LM111, LM211, LM311 DIFFERENTIAL COMPARATORS WITH STROBES SLCS007H − SEPTEMBER 1973 − REVISED AUGUST 2003 Fast Response Times Strobe Capability Maximum Input Bias Current . . . 300 nA Maximum Input Offset Current . . . 70 nA D Can Operate From Single 5-V Supply D Available in Q-Temp Automotive − High-Reliability Automotive Applications − Configuration Control/Print Support − Qualification to Automotive Standards LM111 . . . JG PACKAGE LM211 . . . D, P, OR PW PACKAGE LM311 . . . D, P, PS, OR PW PACKAGE (TOP VIEW) 8 2 7 3 6 4 5 VCC+ COL OUT BAL/STRB BALANCE NC EMIT OUT NC VCC+ NC 1 NC IN+ NC IN− NC 4 3 2 1 20 19 18 5 17 6 16 7 15 8 14 9 10 11 12 13 NC VCC− EMIT OUT IN+ IN− VCC− LM111 . . . FK PACKAGE (TOP VIEW) NC COL OUT NC BAL/STRB NC NC BALANCE NC D D D D NC − No internal connection description/ordering information The LM111, LM211, and LM311 are single high-speed voltage comparators. These devices are designed to operate from a wide range of power-supply voltages, including ±15-V supplies for operational amplifiers and 5-V supplies for logic systems. The output levels are compatible with most TTL and MOS circuits. These comparators are capable of driving lamps or relays and switching voltages up to 50 V at 50 mA. All inputs and outputs can be isolated from system ground. The outputs can drive loads referenced to ground, VCC+ or VCC−. Offset balancing and strobe capabilities are available, and the outputs can be wire-OR connected. If the strobe is low, the output is in the off state, regardless of the differential input. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Copyright © 2003, Texas Instruments Incorporated PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. On products compliant to MIL-PRF-38535, all parameters are tested unless otherwise noted. On all other products, production processing does not necessarily include testing of all parameters. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 LM111, LM211, LM311 DIFFERENTIAL COMPARATORS WITH STROBES SLCS007H − SEPTEMBER 1973 − REVISED AUGUST 2003 description/ordering information ORDERING INFORMATION TA VIO max AT 25°C PACKAGE† PDIP (P) 7 5 mV 7.5 LM311P Tube of 75 LM311D Reel of 2500 LM311DR Reel of 2000 LM311PSR Reel of 150 LM311PW Tube of 2000 LM311PWR Tube of 50 LM211P Tube of 75 LM211D Reel of 2500 LM211DR Reel of 150 LM211PW Reel of 2000 LM211PWR Tube of 75 LM211QD Reel of 2500 LM211QDR CDIP (JG) Tube of 50 LM111JG LM111JG LCCC (FK) Tube of 55 LM111FK LM111FK SOP (PS) TSSOP (PW) PDIP (P) −40°C 40 C to 85°C 85 C 3 mV SOIC (D) TSSOP (PW) † −40°C 40°C to 125°C 3 mV 55°C to 125°C −55°C 3 mV SOIC (D) LM311P LM311 L311 L311 LM211P LM211 L211 LM211Q Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package. functional block diagram BALANCE BAL/STRB 2 TOP-SIDE MARKING Tube of 50 SOIC (D) −0°C 0°C to 70°C ORDERABLE PART NUMBER IN+ + COL OUT IN− − EMIT OUT POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 LM111, LM211, LM311 DIFFERENTIAL COMPARATORS WITH STROBES SLCS007H − SEPTEMBER 1973 − REVISED AUGUST 2003 schematic Component Count Resistors Diodes EPI FET Transistors BAL/STRB BALANCE 450 Ω 450 Ω 20 2 1 22 VCC+ 2.4 kΩ 750 Ω 2.4 kΩ 600 Ω 70 Ω 1.2 kΩ IN+ 1.2 kΩ 4 kΩ COL OUT IN− 400 Ω 130 Ω 60 Ω 450 Ω 250 Ω 600 Ω 200 Ω 2 kΩ 4Ω EMIT OUT VCC− All resistor values shown are nominal. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 3 LM111, LM211, LM311 DIFFERENTIAL COMPARATORS WITH STROBES SLCS007H − SEPTEMBER 1973 − REVISED AUGUST 2003 absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† Supply voltage: VCC+ (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 V VCC− (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −18 V VCC+ − VCC− . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 V Differential input voltage, VID (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±30 V Input voltage, VI (either input, see Notes 1 and 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±15 V Voltage from emitter output to VCC− . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 V Voltage from collector output to VCC−: LM111 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 V LM211 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 V LM211Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 V LM311 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 V Duration of output short circuit (see Note 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 s Package thermal impedance, θJA (see Notes 5 and 6): D package . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97°C/W P package . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85°C/W PS package . . . . . . . . . . . . . . . . . . . . . . . . . . . 95°C/W PW package . . . . . . . . . . . . . . . . . . . . . . . . . 149°C/W Package thermal impedance, θJC (see Notes 7 and 8): FK package . . . . . . . . . . . . . . . . . . . . . . . . . 5.61°C/W JG package . . . . . . . . . . . . . . . . . . . . . . . . . 14.5°C/W Operating virtual junction temperature, TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C Case temperature for 60 seconds: FK package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: J or JG package . . . . . . . . . . . . . . . . 300°C Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: D, P, PS, or PW package . . . . . . . . 260°C Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. All voltage values, unless otherwise noted, are with respect to the midpoint between VCC+ and VCC−. 2. Differential voltages are at IN+ with respect to IN−. 3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or ±15 V, whichever is less. 4. The output may be shorted to ground or either power supply. 5. Maximum power dissipation is a function of TJ(max), θJA, and TA. The maximum allowable power dissipation at any allowable ambient temperature is PD = (TJ(max) − TA)/θJA. Operating at the absolute maximum TJ of 150°C can affect reliability. 6. The package thermal impedance is calculated in accordance with JESD 51-7. 7. Maximum power dissipation is a function of TJ(max), θJC, and TC. The maximum allowable power dissipation at any allowable case temperature is PD = (TJ(max) − TC)/θJC. Operating at the absolute maximum TJ of 150°C can affect reliability. 8. The package thermal impedance is calculated in accordance with MIL-STD-883. recommended operating conditions VCC+ − VCC− Supply voltage VI Input voltage (|VCC±| ≤ 15 V) TA free air temperature range Operating free-air POST OFFICE BOX 655303 MAX 3.5 30 V V VCC−+0.5 VCC+−1.5 LM111 −55 125 LM211 −40 85 LM211Q −40 125 0 70 LM311 4 MIN • DALLAS, TEXAS 75265 UNIT °C LM111, LM211, LM311 DIFFERENTIAL COMPARATORS WITH STROBES SLCS007H − SEPTEMBER 1973 − REVISED AUGUST 2003 electrical characteristics at specified free-air temperature, VCC± = ±15 V (unless otherwise noted) PARAMETER LM111 LM211 LM211Q TA† TEST CONDITIONS MIN TYP‡ MAX 0.7 3 25°C VIO Input offset voltage See Note 6 IIO Input offset current See Note 6 IIB Input bias current VO = 1 V to 14 V IIL(S) Low-level strobe current (see Note 7) V(strobe) = 0.3 V, VICR Common-mode input voltage range AVD Large-signal differential voltage amplification IOH High-level g (collector) output leakage current Full range 25°C 4 VOL Low level Low-level (collector-to-emitter) output voltage 25°C I(strobe) = −3 3 mA, VID = 5 mV VOH = 35 V, VID = 5 mV, VOH = 35 V 25°C VID = −5 mV 25°C 25°C VID = −6 mV Full range VID = −10 mV Full range 10 6 100 100 −3 13 to −14.5 13.8 to −14.7 40 200 40 200 0.2 nA 250 300 13.8 to −14.7 mV 50 70 13 to −14.5 25°C VID = −10 mV 7.5 10 −3 Full range VCC+ = 4.5 V, VCC− = 0, 0 IOL = 8 mA MAX 2 150 25°C RL = 1 kΩ IOL = 50 mA 75 Full range VO = 5 V to 35 V, TYP‡ 20 25°C Full range MIN UNIT 4 Full range VID ≤ −10 mV LM311 nA mA V V/mV 10 nA 0.5 μA 0.75 1.5 0.23 0.4 0.2 50 0.75 1.5 nA V 0.23 0.4 ICC+ Supply current from VCC+, output low VID = −10 mV, No load 25°C 5.1 6 5.1 7.5 mA ICC− Supply current from VCC−, output high VID = 10 mV, No load 25°C −4.1 −5 −4.1 −5 mA † Unless otherwise noted, all characteristics are measured with BALANCE and BAL/STRB open and EMIT OUT grounded. Full range for LM111 is −55°C to 125°C, for LM211 is −40°C to 85°C, for LM211Q is −40°C to 125°C, and for LM311 is 0°C to 70°C. ‡ All typical values are at T = 25°C. A NOTES: 9. The offset voltages and offset currents given are the maximum values required to drive the collector output up to 14 V or down to 1 V with a pullup resistor of 7.5 kΩ to VCC+. These parameters actually define an error band and take into account the worst-case effects of voltage gain and input impedance. 10. The strobe should not be shorted to ground; it should be current driven at −3 mA to −5 mA (see Figures 13 and 27). switching characteristics, VCC± = ±15 V, TA = 25°C PARAMETER LM111 LM211 LM211Q LM311 TEST CONDITIONS UNIT TYP Response time, low-to-high-level output Response time, high-to-low-level output RC = 500 Ω to 5 V V, CL = 5 pF, pF See Note 8 115 ns 165 ns NOTE 11: The response time specified is for a 100-mV input step with 5-mV overdrive and is the interval between the input step function and the instant when the output crosses 1.4 V. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5 LM111, LM211, LM311 DIFFERENTIAL COMPARATORS WITH STROBES SLCS007H − SEPTEMBER 1973 − REVISED AUGUST 2003 TYPICAL CHARACTERISTICS† INPUT OFFSET CURRENT vs FREE-AIR TEMPERATURE 20 500 VCC± = ±15 V VO = 1 V to 14 V See Note A 18 450 16 14 LM111 LM211 LM311 12 10 Condition 1 Condition 2 8 6 LM311 4 0 −60 −40 −20 0 20 400 350 300 250 LM111 LM211 150 LM311 50 40 60 80 100 120 140 NOTE A: Condition 1 is with BALANCE and BAL/STRB open. Condition 2 is with BALANCE and BAL/STRB connected to VCC+. Condition 1 LM111 LM211 0 −60 −40 −20 0 20 40 60 80 100 120 140 TA − Free-Air Temperature − °C NOTE A: Condition 1 is with BALANCE and BAL/STRB open. Condition 2 is with BALANCE and BAL/STRB connected to VCC+. Figure 1 6 Condition 2 200 TA − Free-Air Temperature − °C † VCC± = ±15 V VO = 1 V to 14 V See Note A LM311 100 LM111 LM211 2 I IB − Input Bias Current − nA I IO − Input Offset Current − nA INPUT BIAS CURRENT vs FREE-AIR TEMPERATURE Figure 2 Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 LM111, LM211, LM311 DIFFERENTIAL COMPARATORS WITH STROBES SLCS007H − SEPTEMBER 1973 − REVISED AUGUST 2003 TYPICAL CHARACTERISTICS† VCC+ VI = 50 V (LM111, LM211) 40 V (LM311) = 30 V 1 kΩ VOLTAGE TRANSFER CHARACTERISTICS 60 50 VCC+ = 30 V VCC− = 0 TA = 25°C Output VID LM111 LM211 VO − Output Voltage − V VCC− LM311 40 30 Emitter Output RL = 600 Ω COLLECTOR OUTPUT TRANSFER CHARACTERISTIC TEST CIRCUIT FOR FIGURE 3 Collector Output RL = 1 kΩ VCC+ = 30 V 20 VID 10 Output 600 Ω 0 −1 VCC− −0.5 0 0.5 1 VID − Differential Input Voltage − mV EMITTER OUTPUT TRANSFER CHARACTERISTIC TEST CIRCUIT FOR FIGURE 3 Figure 3 † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 7 LM111, LM211, LM311 DIFFERENTIAL COMPARATORS WITH STROBES SLCS007H − SEPTEMBER 1973 − REVISED AUGUST 2003 TYPICAL CHARACTERISTICS Differential Input Voltage OUTPUT RESPONSE FOR VARIOUS INPUT OVERDRIVES 100 mV VCC± = ±15 V RC = 500 Ω to 5 V TA = 25°C 5 VO − Output Voltage − V VO − Output Voltage − V Differential Input Voltage OUTPUT RESPONSE FOR VARIOUS INPUT OVERDRIVES 4 3 2 5 mV 2 mV 20 mV 1 0 0 50 100 150 200 250 300 100 mV VCC± = ±15 V RC = 500 Ω to 5 V TA = 25°C 5 4 20 mV 3 2 0 350 0 50 100 150 200 t − Time − ns t − Time − ns Figure 5 Figure 4 VCC+ = 15 V 5V 500 Ω VO VID VCC− = −15 V TEST CIRCUIT FOR FIGURES 4 AND 5 8 2 mV 5 mV 1 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 250 300 350 LM111, LM211, LM311 DIFFERENTIAL COMPARATORS WITH STROBES SLCS007H − SEPTEMBER 1973 − REVISED AUGUST 2003 TYPICAL CHARACTERISTICS 100 mV VCC± = ±15 V RE = 2 kΩ to −15 V TA = 25°C 10 5 mV 5 2 mV 0 −5 −10 −15 0 100 mV VCC± = ±15 V RE = 2 kΩ to −15 V TA = 25°C 15 20 mV VO − Output Voltage − V VO − Output Voltage − V 15 OUTPUT RESPONSE FOR VARIOUS INPUT OVERDRIVES Differential Input Voltage Differential Input Voltage OUTPUT RESPONSE FOR VARIOUS INPUT OVERDRIVES 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 5 2 mV 0 −5 20 mV −10 −15 1.8 5 mV 10 0 0.2 0.4 t − Time − ms 0.6 0.8 1.0 1.2 1.4 1.6 1.8 t − Time − ms Figure 6 Figure 7 VCC+ = 15 V VID VO RE = 2 kΩ VCC− = −15 V TEST CIRCUIT FOR FIGURES 6 AND 7 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 9 LM111, LM211, LM311 DIFFERENTIAL COMPARATORS WITH STROBES SLCS007H − SEPTEMBER 1973 − REVISED AUGUST 2003 TYPICAL CHARACTERISTICS OUTPUT CURRENT AND DISSIPATION vs OUTPUT VOLTAGE TA = 25°C No Load 700 120 600 PO (right scale) 100 500 80 400 60 300 40 200 IO (left scale) 20 100 0 0 5 I CC+ − Positive Supply Current − mA 140 6 800 VCC± = ±15 V t ≤ 10 s VID = −10 mV TA = 25°C PO − Output Dissipation − mW I O − Output Current and Dissipation − mA 160 POSITIVE SUPPLY CURRENT vs POSITIVE SUPPLY VOLTAGE 0 15 10 5 VID = −10 mV 4 3 VID = 10 mV 2 1 0 0 VO − Output Voltage − V 5 Figure 8 Figure 9 NEGATIVE SUPPLY CURRENT vs NEGATIVE SUPPLY VOLTAGE I CC− − Negative Supply Current − mA −6 VID = 10 mV or −10 mV TA = 25°C No Load −5 −4 −3 −2 −1 0 0 −5 −10 VCC− − Negative Supply Voltage − V Figure 10 10 10 VCC+ − Positive Supply Voltage − V POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 −15 15 LM111, LM211, LM311 DIFFERENTIAL COMPARATORS WITH STROBES SLCS007H − SEPTEMBER 1973 − REVISED AUGUST 2003 APPLICATION INFORMATION Figure 11 through Figure 29 show various applications for the LM111, LM211, and LM311 comparators. VCC+ 3 kΩ 3 kΩ VCC+ 20 kΩ 1 kΩ Square Wave Output (fanout to two Series 54 gates, or equivalent) 10 kΩ 1200 pF 20 kΩ BALANCE 39 kΩ BAL/ STRB NOTE: If offset balancing is not used, the BALANCE and BAL/STRB pins should be shorted together. Figure 12. Offset Balancing Figure 11. 100-kHz Free-Running Multivibrator BAL/STRB VCC+ TTL Strobe 2N2222 20 kΩ 1 kΩ Output Input Figure 13. Strobing NOTE: Do not connect strobe pin directly to ground, because the output is turned off whenever current is pulled from the strobe pin. POST OFFICE BOX 655303 VCC− Figure 14. Zero-Crossing Detector • DALLAS, TEXAS 75265 11 LM111, LM211, LM311 DIFFERENTIAL COMPARATORS WITH STROBES SLCS007H − SEPTEMBER 1973 − REVISED AUGUST 2003 APPLICATION INFORMATION 5V 1 kΩ 82 kΩ 240 kΩ Input† Output to TTL ‡ 47 kΩ 82 kΩ † ‡ Resistor values shown are for a 0- to 30-V logic swing and a 15-V threshold. May be added to control speed and reduce susceptibility to noise spikes Figure 15. TTL Interface With High-Level Logic VCC+ 100 kΩ 5V 4.5 kΩ 2 kΩ 100 kHz 10 pF 2 kΩ Output Output to TTL 100 kΩ 1 kΩ 0.1 μF 50 kΩ Magnetic Transducer Figure 16. Detector for Magnetic Transducer 12 POST OFFICE BOX 655303 Figure 17. 100-kHz Crystal Oscillator • DALLAS, TEXAS 75265 LM111, LM211, LM311 DIFFERENTIAL COMPARATORS WITH STROBES SLCS007H − SEPTEMBER 1973 − REVISED AUGUST 2003 APPLICATION INFORMATION From D/A Network VCC+ VCC+ Output Analog Input† 22 kΩ BALANCE BAL/STRB 0.1 μF Input TTL Strobe 2N2222 Sample 1 kΩ † Figure 18. Comparator and Solenoid Driver Typical input current is 50 pA with inputs strobed off. Figure 19. Strobing Both Input and Output Stages Simultaneously VCC+ VCC+ = 5 V 500 Ω 3.9 kΩ 3 kΩ 10 kΩ 3 kΩ Output 2N3708 BALANCE BAL/ STRB Output to MOS Input + 1 kΩ 1.5 μF 10 kΩ 2N2222 VCC− = −10 V Figure 20. Low-Voltage Adjustable Reference Supply POST OFFICE BOX 655303 Figure 21. Zero-Crossing Detector Driving MOS Logic • DALLAS, TEXAS 75265 13 LM111, LM211, LM311 DIFFERENTIAL COMPARATORS WITH STROBES SLCS007H − SEPTEMBER 1973 − REVISED AUGUST 2003 APPLICATION INFORMATION VCC+ = 5 V 3.9 kΩ 30 kΩ† 1 kΩ 2N3708 1 kΩ 1N914 Output + 2N2222 1N914 Input From TTL 2N2222 1.5 μF 2.7 kΩ 510 Ω 2N2222 † 2.2 kΩ Adjust to set clamp level Figure 22. Precision Squarer VCC+ = 5 V 5V Opto Isolator From TTL Gate 5 kΩ 1 kΩ TTL Output 100 Ω 1 kΩ 50 kΩ 0.01 μF 1 kΩ Figure 23. Digital Transmission Isolator VCC+ = 15 V 2 kΩ Input TL081 − Output 10 kΩ + + 1 MΩ VCC− = −15 V 1.5 μF Figure 24. Positive-Peak Detector 14 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 LM111, LM211, LM311 DIFFERENTIAL COMPARATORS WITH STROBES SLCS007H − SEPTEMBER 1973 − REVISED AUGUST 2003 APPLICATION INFORMATION VCC+ = 15 V 1 MΩ TL081 10 kΩ 2 kΩ + Input Output − + 15 μF VCC− = −15 V Figure 25. Negative-Peak Detector VCC+ = 5 V 3.9 kΩ 1N2175 2N3708 1 kΩ Output to TTL 2N2222 R1† 30 kΩ † R1 sets the comparison level. At comparison, the photodiode has less than 5 mV across it, decreasing dark current by an order of magnitude. Figure 26. Precision Photodiode Comparator VCC+ Inputs BAL/STRB ‡ VCC− TTL Strobe 2N3708 1 kΩ ‡ Transient voltage and inductive kickback protection Figure 27. Relay Driver With Strobe POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 15 LM111, LM211, LM311 DIFFERENTIAL COMPARATORS WITH STROBES SLCS007H − SEPTEMBER 1973 − REVISED AUGUST 2003 APPLICATION INFORMATION VCC+ 620 Ω BAL/STRB 300 Ω 1 100 kΩ 100 kΩ Output BAL/STRB 2 10 kΩ Input 0.1 μF 300 Ω 47 Ω 620 Ω VCC− Figure 