 mA ≤ IL ≤ 500 mA 14.25 15 15.75 PD ≤ 7.5W, 18V ≤ VIN ≤ 30V VR LINE Line Regulation 17.6V ≤ VIN ≤ 30V VR LOAD Load Regulation 5 mA ≤ IL ≤ 500 mA IQ Quiescent Current IL = 500 mA ∆IQ Quiescent Current Change 5 mA ≤ IL ≤ 500 mA Vn Output Noise Voltage f = 10 Hz to 100 kHz Ripple Rejection f = 120 Hz, IL = 500 mA IL = 100 mA 150 IL = 500 mA 300 300 4 Input Voltage Required IL = 500 mA 10.0 mA 0.5 18V ≤ VIN ≤ 30V, IL = 500 mA VIN mV 1.0 90 µV 69 dB 17.6 V to Maintain Line Regulation ∆VO Long Term Stability IL = 500 mA 60 mV/khrs Note 1: Absolute maximum ratings indicate limits beyond which damage to the component may occur. Electrical specifications do not apply when operating the device outside of its rated operating conditions. Note 2: The typical thermal resistance of the three package types is: T (TO-220) package: θ(JA) = 60 ˚C/W, θ(JC) = 5 ˚C/W H (TO-39) package: θ(JA) = 120 ˚C/W, θ(JC) = 18 ˚C/W DT (TO-252) package: θ(JA) = 92 ˚C/W, θ(JC) = 10 ˚C/W 3 www.national.com LM341/LM78MXX Series Electrical Characteristics LM341/LM78MXX Series Schematic Diagram 01048401 www.national.com 4 LM341/LM78MXX Series Typical Performance Characteristics Peak Output Current Ripple Rejection 01048410 01048411 Ripple Rejection Dropout Voltage 01048412 01048413 Output Voltage (Normalized to 1V at TJ = 25˚C) Quiescent Current 01048415 01048414 5 www.national.com LM341/LM78MXX Series Typical Performance Characteristics (Continued) Quiescent Current Output Impedance 01048416 01048417 Line Transient Response Load Transient Response 01048407 01048408 duction heat transfer is demonstrated in The heat generated at the device junction flows through the die to the die attach pad, through the lead frame to the surrounding case material, to the printed circuit board, and eventually to the ambient environment. Below is a list of variables that may affect the thermal resistance and in turn the need for a heatsink. Design Considerations The LM78MXX/LM341XX fixed voltage regulator series has built-in thermal overload protection which prevents the device from being damaged due to excessive junction temperature. The regulators also contain internal short-circuit protection which limits the maximum output current, and safe-area protection for the pass transistor which reduces the shortcircuit current as the voltage across the pass transistor is increased. Although the internal power dissipation is automatically limited, the maximum junction temperature of the device must be kept below +125˚C in order to meet data sheet specifications. An adequate heatsink should be provided to assure this limit is not exceeded under worst-case operating conditions (maximum input voltage and load current) if reliable performance is to be obtained). RθCA(Application Variables) Leadframe Size & Material Mounting Pad Size, Material, & Location No. of Conduction Pins Placement of Mounting Pad Die Size PCB Size & Material Die Attach Material Traces Length & Width Molding Compound Size and Material Adjacent Heat Sources Volume of Air 1.0 HEATSINK CONSIDERATIONS When an integrated circuit operates with appreciable current, its junction temperature is elevated. It is important to quantify its thermal limits in order to achieve acceptable performance and reliability. This limit is determined by summing the individual parts consisting of a series of temperature rises from the semiconductor junction to the operating environment. A one-dimension steady-state model of conwww.national.com RθJC(Component Variables) Air Flow Ambient Temperature Shape of Mounting Pad 6 The LM78MXX/LM341XX regulators have internal thermal shutdown to protect the device from over-heating. Under all possible operating conditions, the junction temperature of the LM78MXX/LM341XX must be within the range of 0˚C to 125˚C. A heatsink may be required depending on the maximum power dissipation and maximum ambient temperature of the application. To determine if a heatsink is needed, the power dissipated by the regulator, PD, must be calculated: IIN = IL + IG PD = (VIN−VOUT) IL + VINIG shows the voltages and currents which are present in the circuit. 