KODENSHI SNF431BS

SN431/SNF431
Programmable Voltage Reference
◈ Description
The SN431 series are 3-terminal precision shunt regulators that are programmable over a wide voltage range of
2.495V to 36V with ±0.5%, ±1.0% tolerance. The SN431 series have a low dynamic impedance of 0.15Ω. These
features make the SN431 series an excellent replacement for zener diodes in numerous applications circuits that
require a precision reference voltage.
◈ Features
• Programmable output voltage from 2.495V to 36V
• Voltage reference tolerance : ±0.5%, ±1.0%
• Cathode current capability of 1mA to 100mA
◈ Pin Assignment
(Top View)
(Top View)
(Top View)
A
A
K
A
R
R
K
R A K
PKG : SOT-89
PKG : SOT-23
PKG : SOT-23
Apply Device : SN431xF
Apply Device : SN431xS
Apply Device : SNF431xS
(Marking Side View)
(Top View)
(Marking Side View)
A
R
NC
NC
K
RA K
R A K
PKG : SOT-25
PKG : TO-92
PKG : TO-92M
Apply Device : SN431xN
Apply Device : SN431x
Apply Device : SN431xM
[ K : Cathode,
A: Anode,
KSD-I0A013-006
R : Reference ]
1
SN431/SNF431
◈ Symbol
◈ Functional block diagram
Cathode(K)
Cathode(K)
Reference(R)
+
–
Reference(R)
VREF=2.495V
Anode(A)
Anode(A)
◈ Ordering Information
Vref
Tolerance
±1%
±0.5%
1) SN431x Pin Connection :
PKG Type
Device Name
Marking
TO-92
SN431A
SN431A
TO-92M
SN431AM
SN431A
SOT-23
SN431AS1)
4GA□3)
SOT-23
SNF431AS2)
4KA□3)
SOT-25
SN431AN
N4A□3)
SOT-89
SN431AF
SN431A
TO-92
SN431B
SN431B
TO-92M
SN431BM
SN431B
SOT-23
SN431BS1)
4GB□3)
SOT-23
SNF431BS2)
4KB□3)
SOT-25
SN431BN
N4B□3)
SOT-89
SN431BF
SN431B
1. Cathode,
2. Reference, 3. Anode
2) SNF431x Pin Connection : 1. Reference, 2. Cathode, 3. Anode
3) □ : Year & Week Code
KSD-I0A013-006
2
SN431/SNF431
◈ Absolute maximum ratings
Characteristic
[Ta=25℃]
Symbol
Rating
Unit
VKA
37
V
Cathode current
IK
150
mA
Reference input current
Iref
10
mA
SOT-23
PD(Note1)
350
SOT-25
PD(Note1)
400
SOT-89
PD(Note1)
500
TO-92
PD(Note2)
625
TO-92M
PD(Note2)
400
Junction Temperature
TJ
150
℃
Operating temperature range
Topr
-40 ~ +85
℃
Storage temperature range
Tstg
-55 ~ +150
℃
Cathode to Anode voltage
Power Dissipation
mW
Note 1 : Mounted on a glass epoxy PCB board (25.4 × 25.4mm).TA=25℃
Note 2 : TA=25℃
◈ Recommended operating conditions
Characteristic
Rating
Symbol
Cathode to Anode voltage
Cathode current
Unit
Min.
Max.
VKA
Vref
36
V
IK
1
100
mA
◈ Electrical Characteristics (Ta=25℃, unless otherwise noted.)
Characteristic
Symbol
Condition
Min. Typ. Max.
SN431B
2.482
SN431A
2.470
2.508
Reference voltage (Fig.1)
Vref
VKA=Vref, IK=10mA
Reference input voltage
deviation over temperature
(Fig.1, Note1,2)
ΔVref
VKA=Vref , IK=10mA
@ -40˚C ≤ Ta ≤ 85˚C
-
7
30
mV
IK=10mA
Vref≤VKA≤36V
-
-1.0
-2.7
mV/V
Iref
IK=10mA, R1=10KΩ, R2=∞
-
1.8
4.0
μΑ
ΔIref
IK=10mA, R1=10KΩ, R2=∞
@ -40˚C ≤ Ta ≤ 85˚C
-
0.4
2.5
μΑ
Ratio of delta reference input
voltage to delta cathode
voltage (Fig.2)
Reference current (Fig.2)
Reference input current
deviation over temperature
(Fig.2, Note 1,2)
ΔVref
ΔVKA
2.495
Unit
2.520
V
Minimum cathode current
for regulation
IK(MIN)
VKA=Vref
-
0.35
1.0
mΑ
Off-state cathode current (Fig.3)
IK(off)
VKA=36V, Vref=0V
-
2.7
1000
nA
Dynamic impedance (Fig.1, Note3)
ZKA
VKA=Vref, f ≤ 1.0KHz
1.0mA ≤ IK ≤ 100mA
-
0.15
0.5
Ω
KSD-I0A013-006
3
SN431/SNF431
Fig. 2 Test circuit for VKA>Vref
Fig. 1 Test circuit for VKA=Vref
Input
Input
VKA
IK
VKA
Fig. 3 Test circuit for IK(off)
Input
IK(off)
IK
R1
VKA
Iref
R2
Vref
V KA = V ref × (1 +
R1
) + I ref × R1
R2
Note.
1. Ambient temperature range: TLOW = -40℃, THigh = 85℃
2. The deviation parameters △Vref and △Iref are defined as the difference between the maximum value and minimum value
obtained over the full operating ambient temperature range that applied.
∆Vref = Vref Max – Vref Min
∆Ta = T2 – T1
Ambient Temperature
The average temperature coefficient of the reference input voltage, αVref is defined as:
ΔV ref
× 10 6 )
ppm
V ref (T a = 25℃)
α V ref (
)=
℃
ΔT a
(
Example : △Vref = 30mV and the slope is positive,
△Vref @ 25℃ = 2.495V
△Ta = 70℃
0.03
(
) × 10 6
ppm
2.495
αVref (
)=
= 171ppm / ℃
℃
70
3. The dynamic impedance ZKA is defined as:
Ζ KA =
ΔVKA
ΔI K
When the device is operating with two external resistors, R1 and R2, (refer to Fig.2) the total dynamic impedance of the circuit
is given by:
Ζ KA ' = Ζ KA × (1 +
KSD-I0A013-006
R1
)
R2
4
SN431/SNF431
◈ Electrical Characteristic Curves
Fig.5 Iref vs TA
1.0
VKA=Vref
0.6
IK=10mA
0.4
0.2
0.0
-0.2
-0.4
-0.6
-0.8
-1.0
-60
150
125
100
75
50
25
0
-25
-50
-75
-100
-125
-150
-40
-20
0
20
40
60
80
5.0
4.5
IK=10mA
4.0
R1=10KΩ
3.5
R2=∞
3.0
2.5
2.0
1.5
1.0
0.5
0.0
100
-60
-40
-20
20
40
60
80
Ambient Temperature - TA [℃]
Fig.6 IKA vs VKA
Fig.7 IKA vs VKA
100
800
VKA=Vref
TA=25℃
700
VKA=Vref
600
TA=25℃
500
400
300
200
100
0
-100
-200
-2
-1
0
1
2
-1
3
0
3.0
Vref=0V
2.5
2.0
1.5
1.0
0.5
0.0
-60
-40
-20
0
20
40
60
80
100
Delta Reference Voltage - △Vref [mV]
4.0
VKA= 36V
2
3
Fig.9 △Vref vs VKA
Fig.8 Ioff vs TA
3.5
1
Cathode Voltage - VKA [V]
Cathode Voltage - VKA [V]
Off-State Cathode Current - Ioff [nA]
0
Ambient Temperature - TA [℃]
Cathode Current - IKA [µA]
Cathode Current - IKA [mA]
Reference Voltage Change - Vref