28. Switching Power Amplifier VCC+ 39 kΩ 620 Ω 300 kΩ 620 Ω BAL/STRB 1 15 kΩ Reference VCC− 0.22 μF 620 Ω V+ 510 Ω 15 kΩ 510 Ω Input 620 Ω BAL/STRB 2 VCC− 39 kΩ 300 kΩ 620 Ω 620 Ω Figure 29. Switching Power Amplifiers 16 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 Outputs PACKAGE OPTION ADDENDUM www.ti.com 18-Oct-2013 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) JM38510/10304BPA ACTIVE CDIP JG 8 1 TBD A42 N / A for Pkg Type -55 to 125 JM38510 /10304BPA LM111FKB ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type -55 to 125 LM111FKB LM111JG ACTIVE CDIP JG 8 1 TBD A42 N / A for Pkg Type -55 to 125 LM111JG LM111JGB ACTIVE CDIP JG 8 1 TBD A42 N / A for Pkg Type -55 to 125 LM111JGB LM211D ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 LM211 LM211DE4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 LM211 LM211DG4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 LM211 LM211DR ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 LM211 LM211DRE4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 LM211 LM211DRG4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 LM211 LM211P ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type -40 to 85 LM211P LM211PE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type -40 to 85 LM211P LM211PW ACTIVE TSSOP PW 8 150 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 L211 LM211PWE4 ACTIVE TSSOP PW 8 150 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 L211 LM211PWG4 ACTIVE TSSOP PW 8 150 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 L211 LM211PWR ACTIVE TSSOP PW 8 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 L211 LM211PWRE4 ACTIVE TSSOP PW 8 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 L211 Addendum-Page 1 Samples PACKAGE OPTION ADDENDUM www.ti.com 18-Oct-2013 Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) LM211PWRG4 ACTIVE TSSOP PW 8 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 L211 LM211QD ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 LM211Q LM211QDG4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 LM211Q LM211QDR ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 LM211Q LM211QDRG4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 LM211Q LM311D ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 LM311 LM311DE4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 LM311 LM311DG4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 LM311 LM311DR ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU | CU SN Level-1-260C-UNLIM 0 to 70 LM311 LM311DRE4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 LM311 LM311DRG4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 LM311 LM311P ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type 0 to 70 LM311P LM311PE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type 0 to 70 LM311P LM311PSR ACTIVE SO PS 8 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 L311 LM311PSRE4 ACTIVE SO PS 8 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 L311 LM311PSRG4 ACTIVE SO PS 8 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 L311 LM311PW ACTIVE TSSOP PW 8 150 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 L311 LM311PWE4 ACTIVE TSSOP PW 8 150 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 L311 Addendum-Page 2 Samples PACKAGE OPTION ADDENDUM www.ti.com 18-Oct-2013 Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) 