01048423 FIGURE 1. Cross-sectional view of Integrated Circuit Mounted on a printed circuit board. Note that the case temperature is measured at the point where the leads contact with the mounting pad surface 01048424 FIGURE 2. Power Dissipation Diagram we used to measure these θJA are shown at the end of the Application Note Section. reflects the same test results as what are in the Table 1 shows the maximum allowable power dissipation vs. ambient temperature for theTO-252 device. shows the maximum allowable power dissipation vs. copper area (in2) for the TO-252 device. Please see AN1028 for power enhancement techniques to be used with TO-252 package. The next parameter which must be calculated is the maximum allowable temperature rise, TR(max): θJA = TR (max)/PD If the maximum allowable value for θJA˚C/w is found to be ≥60˚C/W for TO-220 package or ≥92˚C/W for TO-252 package, no heatsink is needed since the package alone will dissipate enough heat to satisfy these requirements. If the calculated value for θJA fall below these limits, a heatsink is required. As a design aid, Table 1 shows the value of the θJA of TO-252 for different heatsink area. The copper patterns that 7 www.national.com LM341/LM78MXX Series Application Information LM341/LM78MXX Series Application Information (Continued) TABLE 1. θJA Different Heatsink Area Layout Copper Area Bottom Side (in2) (θJA, ˚C/W) TO-252 1 0.0123 0 103 2 0.066 0 87 3 0.3 0 60 4 0.53 0 54 5 0.76 0 52 6 1 0 47 7 0 0.2 84 8 0 0.4 70 9 0 0.6 63 10 0 0.8 57 11 0 1 57 12 0.066 0.066 89 13 0.175 0.175 72 14 0.284 0.284 61 15 0.392 0.392 55 16 0.5 0.5 53 *Tab of device attached to topside copper www.national.com Thermal Resistance Top Sice (in2)* 8 LM341/LM78MXX Series Application Information (Continued) 01048421 01048420 FIGURE 5. Maximum Allowable Power Dissipation vs. 2oz. Copper Area for TO-252 FIGURE 3. θJA vs. 2oz Copper Area for TO-252 Typical Application 01048409 *Required if regulator input is more than 4 inches from input filter capacitor (or if no input filter capacitor is used). 01048422 **Optional for improved transient response. FIGURE 4. Maximum Allowable Power Dissipation vs. Ambient Temperature for TO-252 9 www.national.com LM341/LM78MXX Series Physical Dimensions inches (millimeters) unless otherwise noted TO-39 Metal Can Package (H) Order Number LM78M05CH, LM78M12CH or LM78M15CH NS Package Number H03A TO-220 Power Package (T) Order Number LM341T-5.0, LM341T-12, LM341T-15, LM78M05CT, LM78M12CT or LM78M15CT NS Package Number T03B www.national.com 10 inches (millimeters) unless otherwise noted (Continued) TO-252 Order Number LM78M05CDT NS Package Number TD03B National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications. For the most current product information visit us at www.national.com. LIFE SUPPORT POLICY NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. BANNED SUBSTANCE COMPLIANCE National Semiconductor manufactures products and uses packing materials that meet the provisions of the Customer Products Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain no ‘‘Banned Substances’’ as defined in CSP-9-111S2. Leadfree products are RoHS compliant. National Semiconductor Americas Customer Support Center Email: [email protected] Tel: 1-800-272-9959 www.national.com National Semiconductor Europe Customer Support Center Fax: +49 (0) 180-530 85 86 Email: [email protected] Deutsch Tel: +49 (0) 69 9508 6208 English Tel: +44 (0) 870 24 0 2171 Français Tel: +33 (0) 1 41 91 8790 National Semiconductor Asia Pacific Customer Support Center Email: [email protected] National Semiconductor Japan Customer Support Center Fax: 81-3-5639-7507 Email: [email protected] Tel: 81-3-5639-7560 LM341/LM78MXX Series 3-Terminal Positive Voltage Regulators Physical Dimensions IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications. TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Applications Audio www.ti.com/audio Communications and Telecom www.ti.com/communications Amplifiers amplifier.ti.com Computers and Peripherals www.ti.com/computers Data Converters dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps DLP® Products www.dlp.com Energy and Lighting www.ti.com/energy DSP dsp.ti.com Industrial www.ti.com/industrial Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical Interface interface.ti.com Security www.ti.com/security Logic logic.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Power Mgmt power.ti.com Transportation and Automotive www.ti.com/automotive Microcontrollers microcontroller.ti.com Video and Imaging RFID www.ti-rfid.com OMAP Mobile Processors www.ti.com/omap Wireless Connectivity www.ti.com/wirelessconnectivity TI E2E Community Home Page www.ti.com/video e2e.ti.com Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated