SM320DM642-HiRel www.ti.com SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 SM320DM642-HiRel Video/Imaging Fixed Point Digital Signal Processor Check for Samples: SM320DM642-HiRel 1 SM320DM642-HiRel Video/Imaging Fixed-Point Digital Signal Processor 123 • Controlled Baseline – One Assembly/Test/Fabrication Site • Enhanced Diminishing Manufacturing Sources (DMS) Support • Enhanced Product-Change Notification • Qualification Pedigree (1) • High-Performance Digital Media Processor – 2 ns, 1.67 ns, 1.39 ns Instruction Cycle Time – 720 MHz Clock Rate (500/600 MHz devices are product preview only) – Eight 32-Bit Instructions/Cycle – 5760 MIPS – Fully Software-Compatible With C64x™ • VelociTI.2™ Extensions to VelociTI™ Advanced Very Long Instruction Word (VLIW) TMS320C64x™ DSP Core – Eight Highly Independent Functional Units With VelociTI.2™ Extensions: • Six ALUs (32/40 Bit), Each Supports Single 32 Bit, Dual 16 Bit, or Quad 8 Bit Arithmetic per Clock Cycle • Two Multipliers Support Four 16 × 16-Bit Multiplies (32 Bit Results) per Clock Cycle or Eight 8 × 8 Bit Multiplies (16 Bit Results) per Clock Cycle – Load-Store Architecture With Non-Aligned Support – 64 32-Bit General-Purpose Registers – Instruction Packing Reduces Code Size – All Instructions Conditional • Instruction Set Features – Byte Addressable (8/16/32/64 Bit Data) – 8-Bit Overflow Protection – Bit Field Extract, Set, Clear (1) Component qualification in accordance with JEDEC and industry standards to ensure reliable operation over an extended temperature range. This includes, but is not limited to, Highly Accelerated Stress Test (HAST) or biased 85/85, temperature cycle, autoclave or unbiased HAST, electromigration, bond intermetallic life, and mold compound life. Such qualification testing should not be viewed as justifying use of this component beyond specified performance and environmental limits. • • • • • • • • • • • – Normalization, Saturation, Bit-Counting – VelociTI.2™ Increased Orthogonality L1/L2 Memory Architecture – 128K Bit (16K Byte) L1P Program Cache (Direct Mapped) – 128K Bit (16K Byte) L1D Data Cache (2-Way Set-Associative) – 2M Bit (256K Byte) L2 Unified Mapped RAM/Cache (Flexible RAM/Cache Allocation) Endianess: Little Endian, Big Endian – 64 Bit External Memory Interface (EMIF) – Glueless Interface to Asynchronous Memories (SRAM and EPROM) and Synchronous Memories (SDRAM, SBSRAM, ZBT SRAM, and FIFO) 1024M-Byte Total Addressable External Memory Space Enhanced Direct-Memory-Access (EDMA) Controller (64 Independent Channels) 10/100 Mbps Ethernet MAC (EMAC) – IEEE 802.3 Compliant – Media Independent Interface (MII) – Eight Independent Transmit (TX) Channels and One Receive (RX) Channel Management Data Input/Output (MDIO) Three Configurable Video Ports – Provide a Glueless I/F to Common Video Decoder and Encoder Devices – Supports Multiple Resolutions/Video Stds VCXO Interpolated Control Port (VIC) – Supports Audio/Video Synchronization Host Port Interface (HPI) [32/16 Bit] 32 Bit/66 MHz, 3.3-V Peripheral Component Interconnect (PCI) Master/Slave Interface Conforms to PCI Specification 2.2 Multichannel Audio Serial Port (McASP) – Eight Serial Data Pins – Wide Variety of I2S and Similar Bit Stream Format – Integrated Digital Audio I/F Transmitter Supports S/PDIF, IEC60958-1, AES-3, CP-430 1 Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. C64x, VelociTI.2, VelociTI, TMS320C64x, C6000, TMS320C6000, DM64x, C62x, TMS320C62x, TMS320C67x, Code Composer Studio, DSP/BIOS, XDS, TMS320 are trademarks of Texas Instruments. All other trademarks are the property of their respective owners. 2 3 PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. Copyright © 2009–2010, Texas Instruments Incorporated SM320DM642-HiRel SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 Formats • Inter-Integrated Circuit (I2C Bus™) • Two Multichannel Buffered Serial Ports (McBSPs) • Three 32 Bit General Purpose Timers • Sixteen General Purpose I/O (GPIO) Pins • Flexible PLL Clock Generator www.ti.com • IEEE-1149.1 (JTAG) BoundaryScan-Compatible • 548 Pin Ball Grid Array (BGA) Package, 0.8 mm Ball Pitch • 0.13 mm/6 Level Cu Metal Process (CMOS) • 3.3 V I/O, 1.4 V Internal (A-500, A-600, -600, -720) The C64x™ DSPs (including the SM320DM642-EP device) are the highest-performance fixed-point DSP generation in the C6000™ DSP platform. The DM642 device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x is a code-compatible member of the C6000 DSP platform. With performance of up to 5760 million instructions per second (MIPS) at a clock rate of 720 MHz, the DM642 device offers cost-effective solutions to high-performance DSP programming challenges. The DM642 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs)—with VelociTI.2™ extensions. The VelociTI.2 extensions in the eight functional units include new instructions to accelerate the performance in video and imaging applications and extend the parallelism of the VelociTI™ architecture. The DM642 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2880 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 5760 MMACS. The DM642 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM642 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 2-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: three configurable video ports; a 10/100 Mbps Ethernet MAC (EMAC); a management data input/output (MDIO) module; a VCXO interpolated control port (VIC); one multichannel buffered audio serial port (McASP0); an inter-integrated circuit (I2C) Bus module; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI); a 16-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 64-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals. The DM642 device has three configurable video port peripherals (VP0, VP1, and VP2). These video port peripherals provide a glueless interface to common video decoder and encoder devices. The DM642 video port peripherals support multiple resolutions and video standards (e.g., CCIR601, ITU-BT.656, BT.1120, SMPTE 125M, 260M, 274M, and 296M). These three video port peripherals are configurable and can support either video capture and/or video display modes. Each video port consists of two channels — A and B with a 5120-byte capture/display buffer that is splittable between the two channels. For more details on the Video Port peripherals, see the TMS320C64x™ DSP Video Port/VCXO Interpolated Control (VIC) Port Reference Guide (literature number SPRU629). The McASP0 port supports one transmit and one receive clock zone, with eight serial data pins that can be individually allocated to any of the two zones. The serial port supports time-division multiplexing on each pin from 2 to 32 time slots. The DM642 has sufficient bandwidth to support all eight serial data pins transmitting a 192-kHz stereo signal. Serial data in each zone may be transmitted and received on multiple serial data pins simultaneously and formatted in a multitude of variations on the Philips Inter-IC Sound (I2S) format. 2 SM320DM642-HiRel Video/Imaging Fixed-Point Digital Signal Processor Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel SM320DM642-HiRel www.ti.com SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 In addition, the McASP0 transmitter may be programmed to output multiple S/PDIF, IEC60958, AES-3, CP-430 encoded data channels simultaneously, with a single RAM containing the full implementation of user data and channel status fields. McASP0 also provides extensive error-checking and recovery features, such as the bad clock detection circuit for each high-frequency master clock which verifies that the master clock is within a programmed frequency range. The VCXO interpolated control (VIC) port provides digital-to-analog conversion with resolution from 9-bits to up to 16-bits. The output of the VIC is a single bit interpolated D/A output.For more details on the VIC port, see the TMS320C64x™ DSP Video Port/VCXO Interpolated Control (VIC) Port Reference Guide (literature number SPRU629). The ethernet media access controller (EMAC) provides an efficient interface between the DM642 DSP core processor and the network. The DM642 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex, with hardware flow control and quality of service (QOS) support. The DM642 EMAC makes use of a custom interface to the DSP core that allows efficient data transmission and reception.For more details on the EMAC, see the TMS320C6000™ DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide (literature number SPRU628). The management data input/output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the DSP, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the DSP, allowing the DSP to poll the link status of the device without continuously performing costly MDIO accesses. For more details on the MDIO, see the TMS320C6000™ DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide (literature number SPRU628). The I2C0 port on the DM642 allows the DSP to easily control peripheral devices and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices. The DM642 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows® debugger interface for visibility into source code execution. 1.1 Device Compatibility The DM642 device is a code-compatible member of the C6000 DSP platform. The C64x DSP generation of devices has a diverse and powerful set of peripherals. For more detailed information on the device compatibility and similarities/differences among the DM642 and other C64x devices, see the TMS320DM642 Technical Overview (literature number SPRU615). SM320DM642-HiRel Video/Imaging Fixed-Point Digital Signal Processor Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel Copyright © 2009–2010, Texas Instruments Incorporated 3 SM320DM642-HiRel SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 1.2 www.ti.com Functional Block Diagram Figure 1-1 shows the functional block diagram of the DM642 device. 64 SDRAM SBSRAM TMS320DM642 EMIF A Timer 2 ZBT SRAM L1P Cache Direct-Mapped 16K Bytes Total Timer 1 FIFO Timer 0 SRAM VCXO Interpolated Control Port (VIC) ROM/FLASH C64x DSP Core Instruction Fetch Control Registers I/O Devices Instruction Dispatch Advanced Instruction Packet Video Port 2 (VP2) Control Logic Instruction Decode Video Port 0 (VP0) OR Data Path A A Register File A31−A16 A15−A0 8/10-bit VP0 AND McBSP0(A) OR McASP0 Control Video Port 1 (VP1) OR .L1 Enhanced DMA Controller (EDMA) .S1 .M1 .D1 Data Path B Test B Register File B31−B16 B15−B0 .D2 .M2 .S2 Advanced In-Circuit Emulation .L2 Interrupt Control L2 Cache Memory 256kBytes L1D Cache 2-Way Set-Associative 16K Bytes Total 8/10-bit VP1 AND McBSP1(A) (B) PLL (x1, x6, x12) OR McASP0 Data Power-Down Logic PCI-66 OR HPI32 OR HPI16 AND/OR EMAC Boot Configuration MDIO 16 2 A. B. GP0 I2C0 McBSPs: Framing Chips – H.100, MVIP, SCSA, T1, E1; AC97 Devices; SPI Devices; Codecs The Video Port 0 (VP0) peripheral is muxed with the McBSP0 peripheral and the McASP0 control pins. The Video Port 1 (VP1) peripheral is muxed with the McBSP1 peripheral and the McASP0 data pins. The PCI peripheral is muxed with the HPI(32/16), EMAC, and MDIO peripherals. For more details on the multiplexed pins of these peripherals, see the Device Configurations section of this data sheet. Figure 1-1. Functional Block Diagram 4 SM320DM642-HiRel Video/Imaging Fixed-Point Digital Signal Processor Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel SM320DM642-HiRel www.ti.com 1 SM320DM642-HiRel Video/Imaging Fixed-Point Digital Signal Processor ............................... 1 ................................. 3 1.2 Functional Block Diagram ............................ 4 Device Overview ........................................ 6 2.1 Device Characteristics ............................... 6 2.2 CPU (DSP Core) Description ........................ 7 2.3 Memory Map Summary ............................. 13 2.4 Bootmode ........................................... 16 2.5 Pin Assignments .................................... 16 2.6 Development ........................................ 50 Device Configurations ................................ 54 3.1 Configurations at Reset ............................ 54 3.2 Configurations After Reset ......................... 56 3.3 Peripheral Configuration Lock ...................... 59 3.4 Device Status Register Description ................ 61 3.5 Multiplexed Pin Configurations ..................... 63 3.6 Debugging Considerations ......................... 65 3.7 Configuration Examples ............................ 65 Device Operating Conditions ....................... 69 1.1 2 3 4 SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 Device Compatibility 4.1 Absolute Maximum Ratings Over Operating Case Temperature Range (Unless Otherwise Noted) ................................. 69 4.2 4.3 Recommended Operating Conditions .............. 69 Electrical Characteristics Over Recommended Ranges of Supply Voltage and Operating Case Temperature (Unless Otherwise Noted) ............ 70 5 DM642 Peripheral Information and Electrical Specifications .......................................... 71 5.1 5.2 Parameter Information .............................. 71 Recommended Clock and Control Signal Transition Behavior ............................................ 72 5.3 5.4 Power Supplies ..................................... 73 Enhanced Direct Memory Access (EDMA) Controller ........................................... 77 5.5 Interrupts ............................................ 81 5.6 Reset 83 5.7 Clock PLL 86 5.8 5.9 92 Multichannel Audio Serial Port (McASP0) Peripheral ..................................................... 108 ............................................... ........................................... External Memory Interface (EMIF) ................. ...................... .......................... 5.12 Peripheral Component Interconnect (PCI) ........ 5.13 Multichannel Buffered Serial Port (McBSP) ....... 5.14 Video Port ......................................... 5.15 VCXO Interpolated Control (VIC) ................. 5.16 Ethernet Media Access Controller (EMAC) ....... 5.17 Management Data Input/Output (MDIO) .......... 5.18 Timer .............................................. 5.19 General-Purpose Input/Output (GPIO) ............ 5.20 JTAG .............................................. Revision History ........................................... 6 Mechanical Data ...................................... 6.1 Thermal Data ...................................... 6.2 Packaging Information ............................ 5.10 Inter-Integrated Circuit (I2C) 5.11 Host-Port Interface (HPI) Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel Contents 116 122 128 132 141 149 151 157 159 161 164 166 167 167 167 5 SM320DM642-HiRel SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 www.ti.com 2 Device Overview 2.1 Device Characteristics Table 2-1 provides an overview of the DM642 DSP. The table shows significant features of the DM642 device, including the capacity of on-chip RAM, the peripherals, the CPU frequency, and the package type with pin count. Table 2-1. Characteristics of the DM642 Processor HARDWARE FEATURES DM642 EMIFA (64-bit bus width) (clock source = AECLKIN) 1 EDMA (64 independent channels) 1 McASP0 (uses Peripheral Clock [AUXCLK]) 1 I2C0 (uses Peripheral Clock) Peripherals Not all peripherals pins are available at the same time (For more detail, see the Device Configuration section). 1 HPI (32- or 16-bit user selectable) 1 (HPI16 or HPI32) PCI (32-bit), 66-MHz/33-MHz [DeviceID Register value 0x9065] 1 McBSPs (internal clock source = CPU/4 clock frequency) 2 Configurable Video Ports (VP0, VP1, VP2) 3 10/100 Ethernet MAC (EMAC) 1 Management Data Input/Output (MDIO) 1 VCXO Interpolated Control Port (VIC) 1 32-Bit Timers (internal clock source = CPU/8 clock frequency) 3 General-Purpose Input/Output Port (GP0) 16 Size (Bytes) On-Chip Memory 288K 16K-Byte (16KB) L1 Program (L1P) Cache 16KB L1 Data (L1D) Cache 256KB Unified Mapped RAM/Cache (L2) Organization CPU ID + CPU Rev ID Control Status Register (CSR.[31:16]) JTAG BSDL_ID JTAGID register (address location: 0x01B3F008) Frequency MHz Cycle Time 0x0C01 0x0007902F 500, 600, 720 2 ns (DM642-500) and (DM642A-500) [500 MHz CPU, 100 MHz EMIF (1), 33 MHz PCI port] 1.67 ns (DM642-600) and (DM642A-600) [600 MHz CPU, 133 MHz EMIF (1), 66 MHz PCI port] 1.39 ns (DM642-720) [720 MHz CPU, 133 MHz EMIF (1), 66 MHz PCI port] ns 1.2 V (–500) 1.4 V (A-500, A-600, -600, -720) Core (V) Voltage I/O (V) 3.3 V PLL Options CLKIN frequency multiplier Bypass (x1), x6, x12 BGA Package 23 × 23 mm 548-Pin BGA (ZDK) Process Technology Product Status (1) (2) 6 (2) 0.13 mm mm Product Preview (PP), Advance Information (AI), or Production Data (PD) PD On this DM64x™ device, the rated EMIF speed affects only the SDRAM interface on the EMIF. For more detailed information, see the EMIF device speed portion of this data sheet. The 500MHz and 600MHz speed devices are product preview only. PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. Device Overview Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel SM320DM642-HiRel www.ti.com 2.2 SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 CPU (DSP Core) Description The CPU fetches VelociTI advanced very-long instruction words (VLIWs) (256 bits wide) to supply up to eight 32-bit instructions to the eight functional units during every clock cycle. The VelociTI VLIW architecture features controls by which all eight units do not have to be supplied with instructions if they are not ready to execute. The first bit of every 32-bit instruction determines if the next instruction belongs to the same execute packet as the previous instruction, or whether it should be executed in the following clock as a part of the next execute packet. Fetch packets are always 256 bits wide; however, the execute packets can vary in size. The variable-length execute packets are a key memory-saving feature, distinguishing the C64x CPUs from other VLIW architectures. The C64x VelociTI.2 extensions add enhancements to the SM320C62x DSP VelociTI architecture. These enhancements include: • Register file enhancements • Data path extensions • Quad 8-bit and dual 16-bit extensions with data flow enhancements • Additional functional unit hardware • Increased orthogonality of the instruction set • Additional instructions that reduce code size and increase register flexibility The CPU features two sets of functional units. Each set contains four units and a register file. One set contains functional units .L1, .S1, .M1, and .D1; the other set contains units .D2, .M2, .S2, and .L2. The two register files each contain 32 32-bit registers for a total of 64 general-purpose registers. In addition to supporting the packed 16-bit and 32-/40-bit fixed-point data types found in the C62x™ VelociTI™ VLIW architecture, the C64x register files also support packed 8-bit data and 64-bit fixed-point data types. The two sets of functional units, along with two register files, compose sides A and B of the CPU [see the functional block and CPU (DSP core) diagram, and Figure 2-1]. The four functional units on each side of the CPU can freely share the 32 registers belonging to that side. Additionally, each side features a "data cross path"—a single data bus connected to all the registers on the other side, by which the two sets of functional units can access data from the register files on the opposite side. The C64x CPU pipelines data-cross-path accesses over multiple clock cycles. This allows the same register to be used as a data-cross-path operand by multiple functional units in the same execute packet. All functional units in the C64x CPU can access operands via the data cross path. Register access by functional units on the same side of the CPU as the register file can service all the units in a single clock cycle. On the C64x CPU, a delay clock is introduced whenever an instruction attempts to read a register via a data cross path if that register was updated in the previous clock cycle. In addition to the C62x DSP fixed-point instructions, the C64x DSP includes a comprehensive collection of quad 8-bit and dual 16-bit instruction set extensions. These VelociTI.2 extensions allow the C64x CPU to operate directly on packed data to streamline data flow and increase instruction set efficiency. This is a key factor for video and imaging applications. Another key feature of the C64x CPU is the load/store architecture, where all instructions operate on registers (as opposed to data in memory). Two sets of data-addressing units (.D1 and .D2) are responsible for all data transfers between the register files and the memory. The data address driven by the .D units allows data addresses generated from one register file to be used to load or store data to or from the other register file. The C64x .D units can load and store bytes (8 bits), half-words (16 bits), and words (32 bits) with a single instruction. And with the new data path extensions, the C64x .D unit can load and store doublewords (64 bits) with a single instruction. Furthermore, the non-aligned load and store instructions allow the .D units to access words and doublewords on any byte boundary. The C64x CPU supports a variety of indirect addressing modes using either linear- or circular-addressing with 5- or 15-bit offsets. All instructions are conditional, and most can access any one of the 64 registers. Some registers, however, are singled out to support specific addressing modes or to hold the condition for conditional instructions (if the condition is not automatically "true"). Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel Device Overview 7 SM320DM642-HiRel SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 www.ti.com The two .M functional units perform all multiplication operations. Each of the C64x .M units can perform two 16 × 16-bit multiplies or four 8 × 8-bit multiplies per clock cycle. The .M unit can also perform 16 × 32-bit multiply operations, dual 16 × 16-bit multiplies with add/subtract operations, and quad 8 × 8-bit multiplies with add operations. In addition to standard multiplies, the C64x .M units include bit-count, rotate, Galois field multiplies, and bidirectional variable shift hardware. The two .S and .L functional units perform a general set of arithmetic, logical, and branch functions with results available every clock cycle. The arithmetic and logical functions on the C64x CPU include single 32-bit, dual 16-bit, and quad 8-bit operations. The processing flow begins when a 256-bit-wide instruction fetch packet is fetched from a program memory. The 32-bit instructions destined for the individual functional units are "linked" together by "1" bits in the least significant bit (LSB) position of the instructions. The instructions that are "chained" together for simultaneous execution (up to eight in total) compose an execute packet. A "0" in the LSB of an instruction breaks the chain, effectively placing the instructions that follow it in the next execute packet. A C64x DSP device enhancement now allows execute packets to cross fetch-packet boundaries. In the TMS320C62x™/ TMS320C67x™ DSP devices, if an execute packet crosses the fetch-packet boundary (256 bits wide), the assembler places it in the next fetch packet, while the remainder of the current fetch packet is padded with NOP instructions. In the C64x DSP device, the execute boundary restrictions have been removed, thereby, eliminating all of the NOPs added to pad the fetch packet, and thus, decreasing the overall code size. The number of execute packets within a fetch packet can vary from one to eight. Execute packets are dispatched to their respective functional units at the rate of one per clock cycle and the next 256-bit fetch packet is not fetched until all the execute packets from the current fetch packet have been dispatched. After decoding, the instructions simultaneously drive all active functional units for a maximum execution rate of eight instructions every clock cycle. While most results are stored in 32-bit registers, they can be subsequently moved to memory as bytes, half-words, or doublewords. All load and store instructions are byte-, half-word-, word-, or doubleword-addressable. For more details on the C64x CPU functional units enhancements, see the following documents: • TMS320C6000™ CPU and Instruction Set Reference Guide (literature number SPRU189) • TMS320C64x™ Technical Overview (literature number SPRU395) 8 Device Overview Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel SM320DM642-HiRel www.ti.com SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 src1 .L1 src2 dst long dst long src ST1b (Store Data) ST1a (Store Data) 8 8 32 MSBs 32 LSBs long src long dst dst .S1 src1 Data Path A 8 8 Register File A (A0−A31) src2 (A) (A) long dst dst .M1 src1 src2 LD1b (Load Data) LD1a (Load Data) 32 MSBs 32 LSBs DA1 (Address) .D1 dst src1 src2 2X 1X src2 .D2 src1 dst DA2 (Address) LD2a (Load Data) LD2b (Load Data) 32 LSBs 32 MSBs src2 .M2 src1 dst long dst (A) (A) Register File B (B0− B31) src2 Data Path B .S2 src1 dst long dst long src ST2a (Store Data) ST2b (Store Data) 8 8 32 MSBs 32 LSBs long src long dst dst 8 8 .L2 src2 src1 Control Register File A. For the .M functional units, the long dst is 32 MSBs and the dst is 32 LSBs. Figure 2-1. TMS320C64x™ CPU (DSP Core) Data Paths Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel Device Overview 9 SM320DM642-HiRel SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 2.2.1 www.ti.com CPU Core Registers Table 2-2. L2 Cache Registers (C64x) HEX ADDRESS RANGE ACRONYM 10 REGISTER NAME 0184 0000 CCFG 0184 0004 – 0184 0FFC – 0184 1000 EDMAWEIGHT 0184 1004 – 0184 1FFC – 0184 2000 L2ALLOC0 L2 allocation register 0 0184 2004 L2ALLOC1 L2 allocation register 1 0184 2008 L2ALLOC2 L2 allocation register 2 L2 allocation register 3 COMMENTS Cache configuration register Reserved L2 EDMA access control register Reserved 0184 200C L2ALLOC3 0184 2010 – 0184 3FFC – 0184 4000 L2WBAR L2 writeback base address register 0184 4004 L2WWC L2 writeback word count register 0184 4010 L2WIBAR L2 writeback invalidate base address register 0184 4014 L2WIWC L2 writeback invalidate word count register 0184 4018 L2IBAR L2 invalidate base address register 0184 401C L2IWC L2 invalidate word count register 0184 4020 L1PIBAR L1P invalidate base address register 0184 4024 L1PIWC L1P invalidate word count register 0184 4030 L1DWIBAR L1D writeback invalidate base address register 0184 4034 L1DWIWC L1D writeback invalidate word count register 0184 4038 – 0184 4044 – Reserved Reserved 0184 4048 L1DIBAR L1D invalidate base address register 0184 404C L1DIWC L1D invalidate word count register 0184 4050 – 0184 4FFC – 0184 5000 L2WB Reserved L2 writeback all register 0184 5004 L2WBINV 0184 5008 – 0184 7FFC – L2 writeback invalidate all register Reserved 0184 8000 – 0184 81FC MAR0 to MAR127 Reserved 0184 8200 MAR128 Controls EMIFA CE0 range 8000 0000 – 80FF FFFF 0184 8204 MAR129 Controls EMIFA CE0 range 8100 0000 – 81FF FFFF 0184 8208 MAR130 Controls EMIFA CE0 range 8200 0000 – 82FF FFFF 0184 820C MAR131 Controls EMIFA CE0 range 8300 0000 – 83FF FFFF 0184 8210 MAR132 Controls EMIFA CE0 range 8400 0000 – 84FF FFFF 0184 8214 MAR133 Controls EMIFA CE0 range 8500 0000 – 85FF FFFF 0184 8218 MAR134 Controls EMIFA CE0 range 8600 0000 – 86FF FFFF 0184 821C MAR135 Controls EMIFA CE0 range 8700 0000 – 87FF FFFF 0184 8220 MAR136 Controls EMIFA CE0 range 8800 0000 – 88FF FFFF 0184 8224 MAR137 Controls EMIFA CE0 range 8900 0000 – 89FF FFFF 0184 8228 MAR138 Controls EMIFA CE0 range 8A00 0000 – 8AFF FFFF 0184 822C MAR139 Controls EMIFA CE0 range 8B00 0000 – 8BFF FFFF 0184 8230 MAR140 Controls EMIFA CE0 range 8C00 0000 – 8CFF FFFF 0184 8234 MAR141 Controls EMIFA CE0 range 8D00 0000 – 8DFF FFFF 0184 8238 MAR142 Controls EMIFA CE0 range 8E00 0000 – 8EFF FFFF 0184 823C MAR143 Controls EMIFA CE0 range 8F00 0000 – 8FFF FFFF 0184 8240 MAR144 Controls EMIFA CE1 range 9000 0000 – 90FF FFFF 0184 8244 MAR145 Controls EMIFA CE1 range 9100 0000 – 91FF FFFF Device Overview Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel SM320DM642-HiRel www.ti.com SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 Table 2-2. L2 Cache Registers (C64x) (continued) HEX ADDRESS RANGE ACRONYM 0184 8248 MAR146 Controls EMIFA CE1 range 9200 0000 – 92FF FFFF REGISTER NAME 0184 824C MAR147 Controls EMIFA CE1 range 9300 0000 – 93FF FFFF 0184 8250 MAR148 Controls EMIFA CE1 range 9400 0000 – 94FF FFFF 0184 8254 MAR149 Controls EMIFA CE1 range 9500 0000 – 95FF FFFF 0184 8258 MAR150 Controls EMIFA CE1 range 9600 0000 – 96FF FFFF 0184 825C MAR151 Controls EMIFA CE1 range 9700 0000 – 97FF FFFF 0184 8260 MAR152 Controls EMIFA CE1 range 9800 0000 – 98FF FFFF 0184 8264 MAR153 Controls EMIFA CE1 range 9900 0000 – 99FF FFFF 0184 8268 MAR154 Controls EMIFA CE1 range 9A00 0000 – 9AFF FFFF 0184 826C MAR155 Controls EMIFA CE1 range 9B00 0000 – 9BFF FFFF 0184 8270 MAR156 Controls EMIFA CE1 range 9C00 0000 – 9CFF FFFF 0184 8274 MAR157 Controls EMIFA CE1 range 9D00 0000 – 9DFF FFFF 0184 8278 MAR158 Controls EMIFA CE1 range 9E00 0000 – 9EFF FFFF 0184 827C MAR159 Controls EMIFA CE1 range 9F00 0000 – 9FFF FFFF 0184 8280 MAR160 Controls EMIFA CE2 range A000 0000 – A0FF FFFF 0184 8284 MAR161 Controls EMIFA CE2 range A100 0000 – A1FF FFFF 0184 8288 MAR162 Controls EMIFA CE2 range A200 0000 – A2FF FFFF 0184 828C MAR163 Controls EMIFA CE2 range A300 0000 – A3FF FFFF 0184 8290 MAR164 Controls EMIFA CE2 range A400 0000 – A4FF FFFF 0184 8294 MAR165 Controls EMIFA CE2 range A500 0000 – A5FF FFFF 0184 8298 MAR166 Controls EMIFA CE2 range A600 0000 – A6FF FFFF 0184 829C MAR167 Controls EMIFA CE2 range A700 0000 – A7FF FFFF 0184 82A0 MAR168 Controls EMIFA CE2 range A800 0000 – A8FF FFFF 0184 82A4 MAR169 Controls EMIFA CE2 range A900 0000 – A9FF FFFF 0184 82A8 MAR170 Controls EMIFA CE2 range AA00 0000 – AAFF FFFF 0184 82AC MAR171 Controls EMIFA CE2 range AB00 0000 – ABFF FFFF 0184 82B0 MAR172 Controls EMIFA CE2 range AC00 0000 – ACFF FFFF 0184 82B4 MAR173 Controls EMIFA CE2 range AD00 0000 – ADFF FFFF 0184 82B8 MAR174 Controls EMIFA CE2 range AE00 0000 – AEFF FFFF 0184 82BC MAR175 Controls EMIFA CE2 range AF00 0000 – AFFF FFFF 0184 82C0 MAR176 Controls EMIFA CE3 range B000 0000 – B0FF FFFF 0184 82C4 MAR177 Controls EMIFA CE3 range B100 0000 – B1FF FFFF 0184 82C8 MAR178 Controls EMIFA CE3 range B200 0000 – B2FF FFFF 0184 82CC MAR179 Controls EMIFA CE3 range B300 0000 – B3FF FFFF 0184 82D0 MAR180 Controls EMIFA CE3 range B400 0000 – B4FF FFFF 0184 82D4 MAR181 Controls EMIFA CE3 range B500 0000 – B5FF FFFF 0184 82D8 MAR182 Controls EMIFA CE3 range B600 0000 – B6FF FFFF 0184 82DC MAR183 Controls EMIFA CE3 range B700 0000 – B7FF FFFF 0184 82E0 MAR184 Controls EMIFA CE3 range B800 0000 – B8FF FFFF 0184 82E4 MAR185 Controls EMIFA CE3 range B900 0000 – B9FF FFFF 0184 82E8 MAR186 Controls EMIFA CE3 range BA00 0000 – BAFF FFFF 0184 82EC MAR187 Controls EMIFA CE3 range BB00 0000 – BBFF FFFF 0184 82F0 MAR188 Controls EMIFA CE3 range BC00 0000 – BCFF FFFF 0184 82F4 MAR189 Controls EMIFA CE3 range BD00 0000 – BDFF FFFF 0184 82F8 MAR190 Controls EMIFA CE3 range BE00 0000 – BEFF FFFF 0184 82FC MAR191 Controls EMIFA CE3 range BF00 0000 – BFFF FFFF 0184 8300 – 0184 83FC MAR192 to MAR255 COMMENTS Reserved Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel Device Overview 11 SM320DM642-HiRel SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 www.ti.com Table 2-2. L2 Cache Registers (C64x) (continued) HEX ADDRESS RANGE ACRONYM 0184 8400 – 0187 FFFF – 12 Device Overview REGISTER NAME COMMENTS Reserved Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel SM320DM642-HiRel www.ti.com 2.3 SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 Memory Map Summary Table 2-3 shows the memory map address ranges of the DM642 device. Internal memory is always located at address 0 and can be used as both program and data memory. The external memory address ranges in the DM642 device begin at the hex address location 0x8000 0000 for EMIFA. Table 2-3. DM642 Memory Map Summary BLOCK SIZE (BYTES) HEX ADDRESS RANGE Internal RAM (L2) 256K 0000 0000 – 0003 FFFF Reserved 768K 0004 0000 – 000F FFFF Reserved 23M 0010 0000 – 017F FFFF External Memory Interface A (EMIFA) Registers 256K 0180 0000 – 0183 FFFF L2 Registers 256K 0184 0000 – 0187 FFFF HPI Registers 256K 0188 0000 – 018B FFFF McBSP 0 Registers 256K 018C 0000 – 018F FFFF McBSP 1 Registers 256K 0190 0000 – 0193 FFFF Timer 0 Registers 256K 0194 0000 – 0197 FFFF Timer 1 Registers 256K 0198 0000 – 019B FFFF Interrupt Selector Registers 256K 019C 0000 – 019F FFFF EDMA RAM and EDMA Registers 256K 01A0 0000 – 01A3 FFFF Reserved 512K 01A4 0000 – 01AB FFFF Timer 2 Registers 256K 01AC 0000 – 01AF FFFF MEMORY BLOCK DESCRIPTION GP0 Registers 256K – 4K 01B0 0000 – 01B3 EFFF Device Configuration Registers 4K 01B3 F000 – 01B3 FFFF I2C0 Data and Control Registers 16K 01B4 0000 – 01B4 3FFF Reserved 32K 01B4 4000 – 01B4 BFFF McASP0 Control Registers 16K 01B4 C000 – 01B4 FFFF Reserved 192K 01B5 0000 – 01B7 FFFF Reserved 256K 01B8 0000 – 01BB FFFF Emulation 256K 01BC 0000 – 01BF FFFF PCI Registers 256K 01C0 0000 – 01C3 FFFF VP0 Control 16K 01C4 0000 – 01C4 3FFF VP1 Control 16K 01C4 4000 – 01C4 7FFF VP2 Control 16K 01C4 8000 – 01C4 BFFF VIC Control 16K 01C4 C000 – 01C4 FFFF Reserved 192K 01C5 0000 – 01C7 FFFF EMAC Control 4K 01C8 0000 – 01C8 0FFF EMAC Wrapper 8K 01C8 1000 – 01C8 2FFF EWRAP Registers 2K 01C8 3000 – 01C8 37FF MDIO Control Registers Reserved QDMA Registers Reserved 2K 01C8 3800 – 01C8 3FFF 3.5M 01C8 4000 – 01FF FFFF 52 0200 0000 – 0200 0033 736M – 52 0200 0034 – 2FFF FFFF McBSP 0 Data 64M 3000 0000 – 33FF FFFF McBSP 1 Data 64M 3400 0000 – 37FF FFFF Reserved 64M 3800 0000 – 3BFF FFFF McASP0 Data 1M 3C00 0000 – 3C0F FFFF Reserved 64M – 1M 3C10 0000 – 3FFF FFFF Reserved 832M 4000 0000 – 73FF FFFF VP0 Channel A Data 32M 7400 0000 – 75FF FFFF Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel Device Overview 13 SM320DM642-HiRel SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 www.ti.com Table 2-3. DM642 Memory Map Summary (continued) BLOCK SIZE (BYTES) HEX ADDRESS RANGE VP0 Channel B Data 32M 7600 0000 – 77FF FFFF VP1 Channel A Data 32M 7800 0000 – 79FF FFFF VP1 Channel B Data 32M 7A00 0000 – 7BFF FFFF VP2 Channel A Data 32M 7C00 0000 – 7DFF FFFF VP2 Channel B Data 32M 7E00 0000 – 7FFF FFFF EMIFA CE0 256M 8000 0000 – 8FFF FFFF EMIFA CE1 256M 9000 0000 – 9FFF FFFF EMIFA CE2 256M A000 0000 – AFFF FFFF EMIFA CE3 256M B000 0000 – BFFF FFFF 1G C000 0000 – FFFF FFFF MEMORY BLOCK DESCRIPTION Reserved 14 Device Overview Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel SM320DM642-HiRel www.ti.com 2.3.1 SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 L2 Architecture Expanded Figure 2-2 shows the detail of the L2 architecture on the DM642 device. For more information on the L2MODE bits, see the cache configuration (CCFG) register bit field descriptions in the TMS320C64x™ Two-Level Internal Memory Reference Guide (literature number SPRU610). L2MODE 000 001 010 L2 Memory 011 Block Base Address 111 128K SRAM 0x0000 0000 256K SRAM (All) 256K Cache (4 Way) [All] 224K SRAM 192K SRAM 128K-Byte SRAM ÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ 0x0002 0000 128K Cache (4 Way) 64K Cache (4 Way) (4 Way) 32K Cache 64K-Byte RAM 0x0003 0000 32K-Byte RAM 0x0003 8000 32K-Byte RAM 0x0003 FFFF 0x0004 0000 Figure 2-2. DM642 L2 Architecture Memory Configuration Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel Device Overview 15 SM320DM642-HiRel SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 2.4 www.ti.com Bootmode The DM642 device resets using the active-low signal RESET. While RESET is low, the device is held in reset and is initialized to the prescribed reset state. Refer to reset timing for reset timing characteristics and states of device pins during reset. The release of RESET starts the processor running with the prescribed device configuration and boot mode. The DM642 has three types of boot modes: • Host boot If host boot is selected, upon release of RESET, the CPU is internally "stalled" while the remainder of the device is released. During this period, an external host can initialize the CPU's memory space as necessary through the host interface, including internal configuration registers, such as those that control the EMIF or other peripherals. For the DM642 device, the HPI peripheral is used for host boot if PCI_EN = 0, and the PCI peripheral is used if PCI_EN = 1. Once the host is finished with all necessary initialization, it must set the DSPINT bit in the HPIC register to complete the boot process. This transition causes the boot configuration logic to bring the CPU out of the "stalled" state. The CPU then begins execution from address 0. The DSPINT condition is not latched by the CPU, because it occurs while the CPU is still internally "stalled". Also, DSPINT brings the CPU out of the "stalled" state only if the host boot process is selected. All memory may be written to and read by the host. This allows for the host to verify what it sends to the DSP if required. After the CPU is out of the "stalled" state, the CPU needs to clear the DSPINT, otherwise, no more DSPINTs can be received. • EMIF boot (using default ROM timings) Upon the release of RESET, the 1K-Byte ROM code located in the beginning of CE1 is copied to address 0 by the EDMA using the default ROM timings, while the CPU is internally "stalled". The data should be stored in the endian format that the system is using. In this case, the EMIF automatically assembles consecutive 8-bit bytes to form the 32-bit instruction words to be copied. The transfer is automatically done by the EDMA as a single-frame block transfer from the ROM to address 0. After completion of the block transfer, the CPU is released from the "stalled" state and starts running from address 0. • No boot With no boot, the CPU begins direct execution from the memory located at address 0. Note: operation is undefined if invalid code is located at address 0. 2.5 2.5.1 Pin Assignments Pin Map Figure 2-3 through Figure 2-6 show the DM642 pin assignments in four quadrants (A, B, C, and D). 16 Device Overview Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel SM320DM642-HiRel www.ti.com SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 1 2 3 4 5 6 7 8 9 10 11 12 13 AF VSS DVDD RSV VP1CTL0 VP1D[0] VP1D[1] VSS VP1CLK0 VSS VP1CLK1 VSS VP0CLK1 VSS AE DVDD DVDD VSS CLKMODE1 VP1CTL1 VP1D[2]/ CLKX1 VP1D[5]/ CLKS1 VSS VP1D[10] VSS VP1D[15]/ AXR0[3] VSS DVDD AD VDAC/ GP0[8]/ PCI66 VSS RSV VSS VP1CTL2 VP1D[3]/ FSX1 VP1D[6]/ DR1 VP1D[8]/ CLKR1 VP1D[11] VP1D[13]/ AXR0[1] VP1D[16]/ AXR0[4] VP0D[18]/ AFSX0 VP0D[15]/ AMUTEIN0 AC STCLK CLKIN VSS RSV VSS VP1D[4]/ DX1 VP1D[7]/ FSR1 VP1D[9] VP1D[12]/ AXR0[0] VP1D[14]/ AXR0[2] VP1D[17]/ AXR0[5] VP0D[19]/ AHCLKX0 VP0D[16]/ AMUTE0 AB VSS VSS RSV VSS DVDD VSS DVDD DVDD VSS DVDD VP1D[18]/ AXR0[6] VP1D[19]/ AXR0[7] VP0D[17]/ ACLKX0 AA HD1/ AD1 CLKMODE0 RSV VSS VSS CVDD CVDD VSS DVDD VSS VSS DVDD VSS Y HD5/ AD5 HD3/ AD3 HD0/ AD0 HD2/ AD2 DVDD CVDD CVDD CVDD VSS CVDD CVDD VSS CVDD W VSS HD7/ AD7 HD4/ AD4 HD6/ AD6 DVDD VSS RSV V HD10/ AD10 HD8/ AD8 HD9/ AD9 PCBE0 VSS PLLV VSS U HD14/ AD14 HD12/ AD12 HD13/ AD13 HD11/ AD11 DVDD VSS CVDD T VSS HDS2/ PCBE1 HD15/ AD15 XSP_CS VSS VSS CVDD R HCS/ PPERR HDS1/ PSERR HCNTL0/ PSTOP XSP_DI XSP_CLK/ MDCLK RSV VSS VSS CVDD P HCNTL1/ PDEVSEL VSS HAS/ PPAR RESET XSP_DO/ MDIO VSS CVDD CVDD VSS 1 2 3 4 5 6 7 12 13 8 9 10 11 Figure 2-3. DM642 Pin Map [Quadrant A] Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel Device Overview 17 SM320DM642-HiRel SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 www.ti.com 14 15 16 17 18 19 20 21 22 23 24 25 26 VP0CLK0 VSS VP0D[3]/ FSX0 VP0D[2]/ CLKX0 VP0D[0] VSS AED50 AED54 VSS AED62 AED63 DVDD VSS AF VSS VP0D[8]/ CLKR0 VP0D[4]/ DX0 VP0CTL0 VP0D[1] VSS AED52 AED56 AED58 AED61 VSS DVDD DVDD AE VP0D[12]/ ACLKR0 VP0D[9] VP0D[5]/ CLKS0 VP0CTL2 VSS AED48 AED53 AED57 AED59 AED60 DVDD AED33 AED32 AD VP0D[13]/ AFSR0 VP0D[10] VP0D[6]/ DR0 VP0CTL1 VSS AED49 AED51 AED55 VSS DVDD VSS AED34 AED35 AC VP0D[14]/ AHCLKR0 VP0D[11] VP0D[7]/ FSR0 DVDD VSS DVDD DVDD VSS DVDD AED38 AED36 AED37 VSS AB VSS DVDD VSS VSS DVDD VSS CVDD CVDD VSS AED41 AED39 AED40 AED42 AA CVDD VSS CVDD CVDD VSS CVDD CVDD CVDD DVDD AED45 AED43 AED44 AED46 Y CVDD VSS DVDD AED47 AHOLD DVDD VSS W VSS DVDD VSS AEA18 AEA21 AEA20 AEA19 V CVDD VSS DVDD AEA22 AEA17 AEA16 AEA15 U CVDD VSS ABE7 ABE6 AEA14 AEA13 VSS T VSS CVDD VSS DVDD ASOE3 AEA12 AEA11 ABE5 ABE4 R CVDD VSS CVDD VSS ABUSREQ AEA10 AEA9 DVDD AEA8 P 14 15 20 21 22 23 24 25 26 16 17 18 19 Figure 2-4. DM642 Pin Map [Quadrant B] 18 Device Overview Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel SM320DM642-HiRel www.ti.com SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 1 2 N HRDY/ PIRDY DVDD M HR/W/ PCBE2 HD17/ AD17/ MTXD1 L VSS K 3 4 5 6 7 12 13 HINT/ PFRAME VSS VSS CVDD VSS CVDD HD16/ AD16/ MTXD0 HD18/ AD18/ MTXD2 GP0[0] DVDD VSS CVDD VSS HD19/ AD19/ MTXD3 HD20/ AD20/ MTXEN HD22/ AD22/ MTCLK GP0[3]/ PCIEEAI VSS CVDD HD23/ AD23 HD21/ AD21/ MCOL GP0[9]/ PIDSEL HD24/ AD24/ MRXD0 DVDD VSS CVDD J HD25/ AD25/ MRXD1 GP0[10]/ PCBE3 HD26/ AD26/ MRXD2 HD28/ AD28/ MRXDV VSS DVDD VSS H VSS HD27/ AD27/ MRXD3 HD30/ AD30/ MCRS GP0[12]/ PGNT DVDD VSS RSV G HD31/ AD31/ MRCLK HD29/ AD29/ MRXER GP0[15]/ PRST GP0[13]/ PINTA DVDD CVDD CVDD CVDD VSS CVDD CVDD VSS CVDD F GP0[11]/ PREQ GP0[6]/ EXT_INT6 GP0[5]/ EXT_INT5 GP0[4]/ EXT_INT4 VSS CVDD CVDD VSS DVDD VSS VSS DVDD VSS E GP0[7]/ EXT_INT7 PCI_EN VSS SCL0 DVDD VSS DVDD DVDD VSS DVDD VP2D[14] VP2D[18] VP2D[19] D VSS VSS SDA0 DVDD VSS CLKOUT4/ GP0[1] VP2CTL1 VP2D[1] VP2D[5] VP2D[9] VP2D[13] VP2D[17] VSS C GP0[14]/ PCLK VSS DVDD VSS TOUT0/ MAC_EN CLKOUT6/ GP0[2] VP2CTL2 VP2D[0] VP2D[4] VP2D[8] VP2D[12] VP2D[16] VSS B DVDD DVDD VSS NMI TOUT1/ LENDIAN VSS VSS VP2CTL0 VP2D[3] VP2D[7] VP2D[11] VP2D[15] VSS A VSS DVDD VSS TINP0 TINP1 VSS VP2CLK0 VSS VP2D[2] VP2D[6] VP2D[10] VSS VP2CLK1 1 2 3 4 5 6 7 8 9 10 11 12 13 HHWIL/ PTRDY 8 9 10 11 Figure 2-5. DM642 Pin Map [Quadrant C] Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel Device Overview 19 SM320DM642-HiRel SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 14 15 VSS CVDD 16 17 www.ti.com 18 19 20 21 22 23 24 25 CVDD CVDD VSS AHOLDA AEA7 AEA6 VSS AEA5 N VSS VSS DVDD APDT AEA4 AEA3 ABE3 ABE2 M CVDD VSS AARDY ABE1 ABE0 ASDCKE ACE3 L CVDD VSS DVDD ACE2 ACE1 ACE0 VSS DVDD VSS CVDD VSS DVDD AED17 AED16 AECLKIN VSS H AAOE/ AECLKOUT2 ASDRAS/ ASOE AARE/ ASDCAS/ ASADS/ ASRE 26 AAWE/ ASDWE/ ASWE K AECLKOUT1 J CVDD VSS CVDD CVDD VSS CVDD CVDD CVDD DVDD AED19 AED21 AED20 AED18 G VSS DVDD VSS VSS DVDD VSS CVDD CVDD VSS AED23 AED25 AED24 AED22 F RSV TMS VSS DVDD VSS DVDD DVDD VSS DVDD VSS AED27 AED26 VSS E TRST EMU4 EMU8 EMU11 VSS AED14 AED12 AED8 VSS DVDD VSS AED28 AED29 D EMU1 EMU3 EMU6 EMU10 VSS AED15 AED10 AED6 AED4 VSS DVDD AED30 AED31 C DVDD EMU2 EMU5 EMU9 TDO VSS AED11 AED7 AED3 AED2 AED0 DVDD DVDD B VSS EMU0 TCK EMU7 TDI VSS AED13 AED9 VSS AED5 AED1 DVDD VSS A 14 15 16 17 18 19 20 21 22 23 24 25 26 Figure 2-6. DM642 Pin Map [Quadrant D] 20 Device Overview Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel SM320DM642-HiRel www.ti.com 2.5.2 SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 Signal Groups Description CLKIN CLKOUT4/GP0[1](A) CLKOUT6/GP0[2](A) CLKMODE1 CLKMODE0 PLLV TMS TDO TDI TCK TRST EMU0 EMU1 EMU2 EMU3 EMU4 EMU5 EMU6 EMU7 EMU8 EMU9 EMU10 EMU11 Clock/PLL Reset and Interrupts RESET NMI GP0[7]/EXT_INT7(B) GP0[6]/EXT_INT6(B) GP0[5]/EXT_INT5(B) GP0[4]/EXT_INT4(B) Reserved RSV08 RSV07 RSV06 RSV05 RSV04 RSV03 RSV02 RSV01 RSV00 IEEE Standard 1149.1 (JTAG) Emulation Peripheral Control/Status PCI_EN TOUT0/MAC_EN Control/Status GP0[15]/PRST(C) GP0[14]/PCLK (C) GP0[13]/PINTA (C) GP0[12]/PGNT (C) GP0[11]/PREQ (C) GP0 GP0[10]/PCBE3(C) GP0[9]/PIDSEL(C) VDAC/GP0[8]/PCI66(C) GP0[7]/EXT_INT7(B) GP0[6]/EXT_INT6(B) GP0[5]/EXT_INT5(B) GP0[4]/EXT_INT4(B) GP0[3]/PCIEEAI CLKOUT6/GP0[2](A) CLKOUT4/GP0[1](A) GP0[0] General-Purpose Input/Output 0 (GP0) Port A. B. C. These pins are muxed with the GP0 pins and by default these signals function as clocks (CLKOUT4 or CLKOUT6). To use these muxed pins as GPIO signals, the appropriate GPIO register bits (GPxEN and GPxDIR) must be properly enabled and configured. For more details, see the Device Configurations section of this data sheet. These pins are GP0 pins that can also function as external interrupt sources (EXT_INT[7:4]). Default after reset is EXT_INTx or GPIO as input-only. These GP0 pins are muxed with the PCI peripheral pins and by default these signals are set up to no function with both the GPIO and PCI pin functions disabled. For more details on these muxed pins, see the Device Configurations section of this data sheet. Figure 2-7. CPU and Peripheral Signals Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel Device Overview 21 SM320DM642-HiRel SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 www.ti.com 64 Data AED[63:0] ACE3 ACE2 Memory Map Space Select ACE1 ACE0 20 AEA[22:3] ABE7 ABE6 ABE5 ABE4 ABE3 ABE2 ABE1 ABE0 AECLKIN AECLKOUT1 AECLKOUT2 ASDCKE AARE/ASDCAS/ASADS/ASRE External Memory I/F Control AAOE/ASDRAS/ASOE AAWE/ASDWE/ASWE AARDY ASOE3 APDT Address Byte Enables AHOLD AHOLDA ABUSREQ Bus Arbitration EMIFA (64-bit) Data VDAC/GP0[8]/PCI66 VCXO Interpolated Control Port (VIC) Figure 2-8. EMIFA/VIC Peripheral Signals 22 Device Overview Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel SM320DM642-HiRel www.ti.com SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 32 Data HD[15:0]/AD[15:0] HPI (A) (Host-Port Interface) HD[31:16]/AD[31:16](C) HCNTL0/PSTOP HCNTL1/PDEVSEL Register Select Control Half-Word Select HHWIL/PTRDY (HPI16 ONLY) HAS/PPAR HR/W/PCBE2 HCS/PPERR HDS1/PSERR HDS2/PCBE1 HRDY/PIRDY HINT/PFRAME 32 HD[15:0]/AD[15:0] HD[31:16]/AD[31:16](C) Data/Address GP0[10]/PCBE3 HR/W/PCBE2 HDS2/PCBE1 PCBE0 Command Byte Enable GP0[12]/PGNT Clock Control Arbitration Error GP0[11]/PREQ Serial EEPROM GP0[14]/PCLK GP0[9]/PIDSEL HCNTL1/PDEVSEL HINT/PFRAME GP0[13]/PINTA HAS/PPAR GP0[15]/PRST HRDY/PIRDY HCNTL0/PSTOP HHWIL/PTRDY HDS1/PSERR HCS/PPERR XSP_DO/MDIO XSP_CS XSP_CLK/MDCLK XSP_DI PCI Interface (B) A. B. C. These HPI pins are muxed with the PCI peripheral. By default, these signals function as HPI. For more details on these muxed pins, see the Device Configurations section of this data sheet. These PCI pins (excluding PCBE0 and XSP_CS) are muxed with the HPI or MDIO or GP0 peripherals. By default, these signals function as HPI and no function, respectively. For more details on these muxed pins, see the Device Configurations section of this data sheet. These HPI/PCI data pins (HD[31:16/AD[31:16]) are muxed with the EMAC peripheral. By default, these pins function as HPI. For more details on the EMAC pin functions, see the Ethernet MAC (EMAC) peripheral signals section and the terminal functions table portions of this data sheet. Figure 2-9. HPI/PCI Peripheral Signals Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel Device Overview 23 SM320DM642-HiRel SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 www.ti.com McBSP1 McBSP0 VP1D[2]/CLKX1(A) VP1D[3]/FSX1(A) VP1D[4]/DX1 (A) Transmit Transmit VP1D[8]/CLKR1(A) VP1D[7]/FSR1(A) VP1D[6]/DR1 (A) Receive Receive VP1D[5]/CLKS1(A) Clock VP0D[2]/CLKX0(A) VP0D[3]/FSX0(A) VP0D[4]/DX0(A) VP0D[8]/CLKR0(A) VP0D[7]/FSR0(A) VP0D[6]/DR0 (A) VP0D[5]/CLKS0(A) Clock McBSPs (Multichannel Buffered Serial Ports) TOUT1/LENDIAN TINP1 TOUT0/MACEN TINP0 Timer 0 Timer 1 Timer 2 Timers SCL0 I2C0 SDA0 I2C0 A. These McBSP1 and McBSP0 pins are muxed with the Video Port 1 (VP1) and Video Port 0 (VP0) peripherals, respectively. By default, these signals function as VP1 and VP0, respectively. For more details on these muxed pins, see the Device Configurations section of this data sheet. Figure 2-10. McBSP/Timer/I2C0 Peripheral Signals 24 Device Overview Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel SM320DM642-HiRel www.ti.com SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 EMAC HD16/AD16/MTXD0(A) HD17/AD17/MTXD1(A) HD18/AD18/MTXD2(A) HD19/AD19/MTXD3(A) Transmit MDIO HD24/AD24/MRXD0(A) HD25/AD25/MRXD1(A) HD26/AD26/MRXD2(A) HD27/AD27/MRXD3(A) Receive HD20/AD20/MTXEN(A) HD29/AD29/MRXER(A) HD28/AD28/MRXDV(A) HD21/AD21/MCOL(A) HD30/AD30/MCRS(A) Error Detect and Control HD22/AD22/MTCLK(A) HD31/AD31/MRCLK(A) Clocks Input/Output Clock XSP_DO/MDIO (B) XSP_CLK/MDCLK(B) Ethernet MAC (EMAC) and MDIO A. B. These EMAC pins are muxed with the upper data pins of the HPI or PCI peripherals. By default, these signals function as HPI. For more details on these muxed pins, see the Device Configurations section of this data sheet. These MDIO pins are muxed with the PCI peripherals. By default, these signals function as PCI. For more details on these muxed pins, see the Device Configurations section of this data sheet. Figure 2-11. EMAC/MDIO Peripheral Signals Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel Device Overview 25 SM320DM642-HiRel SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 STCLK (C) VP0CLK0 VP0CLK1 VP0CTL0 VP0CTL1 VP0CTL2 VP0D[0] VP0D[1] VP0D[2]/CLKX0 VP0D[3]/FSX0 VP0D[4]/DX0 VP0D[5]/CLKS0 VP0D[6]/DR0 VP0D[7]/FSR0 VP0D[8]/CLKR0 VP0D[9] www.ti.com Timing and Control Logic VP0D[10] VP0D[11] VP0D[12]/ACLKR0 VP0D[13]/AFSR0 VP0D[14]/AHCLKR0 VP0D[15]/AMUTEIN0 VP0D[16]/AMUTE0 VP0D[17]/ACLKX0 VP0D[18]/AFSX0 VP0D[19]/AHCLKX0 Capture/Display Buffer (2560 Bytes) Channel A (A) Channel B uses only the VP0D[19:10] bidirectional pins Capture/Display Buffer (2560 Bytes) Channel B (B) Video Port 0 (VP0) A. B. C. Channel A supports: BT.656 (8/10-bit), Y/C Video (16/20-bit), RAW Video (16/20-bit) display modes and BT.656 (8/10-bit), Y/C Video (16/20-bit), RAW Video (16/20-bit), and TSI (8-bit) capture modes. Channel B supports: BT.656 (8/10-bit), RAW Video (8/10-bit) capture modes and can display synchronized RAW Video data with Channel A. The same STCLK signal is used for all three video ports (VP0, VP1, and VP2). Figure 2-12. Video Port 0 Peripheral Signals 26 Device Overview Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel SM320DM642-HiRel www.ti.com SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 STCLK (C) VP1CLK0 VP1CLK1 VP1CTL0 VP1CTL1 VP1CTL2 Timing and Control Logic VP1D[0] VP1D[1] VP1D[2]/CLKX1 VP1D[3]/FSX1 VP1D[4]/DX1 VP1D[5]/CLKS1 VP1D[6]/DR1 VP1D[7]/FSR1 VP1D[8]/CLKR1 VP1D[9] VP1D[10] VP1D[11] VP1D[12]/AXR0[0] VP1D[13]/AXR0[1] VP1D[14]/AXR0[2] VP1D[15]/AXR0[3] VP1D[16]/AXR0[4] VP1D[17]/AXR0[5] VP1D[18]/AXR0[6] VP1D[19]/AXR0[7] Capture/Display Buffer (2560 Bytes) Channel A (A) Channel B uses only the VP1D[19:10] bidirectional pins Capture/Display Buffer (2560 Bytes) Channel B (B) Video Port 1 (VP1) A. B. C. Channel A supports: BT.656 (8/10-bit), Y/C Video (16/20-bit), RAW Video (16/20-bit) display modes and BT.656 (8/10-bit), Y/C Video (16/20-bit), RAW Video (16/20-bit), and TSI (8-bit) capture modes. Channel B supports: BT.656 (8/10-bit), RAW Video (8/10-bit) capture modes and can display synchronized RAW Video data with Channel A. The same STCLK signal is used for all three video ports (VP0, VP1, and VP2). Figure 2-13. Video Port 1 Peripheral Signals Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel Device Overview 27 SM320DM642-HiRel SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 STCLK (C) VP2CLK0 VP2CLK1 VP2CTL0 VP2CTL1 VP2CTL2 VP2D[0] VP2D[1] VP2D[2] VP2D[3] VP2D[4] VP2D[5] VP2D[6] VP2D[7] VP2D[8] VP2D[9] www.ti.com Timing and Control Logic VP2D[10] VP2D[11] VP2D[12] VP2D[13] VP2D[14] VP2D[15] VP2D[16] VP2D[17] VP2D[18] VP2D[19] Capture/Display Buffer (2560 Bytes) Channel A (A) Channel B uses only the VP2D[19:10] bidirectional pins Capture/Display Buffer (2560 Bytes) Channel B (B) Video Port 2 (VP2) A. B. C. Channel A supports: BT.656 (8/10-bit), Y/C Video (16/20-bit), RAW Video (16/20-bit) display modes and BT.656 (8/10-bit), Y/C Video (16/20-bit), RAW Video (16/20-bit) and TSI (8-bit) capture modes. Channel B supports: BT.656 (8/10-bit), RAW Video (8/10-bit) capture modes and can display synchronized RAW Video data with Channel A. The same STCLK signal is used for all three video ports (VP0, VP1, and VP2). Figure 2-14. Video Port 2 Peripheral Signals 28 Device Overview Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel SM320DM642-HiRel www.ti.com SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 (Transmit/Receive Data Pins) (Transmit/Receive Data Pins) VP1D[12]/AXR0[0] VP1D[13]/AXR0[1] VP1D[14]/AXR0[2] VP1D[15]/AXR0[3] VP1D[16]/AXR0[4] VP1D[17]/AXR0[5] VP1D[18]/AXR0[6] VP1D[19]/AXR0[7] 8-Serial Ports Flexible Partitioning Tx, Rx, OFF (Transmit Bit Clock) (Receive Bit Clock) VP0D[12]/ACLKR0 VP0D[14]/AHCLKR0 Receive Clock Generator Transmit Clock Generator (Receive Master Clock) VP0D[13]/AFSR0 (Receive Frame Sync or Left/Right Clock) VP0D[17]/ACLKX0 VP0D[19]/AHCLKX0 (Transmit Master Clock) Receive Clock Check Circuit Transmit Clock Check Circuit Receive Frame Sync Transmit Frame Sync Error Detect (A) Auto Mute Logic VP0D[18]/AFSX0 (Transmit Frame Sync or Left/Right Clock) VP0D[16]/AMUTE0 VP0D[15]/AMUTEIN0 McASP0 (Multichannel Audio Serial Port 0) NOTES: A. On multiplexed pins, bolded text denotes the active function of the pin for that particular peripheral module. Bolded and Italicized text within parentheses denotes the function of the pins in an audio system. The McASPs' Error Detect function detects underruns, overruns, early/late frame syncs, DMA errors, and external mute input. Figure 2-15. McASP0 Peripheral Signals 2.5.3 Terminal Functions Table 2-4, the terminal functions table, identifies the external signal names, the associated pin (ball) numbers along with the mechanical package designator, the pin type (I, O/Z, or I/O/Z), whether the pin has any internal pullup/pulldown resistors and a functional pin description. For more detailed information on device configuration, peripheral selection, multiplexed/shared pins, and debugging considerations, see the Device Configurations section of this data sheet. Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel Device Overview 29 SM320DM642-HiRel SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 www.ti.com Table 2-4. Terminal Functions SIGNAL NAME NO. TYPE (1) IPD/ IPU (2) DESCRIPTION CLOCK/PLL CONFIGURATION CLKIN AC2 I (3) D6 I/O/Z IPU Clock output at 1/4 of the device speed (O/Z) [default] or this pin can be programmed as a GP0 1 pin (I/O/Z). CLKOUT6/GP0[2] (3) C6 I/O/Z IPU Clock output at 1/6 of the device speed (O/Z) [default] or this pin can be programmed as a GP0 2 pin (I/O/Z). CLKMODE1 AE4 I IPD CLKMODE0 AA2 I IPD PLLV (4) V6 A (1) TMS E15 I IPU JTAG test-port mode select TDO B18 O/Z IPU JTAG test-port data out TDI A18 I IPU JTAG test-port data in TCK A16 I IPU JTAG test-port clock TRST D14 I IPD JTAG test-port reset. For IEEE 1149.1 JTAG compatibility, see the IEEE 1149.1 JTAG compatibility statement portion of this data sheet. EMU11 D17 I/O/Z IPU Emulation pin 11. Reserved for future use, leave unconnected. EMU10 C17 I/O/Z IPU Emulation pin 10. Reserved for future use, leave unconnected. EMU9 B17 I/O/Z IPU Emulation pin 9. Reserved for future use, leave unconnected. EMU8 D16 I/O/Z IPU Emulation pin 8. Reserved for future use, leave unconnected. EMU7 A17 I/O/Z IPU Emulation pin 7. Reserved for future use, leave unconnected. EMU6 C16 I/O/Z IPU Emulation pin 6. Reserved for future use, leave unconnected. EMU5 B16 I/O/Z IPU Emulation pin 5. Reserved for future use, leave unconnected. EMU4 D15 I/O/Z IPU Emulation pin 4. Reserved for future use, leave unconnected. EMU3 C15 I/O/Z IPU Emulation pin 3. Reserved for future use, leave unconnected. EMU2 B15 I/O/Z IPU Emulation pin 2. Reserved for future use, leave unconnected. EMU1 C14 I/O/Z IPU Emulation pin 1 (5) EMU0 A15 I/O/Z IPU Emulation pin 0 (5) RESET P4 CLKOUT4/GP0[1] Clock Input. This clock is the input to the on-chip PLL. Clock mode select • Selects whether the CPU clock frequency = input clock frequency x1 (Bypass), x6, or x12. For more details on the CLKMODE pins and the PLL multiply factors, see the Clock PLL section of this data sheet. PLL voltage supply JTAG EMULATION RESETS, INTERRUPTS, AND GENERAL-PURPOSE INPUT/OUTPUTS I Device reset Nonmaskable interrupt, edge-driven (rising edge) NMI B4 I IPD Note: Any noise on the NMI pin may trigger an NMI interrupt; therefore, if the NMI pin is not used, it is recommended that the NMI pin be grounded versus relying on the IPD. GP0[7]/EXT_INT7 E1 I/O/Z IPU GP0[6]/EXT_INT6 F2 I/O/Z IPU GP0[5]/EXT_INT5 F3 I/O/Z IPU GP0[4]/EXT_INT4 F4 I/O/Z IPU General-purpose input/output (GPIO) pins (I/O/Z) or external interrupts (input only). The default after reset setting is GPIO enabled as input-only. • When these pins function as External Interrupts [by selecting the corresponding interrupt enable register bit (IER.[7:4])], they are edge-driven and the polarity can be independently selected via the External Interrupt Polarity Register bits (EXTPOL.[3:0]). (1) (2) (3) (4) (5) 30 I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog signal IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-kΩ IPD or IPU resistor. To pull up a signal to the opposite supply rail, a 1-kΩ resistor should be used.) These pins are multiplexed pins. For more details, see the Device Configurations section of this data sheet. PLLV is not part of external voltage supply. See the Clock PLL section for information on how to connect this pin. The EMU0 and EMU1 pins are internally pulled up with 30-kΩ resistors; therefore, for emulation and normal operation, no external pullup/pulldown resistors are necessary. However, for boundary scan operation, pull down the EMU1 and EMU0 pins with a dedicated 1-kΩ resistor. Device Overview Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel SM320DM642-HiRel www.ti.com SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 Table 2-4. Terminal Functions (continued) SIGNAL NAME NO. (3) GP0[15]/PRST GP0[14]/PCLK G3 (3) (3) G4 GP0[12]/PGNT (3) H4 GP0[11]/PREQ (3) F1 (3) J2 GP0[9]/PIDSEL (3) DESCRIPTION General-purpose input/output (GP0) 15 pin (I/O/Z) or PCI reset (I). GP0 14 pin (I/O/Z) or PCI clock (I) GP0 13 pin (I/O/Z) or PCI interrupt A (O/Z) GP0 12 pin (I/O/Z) or PCI bus grant (I) GP0 11 pin (I/O/Z) or PCI bus request (O/Z) GP0 10 pin (I/O/Z) or PCI command/byte enable 3 (I/O/Z) GP0 9 pin (I/O/Z) or PCI initialization device select (I) C1 GP0[13]/PINTA GP0[10]/PCBE3 IPD/ IPU (2) TYPE (1) I/O/Z Note: By default, no function is enabled upon reset. To configure these pins, see the Device Configuration section of this data sheet. K3 GP0 3 pin (I/O/Z) Boot Configuration: PCI EEPROM Auto-Initialization (EEAI). GP0[3] L5 IPD 0 - PCI auto-initialization through EEPROM is disabled (default). 1 - PCI auto-initialization through EEPROM is enabled. GP0[0] M5 I/O/Z IPD General-purpose 0 pin (GP0[0]) (I/O/Z) [default] This pin can be programmed as GPIO 0 (input only) [default] or as GP0[0] (output only) pin or output as a general-purpose interrupt (GP0INT) signal (output only). Note: This pin must remain low during device reset. VCXO Interpolated Control Port (VIC) single-bit digital-to-analog converter (VDAC) output [output only] [default] or this pin can be programmed as a GP0 8 pin (I/O/Z) Boot Configuration: PCI frequency selection (PCI66). VDAC/GP0[8]/PCI66 (3) AD1 I/O/Z IPD If the PCI peripheral is enabled (PCI_EN pin = 1), then: 0 - PCI operates at 66 MHz (default). 1 - PCI operates at 33 MHz. The –500 device supports PCI at 33 MHz only. For proper –500 device operation when the PCI peripheral is enabled (PCI_EN = 1), this pin must be pulled up with a 1-kΩ resistor at device reset. Note: If the PCI peripheral is disabled (PCI_EN pin = 0), this pin be must not pulled up. CLKOUT6/GP0[2] (6) C6 I/O/Z IPU Clock output at 1/6 of the device speed (O/Z) [default] or this pin can be programmed as a GP0 2 pin (I/O/Z). CLKOUT4/GP0[1] (6) D6 I/O/Z IPU Clock output at 1/4 of the device speed (O/Z) [default] or this pin can be programmed as a GP0 1 pin (I/O/Z). HOST-PORT INTERFACE (HPI) or PERIPHERAL COMPONENT INTERCONNECT (PCI) or EMAC PCI_EN HINT/PFRAME (6) HCNTL1/PDEVSEL HCNTL0/PSTOP HHWIL/PTRDY HR/W/PCBE2 HAS/PPAR (6) (6) (6) HCS/PPERR (6) (6) (6) E2 I N4 I/O/Z Host interrupt from DSP to host (O) [default] or PCI frame (I/O/Z) P1 I/O/Z Host control – selects between control, address, or data registers (I) [default] or PCI device select (I/O/Z). R3 I/O/Z Host control – selects between control, address, or data registers (I) [default] or PCI stop (I/O/Z) N3 I/O/Z Host half-word select – first or second half-word (not necessarily high or low order) [For HPI16 bus width selection only] (I) [default] or PCI target ready (I/O/Z) M1 I/O/Z Host read or write select (I) [default] or PCI command/byte enable 2 (I/O/Z) P3 I/O/Z R1 I/O/Z Host Host Host Host HDS1/PSERR (6) R2 I/O/Z HDS2/PCBE1 (6) T2 I/O/Z (6) IPD Boot Configuration: PCI enable pin (I) The PCI_EN pin and the MAC_EN pin control the selection (enable/disable) of the HPI, EMAC, MDIO, and GP0[15:8], or PCI peripherals. The pins work in conjunction to enable/disable these peripherals (for more details, see the Device Configurations section of this data sheet). address strobe (I) [default] or PCI parity (I/O/Z) chip select (I) [default] or PCI parity error (I/O/Z) data strobe 1 (I) [default] or PCI system error (I/O/Z) data strobe 2 (I) [default] or PCI command/byte enable 1 (I/O/Z) Note: If unused, the following HPI control signals should be externally pulled high. These pins are multiplexed pins. For more details, see the Device Configurations section of this data sheet. Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel Device Overview 31 SM320DM642-HiRel SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 www.ti.com Table 2-4. Terminal Functions (continued) SIGNAL NAME HRDY/PIRDY NO. (6) N1 HD31/AD31/MRCLK (6) G1 HD30/AD30/MCRS (6) H3 HD29/AD29/MRXER (6) J4 HD27/AD27/MRXD3 (6) H2 HD26/AD26/MRXD2 (6) J3 HD25/AD25/MRXD1 (6) J1 HD24/AD24/MRXD0 (6) K4 HD23/AD23 (6) K1 HD22/AD22/MTCLK (6) L4 HD21/AD21/MCOL (6) K2 HD20/AD20/MTXEN (6) L3 (6) L2 HD18/AD18/MTXD2 (6) M4 HD17/AD17/MTXD1 (6) M2 HD16/AD16/MTXD0 (6) M3 (6) T3 HD14/AD14 (6) U1 HD13/AD13 (6) U3 (6) U2 HD11/AD11 (6) U4 HD10/AD10 (6) V1 HD9/AD9 (6) V3 HD15/AD15 HD12/AD12 HD8/AD8 (6) V2 HD7/AD7 (6) W2 HD6/AD6 (6) W4 HD5/AD5 (6) Y1 HD4/AD4 (6) W3 HD3/AD3 (6) Y2 HD2/AD2 (6) IPD/ IPU (2) I/O/Z DESCRIPTION Host ready from DSP to host (O) [default] or PCI initiator ready (I/O/Z). G2 HD28/AD28/MRXDV (6) HD19/AD19/MTXD3 TYPE (1) Host-port data (I/O/Z) [default] or PCI data-address bus (I/O/Z) or EMAC transmit/receive or control pins As HPI data bus (PCI_EN pin = 0) • Used for transfer of data, address, and control • Host-Port bus width user-configurable at device reset via a 10-kΩ resistor pullup/pulldown resistor on the HD5 pin: As PCI data-address bus (PCI_EN pin = 1) • Used for transfer of data and address Boot Configuration: • HD5 pin = 0: HPI operates as an HPI16. (HPI bus is 16 bits wide. HD[15:0] pins are used and the remaining HD[31:16] pins are reserved pins in the high-impedance state.) • HD5 pin = 1: HPI operates as an HPI32. (HPI bus is 32 bits wide. All HD[31:0] pins are used for host-port operations.) I/O/Z For superset devices like DM642, the HD31/AD31 through HD16/AD16 pins can also function as EMAC transmit/receive or control pins (when PCI_EN pin = 0; MAC_EN pin = 1). For more details on the EMAC pin functions, see the Ethernet MAC (EMAC) peripheral section of this table and for more details on how to configure the EMAC pin functions, see the device configuration section of this data sheet. Y4 HD1/AD1 (6) AA1 HD0/AD0 (6) Y3 PCBE0 V4 I/O/Z XSP_CS T4 O IPD PCI serial interface chip select (O). When PCI is disabled (PCI_EN = 0), this pin is tied-off. XSP_CLK/MDCLK (7) R5 I/O/Z IPD PCI serial interface clock (O) [default] or MDIO serial clock input/output (I/O/Z). XSP_DI R4 I IPU PCI serial interface data in (I) [default]. In PCI mode, this pin is connected to the output data pin of the serial PROM. XSP_DO/MDIO (7) P5 I/O/Z IPU PCI serial interface data out (O) [default] or MDIO serial data input/output (I/O/Z). In PCI mode, this pin is connected to the input data pin of the serial PROM. (7) 32 PCI command/byte enable 0 (I/O/Z). When PCI is disabled (PCI_EN = 0), this pin is tied-off. These pins are multiplexed pins. For more details, see the Device Configurations section of this data sheet. Device Overview Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel SM320DM642-HiRel www.ti.com SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 Table 2-4. Terminal Functions (continued) SIGNAL NAME (7) GP0[15]/PRST GP0[14]/PCLK NO. (7) G3 (7) G4 GP0[12]/PGNT (7) H4 GP0[11]/PREQ (7) F1 GP0[9]/PIDSEL (7) (7) GP0[3] I/O/Z J2 Note: By default, no function is enabled upon reset. To configure these pins, see the Device Configuration section of this data sheet. K3 L5 DESCRIPTION General-purpose input/output (GP0) 15 pin (I/O/Z) or PCI reset (I). GP0 14 pin (I/O/Z) or PCI clock (I) GP0 13 pin (I/O/Z) or PCI interrupt A (O/Z) GP0 12 pin (I/O/Z) or PCI bus grant (I) GP0 11 pin (I/O/Z) or PCI bus request (O/Z) GP0 10 pin (I/O/Z) or PCI command/byte enable 3 (I/O/Z) GP0 9 pin (I/O/Z) or PCI initialization device select (I) C1 GP0[13]/PINTA GP0[10]/PCBE3 IPD/ IPU (2) TYPE (1) I/O/Z IPD GP0 3 pin (I/O/Z) Boot Configuration: PCI EEPROM Auto-Initialization (EEAI). 0 - PCI auto-initialization through EEPROM is disabled (default). 1 - PCI auto-initialization through EEPROM is enabled VCXO Interpolated Control Port (VIC) single-bit digital-to-analog converter (VDAC) output [output only] [default] or this pin can be programmed as a GP0 8 pin (I/O/Z) Boot Configuration: PCI frequency selection (PCI66). VDAC/GP0[8]/PCI66 (7) AD1 I/O/Z IPD If the PCI peripheral is enabled (PCI_EN pin = 1), then: 0 - PCI operates at 66 MHz (default). 1 - PCI operates at 33 MHz. The –500 device supports PCI at 33 MHz only. For proper –500 device operation when the PCI peripheral is enabled (PCI_EN = 1), this pin must be pulled up with a 1-kΩ resistor at device reset. Note: If the PCI peripheral is disabled (PCI_EN pin = 0), this pin must not be pulled up. EMIFA (64-bit) – CONTROL SIGNALS COMMON TO ALL TYPES OF MEMORY ACE3 L26 O/Z IPU ACE2 K23 O/Z IPU ACE1 K24 O/Z IPU ACE0 K25 O/Z IPU ABE7 T22 O/Z IPU ABE6 T23 O/Z IPU ABE5 R25 O/Z IPU ABE4 R26 O/Z IPU ABE3 M25 O/Z IPU ABE2 M26 O/Z IPU ABE1 L23 O/Z IPU ABE0 L24 O/Z IPU APDT M22 O/Z IPU AHOLDA N22 O IPU EMIFA hold-request-acknowledge to the host AHOLD W24 I IPU EMIFA hold request from the host ABUSREQ P22 O IPU EMIFA bus request output EMIFA memory space enables • Enabled by bits 28 through 31 of the word address • Only one pin is asserted during any external data access EMIFA byte-enable control • Decoded from the low-order address bits. The number of address bits or byte enables used depends on the width of external memory. • Byte-write enables for most types of memory • Can be directly connected to SDRAM read and write mask signal (SDQM) EMIFA peripheral data transfer, allows direct transfer between external peripherals EMIFA (64-bit) – BUS ARBITRATION Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel Device Overview 33 SM320DM642-HiRel SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 www.ti.com Table 2-4. Terminal Functions (continued) SIGNAL NAME NO. TYPE (1) IPD/ IPU (2) DESCRIPTION EMIFA (64-bit) – ASYNCHRONOUS/SYNCHRONOUS MEMORY CONTROL AECLKIN H25 I IPD EMIFA external input clock. The EMIFA input clock (AECLKIN, CPU/4 clock, or CPU/6 clock) is selected at reset via the pullup/pulldown resistors on the AEA[20:19] pins. AECLKIN is the default for the EMIFA input clock. AECLKOUT2 J23 O/Z IPD EMIFA output clock 2. Programmable to be EMIFA input clock (AECLKIN, CPU/4 clock, or CPU/6 clock) frequency divided-by-1, -2, or -4. AECLKOUT1 J26 O/Z IPD EMIFA output clock 1 [at EMIFA input clock (AECLKIN, CPU/4 clock, or CPU/6 clock) frequency]. AARE/ ASDCAS/ ASADS/ASRE J25 O/Z IPU EMIFA asynchronous memory read-enable/SDRAM column-address strobe/programmable synchronous interface-address strobe or read-enable • For programmable synchronous interface, the RENEN field in the CE Space Secondary Control Register (CExSEC) selects between ASADS and ASRE: If RENEN = 0, then the ASADS/ASRE signal functions as the ASADS signal. If RENEN = 1, then the ASADS/ASRE signal functions as the ASRE signal. AAOE/ ASDRAS/ ASOE J24 O/Z IPU EMIFA asynchronous memory output-enable/SDRAM row-address strobe/programmable synchronous interface output-enable AAWE/ ASDWE/ ASWE K26 O/Z IPU EMIFA asynchronous memory write-enable/SDRAM write-enable/programmable synchronous interface write-enable ASDCKE L25 O/Z IPU EMIFA SDRAM clock-enable (used for self-refresh mode). • If SDRAM is not in system, ASDCKE can be used as a general-purpose output. ASOE3 R22 O/Z IPU EMIFA synchronous memory output-enable for ACE3 (for glueless FIFO interface) AARDY L22 I IPU Asynchronous memory ready input EMIFA (64-bit) – ADDRESS AEA22 U23 AEA21 V24 AEA20 V25 AEA19 V26 AEA18 V23 AEA17 U24 AEA16 U25 AEA15 U26 AEA14 T24 AEA13 T25 AEA12 R23 AEA11 R24 AEA10 P23 AEA9 P24 AEA8 P26 AEA7 N23 AEA6 N24 AEA5 N26 AEA4 M23 AEA3 M24 34 Device Overview EMIFA external address (doubleword address) EMIFA address numbering for the DM642 device starts with AEA3 to maintain signal name compatibility with other C64x™ devices (e.g., C6414, C6415, and C6416) [see the 64-bit EMIF addressing scheme in the TMS320C6000 DSP External Memory Interface (EMIF) Reference Guide (literature number SPRU266)]. O/Z IPD Boot Configuration: • Controls initialization of DSP modes at reset (I) via pullup/pulldown resistors – Boot mode (AEA[22:21]): 00 - No boot (default mode) 01 - HPI/PCI boot (based on PCI_EN pin) 10 - Reserved 11 - EMIFA boot – EMIF clock select (AEA[20:19]): Clock mode select for EMIFA (AECLKIN_SEL[1:0]) 00 - AECLKIN (default mode) 01 - CPU/4 Clock Rate 10 - CPU/6 Clock Rate 11 - Reserved For more details, see the Device Configurations section of this data sheet. Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel SM320DM642-HiRel www.ti.com SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 Table 2-4. Terminal Functions (continued) SIGNAL NAME NO. IPD/ IPU (2) TYPE (1) DESCRIPTION EMIFA (64-bit) – DATA AED63 AF24 AED62 AF23 AED61 AE23 AED60 AD23 AED59 AD22 AED58 AE22 AED57 AD21 AED56 AE21 AED55 AC21 AED54 AF21 AED53 AD20 AED52 AE20 AED51 AC20 AED50 AF20 AED49 AC19 AED48 AD19 AED47 W23 AED46 Y26 AED45 Y23 AED44 Y25 AED43 Y24 AED42 AA26 AED41 AA23 AED40 AA25 AED39 AA24 AED38 AB23 AED37 AB25 AED36 AB24 AED35 AC26 AED34 AC25 AED33 AD25 AED32 AD26 AED31 C26 AED30 C25 AED29 D26 AED28 D25 AED27 E24 AED26 E25 AED25 F24 AED24 F25 AED23 F23 AED22 F26 AED21 G24 AED20 G25 I/O/Z IPU EMIFA external data Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel Device Overview 35 SM320DM642-HiRel SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 www.ti.com Table 2-4. Terminal Functions (continued) SIGNAL NAME NO. AED19 G23 AED18 G26 AED17 H23 AED16 H24 AED15 C19 AED14 D19 AED13 A20 AED12 D20 AED11 B20 AED10 C20 AED9 A21 AED8 D21 AED7 B21 AED6 C21 TYPE (1) IPD/ IPU (2) I/O/Z IPU DESCRIPTION EMIFA external data AED5 A23 AED4 C22 AED3 B22 AED2 B23 AED1 A24 AED0 B24 XSP_CLK/MDCLK(3) R5 I/O/Z IPD PCI serial interface clock (O) [default] or MDIO serial clock input/output (I/O/Z). XSP_DO/MDIO(3) P5 I/O/Z IPU PCI serial interface data out (O) [default] or MDIO serial data input/output (I/O/Z). In PCI mode, this pin is connected to the input data pin of the serial PROM. MANAGEMENT DATA INPUT/OUTPUT (MDIO) VCXO INTERPOLATED CONTROL PORT (VIC) VDAC/GP0[8]/PCI66 (3) AD1 I/O/Z IPD VCXO Interpolated Control Port (VIC) single-bit digital-to-analog converter (VDAC) output [output only] [default] or this pin can be programmed as a GP0 8 pin (I/O/Z) Boot Configuration: PCI frequency selection (PCI66). If the PCI peripheral is enabled (PCI_EN pin = 1), then: 0 - PCI operates at 66 MHz (default). 1 - PCI operates at 33 MHz. The –500 device supports PCI at 33 MHz only. For proper –500 device operation when the PCI peripheral is enabled (PCI_EN = 1), this pin must be pulled up with a 1-kΩ resistor at device reset. Note: If the PCI peripheral is disabled (PCI_EN pin = 0), this pin must not be pulled up. VIDEO PORTS (VP0, VP1, AND VP2) STCLK 36 AC1 Device Overview I IPD The STCLK signal drives the hardware counter on the video ports. Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel SM320DM642-HiRel www.ti.com SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 Table 2-4. Terminal Functions (continued) SIGNAL NAME NO. IPD/ IPU (2) TYPE (1) DESCRIPTION VIDEO PORT 2 (VP2) VP2D[19] E13 VP2D[18] E12 VP2D[17] D12 VP2D[16] C12 VP2D[15] B12 VP2D[14] E11 VP2D[13] D11 VP2D[12] C11 VP2D[11] B11 VP2D[10] A11 VP2D[9] D10 VP2D[8] C10 VP2D[7] B10 VP2D[6] A10 VP2D[5] D9 VP2D[4] C9 VP2D[3] B9 VP2D[2] A9 VP2D[1] D8 Video port 2 (VP2) data input/output (I/O/Z) I/O/Z IPD Note: By default, no function is enabled upon reset. To configure these pins, see the Device Configuration section of this data sheet. VP2D[0] C8 VP2CLK1 A13 I/O/Z IPD VP2 clock 1 (I/O/Z) VP2CLK0 A7 I IPD VP2 clock 0 (I) VP2CTL2 C7 VP2CTL1 D7 I/O/Z IPD VP2CTL0 B8 VP2 control 2 (I/O/Z) VP2 control 1 (I/O/Z) VP2 control 0 (I/O/Z) Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel Device Overview 37 SM320DM642-HiRel SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 www.ti.com Table 2-4. Terminal Functions (continued) SIGNAL NAME NO. TYPE (1) IPD/ IPU (2) DESCRIPTION VIDEO PORT 1 (VP1) OR McASP0 DATA OR McBSP1 VP1D[19]/AXR0[7](3) AB12 VP1D[18]/AXR0[6](3) AB11 (3) VP1D[17]/AXR0[5] AC11 VP1D[16]/AXR0[4](3) AD11 VP1D[15]/AXR0[3](3) AE11 (3) VP1D[14]/AXR0[2] AC10 VP1D[13]/AXR0[1](3) AD10 VP1D[12]/AXR0[0](3) AC9 VP1D[11] AD9 VP1D[10] AE9 VP1D[9] AC8 VP1D[8]/CLKR1(3) (3) I/O/Z IPD AD8 VP1D[7]/FSR1 AC7 VP1D[6]/DR1(3) AD7 VP1D[5]/CLKS1(3) AE7 (3) Video port 1 (VP1) data input/output (I/O/Z) or McASP0 data pins (I/O/Z) [default] and Video port 1 (VP1) data input/output (I/O/Z) or McBSP1 data input/output (I/O/Z) [default] VP1D[4]/DX1 AC6 VP1D[3]/FSX1(3) AD6 VP1D[2]/CLKX1(3) AE6 VP1D[1] AF6 By default, standalone VP1 data input/output pins have no function enabled upon reset. To configure these pins, see the Device Configuration section of this data sheet. For more details on the McBSP1 pin functions or the McASP0 data pin functions, see McBSP1 or McASP0 data sections of this table and the Device Configurations section of this data sheet. VP1D[0] AF5 VP1CLK1 AF10 I/O/Z IPD VP1 clock 1 (I/O/Z) VP1CLK0 AF8 I IPD VP1 clock 0 (I) VP1CTL2 AD5 VP1CTL1 AE5 I/O/Z IPD VP1CTL0 AF4 38 Device Overview VP1 control 2 (I/O/Z) VP1 control 1 (I/O/Z) VP1 control 0 (I/O/Z) Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel SM320DM642-HiRel www.ti.com SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 Table 2-4. Terminal Functions (continued) SIGNAL NAME NO. VP0D[19]/AHCLKX0(3) AC12 VP0D[18]/AFSX0(3) AD12 IPD/ IPU (2) TYPE (1) DESCRIPTION VIDEO PORT 0 (VP0) OR McASP0 CONTROL OR McBSP0 (3) VP0D[17]/ACLKX0 AB13 VP0D[16]/AMUTE0(3) AC13 VP0D[15]/ AMUTEIN0(3) AD13 VP0D[14]/AHCLKR0(3) AB14 VP0D[13]/AFSR0(3) AC14 VP0D[12]/ACLKR0(3) AD14 VP0D[11] AB15 VP0D[10] AC15 VP0D[9] Video port 0 (VP0) data input/output (I/O/Z) or McASP0 control pins (I/O/Z) [default] and Video port 0 (VP0) data input/output (I/O/Z) or McBSP0 data input/output (I/O/Z) [default] I/O/Z IPD AD15 (3) VP0D[8]/CLKR0 AE15 VP0D[7]/FSR0(3) AB16 VP0D[6]/DR0(3) AC16 (3) By default, standalone VP0 data input/output pins have no function enabled upon reset. To configure these pins, see the Device Configuration section of this data sheet. For more details on the McBSP0 pin functions or the McASP0 control pin functions, see McBSP0 or McASP0 control sections of this table and the Device Configurations section of this data sheet. VP0D[5]/CLKS0 AD16 VP0D[4]/DX0(3) AE16 VP0D[3]/FSX0(3) AF16 VP0D[2]/CLKX0(3) AF17 VP0D[1] AE18 VP0D[0] AF18 VP0CLK1 AF12 I/O/Z IPD VP0 clock 1 (I/O/Z) VP0CLK0 AF14 I IPD VP0 clock 0 (I) VP0CTL2 AD17 VP0CTL1 AC17 I/O/Z IPD VP0CTL0 AE17 VP0 control 2 (I/O/Z) VP0 control 1 (I/O/Z) VP0control 0 (I/O/Z) TIMER 2 – No external pins. The timer 2 peripheral pins are not pinned out as external pins. TIMER 1 TOUT1 B5 O/Z IPU Timer 1 output (O/Z) Boot Configuration: Device endian mode [LENDIAN] (I) Controls initialization of DSP modes at reset via pullup/pulldown resistors • Device Endian mode 0 - Big Endian 1 - Little Endian (default) For more details on LENDIAN, see the Device Configurations section of this data sheet. TINP1 A5 I IPD Timer 1 or general-purpose input TIMER 0 TOUT0 C5 O/Z IPD Timer 0 output (O/Z) Boot Configuration: MAC enable pin [MAC_EN] (I) The PCI_EN and the MAC_EN pin control the selection (enable/disable) of the HPI, EMAC, MDIO, and GP0[15:9], or PCI peripherals. The pins work in conjunction to enable/disable these peripherals. For more details, see the Device Configurations section of this data sheet. TINP0 A4 I IPD Timer 0 or general-purpose input Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel Device Overview 39 SM320DM642-HiRel SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 www.ti.com Table 2-4. Terminal Functions (continued) SIGNAL NAME NO. TYPE (1) IPD/ IPU (2) DESCRIPTION INTER-INTEGRATED CIRCUIT 0 (I2C0) SCL0 E4 I/O/Z — I2C0 clock. SDA0 D3 I/O/Z — I2C0 data. MULTICHANNEL BUFFERED SERIAL PORT 1 (McBSP1) VP1D[8]/CLKR1 AD8 I/O/Z IPD Video Port 1 (VP1) input/output data 8 pin (I/O/Z) or McBSP1 receive clock (I/O/Z) [default] VP1D[7]/FSR1(3) AC7 I/O/Z IPD VP1 input/output data 7 pin (I/O/Z) or McBSP1 receive frame sync (I/O/Z) [default] VP1D[6]/DR1(3) AD7 I IPD VP1 input/output data 6 pin (I/O/Z) or McBSP1 receive data (I) [default] VP1D[5]/CLKS1(3) AE7 I IPD VP1 input/output data 5 pin (I/O/Z) or McBSP1 external clock source (I) (as opposed to internal) [default] VP1D[4]/DX1(3) AC6 I/O/Z IPD VP1 input/output data 4 pin (I/O/Z) or McBSP1 transmit data (O/Z) [default] VP1D[3]/FSX1(3) AD6 I/O/Z IPD VP1 input/output data 3 pin (I/O/Z) or McBSP1 transmit frame sync (I/O/Z) [default] VP1D[2]/CLKX1(3) AE6 I/O/Z IPD VP1 input/output data 2 pin (I/O/Z) or McBSP1 transmit clock (I/O/Z) [default] (3) MULTICHANNEL BUFFERED SERIAL PORT 0 (McBSP0) VP0D[8]/CLKR0(3) AE15 I/O/Z IPD Video Port 0 (VP0) input/output data 8 pin (I/O/Z) or McBSP0 receive clock (I/O/Z) [default] VP0D[7]/FSR0(3) AB16 I/O/Z IPD VP0 input/output data 7 pin (I/O/Z) or McBSP0 receive frame sync (I/O/Z) [default] VP0D[6]/DR0(3) AC16 I IPD VP0 input/output data 6 pin (I/O/Z) or McBSP0 receive data (I) [default] VP0D[5]/CLKS0(3) AD16 I IPD VP0 input/output data 5 pin (I/O/Z) or McBSP0 external clock source (I) (as opposed to internal) [default] VP0D[4]/DX0(3) AE16 O/Z IPD VP0 input/output data 4 pin (I/O/Z) or McBSP0 transmit data (O/Z) [default] VP0D[3]/FSX0(3) AF16 I/O/Z IPD VP0 input/output data 3 pin (I/O/Z) or McBSP0 transmit frame sync (I/O/Z) [default] VP0D[2]/CLKX0(3) AF17 I/O/Z IPD VP0 input/output data 2 pin (I/O/Z) or McBSP0 transmit clock (I/O/Z) [default] 40 Device Overview Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel SM320DM642-HiRel www.ti.com SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 Table 2-4. Terminal Functions (continued) SIGNAL IPD/ IPU (2) TYPE (1) NAME NO. HD31/AD31/MRCLK(3) G1 I HD30/AD30/MCRS(3) H3 I HD29/AD29/MRXER(3) G2 I HD28/AD28/MRXDV(3) J4 I HD27/AD27/MRXD3(3) H2 I (3) HD26/AD26/MRXD2 J3 I HD25/AD25/MRXD1(3) J1 I HD24/AD24/MRXD0(3) K4 I HD22/AD22/MTCLK(3) L4 I DESCRIPTION ETHERNET MAC (EMAC) (3) HD21/AD21/MCOL K2 I HD20/AD20/MTXEN(3) L3 O/Z HD19/AD19/MTXD3(3) L2 O/Z (3) HD18/AD18/MTXD2 M4 O/Z HD17/AD17/MTXD1(3) M2 O/Z HD16/AD16/MTXD0(3) M3 O/Z Host-port data (I/O/Z) [default] or EMAC transmit/receive or control pins (I) (O/Z) HPI pin functions are default, see the Device Configurations section of this data sheet. EMAC Media Independent I/F (MII) data, clocks, and control pins for Transmit/Receive. • MII transmit clock (MTCLK), Transmit clock source from the attached PHY. • MII transmit data (MTXD[3:0]), Transmit data nibble synchronous with transmit clock (MTCLK). • MII transmit enable (MTXEN), This signal indicates a valid transmit data on the transmit data pins (MTDX[3:0]). • MII collision sense (MCOL) Assertion of this signal during half-duplex operation indicates network collision. During full-duplex operation, transmission of new frames will not begin if this pin is asserted. • MII carrier sense (MCRS) Indicates a frame carrier signal is being received. • MII receive data (MRXD[3:0]), Receive data nibble synchronous with receive clock (MRCLK). • MII receive clock (MRCLK), Receive clock source from the attached PHY. • MII receive data valid (MRXDV), This signal indicates a valid data nibble on the receive data pins (MRDX[3:0]) and • MII receive error (MRXER), Indicates reception of a coding error on the receive data. Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel Device Overview 41 SM320DM642-HiRel SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 www.ti.com Table 2-4. Terminal Functions (continued) SIGNAL NAME NO. TYPE (1) IPD/ IPU (2) DESCRIPTION MULTICHANNEL AUDIO SERIAL PORT 0 (McASP0) CONTROL VP0D[19]/AHCLKX0 AC12 I/O/Z IPD VP0 input/output data 19 pin (I/O/Z) or McASP0 transmit high-frequency master clock (I/O/Z). VP0D[18]/AFSX0(3) AD12 I/O/Z IPD VP0 input/output data 18 pin (I/O/Z) or McASP0 transmit frame sync or left/right clock (LRCLK) (I/O/Z). VP0D[17]/ACLKX0(3) AB13 I/O/Z IPD VP0 input/output data 17 pin (I/O/Z) or McASP0 transmit bit clock (I/O/Z). VP0D[16]/AMUTE0(3) AC13 O/Z IPD VP0 input/output data 16 pin (I/O/Z) or McASP0 mute output (O/Z). VP0D[15]/ AMUTEIN0(3) AD13 I/O/Z IPD VP0 input/output data 15 pin (I/O/Z) or McASP0 mute input (I/O/Z). VP0D[14]/AHCLKR0(3) AB14 I/O/Z IPD VP0 input/output data 14 pin (I/O/Z) or McASP0 receive high-frequency master clock (I/O/Z). VP0D[13]/AFSR0(3) AC14 I/O/Z IPD VP0 input/output data 13 pin (I/O/Z) or McASP0 receive frame sync or left/right clock (LRCLK) (I/O/Z). VP0D[12]/ACLKR0(3) AD14 I/O/Z IPD VP0 input/output data 12 pin (I/O/Z) or McASP0 receive bit clock (I/O/Z). VP1D[19]/AXR0[7](3) AB12 VP1D[18]/AXR0[6](3) AB11 (3) VP1D[17]/AXR0[5] AC11 VP1D[16]/AXR0[4](3) AD11 VP1D[15]/AXR0[3](3) AE11 VP1D[14]/AXR0[2](3) AC10 VP1D[13]/AXR0[1](3) AD10 VP1D[12]/AXR0[0](3) AC9 (3) MULTICHANNEL AUDIO SERIAL PORT 0 (McASP0) DATA I/O/Z IPD VP1 input/output data pins [19:12] (I/O/Z) or McASP0 TX/RX data pins [7:0] (I/O/Z) [default]. RESERVED FOR TEST RSV07 H7 A — Reserved. This pin must be connected directly to CVDD for proper device operation. RSV08 R6 A — Reserved. This pin must be connected directly to DVDD for proper device operation. RSV05 E14 I IPD RSV06 W7 A — RSV00 AA3 A — RSV01 AB3 I — RSV02 AC4 O/Z — RSV03 AD3 O/Z — RSV04 AF3 O IPU 42 Device Overview Reserved (leave unconnected, do not connect to power or ground. If the signal must be routed out from the device, the internal pull-up/down resistance should not be relied upon and an external pull-up/down should be used.) Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel SM320DM642-HiRel www.ti.com SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 Table 2-4. Terminal Functions (continued) SIGNAL NAME NO. IPD/ IPU (2) TYPE (1) DESCRIPTION SUPPLY VOLTAGE PINS A2 A25 B1 B2 B14 B25 B26 C3 C24 D4 D23 E5 E7 E8 E10 E17 E19 E20 E22 F9 F12 DVDD F15 F18 3.3-V supply voltage (see the Power-Supply Decoupling section of this data sheet) S G5 G22 H5 H22 J6 J21 K5 K22 M6 M21 N2 P25 R21 U5 U22 V21 W5 W22 W25 Y5 Y22 Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel Device Overview 43 SM320DM642-HiRel SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 www.ti.com Table 2-4. Terminal Functions (continued) SIGNAL NAME NO. TYPE (1) IPD/ IPU (2) DESCRIPTION AA9 AA12 AA15 AA18 AB5 AB7 AB8 AB10 AB17 AB19 DVDD AB20 S 3.3-V supply voltage (see the Power-Supply Decoupling section of this data sheet) AB22 AC23 AD24 AE1 AE2 AE13 AE25 AE26 AF2 AF25 44 Device Overview Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel SM320DM642-HiRel www.ti.com SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 Table 2-4. Terminal Functions (continued) SIGNAL NAME NO. IPD/ IPU (2) TYPE (1) DESCRIPTION F6 F7 F20 F21 G6 G7 G8 G10 G11 G13 G14 G16 G17 G19 G20 G21 H20 K7 K20 L7 L20 M12 CVDD M14 1.2-V supply voltage (-500 device) 1.4 V supply voltage (A-500, A-600, -600, -720 devices) (see the Power-Supply Decoupling section of this data sheet) S N7 N13 N15 N20 P7 P12 P14 P20 R13 R15 T7 T20 U7 U20 W20 Y6 Y7 Y8 Y10 Y11 Y13 Y14 Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel Device Overview 45 SM320DM642-HiRel SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 www.ti.com Table 2-4. Terminal Functions (continued) SIGNAL NAME NO. TYPE (1) IPD/ IPU (2) DESCRIPTION Y16 Y17 Y19 Y20 CVDD Y21 S AA6 1.2-V supply voltage (-500 device) 1.4 V supply voltage (A-500, A-600, -600, -720 devices) (see the Power-Supply Decoupling section of this data sheet) AA7 AA20 AA21 GROUND PINS A1 A3 A6 A8 A12 A14 A19 A22 A26 B3 B6 B7 B13 B19 C2 C4 C13 VSS C18 GND Ground pins C23 D1 D2 D5 D13 D18 D22 D24 E3 E6 E9 E16 E18 E21 E23 E26 F5 46 Device Overview Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel SM320DM642-HiRel www.ti.com SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 Table 2-4. Terminal Functions (continued) SIGNAL NAME NO. IPD/ IPU (2) TYPE (1) DESCRIPTION F8 F10 F11 F13 F14 F16 F17 F19 F22 G9 G12 G15 G18 H1 H6 H21 H26 J5 J7 J20 J22 K6 VSS K21 GND Ground pins L1 L6 L21 M7 M13 M15 M20 N5 N6 N12 N14 N21 N25 P2 P6 P13 P15 P21 R7 R12 R14 R20 Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel Device Overview 47 SM320DM642-HiRel SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 www.ti.com Table 2-4. Terminal Functions (continued) SIGNAL NAME NO. TYPE (1) IPD/ IPU (2) DESCRIPTION T1 T5 T6 T21 T26 U6 U21 V5 V7 V20 V22 W1 W6 W21 W26 Y9 Y12 Y15 Y18 AA4 AA5 AA8 VSS AA10 GND Ground pins AA11 AA13 AA14 AA16 AA17 AA19 AA22 AB1 AB2 AB4 AB6 AB9 AB18 AB21 AB26 AC3 AC5 AC18 AC22 AC24 AD2 AD4 48 Device Overview Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel SM320DM642-HiRel www.ti.com SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 Table 2-4. Terminal Functions (continued) SIGNAL NAME NO. IPD/ IPU (2) TYPE (1) DESCRIPTION AD18 AE3 AE8 AE10 AE12 AE14 AE19 AE24 VSS AF1 GND Ground pins AF7 AF9 AF11 AF13 AF15 AF19 AF22 AF26 Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel Device Overview 49 SM320DM642-HiRel SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 2.6 2.6.1 www.ti.com Development Development Support TI offers an extensive line of development tools for the TMS320C6000 DSP platform, including tools to evaluate the performance of the processors, generate code, develop algorithm implementations, and fully integrate and debug software and hardware modules. The following products support development of C6000 DSP-based applications: Software Development Tools: Code Composer Studio™ Integrated Development Environment (IDE): including Editor C/C++/Assembly Code Generation, and Debug plus additional development tools Scalable, Real-Time Foundation Software ( DSP/BIOS™), which provides the basic run-time target software needed to support any DSP application. Hardware Development Tools: Extended Development System ( XDS™) Emulator (supports C6000 DSP multiprocessor system debug) EVM (Evaluation Module) For a complete listing of development-support tools for the TMS320C6000 DSP platform, visit the TI web site on the Worldwide Web at http://www.ti.com uniform resource locator (URL). For information on pricing and availability, contact the nearest TI field sales office or authorized distributor. 50 Device Overview Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel SM320DM642-HiRel www.ti.com 2.6.2 SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 Device Support 2.6.2.1 Device and Development-Support Tool Nomenclature To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all DSP devices and support tools. Each DSP commercial family member has one of three prefixes: TMX, TMP, or TMS (e.g., TMS320DM642AZDKA5). Texas Instruments recommends two of three possible prefix designators for its support tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development from engineering prototypes (TMX/TMDX) through fully qualified production devices/tools (TMS/TMDS). Device development evolutionary flow: TMX Experimental device that is not necessarily representative of the final device's electrical specifications TMP Final silicon die that conforms to the device's electrical specifications but has not completed quality and reliability verification TMS Fully qualified production device Support tool development evolutionary flow: TMDX Development-support product that has not yet completed Texas Instruments internal qualification testing. TMDS Fully qualified development-support product TMX and TMP devices and TMDX development-support tools are shipped against the following disclaimer: "Developmental product is intended for internal evaluation purposes." TMS devices and TMDS development-support tools have been characterized fully, and the quality and reliability of the device have been demonstrated fully. TI's standard warranty applies. Predictions show that prototype devices (TMX or TMP) have a greater failure rate than the standard production devices. Texas Instruments recommends that these devices not be used in any production system because their expected end-use failure rate still is undefined. Only qualified production devices are to be used. TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package type (for example, ZDK), the temperature range (for example, “A” is the extended temperature range), and the device speed range in megahertz (for example, 5 is 500 MHz). Figure 2-16 provides a legend for reading the complete device name for any TMS320C6000 DSP platform member. The ZDK package is a 548-ball plastic BGA only with Pb-free balls. For device part numbers and further ordering information for DM642 in the ZDK package type, see the TI website (http://www.ti.com) or contact your TI sales representative. Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel Device Overview 51 SM320DM642-HiRel SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 www.ti.com Z Blank = 0°C to 90°C, commercial temperature A = –40°C to 105°C, extended temperature I = –40°C to 85°C, extended temperature S = –55°C to 105°C, extended temperature A. B. C. The extended temperature "A version" devices may have different operating conditions than the commercial temperature devices. For more details, see the recommended operating conditions portion of this data sheet. BGA = Ball Grid Array For actual device part numbers (P/Ns) and ordering information, see the TI website (www.ti.com). Figure 2-16. DM64x™ DSP Device Nomenclature (Including the SM320DM642AZDKI7 Device) 2.6.2.2 Documentation Support Extensive documentation supports all TMS320™ DSP family generations of devices from product announcement through applications development. The types of documentation available include: data sheets, such as this document, with design specifications; complete user's reference guides for all devices and tools; technical briefs; development-support tools; on-line help; and hardware and software applications. The following is a brief, descriptive list of support documentation specific to the C6000 DSP devices: The TMS320C6000™ CPU and Instruction Set Reference Guide (literature number SPRU189) describes the C6000™ DSP CPU (core) architecture, instruction set, pipeline, and associated interrupts. The TMS320C6000™ DSP Peripherals Overview Reference Guide (literature number SPRU190) provides an overview and briefly describes the functionality of the peripherals available on the C6000™ DSP platform of devices. This document also includes a table listing the peripherals available on the C6000 devices along with literature numbers and hyperlinks to the associated peripheral documents. The TMS320C64x™ Technical Overview (literature number SPRU395) gives an introduction to the C64x™ digital signal processor, and discusses the application areas that are enhanced by the C64x™ DSP VelociTI.2™ VLIW architecture. The TMS320C64x™ DSP Video Port/VCXO Interpolated Control (VIC) Port Reference Guide (literature number SPRU629) describes the functionality of the Video Port and VIC Port peripherals. The TMS320C6000™ DSP Multichannel Audio Serial Port (McASP) Reference Guide (literature number SPRU041) describes the functionality of the McASP peripheral. TMS320C6000™ DSP Inter-Integrated Circuit (I2C) Module Reference Guide (literature number SPRU175) describes the functionality of the I2C peripheral. TMS320C6000™ DSP Ethernet Media Access Controller (EMAC)/ Management Data Input/Output (MDIO) Module Reference Guide (literature number SPRU628) describes the functionality of the EMAC and MDIO peripherals. TMS320DM642™ Technical Overview (literature number SPRU615) describes the DM642 architecture including details of its peripherals. This document also shows several example applications such as using the DM642 device in development of IP phones, video-on-demand set-top boxes, and surveillance digital video recorders. 52 Device Overview Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel SM320DM642-HiRel www.ti.com SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 The TMS320DM642™ Digital Signal Processor Silicon Errata (literature number SPRZ196) describes the known exceptions to the functional specifications for particular silicon revisions of the DM642 device. The TMS320DM64x™ Power Consumption Summary application report (literature number SPRA962) discusses the power consumption for user applications with the DM642 DSP devices. The TMS320DM642™ Hardware Designer’s Resource Guide (literature number SPRAA51) is organized by development flow and functional areas to make design efforts as seamless as possible. This document includes getting started, board design, system testing, and checklists to aid in initial designs and debug efforts. Each section of this document includes pointers to valuable information including: technical documentation, models, symbols, and reference designs for use in each phase of design. Particular attention is given to peripheral interfacing and system-level design concerns. The Using IBIS Models for Timing Analysis application report (literature number SPRA839) describes how to properly use IBIS models to attain accurate timing analysis for a given system. The tools support documentation is electronically available within the Code Composer Studio Integrated Development Environment (IDE). For a complete listing of C6000 DSP latest documentation, visit the Texas Instruments web site on the Worldwide Web at http://www.ti.com uniform resource locator (URL). 2.6.2.3 Device Silicon Revision The device silicon revision can be determined by the "Die PG code" marked on the top of the package. For more detailed information on the DM642 silicon revision, package markings, and the known exceptions to the functional specifications as well as any usage notes, refer to the device-specific silicon errata: TMS320DM642™ Digital Signal Processor Silicon Errata (literature number SPRZ196). Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel Device Overview 53 SM320DM642-HiRel SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 www.ti.com 3 Device Configurations On the DM642 device, bootmode and certain device configurations/peripheral selections are determined at device reset, while other device configurations/peripheral selections are software-configurable via the peripheral configurations register (PERCFG) [address location 0x01B3F000] after device reset. 3.1 Configurations at Reset For DM642 proper device operation, GP0[0] (pin M5) must remain low, do not oppose the internal pulldown (IPD). 3.1.1 Peripheral Selection at Device Reset Some DM642 peripherals share the same pins (internally muxed) and are mutually exclusive (i.e., HPI, general-purpose input/output pins GP0[15:9], PCI and its internal EEPROM, EMAC, and MDIO). Other DM642 peripherals (i.e., the Timers, I2C0, and the GP0[7:0] pins), are always available. • HPI, GP0[15:9], PCI, EEPROM (internal to PCI), EMAC, and MDIO peripherals The PCI_EN and MAC_EN pins are latched at reset. They determine specific peripheral selection, summarized in Table 3-1. For further clarification of the HPI vs. EMAC configuration, see Table 3-2. Table 3-1. PCI_EN, HD5, and MAC_EN Peripheral Selection (HPI, GP0[15:9], PCI, EMAC, and MDIO) PERIPHERAL SELECTION PERIPHERALS SELECTED PCI_EN Pin [E2] PCI_EEAI Pin [L5] HD5 Pin [Y1] MAC_EN Pin [C5] HPI Data Lower HPI Data Upper 32-Bit PCI EEPROM (Auto-Init) EMAC and MDIO GP0[15:9] 0 0 0 0 √ Hi-Z Disabled N/A Disabled √ 0 0 0 1 √ Hi-Z Disabled N/A √ √ 0 0 1 0 √ √ Disabled N/A Disabled √ 0 0 1 1 Disabled Disabled N/A √ √ 1 1 X X Disabled √ Enabled (via External EEPROM) Disabled Disabled 1 0 X X Disabled √ Disabled (default values) Disabled Disabled • If the PCI is disabled (PCI_EN = 0), the HPI peripheral is enabled and based on the HD5 and MAC_EN pin configuration at reset, HPI16 mode or EMAC and MDIO can be selected. When the PCI is disabled (PCI_EN = 0), the GP0[15:9] pins can also be programmed as GPIO, provided the GPxEN and GPxDIR bits are properly configured. This means all multiplexed HPI/PCI pins function as HPI and all standalone PCI pins (PCBE0 and XSP_CS) are tied-off (Hi-Z). Also, the multiplexed GP0/PCI pins can be used as GPIO with the proper software configuration of the GPIO enable and direction registers (for more details, see Table 3-8). If the PCI is enabled (PCI_EN = 1), the HPI peripheral is disabled. This means all multiplexed HPI/PCI pins function as PCI. Also, the multiplexed GP0/PCI pins function as PCI pins (for more details, see Table 3-8). The MAC_EN pin, in combination with the PCI_EN and HD5 pins, controls the selection of the EMAC and MDIO peripherals (for more details, see Table 3-2). The PCI_EN pin (= 1) and the PCI_EEAI pin control the whether the PCI initializes its internal registers via external EEPROM (PCI_EEAI = 1) or if the internal default values are used instead (PCI_EEAI = 0). • • • Table 3-2. HPI vs. EMAC Peripheral Pin Selection CONFIGURATION SELECTION (1) GP0[0] (Pin [M5]) HD5 (Pin [Y1]) MAC_EN (Pin [C5]) HD[15:0] HD[31:16] 0 0 HPI16 Hi-Z 0 54 PERIPHERALS SELECTED Device Configurations Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel SM320DM642-HiRel www.ti.com SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 Table 3-2. HPI vs. EMAC Peripheral Pin Selection (continued) CONFIGURATION SELECTION PERIPHERALS SELECTED GP0[0] (Pin [M5])(1) HD5 (Pin [Y1]) MAC_EN (Pin [C5]) HD[15:0] 0 0 1 HPI16 0 1 0 0 1 1 1 X X 3.1.2 HD[31:16] used for EMAC HPI32 (HD[31:0]) Hi-Z used for EMAC (1) Invalid configuration. The GP0[0] pin must remain low during device reset. Device Configuration at Device Reset Table 3-3 describes the DM642 device configuration pins, which are set up via external pullup/pulldown resistors through the specified EMIFA address bus pins (AEA[22:19]), and the TOUT1/LENDIAN, GP0[3]/PCIEEAI, and the HD5 pins (all of which are latched during device reset). Table 3-3. DM642 Device Configuration Pins (TOUT1/LENDIAN, AEA[22:19], GP0[3]/PCIEEAI, VDAC/GP0[8]/PCI66, HD5/AD5, PCI_EN, and MAC_EN) CONFIGURATION PIN NO. TOUT1/LENDIAN B5 FUNCTIONAL DESCRIPTION Device Endian mode (LEND) 0 - System operates in Big Endian mode 1 - System operates in Little Endian mode (default) Bootmode [1:0] AEA[22:21] [U23, V24] 00 01 10 11 - No boot (default mode) - HPI/PCI boot (based on PCI_EN pin) - Reserved - EMIFA boot EMIFA input clock select Clock mode select for EMIFA (AECLKIN_SEL[1:0]) AEA[20:19] [V25, V26] 00 01 10 11 - AECLKIN (default mode) - CPU/4 Clock Rate - CPU/6 Clock Rate - Reserved PCI EEPROM Auto-Initialization (PCIEEAI) PCI auto-initialization via external EEPROM GP0[3]/PCIEEAI L5 0 - PCI auto-initialization through EEPROM is disabled; the PCI peripheral uses the specified PCI default values (default). 1 - PCI auto-initialization through EEPROM is enabled; the PCI peripheral is configured through EEPROM provided the PCI peripheral pin is enabled (PCI_EN = 1). PCI frequency selection (PCI66) [PCI peripheral needs be enabled (PCI_EN = 1) to use this function] Selects the PCI operating frequency of 66 MHz or 33 MHz PCI operating frequency is selected at reset via the pullup/pulldown resistor on the PCI66 pin: VDAC/GP0[8]/ PCI66 AD1 0 - PCI operates at 66 MHz (default). 1 - PCI operates at 33 MHz. The -500 speed device supports PCI at 33 MHz only. For proper -500 device operation when the PCI is enabled (PCI_EN = 1), this pin must be pulled up with a 1-kΩ resistor at device reset. Note: If the PCI peripheral is disabled (PCI_EN pin = 0), this pin must not be pulled up. HPI peripheral bus width (HPI_WIDTH) HD5/AD5 Y1 0 - HPI operates as an HPI16. (HPI bus is 16 bits wide. HD[15:0] pins are used and the remaining HD[31:16] pins are reserved pins in the Hi-Z state.) 1 - HPI operates as an HPI32. (HPI bus is 32 bits wide. All HD[31:0] pins are used for host-port operations.) (Also see the PCI_EN; TOUT0/MAC_EN functional description in this table) Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel Device Configurations 55 SM320DM642-HiRel SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 www.ti.com Table 3-3. DM642 Device Configuration Pins (TOUT1/LENDIAN, AEA[22:19], GP0[3]/PCIEEAI, VDAC/GP0[8]/PCI66, HD5/AD5, PCI_EN, and MAC_EN) (continued) CONFIGURATION PIN NO. FUNCTIONAL DESCRIPTION Peripheral Selection PCI_EN; TOUT0/MAC_EN 3.2 [E2; C5] 00 01 10 11 - HPI (default mode) [HPI32, if HD5 = 1; HPI16 if HD5 = 0 - EMAC and MDIO; HPI16, if HD5 = 0; HPI disabled, if HD5 = 1 - PCI - Reserved Configurations After Reset 3.2.1 Peripheral Selection After Device Reset Video Ports, McBSP1, McBSP0, McASP0 and I2C0 The DM642 device has designated registers for peripheral configuration (PERCFG), device status (DEVSTAT), and JTAG identification (JTAGID). These registers are part of the Device Configuration module and are mapped to a 4K block memory starting at 0x01B3F000. The CPU accesses these registers via the CFGBUS. The peripheral configuration register (PERCFG), allows the user to control the peripheral selection of the Video Ports (VP0, VP1, VP2) McBSP0, McBSP1, McASP0, and I2C0 peripherals. For more detailed information on the PERCFG register control bits, see Figure 3-1 and Table 3-4. 31 24 Reserved R-0 23 16 Reserved R-0 15 8 Reserved R-0 7 6 5 4 3 2 1 0 Reserved VP2EN VP1EN VP0EN I2C0EN MCBSP1EN MCBSP0EN MCASP0EN R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-1 R/W-1 R/W-0 Legend: R = Read only, R/W = Read/Write, -n = value after reset Figure 3-1. Peripheral Configuration Register (PERCFG) [Address Location: 0x01B3F000 - 0x01B3F003] Table 3-4. Peripheral Configuration (PERCFG) Register Selection Bit Descriptions BIT NAME 31:7 Reserved 6 VP2EN DESCRIPTION Reserved. Read-only, writes have no effect. VP2 Enable bit. Determines whether the VP2 peripheral is enabled or disabled. (This feature allows power savings by disabling the peripheral when not in use.) 0 = VP2 is disabled, and the module is powered down (default). 1 = VP2 is enabled. VP1 Enable bit. Determines whether the VP1 peripheral is enabled or disabled. 5 56 VP1EN Device Configurations 0 = VP1 is disabled, and the module is powered down (default). (This feature allows power savings by disabling the peripheral when not in use.) 1 = VP1 is enabled. Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel SM320DM642-HiRel www.ti.com SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 Table 3-4. Peripheral Configuration (PERCFG) Register Selection Bit Descriptions (continued) BIT NAME DESCRIPTION VP0 Enable bit. Determines whether the VP0 peripheral is enabled or disabled. 4 VP0EN 0 = VP0 is disabled, and the module is powered down (default). (This feature allows power savings by disabling the peripheral when not in use.) 1 = VP0 is enabled. Inter-integrated circuit 0 (I2C0) enable bit. Selects whether I2C0 peripheral is enabled or disabled (default). 3 I2C0EN 0 = I2C0 is disabled, and the module is powered down (default). 1 = I2C0 is enabled. Video Port 1 (VP1) lower data pins vs. McBSP1 enable bit. Selects whether VP1 peripheral lower-data pins or the McBSP1 peripheral is enabled. 2 MCBSP1EN 0 = VP1 lower-data pins are enabled and function (if VP1EN=1), McBSP1 is disabled; the remaining VP1 upper-data pins are dependent on the MCASP0EN bit and the VP1EN bit settings. 1 = McBSP1 is enabled, VP1 lower-data pin functions are disabled (default). For a graphic (logic) representation of this Peripheral Configuration (PERCFG) Register selection bit and the signal pins controlled/selected, see Figure 3-2. Video Port 0 (VP0) lower data pins vs. McBSP0 enable bit. Selects whether VP0 peripheral lower-data pins or the McBSP1 peripheral is enabled. 1 MCBSP0EN 0 = VP0 lower-data pins are enabled and function (if VP0EN=1), McBSP0 is disabled; the remaining VP0 upper-data pins are dependent on the MCASP0EN bit and the VP1EN bit settings. 1 = McBSP0 is enabled, VP0 lower-data pin functions are disabled (default). For a graphic (logic) representation of this Peripheral Configuration (PERCFG) Register selection bit and the signal pins controlled/selected, see Figure 3-2. McASP0 vs. VP0/VP1 upper-data pins select bit. Selects whether the McASP0 peripheral or the VP0 and VP1 upper-data pins are enabled. 0 MCASP0EN 0 = McASP0 is disabled; VP0 and VP1 upper-data pins are enabled; and the VP0 and VP1lower-data pins are dependent on the MCBSP0EN and VP0EN, and MCSBP1EN and VP1EN bits, respectively. 1 = McASP0 is enabled; VP0 and VP1 upper-data pins are disabled; and the VP0 and VP1lower-data pins are dependent on the MCBSP0EN and VP0EN, and MCSBP1EN andVP1EN bits, respectively. For a graphic (logic) representation of this Peripheral Configuration (PERCFG) Register selection bit and the signal pins controlled/selected, see Figure 3-2. Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel Device Configurations 57 SM320DM642-HiRel SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 www.ti.com McBSP0EN [PERCFG.1] VP0 Lower Data (10 pins) VP0D[8:2] Muxed (A) VP0D[9,1,0] Standalone 1 McBSP0 0 VP0 (Channel A) McBSP1EN [PERCFG.2] VP1 Lower Data (10 pins) VP1D[8:2] Muxed (B) VP1D[9,1,0] Standalone 1 McBSP1 0 VP1 (Channel A) 1 VP0 (Channel A) McBSP0EN [PERCFG.1] McASP0EN [PERCFG.0] VP0 Upper Data (10 pins) VP0D[19:12] Muxed (C) VP0D[11:10] Standalone McASP0EN [PERCFG.0] 0 1 McASP0 Control 0 VP0 (Channel B) McBSP1EN [PERCFG.2] McASP0EN [PERCFG.0] 1 VP1 Upper Data (10 pins) VP1D[19:12] Muxed (D) VP1D[11:10] Standalone A. B. C. D. VP1 (Channel A) McASP0EN [PERCFG.0] 0 1 McASP0 Data 0 VP1 (Channel B) Consists of: VP0D[8]/CLKR0, VP0D[7]/FSR0, VP0D[6]/DR0, VP0D[5]/CLKS0, VP0D[4]/DX0, VP0D[3]/FSX0, VP0D[2]/CLKX0. Consists of: VP1D[8]/CLKR1, VP1D[7]/FSR1, VP1D[6]/DR1, VP1D[5]/CLKS1, VP1D[4]/DX1, VP1D[3]/FSX1, VP1D[2]/CLKX1. Consists of: VP0D[19]/AHCLKX0, VP0D[18]/AFSX0, VP0D[17]/ACLKX0, VP0D[16]/AMUTE0, VP0D[15]/AMUTEIN0, VP0D[14]/AHCLKR0, VP0D[13]/AFSR0, VP0D[12]/ACLKR0 Consists of: VP1D[19:12]/AXR0[7:0] Figure 3-2. VP1, VP0, McBSP1, McBSP0, and McASP0 Data/Control Pin Muxing 58 Device Configurations Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel SM320DM642-HiRel www.ti.com 3.3 SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 Peripheral Configuration Lock By default, the McASP0, VP0, VP1, VP2, and I2C peripherals are disabled on power up. In order to use these peripherals on the DM642 device, the peripheral must first be enabled in the Peripheral Configuration register (PERCFG). Software muxed pins should not be programmed to switch functionalities during run-time. Care should also be taken to ensure that no accesses are being performed before disabling the peripherals. To help minimize power consumption in the DM642 device, unused peripherals may be disabled. Figure 3-3 shows the flow needed to enable (or disable) a given peripheral on the DM642 device. Unlock the PERCFG Register Using the PCFGLOCK Register Write to PERCFG Register to Enable/Disable Peripherals Read from PERCFG Register Wait 128 CPU Cycles Before Accessing Enabled Peripherals Figure 3-3. Peripheral Enable/Disable Flow Diagram Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel Device Configurations 59 SM320DM642-HiRel SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 www.ti.com A 32-bit key (value = 0x10C0010C) must be written to the Peripheral Configuration Lock register (PCFGLOCK) in order to unlock access to the PERCFG register. Reading the PCFGLOCK register determines whether the PERCFG register is currently locked (LOCKSTAT bit = 1) or unlocked (LOCKSTAT bit = 0), see Figure 3-4. A peripheral can only be enabled when the PERCFG register is "unlocked" (LOCKSTAT bit = 0). Read Accesses 31 1 0 Reserved LOCKSTAT R-0 R-1 Write Accesses 31 0 LOCK W-0 Legend: R = Read only, R/W = Read/Write, -n = value after reset Figure 3-4. PCFGLOCK Register Diagram [Address Location: 0x01B3 F018] - Read/Write Accesses Table 3-5. PCFGLOCK Register Selection Bit Descriptions - Read Accesses BIT NAME 31:1 Reserved DESCRIPTION Reserved. Read-only, writes have no effect. Lock status bit. Determines whether the PERCFG register is locked or unlocked. 0 LOCKSTAT 0 = Unlocked, read accesses to the PERCFG register allowed. 1 = Locked, write accesses to the PERCFG register do not modify the register state [default]. Reads are unaffected by Lock Status. Table 3-6. PCFGLOCK Register Selection Bit Descriptions - Write Accesses BIT 31:0 NAME LOCK DESCRIPTION Lock bits. 0x10C0010C = Unlocks PERCFG register accesses. Any write to the PERCFG register will automatically relock the register. In order to avoid the unnecessary overhead of multiple unlock/enable sequences, all peripherals should be enabled with a single write to the PERCFG register with the necessary enable bits set. Prior to waiting 128 CPU cycles, the PERCFG register should be read. There is no direct correlation between the CPU issuing a write to the PERCFG register and the write actually occurring. Reading the PERCFG register after the write is issued forces the CPU to wait for the write to the PERCFG register to occur. Once a peripheral is enabled, the DSP (or other peripherals such as the HPI) must wait a minimum of 128 CPU cycles before accessing the enabled peripheral. The user must ensure that no accesses are performed to a peripheral while it is disabled. 60 Device Configurations Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel SM320DM642-HiRel www.ti.com 3.4 SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 Device Status Register Description The device status register depicts the status of the device peripheral selection. For the actual register bit names and their associated bit field descriptions, see Figure 3-5 and Table 3-7. 31 24 Reserved R-0 23 16 Reserved R-0 15 11 10 9 8 Reserved 12 MAC_EN HPI_WIDTH PCI_EEAI PCI_EN R-0 R-x R-x R-x R-x 7 6 5 4 3 2 1 0 Reserved CLKMODE1 CLKMODE0 LENDIAN BOOTMODE1 BOOTMODE0 AECLKINSEL1 AECLKINSEL0 R-x R-x R-x R-x R-x R-x R-x R-x Legend: R = Read only, R/W = Read/Write, -n = value after reset Figure 3-5. Device Status Register (DEVSTAT) Description - 0x01B3 F004 Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel Device Configurations 61 SM320DM642-HiRel SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 www.ti.com Table 3-7. Device Status (DEVSTAT) Register Selection Bit Descriptions BIT NAME 31:12 Reserved DESCRIPTION Reserved. Read-only, writes have no effect. EMAC enable bit. Shows the status of whether EMAC peripheral is enabled or disabled (default). 11 MAC_EN 0 = EMAC is disabled, and the module is powered down (default). 1 = EMAC is enabled. This bit has no effect if the PCI peripheral is enabled (PCI_EN = 1). HPI bus width control bit. Shows the status of whether the HPI bus operates in 32-bit mode or in 16-bit mode (default). 10 HPI_WIDTH 0 = HPI operates in 16-bit mode. (default). 1 = HPI operates in 32-bit mode. PCI EEPROM auto-initialization bit (PCI auto-initialization via external EEPROM). Shows the status of whether the PCI module initializes internal registers via external EEPROM or if the internal PCI default values are used instead (default). 9 PCI_EEAI 0 = PCI auto-initialization through EEPROM is disabled; the PCI peripheral uses the specified PCI default values (default). 1 = PCI auto-initialization through EEPROM is enabled; the PCI peripheral is configured through EEPROM provided the PCI peripheral pin is enabled (PCI_EN = 1). PCI enable bit. Shows the status of whether the PCI peripheral is enabled or disabled (default). 8 PCI_EN 0 = PCI disabled. (default). 1 = PCI enabled. Global select for the PCI vs. HPI/EMAC/MDIO/GPIO peripherals. 7 Reserved 6 CLKMODE1 5 CLKMODE0 Reserved. Read-only, writes have no effect. Clock mode select bits Shows the status of whether the CPU clock frequency equals the input clock frequency X1 (Bypass), x6, or x12. Clock mode select for CPU clock frequency (CLKMODE[1:0]) 00 01 10 11 - Bypass (x1) (default mode) - x6 - x12 - Reserved For more details on the CLKMODE pins and the PLL multiply factors, see the Clock PLL section of this data sheet. Device Endian mode (LEND) Shows the status of whether the system is operating in Big Endian mode or Little Endian mode (default). 4 LENDIAN 0 - System is operating in Big Endian mode 1 - System is operating in Little Endian mode (default) 62 3 BOOTMODE1 2 BOOTMODE0 1 AECLKINSEL1 EMIFA input clock select Shows the status of what clock mode is enabled or disabled for the EMIF. Clock mode select for EMIFA (AECLKIN_SEL[1:0]) 0 AECLKINSEL0 00 01 10 11 Device Configurations Bootmode configuration bits Shows the status of what device bootmode configuration is operational. Bootmode [1:0] 00 - No boot (default mode) 01 - HPI/PCI boot (based on PCI_EN pin) 10 - Reserved 11 - EMIFA boot - AECLKIN (default mode) - CPU/4 Clock Rate - CPU/6 Clock Rate - Reserved Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel SM320DM642-HiRel www.ti.com 3.5 SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 Multiplexed Pin Configurations Multiplexed pins are pins that are shared by more than one peripheral and are internally multiplexed. Some of these pins are configured by software, and the others are configured by external pullup/pulldown resistors only at reset. Those muxed pins that are configured by software should not be programmed to switch functionalities during run-time. Those muxed pins that are configured by external pullup/pulldown resistors are mutually exclusive; only one peripheral has primary control of the function of these pins after reset. Table 3-8 identifies the multiplexed pins on the DM642 device; shows the default (primary) function and the default settings after reset; and describes the pins, registers, etc. necessary to configure specific multiplexed functions. Table 3-8. DM642 Device Multiplexed Pin Configurations(1) MULTIPLEXED PINS NAME NO. DEFAULT FUNCTION DEFAULT SETTING CLKOUT4/GP0[1] D6 CLKOUT4 GP1EN = 0 (disabled) CLKOUT6/GP0[2] C6 CLKOUT6 GP2EN = 0 (disabled) DESCRIPTION These pins are software-configurable. To use these pins as GPIO pins, the GPxEN bits in the GPIO Enable Register and the GPxDIR bits in the GPIO Direction Register must be properly configured. GPxEN = 1: GPx pin enabled GPxDIR = 0: GPx pin is an input GPxDIR = 1: GPx pin is an output The VDAC output pin function is default. VDAC/GP0[8] AD1 GP8EN = 0 (disabled) MAC_EN = 0 (disabled) VDAC To use GP0[8] as a GPIO pin, the PCI needs to be disabled (PCI_EN = 0), the GPxEN bits in the GPIO Enable Register and the GPxDIR bits in the GPIO Direction Register must be properly configured. GP8EN = 1: GP8 pin enabled GP8DIR = 0: GP8 pin is an input GP8DIR = 1: GP8 pin is an output Note: If the PCI peripheral is disabled (PCI_EN pin = 0), this pin must not be pulled up. GP0[9]/PIDSEL K3 GP0[10]/PCBE3 J2 GP0[11]/PREQ F1 GP0[12]/PGNT H4 GP0[13]/PINTA G4 GP0[14]/PCLK C1 GP0[15]/PRST VP1D[19]/AXR0[7] GPxEN = 1: GPx pin enabled GPxDIR = 0: GPx pin is an input GPxDIR = 1: GPx pin is an output G3 AB12 VP1D[18]/AXR0[6] AB11 VP1D[17]/AXR0[5] AC11 VP1D[16]/AXR0[4] AD11 VP1D[15]/AXR0[3] AE11 VP1D[14]/AXR0[2] AC10 VP1D[13]/AXR0[1] AD10 VP1D[12]/AXR0[0] AC9 VP1D[8]/CLKR1 AD8 VP1D[7]/FSR1 AC7 VP1D[6]/DR1 AD7 VP1D[5]/CLKS1 AE7 VP1D[4]/DX1 AC6 VP1D[3]/FSX1 AD6 VP1D[2]/CLKX1 AE6 (1) GPxEN = 0 (disabled) PCI_EN = 0 (disabled) (1) None To use GP0[15:9] as GPIO pins, the PCI needs to be disabled (PCI_EN = 0), the GPxEN bits in the GPIO Enable Register and the GPxDIR bits in the GPIO Direction Register must be properly configured. By default, no function is enabled upon reset. To enable the Video Port 1 data pins, the VP1EN bit in the VP1EN bit = 0 (disabled) PERCFG register must be set to a 1. (McASP0 data pins MCASP0EN bit = 0 are disabled). (disabled) To enable the McASP0[7:0] data pins, the MCASP0EN bit in the PERCFG register must be set to a 1. (VP1 upper data pins are disabled). None By default, the McBSP1 peripheral, function is enabled VP1EN bit = 0 (disabled) upon reset (MCBSP1EN bit = 1). MCBSP1EN bit = 1 To enable the Video Port 1 data pins, the VP1EN bit in the (enabled) PERCFG register must be set to a 1. McBSP1 functions All other standalone PCI pins are tied-off internally (pins in Hi-Z) when the peripheral is disabled [PCI_EN = 0]. Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel Device Configurations 63 SM320DM642-HiRel SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 www.ti.com Table 3-8. DM642 Device Multiplexed Pin Configurations(1) (continued) MULTIPLEXED PINS NAME NO. VP0D[19]/AHCLKX0 AC12 VP0D[18]/AFSX0 AD12 VP0D[17]/ACLKX0 AB13 VP0D[16]/AMUTE0 AC13 VP0D[15]/AMUTEIN0 AD13 VP0D[14]/AHCLKR0 AB14 VP0D[13]/AFSR0 AC14 VP0D[12]/ACLKR0 AD14 VP0D[8]/CLKR0 AE15 VP0D[7]/FSR0 AB16 VP0D[6]/DR0 AC16 VP0D[5]/CLKS0 AD16 VP0D[4]/DX0 AE16 VP0D[3]/FSX0 AF16 VP0D[2]/CLKX0 AF17 XSP_CLK/MDCLK DEFAULT FUNCTION To enable the Video Port 0 data pins, the VP0EN bit in the VP0EN bit = 0 (disabled) PERCFG register must be set to a 1. (McASP0 control MCASP0EN bit = 0 pins are disabled). (disabled) To enable the McASP0 control pins, the MCASP0EN bit in the PERCFG register must be set to a 1. (VP0 upper data pins are disabled). None By default, the McBSP0 peripheral function is enabled VP0EN bit = 0 (disabled) upon reset (MCBSP0EN bit = 1). MCBSP0EN bit = 1 To enable the Video Port 0 data pins, the VP0EN bit in the (enabled) PERCFG register must be set to a 1. McBSP0 functions R5 By default, no functions enabled upon reset (PCI is disabled). To enable the PCI peripheral, an external pullup resistor PCI_EN = 0 (disabled) (2) (1 kΩ) must be provided on the PCI_EN pin (setting MAC_EN = 0 PCI_EN = 1 at reset) (disabled) (2) To enable the MDIO peripheral (which also enables the EMAC peripheral), an external pullup resistor (1 kΩ) must be provided on the MAC_EN pin (setting MAC_EN = 1 at reset) None P5 HAS/PPAR P3 HAS HCNTL1/PDEVSEL P1 HCNTL1 HCNTL0/PSTOP R3 HCNTL0 HDS1/PSERR R2 HDS1 HDS2/PCBE1 T2 HDS2 HR/W/PCBE2 M1 HR/W HHWIL/PTRDY N3 HHWIL (HPI16 only) HINT/PFRAME N4 HINT HCS/PPERR R1 HCS HRDY/PIRDY N1 HRDY 64 DESCRIPTION By default, no function is enabled upon reset. XSP_DO/MDIO (2) DEFAULT SETTING By default, HPI is enabled upon reset (PCI is disabled). PCI_EN = 0 (disabled) (2) To enable the PCI peripheral, an external pullup resistor (1 kΩ) must be provided on the PCI_EN pin (setting PCI_EN = 1 at reset). All other standalone PCI pins are tied-off internally (pins in Hi-Z) when the peripheral is disabled [PCI_EN = 0]. Device Configurations Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel SM320DM642-HiRel www.ti.com SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 Table 3-8. DM642 Device Multiplexed Pin Configurations(1) (continued) MULTIPLEXED PINS NAME NO. DEFAULT FUNCTION DEFAULT SETTING DESCRIPTION By default, HPI is enabled upon reset (PCI is disabled). HD[23,15:0]/AD[23,15:0] HD31/AD31/MRCLK (2) HD[23, 15:0] G1 HD31 HD30/AD30/MCRS H3 HD30 HD29/AD29/MRXER G2 HD29 HD28/AD28/MRXDV J4 HD28 HD27/AD27/MRXD3 H2 HD27 HD26/AD26/MRXD2 J3 HD26 HD25/AD25/MRXD1 J1 HD25 HD24/AD24/MRXD0 K4 HD24 HD22/AD22/MTCLK L4 HD22 HD21/AD21/MCOL K2 HD21 HD20/AD20/MTXEN L3 HD20 HD19/AD19/MTXD3 L2 HD19 HD18/AD18/MTXD2 M4 HD18 HD17/AD17/MTXD1 M2 HD17 HD16/AD16/MTXD0 M3 HD16 3.6 (1) PCI_EN = 0 (disabled) To enable the PCI peripheral, an external pullup resistor (1 kΩ) must be provided on the PCI_EN pin (setting PCI_EN = 1 at reset). By default, HPI is enabled upon reset (PCI is disabled). PCI_EN = 0 (disabled)(1) MAC_EN = 0 (disabled)(1) To enable the PCI peripheral, an external pullup resistor (1 kΩ) must be provided on the PCI_EN pin (setting PCI_EN = 1 at reset). To enable the EMAC peripheral, an external pullup resistor (1 kΩ) must be provided on the MAC_EN pin (setting MAC_EN = 1 at reset). Debugging Considerations It is recommended that external connections be provided to device configuration pins, including TOUT1/LENDIAN, AEA[22:19], GP0[3]/PCIEEAI, VDAC/GP0[8]/PCI66, HD5/AD5, PCI_EN, and TOUT0/MAC_EN. Although internal pullup/pulldown resistors exist on these pins, providing external connectivity adds convenience to the user in debugging and flexibility in switching operating modes. Internal pullup/pulldown resistors also exist on the non-configuration pins on the AEA bus (AEA[18:0]). Do not oppose the internal pullup/pulldown resistors on these non-configuration pins with external pullup/pulldown resistors. If an external controller provides signals to these non-configuration pins, these signals must be driven to the default state of the pins at reset, or not be driven at all. For the internal pullup/pulldown resistors for all device pins, see the terminal functions table. 3.7 Configuration Examples Figure 3-6 through Figure 3-8 illustrate examples of peripheral selections that are configurable on the DM642 device. Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel Device Configurations 65 SM320DM642-HiRel SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 www.ti.com 64 AED[63:0] PCI HD[15:0] EMIFA 16 HCNTL0, HCNTL1, HHWIL, HAS, HR/W, HCS, HDS1, HDS2 AEA[22:3], ACE[3:0], ABE[7:0], AECLKOUT1, AECLKOUT2, ASDCKE, ASOE3, APDT, AHOLDA, ABUSREQ, AARE/ASDCAS/ASADS/ASRE, AAOE/ASDRAS/ASOE, AAWE/ASDWE/ASWE Clock and System HPI (16-Bit) HRDY, HINT AECLKIN, AARDY, AHOLD CLKIN, CLKMODE0, CLKMODE1 MTXD[3:0], MTXEN EMAC TIMER2 MDIO TIMER1 CLKOUT4, CLKOUT6, PLLV MRXD[3:0], MRXER, MRXDV, MCOL, MCRS, MTCLK, MRCLK TINP1 MDIO, MDCLK TOUT1/LENDIAN STCLK (A) VP0CLK0 VP0CLK1, VP0CTL[2:0], VP0D[19:0] TINP0 VP0 (20-Bit) TIMER0 McBSP0 GP0 and EXT_INT TOUT0/MACEN GP0[15:9, 3:0] GP0[7:4] McASP0 Control SCL0 I2C0 SDA0 McASP0 Data McBSP1 VIC VP1 (20-Bit) VP2 (20-Bit) VDAC/GP0[8]/PCI66 STCLK (A) STCLK (A) VP1CLK0 VP1CLK1, VP1CTL[2:0], VP1D[19:0] PERCFG Register Value: External Pins: 0x0000 0078 PCI_EN = 0 GP0[3]/PCIEEAI = 0 VP2CLK0 VP2CLK1, VP2CTL[2:0], VP2D[19:0] HD5 = 0 TOUT0/MAC_EN = 1 Shading denotes a peripheral module not available for this configuration. A. STCLK supports all three video ports (VP2, VP1, and VP0). Figure 3-6. Configuration Example A (Three 20-Bit Video Ports + HPI + EMAC + MDIO + I2C0 + EMIF + Three Timers) 66 Device Configurations Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel SM320DM642-HiRel www.ti.com SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 64 AED[63:0] PCI HD[15:0] 16 HPI (16-Bit) HRDY, HINT HCNTL0, HCNTL1, HHWIL, HAS, HR/W, HCS, HDS1, HDS2 EMIFA AECLKIN, AARDY, AHOLD AEA[22:3], ACE[3:0], ABE[7:0], AECLKOUT1, AECLKOUT2, ASDCKE, ASOE3, APDT, AHOLDA, ABUSREQ, AARE/ASDCAS/ASADS/ASRE, AAOE/ASDRAS/ASOE, AAWE/ASDWE/ASWE Clock and System CLKIN, CLKMODE0, CLKMODE1 MTXD[3:0], MTXEN EMAC TIMER2 MDIO TIMER1 CLKOUT4, CLKOUT6, PLLV MRXD[3:0], MRXER, MRXDV, MCOL, MCRS, MTCLK, MRCLK TINP1 MDIO, MDCLK TOUT1/LENDIAN STCLK (A) TINP0 VP0CLK0 VP0CLK1, VP0CTL[2:0], VP0D[19:10] CLKR0, FSR0, DR0, CLKS0, DX0, FSX0, CLKX0 VP0 (10-Bit) TIMER0 McBSP0 GP0 and EXT_INT TOUT0/MACEN GP0[15:9, 3:0] GP0[7:4] McASP0 Control SCL0 I2C0 SDA0 McASP0 Data CLKR1, FSR1, DR1, CLKS1, DX1, FSX1, CLKX1 McBSP1 VIC VDAC/GP0[8]/PCI66 STCLK (A) STCLK (A) VP1 (10-Bit) VP1CLK0 VP2 (20-Bit) VP2CLK0 VP2CLK1, VP2CTL[2:0], VP2D[19:0] VP1CLK1, VP1CTL[2:0], VP1D[19:10] PERCFG Register Value: Extenal Pins: 0x0000 007E PCI_EN = 0 GP0[3]/PCIEEAI = 0 HD5 = 0 TOUT0/MAC_EN = 1 Shading denotes a peripheral module not available for this configuration. A. STCLK supports all three video ports (VP2, VP1, and VP0). Figure 3-7. Configuration Example B (Two 10-Bit Video Ports + Two McBSPs + EMAC + MDIO + I2C0 + EMIF) [Possible Video IP Phone Application] Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel Device Configurations 67 SM320DM642-HiRel SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 www.ti.com 64 AED[63:0] PCI HD[15:0] HRDY, HINT HCNTL0, HCNTL1, HHWIL, HAS, HR/W, HCS, HDS1, HDS2 EMIFA 16 AECLKIN, AARDY, AHOLD AEA[22:3], ACE[3:0], ABE[7:0], AECLKOUT1, AECLKOUT2, ASDCKE, ASOE3, APDT, AHOLDA, ABUSREQ, AARE/ASDCAS/ASADS/ASRE, AAOE/ASDRAS/ASOE, AAWE/ASDWE/ASWE Clock and System HPI (16-Bit) CLKIN, CLKMODE0, CLKMODE1 MTXD[3:0], MTXEN EMAC TIMER2 MDIO TIMER1 CLKOUT4, CLKOUT6, PLLV MRXD[3:0], MRXER, MRXDV, MCOL, MCRS, MTCLK, MRCLK TINP1 MDIO, MDCLK TOUT1/LENDIAN STCLK (A) VP0CLK0 VP0CLK1, VP0CTL[2:0], VP0D[9:0] AHCLKX0, AFSX0, ACLKX0, AMUTE0, AMUTEIN0, AHCLKR0, AFSR0, ACLKR0 TINP0 VP0 (10-Bit) TIMER0 McBSP0 GP0 and EXT_INT TOUT0/MACEN GP0[15:9, 3:0] GP0[7:4] McASP0 Control SCL0 I2C0 AXR0[7:0] SDA0 McASP0 Data McBSP1 VIC VP1 (10-Bit) VP2 (20-Bit) VDAC/GP0[8]/PCI66 STCLK (A) VP1CLK0 VP1CLK1, VP1CTL[2:0], VP1D[9:0] PERCFG Register Value: Extenal Pins: STCLK (A) 0x0000 0079 PCI_EN = 0 GP0[3]/PCIEEAI = 0 VP2CLK0 VP2CLK1, VP2CTL[2:0], VP2D[19:0] HD5 = 0 TOUT0/MAC_EN = 1 Shading denotes a peripheral module not available for this configuration. A. STCLK supports all three video ports (VP2, VP1, and VP0). Figure 3-8. Configuration Example C (One 20-Bit Video Port, Two 10-Bit Video Ports + One McASP0 + VIC + I2C0 + EMIF) [Possible Set-Top Box Application] 68 Device Configurations Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel SM320DM642-HiRel www.ti.com SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 4 Device Operating Conditions 4.1 Absolute Maximum Ratings Over Operating Case Temperature Range (Unless Otherwise Noted) (1) CVDD –0.3 V to 1.8 V (2) DVDD Supply voltage ranges: –0.3 V to 4 V (2) VI Except PCI Input voltage ranges VIP –0.3 V to 4 V PCI VO –0.5 V to DVDD + 0.5 V Except PCI Output voltage ranges VOP TC –0.3 V to 4 V PCI Operating case temperature ranges –0.5 V to DVDD + 0.5 V Default 0°C to 90°C I-Temp –40°C to 85°C A-Temp –40°C to 105°C S-Temp Tstg –65°C to 150°C Temperature range Package temperature cycling (1) (2) -55°C to 105°C Storage temperature range –40°C to 125°C Number of cycles 500 Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltage values are with respect to VSS. 4.2 Recommended Operating Conditions CVDD Supply voltage, Core (–500 device) (1) Supply voltage, Core (A-500, A-600, -600, -720 devices) (1) MIN NOM MAX UNIT 1.14 1.2 1.26 V 1.36 1.4 1.44 V 3.14 3.3 3.46 V 0 0 V DVDD Supply voltage, I/O VSS Supply ground 0 VIH High-level input voltage (except PCI) 2 VIL Low-level input voltage (except PCI) VIP Input voltage (PCI) VIHP VILP VOS Maximum voltage during overshoot/undershoot TC (1) (2) V 0.8 V –0.5 DVDD + 0.5 V High-level input voltage (PCI) 0.5DVDD DVDD + 0.5 V Low-level input voltage (PCI) –0.5 0.3DVDD V (2) 4.3 (2) V Default 0 90 I-Temp -40 85 A-Temp –40 105 S-Temp –55 105 Operating case temperature –1.0 °C Future variants of the C64x DSPs may operate at voltages ranging from 0.9 V to 1.4 V to provide a range of system power/performance options. TI highly recommends that users design-in a supply that can handle multiple voltages within this range (i.e., 1.2 V, 1.25 V, 1.3 V, 1.35 V, 1.4 V with ± 3% tolerances) by implementing simple board changes such as reference resistor values or input pin configuration modifications. Examples of such supplies include the PT4660, PT5500, PT5520, PT6440, and PT6930 series from Power Trends, a subsidiary of Texas Instruments. Not incorporating a flexible supply may limit the system's ability to easily adapt to future versions of C64x devices. The absolute maximum ratings should not be exceeded for more than 30% of the cycle period. Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel Device Operating Conditions 69 SM320DM642-HiRel SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 4.3 www.ti.com Electrical Characteristics Over Recommended Ranges of Supply Voltage and Operating Case Temperature (Unless Otherwise Noted) PARAMETER VOH TEST CONDITIONS High-level output voltage (except PCI) DVDD = MIN, IOH = MAX (1) (2) VOHP High-level output voltage (PCI) IOHP = –0.5 mA, DVDD = 3.3 V VOL Low-level output voltage (except PCI) DVDD = MIN, IOL = MAX (2) VOLP Low-level output voltage (PCI) IOLP = 1.5 mA, DVDD = 3.3 V MIN TYP 0.9DVDD VI = VSS to DVDD opposing internal pullup resistor (4) Input current (except PCI) VI = VSS to DVDD opposing internal pulldown resistor (4) IIP Input leakage current (PCI) IOH High-level output current IOL Low-level output current (5) V 0.4 V (3) V 0.1DVDD ±10 uA 50 100 150 uA –150 –100 –50 uA 0 < VIP < DVDD = 3.3 V ±10 uA EMIF, CLKOUT4, CLKOUT6, EMUx –16 mA Video Ports, Timer, TDO, GPIO (Excluding GP0[15:9, 2, 1]), McBSP –8 mA PCI/HPI (3) mA EMIF, CLKOUT4, CLKOUT6, EMUx 16 mA Video Ports, Timer, TDO, GPIO (Excluding GP0[15:9, 2, 1]), McBSP 8 mA 3 mA (3) mA –0.5 SCL0 and SDA0 PCI/HPI IOZ Off-state output current ICDD Core supply current (6) UNIT V (3) VI = VSS to DVDD no opposing internal resistor II MAX 2.4 1.5 VO = DVDD or 0 V ±10 uA CVDD = 1.4 V, CPU clock = 720 MHz 1090 mA CVDD = 1.4 V, CPU clock = 600 MHz 890 mA CVDD = 1.2 V, CPU clock = 500 MHz 620 mA DVDD = 3.3 V, CPU clock = 720 MHz 210 mA DVDD = 3.3 V, CPU clock = 600 MHz 210 mA DVDD = 3.3 V, CPU clock = 500 MHz IDDD I/O supply current (6) 165 mA Ci Input capacitance 10 pF Co Output capacitance 10 pF (1) (2) (3) (4) (5) (6) 70 For test conditions shown as MIN, MAX, or NOM, use the appropriate value specified in the recommended operating conditions table. Single pin driving IOH/IOL = MAX These rated numbers are from the PCI specification version 2.3. The DC specification and AC specification are defined in Table 5-3 and Table 5-4, respectively. Applies only to pins with an internal pullup (IPU) or pulldown (IPD) resistor. PCI input leakage currents include Hi-Z output leakage for all bidirectional buffers with 3-state outputs. Measured with average activity (50% high/50% low power) at 25°C case temperature and 133-MHz EMIF for –600 and –720 speeds (100-MHz EMIF for –500 speed). This model represents a device performing high-DSP-activity operations 50% of the time, and the remainder performing low-DSP-activity operations. The high/low-DSP-activity models are defined as follows: • High-DSP-Activity Model: • CPU: 8 instructions/cycle with 2 LDDW instructions [L1 Data Memory: 128 bits/cycle via LDDW instructions; L1 Program Memory: 256 bits/cycle; L2/EMIF EDMA: 50% writes, 50% reads to/from SDRAM (50% bit-switching)] • McBSP: 2 channels at E1 rate • Timers: 2 timers at maximum rate • Low-DSP-Activity Model: • CPU: 2 instructions/cycle with 1 LDH instruction [L1 Data Memory: 16 bits/cycle; L1 Program Memory: 256 bits per 4 cycles; L2/EMIF EDMA: None] • McBSP: 2 channels at E1 rate • Timers: 2 timers at maximum rate The actual current draw is highly application-dependent. For more details on core and I/O activity, refer to the TMS320DMx™ Power Consumption Summary application report (literature number SPRA962). DM642 Peripheral Information and Electrical Specifications Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel SM320DM642-HiRel www.ti.com SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 5 DM642 Peripheral Information and Electrical Specifications 5.1 Parameter Information 5.1.1 Parameter Information Device-Specific Information Tester Pin Electronics 42 Ω Data Sheet Timing Reference Point Output Under Test 3.5 nH Transmission Line Z0 = 50 Ω (see note) 4.0 pF Device Pin (see note) 1.85 pF NOTE: The data sheet provides timing at the device pin. For output timing analysis, the tester pin electronics and its transmission line effects must be taken into account. A transmission line with a delay of 2 ns or longer can be used to produce the desired transmission line effect. The transmission line is intended as a load only. It is not necessary to add or subtract the transmission line delay (2 ns or longer) from the data sheet timings. Input requirements in this data sheet are tested with an input slew rate of < 4 Volts per nanosecond (4 V/ns) at the device pin. Figure 5-1. Test Load Circuit for AC Timing Measurements The load capacitance value stated is only for characterization and measurement of AC timing signals. This load capacitance value does not indicate the maximum load the device is capable of driving. 5.1.1.1 Signal Transition Levels All input and output timing parameters are referenced to 1.5 V for both "0" and "1" logic levels. Vref = 1.5 V Figure 5-2. Input and Output Voltage Reference Levels for AC Timing Measurements All rise and fall transition timing parameters are referenced to VIL MAX and VIH MIN for input clocks, VOLMAX and VOH MIN for output clocks, VILP MAX and VIHP MIN for PCI input clocks, and VOLP MAX and VOHP MIN for PCI output clocks. Vref = VIH MIN (or VOH MIN or VIHP MIN or VOHP MIN) Vref = VIL MAX (or VOL MAX or VILP MAX or VOLP MAX) Figure 5-3. Rise and Fall Transition Time Voltage Reference Levels 5.1.1.2 Signal Transition Rates All timings are tested with an input edge rate of 4 Volts per nanosecond (4 V/ns). 5.1.1.3 Timing Parameters and Board Routing Analysis The timing parameter values specified in this data sheet do not include delays by board routings. As a DM642 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel Copyright © 2009–2010, Texas Instruments Incorporated 71 SM320DM642-HiRel SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 www.ti.com good board design practice, such delays must always be taken into account. Timing values may be adjusted by increasing/decreasing such delays. TI recommends utilizing the available I/O buffer information specification (IBIS) models to analyze the timing characteristics correctly. To properly use IBIS models to attain accurate timing analysis for a given system, see the Using IBIS Models for Timing Analysis application report (literature number SPRA839). If needed, external logic hardware such as buffers may be used to compensate any timing differences. For inputs, timing is most impacted by the round-trip propagation delay from the DSP to the external device and from the external device to the DSP. This round-trip delay tends to negatively impact the input setup time margin, but also tends to improve the input hold time margins (see Table 5-1 and Figure 5-4). Figure 5-4 represents a general transfer between the DSP and an external device. The figure also represents board route delays and how they are perceived by the DSP and the external device. Table 5-1. Board-Level Timing Example (see Figure 5-4) NO. DESCRIPTION 1 Clock route delay 2 Minimum DSP hold time 3 Minimum DSP setup time 4 External device hold time requirement 5 External device setup time requirement 6 Control signal route delay 7 External device hold time 8 External device access time 9 DSP hold time requirement 10 DSP setup time requirement 11 Data route delay ECLKOUTx (Output from DSP) 1 ECLKOUTx (Input to External Device) Signals (A) Control (Output from DSP) 2 3 4 5 Control Signals (Input to External Device) 6 7 Data Signals (B) (Output from External Device) 8 10 Data Signals (B) (Input to DSP) A. B. 9 11 Control signals include data for Writes. Data signals are generated during Reads from an external device. Figure 5-4. Board-Level Input/Output Timings 5.2 Recommended Clock and Control Signal Transition Behavior All clocks and control signals must transition between VIH and VIL (or between VIL and VIH) in a monotonic manner. 72 DM642 Peripheral Information and Electrical Specifications Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel SM320DM642-HiRel www.ti.com 5.3 SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 Power Supplies For more information regarding TI's power management products and suggested devices to power TI DSPs, visit www.ti.com/dsppower. 5.3.1 Power-Supply Sequencing TI DSPs do not require specific power sequencing between the core supply and the I/O supply. However, systems should be designed to ensure that neither supply is powered up for extended periods of time (>1 second) if the other supply is below the proper operating voltage. 5.3.2 Power-Supply Design Considerations A dual-power supply with simultaneous sequencing can be used to eliminate the delay between core and I/O power up. A Schottky diode can also be used to tie the core rail to the I/O rail (see Figure 5-5). I/O Supply DVDD Schottky Diode C6000 DSP Core Supply CVDD VSS GND Figure 5-5. Schottky Diode Diagram Core and I/O supply voltage regulators should be located close to the DSP (or DSP array) to minimize inductance and resistance in the power delivery path. Additionally, when designing for high-performance applications utilizing the C6000™ platform of DSPs, the PC board should include separate power planes for core, I/O, and ground, all bypassed with high-quality low-ESL/ESR capacitors. 5.3.3 Power-Supply Decoupling In order to properly decouple the supply planes from system noise, place as many capacitors (caps) as possible close to the DSP. Assuming 0603 caps, the user should be able to fit a total of 60 caps, 30 for the core supply and 30 for the I/O supply. These caps need to be close to the DSP power pins, no more than 1.25 cm maximum distance to be effective. Physically smaller caps, such as 0402, are better because of their lower parasitic inductance. Proper capacitance values are also important. Small bypass caps (near 560 pF) should be closest to the power pins. Medium bypass caps (220 nF or as large as can be obtained in a small package) should be next closest. TI recommends no less than 8 small and 8 medium caps per supply (32 total) be placed immediately next to the BGA vias, using the "interior" BGA space and at least the corners of the "exterior". Eight larger caps (four for each supply) can be placed further away for bulk decoupling. Large bulk caps (on the order of 100 °F) should be furthest away (but still as close as possible). No less than four large caps per supply (eight total) should be placed outside of the BGA. Any cap selection needs to be evaluated from a yield/manufacturing point-of-view. As with the selection of any component, verification of capacitor availability over the product’s production lifetime should be considered. DM642 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel Copyright © 2009–2010, Texas Instruments Incorporated 73 SM320DM642-HiRel SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 5.3.4 www.ti.com Peripheral Power-Down Operation The DM642 device can be powered down in three ways: • Power-down due to pin configuration • Power-down due to software configuration – relates to the default state of the peripheral configuration bits in the PERCFG register. • Power-down during run-time via software configuration On the DM642 device, the HPI, PCI, and EMAC and MDIO peripherals are controlled (selected) at the pin level during chip reset (e.g., PCI_EN, HD5, and MAC_EN pins). The McASP0, McBSP0, McBSP1, VP0, VP1, VP2, and I2C0 peripheral functions are selected via the peripheral configuration (PERCFG) register bits. For more detailed information on the peripheral configuration pins and the PERCFG register bits, see the Device Configurations section of this document. 5.3.5 Power-Down Modes Logic Figure 5-6 shows the power-down mode logic on the DM642. CLKOUT4 CLKOUT6 Internal Clock Tree Clock Distribution and Dividers PD1 PD2 PowerDown Logic Clock PLL IFR IER Internal Peripherals PWRD CSR CPU PD3 TMS320DM642 CLKIN A. RESET External input clocks, with the exception of CLKIN, are not gated by the power-down mode logic. Figure 5-6. Power-Down Mode Logic 74 DM642 Peripheral Information and Electrical Specifications Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel SM320DM642-HiRel www.ti.com 5.3.6 SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 Triggering, Wake-up, and Effects The power-down modes and their wake-up methods are programmed by setting the PWRD field (bits 15–10) of the control status register (CSR). The PWRD field of the CSR is shown in Figure 5-7 and described in Table 5-2. When writing to the CSR, all bits of the PWRD field should be set at the same time. Logic 0 should be used when writing to the reserved bit (bit 15) of the PWRD field. The CSR is discussed in detail in the TMS320C6000™ CPU and Instruction Set Reference Guide (literature number SPRU189). 31 16 (See NOTE) 15 14 13 12 11 10 Reserved Enable or Non-Enabled Interrupt Wake Enabled Interrupt Wake PD3 PD2 PD1 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7 9 8 (See NOTE) 0 (See NOTE) Legend: R/W = Readable/Writable, -n = value after reset NOTE: The shaded bits are not part of the power-down logic discussion and therefore are not covered here. For information on these other bit fields in the CSR register, see the TMS320C6000™ CPU and Instruction Set Reference Guide (literature number SPRU189). Figure 5-7. PWRD Field of the CSR Register A delay of up to nine clock cycles may occur after the instruction that sets the PWRD bits in the CSR before the PD mode takes effect. As best practice, NOPs should be padded after the PWRD bits are set in the CSR to account for this delay. If PD1 mode is terminated by a non-enabled interrupt, the program execution returns to the instruction where PD1 took effect. If PD1 mode is terminated by an enabled interrupt, the interrupt service routine will be executed first, then the program execution returns to the instruction where PD1 took effect. In the case with an enabled interrupt, the GIE bit in the CSR and the NMIE bit in the interrupt enable register (IER) must also be set in order for the interrupt service routine to execute; otherwise, execution returns to the instruction where PD1 took effect upon PD1 mode termination by an enabled interrupt. PD2 and PD3 modes can only be aborted by device reset. Table 5-2 summarizes all the power-down modes. DM642 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel Copyright © 2009–2010, Texas Instruments Incorporated 75 SM320DM642-HiRel SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 www.ti.com Table 5-2. Characteristics of the Power-Down Modes PRWD Field (BITS 15–10) POWER-DOWN MODE 000000 No power-down 001001 PD1 Wake by an enabled interrupt 010001 PD1 Wake by an enabled or non-enabled interrupt 011010 (1) PD2 (1) 011100 PD3 (1) All others Reserved WAKE-UP METHOD — EFFECT ON CHIP'S OPERATION — CPU halted (except for the interrupt logic) Power-down mode blocks the internal clock inputs at the boundary of the CPU, preventing most of the CPU's logic from switching. During PD1, EDMA transactions can proceed between peripherals and internal memory. Wake by a device reset Output clock from PLL is halted, stopping the internal clock structure from switching and resulting in the entire chip being halted. All register and internal RAM contents are preserved. All functional I/O "freeze" in the last state when the PLL clock is turned off. Wake by a device reset Input clock to the PLL stops generating clocks. All register and internal RAM contents are preserved. All functional I/O "freeze" in the last state when the PLL clock is turned off. Following reset, the PLL needs time to re-lock, just as it does following power-up. Wake-up from PD3 takes longer than wake-up from PD2 because the PLL needs to be re-locked, just as it does following power-up. — — When entering PD2 and PD3, all functional I/O remains in the previous state. However, for peripherals which are asynchronous in nature or peripherals with an external clock source, output signals may transition in response to stimulus on the inputs. Under these conditions, peripherals will not operate according to specifications. 5.3.7 C64x Power-Down Mode With an Emulator If user power-down modes are programmed, and an emulator is attached, the modes will be masked to allow the emulator access to the system. This condition prevails until the emulator is reset or the cable is removed from the header. If power measurements are to be performed when in a power-down mode, the emulator cable should be removed. When the DSP is in power-down mode PD2 or PD3, emulation logic will force any emulation execution command (such as Step or Run) to spin in IDLE. For this reason, PC writes (such as loading code) will fail. A DSP reset will be required to get the DSP out of PD2/PD3. 76 DM642 Peripheral Information and Electrical Specifications Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel SM320DM642-HiRel www.ti.com 5.4 SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 Enhanced Direct Memory Access (EDMA) Controller The EDMA controller handles all data transfers between the level-two (L2) cache/memory controller and the device peripherals on the DM642 DSP. These data transfers include cache servicing, non-cacheable memory accesses, user-programmed data transfers, and host accesses. 5.4.1 EDMA Device-Specific Information 5.4.1.1 EDMA Channel Synchronization Events The C64x EDMA supports up to 64 EDMA channels which service peripheral devices and external memory. Table 5-3 lists the source of C64x EDMA synchronization events associated with each of the programmable EDMA channels. For the DM642 device, the association of an event to a channel is fixed; each of the EDMA channels has one specific event associated with it. These specific events are captured in the EDMA event registers (ERL, ERH) even if the events are disabled by the EDMA event enable registers (EERL, EERH). The priority of each event can be specified independently in the transfer parameters stored in the EDMA parameter RAM. For more detailed information on the EDMA module and how EDMA events are enabled, captured, processed, linked, chained, and cleared, etc., see the TMS320C6000 DSP Enhanced Direct Memory Access (EDMA) Controller Reference Guide (literature number SPRU234). Table 5-3. DM642 EDMA Channel Synchronization Events (1) (1) EDMA CHANNEL EVENT NAME 0 DSP_INT 1 TINT0 Timer 0 interrupt 2 TINT1 Timer 1 interrupt 3 SD_INTA 4 GPINT4/EXT_INT4 GP0 event 4/External interrupt pin 4 5 GPINT5/EXT_INT5 GP0 event 5/External interrupt pin 5 6 GPINT6/EXT_INT6 GP0 event 6/External interrupt pin 6 7 GPINT7/EXT_INT7 GP0 event 7/External interrupt pin 7 8 GPINT0 GP0 event 0 EVENT DESCRIPTION HPI/PCI-to-DSP interrupt EMIFA SDRAM timer interrupt 9 GPINT1 GP0 event 1 10 GPINT2 GP0 event 2 11 GPINT3 GP0 event 3 12 XEVT0 McBSP0 transmit event 13 REVT0 McBSP0 receive event 14 XEVT1 McBSP1 transmit event 15 REVT1 McBSP1 receive event 16 VP0EVTYA VP0 Channel A Y event DMA request 17 VP0EVTUA VP0 Channel A Cb event DMA request 18 VP0EVTVA VP0 Channel A Cr event DMA request 19 TINT2 20–23 – Timer 2 interrupt 24 VP0EVTYB VP0 Channel B Y event DMA request 25 VP0EVTUB VP0 Channel B Cb event DMA request 26 VP0EVTVB VP0 Channel B Cr event DMA request 27–31 – 32 AXEVTE0 None None McASP0 transmit even event In addition to the events shown in this table, each of the 64 channels can also be synchronized with the transfer completion or alternate transfer completion events. For more detailed information on EDMA event-transfer chaining, see the TMS320C6000™ DSP Enhanced Direct Memory Access (EDMA) Controller Reference Guide (literature number SPRU234). DM642 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel Copyright © 2009–2010, Texas Instruments Incorporated 77 SM320DM642-HiRel SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 www.ti.com Table 5-3. DM642 EDMA Channel Synchronization Events (continued) 78 EDMA CHANNEL EVENT NAME 33 AXEVTO0 34 AXEVT0 35 AREVTE0 McASP0 receive even event 36 AREVTO0 McASP0 receive odd event 37 AREVT0 38 VP1EVTYB VP1 Channel B Y event DMA request 39 VP1EVTUB VP1 Channel B Cb event DMA request 40 VP1EVTVB VP1 Channel B Cr event DMA request 41 VP2EVTYB VP2 Channel B Y event DMA request 42 VP2EVTUB VP2 Channel B Cb event DMA request 43 VP2EVTVB VP2 Channel B Cr event DMA request 44 ICREVT0 I2C0 receive event 45 ICXEVT0 I2C0 transmit event EVENT DESCRIPTION McASP0 transmit odd event McASP0 transmit event McASP0 receive event 46–47 – 48 GPINT8 None GP0 event 8 49 GPINT9 GP0 event 9 50 GPINT10 GP0 event 10 51 GPINT11 GP0 event 11 52 GPINT12 GP0 event 12 53 GPINT13 GP0 event 13 54 GPINT14 GP0 event 14 55 GPINT15 GP0 event 15 56 VP1EVTYA VP1 Channel A Y event DMA request 57 VP1EVTUA VP1 Channel A Cb event DMA request 58 VP1EVTVA VP1 Channel A Cr event DMA request 59 VP2EVTYA VP2 Channel A Y event DMA request 60 VP2EVTUA VP2 Channel A Cb event DMA request 61 VP2EVTVA VP2 Channel A Cr event DMA request 62–63 – None DM642 Peripheral Information and Electrical Specifications Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel SM320DM642-HiRel www.ti.com 5.4.2 SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 EDMA Peripheral Register Description(s) Table 5-4. EDMA Registers (C64x) HEX ADDRESS RANGE ACRONYM REGISTER NAME 01A0 0800 – 01A0 FF98 – 01A0 FF9C EPRH Reserved Event polarity high register 01A0 FFA4 CIPRH Channel interrupt pending high register 01A0 FFA8 CIERH Channel interrupt enable high register 01A0 FFAC CCERH Channel chain enable high register 01A0 FFB0 ERH 01A0 FFB4 EERH Event enable high register Event high register 01A0 FFB8 ECRH Event clear high register 01A0 FFBC ESRH Event set high register 01A0 FFC0 PQAR0 Priority queue allocation register 0 01A0 FFC4 PQAR1 Priority queue allocation register 1 01A0 FFC8 PQAR2 Priority queue allocation register 2 01A0 FFCC PQAR3 Priority queue allocation register 3 01A0 FFDC EPRL Event polarity low register 01A0 FFE0 PQSR Priority queue status register 01A0 FFE4 CIPRL Channel interrupt pending low register 01A0 FFE8 CIERL Channel interrupt enable low register 01A0 FFEC CCERL Channel chain enable low register 01A0 FFF0 ERL 01A0 FFF4 EERL Event enable low register Event low register 01A0 FFF8 ECRL Event clear low register 01A0 FFFC ESRL Event set low register 01A1 0000 – 01A3 FFFF – Reserved Table 5-5. Quick DMA (QDMA) and Pseudo Registers HEX ADDRESS RANGE ACRONYM 0200 0000 QOPT QDMA options parameter register 0200 0004 QSRC QDMA source address register 0200 0008 QCNT QDMA frame count register 0200 000C QDST QDMA destination address register 0200 0010 QIDX QDMA index register 0200 0014 – 0200 001C REGISTER NAME Reserved 0200 0020 QSOPT QDMA pseudo options register 0200 0024 QSSRC QDMA psuedo source address register 0200 0028 QSCNT QDMA psuedo frame count register 0200 002C QSDST QDMA destination address register 0200 0030 QSIDX QDMA psuedo index register Table 5-6. EDMA Parameter RAM (C64x) (1) HEX ADDRESS RANGE ACRONYM 01A0 0000 – 01A0 0017 – Parameters for Event 0 (6 words) 01A0 0018 – 01A0 002F – Parameters for Event 1 (6 words) (1) REGISTER NAME COMMENTS Parameters for Event 0 (6 words) or Reload/Link Parameters for other Event The DM642 device has 213 EDMA parameters total: 64-Event/Reload channels and 149-Reload only parameter sets [six (6) words each] that can be used to reload/link EDMA transfers. DM642 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel Copyright © 2009–2010, Texas Instruments Incorporated 79 SM320DM642-HiRel SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 www.ti.com Table 5-6. EDMA Parameter RAM (C64x) (continued) HEX ADDRESS RANGE ACRONYM 01A0 0030 – 01A0 0047 – Parameters for Event 2 (6 words) REGISTER NAME 01A0 0048 – 01A0 005F – Parameters for Event 3 (6 words) 01A0 0060 – 01A0 0077 – Parameters for Event 4 (6 words) 01A0 0078 – 01A0 008F – Parameters for Event 5 (6 words) 01A0 0090 – 01A0 00A7 – Parameters for Event 6 (6 words) 01A0 00A8 – 01A0 00BF – Parameters for Event 7 (6 words) 01A0 00C0 – 01A0 00D7 – Parameters for Event 8 (6 words) 01A0 00D8 – 01A0 00EF – Parameters for Event 9 (6 words) 01A0 00F0 – 01A0 00107 – Parameters for Event 10 (6 words) 01A0 0108 – 01A0 011F – Parameters for Event 11 (6 words) 01A0 0120 – 01A0 0137 – Parameters for Event 12 (6 words) 01A0 0138 – 01A0 014F – Parameters for Event 13 (6 words) 01A0 0150 – 01A0 0167 – Parameters for Event 14 (6 words) 01A0 0168 – 01A0 017F – Parameters for Event 15 (6 words) 01A0 0180 – 01A0 0197 – Parameters for Event 16 (6 words) 01A0 0198 – 01A0 01AF – Parameters for Event 17 (6 words) ... ... 01A0 05D0 – 01A0 05E7 – Parameters for Event 62 (6 words) 01A0 05E8 – 01A0 05FF – Parameters for Event 63 (6 words) 01A0 0600 – 01A0 0617 – Reload/link parameters for Event 0 (6 words) 01A0 0618 – 01A0 062F – Reload/link parameters for Event 1 (6 words) ... Reload/Link Parameters for other Event 0–15 ... 01A0 07E0 – 01A0 07F7 – Reload/link parameters for Event 20 (6 words) 01A0 07F8 – 01A0 080F – Reload/link parameters for Event 21 (6 words) 01A0 0810 – 01A0 0827 – Reload/link parameters for Event 22 (6 words) ... ... 01A0 13C8 – 01A0 13DF – Reload/link parameters for Event 147 (6 words) 01A0 13E0 – 01A0 13F7 – Reload/link parameters for Event 148 (6 words) 01A0 13F8 – 01A0 13FF – Scratch pad area (2 words) 01A0 1400 – 01A3 FFFF – Reserved 80 COMMENTS DM642 Peripheral Information and Electrical Specifications Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel SM320DM642-HiRel www.ti.com 5.5 SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 Interrupts 5.5.1 Interrupt Sources and Interrupt Selector The C64x DSP core supports 16 prioritized interrupts, which are listed in Table 5-7. The highest-priority interrupt is INT_00 (dedicated to RESET) while the lowest-priority interrupt is INT_15. The first four interrupts (INT_00–INT_03) are non-maskable and fixed. The remaining interrupts (INT_04–INT_15) are maskable and default to the interrupt source specified in Table 5-7. The interrupt source for interrupts 4–15 can be programmed by modifying the selector value (binary value) in the corresponding fields of the Interrupt Selector Control registers: MUXH (address 0x019C0000) and MUXL (address 0x019C0004). Table 5-7. DM642 DSP Interrupts CPU INTERRUPT NUMBER INTERRUPT SELECTOR CONTROL REGISTER SELECTOR VALUE (BINARY) INTERRUPT EVENT INT_00 (1) – – RESET INT_01 (1) – – NMI INT_02 (1) – – Reserved Reserved. Do not use. INT_03 (1) – – Reserved Reserved. Do not use. (2) MUXL[4:0] 00100 GPINT4/EXT_INT4 GP0 interrupt 4/External interrupt pin 4 INT_05 (2) MUXL[9:5] 00101 GPINT5/EXT_INT5 GP0 interrupt 5/External interrupt pin 5 INT_06 (2) MUXL[14:10] 00110 GPINT6/EXT_INT6 GP0 interrupt 6/External interrupt pin 6 (2) MUXL[20:16] 00111 GPINT7/EXT_INT7 GP0 interrupt 7/External interrupt pin 7 INT_08 (2) MUXL[25:21] 01000 EDMA_INT EDMA channel (0 through 63) interrupt INT_09 (2) MUXL[30:26] 01001 EMU_DTDMA (2) MUXH[4:0] 00011 SD_INTA INT_11 (2) MUXH[9:5] 01010 EMU_RTDXRX EMU real-time data exchange (RTDX) receive INT_12 (2) MUXH[14:10] 01011 EMU_RTDXTX EMU RTDX transmit INT_13 (2) MUXH[20:16] 00000 DSP_INT (2) MUXH[25:21] 00001 TINT0 Timer 0 interrupt INT_15 (2) MUXH[30:26] 00010 TINT1 Timer 1 interrupt – – 01100 XINT0 McBSP0 transmit interrupt – – 01101 RINT0 McBSP0 receive interrupt – – 01110 XINT1 McBSP1 transmit interrupt – – 01111 RINT1 McBSP1 receive interrupt – – 10000 GPINT0 – – 10001 Reserved Reserved. Do not use. – – 10010 Reserved Reserved. Do not use. – – 10011 TINT2 – – 10100 Reserved Reserved. Do not use. – – 10101 Reserved Reserved. Do not use. – – 10110 ICINT0 – – 10111 Reserved Reserved. Do not use. – – 11000 EMAC_MDIO_INT EMAC/MDIO interrupt – – 11001 VPINT0 VP0 interrupt – – 11010 VPINT1 VP1 interrupt – – 11011 VPINT2 VP2 interrupt – – 11100 AXINT0 McASP0 transmit interrupt INT_04 INT_07 INT_10 INT_14 (1) (2) INTERRUPT SOURCE EMU DTDMA EMIFA SDRAM timer interrupt HPI/PCI-to-DSP interrupt GP0 interrupt 0 Timer 2 interrupt I2C0 interrupt Interrupts INT_00 through INT_03 are non-maskable and fixed.Interrupts INT_04 through INT_15 are programmable by modifying the binary selector values in the Interrupt Selector Control registers fields. Table 5-7 shows the default interrupt sources for Interrupts INT_04 through INT_15. For more detailed information on interrupt sources and selection, see the TMS320C6000 DSP Interrupt Selector Reference Guide (literature number SPRU646). DM642 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel Copyright © 2009–2010, Texas Instruments Incorporated 81 SM320DM642-HiRel SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 www.ti.com Table 5-7. DM642 DSP Interrupts (continued) CPU INTERRUPT NUMBER INTERRUPT SELECTOR CONTROL REGISTER SELECTOR VALUE (BINARY) INTERRUPT EVENT – – 11101 ARINT0 – – 11110 – 11111 Reserved 5.5.2 INTERRUPT SOURCE McASP0 receive interrupt Reserved. Do not use. Interrupts Peripheral Register Description(s) Table 5-8. Interrupt Selector Registers (C64x) HEX ADDRESS RANGE ACRONYM REGISTER NAME COMMENTS 019C 0000 MUXH Interrupt multiplexer high Selects which interrupts drive CPU interrupts 10–15 (INT10–INT15) 019C 0004 MUXL Interrupt multiplexer low Selects which interrupts drive CPU interrupts 4–9 (INT04–INT09) 019C 0008 EXTPOL External interrupt polarity Sets the polarity of the external interrupts (EXT_INT4–EXT_INT7) 019C 000C – 019F FFFF – 5.5.3 Reserved External Interrupts Electrical Data/Timing Table 5-9. Timing Requirements for External Interrupts (1) (see Figure 5-8) –500 –600 –720 NO. MIN (1) 1 tw(ILOW) 2 tw(IHIGH) UNIT MAX Width of the NMI interrupt pulse low 4P ns Width of the EXT_INT interrupt pulse low 8P ns Width of the NMI interrupt pulse high 4P ns Width of the EXT_INT interrupt pulse high 8P ns P = 1/CPU clock frequency in ns. For example, when running parts at 720 MHz, use P = 1.39 ns. 1 2 EXT_INTx, NMI Figure 5-8. External/NMI Interrupt Timing 82 DM642 Peripheral Information and Electrical Specifications Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel SM320DM642-HiRel www.ti.com 5.6 SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 Reset A hardware reset (RESET) is required to place the DSP into a known good state out of power-up. The RESET signal can be asserted (pulled low) prior to ramping the core and I/O voltages or after the core and I/O voltages have reached their proper operating conditions. As a best practice, reset should be held low during power-up. Prior to deasserting RESET (low-to-high transition), the core and I/O voltages should be at their proper operating conditions and CLKIN should also be running at the correct frequency. When PCI is enabled, the PCI input clock (PCLK) must be running prior to deasserting RESET as well. When the PCI peripheral is enabled, a WARMRESET can be performed via the host. A WARMRESET performs the same functionality as a hardware reset, but does not relatch the boot configuration pins. Whatever boot configuration that was latched on the previous hardware reset will be performed during the WARMRESET. A hardware reset does not reset the PCI peripheral state machine. The PCI state machine is reset via the PRST signal. The PRST signal does not affect the DSP. Emulation resets, done using Code Composer Studio IDE, have the same affect as a PCI WARMRESET. For information on peripheral selection at the rising edge of RESET, see the Device Configuration section of this data manual. 5.6.1 Reset Electrical Data/Timing Table 5-10. Timing Requirements for Reset (see Figure 5-9) –500 –600 –720 NO. MIN (1) (2) (3) (4) 1 tw(RST) Width of the RESET pulse 16 tsu(boot) Setup time, boot configuration bits valid before RESET high 17 th(boot) Hold time, boot configuration bits valid after RESET high 18 tsu(PCLK-RSTH) Setup time, PCLK active before RESET high (4) (1) (1) UNIT MAX 250 ms 4E or 4C (2) ns (3) ns 32N ns 4P AEA[22:19], LENDIAN, PCIEEAI, and HD5/AD5 are the boot configuration pins during device reset. E = 1/AECLKIN clock frequency in ns. C = 1/CLKIN clock frequency in ns. Select the MIN parameter value, whichever value is larger. P = 1/CPU clock frequency in ns. For example, when running parts at 720 MHz, use P = 1.39 ns. N = the PCI input clock (PCLK) period in ns. When PCI is enabled (PCI_EN = 1), this parameter must be met. DM642 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel Copyright © 2009–2010, Texas Instruments Incorporated 83 SM320DM642-HiRel SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 www.ti.com Table 5-11. Switching Characteristics Over Recommended Operating Conditions During Reset (1) (see Figure 5-9) NO. (1) (2) (3) 84 PARAMETER –500 –600 –720 (2) (3) UNIT MIN MAX 2 td(RSTL-ECKI) Delay time, RESET low to AECLKIN synchronized internally 2E 3P + 20E ns 3 td(RSTH-ECKI) Delay time, RESET high to AECLKIN synchronized internally 2E 8P + 20E ns 4 td(RSTL-ECKO1HZ) Delay time, RESET low to AECLKOUT1 high impedance 2E 5 td(RSTH-ECKO1V) Delay time, RESET high to AECLKOUT1 valid 6 td(RSTL-EMIFZHZ) Delay time, RESET low to EMIF Z high impedance 7 td(RSTH-EMIFZV) Delay time, RESET high to EMIF Z valid 8 td(RSTL-EMIFHIV) Delay time, RESET low to EMIF high group invalid 9 td(RSTH-EMIFHV) Delay time, RESET high to EMIF high group valid 10 td(RSTL-EMIFLIV) Delay time, RESET low to EMIF low group invalid 11 td(RSTH-EMIFLV) Delay time, RESET high to EMIF low group valid 12 td(RSTL-LOWIV) Delay time, RESET low to low group invalid 13 td(RSTH-LOWV) Delay time, RESET high to low group valid 14 td(RSTL-ZHZ) Delay time, RESET low to Z group high impedance 15 td(RSTH-ZV) Delay time, RESET high to Z group valid ns 8P + 20E ns 2E 3P + 4E ns 16E 8P + 20E ns 2E ns 8P + 20E 2E ns 8P + 20E 0 ns ns 11P 0 2P ns ns ns 8P ns P = 1/CPU clock frequency in ns. For example, when running parts at 720 MHz, use P = 1.39 ns. E = the EMIF input clock (AECLKIN, CPU/4 clock, or CPU/6 clock) period in ns for EMIFA. EMIF Z group consists of: AEA[22:3], AED[63:0], ACE[3:0], ABE[7:0], AARE/ASDCAS/ASADS/ASRE, AAWE/ASDWE/ASWE, AAOE/ASDRAS/ASOE, ASOE3, ASDCKE, and APDT EMIF high group consists of: AHOLDA (when the corresponding HOLD input is high) EMIF low group consists of: ABUSREQ; AHOLDA (when the corresponding HOLD input is low) Low group consists of: XSP_CS, XSP_CLK/MDCLK, and XSP_DO/MDIO all of which apply only when PCI EEPROM is enabled (with PCI_EN = 1 and MCBSP2_EN = 0). Otherwise, the XSP_CLK/MDCLK and XSP_DO/MDIO pins are in the Z group. For more details on the PCI configuration pins, see the Device Configurations section of this data sheet. Z group consists of: HD[31:0]/AD[31:0] and the muxed EMAC output pins, XSP_CLK/MDCLK, XSP_DO/MDIO, VP0D[2]/CLKX0, VP1D[2]/CLKX1, VP0D[3]/FSX0, VP1D[3]/FSX1, VP0D[4]/DX0, VP1D[4]/DX1, VP0D[8]/CLKR0, VP1D[8]/CLKR1, VP0D[7]/FSR0, VP1D[7]/FSR1, TOUT0, TOUT1, VDAC/GP0[8]/PCI66, GP0[7:0], GP0[10]/PCBE3, HR/W/PCBE2, HDS2/PCBE1, PCBE0, GP0[13]/PINTA, GP0[11]/PREQ, HDS1/PSERR, HCS/PPERR, HCNTL1/PDEVSEL, HAS/PPAR, HCNTL0/PSTOP, HHWIL/PTRDY (16-bit HPI mode only), HRDY/PIRDY, HINT/PFRAME, VP0D[19:9, 6,5,1,0], VP1D[19:9, 6,5,1,0], and VP2D[19:0]. DM642 Peripheral Information and Electrical Specifications Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel SM320DM642-HiRel www.ti.com SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 CLKOUT4 CLKOUT6 1 RESET 18 PCLK 2 3 4 5 6 7 AECLKIN AECLKOUT1 AECLKOUT2 EMIF Z Group (A)(B) 8 9 10 11 EMIF High Group (A) EMIF Low Group (A) 12 13 14 15 Low Group (A) Z Group (A)(B) 16 Boot and Device Configuration Inputs (C) A. B. C. 17 EMIF Z group consists of: AEA[22:3], AED[63:0], ACE[3:0], ABE[7:0], AARE/ASDCAS/ASADS/ASRE, AAWE/ASDWE/ASWE, AAOE/ASDRAS/ASOE, ASOE3, ASDCKE, and APDT EMIF high group consists of: AHOLDA (when the corresponding HOLD input is high) EMIF low group consists of: ABUSREQ; AHOLDA (when the corresponding HOLD input is low) Low group consists of: XSP_CS, XSP_CLK/MDCLK, and XSP_DO/MDIO all of which apply only when PCI EEPROM is enabled (with PCI_EN = 1 and MCBSP2_EN = 0). Otherwise, the XSP_CLK/MDCLK and XSP_DO/MDIO pins are in the Z group. For more details on the PCI configuration pins, see the Device Configurations section of this data sheet. Z group consists of: HD[31:0]/AD[31:0] and the muxed EMAC output pins, XSP_CLK/MDCLK, XSP_DO/MDIO, VP0D[2]/CLKX0, VP1D[2]/CLKX1, VP0D[3]/FSX0, VP1D[3]/FSX1, VP0D[4]/DX0, VP1D[4]/DX1, VP0D[8]/CLKR0, VP1D[8]/CLKR1, VP0D[7]/FSR0, VP1D[7]/FSR1, TOUT0, TOUT1, VDAC/GP0[8]/PCI66, GP0[7:0], GP0[10]/PCBE3, HR/W/PCBE2, HDS2/PCBE1, PCBE0, GP0[13]/PINTA, GP0[11]/PREQ, HDS1/PSERR, HCS/PPERR, HCNTL1/PDEVSEL, HAS/PPAR, HCNTL0/PSTOP, HHWIL/PTRDY (16-bit HPI mode only), HRDY/PIRDY, HINT/PFRAME, VP0D[19:9, 6,5,1,0], VP1D[19:9, 6,5,1,0], and VP2D[19:0]. If AEA[22:19], LENDIAN, PCIEEAI, and HD5/AD5 pins are actively driven, care must be taken to ensure no timing contention between parameters 6, 7, 14, 15, 16, and 17. Boot and Device Configurations Inputs (during reset) include: AEA[22:19], LENDIAN, PCIEEAI, and HD5/AD5. The PCI_EN pin must be driven valid at all times and the user must not switch values throughout device operation. Figure 5-9. Reset Timing DM642 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel Copyright © 2009–2010, Texas Instruments Incorporated 85 SM320DM642-HiRel SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 5.7 www.ti.com Clock PLL The PLL controller features hardware-configurable PLL multiplier controller, dividers (/2, /4, /6, and /8), and reset controller. The PLL controller accepts an input clock, as determined by the logic state on the CLKMODE[1:0] pins, from the CLKIN pin. The resulting clock outputs are passed to the DSP core, peripherals, and other modules inside the C6000 DSP. 5.7.1 Clock PLL Device-Specific Information Most of the internal C64x DSP clocks are generated from a single source through the CLKIN pin. This source clock either drives the PLL, which multiplies the source clock frequency to generate the internal CPU clock, or bypasses the PLL to become the internal CPU clock. To use the PLL to generate the CPU clock, the external PLL filter circuit must be properly designed. Figure 5-10 shows the external PLL circuitry for either x1 (PLL bypass) or other PLL multiply modes. To minimize the clock jitter, a single clean power supply should power both the C64x DSP device and the external clock oscillator circuit. The minimum CLKIN rise and fall times should also be observed. For the input clock timing requirements, see the input and output clocks electricals section. Rise/fall times, duty cycles (high/low pulse durations), and the load capacitance of the external clock source must meet the DSP requirements in this data sheet (see the electrical characteristics over recommended ranges of supply voltage and operating case temperature table and the input and output clocks electricals section). 86 DM642 Peripheral Information and Electrical Specifications Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel SM320DM642-HiRel www.ti.com SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 3.3 V CPU Clock EMI filter C1 C2 10 µF 0.1 µF /2 Peripheral Bus, EDMA Clock /8 Timer Internal Clock PLLV CLKMODE0 CLKMODE1 PLLMULT /4 CLKOUT4, Peripheral Clock (AUXCLK for McASP), McBSP Internal Clock /6 CLKOUT6 PLL x6, x12 CLKIN PLLCLK 1 00 01 10 /4 0 /2 ECLKIN AEA[20:19] Internal to DM642 EMIF 00 01 10 ECLKOUT1 ECLKOUT2 EK2RATE (GBLCTL.[19,18]) (For the PLL Options, CLKMODE Pins Setup, and PLL Clock Frequency Ranges, see the “SMDM642 PLL Multiply Factor Options, Clock Frequency Ranges, and Typical Lock Time” table.) NOTES: Place all PLL external components (C1, C2, and the EMI Filter) as close to the C6000 DSP device as possible. For the best performance, TI recommends that all the PLL external components be on a single side of the board without jumpers, switches, or components other than the ones shown. For reduced PLL jitter, maximize the spacing between switching signals and the PLL external components (C1, C2, and the EMI Filter). The 3.3-V supply for the EMI filter must be from the same 3.3-V power plane supplying the I/O voltage, DVDD. EMI filter manufacturer TDK part number ACF451832-333, -223, -153, -103. Panasonic part number EXCCET103U. Figure 5-10. External PLL Circuitry for Either PLL Multiply Modes or x1 (Bypass) Mode DM642 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel Copyright © 2009–2010, Texas Instruments Incorporated 87 SM320DM642-HiRel SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 www.ti.com Table 5-12. DM642 PLL Multiply Factor Options, Clock Frequency Ranges, and Typical Lock Time (1) (2) CLKMODE1 CLKMODE0 CLKMODE (PLL MULTIPLY FACTORS) CLKIN RANGE (MHz) 0 0 Bypass (x1) 30–75 0 1 x6 30–75 1 0 x12 30–50 1 1 Reserved – (1) CPU CLOCK FREQUENCY RANGE (MHz) CLKOUT4 RANGE (MHz) CLKOUT6 RANGE (MHz) TYPICAL LOCK TIME (ms) (3) 30–75 7.5–18.8 5–12.5 N/A 180–450 45–112.5 30–75 360–600 90–150 60–100 – – – 75 – These clock frequency range values are applicable to a DM642-600 speed device. For –500 and –720 device speed values, see the CLKIN timing requirements table for the specific device speed. Use external pullup resistors on the CLKMODE pins (CLKMODE1 and CLKMODE0) to set the DM642 device to one of the valid PLL multiply clock modes (x6 or x12). With internal pulldown resistors on the CLKMODE pins (CLKMODE1, CLKMODE0), the default clock mode is x1 (bypass). Under some operating conditions, the maximum PLL lock time may vary by as much as 150% from the specified typical value. For example, if the typical lock time is specified as 100 ms, the maximum value may be as long as 250 ms. (2) (3) 5.7.2 Clock PLL Electrical Data/Timing (Input and Output Clocks) Table 5-13. Timing Requirements for CLKIN for –500 Devices (1) (2) (3) (see Figure 5-11) –500 NO. PLL MODE x12 PLL MODE x6 x1 (Bypass) UNIT MIN MAX MIN MAX MIN MAX 24 33.3 13.3 33.3 13.3 33.3 1 tc(CLKIN) Cycle time, CLKIN 2 tw(CLKINH) Pulse duration, CLKIN high 0.45C 0.45C 0.45C ns 3 tw(CLKINL) Pulse duration, CLKIN low 0.45C 0.45C 0.45C ns 4 tt(CLKIN) Transition time, CLKIN 5 tJ(CLKIN) Period jitter, CLKIN (1) (2) (3) ns 5 5 1 ns 0.02C 0.02C 0.02C ns The reference points for the rise and fall transitions are measured at VIL MAX and VIH MIN. For more details on the PLL multiplier factors (x6, x12), see the Clock PLL section of this data sheet. C = CLKIN cycle time in ns. For example, when CLKIN frequency is 50 MHz, use C = 20 ns. Table 5-14. Timing Requirements for CLKIN for –600 Devices (1) (2) (3) (see Figure 5-11) –600 NO. PLL MODE x12 PLL MODE x6 x1 (Bypass) MAX MIN MAX MIN MAX 20 33.3 13.3 33.3 13.3 33.3 1 tc(CLKIN) Cycle time, CLKIN 2 tw(CLKINH) Pulse duration, CLKIN high 0.45C 0.45C 0.45C 3 tw(CLKINL) Pulse duration, CLKIN low 0.45C 0.45C 0.45C 4 tt(CLKIN) Transition time, CLKIN tJ(CLKIN) Period jitter, CLKIN 5 (1) (2) (3) UNIT MIN ns ns ns 5 5 1 ns 0.02C 0.02C 0.02C ns The reference points for the rise and fall transitions are measured at VIL MAX and VIH MIN. For more details on the PLL multiplier factors (x6, x12), see the Clock PLL section of this data sheet. C = CLKIN cycle time in ns. For example, when CLKIN frequency is 50 MHz, use C = 20 ns. Table 5-15. Timing Requirements for CLKIN for –720 Devices (1) (2) (3) (see Figure 5-11) –720 NO. (1) (2) (3) 88 PLL MODE x12 1 tc(CLKIN) Cycle time, CLKIN 2 tw(CLKINH) Pulse duration, CLKIN high MIN MAX 16.6 33.3 0.45C PLL MODE x6 MIN MAX 13.3 33.3 0.45C x1 (Bypass) MIN MAX 13.3 33.3 0.45C UNIT ns ns The reference points for the rise and fall transitions are measured at VIL MAX and VIH MIN. For more details on the PLL multiplier factors (x6, x12), see the Clock PLL section of this data sheet. C = CLKIN cycle time in ns. For example, when CLKIN frequency is 50 MHz, use C = 20 ns. DM642 Peripheral Information and Electrical Specifications Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel SM320DM642-HiRel www.ti.com SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 Table 5-15. Timing Requirements for CLKIN for –720 Devices (see Figure 5-11) (continued) –720 NO. PLL MODE x12 MIN 3 tw(CLKINL) Pulse duration, CLKIN low 4 tt(CLKIN) Transition time, CLKIN 5 tJ(CLKIN) Period jitter, CLKIN PLL MODE x6 MAX MIN 0.45C x1 (Bypass) MAX 0.45C MIN UNIT MAX 0.45C ns 5 5 1 ns 0.02C 0.02C 0.02C ns Table 5-16. Switching Characteristics Over Recommended Operating Conditions for CLKOUT4 (1) (see Figure 5-12) (2) (3) 1 5 4 2 CLKIN 3 4 Figure 5-11. CLKIN Timing NO. –500 –600 –720 PARAMETER UNIT CLKMODE = x1, x6, x12 (1) (2) (3) MIN MAX 1 tw(CKO4H) Pulse duration, CLKOUT4 high 2P – 0.7 2P + 0.7 ns 2 tw(CKO4L) Pulse duration, CLKOUT4 low 2P – 0.7 2P + 0.7 ns 3 tt(CKO4) Transition time, CLKOUT4 1 ns The reference points for the rise and fall transitions are measured at VOL MAX and VOH MIN. PH is the high period of CLKIN in ns and PL is the low period of CLKIN in ns. P = 1/CPU clock frequency in nanoseconds (ns) 3 1 CLKOUT4 2 3 Figure 5-12. CLKOUT4 Timing DM642 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel Copyright © 2009–2010, Texas Instruments Incorporated 89 SM320DM642-HiRel SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 www.ti.com Table 5-17. Switching Characteristics Over Recommended Operating Conditions for CLKOUT6 (1) (see Figure 5-13) NO. –500 –600 –720 PARAMETER (2) (3) UNIT CLKMODE = x1, x6, x12 MIN MAX 1 tw(CKO6H) Pulse duration, CLKOUT6 high 3P – 0.7 3P + 0.7 ns 2 tw(CKO6L) Pulse duration, CLKOUT6 low 3P – 0.7 3P + 0.7 ns 3 tt(CKO6) Transition time, CLKOUT6 1 ns (1) (2) (3) The reference points for the rise and fall transitions are measured at VOL MAX and VOH MIN. PH is the high period of CLKIN in ns and PL is the low period of CLKIN in ns. P = 1/CPU clock frequency in nanoseconds (ns) 3 1 CLKOUT6 2 3 Figure 5-13. CLKOUT6 Timing Table 5-18. Timing Requirements for AECLKIN for EMIFA (1) (2) (3) (see Figure 5-14) –500 –600 –720 NO. MIN MAX (4) 16P 1 tc(EKI) Cycle time, AECLKIN 6 2 tw(EKIH) Pulse duration, AECLKIN high 2.7 3 tw(EKIL) Pulse duration, AECLKIN low 2.7 4 tt(EKI) Transition time, AECLKIN tJ(EKI) Period jitter, AECLKIN 5 (1) (2) (3) (4) UNIT ns ns ns 3 ns 0.02E ns P = 1/CPU clock frequency in ns. For example, when running parts at 720 MHz, use P = 1.39 ns. The reference points for the rise and fall transitions are measured at VIL MAX and VIH MIN. E = the EMIF input clock (AECLKIN, CPU/4 clock, or CPU/6 clock) period in ns for EMIFA. Minimum AECLKIN cycle times must be met, even when AECLKIN is generated by an internal clock source. Minimum AECLKIN times are based on internal logic speed; the maximum useable speed of the EMIF may be lower due to AC timing requirements. On the 600 and 720 devices, 133-MHz operation is achievable if the requirements of the EMIF Device Speed section are met. On the 500 devices, 100-MHz operation is achievable if the requirements of the EMIF Device Speed section are met. 1 5 4 2 AECLKIN 3 4 Figure 5-14. AECLKIN Timing for EMIFA 90 DM642 Peripheral Information and Electrical Specifications Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel SM320DM642-HiRel www.ti.com SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 Table 5-19. Switching Characteristics Over Recommended Operating Conditions for AECLKOUT1 for the EMIFA Module (1) (2) (3) (see Figure 5-15) NO. –500 –600 –720 PARAMETER UNIT MIN MAX 1 tw(EKO1H) Pulse duration, AECLKOUT1 high EH – 0.7 EH + 0.7 ns 2 tw(EKO1L) Pulse duration, AECLKOUT1 low EL – 0.7 EL + 0.7 ns 3 tt(EKO1) Transition time, AECLKOUT1 1 ns 4 td(EKIH-EKO1H) Delay time, AECLKIN high to AECLKOUT1 high 1 8 ns td(EKIL-EKO1L) Delay time, AECLKIN low to AECLKOUT1 low 1 8 ns 5 (1) (2) (3) E = the EMIF input clock (AECLKIN, CPU/4 clock, or CPU/6 clock) period in ns for EMIFA. The reference points for the rise and fall transitions are measured at VOL MAX and VOH MIN. EH is the high period of E (EMIF input clock period) in ns and EL is the low period of E (EMIF input clock period) in ns for EMIFA. AECLKIN 5 1 4 2 3 3 AECLKOUT1 Figure 5-15. AECLKOUT1 Timing for the EMIFA Module Table 5-20. Switching Characteristics Over Recommended Operating Conditions for AECLKOUT2 for the EMIFA Module (1) (2) (see Figure 5-16) NO. (1) (2) –500 –600 –720 PARAMETER UNIT MIN MAX 1 tw(EKO2H) Pulse duration, AECLKOUT2 high 0.5NE – 0.7 0.5NE + 0.7 ns 2 tw(EKO2L) Pulse duration, AECLKOUT2 low 0.5NE – 0.7 0.5NE + 0.7 ns 3 tt(EKO2) Transition time, AECLKOUT2 1 ns 4 td(EKIH-EKO2H) Delay time, AECLKIN high to AECLKOUT2 high 1 8 ns 5 td(EKIL-EKO2L) Delay time, AECLKIN low to AECLKOUT2 low 1 8 ns The reference points for the rise and fall transitions are measured at VOL MAX and VOH MIN. E = the EMIF input clock (AECLKIN, CPU/4 clock, or CPU/6 clock) period in ns for EMIFA. N = the EMIF input clock divider; N = 1, 2, or 4. AECLKIN 5 4 1 2 3 3 AECLKOUT2 Figure 5-16. AECLKOUT2 Timing for the EMIFA Module DM642 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel Copyright © 2009–2010, Texas Instruments Incorporated 91 SM320DM642-HiRel SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 5.8 www.ti.com External Memory Interface (EMIF) EMIF supports a glueless interface to a variety of external devices, including: • Pipelined synchronous-burst SRAM (SBSRAM) • Synchronous DRAM (SDRAM) • Asynchronous devices, including SRAM, ROM, and FIFOs • An external shared-memory device 5.8.1 EMIF Device-Specific Information EMIF Device Speed The rated EMIF speed of these devices only applies to the SDRAM interface when in a system that meets the following requirements: • 1 chip-enable (CE) space (maximum of 2 chips) of SDRAM connected to EMIF • up to 1 CE space of buffers connected to EMIF • EMIF trace lengths between 1 and 3 inches • 166-MHz SDRAM for 133-MHz operation • 143-MHz SDRAM for 100-MHz operation Other configurations may be possible, but timing analysis must be done to verify all AC timings are met. Verification of AC timings is mandatory when using configurations other than those specified above. TI recommends utilizing I/O buffer information specification (IBIS) to analyze all AC timings. To properly use IBIS models to attain accurate timing analysis for a given system, see the Using IBIS Models for Timing Analysis application report (literature number SPRA839). To maintain signal integrity, serial termination resistors should be inserted into all EMIF output signal lines (see the Terminal Functions table for the EMIF output signals). For more detailed information on the DM642 EMIF peripheral, see the TMS320C6000™ DSP External Memory Interface (EMIF) Reference Guide (literature number SPRU266). 92 DM642 Peripheral Information and Electrical Specifications Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel SM320DM642-HiRel www.ti.com 5.8.2 SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 EMIF Peripheral Register Description(s) Table 5-21. EMIFA Registers HEX ADDRESS RANGE ACRONYM REGISTER NAME 0180 0000 GBLCTL EMIFA global control 0180 0004 CECTL1 EMIFA CE1 space control 0180 0008 CECTL0 EMIFA CE0 space control 0180 000C – 0180 0010 CECTL2 EMIFA CE2 space control 0180 0014 CECTL3 EMIFA CE3 space control 0180 0018 SDCTL EMIFA SDRAM control 0180 001C SDTIM EMIFA SDRAM refresh control 0180 0020 SDEXT EMIFA SDRAM extension 0180 0024 – 0180 003C – Reserved Reserved 0180 0040 PDTCTL Peripheral device transfer (PDT) control 0180 0044 CESEC1 EMIFA CE1 space secondary control 0180 0048 CESEC0 EMIFA CE0 space secondary control 0180 004C – 0180 0050 CESEC2 EMIFA CE2 space secondary control 0180 0054 CESEC3 EMIFA CE3 space secondary control 0180 0058 – 0183 FFFF – 5.8.3 5.8.3.1 COMMENTS Reserved Reserved EMIF Electrical Data/Timing Asynchronous Memory Timing Table 5-22. Timing Requirements for Asynchronous Memory Cycles for EMIFA Module (1) (see Figure 5-17 and Figure 5-18) –500 –600 –720 NO. MIN (1) (2) (2) 3 tsu(EDV-AREH) Setup time, AEDx valid before AARE high 4 th(AREH-EDV) 6 tsu(ARDY-EKO1H) 7 th(EKO1H-ARDY) Hold time, AARDY valid after AECLKOUTx high UNIT MAX 6.5 ns Hold time, AEDx valid after AARE high 1 ns Setup time, AARDY valid before AECLKOUTx high 3 ns 2.5 ns To ensure data setup time, simply program the strobe width wide enough. AARDY is internally synchronized. The AARDY signal is only recognized two cycles before the end of the programmed strobe time and while AARDY is low, the strobe time is extended cycle-by-cycle. When AARDY is recognized low, the end of the strobe time is two cycles after AARDY is recognized high. To use AARDY as an asynchronous input, the pulse width of the AARDY signal should be wide enough (e.g., pulse width = 2E) to ensure setup and hold time is met. RS = Read setup, RST = Read strobe, RH = Read hold, WS = Write setup, WST = Write strobe, WH = Write hold. These parameters are programmed via the EMIF CE space control registers. DM642 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel Copyright © 2009–2010, Texas Instruments Incorporated 93 SM320DM642-HiRel SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 www.ti.com Table 5-23. Switching Characteristics Over Recommended Operating Conditions for Asynchronous Memory Cycles for EMIFA Module (1) (2) (3) (see Figure 5-17 and Figure 5-18) NO. –500 –600 –720 PARAMETER MIN (1) (2) (3) 1 tosu(SELV-AREL) Output setup time, select signals valid to AARE low RS * E – 1.8 2 toh(AREH-SELIV) Output hold time, AARE high to select signals invalid RH * E – 1.9 5 td(EKO1H-AREV) Delay time, AECLKOUTx high to AARE valid 8 tosu(SELV-AWEL) Output setup time, select signals valid to AAWE low WS * E – 2.0 9 toh(AWEH-SELIV) Output hold time, AAWE high to select signals invalid WH * E – 2.5 10 td(EKO1H-AWEV) Delay time, AECLKOUTx high to AAWE valid UNIT MAX ns ns 1 1.3 7 ns ns ns 7.1 ns RS = Read setup, RST = Read strobe, RH = Read hold, WS = Write setup, WST = Write strobe, WH = Write hold. These parameters are programmed via the EMIF CE space control registers. E = AECLKOUT1 period in ns for EMIFA Select signals for EMIFA include: ACEx, ABE[7:0], AEA[22:3], AAOE; and for EMIFA writes, include AED[63:0]. Setup = 2 Strobe = 3 Not Ready Hold = 2 AECLKOUTx 1 2 1 2 ACEx ABE[7:0] BE 2 1 AEA[22:3] Address 3 4 AED[63:0] 1 2 Read Data AAOE/ASDRAS/ASOE (A) 5 5 AARE/ASDCAS/ASADS/ASRE (A) AAWE/ASDWE/ASWE (A) 7 7 6 6 AARDY A. AAOE/ASDRAS/ASOE, AARE/ASDCAS/ASADS/ASRE, and AAWE/ASDWE/ASWE operate as AAOE (identified under select signals), AARE, and AAWE, respectively, during asynchronous memory accesses. Figure 5-17. Asynchronous Memory Read Timing for EMIFA 94 DM642 Peripheral Information and Electrical Specifications Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel SM320DM642-HiRel www.ti.com SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 Setup = 2 Strobe = 3 Hold = 2 Not Ready AECLKOUTx 9 8 ACEx 9 8 ABE[7:0] BE 9 8 AEA[22:3] Address 9 8 AED[63:0] Write Data AAOE/ASDRAS/ASOE (A) AARE/ASDCAS/ASADS/ASRE (A) 10 10 AAWE/ASDWE/ASWE (A) 7 6 7 6 AARDY A. AAOE/ASDRAS/ASOE, AARE/ASDCAS/ASADS/ASRE, and AAWE/ASDWE/ASWE operate as AAOE (identified under select signals), AARE, and AAWE, respectively, during asynchronous memory accesses. Figure 5-18. Asynchronous Memory Write Timing for EMIFA DM642 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel Copyright © 2009–2010, Texas Instruments Incorporated 95 SM320DM642-HiRel SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 5.8.3.2 www.ti.com Programmable Synchronous Interface Timing Table 5-24. Timing Requirements for Programmable Synchronous Interface Cycles for EMIFA Module (see Figure 5-19) –500, A-600 NO. MIN MAX –600 –720 MIN UNIT MAX 6 tsu(EDV-EKOxH) Setup time, read AEDx valid before AECLKOUTx high 3.1 2 ns 7 th(EKOxH-EDV) Hold time, read AEDx valid after AECLKOUTx high 1.8 1.5 ns Table 5-25. Switching Characteristics Over Recommended Operating Conditions for Programmable Synchronous Interface Cycles for EMIFA Module (1) (see Figure 5-19–Figure 5-21) NO. (1) 96 PARAMETER –500, A-600 –600 –720 UNIT MIN MAX MIN MAX 1.1 6.4 1.1 4.9 ns 4.9 ns 1 td(EKOxH-CEV) Delay time, AECLKOUTx high to ACEx valid 2 td(EKOxH-BEV) Delay time, AECLKOUTx high to ABEx valid 3 td(EKOxH-BEIV) Delay time, AECLKOUTx high to ABEx invalid 4 td(EKOxH-EAV) Delay time, AECLKOUTx high to AEAx valid 5 td(EKOxH-EAIV) Delay time, AECLKOUTx high to AEAx invalid 1.1 8 td(EKOxH-ADSV) Delay time, AECLKOUTx high to ASADS/ASRE valid 1.1 6.4 1.1 4.9 ns 9 td(EKOxH-OEV) Delay time, AECLKOUTx high to ASOE valid 1.1 6.4 1.1 4.9 ns 10 td(EKOxH-EDV) Delay time, AECLKOUTx high to AEDx valid 4.9 ns 11 td(EKOxH-EDIV) Delay time, AECLKOUTx high to AEDx invalid 1.1 12 td(EKOxH-WEV) Delay time, AECLKOUTx high to ASWE valid 1.1 6.4 1.1 1.1 6.4 ns 4.9 1.1 6.4 ns 1.1 6.4 1.1 ns ns 4.9 ns The following parameters are programmable via the EMIF CE Space Secondary Control register (CExSEC): • Read latency (SYNCRL): 0-, 1-, 2-, or 3-cycle read latency • Write latency (SYNCWL): 0-, 1-, 2-, or 3-cycle write latency • ACEx assertion length (CEEXT): For standard SBSRAM or ZBT SRAM interface, ACEx goes inactive after the final command has been issued (CEEXT = 0). For synchronous FIFO interface with glue, ACEx is active when ASOE is active (CEEXT = 1). • Function of ASADS/ASRE (RENEN): For standard SBSRAM or ZBT SRAM interface, ASADS/ASRE acts as ASADS with deselect cycles (RENEN = 0). For FIFO interface, ASADS/ASRE acts as ASRE with NO deselect cycles (RENEN = 1). • Synchronization clock (SNCCLK): Synchronized to AECLKOUT1 or AECLKOUT2 DM642 Peripheral Information and Electrical Specifications Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel SM320DM642-HiRel www.ti.com SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 READ latency = 2 AECLKOUTx 1 1 ACEx 2 BE1 ABE[7:0] 3 BE2 BE3 BE4 4 AEA[22:3] EA1 5 EA2 EA3 6 AED[63:0] EA4 7 Q1 Q2 Q3 Q4 8 8 AARE/ASDCAS/ASADS/ASRE (C) 9 9 AAOE/ASDRAS/ASOE (C) AAWE/ASDWE/ASWE (C) A. B. C. The read latency and the length of ACEx assertion are programmable via the SYNCRL and CEEXT fields, respectively, in the EMIFA CE Space Secondary Control register (CExSEC). In this figure, SYNCRL = 2 and CEEXT = 0. The following parameters are programmable via the EMIF CE Space Secondary Control register (CExSEC): • Read latency (SYNCRL): 0-, 1-, 2-, or 3-cycle read latency • Write latency (SYNCWL): 0-, 1-, 2-, or 3-cycle write latency • ACEx assertion length (CEEXT): For standard SBSRAM or ZBT SRAM interface, ACEx goes inactive after the final command has been issued (CEEXT = 0). For synchronous FIFO interface with glue, ACEx is active when ASOE is active (CEEXT = 1). • Function of ASADS/ASRE (RENEN): For standard SBSRAM or ZBT SRAM interface, ASADS/ASRE acts as ASADS with deselect cycles (RENEN = 0). For FIFO interface, ASADS/ASRE acts as ASRE with NO deselect cycles (RENEN = 1). • Synchronization clock (SNCCLK): Synchronized to AECLKOUT1 or AECLKOUT2 AARE/ASDCAS/ASADS/ASRE, AAOE/ASDRAS/ASOE, and AAWE/ASDWE/ASWE operate as ASADS/ASRE, ASOE, and ASWE, respectively, during programmable synchronous interface accesses. Figure 5-19. Programmable Synchronous Interface Read Timing for EMIFA (With Read Latency = 2) DM642 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel Copyright © 2009–2010, Texas Instruments Incorporated 97 SM320DM642-HiRel SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 www.ti.com AECLKOUTx 1 1 ACEx ABE[7:0] 2 BE1 BE2 BE3 BE4 AEA[22:3] 4 EA1 EA2 EA3 EA4 10 Q1 Q2 Q3 Q4 10 AED[63:0] AARE/ASDCAS/ASADS/ASRE (C) 3 5 11 8 8 AAOE/ASDRAS/ASOE (C) 12 12 AAWE/ASDWE/ASWE (C) A. B. C. The write latency and the length of ACEx assertion are programmable via the SYNCWL and CEEXT fields, respectively, in the EMIFA CE Space Secondary Control register (CExSEC). In this figure, SYNCWL = 0 and CEEXT = 0. The following parameters are programmable via the EMIF CE Space Secondary Control register (CExSEC): • Read latency (SYNCRL): 0-, 1-, 2-, or 3-cycle read latency • Write latency (SYNCWL): 0-, 1-, 2-, or 3-cycle write latency • ACEx assertion length (CEEXT): For standard SBSRAM or ZBT SRAM interface, ACEx goes inactive after the final command has been issued (CEEXT = 0). For synchronous FIFO interface with glue, ACEx is active when ASOE is active (CEEXT = 1). • Function of ASADS/ASRE (RENEN): For standard SBSRAM or ZBT SRAM interface, ASADS/ASRE acts as ASADS with deselect cycles (RENEN = 0). For FIFO interface, ASADS/ASRE acts as ASRE with NO deselect cycles (RENEN = 1). • Synchronization clock (SNCCLK): Synchronized to AECLKOUT1 or AECLKOUT2 AARE/ASDCAS/ASADS/ASRE, AAOE/ASDRAS/ASOE, and AAWE/ASDWE/ASWE operate as ASADS/ASRE, ASOE, and ASWE, respectively, during programmable synchronous interface accesses. Figure 5-20. Programmable Synchronous Interface Write Timing for EMIFA (With Write Latency = 0) 98 DM642 Peripheral Information and Electrical Specifications Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel SM320DM642-HiRel www.ti.com SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 Write Latency = 1 (B) AECLKOUTx 1 1 ACEx ABE[7:0] 2 BE1 AEA[22:3] 4 EA1 10 AED[63:0] 3 BE2 BE3 BE4 EA2 10 EA3 EA4 Q1 Q2 Q3 5 11 Q4 8 8 AARE/ASDCAS/ASADS/ASRE (C) AAOE/ASDRAS/ASOE (C) 12 12 AAWE/ASDWE/ASWE (C) A. B. C. The write latency and the length of ACEx assertion are programmable via the SYNCWL and CEEXT fields, respectively, in the EMIFA CE Space Secondary Control register (CExSEC). In this figure, SYNCWL = 1 and CEEXT = 0. The following parameters are programmable via the EMIF CE Space Secondary Control register (CExSEC): • Read latency (SYNCRL): 0-, 1-, 2-, or 3-cycle read latency • Write latency (SYNCWL): 0-, 1-, 2-, or 3-cycle write latency • ACEx assertion length (CEEXT): For standard SBSRAM or ZBT SRAM interface, ACEx goes inactive after the final command has been issued (CEEXT = 0). For synchronous FIFO interface with glue, ACEx is active when ASOE is active (CEEXT = 1). • Function of ASADS/ASRE (RENEN): For standard SBSRAM or ZBT SRAM interface, ASADS/ASRE acts as ASADS with deselect cycles (RENEN = 0). For FIFO interface, ASADS/ASRE acts as ASRE with NO deselect cycles (RENEN = 1).Function of ASADS/ASRE (RENEN): For standard SBSRAM or ZBT SRAM interface, ASADS/ASRE acts as ASADS with deselect cycles (RENEN = 0). For FIFO interface, ASADS/ASRE acts as ASRE with NO deselect cycles (RENEN = 1). • Synchronization clock (SNCCLK): Synchronized to ECLKOUT1 or ECLKOUT2 AARE/ASDCAS/ASADS/ASRE, AAOE/ASDRAS/ASOE, and AAWE/ASDWE/ASWE operate as ASADS/ASRE, ASOE, and ASWE, respectively, during programmable synchronous interface accesses. Figure 5-21. Programmable Synchronous Interface Write Timing for EMIFA (With Write Latency = 1) DM642 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel Copyright © 2009–2010, Texas Instruments Incorporated 99 SM320DM642-HiRel SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 5.8.3.3 www.ti.com Synchronous DRAM Timing Table 5-26. Timing Requirements for Synchronous DRAM Cycles for EMIFA Module (see Figure 5-22) –500, A-600 NO. MIN MAX –600 –720 MIN UNIT MAX 6 tsu(EDV-EKO1H) Setup time, read AEDx valid before AECLKOUTx high 2.1 0.6 ns 7 th(EKO1H-EDV) Hold time, read AEDx valid after AECLKOUTx high 2.8 2.1 ns Table 5-27. Switching Characteristics Over Recommended Operating Conditions for Synchronous DRAM Cycles for EMIFA Module (see Figure 5-22–Figure 5-29) NO. PARAMETER –500, A-600 –600 –720 UNIT MIN MAX MIN MAX 1.3 6.4 1.3 4.9 ns 4.9 ns 1 td(EKO1H-CEV) Delay time, AECLKOUTx high to ACEx valid 2 td(EKO1H-BEV) Delay time, AECLKOUTx high to ABEx valid 3 td(EKO1H-BEIV) Delay time, AECLKOUTx high to ABEx invalid 4 td(EKO1H-EAV) Delay time, AECLKOUTx high to AEAx valid 5 td(EKO1H-EAIV) Delay time, AECLKOUTx high to AEAx invalid 1.3 8 td(EKO1H-CASV) Delay time, AECLKOUTx high to ASDCAS valid 1.3 9 td(EKO1H-EDV) Delay time, AECLKOUTx high to AEDx valid 10 td(EKO1H-EDIV) Delay time, AECLKOUTx high to AEDx invalid 1.3 11 td(EKO1H-WEV) Delay time, AECLKOUTx high to ASDWE valid 1.3 6.4 1.3 4.9 ns 12 td(EKO1H-RAS) Delay time, AECLKOUTx high to ASDRAS valid 1.3 6.4 1.3 4.9 ns 13 td(EKO1H-ACKEV) Delay time, AECLKOUTx high to ASDCKE valid 1.3 6.4 1.3 4.9 ns 14 td(EKO1H-PDTV) Delay time, AECLKOUTx high to APDT valid 1.3 6.4 1.3 4.9 ns 100 6.4 1.3 1.3 6.4 ns 4.9 1.3 6.4 1.3 6.4 ns ns 4.9 ns 4.9 ns 1.3 ns DM642 Peripheral Information and Electrical Specifications Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel SM320DM642-HiRel www.ti.com SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 READ AECLKOUTx 1 1 ACEx 2 BE1 ABE[7:0] 4 Bank 5 AEA[22:14] 4 Column 5 AEA[12:3] 4 3 BE2 BE3 BE4 5 AEA13 6 AED[63:0] D1 7 D2 D3 D4 AAOE/ASDRAS/ASOE (A) AARE/ASDCAS/ASADS/ASRE (A) 8 8 AAWE/ASDWE/ASWE (A) 14 14 APDT (B) A. B. AARE/ASDCAS/ASADS/ASRE, AAWE/ASDWE/ASWE, and AAOE/ASDRAS/ASOE operate as ASDCAS, ASDWE, and ASDRAS, respectively, during SDRAM accesses. APDT signal is only asserted when the EDMA is in PDT mode (set the PDTS bit to 1 in the EDMA options parameter RAM). For APDT read, data is not latched into EMIF. The PDTRL field in the PDT control register (PDTCTL) configures the latency of the APDT signal with respect to the data phase of a read transaction. The latency of the APDT signal for a read can be programmed to 0, 1, 2, or 3 by setting PDTRL to 00, 01, 10, or 11, respectively. PDTRL equals 00 (zero latency) in Figure 5-22. Figure 5-22. SDRAM Read Command (CAS Latency 3) for EMIFA DM642 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel Copyright © 2009–2010, Texas Instruments Incorporated 101 SM320DM642-HiRel SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 www.ti.com WRITE AECLKOUTx 1 2 2 4 ACEx ABE[7:0] BE1 4 3 BE2 BE3 BE4 D2 D3 D4 5 Bank AEA[22:14] 4 5 Column AEA[12:3] 4 5 AEA13 9 AED[63:0] 10 9 D1 AAOE/ASDRAS/ASOE (A) 8 8 11 11 AARE/ASDCAS/ASADS/ASRE (A) AAWE/ASDWE/ASWE (A) 14 14 APDT (B) A. B. AARE/ASDCAS/ASADS/ASRE, AAWE/ASDWE/ASWE, and AAOE/ASDRAS/ASOE operate as ASDCAS, ASDWE, and ASDRAS, respectively, during SDRAM accesses. APDT signal is only asserted when the EDMA is in PDT mode (set the PDTD bit to 1 in the EDMA options parameter RAM). For APDT write, data is not driven (in High-Z). The PDTWL field in the PDT control register (PDTCTL) configures the latency of the APDT signal with respect to the data phase of a write transaction. The latency of the APDT signal for a write transaction can be programmed to 0, 1, 2, or 3 by setting PDTWL to 00, 01, 10, or 11, respectively. PDTWL equals 00 (zero latency) in Figure 5-23. Figure 5-23. SDRAM Write Command for EMIFA 102 DM642 Peripheral Information and Electrical Specifications Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel SM320DM642-HiRel www.ti.com SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 ACTV AECLKOUTx 1 1 ACEx ABE[7:0] 4 Bank Activate 5 AEA[22:14] 4 Row Address 5 AEA[12:3] 4 Row Address 5 AEA13 AED[63:0] 12 12 AAOE/ASDRAS/ASOE (A) AARE/ASDCAS/ASADS/ASRE (A) AAWE/ASDWE/ASWE (A) A. AARE/ASDCAS/ASADS/ASRE, AAWE/ASDWE/ASWE, and AAOE/ASDRAS/ASOE operate as ASDCAS, ASDWE, and ASDRAS, respectively, during SDRAM accesses. Figure 5-24. SDRAM ACTV Command for EMIFA DCAB AECLKOUTx 1 1 4 5 12 12 11 11 ACEx ABE[7:0] AEA[22:14, 12:3] AEA13 AED[63:0] AAOE/ASDRAS/ASOE (A) AARE/ASDCAS/ASADS/ASRE (A) AAWE/ASDWE/ASWE (A) A. AARE/ASDCAS/ASADS/ASRE, AAWE/ASDWE/ASWE, and AAOE/ASDRAS/ASOE operate as ASDCAS, ASDWE, and ASDRAS, respectively, during SDRAM accesses. Figure 5-25. SDRAM DCAB Command for EMIFA DM642 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel Copyright © 2009–2010, Texas Instruments Incorporated 103 SM320DM642-HiRel SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 www.ti.com DEAC AECLKOUTx 1 1 ACEx ABE[7:0] 4 AEA[22:14] 5 Bank AEA[12:3] 4 5 12 12 11 11 AEA13 AED[63:0] AAOE/ASDRAS/ASOE (A) AARE/ASDCAS/ASADS/ASRE (A) AAWE/ASDWE/ASWE (A) A. AARE/ASDCAS/ASADS/ASRE, AAWE/ASDWE/ASWE, and AAOE/ASDRAS/ASOE operate as ASDCAS, ASDWE, and ASDRAS, respectively, during SDRAM accesses. Figure 5-26. SDRAM DEAC Command for EMIFA REFR AECLKOUTx 1 1 12 12 8 8 ACEx ABE[7:0] AEA[22:14, 12:3] AEA13 AED[63:0] AAOE/ASDRAS/ASOE (A) AARE/ASDCAS/ASADS/ASRE (A) AAWE/ASDWE/ASWE (A) A. AARE/ASDCAS/ASADS/ASRE, AAWE/ASDWE/ASWE, and AAOE/ASDRAS/ASOE operate as ASDCAS, ASDWE, and ASDRAS, respectively, during SDRAM accesses. Figure 5-27. SDRAM REFR Command for EMIFA 104 DM642 Peripheral Information and Electrical Specifications Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel SM320DM642-HiRel www.ti.com SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 MRS AECLKOUTx 1 1 4 MRS value 5 12 12 8 8 11 11 ACEx ABE[7:0] AEA[22:3] AED[63:0] AAOE/ASDRAS/ASOE (A) AARE/ASDCAS/ASADS/ASRE (A) AAWE/ASDWE/ASWE (A) A. AARE/ASDCAS/ASADS/ASRE, AAWE/ASDWE/ASWE, and AAOE/ASDRAS/ASOE operate as ASDCAS, ASDWE, and ASDRAS, respectively, during SDRAM accesses. Figure 5-28. SDRAM MRS Command for EMIFA ≥ TRAS cycles End Self-Refresh Self Refresh AECLKOUTx ACEx ABE[7:0] AEA[22:14, 12:3] AEA13 AED[63:0] AAOE/ASDRAS/ASOE (A) AARE/ASDCAS/ASADS/ASRE (A) AAWE/ASDWE/ASWE (A) 13 13 ASDCKE A. AARE/ASDCAS/ASADS/ASRE, AAWE/ASDWE/ASWE, and AAOE/ASDRAS/ASOE operate as ASDCAS, ASDWE, and ASDRAS, respectively, during SDRAM accesses. Figure 5-29. SDRAM Self-Refresh Timing for EMIFA DM642 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel Copyright © 2009–2010, Texas Instruments Incorporated 105 SM320DM642-HiRel SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 5.8.3.4 www.ti.com HOLD/HOLDA Timing Table 5-28. Timing Requirements for the HOLD/HOLDA Cycles for EMIFA Module (1) (see Figure 5-30) –500, A-600 NO. MIN 3 (1) th(HOLDAL-HOLDL) Hold time, HOLD low after HOLDA low MAX E –600 –720 MIN UNIT MAX E ns E = the EMIF input clock (ECLKIN, CPU/4 clock, or CPU/6 clock) period in ns for EMIFA. Table 5-29. Switching Characteristics Over Recommended Operating Conditions for the HOLD/HOLDA Cycles for EMIFA Module (1) (2) (3) (see Figure 5-30) NO. –500, A-600 PARAMETER –600 –720 UNIT MIN MAX MIN MAX 1 td(HOLDL-EMHZ) Delay time, HOLD low to EMIFA Bus high impedance 2E (4) 2E (4) ns 2 td(EMHZ-HOLDAL) Delay time, EMIF Bus high impedance to HOLDA low 0 2E 0 2E ns 4 td(HOLDH-EMLZ) Delay time, HOLD high to EMIF Bus low impedance 2E 7E 2E 7E ns 5 td(EMLZ-HOLDAH) Delay time, EMIFA Bus low impedance to HOLDA high 0 2E 0 2E ns 2E (4) ns 2E 7E ns 6 td(HOLDL-EKOHZ) Delay time, HOLD low to AECLKOUTx high impedance 2E (4) 7 td(HOLDH-EKOLZ) Delay time, HOLD high to AECLKOUTx low impedance 2E 7E (1) (2) (3) (4) E = the EMIF input clock (ECLKIN, CPU/4 clock, or CPU/6 clock) period in ns for EMIFA. EMIFA Bus consists of: ACE[3:0], ABE[7:0], AED[63:0], AEA[22:3], AARE/ASDCAS/ASADS/ASRE, AAOE/ASDRAS/ASOE, and AAWE/ASDWE/ASWE , ASDCKE, ASOE3, and APDT. The EKxHZ bits in the EMIF Global Control register (GBLCTL) determine the state of the ECLKOUTx signals during HOLDA. If EKxHZ = 0, ECLKOUTx continues clocking during Hold mode. If EKxHZ = 1, ECLKOUTx goes to high impedance during Hold mode, as shown in Figure 5-30. All pending EMIF transactions are allowed to complete before HOLDA is asserted. If no bus transactions are occurring, then the minimum delay time can be achieved. Also, bus hold can be indefinitely delayed by setting NOHOLD = 1. External Requestor Owns Bus DSP Owns Bus DSP Owns Bus 3 HOLD 2 5 HOLDA 1 EMIF Bus (A) 4 DM642 DM642 AECLKOUTx (B) (EKxHZ = 0) 6 AECLKOUTx (B) (EKxHZ = 1) A. B. 7 EMIFA Bus consists of: ACE[3:0], ABE[7:0], AED[63:0], AEA[22:3], AARE/ASDCAS/ASADS/ASRE, AAOE/ASDRAS/ASOE, and AAWE/ASDWE/ASWE, ASDCKE, ASOE3, and APDT. The EKxHZ bits in the EMIF Global Control register (GBLCTL) determine the state of the ECLKOUTx signals during HOLDA. If EKxHZ = 0, ECLKOUTx continues clocking during Hold mode. If EKxHZ = 1, ECLKOUTx goes to high impedance during Hold mode, as shown in Figure 5-30. Figure 5-30. HOLD/HOLDA Timing for EMIFA 106 DM642 Peripheral Information and Electrical Specifications Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel SM320DM642-HiRel www.ti.com 5.8.3.5 SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 BUSREQ Timing Table 5-30. Switching Characteristics Over Recommended Operating Conditions for the BUSREQ Cycles for EMIFA Module (see Figure 5-31) NO. 1 –500, A-600 PARAMETER td(AEKO1H-ABUSRV) Delay time, AECLKOUTx high to ABUSREQ valid –600 –720 UNIT MIN MAX MIN MAX 0.6 7.1 1 5.5 ns AECLKOUTx 1 1 ABUSREQ Figure 5-31. BUSREQ Timing for EMIFA DM642 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel Copyright © 2009–2010, Texas Instruments Incorporated 107 SM320DM642-HiRel SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 5.9 www.ti.com Multichannel Audio Serial Port (McASP0) Peripheral The McASP functions as a general-purpose audio serial port optimized for the needs of multichannel audio applications. The McASP is useful for time-division multiplexed (TDM) stream, Inter-Integrated Sound (I2S) protocols, and intercomponent digital audio interface transmission (DIT). 5.9.1 McASP0 Device-Specific Information The DM642 device includes one multichannel audio serial port (McASP) interface peripheral (McASP0). The McASP is a serial port optimized for the needs of multichannel audio applications. The McASP consists of a transmit and receive section. These sections can operate completely independently with different data formats, separate master clocks, bit clocks, and frame syncs or alternatively, the transmit and receive sections may be synchronized. The McASP module also includes a pool of 16 shift registers that may be configured to operate as either transmit data, receive data, or general-purpose I/O (GPIO). The transmit section of the McASP can transmit data in either a time-division-multiplexed (TDM) synchronous serial format or in a digital audio interface (DIT) format where the bit stream is encoded for S/PDIF, AES-3, IEC-60958, CP-430 transmission. The receive section of the McASP supports the TDM synchronous serial format. The McASP can support one transmit data format (either a TDM format or DIT format) and one receive format at a time. All transmit shift registers use the same format and all receive shift registers use the same format. However, the transmit and receive formats need not be the same. Both the transmit and receive sections of the McASP also support burst mode which is useful for non-audio data (for example, passing control information between two DSPs). The McASP peripheral has additional capability for flexible clock generation, and error detection/handling, as well as error management. For more detailed information on and the functionality of the McASP peripheral, see the TMS320C6000™ DSP Multichannel Audio Serial Port (McASP) Reference Guide (literature number SPRU041). 5.9.1.1 McASP Block Diagram Figure 5-32 illustrates the major blocks along with external signals of the DM642 McASP0 peripheral; and shows the 8 serial data [AXR] pins. The McASP also includes full general-purpose I/O (GPIO) control, so any pins not needed for serial transfers can be used for general-purpose I/O. 108 DM642 Peripheral Information and Electrical Specifications Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel SM320DM642-HiRel www.ti.com SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 McASP0 DIT RAM Transmit Frame Sync Generator Transmit Clock Check (HighFrequency) Transmit Clock Generator Receive Clock Check (HighFrequency) Receive Clock Generator Transmit Data Formatter Receive Frame Sync Generator INDIVIDUALLY PROGRAMMABLE TX/RX/GPIO DMA Transmit DMA Receive AHCLKX0 ACLKX0 AMUTE0 AMUTEIN0 Error Detect Receive Data Formatter AFSX0 AHCLKR0 ACLKR0 AFSR0 Serializer 0 AXR0[0] Serializer 1 AXR0[1] Serializer 2 AXR0[2] Serializer 3 AXR0[3] Serializer 4 AXR0[4] Serializer 5 AXR0[5] Serializer 6 AXR0[6] Serializer 7 AXR0[7] GPIO Control Figure 5-32. McASP0 Configuration DM642 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel Copyright © 2009–2010, Texas Instruments Incorporated 109 SM320DM642-HiRel SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 5.9.2 www.ti.com McASP0 Peripheral Register Description(s) Table 5-31. McASP0 Control Registers HEX ADDRESS RANGE ACRONYM REGISTER NAME 01B4 C000 PID 01B4 C004 PWRDEMU 01B4 C008 – Reserved 01B4 C00C – Reserved 01B4 C010 PFUNC Pin function register 01B4 C014 PDIR Pin direction register 01B4 C018 PDOUT Pin data out register 01B4 C01C PDIN/PDSET 01B4 C020 PDCLR 01B4 C024 – 01B4 C040 – 01B4 C044 GBLCTL Global control register 01B4 C048 AMUTE Mute control register 01B4 C04C DLBCTL Digital Loop-back control register 01B4 C050 DITCTL DIT mode control register 01B4 C054 – 01B4 C05C – 01B4 C060 RGBLCTL 01B4 C064 RMASK 01B4 C068 RFMT 01B4 C06C AFSRCTL 01B4 C070 ACLKRCTL 01B4 C074 AHCLKRCTL 01B4 C078 RTDM 01B4 C07C RINTCTL Peripheral Identification register [Register value: 0x0010 0101] Power down and emulation management register Pin data in / data set registerRead returns: PDINWrites affect: PDSET Pin data clear register Reserved Reserved Alias of GBLCTL containing only Receiver Reset bits, allows transmit to be reset independently from receive. Receiver format UNIT bit mask register Receive bit stream format register Receive frame sync control register Receive clock control register High-frequency receive clock control register Receive TDM slot 0–31 register Receiver interrupt control register 01B4 C080 RSTAT Status register – Receiver 01B4 C084 RSLOT Current receive TDM slot register 01B4 C088 RCLKCHK 01B4 C08C – 01B4 C09C – 01B4 C0A0 XGBLCTL 01B4 C0A4 XMASK 110 Receiver clock check control register Reserved Alias of GBLCTL containing only Transmitter Reset bits, allows transmit to be reset independently from receive. Transmit format UNIT bit mask register 01B4 C0A8 XFMT 01B4 C0AC AFSXCTL Transmit bit stream format register 01B4 C0B0 ACLKXCTL 01B4 C0B4 AHCLKXCTL 01B4 C0B8 XTDM Transmit TDM slot 0–31 register 01B4 C0BC XINTCTL Transmit interrupt control register Transmit frame sync control register Transmit clock control register High-frequency Transmit clock control register 01B4 C0C0 XSTAT Status register – Transmitter 01B4 C0C4 XSLOT Current transmit TDM slot 01B4 C0C8 XCLKCHK Transmit clock check control register DM642 Peripheral Information and Electrical Specifications Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel SM320DM642-HiRel www.ti.com SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 Table 5-31. McASP0 Control Registers (continued) HEX ADDRESS RANGE ACRONYM 01B4 C0CC – 01B4 C0FC – REGISTER NAME 01B4 C100 DITCSRA0 Left (even TDM slot) channel status register file 01B4 C104 DITCSRA1 Left (even TDM slot) channel status register file 01B4 C108 DITCSRA2 Left (even TDM slot) channel status register file 01B4 C10C DITCSRA3 Left (even TDM slot) channel status register file 01B4 C110 DITCSRA4 Left (even TDM slot) channel status register file 01B4 C114 DITCSRA5 Left (even TDM slot) channel status register file Reserved 01B4 C118 DITCSRB0 Right (odd TDM slot) channel status register file 01B4 C11C DITCSRB1 Right (odd TDM slot) channel status register file 01B4 C120 DITCSRB2 Right (odd TDM slot) channel status register file 01B4 C124 DITCSRB3 Right (odd TDM slot) channel status register file 01B4 C128 DITCSRB4 Right (odd TDM slot) channel status register file 01B4 C12C DITCSRB5 Right (odd TDM slot) channel status register file 01B4 C130 DITUDRA0 Left (even TDM slot) user data register file 01B4 C134 DITUDRA1 Left (even TDM slot) user data register file 01B4 C138 DITUDRA2 Left (even TDM slot) user data register file 01B4 C13C DITUDRA3 Left (even TDM slot) user data register file 01B4 C140 DITUDRA4 Left (even TDM slot) user data register file 01B4 C144 DITUDRA5 Left (even TDM slot) user data register file 01B4 C148 DITUDRB0 Right (odd TDM slot) user data register file 01B4 C14C DITUDRB1 Right (odd TDM slot) user data register file 01B4 C150 DITUDRB2 Right (odd TDM slot) user data register file 01B4 C154 DITUDRB3 Right (odd TDM slot) user data register file 01B4 C158 DITUDRB4 Right (odd TDM slot) user data register file Right (odd TDM slot) user data register file 01B4 C15C DITUDRB5 01B4 C160 – 01B4 C17C – 01B4 C180 SRCTL0 Serializer 0 control register 01B4 C184 SRCTL1 Serializer 1 control register 01B4 C188 SRCTL2 Serializer 2 control register 01B4 C18C SRCTL3 Serializer 3 control register 01B4 C190 SRCTL4 Serializer 4 control register 01B4 C194 SRCTL5 Serializer 5 control register 01B4 C198 SRCTL6 Serializer 6 control register 01B4 C19C SRCTL7 Serializer 7 control register Reserved 01B4 C1A0 – 01B4 C1FC – 01B4 C200 XBUF0 Reserved Transmit Buffer for Serializer 0 01B4 C204 XBUF1 Transmit Buffer for Serializer 1 01B4 C208 XBUF2 Transmit Buffer for Serializer 2 01B4 C20C XBUF3 Transmit Buffer for Serializer 3 01B4 C210 XBUF4 Transmit Buffer for Serializer 4 01B4 C214 XBUF5 Transmit Buffer for Serializer 5 01B4 C218 XBUF6 Transmit Buffer for Serializer 6 01B4 C21C XBUF7 Transmit Buffer for Serializer 7 01B4 C220 – 01B4 C27C – 01B4 C280 RBUF0 Receive Buffer for Serializer 0 01B4 C284 RBUF1 Receive Buffer for Serializer 1 01B4 C288 RBUF2 Receive Buffer for Serializer 2 Reserved DM642 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel Copyright © 2009–2010, Texas Instruments Incorporated 111 SM320DM642-HiRel SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 www.ti.com Table 5-31. McASP0 Control Registers (continued) HEX ADDRESS RANGE ACRONYM 01B4 C28C RBUF3 Receive Buffer for Serializer 3 REGISTER NAME 01B4 C290 RBUF4 Receive Buffer for Serializer 4 01B4 C294 RBUF5 Receive Buffer for Serializer 5 01B4 C298 RBUF6 Receive Buffer for Serializer 6 01B4 C29C RBUF7 Receive Buffer for Serializer 7 01B4 C2A0 – 01B4 FFFF – Reserved Table 5-32. McASP0 Data Registers HEX ADDRESS RANGE 3C00 0000 – 3C0F FFFF 5.9.3 ACRONYM RBUF/XBUFx REGISTER NAME COMMENTS McASPx receive buffers or McASPx transmit buffers via the Peripheral Data Bus. (Used when RSEL or XSEL bits = 0 [these bits are located in the RFMT or XFMT registers, respectively].) McASP0 Electrical Data/Timing 5.9.3.1 Multichannel Audio Serial Port (McASP) Timing Table 5-33. Timing Requirements for McASP (see Figure 5-33 and Figure 5-34) (1) –500 –600 –720 NO. MIN 1 tc(AHCKRX) Cycle time, AHCLKR/X 2 tw(AHCKRX) Pulse duration, AHCLKR/X high or low 3 tc(CKRX) Cycle time, ACLKR/X ACLKR/X ext 4 tw(CKRX) Pulse duration, ACLKR/X high or low 5 tsu(FRX-CKRX) Setup time, AFSR/X input valid before ACLKR/X latches data 6 7 8 (1) 112 th(CKRX-FRX) tsu(AXR-CKRX) th(CKRX-AXR) Hold time, AFSR/X input valid after ACLKR/X latches data Setup time, AXR input valid before ACLKR/X latches data Hold time, AXR input valid after ACLKR/X latches data UNIT MAX 20 ns 10 ns 33 ns ACLKR/X ext 16.5 ns ACLKR/X int 5 ns ACLKR/X ext 5 ns ACLKR/X int 5 ns ACLKR/X ext 5 ns ACLKR/X int 5 ns ACLKR/X ext 5 ns ACLKR/X int 5 ns ACLKR/X ext 5 ns ACLKX internal: ACLKXCTL.CLKXM=1, PDIR.ACLKX = 1 ACLKX external input: ACLKXCTL.CLKXM=0, PDIR.ACLKX=0 ACLKX external output: ACLKXCTL.CLKXM=0, PDIR.ACLKX=1 ACLKR internal: ACLKRCTL.CLKRM=1, PDIR.ACLKR = 1 ACLKR external input: ACLKRCTL.CLKRM=0, PDIR.ACLKR=0 ACLKR external output: ACLKRCTL.CLKRM=0, PDIR.ACLKR=1 DM642 Peripheral Information and Electrical Specifications Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel SM320DM642-HiRel www.ti.com SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 Table 5-34. Switching Characteristics Over Recommended Operating Conditions for McASP (see Figure 5-33 and Figure 5-34) (1) NO. –500 –600 –720 PARAMETER MIN MAX 9 tc(AHCKRX) Cycle time, AHCLKR/X 20 ns 10 tw(AHCKRX) Pulse duration, AHCLKR/X high or low 10 ns 11 tc(CKRX) Cycle time, ACLKR/X ACLKR/X int 33 ns 12 tw(CKRX) Pulse duration, ACLKR/X high or low ACLKR/X int 16.5 ns 13 td(CKRX-FRX) Delay time, ACLKR/X transmit edge to AFSX/R output valid ACLKR/X int –1 5 ns ACLKR/X ext 0 10 ns ACLKX int –1 5 ns ACLKX ext 0 10 ns ACLKR/X int 0 10 ns ACLKR/X ext 0 10 ns 14 15 (1) UNIT td(CKX-AXRV) Delay time, ACLKX transmit edge to AXR output valid tdis(CKRX-AXRHZ) Disable time, AXR high impedance following last data bit from ACLKR/X transmit edge ACLKX internal: ACLKXCTL.CLKXM=1, PDIR.ACLKX = 1 ACLKX external input: ACLKXCTL.CLKXM=0, PDIR.ACLKX=0 ACLKX external output: ACLKXCTL.CLKXM=0, PDIR.ACLKX=1 ACLKR internal: ACLKRCTL.CLKRM=1, PDIR.ACLKR = 1 ACLKR external input: ACLKRCTL.CLKRM=0, PDIR.ACLKR=0 ACLKR external output: ACLKRCTL.CLKRM=0, PDIR.ACLKR=1 DM642 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel Copyright © 2009–2010, Texas Instruments Incorporated 113 SM320DM642-HiRel SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 www.ti.com 2 1 2 AHCLKR/X (Falling Edge Polarity) AHCLKR/X (Rising Edge Polarity) 4 3 4 ACLKR/X (CLKRP = CLKXP = 0)(A) ACLKR/X (CLKRP = CLKXP = 1)(B) 6 5 AFSR/X (Bit Width, 0 Bit Delay) AFSR/X (Bit Width, 1 Bit Delay) AFSR/X (Bit Width, 2 Bit Delay) AFSR/X (Slot Width, 0 Bit Delay) AFSR/X (Slot Width, 1 Bit Delay) AFSR/X (Slot Width, 2 Bit Delay) 8 7 AXR[n] (Data In/Receive) A. B. For CLKRP = CLKXP = receiver is configured for For CLKRP = CLKXP = receiver is configured for A0 A1 A30 A31 B0 B1 B30 B31 C0 C1 C2 C3 C31 0, the McASP transmitter is configured for rising edge (to shift data out) and the McASP falling edge (to shift data in). 1, the McASP transmitter is configured for falling edge (to shift data out) and the McASP rising edge (to shift data in). Figure 5-33. McASP Input Timings 114 DM642 Peripheral Information and Electrical Specifications Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel SM320DM642-HiRel www.ti.com SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 10 10 9 AHCLKR/X (Falling Edge Polarity) AHCLKR/X (Rising Edge Polarity) 12 11 12 ACLKR/X (CLKRP = CLKXP = 1)(A) ACLKR/X (CLKRP = CLKXP = 0)(B) 13 13 13 13 AFSR/X (Bit Width, 0 Bit Delay) AFSR/X (Bit Width, 1 Bit Delay) AFSR/X (Bit Width, 2 Bit Delay) 13 13 13 AFSR/X (Slot Width, 0 Bit Delay) AFSR/X (Slot Width, 1 Bit Delay) AFSR/X (Slot Width, 2 Bit Delay) 14 15 AXR[n] (Data Out/Transmit) A0 A. B. For CLKRP = CLKXP = receiver is configured for For CLKRP = CLKXP = receiver is configured for A1 A30 A31 B0 B1 B30 B31 C0 C1 C2 C3 C31 1, the McASP transmitter is configured for falling edge (to shift data out) and the McASP rising edge (to shift data in). 0, the McASP transmitter is configured for rising edge (to shift data out) and the McASP falling edge (to shift data in). Figure 5-34. McASP Output Timings DM642 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel Copyright © 2009–2010, Texas Instruments Incorporated 115 SM320DM642-HiRel SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 www.ti.com 5.10 Inter-Integrated Circuit (I2C) The inter-integrated circuit (I2C) module provides an interface between a TMS320C6000 DSP and other devices compliant with Philips Semiconductors Inter-IC bus (I2C bus) specification version 2.1 and connected by way of an I2C-bus. External components attached to this 2-wire serial bus can transmit/receive up to 8-bit data to/from the DSP through the I2C module. 5.10.1 I2C Device-Specific Information The I2C module on the DM642 may be used by the DSP to control local peripherals ICs (DACs, ADCs, etc.) while the other may be used to communicate with other controllers in a system or to implement a user interface. The I2C port supports: • Compatible with Philips I2C Specification Revision 2.1 (January 2000) • Fast Mode up to 400 Kbps (no fail-safe I/O buffers) • Noise Filter to Remove Noise 50 ns or less • 7- and 10-Bit Device Addressing Modes • Master (Transmit/Receive) and Slave (Transmit/Receive) Functionality • Events: DMA, Interrupt, or Polling • Slew-Rate Limited Open-Drain Output Buffers Figure 5-35 is a block diagram of the I2C0 module. 116 DM642 Peripheral Information and Electrical Specifications Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel SM320DM642-HiRel www.ti.com SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 I2C0 Module Clock Prescale Peripheral Clock (CPU/4) I2CPSCx SCL Noise Filter I2C Clock Bit Clock Generator Control I2CCLKHx I2COARx Own Address I2CSARx Slave Address I2CMDRx Mode I2CCNTx Data Count I2CCLKLx Transmit I2CXSRx Transmit Shift I2CDXRx Transmit Buffer SDA I2C Data Interrupt/DMA Noise Filter Receive I2CIERx Interrupt Enable I2CDRRx Receive Buffer I2CSTRx Interrupt Status I2CRSRx Receive Shift I2CISRCx Interrupt Source Shading denotes a peripheral module not available for this configuration. Figure 5-35. I2C0 Module Block Diagram For more detailed information on the I2C peripheral, see the TMS320C6000™ DSP Inter-Integrated Circuit (I2C) Module Reference Guide (literature number SPRU175). DM642 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel Copyright © 2009–2010, Texas Instruments Incorporated 117 SM320DM642-HiRel SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 5.10.2 www.ti.com I2C Peripheral Register Description(s) Table 5-35. I2C0 Registers 118 HEX ADDRESS RANGE ACRONYM REGISTER NAME 01B4 0000 I2COAR0 I2C0 own address register 01B4 0004 I2CIER0 I2C0 interrupt enable register 01B4 0008 I2CSTR0 I2C0 interrupt status register 01B4 000C I2CCLKL0 I2C0 clock low-time divider register 01B4 0010 I2CCLKH0 I2C0 clock high-time divider register 01B4 0014 I2CCNT0 I2C0 data count register 01B4 0018 I2CDRR0 I2C0 data receive register 01B4 001C I2CSAR0 I2C0 slave address register 01B4 0020 I2CDXR0 I2C0 data transmit register 01B4 0024 I2CMDR0 I2C0 mode register I2C0 interrupt source register 01B4 0028 I2CISRC0 01B4 002C – 01B4 0030 I2CPSC0 I2C0 prescaler register 01B4 0034 I2CPID10 I2C0 Peripheral Identification register 1 [Value: 0x0000 0101] 01B4 0038 I2CPID20 I2C0 Peripheral Identification register 2 [Value: 0x0000 0005] 01B4 003C – 01B4 3FFF – Reserved Reserved DM642 Peripheral Information and Electrical Specifications Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel SM320DM642-HiRel www.ti.com 5.10.3 SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 I2C Electrical Data/Timing 5.10.3.1 Inter-Integrated Circuits (I2C) Timing Table 5-36. Timing Requirements for I2C Timings (1) (see Figure 5-36) –500 –600 –720 NO. STANDARD MODE MIN 1 (1) (2) (3) (4) (5) MAX UNIT FAST MODE MIN MAX tc(SCL) Cycle time, SCL 10 2.5 ms 2 tsu(SCLH-SDAL) Setup time, SCL high before SDA low (for a repeated START condition) 4.7 0.6 ms 3 th(SCLL-SDAL) Hold time, SCL low after SDA low (for a START and a repeated START condition) 4 0.6 ms 4 tw(SCLL) Pulse duration, SCL low 4.7 1.3 ms 5 tw(SCLH) Pulse duration, SCL high 4 0.6 ms (2) 6 tsu(SDAV-SDLH) Setup time, SDA valid before SCL high 250 7 th(SDA-SDLL) Hold time, SDA valid after SCL low (For I2C bus™ devices) 0 (3) 0 (3) 8 tw(SDAH) Pulse duration, SDA high between STOP and START conditions 4.7 1.3 9 tr(SDA) Rise time, SDA 1000 20 + 0.1Cb 300 ns 10 tr(SCL) Rise time, SCL 1000 20 + 0.1Cb 300 ns 11 tf(SDA) Fall time, SDA 300 20 + 0.1Cb 300 ns 12 tf(SCL) Fall time, SCL 300 20 + 0.1Cb 300 ns 13 tsu(SCLH-SDAH) Setup time, SCL high before SDA high (for STOP condition) 14 tw(SP) Pulse duration, spike (must be suppressed) 15 (5) Cb Capacitive load for each bus line 100 4 (5) (5) (5) (5) ns 0.9 (4) ms 0.6 0 400 ms ms 50 ns 400 pF The I2C pins SDA and SCL do not feature fail-safe I/O buffers. These pins could potentially draw current when the device is powered down. A Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system, but the requirement tsu(SDA-SCLH) ≥250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line tr max + tsu(SDA-SCLH) = 1000 + 250 = 1250 ns (according to the Standard-mode I2C-Bus Specification) before the SCL line is released. A device must internally provide a hold time of at least 300 ns for the SDA signal (referred to the VIHmin of the SCL signal) to bridge the undefined region of the falling edge of SCL. The maximum th(SDA-SCLL) has only to be met if the device does not stretch the low period [tw(SCLL)] of the SCL signal. Cb = total capacitance of one bus line in pF. If mixed with HS-mode devices, faster fall-times are allowed. DM642 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel Copyright © 2009–2010, Texas Instruments Incorporated 119 SM320DM642-HiRel SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 www.ti.com 11 9 SDA 6 8 14 4 13 5 10 SCL 1 12 3 2 7 3 Stop Start Repeated Start Stop Figure 5-36. I2C Receive Timings Table 5-37. Switching Characteristics for I2C Timings (1) (see Figure 5-37) –500 –600 –720 NO. PARAMETER STANDARD MODE MIN 16 MAX UNIT FAST MODE MIN MAX tc(SCL) Cycle time, SCL 10 2.5 ms 17 td(SCLH-SDAL) Delay time, SCL high to SDA low (for a repeated START condition) 4.7 0.6 ms 18 td(SDAL-SCLL) Delay time, SDA low to SCL low (for a START and a repeated START condition) 4 0.6 ms 19 tw(SCLL) Pulse duration, SCL low 4.7 1.3 ms 20 tw(SCLH) Pulse duration, SCL high 4 0.6 ms 21 td(SDAV-SDLH) Delay time, SDA valid to SCL high 250 100 22 tv(SDLL-SDAV) Valid time, SDA valid after SCL low (For I2C bus™ devices) 0 0 23 tw(SDAH) Pulse duration, SDA high between STOP and START conditions 4.7 1.3 24 tr(SDA) Rise time, SDA 1000 20 + 0.1Cb 300 ns 25 tr(SCL) Rise time, SCL 1000 20 + 0.1Cb 300 ns 26 tf(SDA) Fall time, SDA 300 20 + 0.1Cb 300 ns 27 tf(SCL) Fall time, SCL 300 20 + 0.1Cb 300 ns 28 td(SCLH-SDAH) Delay time, SCL high to SDA high (for STOP condition) 29 Cp Capacitance for each I2C pin 10 pF (1) (2) 120 4 (2) (2) (2) (2) ns 0.9 ms 0.6 10 ms ms Cb = total capacitance of one bus line in pF. If mixed with HS-mode devices, faster fall-times are allowed. Cb = total capacitance of one bus line in pF. If mixed with HS-mode devices, faster fall-times are allowed. DM642 Peripheral Information and Electrical Specifications Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel SM320DM642-HiRel www.ti.com SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 26 24 SDA 21 23 19 28 20 25 SCL 16 27 18 17 22 18 Stop Start Repeated Start Stop Figure 5-37. I2C Transmit Timings DM642 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel Copyright © 2009–2010, Texas Instruments Incorporated 121 SM320DM642-HiRel SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 www.ti.com 5.11 Host-Port Interface (HPI) The HPI is a parallel port through which a host processor can directly access the CPU memory space. The host device functions as a master to the interface, which increases ease of access. The host and CPU can exchange information via internal or external memory. The host also has direct access to memory-mapped peripherals. Connectivity to the CPU memory space is provided through the enhanced DMA (EDMA) controller. Both the host and the CPU can access the HPI control register (HPIC) and the HPI address register (HPIA). The host can access the HPI data register (HPID) and the HPIC by using the external data and interface control signals. For more detailed information on the HPI peripheral, see the TMS320C6000™ DSP Host Port Interface (HPI) Reference Guide (literature number SPRU578). 5.11.1 HPI Peripheral Register Description(s) Table 5-38. HPI Registers HEX ADDRESS RANGE ACRONYM – HPID HPI data register Host read/write access only 0188 0000 HPIC HPI control register HPIC has both Host/CPU read/write access 0188 0004 HPIA (HPIAW) (1) HPI address register (Write) 0188 0008 HPIA (HPIAR) (1) HPI address register (Read) 0188 000C – 0189 FFFF – 018A 0000 HPI_TRCTL 018A 0004 – 018B FFFF – (1) 122 REGISTER NAME COMMENTS HPIA has both Host/CPU read/write access Reserved HPI transfer request control register Reserved Host access to the HPIA register updates both the HPIAW and HPIAR registers. The CPU can access HPIAW and HPIAR independently. DM642 Peripheral Information and Electrical Specifications Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel SM320DM642-HiRel www.ti.com 5.11.2 SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 Host-Port Interface (HPI) Electrical Data/Timing Table 5-39. Timing Requirements for Host-Port Interface Cycles (1) Figure 5-45) (2) (see Figure 5-38 through –500 –600 –720 NO. MIN 1 tsu(SELV-HSTBL) Setup time, select signals (3) valid before HSTROBE low 2 th(HSTBL-SELV) Hold time, select signals (3) valid after HSTROBE low 3 tw(HSTBL) Pulse duration, HSTROBE low 4 tw(HSTBH) Pulse duration, HSTROBE high between consecutive accesses 10 tsu(SELV-HASL) Setup time, select signals (3) valid before HAS low (3) 11 th(HASL-SELV) Hold time, select signals 12 tsu(HDV-HSTBH) Setup time, host data valid before HSTROBE high 13 th(HSTBH-HDV) Hold time, host data valid after HSTROBE high 14 th(HRDYL-HSTBL) Hold time, HSTROBE low after HRDY low. HSTROBE should not be inactivated until HRDY is active (low); otherwise, HPI writes will not complete properly. 18 tsu(HASL-HSTBL) Setup time, HAS low before HSTROBE low 19 th(HSTBL-HASL) Hold time, HAS low after HSTROBE low (1) (2) (3) (4) UNIT MAX 5 ns 2.4 ns (4) ns 4P ns 5 ns 2 ns 5 ns 2.8 ns 2 ns 2 ns 2.1 ns 4P valid after HAS low HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS. P = 1/CPU clock frequency in ns. For example, when running parts at 720 MHz, use P = 1.39 ns. Select signals include: HCNTL[1:0] and HR/W. For HPI16 mode only, select signals also include HHWIL. Select the parameter value of 4P or 12.5 ns, whichever is larger. Table 5-40. Switching Characteristics Over Recommended Operating Conditions During Host-Port Interface Cycles (1) (2) (see Figure 5-38 through Figure 5-45) NO. PARAMETER 6 td(HSTBL-HRDYH) Delay time, HSTROBE low to HRDY high (3) 7 td(HSTBL-HDLZ) Delay time, HSTROBE low to HD low impedance for an HPI read 8 td(HDV-HRDYL) UNIT MIN MAX 1.3 4P + 8 ns 2 ns Delay time, HD valid to HRDY low –3 ns 1.5 9 toh(HSTBH-HDV) Output hold time, HD valid after HSTROBE high 15 td(HSTBH-HDHZ) Delay time, HSTROBE high to HD high impedance 16 td(HSTBL-HDV) Delay time, HSTROBE low to HD valid (HPI16 mode, 2nd half-word only) (1) (2) (3) –500 –600 –720 ns 12 ns 4P + 8 ns HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS. P = 1/CPU clock frequency in ns. For example, when running parts at 720 MHz, use P = 1.39 ns. This parameter is used during HPID reads and writes. For reads, at the beginning of a word transfer (HPI32) or the first half-word transfer (HPI16) on the falling edge of HSTROBE, the HPI sends the request to the EDMA internal address generation hardware, and HRDY remains high until the EDMA internal address generation hardware loads the requested data into HPID. For writes, HRDY goes high if the internal write buffer is full. DM642 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel Copyright © 2009–2010, Texas Instruments Incorporated 123 SM320DM642-HiRel SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 www.ti.com HAS 1 1 2 2 HCNTL[1:0] 1 1 2 2 HR/W 1 1 2 2 HHWIL 4 3 3 HSTROBE (A) HCS 15 9 7 15 9 16 HD[15:0] (output) 1st half-word 6 2nd half-word 8 HRDY A. HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS. Figure 5-38. HPI16 Read Timing (HAS Not Used, Tied High) HAS (A) 19 11 19 10 11 10 HCNTL[1:0] 11 11 10 10 HR/W 11 11 10 10 HHWIL 4 3 HSTROBE (B) 18 18 HCS 15 7 9 15 16 9 HD[15:0] (output) 6 1st half-word 8 2nd half-word HRDY A. B. For correct operation, strobe the HAS signal only once per HSTROBE active cycle. HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS. Figure 5-39. HPI16 Read Timing (HAS Used) 124 DM642 Peripheral Information and Electrical Specifications Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel SM320DM642-HiRel www.ti.com SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 HAS 1 1 2 2 HCNTL[1:0] 1 1 2 2 HR/W 1 1 2 2 HHWIL 3 3 4 HSTROBE (A) HCS 12 12 13 13 HD[15:0] (input) 1st half-word 2nd half-word 14 6 HRDY A. HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS. Figure 5-40. HPI16 Write Timing (HAS Not Used, Tied High) 19 HAS (A) 19 11 11 10 10 HCNTL[1:0] 11 11 10 10 HR/W 11 11 10 10 HHWIL 3 4 HSTROBE (B) 18 18 HCS 12 13 12 13 HD[15:0] (input) 1st half-word 6 2nd half-word 14 HRDY A. B. For correct operation, strobe the HAS signal only once per HSTROBE active cycle. HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS. Figure 5-41. HPI16 Write Timing (HAS Used) DM642 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel Copyright © 2009–2010, Texas Instruments Incorporated 125 SM320DM642-HiRel SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 www.ti.com HAS 1 2 1 2 HCNTL[1:0] HR/W 3 HSTROBE (A) HCS 7 9 15 HD[31:0] (output) 6 8 HRDY A. HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS. Figure 5-42. HPI32 Read Timing (HAS Not Used, Tied High) 19 HAS (A) 11 10 HCNTL[1:0] 11 10 HR/W 18 3 HSTROBE (B) HCS 7 9 15 HD[31:0] (output) 6 8 HRDY A. B. For correct operation, strobe the HAS signal only once per HSTROBE active cycle. HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS. Figure 5-43. HPI32 Read Timing (HAS Used) 126 DM642 Peripheral Information and Electrical Specifications Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel SM320DM642-HiRel www.ti.com SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 HAS 1 2 1 2 HCNTL[1:0] HR/W 3 HSTROBE (A) HCS 12 13 HD[31:0] (input) 6 14 HRDY A. HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS. Figure 5-44. HPI32 Write Timing (HAS Not Used, Tied High) 19 HAS (A) 11 10 HCNTL[1:0] 11 10 HR/W 3 18 HSTROBE (B) HCS 12 13 HD[31:0] (input) 6 14 HRDY A. B. For correct operation, strobe the HAS signal only once per HSTROBE active cycle. HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS. Figure 5-45. HPI32 Write Timing (HAS Used) DM642 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel Copyright © 2009–2010, Texas Instruments Incorporated 127 SM320DM642-HiRel SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 www.ti.com 5.12 Peripheral Component Interconnect (PCI) The PCI port for the TMS320C600 supports connection of the DSP to a PCI host via the integrated PCI master/slave bus interface. For the C64x devices, like the DM642, the PCI port interfaces to the DSP via the EDMA internal address generation hardware. This architecture allows for both PCI Master and Slave transactions, while keeping the EDMA channel resources available for other applications. 5.12.1 PCI Device-Specific Information On the DM642 device, the PCI interface is multiplexed with the 32-bit Host Port Interface (HPI), or with a combination of 16-bit HPI and EMAC/MDIO. This provides the following flexibility options to the user: • 32-bit 66 MHz PCI bus • 32-bit HPI • Combination of 16-bit HPI and EMAC/MDIO For more detailed information on the PCI port peripheral module, see the TMS320C6000™ DSP Peripheral Component Interconnect (PCI) Reference Guide (literature number SPRU581). 5.12.2 PCI Peripheral Register Description(s) Table 5-41. PCI Peripheral Registers 128 HEX ADDRESS RANGE ACRONYM 01C0 0000 RSTSRC REGISTER NAME DSP Reset source/status register 01C0 0004 – 01C0 0008 PCIIS Reserved PCI interrupt source register 01C0 000C PCIIEN PCI interrupt enable register 01C0 0010 DSPMA DSP master address register 01C0 0014 PCIMA PCI master address register 01C0 0018 PCIMC PCI master control register 01C0 001C CDSPA Current DSP address register 01C0 0020 CPCIA Current PCI address register 01C0 0024 CCNT Current byte count register 01C0 0028 – Reserved 01C0 002C – 01C1 FFEF – Reserved 0x01C1 FFF0 HSR 0x01C1 FFF4 HDCR Host-to-DSP control register 0x01C1 FFF8 DSPP DSP page register Host status register 0x01C1 FFFC – 01C2 0000 EEADD EEPROM address register 01C2 0004 EEDAT EEPROM data register EEPROM control register 01C2 0008 EECTL 01C2 000C – 01C2 FFFF – 01C3 0000 PCI_TRCTL 01C3 0004 – 01C3 FFFF – Reserved Reserved PCI transfer request control register Reserved DM642 Peripheral Information and Electrical Specifications Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel SM320DM642-HiRel www.ti.com 5.12.3 SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 PCI Electrical Data/Timing 5.12.3.1 Peripheral Component Interconnect (PCI) Timing Table 5-42. Timing Requirements for PCLK (1) (2) (see Figure 5-46) –500, A-600 [33 MHz] NO. –600, –720 [66 MHz] MIN MAX 30 (or 4P (3)) 15 (or 4P (3)) ns Pulse duration, PCLK high 11 6 ns tw(PCLKL) Pulse duration, PCLK low 11 tsr(PCLK) Δv/Δt slew rate, PCLK 1 tc(PCLK) Cycle time, PCLK 2 tw(PCLKH) 3 4 (1) (2) (3) UNIT MIN MAX 6 1 4 ns 1.5 4 V/ns For 3.3-V operation, the reference points for the rise and fall transitions are measured at VILP MAX and VIHP MIN. P = 1/CPU clock frequency in ns. For example when running parts at 720 MHz,use P = 1.39 ns. Select the parameter value, whichever is larger. 1 0.4 DVDD V MIN Peak to Peak for 3.3V signaling 4 2 PCLK 3 4 Figure 5-46. PCLK Timing Table 5-43. Timing Requirements for PCI Reset (see Figure 5-47) –500 –600 –720 NO. MIN 1 tw(PRST) Pulse duration, PRST 2 tsu(PCLKA-PRSTH) Setup time, PCLK active before PRST high UNIT MAX 1 ms 100 ms PCLK 1 PRST 2 Figure 5-47. PCI Reset (PRST) Timing Table 5-44. Timing Requirements for PCI Inputs (see Figure 5-48) NO. –500, A-600 –600 –720 33 MHz 66 MHz MIN MAX MIN UNIT MAX 4 tsu(IV-PCLKH) Setup time, input valid before PCLK high 7 3 ns 5 th(IV-PCLKH) Hold time, input valid after PCLK high 0 0 ns DM642 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel Copyright © 2009–2010, Texas Instruments Incorporated 129 SM320DM642-HiRel SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 www.ti.com PCLK 4 5 PCI Input Inputs Valid Figure 5-48. PCI Input Timing (33/66 MHz) Table 5-45. Switching Characteristics Over Recommended Operating Conditions for PCI Outputs (see Figure 5-49) NO. parameter –500, A-600 –600 –720 33 MHz 66 MHz UNIT MIN MAX MIN MAX 1 td(PCLKH-OV) Delay time, PCLK high to output valid 2 11 2 6 2 td(PCLKH-OLZ) Delay time, PCLK high to output low impedance 2 3 td(PCLKH-OHZ) Delay time, PCLK high to output high impedance 2 28 ns ns 14 ns PCLK 1 1 PCI Output 2 3 Figure 5-49. PCI Output Timing (33/66 MHz) 130 DM642 Peripheral Information and Electrical Specifications Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel SM320DM642-HiRel www.ti.com SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 Table 5-46. Timing Requirements for Serial EEPROM Interface (see Figure 5-50) –500 –600 –720 NO. MIN 8 tsu(DIV-CLKH) Setup time, XSP_DI valid before XSP_CLK high 9 th(CLKH-DIV) Hold time, XSP_DI valid after XSP_CLK high UNIT MAX 50 ns 0 ns Table 5-47. Switching Characteristics Over Recommended Operating Conditions for Serial EEPROM Interface (1) (see Figure 5-50) NO. –500 –600 –720 PARAMETER MIN (1) UNIT TYP MAX 1 tw(CSL) Pulse duration, XSP_CS low 4092P ns 2 td(CLKL-CSL) Delay time, XSP_CLK low to XSP_CS low 3 td(CSH-CLKH) Delay time, XSP_CS high to XSP_CLK high 0 ns 2046P 4 tw(CLKH) Pulse duration, XSP_CLK high 2046P ns ns 5 tw(CLKL) Pulse duration, XSP_CLK low 2046P ns 6 tosu(DOV-CLKH) Output setup time, XSP_DO valid before XSP_CLK high 2046P ns 7 toh(CLKH-DOV) Output hold time, XSP_DO valid after XSP_CLK high 2046P ns P = 1/CPU clock frequency in ns. For example, when running parts at 720 MHz, use P = 1.39 ns. 2 1 XSP_CS 3 4 5 XSP_CLK 7 6 XSP_DO 8 9 XSP_DI Figure 5-50. PCI Serial EEPROM Interface Timing DM642 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel Copyright © 2009–2010, Texas Instruments Incorporated 131 SM320DM642-HiRel SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 www.ti.com 5.13 Multichannel Buffered Serial Port (McBSP) The McBSP provides these functions: • Full-duplex communication • Double-buffered data registers, which allow a continuous data stream • Independent framing and clocking for receive and transmit • Direct interface to industry-standard codecs, analog interface chips (AICs), and other serially connected analog-to-digital (A/D) and digital-to-analog (D/A) devices • External shift clock or an internal, programmable frequency shift clock for data transfer For more detailed information on the McBSP peripheral, see the TMS320C6000™ DSP Multichannel Buffered Serial Port (McBSP) Reference Guide (literature number SPRU580). 5.13.1 McBSP Peripheral Register Description(s) Table 5-48. McBSP0 Registers HEX ADDRESS RANGE ACRONYM REGISTER NAME 018C 0000 DRR0 McBSP0 data receive register via Configuration Bus 0x3000 0000 – 0x33FF FFFF DRR0 McBSP0 data receive register via Peripheral Bus 018C 0004 DXR0 McBSP0 data transmit register via Configuration Bus 0x3000 0000 – 0x33FF FFFF DXR0 McBSP0 data transmit register via Peripheral Bus 018C 0008 SPCR0 018C 000C RCR0 McBSP0 receive control register 018C 0010 XCR0 McBSP0 transmit control register 018C 0014 SRGR0 018C 0018 MCR0 018C 001C RCERE00 McBSP0 enhanced receive channel enable register 0 018C 0020 XCERE00 McBSP0 enhanced transmit channel enable register 0 018C 0024 PCR0 018C 0028 RCERE10 McBSP0 enhanced receive channel enable register 1 018C 002C XCERE10 McBSP0 enhanced transmit channel enable register 1 018C 0030 RCERE20 McBSP0 enhanced receive channel enable register 2 018C 0034 XCERE20 McBSP0 enhanced transmit channel enable register 2 McBSP0 serial port control register McBSP0 sample rate generator register McBSP0 multichannel control register McBSP0 pin control register 018C 0038 RCERE30 McBSP0 enhanced receive channel enable register 3 018C 003C XCERE30 McBSP0 enhanced transmit channel enable register 3 018C 0040 – 018F FFFF – 132 COMMENTS The CPU and EDMA controller can only read this register; they cannot write to it. Reserved DM642 Peripheral Information and Electrical Specifications Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel SM320DM642-HiRel www.ti.com SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 Table 5-49. McBSP1 Registers HEX ADDRESS RANGE ACRONYM REGISTER NAME 0190 0000 DRR1 McBSP1 data receive register via Configuration Bus 0x3400 0000 – 0x37FF FFFF DRR1 McBSP1 data receive register via peripheral bus 0190 0004 DXR1 McBSP1 data transmit register via configuration bus 0x3400 0000 – 0x37FF FFFF DXR1 McBSP1 data transmit register via peripheral bus 0190 0008 SPCR1 0190 000C RCR1 McBSP1 receive control register 0190 0010 XCR1 McBSP1 transmit control register 0190 0014 SRGR1 COMMENTS The CPU and EDMA controller can only read this register; they cannot write to it. McBSP1 serial port control register McBSP1 sample rate generator register 0190 0018 MCR1 0190 001C RCERE01 McBSP1 multichannel control register McBSP1 enhanced receive channel enable register 0 0190 0020 XCERE01 McBSP1 enhanced transmit channel enable register 0 0190 0024 PCR1 0190 0028 RCERE11 McBSP1 pin control register McBSP1 enhanced receive channel enable register 1 0190 002C XCERE11 McBSP1 enhanced transmit channel enable register 1 0190 0030 RCERE21 McBSP1 enhanced receive channel enable register 2 0190 0034 XCERE21 McBSP1 enhanced transmit channel enable register 2 0190 0038 RCERE31 McBSP1 enhanced receive channel enable register 3 0190 003C XCERE31 McBSP1 enhanced transmit channel enable register 3 0190 0040 – 0193 FFFF – Reserved DM642 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel Copyright © 2009–2010, Texas Instruments Incorporated 133 SM320DM642-HiRel SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 5.13.2 www.ti.com McBSP Electrical Data/Timing 5.13.2.1 Multichannel Buffered Serial Port (McBSP) Timing Table 5-50. Timing Requirements for McBSP (1) (see Figure 5-51) –500 –600 –720 NO. UNIT MIN MAX 2 tc(CKRX) Cycle time, CLKR/X CLKR/X ext 4P or 6.67 (2) (3) ns 3 tw(CKRX) Pulse duration, CLKR/X high or CLKR/X low CLKR/X ext 0.5tc(CKRX) –1 (4) ns 5 tsu(FRH-CKRL) Setup time, external FSR high before CLKR low 6 th(CKRL-FRH) Hold time, external FSR high after CLKR low 7 tsu(DRV-CKRL) Setup time, DR valid before CLKR low 8 th(CKRL-DRV) Hold time, DR valid after CLKR low 10 tsu(FXH-CKXL) Setup time, external FSX high before CLKX low 11 th(CKXL-FXH) Hold time, external FSX high after CLKX low (1) (2) (3) (4) 134 CLKR int 9 CLKR ext 1.3 CLKR int 6 CLKR ext 3 CLKR int 8 CLKR ext 0.9 CLKR int 3 CLKR ext 3.1 CLKX int 9 CLKX ext 1.3 CLKX int 6 CLKX ext 3 ns ns ns ns ns ns CLKRP = CLKXP = FSRP = FSXP = 0. If polarity of any of the signals is inverted, then the timing references of that signal are also inverted. P = 1/CPU clock frequency in ns. For example, when running parts at 720 MHz, use P = 1.39 ns. Use whichever value is greater. Minimum CLKR/X cycle times must be met, even when CLKR/X is generated by an internal clock source. The minimum CLKR/X cycle times are based on internal logic speed; the maximum usable speed may be lower due to EDMA limitations and AC timing requirements. This parameter applies to the maximum McBSP frequency. Operate serial clocks (CLKR/X) in the reasonable range of 40/60 duty cycle. DM642 Peripheral Information and Electrical Specifications Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel SM320DM642-HiRel www.ti.com SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 Table 5-51. Switching Characteristics Over Recommended Operating Conditions for McBSP (1) (see Figure 5-51) NO. –500 –600 –720 PARAMETER MIN 1 td(CKSH-CKRXH) (1) (2) (3) (4) (5) (6) (7) (8) Delay time, CLKS high to CLKR/X high for internal CLKR/X generated from CLKS input 2 tc(CKRX) Cycle time, CLKR/X CLKR/X int 3 tw(CKRX) Pulse duration, CLKR/X high or CLKR/X low CLKR/X int 4 td(CKRH-FRV) Delay time, CLKR high to internal FSR valid 10 6.67 (3) (4) (5) ns ns C + 1 (6) ns CLKR int –2.1 3 ns CLKX int –1.7 3 CLKX ext 1.7 9 CLKX int –3.9 4 CLKX ext –2.1 9 CLKX int –3.9 + D1 (7) 4 + D2 (7) CLKX ext –2.1 + D1 (7) 9 + D2 (7) Delay time, FSX high to DX valid FSX int –2.3 + D1 (8) 5.6 + D2 (8) ONLY applies when in data delay 0 (XDATDLY = 00b) mode FSX ext 1.9 + D1 (8) 9 + D2 (8) td(CKXH-FXV) Delay time, CLKX high to internal FSX valid 12 tdis(CKXH-DXHZ) Disable time, DX high impedance following last data bit from CLKX high 13 td(CKXH-DXV) Delay time, CLKX high to DX valid td(FXH-DXV) MAX 1.4 4P or UNIT C – 1 (6) 9 14 (2) ns ns ns ns CLKRP = CLKXP = FSRP = FSXP = 0. If polarity of any of the signals is inverted, then the timing references of that signal are also inverted. Minimum delay times also represent minimum output hold times. Minimum CLKR/X cycle times must be met, even when CLKR/X is generated by an internal clock source. Minimum CLKR/X cycle times are based on internal logic speed; the maximum usable speed may be lower due to EDMA limitations and AC timing requirements. P = 1/CPU clock frequency in ns. For example, when running parts at 720 MHz, use P = 1.39 ns. Use whichever value is greater. C = H or L S = sample rate generator input clock = 4P if CLKSM = 1 (P = 1/CPU clock frequency) S = sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period) H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even H = (CLKGDV + 1)/2 * S if CLKGDV is odd or zero L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even L = (CLKGDV + 1)/2 * S if CLKGDV is odd or zero CLKGDV should be set appropriately to ensure the McBSP bit rate does not exceed the maximum limit (see (4) above). Extra delay from CLKX high to DX valid applies only to the first data bit of a device, if and only if DXENA = 1 in SPCR. if DXENA = 0, then D1 = D2 = 0 if DXENA = 1, then D1 = 4P, D2 = 8P Extra delay from FSX high to DX valid applies only to the first data bit of a device, if and only if DXENA = 1 in SPCR. if DXENA = 0, then D1 = D2 = 0 if DXENA = 1, then D1 = 4P, D2 = 8P DM642 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel Copyright © 2009–2010, Texas Instruments Incorporated 135 SM320DM642-HiRel SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 www.ti.com CLKS 1 2 3 3 CLKR 4 4 FSR (int) 5 6 FSR (ext) 7 DR 8 Bit(n-1) (n-2) (n-3) 2 3 3 CLKX 9 FSX (int) 11 10 FSX (ext) FSX (XDATDLY=00b) 14 13 (A) Bit(n-1) 12 Bit 0 DX A. 13 (A) (n-2) (n-3) Parameter No. 13 applies to the first data bit only when XDATDLY ≠ 0. Figure 5-51. McBSP Timing Table 5-52. Timing Requirements for FSR When GSYNC = 1 (see Figure 5-52) –500 –600 –720 NO. MIN UNIT MAX 1 tsu(FRH-CKSH) Setup time, FSR high before CLKS high 4 ns 2 th(CKSH-FRH) Hold time, FSR high after CLKS high 4 ns CLKS 1 2 FSR external CLKR/X (no need to resync) CLKR/X (needs resync) Figure 5-52. FSR Timing When GSYNC = 1 136 DM642 Peripheral Information and Electrical Specifications Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel SM320DM642-HiRel www.ti.com SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 Table 5-53. Timing Requirements for McBSP as SPI Master or Slave: CLKSTP = 10b, CLKXP = 0 (1) (see Figure 5-53) –500 –600 –720 NO. UNIT MASTER MIN 4 tsu(DRV-CKXL) Setup time, DR valid before CLKX low 5 th(CKXL-DRV) Hold time, DR valid after CLKX low (1) (2) (2) SLAVE MAX MIN MAX 12 2 – 12P ns 4 5 + 24P ns P = 1/CPU clock frequency in ns. For example, when running parts at 720 MHz, use P = 1.39 ns. For all SPI Slave modes, CLKG is programmed as 1/4 of the CPU clock by setting CLKSM = CLKGDV = 1. Table 5-54. Switching Characteristics Over Recommended Operating Conditions for McBSP as SPI Master or Slave: CLKSTP = 10b, CLKXP = 0 (1) (2) (see Figure 5-53) NO. 1 (1) (2) (3) (4) (5) –500 –600 –720 PARAMETER MASTER (3) MIN MAX T–2 T+3 L – 2.5 L+3 –2 4 L–2 L+3 Hold time, FSX low after CLKX low (4) th(CKXL-FXL) (5) 2 td(FXL-CKXH) Delay time, FSX low to CLKX high 3 td(CKXH-DXV) Delay time, CLKX high to DX valid 6 tdis(CKXL-DXHZ) Disable time, DX high impedance following last data bit from CLKX low 7 tdis(FXH-DXHZ) Disable time, DX high impedance following last data bit from FSX high 8 td(FXL-DXV) Delay time, FSX low to DX valid UNIT SLAVE MIN MAX ns ns 12P + 2.8 20P + 17 ns ns 4P + 3 12P + 17 ns 8P + 1.8 16P + 17 ns P = 1/CPU clock frequency in ns. For example, when running parts at 720 MHz, use P = 1.39 ns. For all SPI Slave modes, CLKG is programmed as 1/4 of the CPU clock by setting CLKSM = CLKGDV = 1. S = Sample rate generator input clock = 4P if CLKSM = 1 (P = 1/CPU clock frequency) S = Sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period) T = CLKX period = (1 + CLKGDV) * S H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even H = (CLKGDV + 1)/2 * S if CLKGDV is odd or zero L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even L = (CLKGDV + 1)/2 * S if CLKGDV is odd or zero FSRP = FSXP = 1. As a SPI Master, FSX is inverted to provide active-low slave-enable output. As a Slave, the active-low signal input on FSX and FSR is inverted before being used internally. CLKXM = FSXM = 1, CLKRM = FSRM = 0 for Master McBSP CLKXM = CLKRM = FSXM = FSRM = 0 for Slave McBSP FSX should be low before the rising edge of clock to enable Slave devices and then begin a SPI transfer at the rising edge of the Master clock (CLKX). CLKX 1 2 FSX 7 6 DX 8 3 Bit 0 Bit(n-1) 4 DR Bit 0 (n-2) (n-3) (n-4) 5 Bit(n-1) (n-2) (n-3) (n-4) Figure 5-53. McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 0 DM642 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel Copyright © 2009–2010, Texas Instruments Incorporated 137 SM320DM642-HiRel SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 www.ti.com Table 5-55. Timing Requirements for McBSP as SPI Master or Slave: CLKSTP = 11b, CLKXP = 0 (1) (see Figure 5-54) –500 –600 –720 NO. MASTER MIN 4 tsu(DRV-CKXH) Setup time, DR valid before CLKX high 5 th(CKXH-DRV) Hold time, DR valid after CLKX high (1) (2) (2) UNIT SLAVE MAX MIN MAX 12 2 – 12P ns 4 5 + 24P ns P = 1/CPU clock frequency in ns. For example, when running parts at 720 MHz, use P = 1.39 ns. For all SPI Slave modes, CLKG is programmed as 1/4 of the CPU clock by setting CLKSM = CLKGDV = 1. Table 5-56. Switching Characteristics Over Recommended Operating Conditions for McBSP as SPI Master or Slave: CLKSTP = 11b, CLKXP = 0 (1) (2) (see Figure 5-54) NO. 1 –500 –600 –720 PARAMETER MASTER (3) Hold time, FSX low after CLKX low (4) th(CKXL-FXL) (5) UNIT SLAVE MIN MAX L–2 L+3 MIN MAX ns T – 2.5 T+3 ns 2 td(FXL-CKXH) Delay time, FSX low to CLKX high 3 td(CKXL-DXV) Delay time, CLKX low to DX valid –2 4 12P + 3 20P + 17 ns tdis(CKXL-DXHZ) Disable time, DX high impedance following last data bit from CLKX low –2 4 12P + 3 20P + 17 ns td(FXL-DXV) Delay time, FSX low to DX valid 6 7 (1) (2) (3) (4) (5) H–2 H+4 8P + 2 16P + 17 ns P = 1/CPU clock frequency in ns. For example, when running parts at 720 MHz, use P = 1.39 ns. For all SPI Slave modes, CLKG is programmed as 1/4 of the CPU clock by setting CLKSM = CLKGDV = 1. S = Sample rate generator input clock = 4P if CLKSM = 1 (P = 1/CPU clock frequency) S = Sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period) T = CLKX period = (1 + CLKGDV) * S H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even H = (CLKGDV + 1)/2 * S if CLKGDV is odd or zero L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even L = (CLKGDV + 1)/2 * S if CLKGDV is odd or zero FSRP = FSXP = 1. As a SPI Master, FSX is inverted to provide active-low slave-enable output. As a Slave, the active-low signal input on FSX and FSR is inverted before being used internally. CLKXM = FSXM = 1, CLKRM = FSRM = 0 for Master McBSP CLKXM = CLKRM = FSXM = FSRM = 0 for Slave McBSP FSX should be low before the rising edge of clock to enable Slave devices and then begin a SPI transfer at the rising edge of the Master clock (CLKX). CLKX 1 2 6 Bit 0 7 FSX DX 3 Bit(n-1) 4 DR Bit 0 (n-2) (n-3) (n-4) 5 Bit(n-1) (n-2) (n-3) (n-4) Figure 5-54. McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 0 138 DM642 Peripheral Information and Electrical Specifications Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel SM320DM642-HiRel www.ti.com SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 Table 5-57. Timing Requirements for McBSP as SPI Master or Slave: CLKSTP = 10b, CLKXP = 1 (1) (see Figure 5-55) –500 –600 –720 NO. MASTER MIN 4 tsu(DRV-CKXH) Setup time, DR valid before CLKX high 5 th(CKXH-DRV) Hold time, DR valid after CLKX high (1) (2) (2) UNIT SLAVE MAX MIN MAX 12 2 – 12P ns 4 5 + 24P ns P = 1/CPU clock frequency in ns. For example, when running parts at 720 MHz, use P = 1.39 ns. For all SPI Slave modes, CLKG is programmed as 1/4 of the CPU clock by setting CLKSM = CLKGDV = 1. Table 5-58. Switching Characteristics Over Recommended Operating Conditions for McBSP as SPI Master or Slave: CLKSTP = 10b, CLKXP = 1 (1) (2) (see Figure 5-55) NO. 1 (1) (2) (3) (4) (5) –500 –600 –720 PARAMETER MASTER (3) Hold time, FSX low after CLKX high (4) th(CKXH-FXL) (5) UNIT SLAVE MIN MAX T–2 T+3 H – 2.5 H+3 MIN MAX ns 2 td(FXL-CKXL) Delay time, FSX low to CLKX low 3 td(CKXL-DXV) Delay time, CLKX low to DX valid 6 tdis(CKXH-DXHZ) Disable time, DX high impedance following last data bit from CLKX high 7 tdis(FXH-DXHZ) Disable time, DX high impedance following last data bit from FSX high 4P + 3 12P + 17 ns 8 td(FXL-DXV) Delay time, FSX low to DX valid 8P + 2 16P + 17 ns –2 H–2 ns 4 12P + 3 20P + 17 H+3 ns ns P = 1/CPU clock frequency in ns. For example, when running parts at 720 MHz, use P = 1.39 ns. For all SPI Slave modes, CLKG is programmed as 1/4 of the CPU clock by setting CLKSM = CLKGDV = 1. S = Sample rate generator input clock = 4P if CLKSM = 1 (P = 1/CPU clock frequency) S = Sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period) T = CLKX period = (1 + CLKGDV) * S H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even H = (CLKGDV + 1)/2 * S if CLKGDV is odd or zero L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even L = (CLKGDV + 1)/2 * S if CLKGDV is odd or zero FSRP = FSXP = 1. As a SPI Master, FSX is inverted to provide active-low slave-enable output. As a Slave, the active-low signal input on FSX and FSR is inverted before being used internally. CLKXM = FSXM = 1, CLKRM = FSRM = 0 for Master McBSP CLKXM = CLKRM = FSXM = FSRM = 0 for Slave McBSP FSX should be low before the rising edge of clock to enable Slave devices and then begin a SPI transfer at the rising edge of the Master clock (CLKX). CLKX 1 2 FSX 7 6 DX 8 3 Bit 0 Bit(n-1) 4 DR Bit 0 (n-2) (n-3) (n-4) 5 Bit(n-1) (n-2) (n-3) (n-4) Figure 5-55. McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 1 DM642 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel Copyright © 2009–2010, Texas Instruments Incorporated 139 SM320DM642-HiRel SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 www.ti.com Table 5-59. Timing Requirements for McBSP as SPI Master or Slave: CLKSTP = 11b, CLKXP = 1 (1) (see Figure 5-56) –500 –600 –720 NO. MASTER MIN 4 tsu(DRV-CKXH) Setup time, DR valid before CLKX high 5 th(CKXH-DRV) Hold time, DR valid after CLKX high (1) (2) (2) UNIT SLAVE MAX MIN MAX 12 2 – 12P ns 4 5 + 24P ns P = 1/CPU clock frequency in ns. For example, when running parts at 720 MHz, use P = 1.39 ns. For all SPI Slave modes, CLKG is programmed as 1/4 of the CPU clock by setting CLKSM = CLKGDV = 1. Table 5-60. Switching Characteristics Over Recommended Operating Conditions for McBSP as SPI Master or Slave: CLKSTP = 11b, CLKXP = 1 (1) (2) (see Figure 5-56) NO. 1 –500 –600 –720 PARAMETER MASTER (3) MIN MAX H–2 H+3 T – 2.5 T + 1.5 Hold time, FSX low after CLKX high (4) th(CKXH-FXL) (5) UNIT SLAVE MIN MAX ns 2 td(FXL-CKXL) Delay time, FSX low to CLKX low 3 td(CKXH-DXV) Delay time, CLKX high to DX valid –2 4 12P + 3 20P + 17 ns tdis(CKXH-DXHZ) Disable time, DX high impedance following last data bit from CLKX high –2 4 12P + 3 20P + 17 ns td(FXL-DXV) Delay time, FSX low to DX valid 16P + 17 ns 6 7 (1) (2) (3) (4) (5) L–2 L+4 ns 8P + 2 P = 1/CPU clock frequency in ns. For example, when running parts at 720 MHz, use P = 1.39 ns. For all SPI Slave modes, CLKG is programmed as 1/4 of the CPU clock by setting CLKSM = CLKGDV = 1. S = Sample rate generator input clock = 4P if CLKSM = 1 (P = 1/CPU clock frequency) S = Sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period) T = CLKX period = (1 + CLKGDV) * S H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even H = (CLKGDV + 1)/2 * S if CLKGDV is odd or zero L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even L = (CLKGDV + 1)/2 * S if CLKGDV is odd or zero FSRP = FSXP = 1. As a SPI Master, FSX is inverted to provide active-low slave-enable output. As a Slave, the active-low signal input on FSX and FSR is inverted before being used internally. CLKXM = FSXM = 1, CLKRM = FSRM = 0 for Master McBSP CLKXM = CLKRM = FSXM = FSRM = 0 for Slave McBSP FSX should be low before the rising edge of clock to enable Slave devices and then begin a SPI transfer at the rising edge of the Master clock (CLKX). CLKX 1 2 FSX 6 DX 7 3 Bit 0 Bit(n-1) 4 DR Bit 0 (n-2) (n-3) (n-4) 5 Bit(n-1) (n-2) (n-3) (n-4) Figure 5-56. McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 1 140 DM642 Peripheral Information and Electrical Specifications Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel SM320DM642-HiRel www.ti.com SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 5.14 Video Port Each Video Port is capable of sending and receiving digital video data. The Video Ports are also capable of capturing/displaying RAW data. The Video Port peripherals follow video standards such as BT.656 and SMPTE296. 5.14.1 Video Port Device-Specific Information The DM642 device has three video port peripherals. The video port peripheral can operate as a video capture port, video display port, or as a transport stream interface (TSI) capture port. The port consists of two channels: A and B. A 5120-byte capture/display buffer is splittable between the two channels. The entire port (both channels) is always configured for either video capture or display only. Separate data pipelines control the parsing and formatting of video capture or display data for each of the BT.656, Y/C, raw video, and TSI modes. For video capture operation, the video port may operate as two 8/10-bit channels of BT.656 or raw video capture; or as a single channel of 8/10-bit BT.656, 8/10-bit raw video, 16/20-bit Y/C video, 16/20-bit raw video, or 8-bit TSI. For video display operation, the video port may operate as a single channel of 8/10-bit BT.656; or as a single channel of 8/10-bit BT.656, 8/10-bit raw video, 16/20 bit Y/C video, or 16/20-bit raw video. It may also operate in a two channel 8/10-bit raw mode in which the two channels are locked to the same timing. Channel B is not used during single channel operation. For more detailed information on the DM642 Video Port peripherals, see the TMS320C64x™ DSP Video Port/VCXO Interpolated Control (VIC) Port Reference Guide (literature number SPRU629). 5.14.2 Video Port Peripheral Register Description(s) Table 5-61. Video Port 0, 1, and 2 (VP0, VP1, and VP2) Control Registers HEX ADDRESS RANGE ACRONYM DESCRIPTION VP0 VP1 VP2 01C4 0000 01C4 4000 01C4 8000 VP_PIDx Video Port Peripheral Identification Register 01C4 0004 01C4 4004 01C4 8004 VP_PCRx Video Port Peripheral Control Register 01C4 0008 01C4 4008 01C4 8008 – Reserved 01C4 000C 01C4 400C 01C4 800C – Reserved 01C4 0020 01C4 4020 01C4 8020 VP_PFUNCx Video Port Pin Function Register 01C4 0024 01C4 4024 01C4 8024 VP_PDIRx Video Port Pin Direction Register Video Port Pin Data Input Register 01C4 0028 01C4 4028 01C4 8028 VP_PDINx 01C4 002C 01C4 402C 01C4 802C VP_PDOUTx Video Port Pin Data Output Register 01C4 0030 01C4 4030 01C4 8030 VP_PDSETx Video Port Pin Data Set Register 01C4 0034 01C4 4034 01C4 8034 VP_PDCLRx Video Port Pin Data Clear Register 01C4 0038 01C4 4038 01C4 8038 VP_PIENx Video Port Pin Interrupt Enable Register 01C4 003C 01C4 403C 01C4 803C VP_PIPOx Video Port Pin Interrupt Polarity Register 01C4 0040 01C4 4040 01C4 8040 VP_PISTATx Video Port Pin Interrupt Status Register Video Port Pin Interrupt Clear Register 01C4 0044 01C4 4044 01C4 8044 VP_PICLRx 01C4 00C0 01C4 40C0 01C4 80C0 VP_CTLx Video Port Control Register 01C4 00C4 01C4 40C4 01C4 80C4 VP_STATx Video Port Status Register 01C4 00C8 01C4 40C8 01C4 80C8 VP_IEx Video Port Interrupt Enable Register 01C4 00CC 01C4 40CC 01C4 80CC VP_ISx Video Port interrupt Status Register 01C4 0100 01C4 4100 01C4 8100 VC_STATx Video Capture Channel A Status Register 01C4 0104 01C4 4104 01C4 8104 VC_CTLx Video Capture Channel A Control Register DM642 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel Copyright © 2009–2010, Texas Instruments Incorporated 141 SM320DM642-HiRel SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 www.ti.com Table 5-61. Video Port 0, 1, and 2 (VP0, VP1, and VP2) Control Registers (continued) HEX ADDRESS RANGE VP0 VP1 VP2 ACRONYM DESCRIPTION 01C4 0108 01C4 4108 01C4 8108 VC_ASTRTx Video Capture Channel A Field 1 Start Register 01C4 010C 01C4 410C 01C4 810C VC_ASTOPx Video Capture Channel A Field 1 Stop Register 01C4 0110 01C4 4110 01C4 8110 VC_ASTRTx Video Capture Channel A Field 2 Start Register 01C4 0114 01C4 4114 01C4 8114 VC_ASTOPx Video Capture Channel A Field 2 Stop Register 01C4 0118 01C4 4118 01C4 8118 VC_AVINTx Video Capture Channel A Vertical Interrupt Register 01C4 011C 01C4 411C 01C4 811C VC_ATHRLDx Video Capture Channel A Threshold Register 01C4 0120 01C4 4120 01C4 8120 VC_AEVTCTx Video Capture Channel A Event Count Register 01C4 0140 01C4 4140 01C4 8140 VC_BSTATx Video Capture Channel B Status Register 01C4 0144 01C4 4144 01C4 8144 VC_BCTLx Video Capture Channel B Control Register 01C4 0148 01C4 4148 01C4 8148 VC_BSTRTx Video Capture Channel B Field 1 Start Register 01C4 014C 01C4 414C 01C4 814C VC_BSTOPx Video Capture Channel B Field 1 Stop Register 01C4 0150 01C4 4150 01C4 8150 VC_BSTRTx Video Capture Channel B Field 2 Start Register 01C4 0154 01C4 4154 01C4 8154 VC_BSTOPx Video Capture Channel B Field 2 Stop Register Video Capture Channel B Vertical Interrupt Register 01C4 0158 01C4 4158 01C4 8158 VC_BVINTx 01C4 015C 01C4 415C 01C4 815C VC_BTHRLDx Video Capture Channel B Threshold Register 01C4 0160 01C4 4160 01C4 8160 VC_BEVTCTx Video Capture Channel B Event Count Register 01C4 0180 01C4 4180 01C4 8180 TSI_CTLx 01C4 0184 01C4 4184 01C4 8184 TSI_CLKINITLx TCI Clock Initialization LSB Register 01C4 0188 01C4 4188 01C4 8188 TSI_CLKINITMx TCI Clock Initialization MSB Register 01C4 018C 01C4 418C 01C4 818C TSI_STCLKLx TCI System Time Clock LSB Register 01C4 0190 01C4 4190 01C4 8190 TSI_STCLKMx TCI System Time Clock MSB Register 01C4 0194 01C4 4194 01C4 8194 TSI_STCMPLx TCI System Time Clock Compare LSB Register 01C4 0198 01C4 4198 01C4 8198 TSI_STCMPMx TCI System Time Clock Compare MSB Register 01C4 019C 01C4 419C 01C4 819C TSI_STMSKLx TCI System Time Clock Compare Mask LSB Register 01C4 01A0 01C4 41A0 01C4 81A0 TSI_STMSKMx TCI System Time Clock Compare Mask MSB Register 01C4 01A4 01C4 41A4 01C4 81A4 TSI_TICKSx TCI System Time Clock Ticks Interrupt Register 01C4 0200 01C4 4200 01C4 8200 VD_STATx Video Display Status Register 01C4 0204 01C4 4204 01C4 8204 VD_CTLx Video Display Control Register 01C4 0208 01C4 4208 01C4 8208 VD_FRMSZx Video Display Frame Size Register 01C4 020C 01C4 420C 01C4 820C VD_HBLNKx Video Display Horizontal Blanking Register 01C4 0210 01C4 4210 01C4 8210 VD_VBLKS1x Video Display Field 1 Vertical Blanking Start Register 01C4 0214 01C4 4214 01C4 8214 VD_VBLKE1x Video Display Field 1 Vertical Blanking End Register 01C4 0218 01C4 4218 01C4 8218 VD_VBLKS2x Video Display Field 2 Vertical Blanking Start Register 01C4 021C 01C4 421C 01C4 821C VD_VBLKE2x Video Display Field 2 Vertical Blanking End Register 01C4 0220 01C4 4220 01C4 8220 VD_IMGOFF1x 01C4 0224 01C4 4224 01C4 8224 VD_IMGSZ1x TCI Capture Control Register Video Display Field 1 Image Offset Register Video Display Field 1 Image Size Register 01C4 0228 01C4 4228 01C4 8228 VD_IMGOFF2x 01C4 022C 01C4 422C 01C4 822C VD_IMGSZ2x Video Display Field 2 Image Offset Register 01C4 0230 01C4 4230 01C4 8230 VD_FLDT1x Video Display Field 1 Timing Register 01C4 0234 01C4 4234 01C4 8234 VD_FLDT2x Video Display Field 2 Timing Register Video Display Field 2 Image Size Register 01C4 0238 01C4 4238 01C4 8238 VD_THRLDx Video Display Threshold Register 01C4 023C 01C4 423C 01C4 823C VD_HSYNCx Video Display Horizontal Synchronization Register 01C4 0240 01C4 4240 01C4 8240 VD_VSYNS1x Video Display Field 1 Vertical Synchronization Start Register 01C4 0244 01C4 4244 01C4 8244 VD_VSYNE1x Video Display Field 1 Vertical Synchronization End Register 01C4 0248 01C4 4248 01C4 8248 VD_VSYNS2x Video Display Field 2 Vertical Synchronization Start Register 01C4 024C 01C4 424C 01C4 824C VD_VSYNE2x Video Display Field 2 Vertical Synchronization End Register 142 DM642 Peripheral Information and Electrical Specifications Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel SM320DM642-HiRel www.ti.com SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 Table 5-61. Video Port 0, 1, and 2 (VP0, VP1, and VP2) Control Registers (continued) HEX ADDRESS RANGE ACRONYM DESCRIPTION VP0 VP1 VP2 01C4 0250 01C4 4250 01C4 8250 VD_RELOADx Video Display Counter Reload Register 01C4 0254 01C4 4254 01C4 8254 VD_DISPEVTx Video Display Display Event Register 01C4 0258 01C4 4258 01C4 8258 VD_CLIPx 01C4 025C 01C4 425C 01C4 825C VD_DEFVALx 01C4 0260 01C4 4260 01C4 8260 VD_VINTx Video Display Vertical Interrupt Register 01C4 0264 01C4 4264 01C4 8264 VD_FBITx Video Display Field Bit Register Video Display Clipping Register Video Display Default Display Value Register 01C4 0268 01C4 4268 01C4 8268 VD_VBIT1x Video Display Field 1Vertical Blanking Bit Register 01C4 026C 01C4 426C 01C4 826C VD_VBIT2x Video Display Field 2Vertical Blanking Bit Register 7400 000 7800 0000 7C00 0000 Y_RSCA 7400 0008 7800 0008 7C00 0008 CB_SRCA CB FIFO Source Register A 7400 0010 7800 0010 7C00 0010 CR_SRCA CR FIFO Source Register A 7400 0020 7800 0020 7C00 0020 Y_DSTA Y FIFO Destination Register A 7400 0028 7800 0028 7C00 0028 CB_DST CB FIFO Destination Register 7400 0030 7800 0030 7C00 0030 CR_DST CR FIFO Destination Register 7600 0000 7A00 0000 7E00 0000 Y_SRCB Y FIFO Source Register B 7600 0008 7A00 0008 7E00 0008 CB_SRCB CB FIFO Source Register b 7600 0010 7A00 0010 7E00 0010 CR_SRCB CR FIFO Source Register B 7600 0020 7A00 0020 7E00 0020 Y_DSTB Y FIFO Source Register A Y FIFO Destination Register B DM642 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel Copyright © 2009–2010, Texas Instruments Incorporated 143 SM320DM642-HiRel SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 5.14.3 www.ti.com Video Port (VP0, VP1, VP2) Electrical Data/Timing 5.14.3.1 VCLKIN Timing (Video Capture Mode) Table 5-62. Timing Requirements for Video Capture Mode for VPxCLKINx (1) (see Figure 5-57) –500 –600 –720 NO. MIN UNIT MAX 1 tc(VKI) Cycle time, VPxCLKINx 12.5 ns 2 tw(VKIH) Pulse duration, VPxCLKINx high 5.4 ns 3 tw(VKIL) Pulse duration, VPxCLKINx low 5.4 ns tt(VKI) Transition time, VPxCLKINx 4 (1) 3 ns The reference points for the rise and fall transitions are measured at VIL MAX and VIH MIN. 4 1 2 3 VPxCLKINx 4 Figure 5-57. Video Port Capture VPxCLKINx Timing 144 DM642 Peripheral Information and Electrical Specifications Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel SM320DM642-HiRel www.ti.com 5.14.3.2 SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 Video Data and Control Timing (Video Capture Mode) Table 5-63. Timing Requirements in Video Capture Mode for Video Data and Control Inputs (see Figure 5-58) –500 –600 –720 NO. MIN UNIT MAX 1 tsu(VDATV-VKIH) Setup time, VPxDx valid before VPxCLKINx high 2.9 ns 2 th(VDATV-VKIH) Hold time, VPxDx valid after VPxCLKINx high 0.5 ns 3 tsu(VCTLV-VKIH) Setup time, VPxCTLx valid before VPxCLKINx high 2.9 ns 4 th(VCTLV-VKIH) Hold time, VPxCTLx valid after VPxCLKINx high 0.5 ns VPxCLKINx 1 2 VPxD[19:0] (Input) 3 4 VPxCTLx (Input) Figure 5-58. Video Port Capture Data and Control Input Timing DM642 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel Copyright © 2009–2010, Texas Instruments Incorporated 145 SM320DM642-HiRel SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 5.14.3.3 www.ti.com VCLKIN Timing (Video Display Mode) Table 5-64. Timing Requirements for Video Display Mode for VPxCLKINx (1) (see Figure 5-59) –500 –600 –720 NO. MIN 1 tc(VKI) Cycle time, VPxCLKINx 2 tw(VKIH) 3 tw(VKIL) 4 tt(VKI) Transition time, VPxCLKINx (1) UNIT MAX 9 ns Pulse duration, VPxCLKINx high 4.1 ns Pulse duration, VPxCLKINx low 4.1 ns 3 ns The reference points for the rise and fall transitions are measured at VIL MAX and VIH MIN. 4 1 2 3 VPxCLKINx 4 Figure 5-59. Video Port Display VPxCLKINx Timing 5.14.3.4 Video Control Input/Output and Video Display Data Output Timing With Respect to VPxCLKINx and VPxCLKOUTx (Video Display Mode) Table 5-65. Timing Requirements in Video Display Mode for Video Control Input Shown With Respect to VPxCLKINx and VPxCLKOUTx (see Figure 5-60) –500 –600 –720 NO. MIN UNIT MAX 13 tsu(VCTLV-VKIH) Setup time, VPxCTLx valid before VPxCLKINx high 2.9 ns 14 th(VCTLV-VKIH) Hold time, VPxCTLx valid after VPxCLKINx high 0.5 ns 15 tsu(VCTLV-VKOH) Setup time, VPxCTLx valid before VPxCLKOUTx high (1) 7.4 ns –0.9 ns 16 (1) 146 th(VCTLV-VKOH) Hold time, VPxCTLx valid after VPxCLKOUTx high (1) Assuming non-inverted VPxCLKOUTx signal. DM642 Peripheral Information and Electrical Specifications Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel SM320DM642-HiRel www.ti.com SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 Table 5-66. Switching Characteristics Over Recommended Operating Conditions in Video Display Mode for Video Data and Control Output Shown With Respect to VPxCLKINx and VPxCLKOUTx (1) (2) (see Figure 5-60) NO. –500 –600 –720 PARAMETER MIN MAX V – 0.7 V + 0.7 ns Pulse duration, VPxCLKOUTx high VH – 0.7 VH + 0.7 ns tw(VKOL) Pulse duration, VPxCLKOUTx low VL – 0.7 VL + 0.7 ns tt(VKO) Transition time, VPxCLKOUTx 1.8 ns td(VKIH-VKOH) Delay time, VPxCLKINx high to VPxCLKOUTx high (3) 1.1 5.7 ns 1 tc(VKO) Cycle time, VPxCLKOUTx 2 tw(VKOH) 3 4 5 (3) 6 td(VKIL-VKOL) Delay time, VPxCLKINx low to VPxCLKOUTx low 1.1 5.7 ns 7 td(VKIH-VKOL) Delay time, VPxCLKINx high to VPxCLKOUTx low 1.1 5.7 ns 8 td(VKIL-VKOH) Delay time, VPxCLKINx low to VPxCLKOUTx high 1.1 5.7 ns 9 td(VKIH-VPOUTV) Delay time, VPxCLKINx high to VPxOUT valid (4) 9 ns (4) 10 td(VKIH-VPOUTIV) Delay time, VPxCLKINx high to VPxOUT invalid 11 td(VKOH-VPOUTV) Delay time, VPxCLKOUTx high to VPxOUT valid (1) 12 td(VKOH-VPOUTIV) Delay time, VPxCLKOUTx high to VPxOUT invalid (1) (1) (2) (3) (4) UNIT 1.7 (4) ns 4.3 (4) –0.2 ns ns V = the video input clock (VPxCLKINx) period in ns. VH is the high period of V (video input clock period) in ns and VL is the low period of V (video input clock period) in ns. Assuming non-inverted VPxCLKOUTx signal. VPxOUT consists of VPxCTLx and VPxD[19:0] VPxCLKINx 5 2 1 6 3 VPxCLKOUTx [VCLK2P = 0] 4 4 7 8 VPxCLKOUTx (Inverted) [VCLK2P = 1] 12 11 10 9 VPxCTLx,V PxD[19:0] (Outputs) 15 16 14 13 VPxCTLx (Input) Figure 5-60. Video Port Display Data Output Timing and Control Input/Output Timing With Respect to VPxCLKINx and VPxCLKOUTx DM642 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel Copyright © 2009–2010, Texas Instruments Incorporated 147 SM320DM642-HiRel SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 5.14.3.5 www.ti.com Video Dual-Display Sync Mode Timing (With Respect to VPxCLKINx) Table 5-67. Timing Requirements for Dual-Display Sync Mode for VPxCLKINx (see Figure 5-61) –500 –600 –720 NO. MIN 1 tskr(VKI) Skew rate, VPxCLKINx before VPyCLKINy UNIT MAX ±500 ps VPxCLKINx 1 VPyCLKINy Figure 5-61. Video Port Dual-Display Sync Timing 148 DM642 Peripheral Information and Electrical Specifications Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel SM320DM642-HiRel www.ti.com SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 5.15 VCXO Interpolated Control (VIC) The VIC can be used in conjunction with the Video Ports (VPs) to maintain synchronization of a video stream. The VIC can also be used to control a VCXO to adjust the pixel clock rate to a video port. 5.15.1 VIC Device-Specific Information The VCXO interpolated control (VIC) port provides digital-to-analog conversation with resolution from 9-bits to up to 16-bits. The output of the VIC is a single bit interpolated D/A output (VDAC pin). Typical D/A converters provide a discrete output level for every value of the digital word that is being converted. This is a problem for digital words that are long. This is avoided in a Sigma Delta type D/A converter by choosing a few widely spaced output levels and interpolating values between them. The interpolating mechanism causes the output to oscillate rapidly between the levels in such a manner that the average output represents the value of input code. In the VIC, two output levels are chosen (0 and 1), and Sigma Delta interpolation scheme is implemented to interpolate between these levels with a rapidly changing signal. The frequency of interpolation is dependent on the resolution needed. When the video port is used in transport stream interface (TSI) mode, the VIC port is used to control the system clock, VCXO, for MPEG transport stream. The VIC supports the following features: • Single interpolation for D/A conversion • Programmable precision from 9-to-16 bits • Interface for register accesses For more detailed information on the DM642 VCXO interpolated control (VIC) peripheral, see the TMS320C64x™ DSP Video Port/VCXO Interpolated Control (VIC) Port Reference Guide (literature number SPRU629). 5.15.2 VIC Peripheral Register Description(s) Table 5-68. VCXO Interpolated Control (VIC) Port Registers HEX ADDRESS RANGE ACRONYM 01C4 C000 VICCTL REGISTER NAME VIC control register 01C4 C004 VICIN VIC input register 01C4 C008 VPDIV VIC clock divider register 01C4 C00C – 01C4 FFFF – Reserved DM642 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel Copyright © 2009–2010, Texas Instruments Incorporated 149 SM320DM642-HiRel SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 5.15.3 5.15.3.1 www.ti.com VIC Electrical Data/Timing STCLK Timing Table 5-69. Timing Requirments for STCLK (1) (see Figure 5-62) –500 –600 –720 NO. MIN 1 tc(STCLK) Cycle time, STCLK 2 tw(STCLKH) 3 4 (1) UNIT MAX 33.3 ns Pulse duration, STCLK high 16 ns tw(STCLKL) Pulse duration, STCLK low 16 tt(STCLK) Transition time, STCLK ns 3 ns The reference points for the rise and fall transitions are measured at VIL MAX and VIH MIN. 4 1 2 3 STCLK 4 Figure 5-62. STCLK Timing 150 DM642 Peripheral Information and Electrical Specifications Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel SM320DM642-HiRel www.ti.com SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 5.16 Ethernet Media Access Controller (EMAC) The EMAC controls the flow of packet data from the DSP to the PHY. 5.16.1 EMAC Device-Specific Information The ethernet media access controller (EMAC) provides an efficient interface between the DM642 DSP core processor and the network. The DM642 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex, with hardware flow control and quality of service (QOS) support. The DM642 EMAC makes use of a custom interface to the DSP core that allows efficient data transmission and reception. The EMAC controls the flow of packet data from the DSP to the PHY. The MDIO module controls PHY configuration and status monitoring. Both the EMAC and the MDIO modules interface to the DSP through a custom interface that allows efficient data transmission and reception. This custom interface is referred to as the EMAC control module, and is considered integral to the EMAC/MDIO peripheral. The control module is also used to control device reset, interrupts, and system priority. The TMS320C6000™ DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide (literature number SPRU628) describes the DM642 EMAC peripheral in detail. Some of the features documented in this peripheral reference guide are not supported on the DM642 at this time. The DM642 supports one receive channel and does not support receive quality of service (QOS). For a list of supported registers and register fields, see Table 5-70 [Ethernet MAC (EMAC) Control Registers] and Table 5-71 [EMAC Statistics Registers] in this data sheet. 5.16.2 EMAC Peripheral Register Description(s) Table 5-70. Ethernet MAC (EMAC) Control Registers HEX ADDRESS RANGE ACRONYM 01C8 0000 TXIDVER 01C8 0004 TXCONTROL 01C8 0008 TXTEARDOWN 01C8 000C – REGISTER NAME Transmit Identification and Version Register Transmit Control Register Transmit Teardown Register Reserved 01C8 0010 RXIDVER 01C8 0014 RXCONTROL Receive Identification and Version Register 01C8 0018 RXTEARDOWN 01C8 001C – 01C8 00FF – 01C8 0100 RXMBPENABLE Receive Multicast/Broadcast/Promiscuous Channel Enable Register (The RXQOSEN field is reserved and only supports writes of 0. The PROMCH, BROADCH, and MUCTCH bit fields only support writes of 0.) 01C8 0104 RXUNICASTSET Receive Unicast Set Register (Bits 7–1 are reserved and only support writes of 0.) 01C8 0108 RXUNICASTCLEAR Receive Unicast Clear Register (Bits 7–1 are reserved and only support writes of 0.) Receive Control Register Receive Teardown Register (RXTDNCH field only supports writes of 0.) Reserved 01C8 010C RXMAXLEN 01C8 0110 RXBUFFEROFFSET 01C8 0114 RXFILTERLOWTHRESH 01C8 0118 – 01C8 011F – 01C8 0120 RX0FLOWTHRESH Receive Maximum Length Register Receive Buffer Offset Register Receive Filter Low Priority Packets Threshold Register Reserved Receive Channel 0 Flow Control Threshold Register DM642 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel Copyright © 2009–2010, Texas Instruments Incorporated 151 SM320DM642-HiRel SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 www.ti.com Table 5-70. Ethernet MAC (EMAC) Control Registers (continued) HEX ADDRESS RANGE ACRONYM 01C8 0124 RX1FLOWTHRESH 01C8 0128 RX2FLOWTHRESH 01C8 012C RX3FLOWTHRESH 01C8 0130 RX4FLOWTHRESH 01C8 0134 RX5FLOWTHRESH 01C8 0138 RX6FLOWTHRESH 01C8 013C RX7FLOWTHRESH 01C8 0140 RX0FREEBUFFER 01C8 0144 RX1FREEBUFFER 01C8 0148 RX2FREEBUFFER 01C8 014C RX3FREEBUFFER 01C8 0150 RX4FREEBUFFER 01C8 0154 RX5FREEBUFFER 01C8 0158 RX6FREEBUFFER 01C8 015C RX7FREEBUFFER 01C8 0160 MACCONTROL 01C8 0164 MACSTATUS REGISTER NAME Reserved. Do not write. Receive Channel 0 Free Buffer Count Register Reserved. Do not write. MAC Control Register MAC Status Register (RXQOSACT field is reserved.) 01C8 0168 – 01C8 016C – 01C8 0170 TXINTSTATRAW 01C8 0174 TXINTSTATMASKED 01C8 0178 TXINTMASKSET 01C8 017C TXINTMASKCLEAR 01C8 0180 MACINVECTOR 01C8 0184 – 01C8 018F – 01C8 0190 RXINTSTATRAW 01C8 0194 RXINTSTATMASKED 01C8 0198 RXINTMASKSET Receive Interrupt Mask Set Register (Bits 7–1 are reserved and only support writes of 0.) 01C8 019C RXINTMASKCLEAR Receive Interrupt Mask Clear Register (Bits 7–1 are reserved and only support writes of 0.) 01C8 01A0 MACINTSTATRAW MAC Interrupt Status (Unmasked) Register 01C8 01A4 MACINTSTATMASKED 01C8 01A8 MACINTMASKSET 01C8 01AC MACINTMASKCLEAR 01C8 01B0 MACADDRL0 01C8 01B4 MACADDRL1 152 Reserved Transmit Interrupt Status (Unmasked) Register Transmit Interrupt Status (Masked) Register Transmit Interrupt Mask Set Register Transmit Interrupt Mask Clear Register MAC Input Vector Register Reserved Receive Interrupt Status (Unmasked) Register (Bits 7–1 are reserved.) Receive Interrupt Status (Masked) Register (Bits 7–1 are reserved.) MAC Interrupt Status (Masked) Register MAC Interrupt Mask Set Register MAC Interrupt Mask Clear Register MAC Address Channel 0 Lower Byte Register 01C8 01B8 MACADDRL2 01C8 01BC MACADDRL3 01C8 01C0 MACADDRL4 01C8 01C4 MACADDRL5 01C8 01C8 MACADDRL6 01C8 01CC MACADDRL7 01C8 01D0 MACADDRM MAC Address Middle Byte Register 01C8 01D4 MACADDRH MAC Address High Bytes Register 01C8 01D8 MACHASH1 MAC Address Hash 1 Register 01C8 01DC MACHASH2 MAC Address Hash 2 Register Reserved. Do not write. DM642 Peripheral Information and Electrical Specifications Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel SM320DM642-HiRel www.ti.com SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 Table 5-70. Ethernet MAC (EMAC) Control Registers (continued) HEX ADDRESS RANGE ACRONYM 01C8 01E0 BOFFTEST REGISTER NAME 01C8 01E4 TPACETEST Transmit Pacing Test Register 01C8 01E8 RXPAUSE Receive Pause Timer Register 01C8 01EC TXPAUSE Transmit Pause Timer Register Backoff Test Register 01C8 01F0 – 01C8 01FF – 01C8 0200 – 01C8 05FF (see Table 5-71) Reserved 01C8 0600 TX0HDP Transmit Channel 0 DMA Head Descriptor Pointer Register 01C8 0604 TX1HDP Transmit Channel 1 DMA Head Descriptor Pointer Register 01C8 0608 TX2HDP Transmit Channel 2 DMA Head Descriptor Pointer Register 01C8 060C TX3HDP Transmit Channel 3 DMA Head Descriptor Pointer Register 01C8 0610 TX4HDP Transmit Channel 4 DMA Head Descriptor Pointer Register 01C8 0614 TX5HDP Transmit Channel 5 DMA Head Descriptor Pointer Register 01C8 0618 TX6HDP Transmit Channel 6 DMA Head Descriptor Pointer Register 01C8 061C TX7HDP Transmit Channel 7 DMA Head Descriptor Pointer Register 01C8 0620 RX0HDP Receive Channel 0 DMA Head Descriptor Pointer Register 01C8 0624 RX1HDP 01C8 0628 RX2HDP 01C8 062C RX3HDP 01C8 0630 RX4HDP 01C8 0634 RX5HDP 01C8 0638 RX6HDP EMAC Statistics Registers Reserved. Do not write. 01C8 063C RX7HDP 01C8 0640 TX0INTACK Transmit Channel 0 Interrupt Acknowledge Register 01C8 0644 TX1INTACK Transmit Channel 1 Interrupt Acknowledge Register 01C8 0648 TX2INTACK Transmit Channel 2 Interrupt Acknowledge Register 01C8 064C TX3INTACK Transmit Channel 3 Interrupt Acknowledge Register 01C8 0650 TX4INTACK Transmit Channel 4 Interrupt Acknowledge Register 01C8 0654 TX5INTACK Transmit Channel 5 Interrupt Acknowledge Register 01C8 0658 TX6INTACK Transmit Channel 6 Interrupt Acknowledge Register 01C8 065C TX7INTACK Transmit Channel 7 Interrupt Acknowledge Register 01C8 0660 RX0INTACK Receive Channel 0 Interrupt Acknowledge Register 01C8 0664 RX1INTACK 01C8 0668 RX2INTACK 01C8 066C RX3INTACK 01C8 0670 RX4INTACK 01C8 0674 RX5INTACK 01C8 0678 RX6INTACK 01C8 067C RX7INTACK 01C8 0680 – 01C8 0FFF – Reserved. Do not write. Reserved DM642 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel Copyright © 2009–2010, Texas Instruments Incorporated 153 SM320DM642-HiRel SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 www.ti.com Table 5-71. EMAC Statistics Registers HEX ADDRESS RANGE ACRONYM 01C8 0200 RXGOODFRAMES Good Receive Frames Register REGISTER NAME 01C8 0204 RXBCASTFRAMES Broadcast Receive Frames Register 01C8 0208 RXMCASTFRAMES Multicast Receive Frames Register 01C8 020C RXPAUSEFRAMES Pause Receive Frames Register 01C8 0210 RXCRCERRORS 01C8 0214 RXALIGNCODEERRORS Receive CRC Errors Register Receive Alignment/Code Errors Register 01C8 0218 RXOVERSIZED 01C8 021C RXJABBER Receive Oversized Frames Register 01C8 0220 RXUNDERSIZED Receive Undersized Frames Register 01C8 0224 RXFRAGMENTS Receive Frame Fragments Register 01C8 0228 RXFILTERED 01C8 022C RXQOSFILTERED 01C8 0230 RXOCTETS Receive Octet Frames Register 01C8 0234 TXGOODFRAMES Good Transmit Frames Register 01C8 0238 TXBCASTFRAMES Broadcast Transmit Frames Register 01C8 023C TXMCASTFRAMES Multicast Transmit Frames Register 01C8 0240 TXPAUSEFRAMES Pause Transmit Frames Register 01C8 0244 TXDEFERRED Deferred Transmit Frames Register 01C8 0248 TXCOLLISION Collision Register 01C8 024C TXSINGLECOLL 01C8 0250 TXMULTICOLL 01C8 0254 TXEXCESSIVECOLL 01C8 0258 TXLATECOLL Receive Jabber Frames Register Filtered Receive Frames Register Reserved Single Collision Transmit Frames Register Multiple Collision Transmit Frames Register Excessive Collisions Register Late Collisions Register 01C8 025C TXUNDERRUN 01C8 0260 TXCARRIERSLOSS Transmit Underrun Register 01C8 0264 TXOCTETS Transmit Carrier Sense Errors Register Transmit Octet Frames Register 01C8 0268 FRAME64 01C8 026C FRAME65T127 Transmit and Receive 64 Octet Frames Register Transmit and Receive 65 to 127 Octet Frames Register 01C8 0270 FRAME128T255 Transmit and Receive 128 to 255 Octet Frames Register 01C8 0274 FRAME256T511 Transmit and Receive 256 to 511 Octet Frames Register 01C8 0278 FRAME512T1023 Transmit and Receive 512 to 1023 Octet Frames Register 01C8 027C FRAME1024TUP Transmit and Receive 1024 or Above Octet Frames Register 01C8 0280 NETOCTETS Network Octet Frames Register 01C8 0284 RXSOFOVERRUNS Receive Start of Frame Overruns Register 01C8 0288 RXMOFOVERRUNS Receive Middle of Frame Overruns Register 01C8 028C RXDMAOVERRUNS Receive DMA Overruns Register 01C8 0290 – 01C8 05FF – Reserved Table 5-72. EMAC Wrapper HEX ADDRESS RANGE ACRONYM 01C8 1000 – 01C8 1FFF 01C8 2000 – 01C8 2FFF REGISTER NAME EMAC Control Module Descriptor Memory – Reserved Table 5-73. EWRAP Registers 154 HEX ADDRESS RANGE ACRONYM 01C8 3000 EWTRCTRL 01C8 3004 EWCTL REGISTER NAME TR control Interrupt control register DM642 Peripheral Information and Electrical Specifications Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel SM320DM642-HiRel www.ti.com SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 Table 5-73. EWRAP Registers (continued) HEX ADDRESS RANGE ACRONYM 01C8 3008 EWINTTCNT 01C8 300C – 01C8 37FF – 5.16.3 REGISTER NAME Interrupt timer count Reserved EMAC Electrical Data/Timing Table 5-74. Timing Requirements for MRCLK (see Figure 5-63) –500 –600 –720 NO. MIN UNIT MAX 1 tc(MRCLK) Cycle time, MRCLK 40 ns 2 tw(MRCLKH) Pulse duration, MRCLK high 14 ns 3 tw(MRCLKL) Pulse duration, MRCLK low 14 ns 1 2 3 MRCLK Figure 5-63. MRCLK Timing (EMAC – Receive) Table 5-75. Timing Requirements for MTCLK (see Figure 5-63) –500 –600 –720 NO. MIN UNIT MAX 1 tc(MTCLK) Cycle time, MTCLK 40 ns 2 tw(MTCLKH) Pulse duration, MTCLK high 14 ns 3 tw(MTCLKL) Pulse duration, MTCLK low 14 ns 1 2 3 MTCLK Figure 5-64. MTCLK Timing (EMAC – Transmit) Table 5-76. Timing Requirements for EMAC MII Receive 10/100 Mbps (1) (see Figure 5-65) –500 –600 –720 NO. MIN (1) UNIT MAX 1 tsu(MRXD-MRCLKH) Setup time, receive selected signals valid before MRCLK high 8 ns 2 th(MRCLKH-MRXD) Hold time, receive selected signals valid after MRCLK high 8 ns Receive selected signals include: MRXD3-MRXD0, MRXDV, and MRXER. DM642 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel Copyright © 2009–2010, Texas Instruments Incorporated 155 SM320DM642-HiRel SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 www.ti.com 1 2 MRCLK (Input) MRXD3−MRXD0, MRXDV, MRXER (Inputs) Figure 5-65. EMAC Receive Interface Timing Table 5-77. Switching Characteristics Over Recommended Operating Conditions for EMAC MII Transmit 10/100 Mbps (1) (see Figure 5-66) –500 –600 –720 NO. 1 (1) td(MTCLKH-MTXD) Delay time, MTCLK high to transmit selected signals valid UNIT MIN MAX 5 25 ns Transmit selected signals include: MTXD3–MTXD0, and MTXEN. 1 MTCLK (Input) MTXD3−MTXD0, MTXEN (Outputs) Figure 5-66. EMAC Transmit Interface Timing 156 DM642 Peripheral Information and Electrical Specifications Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel SM320DM642-HiRel www.ti.com SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 5.17 Management Data Input/Output (MDIO) The MDIO module controls PHY configuration and status monitoring. 5.17.1 Device-Specific Information The management data input/output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The management data input/output (MDIO) module implements the 802.3 serial management interface to interrogate and control Ethernet PHY(s) using a shared two-wire bus. Host software uses the MDIO module to configure the auto-negotiation parameters of each PHY attached to the EMAC, retrieve the negotiation results, and configure required parameters in the EMAC module for correct operation. The module is designed to allow almost transparent operation of the MDIO interface, with very little maintenance from the core processor. The TMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide (literature number SPRU628) describes the DM642 MDIO peripheral in detail. Some of the features documented in this peripheral reference guide are not supported on the DM642 at this time. The DM642 only supports one EMAC module. For a list of supported registers and register fields, see Table 5-78 [MDIO Registers] in this data sheet. 5.17.2 Peripheral Register Description(s) Table 5-78. MDIO Registers HEX ADDRESS RANGE ACRONYM 01C8 3800 VERSION MDIO Version Register REGISTER NAME 01C8 3804 CONTROL MDIO Control Register 01C8 3808 ALIVE 01C8 380C LINK MDIO PHY Alive Indication Register 01C8 3810 LINKINTRAW MDIO Link Status Change Interrupt Register (MAC1 field is reserved and only supports writes of 0.) 01C8 3814 LINKINTMASKED MDIO Link Status Change Interrupt (Masked) Register (MAC1 field is reserved and only supports writes of 0.) 01C8 3818 USERINTRAW MDIO User Command Complete Interrupt Register (MAC1 field is reserved and only supports writes of 0.) 01C8 381C USERINTMASKED MDIO User Command Complete Interrupt (Masked) Register (MAC1 field is reserved and only supports writes of 0.) 01C8 3820 USERINTMASKSET MDIO User Command Complete Interrupt Mask Set Register (MAC1 field is reserved and only supports writes of 0.) 01C8 3824 USERINTMASKCLEAR MDIO PHY Link Status Register MDIO User Command Complete Interrupt Mask Clear Register (MAC1 field is reserved and only supports writes of 0.) 01C8 3828 USERACCESS0 MDIO User Access Register 0 01C8 382C USERACCESS1 Reserved. Do not write. 01C8 3830 USERPHYSEL0 MDIO User PHY Select Register 0 01C8 3834 USERPHYSEL1 Reserved. Do not write. 01C8 3838 – 01C8 3FFF – Reserved DM642 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel Copyright © 2009–2010, Texas Instruments Incorporated 157 SM320DM642-HiRel SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 5.17.3 www.ti.com Management Data Input/Output (MDIO) Electrical Data/Timing Table 5-79. Timing Requirements for MDIO Input (see Figure 5-67) –500 –600 –720 NO. MIN UNIT MAX 1 tc(MDCLK) Cycle time, MDCLK 400 ns 2 tw(MDCLK) Pulse duration, MDCLK high/low 180 ns 3 tsu(MDIO-MDCLKH) Setup time, MDIO data input valid before MDCLK high 10 ns 4 th(MDCLKH-MDIO) Hold time, MDIO data input valid after MDCLK high 0 ns 1 MDCLK 3 4 MDIO (input) Figure 5-67. MDIO Input Timing Table 5-80. Switching Characteristics Over Recommended Operating Conditions for MDIO Output (see Figure 5-68) –500 –600 –720 NO. 7 td(MDCLKL-MDIO) Delay time, MDCLK low to MDIO data output valid UNIT MIN MAX –10 100 ns 1 MDCLK 7 MDIO (output) Figure 5-68. MDIO Output Timing 158 DM642 Peripheral Information and Electrical Specifications Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel SM320DM642-HiRel www.ti.com SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 5.18 Timer The C6000™ DSP device has 32-bit general-purpose timers that can be used to: • Time events • Count events • Generate pulses • Interrupt the CPU • Send synchronization events to the DMA The timers have two signaling modes and can be clocked by an internal or an external source. The timers have an input pin and an output pin. The input and output pins (TINP and TOUT) can function as timer clock input and clock output. They can also be respectively configured for general-purpose input and output. With an internal clock, for example, the timer can signal an external A/D converter to start a conversion, or it can trigger the DMA controller to begin a data transfer. With an external clock, the timer can count external events and interrupt the CPU after a specified number of events. 5.18.1 Timer Device-Specific Information The DM642 device has a total of three 32-bit general-purpose timers (Timer 0, Timer 1, and Timer 2). Timer2 is not externally pinned out. For more detailed information, see the TMS320C6000™ DSP 32-Bit Timer Reference Guide (literature number SPRU582). 5.18.2 Timer Peripheral Register Description(s) Table 5-81. Timer 0 Registers HEX ADDRESS RANGE ACRONYM REGISTER NAME COMMENTS 0194 0000 CTL0 Timer 0 control register Determines the operating mode of the timer, monitors the timer status, and controls the function of the TOUT pin. 0194 0004 PRD0 Timer 0 period register Contains the number of timer input clock cycles to count. This number controls the TSTAT signal frequency. 0194 0008 CNT0 Timer 0 counter register Contains the current value of the incrementing counter. 0194 000C – 0197 FFFF – Reserved Table 5-82. Timer 1 Registers HEX ADDRESS RANGE ACRONYM REGISTER NAME COMMENTS 0198 0000 CTL1 Timer 1 control register Determines the operating mode of the timer, monitors the timer status, and controls the function of the TOUT pin. 0198 0004 PRD1 Timer 1 period register Contains the number of timer input clock cycles to count. This number controls the TSTAT signal frequency. 0198 0008 CNT1 Timer 1 counter register Contains the current value of the incrementing counter. 0198 000C – 019B FFFF – Reserved Table 5-83. Timer 2 Registers HEX ADDRESS RANGE ACRONYM REGISTER NAME COMMENTS 01AC 0000 CTL2 Timer 2 control register Determines the operating mode of the timer, monitors the timer status. 01AC 0004 PRD2 Timer 2 period register Contains the number of timer input clock cycles to count. This number controls the TSTAT signal frequency. 01AC 0008 CNT2 Timer 2 counter register Contains the current value of the incrementing counter. 01AC 000C – 01AF FFFF – Reserved DM642 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel Copyright © 2009–2010, Texas Instruments Incorporated 159 SM320DM642-HiRel SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 5.18.3 www.ti.com Timer Electrical Data/Timing Table 5-84. Timing Requirements for Timer Inputs (1) (see Figure 5-69) –500 –600 –720 NO. MIN UNIT MAX 1 tw(TINPH) Pulse duration, TINP high 8P ns 2 tw(TINPL) Pulse duration, TINP low 8P ns (1) P = 1/CPU clock frequency in ns. For example, when running parts at 720 MHz, use P = 1.39 ns. Table 5-85. Switching Characteristics Over Recommended Operating Conditions for Timer Outputs (1) (see Figure 5-69) NO. –500 –600 –720 PARAMETER MIN UNIT MAX 3 tw(TOUTH) Pulse duration, TOUT high 8P – 3 ns 4 tw(TOUTL) Pulse duration, TOUT low 8P – 3 ns (1) P = 1/CPU clock frequency in ns. For example, when running parts at 720 MHz, use P = 1.39 ns. 2 1 TINPx 4 3 TOUTx Figure 5-69. Timer Timing 160 DM642 Peripheral Information and Electrical Specifications Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel SM320DM642-HiRel www.ti.com SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 5.19 General-Purpose Input/Output (GPIO) The GPIO peripheral provides dedicated general-purpose pins that can be configured as either inputs or outputs. When configured as an output, you can write to an internal register to control the state driven on the output pin. When configured as an input, you can detect the state of the input by reading the state of an internal register. In addition, the GPIO peripheral can produce CPU interrupts and EDMA events in different interrupt/event generation modes. 5.19.1 GPIO Device-Specific Information To use the GP[15:0] software-configurable GPIO pins, the GPxEN bits in the GP Enable (GPEN) Register and the GPxDIR bits in the GP Direction (GPDIR) Register must be properly configured. GPxEN = 1 GP[x] pin is enabled GPxDIR = 0 GP[x] pin is an input GPxDIR = 1 GP[x] pin is an output where "x" represents one of the 15 through 0 GPIO pins Figure 5-70 shows the GPIO enable bits in the GPEN register for the DM642 device. To use any of the GPx pins as general-purpose input/output functions, the corresponding GPxEN bit must be set to "1" (enabled). Default values are device-specific, so refer to Figure 5-70 for the DM642 default configuration. 31 16 Reserved R-0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 GP15 EN GP14 EN GP13 EN GP12 EN GP11 EN GP10 EN GP9 EN GP8 EN GP7 EN GP6 EN GP5 EN GP4 EN GP3 EN GP2 EN GP1 EN GP0 EN R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-0 R/W-0 R/W-1 Legend: R/W = Readable/Writable, -n = value after reset, -x = undefined value after reset Figure 5-70. GPIO Enable Register (GPEN) [Hex Address: 01B0 0000] Figure 5-71 shows the GPIO direction bits in the GPDIR register. This register determines if a given GPIO pin is an input or an output providing the corresponding GPxEN bit is enabled (set to "1") in the GPEN register. By default, all the GPIO pins are configured as input pins. DM642 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel Copyright © 2009–2010, Texas Instruments Incorporated 161 SM320DM642-HiRel SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 www.ti.com 31 16 Reserved R-0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 GP15 DIR GP14 DIR GP13 DIR GP12 DIR GP11 DIR GP10 DIR GP9 DIR GP8 DIR GP7 DIR GP6 DIR GP5 DIR GP4 DIR GP3 DIR GP2 DIR GP1 DIR GP0 DIR R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 Legend: R/W = Readable/Writable, -n = value after reset, -x = undefined value after reset Figure 5-71. GPIO Direction Register (GPDIR) [Hex Address: 01B0 0004] For more detailed information on general-purpose inputs/outputs (GPIOs), see the TMS320C6000™ DSP General-Purpose Input/Output (GPIO) Reference Guide (literature number SPRU584). 5.19.2 GPIO Peripheral Register Description(s) Table 5-86. GP0 Registers HEX ADDRESS RANGE 162 ACRONYM REGISTER NAME 01B0 0000 GPEN GP0 enable register 01B0 0004 GPDIR GP0 direction register 01B0 0008 GPVAL GP0 value register 01B0 000C – 01B0 0010 GPDH Reserved GP0 delta high register 01B0 0014 GPHM GP0 high mask register 01B0 0018 GPDL GP0 delta low register 01B0 001C GPLM GP0 low mask register 01B0 0020 GPGC GP0 global control register 01B0 0024 GPPOL GP0 interrupt polarity register 01B0 0028 – 01B3 EFFF – Reserved DM642 Peripheral Information and Electrical Specifications Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel SM320DM642-HiRel www.ti.com 5.19.3 SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 General-Purpose Input/Output (GPIO) Electrical Data/Timing Table 5-87. Timing Requirements for GPIO Inputs (1) (2) (see Figure 5-72) –500 –600 –720 NO. MIN (1) (2) UNIT MAX 1 tw(GPIH) Pulse duration, GPIx high 8P ns 2 tw(GPIL) Pulse duration, GPIx low 8P ns P = 1/CPU clock frequency in ns. For example, when running parts at 720 MHz, use P = 1.39 ns. The pulse width given is sufficient to generate a CPU interrupt or an EDMA event. However, if a user wants to have the DSP recognize the GPIx changes through software polling of the GPIO register, the GPIx duration must be extended to at least 12P to allow the DSP enough time to access the GPIO register through the CFGBUS. Table 5-88. Switching Characteristics Over Recommended Operating Conditions for GPIO Outputs (1) (see Figure 5-72) NO. –500 –600 –720 PARAMETER MIN 3 4 (1) (2) tw(GPOH) tw(GPOL) Pulse duration, GPOx high Pulse duration, GPOx low UNIT MAX 24P – 8 (2) ns (2) ns 24P – 8 P = 1/CPU clock frequency in ns. For example, when running parts at 720 MHz, use P = 1.39 ns. This parameter value should not be used as a maximum performance specification. Actual performance of back-to-back accesses of the GPIO is dependent upon internal bus activity. 2 1 GPIx 4 3 GPOx Figure 5-72. GPIO Port Timing DM642 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel Copyright © 2009–2010, Texas Instruments Incorporated 163 SM320DM642-HiRel SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 www.ti.com 5.20 JTAG The JTAG interface is used for BSDL testing and emulation of the DM642 device. Note: IEEE Standard 1149.1-1990 Standard-Test-Access Port and Boundary Scan Architecture. 5.20.1 JTAG Device-Specific Information 5.20.1.1 IEEE 1149.1 JTAG Compatibility Statement The DM642 DSP requires that both TRST and RESET be asserted upon power up to be properly initialized. While RESET initializes the DSP core, TRST initializes the DSP's emulation logic. Both resets are required for proper operation. Note: TRST is synchronous and must be clocked by TCLK; otherwise, BSCAN may not respond as expected after TRST is asserted. While both TRST and RESET need to be asserted upon power up, only RESET needs to be released for the DSP to boot properly. TRST may be asserted indefinitely for normal operation, keeping the JTAG port interface and DSP's emulation logic in the reset state. TRST only needs to be released when it is necessary to use a JTAG controller to debug the DSP or exercise the DSP's boundary scan functionality. RESET must be released only in order for boundary-scan JTAG to read the variant field of IDCODE correctly. Other boundary-scan instructions work correctly independent of current state of RESET. For maximum reliability, the DM642 DSP includes an internal pulldown (IPD) on the TRST pin to ensure that TRST will always be asserted upon power up and the DSP's internal emulation logic will always be properly initialized. JTAG controllers from Texas Instruments actively drive TRST high. However, some third-party JTAG controllers may not drive TRST high but expect the use of a pullup resistor on TRST. When using this type of JTAG controller, assert TRST to intialize the DSP after powerup and externally drive TRST high before attempting any emulation or boundary scan operations. Following the release of RESET, the low-to-high transition of TRST must be "seen" to latch the state of EMU1 and EMU0. The EMU[1:0] pins configure the device for either Boundary Scan mode or Emulation mode. For more detailed information, see the terminal functions section of this data sheet. Note: The DESIGN_WARNING section of the DM642 BSDL file contains information and constraints regarding proper device operation while in Boundary Scan Mode. 5.20.1.2 JTAG ID Register Description The JTAG ID register is a read-only register that identifies to the customer the JTAG/Device ID. For the DM642 device, the JTAG ID register resides at address location 0x01B3 F008. The register hex value for the DM642 device is: 0x0007 902F. For the actual register bit names and their associated bit field descriptions, see Figure 5-73 and Table 5-89. 31-28 27-12 11-1 0 VARIANT (4-Bit) PART NUMBER (16-Bit) MANUFACTURER (11-Bit) LSB R-0000 R-0000 0000 0111 1001 R-0000 0010 111 R-1 Legend: R = Read only, -n = value after reset Figure 5-73. JTAG ID Register Description – DM642 Register Value – 0x0007 902F 164 DM642 Peripheral Information and Electrical Specifications Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel SM320DM642-HiRel www.ti.com SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 Table 5-89. JTAG ID Register Selection Bit Descriptions BIT NAME 31:28 VARIANT DESCRIPTION Variant (4-Bit) value. DM642 value: 0000. 27:12 PART NUMBER 11–1 MANUFACTURER 0 LSB 5.20.2 Part Number (16-Bit) value. DM642 value: 0000 0000 0111 1001. Manufacturer (11-Bit) value. DM642 value: 0000 0010 111. LSB. This bit is read as a "1" for DM642. JTAG Peripheral Register Description(s) Table 5-90. JTAG ID Register HEX ADDRESS RANGE ACRONYM 01B3 F008 JTAGID 5.20.3 REGISTER NAME COMMENTS Read-only. Provides 32-bit JTAG ID of the device. JTAG Identification Register JTAG Test-Port Electrical Data/Timing Table 5-91. Timing Requirements for JTAG Test Port (see Figure 5-74) –500 –600 –720 NO. MIN UNIT MAX 1 tc(TCK) Cycle time, TCK 35 ns 3 tsu(TDIV-TCKH) Setup time, TDI/TMS/TRST valid before TCK high 10 ns 4 th(TCKH-TDIV) Hold time, TDI/TMS/TRST valid after TCK high 9 ns Table 5-92. Switching Characteristics Over Recommended Operating Conditions for JTAG Test Port (see Figure 5-74) NO. 2 –500 –600 –720 PARAMETER td(TCKL-TDOV) Delay time, TCK low to TDO valid UNIT MIN MAX 0 18 ns 1 TCK 2 2 TDO 4 3 TDI/TMS/TRST Figure 5-74. JTAG Test-Port Timing DM642 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel Copyright © 2009–2010, Texas Instruments Incorporated 165 SM320DM642-HiRel SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 www.ti.com Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. This data sheet revision history highlights the technical changes made to the SPRS200K device-specific data sheet to make it an SPRS200L revision. Scope: Applicable updates to the C64x device family, specifically relating to the DM642 device, have been incorporated. GP7 through GP0 after reset default to enabled as an input-only. SEE ADDS/CHANGES/DELETES Section 5.19.1, GPIO Device-Specific Information: Figure 5-71 GPIO Direction Register (GPDIR) [Hex Address: 01B0 0004]: Updated/changed the default values for bits GP7DIR through GP3DIR and GP0DIR from “R/W-1” to “R/W-0” 166 DM642 Peripheral Information and Electrical Specifications Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel SM320DM642-HiRel www.ti.com SGUS063A – JUNE 2009 – REVISED OCTOBER 2010 6 Mechanical Data The following table shows the thermal resistance characteristics for the PBGA − ZDK mechanical package. 6.1 Thermal Data Table 6-1. Thermal Resistance Characteristics NO. °C/W AIR FLOW (m/s) (1) N/A 1 RΘJC Junction-to-case 3.3 2 RΘJB Junction-to-board 7.92 N/A 18.2 0.00 15.3 0.5 3 4 5 RΘJA Junction-to-free air 13.7 1.0 6 12.2 2.00 7 0.37 0.00 8 0.47 0.5 0.57 1.0 10 0.7 2.00 11 11.4 0.00 12 11 0.5 10.7 1.0 10.2 2.00 9 13 PsiJT PsiJB Junction-to-package top Junction-to-board 14 (1) 6.2 m/s = meters per second Packaging Information The following packaging information and addendum reflect the most current released data available for the designated device(s). This data is subject to change without notice and without revision of this document. Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): SM320DM642-HiRel Mechanical Data 167 PACKAGE OPTION ADDENDUM www.ti.com 19-Oct-2010 PACKAGING INFORMATION Orderable Device SM320DM642AZDKI7 Status (1) ACTIVE Package Type Package Drawing FCBGA ZDK Pins Package Qty 548 60 Eco Plan TBD (2) Lead/ Ball Finish SNAGCU MSL Peak Temp (3) Samples (Requires Login) Level-4-220C-72 HR Contact TI Distributor or Sales Office (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 1 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications. TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Applications Amplifiers amplifier.ti.com Audio www.ti.com/audio Data Converters dataconverter.ti.com Automotive www.ti.com/automotive DLP® Products www.dlp.com Communications and Telecom www.ti.com/communications DSP dsp.ti.com Computers and Peripherals www.ti.com/computers Clocks and Timers www.ti.com/clocks Consumer Electronics www.ti.com/consumer-apps Interface interface.ti.com Energy www.ti.com/energy Logic logic.ti.com Industrial www.ti.com/industrial Power Mgmt power.ti.com Medical www.ti.com/medical Microcontrollers microcontroller.ti.com Security www.ti.com/security RFID www.ti-rfid.com Space, Avionics & Defense www.ti.com/space-avionics-defense RF/IF and ZigBee® Solutions www.ti.com/lprf Video and Imaging www.ti.com/video Wireless www.ti.com/wireless-apps Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2010, Texas Instruments Incorporated