0.8
Reference Input Current - Iref [µA]
[%]
Fig.4 Vref vs TA
0
IK=10mA
-5
TA=25℃
-10
-15
-20
-25
0
4
8
12
16
20
24
28
32
36
40
Cathode Voltage - VKA [V]
Ambient Temperature - TA [℃]
KSD-I0A013-006
5
SN431/SNF431
◈ Electrical Characteristic Curves
Fig.10 AV vs f
60
OUTPUT
IK=10mA
Voltage Gain - AV [dB]
50
IK
TA=25℃
10kΩ
220Ω
40
10μF
30
10kΩ
20
GND
10
0
1k
10k
100k
1000k
10000k
Voltage Gain Test Circuit
Frequency - f [Hz]
Fig.11 |ZKA| vs f
500Ω
Vout
100
Reference Impedance – |ZKA| [Ω]
Rs=100Ω
IK=10mA
IK
TA=25℃
1uF
10
Vin
GND
1
ZKA = Vout/Vin x Rs
0.1
1k
10k
100k
1000k
10000k
Dynamic Impedance Test Circuit
Frequency - f [Hz]
KSD-I0A013-006
6
SN431/SNF431
Fig.12 Pulse Response
Voltage Swing [V]
220Ω
0.9V/Div
Output
Pulse
Generator
f = 100kHz
OUTPUT
50Ω
GND
5V/Div
Input
Pulse Response Test Circuit
Time [µS]
KSD-I0A013-006
7
SN431/SNF431
◈ Typical Application
Vcc
Vcc
Vout
R1
Vout
R2
Vout = ( 1+
Vin
R1
)Vref
R2
Vth=Vref
Fig15. Single-Supply Comparator with
Temperature-Compensated Threshold
Fig14. Shunt Regulator
Vcc
Vin < Vref -> Vout=Vcc
Vin > Vref -> Vout≒2.0V
Isink
Iout
RCL
Vcc
Rs
Iout = Vref / RCL
Isink = Vref / RS
Fig17. Constant Current Source
Fig16. Constant Current Sink
Vcc
Vout
Vcc
Vout
R1
R1
R2
R2
Vout = ( 1 +
R1
)Vref
R2
Vin(min) = Vout + Vbe
Vout = ( 1+
Vout(min) = Vref + Vbe
Fig18. Series Pass Regulator
R1
)Vref
R2
Fig19. High Currnet Shunt Regulator
KSD-I0A013-006
8
SN431/SNF431
◈ SOT-89 Outline Dimension (unit : mm)
※ Recommend PCB solder land
[Unit: mm]
KSD-I0A013-006
9
SN431/SNF431
◈ SOT-23 Outline Dimension (unit : mm)
※ Recommend PCB solder land
[Unit: mm]
KSD-I0A013-006
10
SN431/SNF431
◈ SOT-25 Outline Dimension (unit : mm)
※ Recommend PCB solder land
[Unit: mm]
KSD-I0A013-006
11
SN431/SNF431
◈ TO-92 Outline Dimension (unit : mm)
KSD-I0A013-006
12
SN431/SNF431
◈ TO-92M Outline Dimension (unit : mm)
KSD-I0A013-006
13
SN431/SNF431
The AUK Corp. products are intended for the use as components in general electronic
equipment (Office and communication equipment, measuring equipment, home
appliance, etc.).
Please make sure that you consult with us before you use these AUK Corp. products
in equipments which require high quality and / or reliability, and in equipments which
could have major impact to the welfare of human life(atomic energy control, airplane,
spaceship, transportation, combustion control, all types of safety device, etc.). AUK
Corp. cannot accept liability to any damage which may occur in case these AUK Corp.
products were used in the mentioned equipments without prior consultation with AUK
Corp..
Specifications mentioned in this publication are subject to change without notice.
KSD-I0A013-006
14