150 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM LM311PWG4 ACTIVE TSSOP PW 8 LM311PWLE OBSOLETE TSSOP PW 8 TBD Call TI Call TI LM311PWR ACTIVE TSSOP PW 8 2000 Green (RoHS & no Sb/Br) CU NIPDAU LM311PWRE4 ACTIVE TSSOP PW 8 2000 Green (RoHS & no Sb/Br) LM311PWRG4 ACTIVE TSSOP PW 8 2000 LM311Y OBSOLETE DIESALE Y 0 M38510/10304BPA ACTIVE CDIP JG 8 1 Op Temp (°C) Device Marking (4/5) 0 to 70 L311 Level-1-260C-UNLIM 0 to 70 L311 CU NIPDAU Level-1-260C-UNLIM 0 to 70 L311 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 L311 TBD Call TI Call TI TBD A42 N / A for Pkg Type -55 to 125 JM38510 /10304BPA (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. Addendum-Page 3 Samples PACKAGE OPTION ADDENDUM www.ti.com 18-Oct-2013 (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. OTHER QUALIFIED VERSIONS OF LM211 : • Automotive: LM211-Q1 • Enhanced Product: LM211-EP NOTE: Qualified Version Definitions: • Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects • Enhanced Product - Supports Defense, Aerospace and Medical Applications Addendum-Page 4 PACKAGE MATERIALS INFORMATION www.ti.com 3-Aug-2013 TAPE AND REEL INFORMATION *All dimensions are nominal Device Package Package Pins Type Drawing SPQ Reel Reel A0 Diameter Width (mm) (mm) W1 (mm) B0 (mm) K0 (mm) P1 (mm) W Pin1 (mm) Quadrant LM211DR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 LM211DR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 LM211DRG4 SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 LM211DRG4 SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 LM211PWR TSSOP PW 8 2000 330.0 12.4 7.0 3.6 1.6 8.0 12.0 Q1 LM311DR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 LM311DRG4 SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 LM311DRG4 SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 LM311PSR SO PS 8 2000 330.0 16.4 8.2 6.6 2.5 12.0 16.0 Q1 Pack Materials-Page 1 PACKAGE MATERIALS INFORMATION www.ti.com 3-Aug-2013 *All dimensions are nominal Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) LM211DR SOIC D 8 2500 340.5 338.1 20.6 LM211DR SOIC D 8 2500 367.0 367.0 35.0 LM211DRG4 SOIC D 8 2500 340.5 338.1 20.6 LM211DRG4 SOIC D 8 2500 367.0 367.0 35.0 LM211PWR TSSOP PW 8 2000 367.0 367.0 35.0 LM311DR SOIC D 8 2500 367.0 367.0 35.0 LM311DRG4 SOIC D 8 2500 367.0 367.0 35.0 LM311DRG4 SOIC D 8 2500 340.5 338.1 20.6 LM311PSR SO PS 8 2000 367.0 367.0 38.0 Pack Materials-Page 2 MECHANICAL DATA MCER001A – JANUARY 1995 – REVISED JANUARY 1997 JG (R-GDIP-T8) CERAMIC DUAL-IN-LINE 0.400 (10,16) 0.355 (9,00) 8 5 0.280 (7,11) 0.245 (6,22) 1 0.063 (1,60) 0.015 (0,38) 4 0.065 (1,65) 0.045 (1,14) 0.310 (7,87) 0.290 (7,37) 0.020 (0,51) MIN 0.200 (5,08) MAX Seating Plane 0.130 (3,30) MIN 0.023 (0,58) 0.015 (0,38) 0°–15° 0.100 (2,54) 0.014 (0,36) 0.008 (0,20) 4040107/C 08/96 NOTES: A. B. C. D. E. All linear dimensions are in inches (millimeters). This drawing is subject to change without notice. This package can be hermetically sealed with a ceramic lid using glass frit. Index point is provided on cap for terminal identification. Falls within MIL STD 1835 GDIP1-T8 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949. Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com Energy and Lighting www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity www.ti.com/wirelessconnectivity Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated