CIRRUS CS42L55-CNZ

CS42L55
Ultra Low Power, Stereo CODEC w/Class H Headphone Amp
DIGITAL to ANALOG FEATURES
ANALOG to DIGITAL FEATURES









5 mW Stereo Playback Power Consumption
99 dB Dynamic Range (A-wtd)
-86 dB THD+N
Digital Signal Processing Engine
– Bass & Treble Tone Control, De-Emphasis
– Master Volume Control (+12 to -102 dB in
0.5 dB steps)
– Soft-Ramp & Zero-Cross Transitions
– Programmable Peak-Detect and Limiter
– Beep Generator w/Full Tone Control


Stereo Headphone and Line Amplifiers




 Step-Down/Inverting Charge Pump
 Class H Amplifier - Automatic Supply Adj.






– High Efficiency
– Low EMI
Pseudo-Differential Ground-Centered Outputs
High HP Power Output at -75 dB THD+N
– 2 x 20 mW Into 32 Ω @1.8 V
– 2 x 20 mW Into 16 Ω @1.8 V
1 VRMS Line Output @1.8 V
Analog Vol. Ctl. (+12 to -55 dB in 1 dB steps)
Analog In to Analog Out Passthrough
Pop and Click Suppression
3.5 mW Stereo Record Power Consumption
95 dB Dynamic Range (A-wtd)
-87 dB THD+N
2:1 Stereo Input MUX
Analog Programmable Gain Amplifier (PGA)
(+12 to -6 dB in 0.5 dB steps)
+20 dB Boost
Programmable Automatic Level Control (ALC)
– Noise Gate for Noise Suppression
– Programmable Threshold &
Attack/Release Rates
Independent ADC Channel Control
Digital Vol. Ctl. (0 to -96 dB in 1 dB steps)
High-Pass Filter Disable for DC Measurements
Pseudo Differential Inputs
SYSTEM FEATURES
 12 MHz USB Master Clock Input
 Low Power Operation
– Stereo Anlg. Passthrough: 3.3 mW @1.8 V
– Stereo Rec. and Playback: 8.3 mW @1.8 V
 Headphone Detect Input
(SYSTEM FEATURES continued on page 2)
+1.65 V to +2.71 V
Analog/Digital Supply
+1.65 V to +2.71 V
Charge Pump Supply
Step-Down
LDO Regulator
Inverting
+VHP
ALC
Left 1
-VHP
Left HP
Output
Beep
Pseudo Diff.
Input
Right 1
Left 2
Multi-bit
ΔΣ ADC
Mono mix,
Limiter, Bass,
Treble Adjust
Attenuator,
Boost, Mix
Pseudo Diff.
Input
Multi-bit
ΔΣ DAC
Pseudo Diff.
Input
Right HP
Output
Ground-Centered
Amplifiers
Right 2
ALC
Left Line
Output
HPF
Pseudo Diff.
Input
Control Port
Serial Audio Port
Level Shifter
Right Line
Output
Headphone Detect
+1.65 V to +3.47 V
Interface Supply
http://www.cirrus.com
2
I C Control
I²S Serial Audio
Input/Output
Copyright © Cirrus Logic, Inc. 2007
(All Rights Reserved)
NOVEMBER '07
DS773F1
CS42L55
SYSTEM FEATURES
 High Performance 24-bit Converters







– Multi-bit Delta Sigma Architecture
Integrated High Efficient Power Management
Reduces Power Consumption
– Step-Down Charge Pump Improves
Efficiency
– Inverting Charge Pump Accommodates
Low System Voltage by Providing Negative
Rail for HP/Line Amp
– LDO Reg. Provides Low Digital Supply
Voltage
Digital Power Reduction
– Very Low Oversampling Rate for
Converters
– Bursted Serial Clock Providing 24 Bits per
Sample
Power Down Management
– ADC, DAC, CODEC, PGA, DSP
Analog & Digital Routing/Mixes
– Line/Headphone Out = Analog In (ADC
Bypassed)
– Line/Headphone Out = ADC Out
– Internal Digital Loopback
– Mono Mixes
I²C® Control Port
I²S Digital Interface Format
Flexible Clocking Options
– Master or Slave Operation
– High-Impedance Digital Output Select
(used for easy MUXing between CODEC
and other data sources)
– 8.000, 11.029, 12.000, 16.000, 22.059,
24.000, 32.000, 44.118 and 48.000 kHz
Sample Rates
APPLICATIONS
 HDD & Flash-Based Portable Audio Players
 MD Players/Recorders
 PDAs
 Personal Media Players
 Portable Game Consoles
 Digital Voice Recorders
 Digital Camcorders
GENERAL DESCRIPTION
The CS42L55 is a highly integrated, 24-bit, ultra-low
power stereo CODEC based on multi-bit delta-sigma
modulation. Both the ADC and DAC offer many features
suitable for low power portable system applications.
The analog input path allows independent channel
control of a variety of features. The Programmable Gain
Amplifier (PGA) provides analog gain with zero cross
transitions. The ADC path includes a digital volume attenuator with soft ramp transitions and a programmable
ALC and noise gate monitor the input signals and adjust
the volume appropriately. An analog passthrough also
exists, accommodating a lower noise, lower power analog in to analog out path to the headphone and line
amplifiers, bypassing the ADC and DAC.
The DAC output path includes a fixed-function digital
signal processing engine. Tone control provides bass
and treble adjustment at four selectable corner frequencies. The digital mixer provides independent volume
control for both the ADC output and PCM input signal
paths, as well as a master volume control. Digital volume controls may be configured to change on soft ramp
transitions while the analog controls can be configured
to occur on every zero crossing. The DAC path also includes de-emphasis, limiting functions and a beep
generator delivering tones selectable across a range of
two full octaves.
The Class H stereo headphone amplifier combines the
efficiency of an integrated step-down and inverting
charge pump with the linearity and low EMI of a Class
AB amplifier. A step-down/inverting charge pump operates in two modes: +/-VCP mode or +/-(VCP/2) mode.
Based on the amplifier’s output signal, internal logic automatically adjusts the output of the charge pump,
+VHPFILT and –VHPFILT, to optimize efficiency. With
these features, the amplifier delivers a ground-centered
output with a large signal swing even at low voltages
and eliminates the need for external DC-blocking
capacitors.
These features make the CS42L55 the ideal solution for
portable applications that require extremely low power
consumption in a minimal amount of space.
The CS42L55 is available in a 36-pin QFN package for
the Commercial (-40°C to +85°C) grade. The
CDB42L55 Customer Demonstration board is also
available for device evaluation and implementation suggestions. Please see “Ordering Information” on page 73
for complete details.
 Digital Cameras
 Smart Phones
2
DS773F1
CS42L55
TABLE OF CONTENTS
1. PIN DESCRIPTIONS .............................................................................................................................. 8
1.1 I/O Pin Characteristics ...................................................................................................................... 9
2. TYPICAL CONNECTION DIAGRAM ................................................................................................... 10
3. CHARACTERISTIC AND SPECIFICATION TABLES ......................................................................... 11
RECOMMENDED OPERATING CONDITIONS ................................................................................... 11
ABSOLUTE MAXIMUM RATINGS ....................................................................................................... 11
ANALOG INPUT CHARACTERISTICS ................................................................................................ 12
ADC DIGITAL FILTER CHARACTERISTICS ....................................................................................... 13
HP OUTPUT CHARACTERISTICS ...................................................................................................... 14
LINE OUTPUT CHARACTERISTICS ................................................................................................... 15
ANALOG PASSTHROUGH CHARACTERISTICS ............................................................................... 16
COMBINED DAC INTERPOLATION & ON-CHIP ANALOG FILTER RESPONSE .............................. 16
SWITCHING SPECIFICATIONS - SERIAL PORT ............................................................................... 17
SWITCHING SPECIFICATIONS - CONTROL PORT .......................................................................... 18
POWER SUPPLY REJECTION (PSRR) CHARACTERISTICS ........................................................... 19
DIGITAL INTERFACE SPECIFICATIONS & CHARACTERISTICS ..................................................... 19
POWER CONSUMPTION - ALL SUPPLIES = 1.8 V ............................................................................ 20
POWER CONSUMPTION - ALL SUPPLIES = 2.5 V ............................................................................ 21
4. APPLICATIONS ................................................................................................................................... 22
4.1 Overview ......................................................................................................................................... 22
4.1.1 Basic Architecture ................................................................................................................. 22
4.1.2 Line Inputs ............................................................................................................................. 22
4.1.3 Line and Headphone Outputs (Class H, Ground-Centered Amplifiers) ................................. 22
4.1.4 Fixed-Function DSP Engine .................................................................................................. 22
4.1.5 Beep Generator ..................................................................................................................... 22
4.1.6 Power Management .............................................................................................................. 22
4.2 Analog Inputs ................................................................................................................................. 23
4.2.1 Pseudo-Differential Inputs ..................................................................................................... 24
4.2.2 Automatic Level Control (ALC) .............................................................................................. 24
4.3 Analog In to Analog Out Passthrough ............................................................................................ 25
4.4 Analog Outputs .............................................................................................................................. 26
4.5 Class H Amplifier ............................................................................................................................ 27
4.5.1 Power Control Options .......................................................................................................... 27
4.5.1.1 Standard Class AB Operation (Mode 01 and 10) ...................................................... 28
4.5.1.2 Adapted to Volume Settings (Mode 00) ..................................................................... 28
4.5.1.3 Adapted to Output Signal (Mode 11) ......................................................................... 29
4.5.2 Power Supply Transitions ...................................................................................................... 29
4.5.3 Efficiency ............................................................................................................................... 31
4.6 Beep Generator .............................................................................................................................. 31
4.7 Limiter ............................................................................................................................................. 32
4.8 Serial Port Clocking ........................................................................................................................ 34
4.9 Digital Interface Format .................................................................................................................. 34
4.10 Initialization ................................................................................................................................... 34
4.11 Recommended DAC to HP or Line Power-Up Sequence (Playback) .......................................... 35
4.11.1 Recommended Power-Down Sequence ............................................................................. 36
4.12 Recommended PGA to HP or Line Power-Up Sequence (Analog Passthrough) ......................... 36
4.12.1 Recommended Power-Down Sequence ............................................................................. 36
4.13 Required Initialization Settings ..................................................................................................... 37
4.14 Control Port Operation .................................................................................................................. 38
4.14.1 I²C Control ........................................................................................................................... 38
4.14.2 Memory Address Pointer (MAP) .......................................................................................... 39
4.14.2.1 Map Increment (INCR) ............................................................................................. 39
DS773F1
3
CS42L55
5. REGISTER QUICK REFERENCE ........................................................................................................ 40
6. REGISTER DESCRIPTION .................................................................................................................. 42
6.1 Fab I.D. and Revision Register (Address 01h) (Read Only) ........................................................... 42
6.1.1 Chip Revision (Read Only) .................................................................................................... 42
6.2 Power Control 1 (Address 02h) ...................................................................................................... 42
6.2.1 Power Down ADC Charge Pump .......................................................................................... 42
6.2.2 Power Down ADC x ............................................................................................................... 42
6.2.3 Power Down .......................................................................................................................... 42
6.3 Power Control 2 (Address 03h) ...................................................................................................... 43
6.3.1 Headphone Power Control .................................................................................................... 43
6.3.2 Line Power Control ................................................................................................................ 43
6.4 Clocking Control 1 (Address 04h) ................................................................................................... 43
6.4.1 Master/Slave Mode ............................................................................................................... 43
6.4.2 SCLK Polarity ........................................................................................................................ 43
6.4.3 SCLK Equals MCLK .............................................................................................................. 44
6.4.4 MCLK Divide By 2 ................................................................................................................. 44
6.4.5 MCLK Disable ....................................................................................................................... 44
6.5 Clocking Control 2 (Address 05h) ................................................................................................... 44
6.5.1 Speed Mode .......................................................................................................................... 44
6.5.2 32 kHz Sample Rate Group .................................................................................................. 45
6.5.3 Internal MCLK/LRCK Ratio ................................................................................................... 45
6.6 Class H Power Control (Address 06h) ............................................................................................ 45
6.6.1 Adaptive Power Adjustment .................................................................................................. 45
6.7 Miscellaneous Control (Address 07h) ............................................................................................. 45
6.7.1 Digital MUX ........................................................................................................................... 45
6.7.2 Analog Zero Cross ................................................................................................................ 46
6.7.3 Digital Soft Ramp .................................................................................................................. 46
6.7.4 Freeze Registers ................................................................................................................... 46
6.8 ADC, Line, HP MUX (Address 08h) ................................................................................................ 46
6.8.1 ADC x Input Select ................................................................................................................ 46
6.8.2 Line Input Select .................................................................................................................... 47
6.8.3 Headphone Input Select ........................................................................................................ 47
6.9 HPF Control (Address 09h) ............................................................................................................ 47
6.9.1 ADCx High-Pass Filter .......................................................................................................... 47
6.9.2 ADCx High-Pass Filter Freeze .............................................................................................. 47
6.9.3 HPF x Corner Frequency ...................................................................................................... 47
6.10 Misc. ADC Control (Address 0Ah) ................................................................................................ 48
6.10.1 ADC Channel B=A .............................................................................................................. 48
6.10.2 PGA Channel B=A .............................................................................................................. 48
6.10.3 Digital Sum .......................................................................................................................... 48
6.10.4 Invert ADC Signal Polarity ................................................................................................... 48
6.10.5 ADC Mute ............................................................................................................................ 48
6.11 PGA x MUX, Volume:
PGA A (Address 0Bh) & PGA B (Address 0Ch) ................................................................................... 49
6.11.1 Boostx ................................................................................................................................. 49
6.11.2 PGA x Input Select .............................................................................................................. 49
6.11.3 PGAx Volume ...................................................................................................................... 49
6.12 ADCx Attenuator Control:
ADCAATT (Address 0Dh) & ADCBATT (Address 0Eh) ....................................................................... 50
6.12.1 ADCx Volume ...................................................................................................................... 50
6.13 Playback Control 1 (Address 0Fh) ................................................................................................ 50
6.13.1 Power Down DSP ................................................................................................................ 50
6.13.2 HP/Line De-Emphasis ......................................................................................................... 50
6.13.3 Playback Channels B=A ...................................................................................................... 50
4
DS773F1
CS42L55
6.13.4 Invert PCM Signal Polarity .................................................................................................. 51
6.13.5 Master Playback Mute ......................................................................................................... 51
6.14 ADCx Mixer Volume:
ADCA (Address 10h) & ADCB (Address 11h) ...................................................................................... 51
6.14.1 ADC Mixer Channel x Mute ................................................................................................. 51
6.14.2 ADC Mixer Channel x Volume ............................................................................................. 51
6.15 PCMx Mixer Volume:
PCMA (Address 12h) & PCMB (Address 13h) ..................................................................................... 52
6.15.1 PCM Mixer Channel x Mute ................................................................................................ 52
6.15.2 PCM Mixer Channel x Volume ............................................................................................ 52
6.16 Beep Frequency & On Time (Address 14h) ................................................................................. 53
6.16.1 Beep Frequency .................................................................................................................. 53
6.16.2 Beep On Time ..................................................................................................................... 54
6.17 Beep Volume & Off Time (Address 15h) ...................................................................................... 54
6.17.1 Beep Off Time ..................................................................................................................... 54
6.17.2 Beep Volume ....................................................................................................................... 55
6.18 Beep & Tone Configuration (Address 16h) ................................................................................... 55
6.18.1 Beep Configuration .............................................................................................................. 55
6.18.2 Treble Corner Frequency .................................................................................................... 55
6.18.3 Bass Corner Frequency ...................................................................................................... 56
6.18.4 Tone Control Enable ........................................................................................................... 56
6.19 Tone Control (Address 17h) ......................................................................................................... 56
6.19.1 Treble Gain .......................................................................................................................... 56
6.19.2 Bass Gain ............................................................................................................................ 56
6.20 Master Volume Control:
MSTA (Address 18h) & MSTB (Address 19h) ...................................................................................... 57
6.20.1 Master Volume Control ........................................................................................................ 57
6.21 Headphone Volume Control:
HPA (Address 1Ah) & HPB (Address 1Bh) .......................................................................................... 57
6.21.1 Headphone Channel x Mute ................................................................................................ 57
6.21.2 Headphone Volume Control ................................................................................................ 57
6.22 Line Volume Control:
LINEA (Address 1Ch) & LINEB (Address 1Dh) .................................................................................... 58
6.22.1 Line Channel x Mute ........................................................................................................... 58
6.22.2 Line Volume Control ............................................................................................................ 58
6.23 Analog Input Advisory Volume (Address 1Eh) ............................................................................. 59
6.23.1 Analog Input Advisory Volume ............................................................................................ 59
6.24 Digital Input Advisory Volume (Address 1Fh) ............................................................................... 59
6.24.1 Digital Input Advisory Volume ............................................................................................. 59
6.25 ADC & PCM Channel Mixer (Address 20h) .................................................................................. 60
6.25.1 PCM Mix Channel Swap ..................................................................................................... 60
6.25.2 ADC Mix Channel Swap ...................................................................................................... 60
6.26 Limiter Min/Max Thresholds (Address 21h) .................................................................................. 60
6.26.1 Limiter Maximum Threshold ................................................................................................ 60
6.26.2 Limiter Cushion Threshold .................................................................................................. 61
6.27 Limiter Control, Release Rate (Address 22h) ............................................................................... 61
6.27.1 Peak Detect and Limiter ...................................................................................................... 61
6.27.2 Peak Signal Limit All Channels ........................................................................................... 61
6.27.3 Limiter Release Rate ........................................................................................................... 62
6.28 Limiter Attack Rate (Address 23h) ................................................................................................ 62
6.28.1 Limiter Attack Rate .............................................................................................................. 62
6.29 ALC Enable & Attack Rate (Address 24h) .................................................................................... 62
6.29.1 ALCx .................................................................................................................................... 62
6.29.2 ALC Attack Rate .................................................................................................................. 63
DS773F1
5
CS42L55
6.30 ALC Release Rate (Address 25h) ................................................................................................ 63
6.30.1 ALC Release Rate ............................................................................................................... 63
6.31 ALC Threshold (Address 26h) ...................................................................................................... 64
6.31.1 ALC Maximum Threshold .................................................................................................... 64
6.31.2 ALC Minimum Threshold ..................................................................................................... 64
6.32 Noise Gate Control (Address 27h) ............................................................................................... 64
6.32.1 Noise Gate All Channels ..................................................................................................... 64
6.32.2 Noise Gate Enable .............................................................................................................. 65
6.32.3 Noise Gate Threshold and Boost ........................................................................................ 65
6.32.4 Noise Gate Delay Timing .................................................................................................... 65
6.33 ALC and Limiter Soft Ramp, Zero Cross Disables (Address 28h) ................................................ 65
6.33.1 ALCx Soft Ramp Disable ..................................................................................................... 65
6.33.2 ALCx Zero Cross Disable .................................................................................................... 65
6.33.3 Limiter Soft Ramp Disable ................................................................................................... 66
6.34 Status (Address 29h) (Read Only) ............................................................................................... 66
6.34.1 HPDETECT Pin Status (Read Only) ................................................................................... 66
6.34.2 Serial Port Clock Error (Read Only) .................................................................................... 66
6.34.3 DSP Engine Overflow (Read Only) ..................................................................................... 66
6.34.4 MIXx Overflow (Read Only) ................................................................................................. 66
6.34.5 ADCx Overflow (Read Only) ............................................................................................... 67
6.35 Charge Pump Frequency (Address 2Ah) ..................................................................................... 67
6.35.1 Charge Pump Frequency .................................................................................................... 67
7. PCB LAYOUT CONSIDERATIONS ..................................................................................................... 68
7.1 Power Supply ................................................................................................................................. 68
7.2 Grounding ....................................................................................................................................... 68
7.3 QFN Thermal Pad .......................................................................................................................... 68
8. ANALOG VOLUME NON-LINEARITY (DNL & INL) ............................................................................ 69
9. ADC & DAC DIGITAL FILTERS .......................................................................................................... 70
10. PARAMETER DEFINITIONS .............................................................................................................. 71
11. PACKAGE DIMENSIONS .................................................................................................................. 72
THERMAL CHARACTERISTICS .......................................................................................................... 72
12. ORDERING INFORMATION .............................................................................................................. 73
13. REFERENCES .................................................................................................................................... 73
14. REVISION HISTORY .......................................................................................................................... 73
LIST OF FIGURES
Figure 1.Typical Connection Diagram ....................................................................................................... 10
Figure 2.CMRR Test Configuration ........................................................................................................... 12
Figure 3.HP Output Test Configuration ..................................................................................................... 15
Figure 4.Line Output Test Configuration ................................................................................................... 15
Figure 5.Serial Port Timing (Slave Mode) ................................................................................................. 17
Figure 6.Serial Port Timing (Master Mode) ............................................................................................... 17
Figure 7.I²C Control Port Timing ............................................................................................................... 18
Figure 8.Power Consumption Test Configuration ..................................................................................... 19
Figure 9.Analog Input Signal Flow ............................................................................................................ 23
Figure 10.Stereo Pseudo-Differential Input ............................................................................................... 24
Figure 11.ALC Operation .......................................................................................................................... 25
Figure 12.DSP Engine Signal Flow ........................................................................................................... 26
Figure 13.Analog Output Stage ................................................................................................................. 27
Figure 14.Adaptive Mode 00 ..................................................................................................................... 28
Figure 15.VHPFILT Transitions ................................................................................................................. 30
Figure 16.VHPFILT Hysteresis ................................................................................................................. 30
Figure 17.Class H Power to Load vs. Power from VCP Supply ................................................................ 31
6
DS773F1
CS42L55
Figure 18.Beep Configuration Options ...................................................................................................... 32
Figure 19.Peak Detect & Limiter ............................................................................................................... 33
Figure 20.I²S Format ................................................................................................................................. 34
Figure 21.Control Port Timing, I²C Write ................................................................................................... 38
Figure 22.Control Port Timing, I²C Read ................................................................................................... 38
Figure 23.PGA Step Size vs. Volume Setting ........................................................................................... 69
Figure 24.PGA Output Volume vs. Volume Setting .................................................................................. 69
Figure 25.HP/Line Step Size vs. Volume Setting ...................................................................................... 69
Figure 26.HP/Line Output Volume vs. Volume Setting ............................................................................. 69
Figure 27.ADC Passband Ripple .............................................................................................................. 70
Figure 28.ADC Stopband Rejection .......................................................................................................... 70
Figure 29.ADC Transition Band ................................................................................................................ 70
Figure 30.ADC Transition Band Detail ...................................................................................................... 70
Figure 31.DAC Passband Ripple .............................................................................................................. 70
Figure 32.DAC Stopband .......................................................................................................................... 70
Figure 33.DAC Transition Band ................................................................................................................ 70
Figure 34.DAC Transition Band (Detail) .................................................................................................... 70
DS773F1
7
CS42L55
Pin Name
#
SCLK
MCLK
SDOUT
VL
VDFILT
VLDO
RESET
HPDETECT
AIN1B
1. PIN DESCRIPTIONS
36
35
34
32
31
30
29
28
33
SDIN
1
27
AIN1REF
LRCK
2
26
AIN1A
SDA
3
25
AIN2B
SCL
4
24
AIN2REF
VCP
5
23
AIN2A
FLYP
6
22
AFILTB
+VHPFILT
7
21
AFILTA
20
VQ
19
FILT+
14
15
16
17
18
VA
AGND
13
LINEOUTB
12
LINEREF
11
LINEOUTA
10
HPOUTB
9
HPREF
FLYN
HPOUTA
8
Top-Down (Through Package)
View
-VHPFILT
FLYC
GND/Thermal Pad
Pin Description
SDIN
1
Serial Audio Data Input (Input) - Input for two’s complement serial audio data.
LRCK
2
Left Right Clock (Input/Output) - Determines which channel, Left or Right, is currently active on the
serial audio data lines.
SDA
3
Serial Control Data (Input/Output) - Serial data for the I²C serial control port.
SCL
4
Serial Control Port Clock (Input) - Serial clock for the I²C serial control port.
VCP
5
Step-Down Charge Pump Power (Input) - Power supply for the step-down charge pump.
FLYP
6
Charge Pump Cap Positive Node (Output) - Positive node for the step-down charge pump’s flying
capacitor.
+VHPFILT
7
Step-Down Charge Pump Filter Connection (Output) - Power supply from the step-down charge
pump that provides the positive rail for the headphone and line amplifiers
FLYC
8
Charge Pump Cap Common Node (Output) - Common positive node for the step-down and inverting
charge pumps’ flying capacitors.
FLYN
9
Charge Pump Cap Negative Node (Output) - Negative node for the inverting charge pump’s flying
capacitor.
-VHPFILT
10
Inverting Charge Pump Filter Connection (Output) - Power supply from the inverting charge pump
that provides the negative rail for the headphone and line amplifiers.
HPOUTA
HPOUTB
11
13
Headphone Audio Output (Output) - The full-scale output level is specified in the HP Output Characteristics specification table
HPREF
12
Pseudo Diff. Headphone Output Reference (Input) - Ground reference for the headphone amplifiers
LINEOUTA
LINEOUTB
14
16
Line Audio Output (Output) - The full-scale output level is specified in the Line Output Characteristics
specification table
LINEREF
15
Pseudo Diff. Line Output Reference (Input) - Ground reference for the line amplifiers.
8
DS773F1
CS42L55
VA
17
Analog Power (Input) - Power supply for the internal analog section.
AGND
18
Analog Ground (Input) - Ground reference for the internal analog section.
FILT+
19
Positive Voltage Reference (Output) - Positive reference voltage for the internal sampling circuits.
VQ
20
Quiescent Voltage (Output) - Filter connection for the internal quiescent voltage.
AFILTA
AFILTB
21
22
Antialias Filter Connection (Output) - Antialias filter connection for the ADC inputs.
AIN2A
AIN2B
AIN1A
AIN1B
23
25
26
28
Analog Input (Input) - The full-scale level is specified in the Analog Input Characteristics specification
table.
AIN2REF
AIN1REF
24
27
Pseudo Diff. Analog Input Reference (Input) - Ground reference for the programmable gain amplifiers (PGA).
HPDETECT
29
Headphone Detect (Input) - Powers down the left and/or right channel of the line and/or headphone
outputs as described in “Headphone Power Control” on page 43 and “Line Power Control” on page 43.
RESET
30
Reset (Input) - The device enters a low power mode when this pin is driven low.
VLDO
31
Low Dropout Regulator (LDO) Power (Input) - Power supply for the LDO regulator.
VDFILT
32
Low Dropout Regulator (LDO) Filter Connection (Output) - Power supply from the LDO regulator
that provides the low voltage power to the digital section.
VL
33
Digital Interface Power (Input) - Determines the required signal level for the serial audio interface
and I²C control port.
SDOUT
34
Serial Audio Data Output (Output) - Output for two’s complement serial audio data.
MCLK
35
Master Clock (Input) - Clock source for the delta-sigma modulators.
SCLK
36
Serial Clock (Input/Output) - Serial clock for the serial audio interface.
GND/
Thermal Pad
1.1
-
Ground reference for the internal charge pump and digital section; thermal relief pad. See “QFN Thermal Pad” on page 68 for more information.
I/O Pin Characteristics
Input and output levels and associated power supply voltage are shown in the table below. Logic levels
should not exceed the corresponding power supply voltage.
Power
Supply
VL
VA
DS773F1
Pin Name
I/O
RESET
SCL
SDA
MCLK
Input
Input
Input/Output
Input
LRCK
Input/Output
SCLK
Input/Output
SDOUT
SDIN
HPDETECT
Output
Input
Input
Internal
Connections
Weak Pull-up
(~1 MΩ)
Weak Pull-up
(~1 MΩ)
-
Driver
Receiver
CMOS/Open Drain
-
1.8 V - 3.3 V, with Hysteresis
1.8 V - 3.3 V, with Hysteresis
1.8 V - 3.3 V, with Hysteresis
1.8 V - 3.3 V
1.8 V - 3.3 V, CMOS
1.8 V - 3.3 V
1.8 V - 3.3 V, CMOS
1.8 V - 3.3 V
1.8 V - 3.3 V, CMOS
-
1.8 V - 3.3 V
1.8 V - 3.3 V
1.8 V - 2.5 V, with Hysteresis
9
CS42L55
2. TYPICAL CONNECTION DIAGRAM
1 µF
**
**
VDFILT
0.1 µF
VLDO
**
+1.65 V to +2.71 V
0.1 µF
VA
47 kΩ
+VHPFILT
HPREF
**
2.2 µF
0.1 µF
HPOUTB
Note 1
+1.65 V to +2.71 V
33 Ω
HPOUTA
VCP
2.2 µF
**
Headphone Out
Left & Right
33 Ω
**
0.1 µF
**
HPDETECT
CS42L55
Note 2
2.2 µF **
2.2 µF **
FLYP
FLYC
LINEOUTA
562 Ω
3300 pF
FLYN
LINEOUTB
Note 1
2.2 µF
-VHPFILT
Rext
LPF is Optional
*
LINEREF
*
3300 pF
Rext
Line Level Out
Left & Right
562 Ω
**
Note 4
AIN1A
MCLK
AIN1REF
1800 pF
1 µF
100 Ω
1 µF
**
1800 pF
AIN1B
LRCK
**
*
**
SCLK
*
100 Ω
100 kΩ
100 kΩ
Analog
Input 1
1 µF
SDIN
Digital Audio
Processor
SDOUT
RESET
1800 pF
SCL
SDA
AIN2REF
Note 5
**
AIN2A
*
1 µF
100 Ω
**
100 Ω
100 kΩ
1 µF
*
**
1800 pF
AIN2B
Analog
Input 2
100 kΩ
1 µF
2 kΩ
2 kΩ
Note 3
AGND
+1.65 V to +3.47 V
*
VL
**
1000 pF
0.1 µF
GND/Thermal Pad
*
1000 pF
AFILTA
AFILTB
VQ
FILT+
**
**
2.2 µF
2.2 µF
* NPO/C0G dielectric capacitors.
** Low ESR, X7R/X5R dielectric capacitors.
Notes:
1. The headphone amplifier’s output power and distortion are rated using the nominal capacitance shown. Larger capacitance
reduces the ripple on the internal amplifiers’ supplies and in turn reduces the amplifier’s distortion at high output power levels.
Smaller capacitance may not sufficiently reduce ripple to achieve the rated output power and distortion. Since the actual value
of typical X7R/X5R ceramic capacitors deviates from the nominal value by a percentage specified in the manufacturer’s data
sheet, capacitors should be selected based on the minimum output power and maximum distortion required.
2. The headphone amplifier’s output power and distortion are rated using the nominal capacitance shown and using the default
charge pump switching frequency. The required capacitance follows an inverse relationship with the charge pump’s switching
frequency. When increasing the switching frequency, the capacitance may decrease; when lowering the switching frequency,
the capacitance must increase. Since the actual value of typical X7R/X5R ceramic capacitors deviates from the nominal value
by a percentage specified in the manufacturer’s data sheet, capacitors should be selected based on the minimum output
power, maximum distortion and maximum charge pump switching frequency required.
3. Additional bulk capacitance may be added to improve PSRR at low frequencies.
4. These capacitors serve as a charge reservoir for the internal switched capacitor ADC modulators and should be placed as
close as possible to the inputs. They are only needed when the PGA (Programmable Gain Amplifier) is bypassed.
5. Input pairs (such as AIN2A, AIN2REF and AIN2B) may be left floating if they are not used.
Figure 1. Typical Connection Diagram
10
DS773F1
CS42L55
3. CHARACTERISTIC AND SPECIFICATION TABLES
RECOMMENDED OPERATING CONDITIONS
GND = AGND = 0 V, all voltages with respect to ground.
Parameters
DC Power Supply
Analog
Charge Pump
LDO Regulator for Digital
Serial/Control Port Interface
Ambient Temperature
Commercial - CNZ
Symbol
Min
Max
Units
VA
VCP
VLDO
VL
TA
1.65
1.65
1.65
1.65
-40
2.71
VA
2.71
3.47
+85
V
V
V
V
°C
Symbol
Min
Max
Units
3.0
4.0
±10
VA+0.7
VL+0.4
V
V
mA
+115
+150
°C
°C
ABSOLUTE MAXIMUM RATINGS
GND = AGND = 0 V; all voltages with respect to ground.
Parameters
DC Power Supply
Input Current
Analog Input Voltage
Digital Input Voltage
-0.3
Analog, Charge Pump, LDO VA, VCP, VLDO
VL
-0.3
Serial/Control Port Interface
Iin
(Note 2)
AGND-0.7
(Note 3)
VIN
-0.3
VIND
(Note 3)
Ambient Operating Temperature (power applied)
Storage Temperature
TA
Tstg
-50
-65
V
V
WARNING: Operation at or beyond these limits may result in permanent damage to the device. Normal operation
is not guaranteed at these extremes.
Notes:
1. Due to the existence of parasitic body diodes between VCP and VA, current flows from VCP to VA whenever the VA power supply is lower than VCP. This causes a “back-powering” effect on the VA power
supply rails internal to the part. Hence VA should be maintained at an equal or greater voltage than VCP
at all times. While “back-powering” does not have any adverse effects on device operation with respect
to performance and reliability, it does lead to extra power consumption and therefore should be avoided.
2. Any pin except supplies. Transient currents of up to ±100 mA on the analog input pins will not cause
SCR latch-up.
3. The maximum over/under voltage is limited by the input current.
DS773F1
11
CS42L55
ANALOG INPUT CHARACTERISTICS
Test Conditions (unless otherwise specified): Connections to the CS42L55 are shown in the Figure 1. "Typical Connection Diagram" on page 10; Input is a 1 kHz sine wave through the passive input filter, PGA = 0 dB; All Supplies = VA;
GND = AGND = 0 V; TA = +25°C; Measurement bandwidth is 20 Hz to 20 kHz. Sample Frequency = 48 kHz.
VA = 2.5 V
Parameter (Note 4)
Analog In to ADC (PGA bypassed)
Dynamic Range
Total Harmonic Distortion + Noise
Analog In to PGA to ADC
Dynamic Range
PGA Setting: 0 dB
PGA Setting: +12 dB
Typ
Max
Min
Typ
Max
Unit
A-weighted
unweighted
-1 dBFS
-20 dBFS
-60 dBFS
89
86
-
95
92
-85
-72
-32
-79
-26
86
83
-
92
89
-85
-69
-29
-79
-23
dB
dB
dB
dB
dB
A-weighted
unweighted
A-weighted
unweighted
88
85
81
78
94
91
87
84
-
85
82
78
75
91
88
84
81
-
dB
dB
dB
dB
-
-87
-31
-83
40
-81
-25
-77
-
-
-85
-28
-81
40
-79
-22
-75
-
dB
dB
dB
dB
-
0.2
±100
352
-
-
0.2
±100
352
-
dB
ppm/°C
LSB
-
90
90
83
-
-
90
90
83
-
dB
dB
dB
0.76•VA
0.78•VA
0.80•VA
0.82•VA
0.198•VA
60
40
0.84•VA
0.86•VA
Vpp
Vpp
Vpp
kΩ
kΩ
Total Harmonic Distortion + Noise
PGA Setting: 0 dB
PGA Setting: +12 dB
Common Mode Rejection (Note 5)
DC Accuracy
Interchannel Gain Mismatch
Gain Drift
Offset Error
Input
Interchannel Isolation (1 kHz)
HP Amp to Analog Input Isolation
Full-scale Input Voltage
Input Impedance (Note 7)
VA = 1.8 V
Min
-1 dBFS
-60 dBFS
-1 dBFS
(Note 6)
RL = 10 kΩ
RL = 16 Ω
ADC 0.76•VA
PGA (0 dB) 0.78•VA
PGA (+12 dB)
ADC
PGA
0.80•VA 0.84•VA
0.82•VA 0.86•VA
0.198•VA
60
40
-
-
-
4. Referred to the typical full-scale voltage. Applies to all THD+N and Dynamic Range values in the table.
5. See test figure shown below.
6. SDOUT Code with HPFx=1;HPFRZx=0.
7. Measured between AINxx and AGND.
100 mVPP,
25 Hz
100 Ω
AINxA
1 μF
AINxREF
Figure 2. CMRR Test Configuration
12
DS773F1
CS42L55
ADC DIGITAL FILTER CHARACTERISTICS
Parameter (Note 8)
Frequency Response (20 Hz to 20 kHz)
Passband
to -0.05 dB corner
to -3 dB corner
Stopband
Stopband Attenuation
Total Group Delay
Min
Typ
Max
Unit
-0.07
-
+0.02
dB
-
0.421
0.495
-
Fs
Fs
0.52
-
-
Fs
33
-
-
dB
-
7.6/Fs
-
s
-
1.87
17.15
-
Hz
Hz
High-Pass Filter Characteristics (48 kHz Fs) (Note 9)
Passband
to -3.0 dB corner
to -0.05 dB corner
Passband Ripple
-
-
0.15
dB
Phase Deviation
-
5.3
-
Deg
-
105/Fs
-
s
@ 20 Hz
Filter Settling Time (Note 10)
Notes:
8. Response is clock-dependent and will scale with Fs. Note that the response plots (Figures 27 to 30 on
page 70) have been normalized to Fs and can be de-normalized by multiplying the X-axis scale by Fs.
HPF parameters are for Fs = 48 kHz.
9.
Characteristics are based on the default setting in register “HPF Control (Address 09h)” on page 47.
10. Settling time decreases at higher corner frequency settings.
DS773F1
13
CS42L55
HP OUTPUT CHARACTERISTICS
Test conditions (unless otherwise specified): Connections to the CS42L55 are shown in the “Typical Connection Diagram” on
page 10; Input test signal is a full-scale 997 Hz sine wave; All Supplies = VA, VCP Mode; GND = AGND = 0 V; TA = +25°C;
Measurement bandwidth is 20 Hz to 20 kHz; Sample Frequency = 48 kHz; Test load RL = 3 kΩ, CL = 150 pF for a Line Load,
and test load RL = 16 Ω, CL = 150 pF for a headphone load. (See Figure 3 on page 15).
VA = 2.5 V
Parameter (Note 11)
VA = 1.8 V
Min
Typ
Max
Min
Typ
Max
Unit
92
89
-
98
95
96
93
-
90
87
-
96
93
94
91
-
dB
dB
dB
dB
1.56•VA
-84
-76
-36
-82
-74
-34
1.64•VA
-78
-85
-79
-74
-30
-34
-28
-83
-72
-32
1.73•VA 1.56•VA 1.64•VA 1.73•VA
dB
dB
dB
dB
dB
dB
VPP
89
86
0.76•VA
-
95
92
93
90
-75
0.82•VA
32
88
94
85
91
92
89
-69
-75
-69
0.88•VA 0.76•VA 0.82•VA 0.88•VA
17
-
dB
dB
dB
dB
dB
VPP
mW
90
90
0.1
0.5
±100
-
0.25
1.0
-
16
90
90
0.1
0.5
±100
-
0.25
1.0
-
dB
dB
dB
mV
ppm/°C
Ω
-
150
-
-
150
pF
Line Load RL = 3 kΩ (+2 dB Analog Gain)(Note 12)
Dynamic Range
18 to 24-Bit
16-Bit
A-weighted
unweighted
A-weighted
unweighted
Total Harmonic Distortion + Noise
18 to 24-Bit
0 dB
-20 dB
-60 dB
0 dB
-20 dB
-60 dB
16-Bit
Full-scale Output Voltage (Note 13)
HP Load RL = 16 Ω (-4 dB Analog Gain)(Note 12)
Dynamic Range
18 to 24-Bit
16-Bit
A-weighted
unweighted
A-weighted
unweighted
Total Harmonic Distortion + Noise
Full-scale Output Voltage
Output Power (Note 13)
Other Characteristics for RL = 16 Ω or 3 kΩ
Gain Drift
AC-Load Resistance (RL)
(Note 14)
16
Load Capacitance (CL)
(Note 14)
-
Interchannel Isolation
Interchannel Gain Mismatch
Output Offset Voltage (Note 14)
14
3 kΩ
16 Ω
DAC to HPOUT
DS773F1
CS42L55
LINE OUTPUT CHARACTERISTICS
Test conditions (unless otherwise specified): Connections to the CS42L55 are shown in the “Typical Connection Diagram” on
page 10; Input test signal is a full-scale 997 Hz sine wave; All Supplies = VA, VCP Mode; GND = AGND = 0 V; TA = +25 °C;
Measurement bandwidth is 20 Hz to 20 kHz; Sample Frequency = 48 kHz; Test load RL = 3 kΩ, CL = 150 pF (see Figure 3 on
page 15).
VA = 2.5 V
Parameter (Note 11)
(+2 dB Analog Gain) (Note 12)
Dynamic Range
18 to 24-Bit
A-weighted
unweighted
A-weighted
unweighted
16-Bit
Total Harmonic Distortion + Noise
18 to 24-Bit
0 dB
-20 dB
-60 dB
0 dB
-20 dB
-60 dB
16-Bit
Full-scale Output Voltage (Note 13)
Other Characteristics
Interchannel Isolation
Interchannel Gain Mismatch
Output Offset Voltage (Note 14)
DAC to LINEOUT
VA = 1.8 V
Min
Typ
Max
Min
Typ
Max
Unit
93
90
-
99
96
96
93
-
91
88
-
97
94
94
91
-
dB
dB
dB
dB
1.50•VA
-84
-76
-36
-82
-74
-34
1.58•VA
90
0.1
0.5
±100
100
-
0.25
1.0
-
3
90
0.1
0.2
±100
100
-
0.25
1.0
-
dB
dB
mV
ppm/°C
Ω
kΩ
-
150
-
-
150
pF
Gain Drift
Output Impedance
AC-Load Resistance (RL)
(Note 14)
3
Load Capacitance (CL)
(Note 14)
-
-78
-86
-80
-74
-30
-34
-28
-84
-72
-32
1.66•VA 1.50•VA 1.58•VA 1.66•VA
dB
dB
dB
dB
dB
dB
VPP
Notes:
11. One-half LSB of triangular PDF dither is added to data.
12. The Analog Gain setting (refer to “Headphone Volume Control” on page 57 or “Line Volume Control” on
page 58) must be configured as indicated to achieve the specified output characteristics. High gain settings at certain VA and VCP supply levels may cause clipping when the audio signal approaches fullscale, maximum power output.
13. VCP settings lower than VA reduces the headroom of the headphone amplifier. As a result, the specified THD+N performance at full-scale output voltage and power may not be achieved.
14. See Figure 3 and Figure 4 on page 15. Refer to “Parameter Definitions” on page 71.
T est Load
Test Load
LIN E O U Tx
HPOUTx
HPREF
GND/AGND
33 Ω
CL=150 pF
RL=16 Ω or
3 kΩ
R L =3 k Ω
G N D /A G N D
0.1 μF
+
Measurement
Device
Figure 3. HP Output Test Configuration
DS773F1
C L =150 pF
LIN E R E F
+
M easurem ent
D evice
Figure 4. Line Output Test Configuration
15
CS42L55
ANALOG PASSTHROUGH CHARACTERISTICS
Test Conditions (unless otherwise specified): Connections to the CS42L55 are shown in the “Typical Connection Diagram” on
page 10; Input is a 1 kHz sine wave through the passive input filter shown in Figure 1, PGA and HP/Line gain = 0 dB; All Supplies = VA, VCP Mode; GND = AGND = 0 V; TA = +25 °C; Measurement bandwidth is 20 Hz to 20 kHz. Sample Frequency =
48 kHz.
Parameter
Min
VA = 2.5 V
Typ
Max
Min
VA = 1.8 V
Typ
Max
Unit
Analog In to HP Amp (ADC is powered down)
RL = 3 kΩ (+2 dB Output Analog Gain)(Note 12)
Dynamic Range
Total Harmonic Distortion + Noise
A-weighted
unweighted
-1 dB
-20 dB
-60 dB
Full-scale Input Voltage
Full-scale Output Voltage
Passband Ripple
RL = 16 Ω (-4 dB Output Analog Gain)(Note 12)
Dynamic Range
Total Harmonic Distortion + Noise
A-weighted
unweighted
-1 dB
-20 dB
-60 dB
Full-scale Input Voltage
Output Power (Note 13)
Passband Ripple
Analog In to Line Amp (ADC is powered down)
RL = 3 kΩ (+2 dB Output Analog Gain) (Note 12)
Dynamic Range
Total Harmonic Distortion + Noise
A-weighted
unweighted
-1 dB
-20 dB
-60 dB
Full-scale Input Voltage
Full-scale Output Voltage
Passband Ripple
-
94
91
-70
-71
-31
0.80•VA
0.93•VA
0/-0.3
-
-
91
88
-80
-68
-28
0.80•VA
0.93•VA
0/-0.3
-
dB
dB
dB
dB
dB
Vpp
Vpp
dB
-
94
91
-70
-71
-31
0.80•VA
12
0/-0.3
-
-
91
88
-80
-68
-28
0.80•VA
6.5
0/-0.3
-
dB
dB
dB
dB
dB
Vpp
mW
dB
-
94
91
-70
-71
-31
0.80•VA
0.89•VA
0/-0.3
-
-
91
88
-80
-68
-28
0.80•VA
0.89•VA
0/-0.3
-
dB
dB
dB
dB
dB
Vpp
Vpp
dB
COMBINED DAC INTERPOLATION & ON-CHIP ANALOG FILTER RESPONSE
Parameter (Note 15)
Frequency Response 20 Hz to 20 kHz
Passband
Fs = 48.000 kHz
Fs = 44.118 kHz
to -0.05 dB corner
to -3 dB corner
Stopband
Stopband Attenuation (Note 16)
Total Group Delay
De-emphasis Error
Fs = 44.118 kHz
Min
Typ
Max
Unit
-0.04
-0.14
-
+0.04
+0.14
dB
dB
-
0.48
0.49
-
Fs
Fs
0.55
-
-
Fs
49
-
-
dB
-
9/Fs
-
s
-
-
+0.05/-0.25
dB
Notes:
15. Response is clock dependent and will scale with Fs. Note that the response plots (Figures 31 to 34 on
page 70) have been normalized to Fs and can be de-normalized by multiplying the X-axis scale by Fs.
16. Measurement bandwidth is from Stopband to 3 Fs.
16
DS773F1
CS42L55
SWITCHING SPECIFICATIONS - SERIAL PORT
Inputs: Logic 0 = GND = AGND, Logic 1 = VL, LRCK, SCLK, SDOUT CLOAD = 15 pF.
Parameters
Symbol
RESET pin Low Pulse Width
(Note 17)
Min
Max
Units
1
-
ms
(See “Serial Port Clocking”
on page 34)
MCLK Frequency
MCLK Duty Cycle
45
MHz
55
%
Slave Mode (Figure 5)
Input Sample Rate (LRCK)
Fs
(See “Serial Port Clocking”
on page 34)
LRCK Duty Cycle
kHz
45
55
%
1/tPs
-
68•Fs
Hz
45
55
%
tss(LK-SK)
40
-
ns
SDOUT Setup Time Before SCLK Rising Edge
tss(SDO-SK)
20
-
ns
SDOUT Hold Time After SCLK Rising Edge
ths(SK-SDO)
30
-
ns
SDIN Setup Time Before SCLK Rising Edge
tss(SD-SK)
20
-
ns
ths
20
-
ns
SCLK Frequency
SCLK Duty Cycle
LRCK Setup Time Before SCLK Rising Edge
SDIN Hold Time After SCLK Rising Edge
Master Mode (Figure 6)
Output Sample Rate (LRCK)
All Speed Modes
Fs
(See “Serial Port Clocking”
on page 34)
LRCK Duty Cycle
SCLK Frequency
SCLK = MCLK mode
1/tPm
All Other Modes
1/tPm
SCLK Duty Cycle
RATIO[1:0] = ‘11’
RATIO[1:0] = ‘01’ (Note 18)
LRCK Time Before SCLK Falling Edge
Hz
45
55
%
-
12.0000
MHz
-
68•Fs
Hz
45
55
%
33
66
%
tsm(LK-SK)
-
±2
ns
SDOUT Setup Time Before SCLK Rising Edge
tsm(SDO-SK)
20
-
ns
SDOUT Hold Time After SCLK Rising Edge
thm(SK-SDO)
30
-
ns
SDIN Setup Time Before SCLK Rising Edge
tsm(SD-SK)
20
-
ns
thm
20
-
ns
SDIN Hold Time After SCLK Rising Edge
Notes: 17. After powering up the CS42L55, RESET should be held low after the power supplies and clocks are
settled. This specification is valid with the recommended capacitor on VDFILT.
18. The device will periodically extend the SCLK high time to compensate for the fractional MCLK/SCLK
ratio.
//
//
LRCK
tss(LK-SK)
SCLK
//
LRCK
//
tP
//
//
tss(SDO-SK)
SDOUT
//
//
SDIN
//
//
//
tss(SD-SK)
//
ths(SK-SDO)
//
MSB
//
SDOUT
MSB
//
tPm
//
//
//
//
tsm(SDO-SK)
//
//
ths
Figure 5. Serial Port Timing (Slave Mode)
DS773F1
SCLK
tsm(LK-SK)
SDIN
//
tsm(SD-SK)
//
thm(SK-SDO)
//
MSB
//
thm
MSB
//
Figure 6. Serial Port Timing (Master Mode)
17
CS42L55
SWITCHING SPECIFICATIONS - CONTROL PORT
Inputs: Logic 0 = GND = AGND, Logic 1 = VL, SDA CL = 30 pF.
Parameter
Symbol
Min
Max
Unit
fscl
-
100
kHz
RESET Rising Edge to Start
tirs
500
-
ns
Bus Free Time Between Transmissions
tbuf
4.7
-
µs
Start Condition Hold Time (prior to first clock pulse)
thdst
4.0
-
µs
Clock Low time
tlow
4.7
-
µs
Clock High Time
thigh
4.0
-
µs
Setup Time for Repeated Start Condition
tsust
4.7
-
µs
thdd
0
-
µs
tsud
250
-
ns
Rise Time of SCL and SDA
trc
-
1
µs
Fall Time SCL and SDA
tfc
-
300
ns
Setup Time for Stop Condition
tsusp
4.7
-
µs
Acknowledge Delay from SCL Falling
tack
300
1000
ns
SCL Clock Frequency
SDA Hold Time from SCL Falling
(Note 19)
SDA Setup time to SCL Rising
Notes:
19. Data must be held for sufficient time to bridge the transition time, tfc, of SCL.
RESET
t irs
Stop
Repeated
Start
Start
Stop
SDA
t buf
t
t high
t hdst
tf
hdst
t susp
SCL
t
low
t
hdd
t sud
t sust
tr
Figure 7. I²C Control Port Timing
18
DS773F1
CS42L55
POWER SUPPLY REJECTION (PSRR) CHARACTERISTICS
Test Conditions (unless otherwise specified): Connections to the CS42L55 are shown in the “Typical Connection Diagram” on
page 10; GND = AGND = 0 V; all voltages with respect to ground.
Min
Typ
Max
Units
PSRR with 100 mVpp, 1 kHz signal (Note 20)
Parameters
PGA to ADC
ADC
PGA to HP & Line Amps
DAC to HP & Line Amps
-
55
50
50
50
-
dB
dB
dB
dB
PSRR with 100 mVpp, 60 Hz signal (Note 20)
PGA to ADC (Note 21)
ADC
PGA to HP & Line Amps
DAC to HP & Line Amps
-
35
25
50
60
-
dB
dB
dB
dB
Notes:
20. Valid with the recommended capacitor values on FILT+ and VQ, no load on HP and Line. Increasing
the capacitance on FILT+ and VQ will also increase the PSRR.
21. The PGA is biased with VQ, created by a resistor divider from the VA supply.
DIGITAL INTERFACE SPECIFICATIONS & CHARACTERISTICS
Parameters (Note 22)
Input Leakage Current
Symbol
Min
Max
Units
Iin
-
±10
μA
-
10
pF
Input Capacitance
1.8 V - 3.3 V Logic
High-Level Output Voltage (IOH = -100 μA)
VOH
VL - 0.2
-
V
Low-Level Output Voltage (IOL = 100 μA)
VOL
-
0.2
V
VIH
0.30•VL
V
VIL
0.83•VL
0.76•VL
0.68•VL
0.65•VL
-
V
High-Level Input Voltage
HPDVIH
0.65•VA
-
V
Low-Level Input Voltage
HPDVIL
-
0.35•VA
V
High-Level Input Voltage
VL = 1.65 V
VL = 1.8 V
VL = 2.0 V
VL > 2.0 V
Low-Level Input Voltage
HPDETECT Input
22. See “I/O Pin Characteristics” on page 9 for serial and control port power rails.
1Ω
Power Supply
VCP
2.2 µF
1Ω
+
-
VA
0.1 µF
1Ω
VLDO
0.1 µF
1Ω
+
Voltmeter
+
-
VL
GND/AGND
0.1 µF
+
-
Note: Current is derived from the voltage drop across
a 1 Ω resistor in series with each supply input.
Figure 8. Power Consumption Test Configuration
DS773F1
19
CS42L55
POWER CONSUMPTION - ALL SUPPLIES = 1.8 V
ADCAMUX[1:0]
ADCBMUX[1:0]
PDN_LINA[1:0]
PDN_LINB[1:0]
PDN_HPA[1:0]
x
x
x
x
x
x x x x x
0.001
0.01
x
x
x
x
x
x x x x x
-
0.003 0.002 0.039
0.006
0.09
MCLKDIS=0 x
x
x
1
x
x
x
x
x
x
x x x x x
-
0.002 0.005 0.223
0.006
0.43
(Note 23) MCLKDIS=x x
x
x
1
x
x
x
x
x
x
x x x x x
-
0.002 0.002 0.010
0.002
0.03
ADC 0
1
0
0
11 11 11 11 xx 01 x x x x x
-
0.003 0.859 0.650
0.017
2.75
PGA to ADC 0
1
0
0
11 11 11 11 xx 00 x x x x x
-
0.002 1.053 0.650
0.018
3.10
ADC 0
0
0
0
11 11 11 11 01 01 x x x x x
-
0.002 1.116 0.795
0.022
3.48
PGA to ADC 0
0
0
0
11 11 11 11 00 00 x x x x x
0.022
4.13
No Effects 1
1
1
0
11 10 11 11 xx xx x x x 0 1
0.002 1.470 0.800
VCP/2 0.450 1.007 0.686
VCP 0.928 1.014 0.690
VCP/2 0.452 1.008 0.964
0.006
3.87
0.006
4.75
0.006
4.37
VCP 0.936 1.014 0.972
VCP/2 0.394 1.008 0.704
VCP 0.822 1.015 0.692
0.006
5.27
0.006
3.80
0.005
4.56
VCP/2 0.394 1.008 0.977
VCP 0.822 1.015 0.969
VCP/2 0.697 1.434 0.688
0.006
4.29
0.006
5.06
0.006
5.08
VCP 1.405 1.441 0.692
VCP/2 0.693 1.435 1.023
VCP 1.429 1.442 1.031
0.006
6.38
0.006
5.68
0.006
7.04
VCP/2 0.572 1.437 0.697
VCP 1.182 1.443 0.698
VCP/2 0.572 1.437 1.025
0.006
4.88
0.005
5.99
0.006
5.47
VCP 1.182 1.445 1.025
VCP/2 0.562 1.083 0.190
VCP 1.159 1.090 0.190
0.006
6.58
0.005
3.31
0.006
4.40
VCP/2 0.572 1.084 0.190
VCP 1.181 1.093 0.190
VCP/2 0.450 1.838 1.063
0.006
3.33
0.006
4.44
0.017
6.06
VCP 0.931 1.846 1.061
VCP/2 0.453 1.839 1.346
VCP 0.937 1.846 1.345
0.017
6.94
0.017
6.58
0.018
7.46
VCP/2 0.689 2.682 1.209
VCP 1.417 2.690 1.218
VCP/2 0.693 2.682 1.560
0.023
8.29
0.022
9.63
0.022
8.92
VCP 1.420 2.691 1.561
0.023
10.25
Mono Record (Note 24)
Stereo Record (Note 24)
Mono Play to HP
Mono Play to Line
No Effects 1
Stereo Play to HP
No Effects 1
Stereo Play to Line
No Effects 1
Effects 1
9
PDN_HPB[1:0]
x
x
0
Stereo Passthrough to HP
10 Stereo Passthrough to Line
11 Mono Rec. & Play
0
No Effects 0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
PDN
x
1
PDN_ADCA
PDN_ADCB
x
Effects 1
8
0
0
0
0
0
0
0
0
0
0
11 10 11 11 xx xx x x x 0 0
11 11 11 10 xx xx x 0 x x 1
11 11 11 10 xx xx x 0 x x 0
10 10 11 11 xx xx x x 0 0 1
10 10 11 11 xx xx x x 0 0 0
11 11 10 10 xx xx 0 0 x x 1
11 11 10 10 xx xx 0 0 x x 0
10 10 11 11 xx xx x x 1 1 x
11 11 10 10 xx xx 1 1 x x x
11 10 11 11 xx 00 x x x 0 1
PGA In, HP Out
Effects 0
12 Stereo Rec. & Play
No Effects 0
1
0
0
0
0
0
11 10 11 11 xx 00 x x x 0 0
10 10 11 11 00 00 x x 0 0 1
PGA In, HP Out
Effects 0
20
iVL
x
Effects 1
7
iVLDO
x
Effects 1
6
iVA
x
Standby
5
iVCP
x
Off (Note 23)
4
08h page 46
03h page 43
MCLKDIS=1 x
1
2
3
Typical Current (mA)
PDN_CHRG
02h page 42
Operation Test Conditions (unless otherwise
specified): All zeros input,
slave mode, sample rate =
48 kHz; No load. Refer to
Figure 8 on page 19.
ADC, Line, HP
Sel. Registers
LINEBMUX
LINEAMUX
HPBMUX
HPAMUX
PDN_DSP - 0Fh page 50
Power Ctl. Registers
0
0
0
10 10 11 11 00 00 x x 0 0 0
Class H
Mode
page 45
0.002 0.003 0.002
Total
Power
(mW)
DS773F1
CS42L55
POWER CONSUMPTION - ALL SUPPLIES = 2.5 V
PDN_ADCB
PDN_ADCA
PDN
ADCAMUX[1:0]
LINEBMUX
LINEAMUX
HPBMUX
HPAMUX
PDN_DSP - 0Fh page 50
x
x
x
x
x
x
x
x
x
x
x x x x x
x
x
1
x
x
x
x
x
x
x x x x x
-
0.000 0.000 0.064 0.007
0.18
MCLKDIS=0 x
x
x
1
x
x
x
x
x
x
x x x x x
-
0.000 0.013 0.385 0.007
1.01
(Note 23) MCLKDIS=x x
x
x
1
x
x
x
x
x
x
x x x x x
-
0.000 0.000 0.018 0.000
0.05
ADC 1
1
0
0
11 11 11 11 xx 01 x x x x x
-
0.000 0.752 0.743 0.019
3.79
PGA to ADC 1
1
0
0
11 11 11 11 xx 00 x x x x x
-
0.000 0.997 0.750 0.019
4.42
ADC 1
0
0
0
11 11 11 11 01 01 x x x x x
-
0.000 1.031 0.918 0.025
4.94
PGA to ADC 1
0
0
0
11 11 11 11 00 00 x x x x x
6.15
No Effects 1
1
1
0
11 10 11 11 xx xx x x x 0 1
Effects 1
1
1
0
11 10 11 11 xx xx x x x 0 0
0.000 1.511 0.926 0.024
VCP/2 0.676 1.327 0.705 0.007
VCP 1.694 1.339 0.709 0.007
VCP/2 0.677 1.325 1.032 0.007
VCP 1.728 1.337 1.049 0.007
VCP/2 0.585 1.328 0.738 0.007
VCP 1.516 1.339 0.739 0.007
VCP/2 0.585 1.324 1.030 0.006
10.30
VCP 1.515 1.338 1.030 0.007
VCP/2 0.943 1.833 0.711 0.007
VCP 2.250 1.850 0.744 0.007
VCP/2 0.945 1.835 1.090 0.007
9.73
5
6
7
Mono Record (Note 24)
Stereo Record (Note 24)
Mono Play to HP
Mono Play to Line
Stereo Play to HP
Stereo Play to Line
1
0
11 11 11 10 xx xx x 0 x x 1
Effects 1
1
1
0
11 11 11 10 xx xx x 0 x x 0
No Effects 1
No Effects 1
Stereo Passthrough to HP
10 Stereo Passthrough to Line
11 Mono Rec. & Play
ADCBMUX[1:0]
1
Effects 1
9
PDN_LINA[1:0]
No Effects 1
Effects 1
8
PDN_LINB[1:0]
Standby
PDN_HPA[1:0]
Off (Note 23)
08h page 46
03hpage 43
PDN_HPB[1:0]
1
2
4
Typical Current (mA)
MCLKDIS=1 x
Operation Test Conditions (unless otherwise
specified): /All zeros input,
slave mode, sample rate =
48 kHz; No load. Refer to
Figure 8 on page 19.
3
MUX Registers
PDN_CHRG
Power Ctl. Registers
02h page 42
1
1
1
1
1
1
1
1
0
0
0
0
10 10 11 11 xx xx x x 0 0 1
10 10 11 11 xx xx x x 0 0 0
11 11 10 10 xx xx 0 0 x x 1
11 11 10 10 xx xx 0 0 x x 0
1
1
1
0
10 10 11 11 xx xx x x 1 1 x
1
1
1
0
11 11 10 10 xx xx 1 1 x x x
No Effects 1
1
0
0
11 10 11 11 xx 00 x x x 0 1
PGA In, HP Out
Effects 1
12 Stereo Rec. & Play
1
0
0
11 10 11 11 xx 00 x x x 0 0
No Effects 1
0
0
0
10 10 11 11 00 00 x x 0 0 1
Effects 1
0
0
0
10 10 11 11 00 00 x x 0 0 0
PGA In, HP Out
iVCP
iVA
iVLDO
iVL
Class H
Mode
page 45
0.001 0.001 0.001 0.000
Total
Power
(mW)
0.01
6.79
9.37
7.60
6.65
9.00
7.36
8.74
12.13
9.69
VCP 2.237 1.846 1.121 0.007
VCP/2 0.760 1.835 0.730 0.007
VCP 1.888 1.848 0.740 0.006
VCP/2 0.760 1.836 1.085 0.007
13.03
VCP 1.888 1.851 1.058 0.007
VCP/2 0.751 1.174 0.212 0.007
VCP 1.880 1.188 0.212 0.007
VCP/2 0.759 1.175 0.211 0.007
12.01
VCP 1.886 1.189 0.211 0.007
VCP/2 0.676 2.055 1.159 0.018
VCP 1.700 2.068 1.196 0.018
VCP/2 0.678 2.055 1.462 0.018
8.23
VCP 1.696 2.066 1.463 0.018
VCP/2 0.945 3.071 1.340 0.024
VCP 2.254 3.089 1.358 0.023
VCP/2 0.950 3.074 1.702 0.024
VCP 2.254 3.090 1.705 0.023
8.33
11.21
9.22
5.36
8.22
5.38
9.77
12.46
10.53
13.11
13.45
16.81
14.38
17.68
Notes:
23. When “Off”, RESET pin and clock/data lines held LO; when in “standby”, lines are held HI.
24. Either inputs 1 or 2 may be selected. Input 1 is shown for simplicity.
DS773F1
21
CS42L55
4. APPLICATIONS
4.1
4.1.1
Overview
Basic Architecture
The CS42L55 is a highly integrated, ultra-low power, 24-bit audio CODEC comprised of stereo A/D and
D/A converters with pseudo-differential stereo input and output amplifiers. The ADC and DAC are designed using multi-bit delta-sigma techniques; both converters operate at a low oversampling ratio of
64xFs, maximizing power savings while maintaining high performance. The CODEC operates in one of
three sample rate speed modes: Quarter, Half and Single. It accepts and is capable of generating serial
audio clocks (SCLK, LRCK) derived from a 12 or 6 MHz input Master Clock (MCLK). Designed with a very
low voltage digital core and low voltage Class H amplifiers (powered from an integrated low-dropout regulator and a step-down/inverting charge pump, respectively), the CS42L55 provides significant reduction
in overall power consumption.
4.1.2
Line Inputs
The analog input portion of the CODEC allows selection from two stereo line-level sources into a Programmable Gain Amplifier (PGA). The optional pseudo-differential configuration provides noise-rejection
for single-ended inputs.
4.1.3
Line and Headphone Outputs (Class H, Ground-Centered Amplifiers)
The analog output portion of the CODEC includes separate pseudo-differential headphone and line out
Class H amplifiers. An on-chip step-down/inverting charge pump creates a positive and negative voltage
equal to the input or one-half the input supply for the amplifiers, allowing an adaptable, full-scale output
swing centered around ground. The inverting architecture eliminates the need for large DC-blocking capacitors and allows the amplifier to deliver more power to headphone loads at lower supply voltages. The
step-down architecture allows the amplifier’s power supply to adapt to the required output signal. This
adaptive power supply scheme converts traditional Class AB amplifiers into more power-efficient Class H
amplifiers.
4.1.4
Fixed-Function DSP Engine
The fixed function digital signal processing engine processes both the PCM serial input data and ADC
output data allowing a mix between the two. Independent volume control, left/right channel swaps, mono
mixes, tone control comprise the DSP engine.
4.1.5
Beep Generator
The beep generator delivers tones at select frequencies across approximately two octave major scales.
With independent volume control, beeps may be configured to occur continuously, periodically or at single
time intervals.
4.1.6
Power Management
Several control registers and bits provide independent power down control of the ADC, PGA, DSP, headphone and line outputs, allowing operation in select applications with minimal power consumption.
22
DS773F1
CS42L55
4.2
Analog Inputs
BOOSTA
ADCAMUTE
DIGSFT
ADCAATT[7:0]
ADCB=A
HPFRZA
HPFA
HPFA_CF[1:0]
PDN_ADCA
INV_ADCA
PDN_CHRG
AIN1A
AIN2A
Gain Adjust
ADC
ADCAMUX[1:0]
PCM Serial Interface
DIGSUM[1:0]
Swap/
Mix
DIGMUX
ALCA
ALCASRDIS
ALCAZCDIS
ALCARATE[5:0]
ALCRRATE[5:0]
PGAAMUX
Noise Gate
ALC
`
MAX[2:0]
MIN[2:0]
PDN_ADCA
PGAAVOL[5:0]
PGAB=A
ANLGZC
NGALL
NG
THRESH[3:0]
NGDELAY[1:0]
AIN1REF
AIN2REF
PDN_ADCB
PGABVOL[5:0]
PGAB=A
ANLGZC
ALCB
ALCBSRDIS
ALCBZCDIS
PGABMUX
ADCBMUX[1:0]
Gain Adjust
BOOSTB
ADCBMUTE
DIGSFT
ADCBATT[7:0]
ADCB=A
ADC
AIN2B
HPFRZB
HPB
HPFB_CF[1:0]
PDN_ADCB
INV_ADCB
PDN_CHRG
TO DSP Engine
AIN1B
ANALOG PASSTHRU TO
HEADPHONE, LINE AMPLIFIER MUX
FROM DSP ENGINE
Figure 9. Analog Input Signal Flow
Referenced Control
Analog Front End
PGAxMUX
PDN_ADCx
PGAxVOL[5:0]
PGAB=A
ANLGZCx
ADCxMUX[1:0]
INV_ADCx
PDN_CHRG
HPFRZx
HPFx
HPFx_CF[1:0]
Digital Volume
BOOSTx
ADCxMUTE
ADCxATT[7:0]
DIGSFT
ADCB=A
ALCx
ALCxSRDIS
ALCxZCDIS
ALCARATE[5:0]
ALCRRATE[5:0]
MAX[2:0]
MIN[2:0]
NGALL
NG
THRESH[3:0]
NGDELAY[1:0]
Miscellaneous
DIGSUM[1:0]
DIGMUX
DS773F1
Register Location
“PGA x Input Select” on page 49
“Power Down ADC x” on page 42
“PGAx Volume” on page 49
“PGA Channel B=A” on page 48
“Analog Zero Cross” on page 46
“ADC x Input Select” on page 46
“Invert ADC Signal Polarity” on page 48
“Power Down ADC Charge Pump” on page 42
“ADCx High-Pass Filter Freeze” on page 47
“ADCx High-Pass Filter” on page 47
“HPF x Corner Frequency” on page 47
“Boostx” on page 49
“ADC Mute” on page 48
“ADCx Volume” on page 50
“Digital Soft Ramp” on page 46
“ADC Channel B=A” on page 48
“ALCx” on page 62
“ALCx Soft Ramp Disable” on page 65
“ALCx Zero Cross Disable” on page 65
“ALC Attack Rate” on page 63
“ALC Release Rate” on page 63
“ALC Maximum Threshold” on page 64
“ALC Minimum Threshold” on page 64
“Noise Gate All Channels” on page 64
“Noise Gate Enable” on page 65
“Noise Gate Threshold and Boost” on page 65
“Noise Gate Delay Timing” on page 65
“Digital Sum” on page 48
“Digital MUX” on page 45
23
CS42L55
4.2.1
Pseudo-Differential Inputs
The CS42L55 implements a pseudo-differential input stage. The AINxREF inputs are intended to be used
as a pseudo-differential reference signal. This feature provides 0 noise rejection with single-ended signals. Figure 10 shows a basic diagram outlining the internal implementation of the pseudo-differential input stage, including a recommended stereo pseudo-differential input topology. If pseudo-differential input
functionality is not required, simply leave the AINxREF pin floating.
PGAAMUX=’0'b
1 µF
Left Input
//
AIN1A
26
PGA A
(differential traces)
GND
+
AIN1REF
//
27
-
1 µF
common mode rejection at input of PGA reduces
external system noise
1 µF
Right Input
//
AIN2B
25
PGA B
(differential traces)
GND
+
AIN2REF
//
24
-
1 µF
PGABMUX=’1'b
Figure 10. Stereo Pseudo-Differential Input
Referenced Control
Register Location
PGAxMUX ........................... “PGA x Input Select” on page 49
4.2.2
Automatic Level Control (ALC)
When enabled, the ALC monitors the analog input signal after the digital attenuator. The ALC then detects
when peak levels exceed the maximum threshold settings and first lowers the PGA gain settings and then
increases the digital attenuation levels at a programmable attack rate and maintains the resulting level
below the maximum threshold.
When input signal levels fall below the minimum threshold, digital attenuation levels are decreased first
and the PGA gain is then increased at a programmable release rate and maintains the resulting level
above the minimum threshold.
Attack and release rates are affected by the ADC soft ramp/zero cross settings and sample rate, Fs. ALC
soft ramp and zero cross dependency may be independently enabled/disabled.
Recommended settings: Best level control may be realized with the fastest attack and slowest release
setting with soft ramp enabled in the control registers.
Notes:
1. When ALC x is enabled and the PGAxVOL[5:0] is set to +12 dB, the ADCxATT[7:0] should not be set
below 0 dB.
2. The maximum desired gain must be set in the PGAxVOL register. The ALC will only apply the gain
set in PGAxVOL.
3. The ALC maintains the output signal between the MIN and MAX thresholds. As the input signal level
changes, the level-controlled output may not always be the same but will always fall between the
thresholds.
24
DS773F1
CS42L55
Referenced Control
Register Location
PGAxVOL[5:0] ..................... “PGAx Volume” on page 49
ADCxATT[7:0] ...................... “ADCx Volume” on page 50
MAX[2:0], MIN[2:0] .............. “ALC Threshold (Address 26h)” on page 64
Input (before ALC)
MAX[2:0]
MIN[2:0]
below full scale
below full scale
ALC
Response
PGA Gain and/or
Attenuator
Output
(after ALC)
MAX[2:0]
MIN[2:0]
below full scale
below full scale
RRATE[5:0]
ARATE[5:0
]
Figure 11. ALC Operation
4.3
Analog In to Analog Out Passthrough
The CS42L55 accommodates analog routing of the analog input signal directly to the headphone and line
out amplifiers. This feature is useful in applications that utilize an FM tuner where audio recovered over-theair must be transmitted to the headphone amplifier without digital conversion in the ADC and DAC. This analog passthrough path reduces power consumption and is immune to modulator switching noise that could
interfere with some tuners. This path is selected using the Line and/or HP mux bits and powering down the
ADC.
Referenced Control
Register Location
PDN_ADCx ......................... “Power Down ADC x” on page 42
HPxMUX.............................. “Headphone Input Select” on page 47
LINExMUX........................... “Line Input Select” on page 47
DS773F1
25
CS42L55
4.4
Analog Outputs
INPUTS FROM ADCA
and ADCB
Fixed Function DSP
MSTAVOL[7:0]
MSTBVOL[7:0]
AMIXAMUTE
AMIXBMUTE
AMIXAVOL[6:0]
AMIXBVOL[6:0]
VOL
PMIXAMUTE
PMIXBMUTE
PMIXAVOL[6:0]
PMIXBVOL[6:0]
PCM Serial Interface
LIMARATE[7:0]
LIMRRATE[7:0]
LMAX[2:0]
CUSH[2:0]
LIMSRDIS
LIMIT
LIMIT_ALL
Channel
Swap
Chnl Vol.
Settings
Limiter
ADCASWAP[1:0]
ADCBSWAP[1:0]
Peak
Detect
PCMASWAP[1:0]
PCMBSWAP[1:0]
Demph
DEEMPH
VOL
Channel
Swap
Σ
Σ
VOL
INV_PCMA
INV_PCMB
MSTAMUTE
MSTBMUTE
DIGSFT
BPVOL[4:0]
OFFTIME[2:0]
ONTIME[3:0]
FREQ[3:0]
BEEP[1:0]
Digital Mix to ADC
Serial Interface
Bass/
Treble/
Control
VOL
*
to HP and
Line MUX
TC_EN
BASS_CF[1:0]
TREB_CF[1:0]
BASS[3:0]
TREB[3:0]
PLYBCKB=A
Beep
Generator
DAC
PDN_DSP
*
MSTxVOL[7:0], MSTxMUTE and DIGSFT are always
available regardless of the PDN_DSP setting.
Figure 12. DSP Engine Signal Flow
Referenced Control
DSP
PDN_DSP
DEEMPH
PMIXxMUTE
PMIXxVOL[6:0]
INV_PCMx
PCMxSWAP[1:0]
AMIXxMUTE
AMIXxVOL[6:0]
ADCxSWAP[1:0]
MSTxVOL[7:0]
MSTxMUTE
DIGSFT
PLYBCKB=A
TC_EN
BASS_CF[1:0]
TREB_CF[1:0]
BASS[3:0]
TREB[3:0]
Limiter
LIMIT
LIMIT_ALL
LIMSRDIS
LMAX[2:0]
CUSH[2:0]
LIMARATE[7:0]
LIMRRATE[7:0]
Beep Generator
26
Register Location
“Power Down DSP” on page 50
“HP/Line De-Emphasis” on page 50
“PCM Mixer Channel x Mute” on page 52
“PCM Mixer Channel x Volume” on page 52
“Invert PCM Signal Polarity” on page 51
“PCM Mix Channel Swap” on page 60
“ADC Mixer Channel x Mute” on page 51
“ADC Mixer Channel x Volume” on page 51
“ADC Mix Channel Swap” on page 60
“Master Volume Control” on page 57
“Master Playback Mute” on page 51
“Digital Soft Ramp” on page 46
“Playback Channels B=A” on page 50
“Tone Control Enable” on page 56
“Bass Corner Frequency” on page 56
“Treble Corner Frequency” on page 55
“Bass Gain” on page 56
“Treble Gain” on page 56
“Peak Detect and Limiter” on page 61
“Peak Signal Limit All Channels” on page 61
“Limiter Soft Ramp Disable” on page 66
“Limiter Maximum Threshold” on page 60
“Limiter Cushion Threshold” on page 61
“Limiter Attack Rate” on page 62
“Limiter Release Rate” on page 62
Refer to “Beep Generator” on page 31 for all referenced controls
DS773F1
CS42L55
VCP
Step-down/Inverting
Charge Pump
ADPTPWR[1:0]
Class H Control
+VCP
+VCP/2
= HP and Line Supply
HP Detection
HPDETECT
PDN_HPx[1:0]
PDN_LINx[1:0]
-VCP
-VCP/2
+VHPFILT
CHGFREQ[3:0]
+HP Supply
from PGAx
from DACx
HPxMUX
LINExMUX
+Line Supply
HPOUTA
HPOUTB
HPREF
HPxVOL[6:0]
HPxMUTE
ANLGZC
PLYBCKB=A
LINEOUTA
LINEOUTB
LINEREF
LINExVOL[6:0]
LINExMUTE
ANLGZC
PLYBCKB=A
-HP Supply
-Line Supply
-VHPFILT
Figure 13. Analog Output Stage
4.5
Referenced Control
Register Location
Analog Output
ADPTPWR[1:0]
CHGFREQ[3:0]
PDN_HPx[1:0]
PDN_LINx[1:0]
HPxMUTE
HPxVOL[7:0]
LINExMUTE
LINExVOL[7:0]
ANLGZC
PLYBCKB=A
HPxMUX
LINExMUX
“Adaptive Power Adjustment” on page 45
“Charge Pump Frequency” on page 67
“Headphone Power Control” on page 43
“Line Power Control” on page 43
“Headphone Channel x Mute” on page 57
“Headphone Volume Control” on page 57
“Line Channel x Mute” on page 58
“Line Volume Control” on page 58
“Analog Zero Cross” on page 46
“Playback Channels B=A” on page 50
“Headphone Input Select” on page 47
“Line Input Select” on page 47
Class H Amplifier
The CS42L55 headphone and line output amplifiers use a patented Cirrus Logic Bi-Modal Class H technology. This technology maximizes operating efficiency of the typical Class AB amplifier while maintaining high
performance. In a Class H amplifier design, the rail voltages supplied to the amplifier vary with the needs of
the music passage that is being amplified. This prevents unnecessarily wasting energy during low power
passages of program material or when the program material is played back at a low volume level.
The central component of the Bi-Modal Class H technology found in the CS42L55 is the internal charge
pump, which creates the rail voltages for the headphone and line amplifiers of the device. The charge pump
receives its input voltage from the voltage present on the VCP pin of the CS42L55. From this input voltage,
the charge pump creates the differential rail voltages that are supplied to the amplifier output stages. The
charge pump is capable of supplying two sets of differential rail voltages. One set is equal to ± VCP and the
other is equal to ± VCP/2.
4.5.1
Power Control Options
The method by which the CS42L55 decides which set of rail voltages is supplied to the amplifier output
stages depends on the settings of the Adaptive Power bits (ADPTPWR) found in “Class H Power Control
(Address 06h)” section on page 45. As detailed in this section, there are four possible settings for these
bits: Mode 00, 01, 10 and 11.
Referenced Control
Register Location
ADPTPWR[1:0] ................... “Adaptive Power Adjustment” on page 45
DS773F1
27
CS42L55
4.5.1.1
Standard Class AB Operation (Mode 01 and 10)
When the Adaptive Power bits are set to either 01 or 10, the rail voltages supplied to the amplifiers will be
held to ±VCP/2 or ±VCP, respectively. For these two settings, the rail voltages supplied to the output stages are held constant, regardless of the signal level, internal volume settings, or the settings of the AIN and
DIN advisory volume registers. In either of these two settings, the amplifiers in the CS42L55 simply operate in a traditional Class AB configuration.
4.5.1.2
Adapted to Volume Settings (Mode 00)
When the Adaptive Power bits are set to 00, the CS42L55 decides which set of rail voltages to send to
the amplifiers based upon the gain and attenuation levels of all active internal processing blocks. In order
to adjust for external analog (line or microphone sources) or digital (DSP) input volume settings, it also
takes into account the settings of the AIN and DIN advisory volume registers. The combined effect of all
volume settings is shown in Figure 14.
Analog Input Source
I²S Serial Audio Input
Headphone
Amplifier
Control Port
PMIX, AMIX
Volume
Setting
Master
Volume
Setting
Headphone or
Line Volume
Setting
Line
Amplifier
External DSP
AIN Advisory
Volume Setting
Control Logic
DIN Advisory
Volume Setting
Charge
Pump
Figure 14. Adaptive Mode 00
If the total gain and attenuation set in the volume control registers would cause the amplifiers to clip a fullscale signal when operating from the lower set of rail voltages, the control logic instructs the charge pump
to provide the higher set of the two rail voltages (±VCP) to the amplifiers. If the total gain and attenuation
set in the volume control registers would not cause the amplifiers to clip a full-scale signal when operating
from the lower set of rail voltages, the control logic instructs the charge pump to supply the lower set of
rail voltages (±VCP/2) to the amplifiers.
Note: The A and B channels of each respective volume control must both cross the threshold to trigger
a change in the VCP mode. The control logic also monitors various functions (listed in the table below)
that may affect the total gain and attenuation of the signal applied to the amplifiers.
28
DS773F1
CS42L55
Referenced Control
Register Location
HPxVOL[7:0] .......................
LINExVOL[7:0] ....................
MSTxVOL[7:0].....................
MSTxMUTE.........................
AMIXxVOL[6:0]....................
PMIXxVOL[6:0]....................
AINADV[7:0] ........................
DINADV[7:0]........................
BOOSTx ..............................
ADCxMUX ...........................
PGAxVOL............................
ADCxMUTE.........................
ADCxSWP...........................
PCMxSWP ..........................
HPxMUX..............................
LINExMUX...........................
HPxMUTE ...........................
LINExMUTE ........................
PDN_HPx ............................
PDN_LINEx .........................
TREB...................................
BASS...................................
TCEN...................................
BEEP...................................
BPVOL ................................
ADCB=A ..............................
PGAB=A ..............................
PLYBCKB=A........................
“Headphone Volume Control” on page 57
“Line Volume Control” on page 58
“Master Volume Control” on page 57
“Master Playback Mute” on page 51
“ADC Mixer Channel x Volume” on page 51
“PCM Mixer Channel x Volume” on page 52
“Analog Input Advisory Volume” on page 59
“Digital Input Advisory Volume” on page 59
“Boostx” on page 49
“ADC x Input Select” on page 46
“PGAx Volume” on page 49
“ADC Mute” on page 48
“ADC Mix Channel Swap” on page 60
“PCM Mix Channel Swap” on page 60
“Headphone Input Select” on page 47
“Line Input Select” on page 47
“Headphone Channel x Mute” on page 57
“Line Channel x Mute” on page 58
“Headphone Power Control” on page 43
“Line Power Control” on page 43
“Treble Gain” on page 56
“Bass Gain” on page 56
“Tone Control Enable” on page 56
“Beep Configuration” on page 55
“Beep Volume” on page 55
“ADC Channel B=A” on page 48
“PGA Channel B=A” on page 48
“Playback Channels B=A” on page 50
4.5.1.3
Adapted to Output Signal (Mode 11)
When the Adaptive Power bits are set to 11, the CS42L55 decides which of the two sets of rail voltages
to send to the amplifiers based solely upon the level of the signal being sent to the amplifiers. If the signal
that is sent to the amplifiers would cause the amplifiers to clip when operating on the lower set of rail voltages, the control logic instructs the charge pump to provide the higher set of rail voltages (±VCP) to the
amplifiers. If the signal that is sent to the amplifiers would not cause the amplifiers to clip when operating
on the lower set of rail voltages, the control logic instructs the charge pump to provide the lower set of rail
voltages (±VCP/2) to the amplifiers. This mode of operation eliminates the need to advise the CS42L55
of volume settings external to the device.
Note: Signal detection is made using digital circuitry. This mode should, therefore, not be used with analog passthrough (PGA to HP/Line).
4.5.2
Power Supply Transitions
Charge pump transitions from the lower set of rail voltages to the higher set of rail voltages occur on the
next FLYN/P clock cycle. Despite the fast response time of the system, the capacitive elements on the
VHPFILT pins prevent the rail voltages from changing instantaneously. Instead, the rail voltages ramp up
from ±VCP/2 to ±VCP based on the time constant created by the output impedance of the charge pump
and the capacitor on the VHPFILT pin (the transition time is approximately 20 µs). This behavior is detailed in Figure 15. During this charging transition, a high dv/dt transient on the inputs may briefly clip the
outputs before the rail voltages charge to the full ±VCP level. This transitory clipping has been found to
be inaudible in listening tests.
DS773F1
29
CS42L55
Ideal Transition
+VCP
+VCP
2
Actual Transition caused
by VHPFILT Capacitor
Time
Actual Transition caused
by VHPFILT Capacitor
-VCP
2
-VCP
Ideal Transition
Figure 15. VHPFILT Transitions
When the charge pump transitions from the higher set of rail voltages to the lower set, there is a one second delay before the charge pump supplies the lower rail voltages to the amplifiers. This hysteresis ensures that the charge pump doesn't toggle between the two rail voltages as signals approach the clip
threshold. It also prevents clipping in the instance of repetitive high level transients in the input signal. The
timing diagram for this transitional behavior is detailed in Figure 16.
Output Level
1 second
-10 dB
Time
Amplifier Rail
Voltage
VCP
VCP
2
Time
- VCP
2
- VCP
Figure 16. VHPFILT Hysteresis
30
DS773F1
CS42L55
4.5.3
Efficiency
As discussed in previous sections, the amplifiers internal to the CS42L55 operate from one of two sets of
rail voltages, based upon the needs of the signal being amplified or the total gain/attenuation settings. The
power curves for the two modes of operation are shown in Figure 15. This graph details the power supplied to a load versus the power drawn from the supply for each of the three use cases.
All Supplies= 1.8 V
RL = 32 Ω
±VCP
Class AB Amplifiers do not
conserve power with typical
headphone loads.
Class H Amplifiers automatically
switch between ±VCP and ±VCP/2
to conserve power with typical
headphone loads.
±VCP/2
Figure 17. Class H Power to Load vs. Power from VCP Supply
When the rail voltages are set to VCP, the amplifiers will operate in their least efficient mode. When the
rail voltages are held at ±VCP/2, the amplifiers will operate in their most efficient mode, but will be will
clipped if required to amplify a full-scale signal.
Note:
The ±VCP/2 curve ends at the point at which the output of the amplifiers reached 10% THD+N.
The benefit of Bi-Modal Class H is shown in the solid trace on the graph. At lower output levels, the amplifiers operate on the ±VCP/2 curve. At higher output levels, they operate on the ±VCP curve. The duration the amplifiers will operate on either of the two curves (±VCP/2 or ±VCP) depends on both the content
and the output level of the program material being amplified. The highest efficiency operation will result
from maintaining an output level that is close to, but not exceeding, the clip threshold of the ±VCP/2 curve.
4.6
Beep Generator
The Beep Generator generates audio frequencies across approximately two octave major scales. It offers
three modes of operation: Continuous, multiple and single (one-shot) beeps. Sixteen On and eight Off times
are available.
Note:
DS773F1
The Beep is generated before the limiter and may affect desired limiting performance. If the limiter
function is used, it may be necessary to set the beep volume sufficiently below the threshold to prevent the peak detect from triggering. Since the master volume control, MSTxVOL[7:0], will affect
the beep volume, the DAC volume may alternatively be controlled using the PMIXxVOL[6:0] bits.
31
CS42L55
BEEP[1:0] =
'11'
CONTINUOUS BEEP: Beep turns on at a configurable frequency (FREQ) and volume (BPVOL) and remains on
until REPEAT is cleared.
BEEP[1:0] =
'10'
MULTI-BEEP: Beep turns on at a configurable frequency (FREQ)
and volume (BPVOL) for the duration of ONTIME and turns off for
the duration of OFFTIME. On and off cycles are repeated until
REPEAT is cleared.
BEEP[1:0] =
'01'
SINGLE-BEEP: Beep turns on at a
configurable frequency (FREQ) and
volume (BPVOL) for the duration of
ONTIME. BEEP must be cleared
and set for additional beeps.
...
BPVOL[4:0]
FREQ[3:0]
ONTIME[3:0]
OFFTIME[2:0]
Figure 18. Beep Configuration Options
4.7
Referenced Control
Register Location
MSTxVOL[7:0].....................
PMIXxVOL[6:0]....................
OFFTIME[2:0]......................
ONTIME[3:0] .......................
FREQ[3:0] ...........................
BEEP[1:0]............................
BPVOL[4:0] .........................
“Master Volume Control: MSTA (Address 18h) & MSTB (Address 19h)” on page 57
“PCMx Mixer Volume: PCMA (Address 12h) & PCMB (Address 13h)” on page 52
“Beep Off Time” on page 54
“Beep On Time” on page 54
“Beep Frequency” on page 53
“Beep Configuration” on page 55
“Beep Volume” on page 55
Limiter
When enabled, the limiter monitors the digital input signal before the DAC modulators, detects when levels
exceed the maximum threshold settings and lowers the master volume at a programmable attack rate below
the maximum threshold. When the input signal level falls below the maximum threshold, the AOUT volume
returns to its original level set in the Master Volume Control register at a programmable release rate. Attack
and release rates are affected by the DAC soft ramp settings and sample rate, Fs. Limiter soft ramp dependency may be independently enabled/disabled using the LIMSRDIS.
Notes:
1. Recommended settings: Best limiting performance may be realized with the fastest attack and
slowest release setting with soft ramp enabled in the control registers. The CUSH bits allow the user
to set a threshold slightly below the maximum threshold for hysteresis control - this cushions the
sound as the limiter attacks and releases.
2. The Limiter maintains the output signal between the CUSH and MAX thresholds. As the digital input
signal level changes, the level-controlled output may not always be the same but will always fall within
the thresholds.
32
Referenced Control
Register Location
Limiter Rates .......................
Limiter Thresholds
LIMSRDIS ...........................
Master Volume Control........
“Limiter Release Rate” on page 62, “Limiter Attack Rate” on page 62
“Limiter Maximum Threshold” on page 60, “Limiter Cushion Threshold” on page 61
“Limiter Soft Ramp Disable” on page 66
“Master Volume Control: MSTA (Address 18h) & MSTB (Address 19h)” on page 57
DS773F1
CS42L55
Input
MAX[2:0]
Limiter
ATTACK/RELEASE SOUND
CUSHION
Volume
Output
(after Limiter)
CUSH[2:0]
MAX[2:0]
ARATE[5:0]
RRATE[5:0]
Figure 19. Peak Detect & Limiter
DS773F1
33
CS42L55
4.8
Serial Port Clocking
The CODEC serial audio interface port operates either as a slave or master. It accepts externally generated
clocks in Slave Mode (M/S = ‘0’b) and will generate synchronous clocks derived from an input master clock
(MCLK) in Master Mode (M/S = ‘1’b). Refer to the table below for the required setting in register 05h associated with a given MCLK and sample rate.
Referenced Control
Register Location
Register 05h ........................ “Clocking Control 2 (Address 05h)” on page 44
M/S ...................................... “Master/Slave Mode” on page 43
MCLK (MHz)
12.0000
(MCLKDIV2=’1’b)
6.0000
(MCLKDIV2=’0’b)
4.9
LRCK (kHz) Clock Ratio SPEED[1:0] 32kGROUP RATIO[1:0] Register 05h
8.0000
1500
11
1
01
0x1D
11.0294
1088
11
0
11
0x1B
12.0000
1000
11
0
01
0x19
16.0000
750
10
1
01
0x15
22.0588
544
10
0
11
0x13
24.0000
500
10
0
01
0x11
32.0000
375
01
1
01
0x0D
44.1180
272
01
0
11
0x0B
48.0000
250
01
0
01
0x09
8.0000
750
11
1
01
0x1D
11.0294
544
11
0
11
0x1B
12.0000
500
11
0
01
0x19
16.0000
375
10
1
01
0x15
22.0588
272
10
0
11
0x13
24.0000
250
10
0
01
0x11
32.0000
187.5
01
1
01
0x0D
44.1180
136
01
0
11
0x0B
48.0000
125
01
0
01
0x09
Digital Interface Format
The serial port operates in the I²S digital interface formats with varying bit depths up to 24 into the DAC and
a fixed depth of 24 out the ADC. Data is clocked out of the ADC on an internally delayed version of the rising
SCLK edge. This provides more setup time for capturing data on the rising edge of SCLK. Data is clocked
into the DAC on the rising edge of SCLK.
LRCK
L eft C h a n n el
R ig ht C h a n n el
SCLK
SDIN
SDOUT
M SB
LS B
MSB
AOUTA / AINxA
LSB
MSB
AOUTB / AINxB
Figure 20. I²S Format
4.10
Initialization
The CODEC enters a Power-Down state upon initial power-up. The interpolation and decimation filters, delta-sigma modulators and control port registers are reset. The charge pump, LDO, internal voltage reference
and switched-capacitor low-pass filters are powered down. The device will remain in the Power-Down state
until the RESET pin is brought high. The control port is accessible once RESET is high and the desired register settings can be loaded per the interface descriptions in the “Register Description” on page 42.
34
DS773F1
CS42L55
After the PDN bit is released and MCLK is valid, the quiescent voltage, VQ, and the internal voltage reference, FILT+, will begin powering up to normal operation. The charge pump slowly powers up and charges
the capacitors. Power is then applied to the headphone amplifiers and switched-capacitor filters, and the analog/digital outputs enter a muted state. MCLK occurrences are counted over one LRCK period to determine
a valid MCLK/LRCK ratio and normal operation begins.
4.11
Recommended DAC to HP or Line Power-Up Sequence (Playback)
1. Hold RESET low until the power supplies are stable; no specific power supply sequencing is required.
RESET should be held low for a minimum of 1 ms after power supplies are stable.
2. Apply MCLK (LRCK, SCLK and SDIN may be applied at any time) at the appropriate frequency.
3. Bring RESET high.
4. Wait a minimum of 500 ns before writing to the control port.
5. The default state of the master power down bit, PDN, is ‘1’b. Load the following register settings while
keeping the PDN bit set to ‘1’b.
6. Load the required register settings detailed in 4.13 “Required Initialization Settings” on page 37.
7. Configure the headphone and line power down controls for ON, OFF, or HPDETECT operation.
Register Controls: PDN_HPx[1:0], PDN_LINx[1:0]
8. Configure the serial port I/O control for master or slave operation.
Register Controls: M/S
9. Configure the master clock (MCLK) and bit clock (SCLK) I/O control as desired. Refer to 4.8 “Serial Port
Clocking” on page 34 for the required configuration for a given master clock.
Register Controls: MCLKDIV2, SCK=MCK
10. Configure the sample rate (LRCK) controls for the desired sample rate. Refer to 4.8 “Serial Port Clocking” on page 34 for the required configuration for a given sample rate.
Register Controls: See Register 05h
11. The default state of the DSP engine’s power down bit, PDN_DSP, is ‘0’b. It is not necessary to power
down the DSP before changing the various DSP functions. The DSP may be powered down for additional power savings.
12. To minimize pops on the headphone or line amplifier, each respective analog volume control must first
be muted and set to maximum attenuation.
Register Controls: HPxMUTE, LINExMUTE, HPxVOL[6:0], LINExVOL[6:0]
13. After muting the headphone or line amplifiers, set the PDN bit to ‘0’b.
14. Wait 75 ms for the headphone or line amplifier to power up.
15. Un-mute and ramp the volume for the headphone or line amplifiers to the desired level.
16. Bring RESET low if the analog or digital supplies drop below the recommended operating condition to
prevent power glitch related issues.
Power Up Sequence
Register Location
Step 5, 13 ............................
Step 7 ..................................
Steps 8-9 .............................
Step 10 ................................
Step 11 ................................
Step 12a,15a .......................
Step 12b,15b .......................
“Power Down” on page 42
“Power Control 2 (Address 03h)” on page 43
“Clocking Control 1 (Address 04h)” on page 43
“Clocking Control 2 (Address 05h)” on page 44
“Power Down DSP” on page 50
“Headphone Channel x Mute” on page 57, “Line Channel x Mute” on page 58
“Headphone Volume Control” on page 57, “Line Volume Control” on page 58
DS773F1
35
CS42L55
4.11.1
Recommended Power-Down Sequence
1. To minimize pops on the headphone or line amplifier, each respective analog volume control must
first be muted and set to maximum attenuation.
Register Controls: HPxMUTE, LINExMUTE, HPxVOL[6:0], LINExVOL[6:0]
2. Set the PDN bit to ‘1’b.
3. Bring RESET low.
Power Down Sequence
Register Location
Step 1a ................................ “Headphone Volume Control” on page 57, “Line Volume Control” on page 58
Step 1b ................................ “Headphone Channel x Mute” on page 57, “Line Channel x Mute” on page 58
Step 2 .................................. “Power Down” on page 42
4.12
Recommended PGA to HP or Line Power-Up Sequence (Analog Passthrough)
1. Hold RESET low until the power supplies are stable; no specific power supply sequencing is required.
RESET should be held low for a minimum of 1 ms after power supplies are stable.
2. Apply MCLK at the appropriate frequency.
3. Bring RESET high.
4. Wait a minimum of 500 ns before writing to the control port.
5. The default state of the master power down bit, PDN, is ‘1’b. Load the following register settings while
keeping the PDN bit set to ‘1’b.
6. Load the required register settings detailed in 4.13 “Required Initialization Settings” on page 37.
7. Configure the headphone and line power down controls for ON, OFF, or HPDETECT operation.
Register Controls: PDN_HPx[1:0], PDN_LINx[1:0]
8. Configure the HP and/or Line amplifiers to receive the analog output from the PGA.
Register Controls: LINExMUX, HPxMUX
9. Power down the DSP engine.
Register Controls: PDN_DSP
10. To minimize pops on the headphone or line amplifier, each respective analog volume control must first
be muted and set to maximum attenuation.
Register Controls: HPxMUTE, LINExMUTE, HPxVOL[6:0], LINExVOL[6:0]
11. After muting the headphone and/or line amplifiers, set the PDN bit to ‘0’b.
12. Wait 75 ms for the headphone or line amplifier to power up.
13. Un-mute and ramp the volume for the headphone or line amplifiers to the desired level.
14. Bring RESET low if the analog or digital supplies drop below the recommended operating condition to
prevent power glitch related issues.
Power Up Sequence
Register Location
Step 5, 11 ............................
Step 7 ..................................
Steps 8 ................................
Step 9 ..................................
Step 10a,13a .......................
Step 10b,13b .......................
“Power Down” on page 42
“Power Control 2 (Address 03h)” on page 43
“ADC, Line, HP MUX (Address 08h)” on page 46
“Power Down DSP” on page 50
“Headphone Channel x Mute” on page 57, “Line Channel x Mute” on page 58
“Headphone Volume Control” on page 57, “Line Volume Control” on page 58
4.12.1 Recommended Power-Down Sequence
1. To minimize pops on the headphone and/or line amplifier, each respective analog volume control
must first be muted and set to maximum attenuation.
Register Controls: HPxMUTE, LINExMUTE, HPxVOL[6:0], LINExVOL[6:0]
2. During power down, the CODEC attempts to power down on a zero cross transition of the analog
36
DS773F1
CS42L55
signal. The zero cross timeout, however, is dependent on the serial port clock domain. Thus, to fully
power down, the ADC must briefly power up to enable the zero cross state machine. Follow the
remaining steps below to complete the power down sequence.
3. Set bit 5 in register 07h to ‘1’b. This implements a high impedance state on the serial output ports to
avoid possible contention in step 4 if clocks are already applied to the serial port.
4. Configure the serial port I/O control for master operation.
Register Controls: M/S
5. Power up either one of the ADC channels.
Register Controls: PDN_ADCx
6. Wait 100 ms.
7. Set the PDN bit to ‘1’b. The CODEC is completely powered down in a low power state.
8. To achieve the lowest operating quiescent current, bring RESET low. All control port registers will be
reset to their default state.
4.13
Power Down Sequence
Register Location
Step 1a ................................
Step 1b ................................
Step 3 ..................................
Step 4 ..................................
Step 5 ..................................
Step 7 ..................................
“Headphone Volume Control” on page 57, “Line Volume Control” on page 58
“Headphone Channel x Mute” on page 57, “Line Channel x Mute” on page 58
“Miscellaneous Control (Address 07h)” on page 45
“Master/Slave Mode” on page 43
“Power Down ADC x” on page 42
“Power Down” on page 42
Required Initialization Settings
The current required for various sections in the CODEC must be reduced using the control port compensation strategy shown below. All performance and power consumption measurements were taken with the
Control Port Compensation shown below.
Control Port
Compensation
VA < 2.1 V
VA > 2.1 V
1.
Write 0x99 to register 0x00.
1.
Write 0x99 to register 0x00.
Current adjustments are made in
the following sections:
1. [Enable test register access.]
2.
Write 0x30 to register 0x2E.
2.
Write 0x30 to register 0x2E.
2.
Digital Regulator.
3.
Write 0x07 to register 0x32.
3.
Write 0x07 to register 0x32.
3.
ADC.
4.
Write 0xFF to register 0x33.
4.
Write 0xFD to register 0x33.
4.
ADC.
5.
Write 0xF8 to register 0x34.
5.
Write 0xF8 to register 0x34.
5.
ADC.
6.
Write 0xDC to register 0x35.
6.
Write 0xDC to register 0x35.
6.
Zero Cross Detector.
7.
Write 0xFC to register 0x36.
7.
Write 0xF8 to register 0x36.
7.
PGA.
8.
Write 0xAC to register 0x37.
8.
Write 0x6C to register 0x37.
8.
PGA.
9.
Write 0xF8 to register 0x3A.
9.
Write 0xF8 to register 0x3A.
9.
DAC.
10.
Write 0xD3 to register 0x3C. 10.
Write 0xD3 to register 0x3C. 10.
Headphone Amplifier.
11.
Write 0x23 to register 0x3D. 11.
Write 0x23 to register 0x3D. 11.
Headphone & Line Amplifier.
12.
Write 0x81 to register 0x3E. 12.
Write 0x81 to register 0x3E. 12.
Line Amplifier.
13.
Write 0x46 to register 0x3F.
13.
Write 0x46 to register 0x3F.
13.
PGA & ADC.
14.
Write 0x00 to register 0x00.
14.
Write 0x00 to register 0x00.
14.
[Disable test register access.].
DS773F1
37
CS42L55
4.14
Control Port Operation
The control port is used to access the registers allowing the CODEC to be configured for the desired operational modes and formats. The operation of the control port may be completely asynchronous with respect
to the audio sample rates. However, to avoid potential interference problems, the control port pins should
remain static if no operation is required.
The control port operates using an I²C interface with the CODEC acting as a slave device.
4.14.1 I²C Control
SDA is a bidirectional data line. Data is clocked into and out of the part by the clock, SCL. The signal timings for a read and write cycle are shown in Figure 21 and Figure 22. A Start condition is defined as a
falling transition of SDA while the clock is high. A Stop condition is defined as a rising transition of SDA
while the clock is high. All other transitions of SDA occur while the clock is low. The first byte sent to the
CS42L55 after a Start condition consists of a 7-bit chip address field and a R/W bit (high for a read, low
for a write).
The upper 7 bits of the address field are fixed at 1001010. To communicate with the CS42L55, the chip
address field, which is the first byte sent to the CS42L55, should match 1001010. The eighth bit of the
address is the R/W bit. If the operation is a write, the next byte is the Memory Address Pointer (MAP); the
MAP selects the register to be read or written. If the operation is a read, the contents of the register pointed
to by the MAP will be output. Setting the auto-increment bit in MAP allows successive reads or writes of
consecutive registers. Each byte is separated by an acknowledge bit. The ACK bit is output from the
CS42L55 after each input byte is read and is input to the CS42L55 from the microcontroller after each
transmitted byte.
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18
24 25 26 27 28
19
SCL
CHIP ADDRESS (WRITE)
1
SDA
0
0
1
0
1
0
MAP BYTE
0
INCR
6
5
4
3
DATA +1
DATA
2
1
0
ACK
7
6
1
ACK
0
7
6
1
DATA +n
0
7
6
1
0
ACK
ACK
STOP
START
Figure 21. Control Port Timing, I²C Write
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16
17 18
19
20 21 22 23 24 25 26 27 28
SCL
CHIP ADDRESS (WRITE)
SDA
1
0
0
1
0 1 0 0
INCR
ACK
START
STOP
MAP BYTE
6
5
4
3
2
1
CHIP ADDRESS (READ)
1
0
0
0
1
0
DATA
1 0 1
ACK
START
7
ACK
DATA +1
0
7
ACK
0
DATA + n
7
0
NO
ACK
STOP
Figure 22. Control Port Timing, I²C Read
Since the read operation cannot set the MAP, an aborted write operation is used as a preamble. As shown
in Figure 22, the write operation is aborted (after the acknowledge for the MAP byte) by sending a stop
condition. The following pseudocode illustrates an aborted write operation followed by a read operation.
Send start condition.
Send 10010100 (chip address & write operation).
Receive acknowledge bit.
Send MAP byte, auto-increment off.
38
DS773F1
CS42L55
Receive acknowledge bit.
Send stop condition, aborting write.
Send start condition.
Send 10010101 (chip address & read operation).
Receive acknowledge bit.
Receive byte, contents of selected register.
Send acknowledge bit.
Send stop condition.
Setting the auto-increment bit in the MAP allows successive reads or writes of consecutive registers. Each
byte is separated by an acknowledge bit.
4.14.2 Memory Address Pointer (MAP)
The MAP byte comes after the address byte and selects the register to be read or written. Refer to the
pseudo code above for implementation details.
4.14.2.1 Map Increment (INCR)
The device has MAP auto-increment capability enabled by the INCR bit (the MSB) of the MAP. If INCR is
set to 0, MAP will stay constant for successive I²C writes or reads. If INCR is set to 1, MAP will auto-increment after each byte is read or written, allowing block reads or writes of successive registers.
DS773F1
39
CS42L55
5. REGISTER QUICK REFERENCE
(Default values are shown below the bit names)
I²C Address: 1001010[R/W] - 10010100 = 0x94(Write); 10010101 = 0x95(Read)
Adr.
01h
p 42
02h
p 42
03h
p 43
04h
p 43
05h
p 44
06h
p 45
07h
p 45
08h
p 46
09h
p 47
0Ah
p 48
0Bh
p 49
0Ch
p 49
0Dh
p 50
0Eh
p 50
0Fh
p 50
10h
p 51
11h
p 51
12h
p 52
13h
p 52
14h
p 53
15h
p 54
16h
p 55
17h
p 56
18h
p 57
19h
p 57
1Ah
p 57
40
Function
ID
(Read Only)
7
Reserved
x
Reserved
Power Ctl 1
0
PDN_HPB1
Power Ctl 2
1
Reserved
Clocking Ctl 1
0
Reserved
Clocking Ctl 2
0
Reserved
Class H Power
0
Ctl
DIGMUX
Misc. Ctl
0
ADCBMUX1
ADC, Line, HP
0
MUX
HPFB
HPF Ctl
1
ADCB=A
Misc. ADC Ctl
0
BOOSTA
PGAA Vol, MUX
0
BOOSTB
PGAB Vol, MUX
0
ADCA Attenua- ADCAATT7
0
tor
ADCB Attenua- ADCBATT7
0
tor
PDN_DSP
Playback Ctl 1
0
AMIXAMUTE
ADCMIXA Vol
1
AMIXBMUTE
ADCMIXB Vol
1
PMIXAMUTE
PCMMIXA Vol
0
PMIXBMUTE
PCMMIXB Vol
0
FREQ3
BEEP Freq,
0
On Time
OFFTIME2
BEEP Vol,
0
Off Time
BEEP1
BEEP,
0
Tone Cfg.
TREB3
Tone Ctl
1
MSTAVOL7
Master A Vol
0
MSTBVOL7
Master B Vol
0
HPAMUTE
Headphone A
0
Volume
6
5
4
3
2
1
0
Reserved
Reserved
Reserved
Reserved
REVID2
REVID1
REVID0
x
x
x
x
x
x
x
Reserved
Reserved
Reserved
PDN_CHRG PDN_ADCB PDN_ADCA
PDN
0
0
0
1
1
1
1
PDN_HPB0 PDN_HPA1
PDN_HPA0 PDN_LINB1 PDN_LINB0 PDN_LINA1 PDN_LINA0
1
1
1
1
1
1
1
Reserved
M/S
INV_SCLK SCK=MCK1 SCK=MCK0 MCLKDIV2
MCLKDIS
0
0
0
0
0
0
0
Reserved
Reserved
SPEED1
SPEED0
32kGROUP
RATIO1
RATIO0
0
0
0
1
0
1
1
Reserved
ADPTPWR1 ADPTPWR0
Reserved
Reserved
Reserved
Reserved
0
0
0
0
0
0
0
Reserved
Reserved
Reserved
ANLGZC
DIGSFT
Reserved
FREEZE
0
0
0
1
1
0
0
ADCBMUX0 ADCAMUX1 ADCAMUX0 LINEBMUX LINEAMUX
HPBMUX
HPAMUX
0
0
0
0
0
0
0
HPFRZB
HPFA
HPFRZA
HPFB_CF1 HPFB_CF0 HPFA_CF1
HPFA_CF0
0
1
0
0
0
0
0
PGAB=A
DIGSUM1
DIGSUM0
INV_ADCB INV_ADCA ADCBMUTE ADCAMUTE
0
0
0
0
0
0
0
PGAAMUX
PGAAVOL5 PGAAVOL4 PGAAVOL3 PGAAVOL2 PGAAVOL1 PGAAVOL0
0
0
0
0
0
0
0
PGABMUX PGABVOL5 PGABVOL4 PGABVOL3 PGABVOL2 PGABVOL1 PGABVOL0
0
0
0
0
0
0
0
ADCAATT6 ADCAATT5
ADCAATT4 ADCAATT3 ADCAATT2 ADCAATT1 ADCAATT0
0
0
0
0
0
0
0
ADCBATT6 ADCBATT5
ADCBATT4 ADCBATT3 ADCBATT2 ADCBATT1 ADCBATT0
0
0
0
0
0
0
0
DEEMPH
Reserved
PLYBCKB=A INV_PCMB INV_PCMA MSTBMUTE MSTAMUTE
0
0
0
0
0
0
0
AMIXAVOL6 AMIXAVOL5 AMIXAVOL4 AMIXAVOL3 AMIXAVOL2 AMIXAVOL1 AMIXAVOL0
0
0
0
0
0
0
0
AMIXBVOL6 AMIXBVOL5 AMIXBVOL4 AMIXBVOL3 AMIXBVOL2 AMIXBVOL1 AMIXBVOL0
0
0
0
0
0
0
0
PMIXAVOL6 PMIXAVOL5 PMIXAVOL4 PMIXAVOL3 PMIXAVOL2 PMIXAVOL1 PMIXAVOL0
0
0
0
0
0
0
0
PMIXBVOL6 PMIXBVOL5 PMIXBVOL4 PMIXBVOL3 PMIXBVOL2 PMIXBVOL1 PMIXBVOL0
0
0
0
0
0
0
0
FREQ2
FREQ1
FREQ0
ONTIME3
ONTIME2
ONTIME1
ONTIME0
0
0
0
0
0
0
0
OFFTIME1
OFFTIME0
BPVOL4
BPVOL3
BPVOL2
BPVOL1
BPVOL0
0
0
0
0
0
0
0
BEEP0
Reserved
TREB_CF1
TREB_CF0 BASS_CF1 BASS_CF0
TC_EN
0
0
0
0
0
0
0
TREB2
TREB1
TREB0
BASS3
BASS2
BASS1
BASS0
0
0
0
1
0
0
0
MSTAVOL6 MSTAVOL5
MSTAVOL4 MSTAVOL3 MSTAVOL2 MSTAVOL1 MSTAVOL0
0
0
0
0
0
0
0
MSTBVOL6 MSTBVOL5 MSTBVOL4 MSTBVOL3 MSTBVOL2 MSTBVOL1 MSTBVOL0
0
0
0
0
0
0
0
HPAVOL6
HPAVOL5
HPAVOL4
HPAVOL3
HPAVOL2
HPAVOL1
HPAVOL0
0
0
0
0
0
0
0
DS773F1
CS42L55
I²C Address: 1001010[R/W] - 10010100 = 0x94(Write); 10010101 = 0x95(Read)
Adr.
1Bh
p 57
1Ch
p 58
1Dh
p 58
1Eh
p 59
1Fh
p 59
20h
p 60
21h
p 60
22h
p 61
23h
p 62
24h
p 62
25h
p 63
26h
p 64
27h
p 64
28h
p 65
29h
p 66
2Ah
p 67
Function
Headphone B
Volume
Line A
Volume
Line B
Volume
Analog Input
Advisory Vol
Digital Input
Advisory Vol
Channel Mixer
& Swap
Limit Thresholds
Limit Ctl,
Release Rate
Limiter Attack
Rate
ALC Enable,
Attack Rate
ALC Release
Rate
7
6
5
4
3
HPBMUTE
HPBVOL6
HPBVOL5
HPBVOL4
HPBVOL3
0
0
0
0
0
LINEAMUTE LINEAVOL6 LINEAVOL5 LINEAVOL4 LINEAVOL3
0
0
0
0
0
LINEBMUTE LINEBVOL6 LINEBVOL5 LINEBVOL4 LINEBVOL3
0
0
0
0
0
AINADV7
AINADV6
AINADV5
AINADV4
AINADV3
0
0
0
0
0
DINADV7
DINADV6
DINADV5
DINADV4
DINADV3
0
0
0
0
0
PCMBSWP1 PCMBSWP0 PCMASWP1 PCMASWP0 ADCBSWP1
0
0
0
0
0
LMAX2
LMAX1
LMAX0
CUSH2
CUSH1
0
0
0
0
0
LIMIT
LIMIT_ALL LIMRRATE5 LIMRRATE4 LIMRRATE3
0
1
1
1
1
Reserved
Reserved
LIMARATE5 LIMARATE4 LIMARATE3
0
0
0
0
0
ALCB
ALCA
ALCARATE5 AALCRATE4 ALCARATE3
0
0
0
0
0
Reserved
Reserved
ALCRRATE5 ALCRRATE4 ALCRRATE3
0
0
1
1
1
ALCMAX2
ALCMAX1
ALCMAX0
ALCMIN2
ALCMIN1
ALC Thresholds
0
0
0
0
0
NGALL
NG
NGBOOST
THRESH2
THRESH1
Noise Gate Ctl
0
0
0
0
0
ALCBSRDIS ALCBZCDIS ALCASRDIS ALCAZCDIS LIMSRDIS
ALC, Limiter
0
0
0
0
0
SFT, ZC Disable
HPDETECT SPCLKERR DSPBOVFL DSPAOVFL MIXBOVFL
Misc. Status
0
0
0
0
0
(Read Only)
Reserved
Reserved
Reserved
Reserved
CHGFREQ3
Charge Pump
0
0
0
0
0
Freq
DS773F1
2
HPBVOL2
0
LINEAVOL2
0
LINEBVOL2
0
AINADV2
0
DINADV2
0
ADCBSWP0
0
CUSH0
0
LIMRRATE2
1
LIMARATE2
0
ALCARATE2
0
ALCRRATE2
1
ALCMIN0
0
THRESH0
0
Reserved
0
MIXAOVFL
0
CHGFREQ2
1
1
HPBVOL1
0
LINEAVOL1
0
LINEBVOL1
0
AINADV1
0
DINADV1
0
ADCASWP1
0
Reserved
0
LIMRRATE1
1
LIMARATE1
0
ALCARATE1
0
ALCRRATE1
1
Reserved
0
NGDELAY1
0
Reserved
0
ADCBOVFL
0
CHGFREQ1
0
0
HPBVOL0
0
LINEAVOL0
0
LINEBVOL0
0
AINADV0
0
DINADV0
0
ADCASWP0
0
Reserved
0
LIMRRATE0
1
LIMARATE0
0
ALCARATE0
0
ALCRRATE0
1
Reserved
0
NGDELAY0
0
Reserved
0
ADCAOVFL
0
CHGFREQ0
1
41
CS42L55
6. REGISTER DESCRIPTION
Except for the chip I.D., revision register, and status register, which are Read Only, all registers are Read/Write. See
the following bit definition tables for bit assignment information. The default state of each bit after a power-up sequence or reset is listed in each bit description. All Reserved registers must maintain their default state.
I²C Address: 1001010[R/W]
6.1
Fab I.D. and Revision Register (Address 01h) (Read Only)
7
6
5
4
3
2
1
0
Reserved
Reserved
Reserved
Reserved
Reserved
REVID2
REVID1
REVID0
6.1.1
Chip Revision (Read Only)
CS42L55 revision level.
6.2
REVID[2:0]
Revision Level
000
A0
001
A1
Power Control 1 (Address 02h)
7
6
5
4
3
2
1
0
Reserved
Reserved
Reserved
Reserved
PDN_CHRG
PDN_ADCB
PDN_ADCA
PDN
6.2.1
Power Down ADC Charge Pump
Configures the power state of the ADC charge pump. For optimal ADC performance and power consumption, set to ‘1’b when VA > 2.1 V and set to ‘0’b when VA < 2.1 V.
6.2.2
PDN_CHRG
ADC Charge Pump Status
0
Powered Up
1
Powered Down
Power Down ADC x
Configures the power state of ADC channel x.
6.2.3
PDN_ADCx
ADC Status
0
Powered Up
1
Powered Down
Power Down
Configures the power state of the entire CODEC.
42
PDN
CODEC Status
0
Powered Up
1
Powered Down
DS773F1
CS42L55
6.3
Power Control 2 (Address 03h)
7
6
5
4
3
2
1
0
PDN_HPB1
PDN_HPB0
PDN_HPA1
PDN_HPA0
PDN_LINB1
PDN_LINB0
PDN_LINA1
PDN_LINA0
6.3.1
Headphone Power Control
Configures how the HPDETECT pin, 29, controls the power for the headphone amplifier.
6.3.2
PDN_HPx[1:0]
Headphone Status
00
Headphone channel is ON when the HPDETECT pin, 29, is LO.
Headphone channel is OFF when the HPDETECT pin, 29, is HI.
01
Headphone channel is ON when the HPDETECT pin, 29, is HI.
Headphone channel is OFF when the HPDETECT pin, 29, is LO.
10
Headphone channel is always ON.
11
Headphone channel is always OFF.
Line Power Control
Configures how the HPDETECT pin, 29, controls the power for the line amplifier.
6.4
PDN_LINx[1:0]
Line Status
00
Line channel is ON when the HPDETECT pin, 29, is LO.
Line channel is OFF when the HPDETECT pin, 29, is HI.
01
Line channel is ON when the HPDETECT pin, 29, is HI.
Line channel is OFF when the HPDETECT pin, 29, is LO.
10
Line channel is always ON.
11
Line channel is always OFF.
Clocking Control 1 (Address 04h)
7
6
5
4
3
2
1
0
Reserved
Reserved
M/S
INV_SCLK
SCK=MCK1
SCK=MCK0
MCLKDIV2
MCLKDIS
6.4.1
Master/Slave Mode
Configures the serial port I/O clocking.
M/S
6.4.2
Serial Port Clocks
0
Slave (Input ONLY)
1
Master (Output ONLY)
Application:
“Serial Port Clocking” on page 34
SCLK Polarity
Configures the polarity of the SCLK signal.
DS773F1
INV_SCLK
SCLK Polarity
0
Not Inverted
1
Inverted
43
CS42L55
6.4.3
SCLK Equals MCLK
Configures the SCLK signal source and speed for master mode.
SCK=MCK[1:0]
6.4.4
Output SCLK
00
Re-timed, bursted signal with minimal speed needed to clock the required data samples
01
Reserved
10
MCLK signal after the MCLK divide (MCLKDIV2) circuit
11
MCLK signal before the MCLK divide (MCLKDIV2) circuit
MCLK Divide By 2
Configures a divide of the input MCLK prior to all internal circuitry.
MCLKDIV2
6.4.5
MCLK signal into CODEC
0
No divide
1
Divided by 2
Application:
“Serial Port Clocking” on page 34
MCLK Disable
Configures the MCLK signal prior to all internal circuitry.
MCLKDIS
MCLK signal into CODEC
0
On
1
Off; Disables the clock tree to save power when the CODEC is powered down.
Note:
6.5
This function should be enabled during power down (PDN=1) ONLY.
Clocking Control 2 (Address 05h)
7
6
5
4
3
2
1
0
Reserved
Reserved
Reserved
SPEED1
SPEED0
32kGROUP
RATIO1
RATIO0
6.5.1
Speed Mode
Configures the speed mode of the CODEC in slave mode and sets the appropriate MCLK divide ratio for
LRCK and SCLK in master mode.
SPEED[1:0]
Serial Port Speed
00
Reserved
01
Single-Speed Mode (SSM)
10
Half-Speed Mode (HSM)
11
Quarter-Speed Mode (QSM)
Application:
“Serial Port Clocking” on page 34
Notes:
1. Slave/Master Mode is determined by the M/S bit in “Master/Slave Mode” on page 43.
2. Certain sample and MCLK frequencies require setting the SPEED[1:0] bits, the 32k_GROUP bit
(“32 kHz Sample Rate Group” on page 45) and the RATIO[1:0] bits (“Internal MCLK/LRCK Ratio” on
page 45). Low sample rates may also affect dynamic range performance in the typical audio band.
Refer to the referenced application for more information.
44
DS773F1
CS42L55
6.5.2
32 kHz Sample Rate Group
Specifies whether or not the input/output sample rate is 8 kHz, 16 kHz or 32 kHz.
32kGROUP
6.5.3
8 kHz, 16 kHz or 32 kHz sample rate?
0
No
1
Yes
Application:
“Serial Port Clocking” on page 34
Internal MCLK/LRCK Ratio
Configures the internal MCLK/LRCK ratio.
RATIO[1:0]
6.6
Internal MCLK Cycles per LRCK
00
Reserved
01
125
10
Reserved
11
136
Application:
“Serial Port Clocking” on page 34
Class H Power Control (Address 06h)
7
6
5
4
3
2
1
0
Reserved
Reserved
ADPTPWR1
ADPTPWR0
Reserved
Reserved
Reserved
Reserved
6.6.1
Adaptive Power Adjustment
Configures how the power to the headphone and line amplifiers adapts to the output signal level.
ADPTPWR[1:0]
6.7
Power Supply
00
Adapted to volume setting; Voltage level is determined by the sum of the relevant volume settings
01
Fixed - Headphone and Line Amp supply = +/-VCP/2
10
Fixed - Headphone and Line Amp supply = +/-VCP
11
Adapted to Signal; Voltage level is dynamically determined by the output signal
Application:
“Class H Amplifier” on page 27
Miscellaneous Control (Address 07h)
7
6
5
4
3
2
1
0
DIGMUX
Reserved
Reserved
Reserved
ANLGZC
DIGSFT
Reserved
FREEZE
6.7.1
Digital MUX
Selects the signal source for the ADC serial port.
DS773F1
DIGMUX
SDOUT Signal Source
0
ADC
1
DSP Mix
45
CS42L55
6.7.2
Analog Zero Cross
Configures when the signal level changes occur for the analog volume controls.
ANLGZCx
Volume Changes
Affected Analog Volume Controls
0
Do not occur on a zero crossing
1
Occur on a zero crossing
PGAx_VOL[5:0] (“PGAx Volume” on page 49)
HPxMUTE (“Headphone Channel x Mute” on page 57)
HPxVOL[6:0] (“Headphone Volume Control” on page 57)
LINExMUTE (“Line Channel x Mute” on page 58)
LINExVOL[6:0] (“Line Volume Control” on page 58)
Note: If the signal does not encounter a zero crossing, the requested volume change will occur after a
timeout period of 1024 sample periods (approximately 10.7 ms at 48 kHz sample rate).
6.7.3
Digital Soft Ramp
Configures an incremental volume ramp from the current level to the new level at the specified rate.
6.7.4
DIGSFT
Volume Changes
Affected Digital Volume Controls
0
Do not occur with a soft ramp
1
Occur with a soft ramp
ADCxMUTE (“ADC Mute” on page 48)
ADCxATT[7:0] (“ADCx Volume” on page 50)
AMIXxMUTE (“ADC Mixer Channel x Mute” on page 51)
AMIXxVOL[6:0] (“ADC Mixer Channel x Volume” on page 51)
PMIXxMUTE (“PCM Mixer Channel x Mute” on page 52)
PMIXxVOL[6:0] (“PCM Mixer Channel x Volume” on page 52)
MSTxMUTE (“Master Playback Mute” on page 51)
MSTxVOL[7:0] (“Master Volume Control” on page 57)
Ramp Rate:
1/8 dB every LRCK cycle
Freeze Registers
Configures a hold on all register settings.
6.8
FREEZE
Control Port Status
0
Register changes take effect immediately
1
Modifications may be made to all control port registers without the changes taking effect until after the
FREEZE is disabled.
ADC, Line, HP MUX (Address 08h)
7
6
5
4
3
2
1
0
ADCBMUX1
ADCBMUX0
ADCAMUX1
ADCAMUX0
LINEBMUX
LINEAMUX
HPBMUX
HPAMUX
6.8.1
ADC x Input Select
Selects the specified analog input signal into ADCx.
ADCxMUX[1:0]
Selected Input to ADCx
00
PGAx - Use PGAxMUX bit (“PGA x Input Select” on page 49) to select an input channel.
01
AIN1x; PGA is bypassed
10
AIN2x; PGA is bypassed
11
Reserved
Note:
46
Pseudo-differential inputs are not available when the PGA is bypassed.
DS773F1
CS42L55
6.8.2
Line Input Select
Selects the specified analog input signal into line amplifier x.
LINExMUX
DACx
1
PGAx - Use PGAxMUX bit (“PGA x Input Select” on page 49) to select an input channel.
Note:
6.8.3
Selected Input to Line Amplifier Ch. x
0
The PGA path must not be selected while the Line Amplifier is powered down.
Headphone Input Select
Selects the specified analog input signal into headphone amplifier x.
HPxMUX
DACx
1
PGAx - Use PGAxMUX bit (“PGA x Input Select” on page 49) to select an input channel.
Note:
6.9
Selected Input to HP Amplifier Ch. x
0
The PGA path must not be selected while the Headphone Amplifier is powered down.
HPF Control (Address 09h)
7
6
5
4
3
2
1
0
HPFB
HPFRZB
HPFA
HPFRZA
HPFB_CF1
HPFB_CF0
HPFA_CF1
HPFA_CF0
6.9.1
ADCx High-Pass Filter
Configures the internal high-pass filter after ADCx.
6.9.2
HPFx
High Pass Filter Status
0
Disabled
1
Enabled
ADCx High-Pass Filter Freeze
Configures the high pass filter’s digital DC subtraction and/or calibration after ADCx.
HPFRZx
6.9.3
High Pass Filter Digital Subtraction
0
Continuous DC Subtraction
1
Frozen DC Subtraction
HPF x Corner Frequency
Sets the corner frequency (-3 dB point) for the internal High-Pass Filter (HPF).
DS773F1
HPFx_CF[1:0]
HPF Corner Frequency Setting (Fs=48 kHz)
00
1.8 Hz
01
119 Hz
10
236 Hz
11
464 Hz
47
CS42L55
6.10
Misc. ADC Control (Address 0Ah)
7
6
5
4
3
2
1
0
ADCB=A
PGAB=A
DIGSUM1
DIGSUM0
INV_ADCB
INV_ADCA
ADCBMUTE
ADCAMUTE
6.10.1 ADC Channel B=A
Configures independent or ganged volume control of the ADC and the ALC.
ADCB=A
Single Volume Control
0
Disabled
1
Enabled
6.10.2 PGA Channel B=A
Configures independent or ganged volume control of the PGA.
PGAB=A
Single Volume Control
0
Disabled
1
Enabled
6.10.3 Digital Sum
Configures a mix/swap of ADCA and ADCB.
DIGSUM[1:0]
Serial Output Signal
Left Channel
Right Channel
00
ADCA
ADCB
01
(ADCA + ADCB)/2
(ADCA + ADCB)/2
10
(ADCA - ADCB)/2
(ADCA - ADCB)/2
11
ADCB
ADCA
6.10.4 Invert ADC Signal Polarity
Configures the polarity of the ADC signal.
INV_ADCx
ADC Signal Polarity
0
Not Inverted
1
Inverted
6.10.5 ADC Mute
Configures a digital mute on ADC channel x.
ADCxMUTE
48
ADC Mute
0
Not muted.
1
Muted
DS773F1
CS42L55
6.11
PGA x MUX, Volume:
PGA A (Address 0Bh) & PGA B (Address 0Ch)
7
6
5
4
3
2
1
0
BOOSTx
PGAxMUX
PGAxVOL5
PGAxVOL4
PGAxVOL3
PGAxVOL2
PGAxVOL1
PGAxVOL0
6.11.1 Boostx
Configures a +20 dB boost on channel x.
6.11.2
BOOSTx
+20 dB Boost
0
No boost applied
1
+20 dB boost applied
PGA x Input Select
Selects the specified analog input signal into PGA channel x.
PGAxMUX
Selected Input to PGAx
0
AIN1x
1
AIN2x
Note: For pseudo-differential inputs, the CODEC automatically chooses the respective pseudo-ground
(AIN1REF or AIN2REF) for each input selection.
6.11.3
PGAx Volume
Sets the volume/gain of the Programmable Gain Amplifier (PGA).
PGAxVOL[5:0]
Volume
01 1111
12 dB
...
...
01 1000
12 dB
...
...
00 0001
+0.5 dB
00 0000
0 dB
11 1111
-0.5 dB
...
...
11 0100
-6.0 dB
...
...
10 0000
-6.0 dB
Step Size:
0.5 dB
Notes:
1. Refer to Figure 23 and Figure 24 on page 69 for differential and integral nonlinearity (DNL and INL).
DS773F1
49
CS42L55
6.12
ADCx Attenuator Control:
ADCAATT (Address 0Dh) & ADCBATT (Address 0Eh)
7
6
5
4
3
2
1
0
ADCxATT7
ADCxATT6
ADCxATT5
ADCxATT4
ADCxATT3
ADCxATT2
ADCxATT1
ADCxATT0
6.12.1 ADCx Volume
Sets the volume of the ADC signal.
6.13
ADCxATT[7:0]
Volume
0111 1111
0 dB
...
...
0000 0000
0 dB
1111 1111
-1.0 dB
1111 1110
-2.0 dB
...
...
1010 0000
-96.0 dB
...
...
1000 0000
-96.0 dB
Step Size:
1.0 dB
Playback Control 1 (Address 0Fh)
7
6
5
4
3
2
1
0
PDN_DSP
DEEMPH
Reserved
PLYBCKB=A
INV_PCMB
INV_PCMA
MSTBMUTE
MSTAMUTE
6.13.1 Power Down DSP
Configures the power state of the DSP Engine.
PDNDSP
DSP Status
DSP Engine Controls/Blocks
0
Powered Up
1
Powered Down
AMIXxMUTE (“ADC Mixer Channel x Mute” on page 51)
AMIXxVOL[6:0] (“ADC Mixer Channel x Volume” on page 51)
PMIXxMUTE (“PCM Mixer Channel x Mute” on page 52)
PMIXxVOL[6:0] (“PCM Mixer Channel x Volume” on page 52)
Beep Generator, Tone Control, De-Emphasis
6.13.2 HP/Line De-Emphasis
Configures a 15μs/50μs digital de-emphasis filter response on the headphone and line outputs.
DEEMPH
De-Emphasis Status
0
Diabled
1
Enabled
6.13.3 Playback Channels B=A
Configures independent or ganged volume control of all playback channels.
PLYBCKB=A
Single Volume Control for all Playback Channels
0
Disabled; Independent channel control.
1
Enabled; Ganged channel control. Channel A volume control controls channel B volume.
Note: This function does not affect the AMIXBMUTE, PMIXBMUTE or MSTBMUTE control. When muting channel A in a ganged scenario, the MUTEB must also be enabled. Muting channel A without muting
channel B in a ganged scenario may cause clipping on channel B.
50
DS773F1
CS42L55
6.13.4 Invert PCM Signal Polarity
Configures the polarity of the digital input signal.
INV_PCMx
PCM Signal Polarity
0
Not Inverted
1
Inverted
6.13.5 Master Playback Mute
Configures a digital mute on the master volume control for channel x.
MSTxMUTE
6.14
Master Mute
0
Not muted.
1
Muted
ADCx Mixer Volume:
ADCA (Address 10h) & ADCB (Address 11h)
7
6
5
4
3
2
1
0
AMIXxMUTE
AMIXxVOL6
AMIXxVOL5
AMIXxVOL4
AMIXxVOL3
AMIXxVOL2
AMIXxVOL1
AMIXxVOL0
6.14.1 ADC Mixer Channel x Mute
Configures a digital mute on the ADC mix in the DSP Engine.
AMIXxMUTE
ADC Mixer Mute
0
Disabled
1
Enabled
6.14.2 ADC Mixer Channel x Volume
Sets the volume/gain of the ADC mix in the DSP Engine.
DS773F1
AMIXxVOL[6:0]
Volume
001 1000
+12.0 dB
...
...
000 0001
+0.5 dB
000 0000
0 dB
111 1111
-0.5 dB
...
...
001 1001
-51.5 dB
Step Size:
0.5 dB
51
CS42L55
6.15
PCMx Mixer Volume:
PCMA (Address 12h) & PCMB (Address 13h)
7
6
5
4
3
2
1
0
PMIXxMUTE
PMIXxVOL6
PMIXxVOL5
PMIXxVOL4
PMIXxVOL3
PMIXxVOL2
PMIXxVOL1
PMIXxVOL0
6.15.1 PCM Mixer Channel x Mute
Configures a digital mute on the PCM mix from the serial data input (SDIN) to the DSP Engine.
PMIXxMUTE
PCM Mixer Mute
0
Disabled
1
Enabled
6.15.2 PCM Mixer Channel x Volume
Sets the volume/gain of the PCM mix from the serial data input (SDIN) to the DSP Engine.
52
PMIXxVOL[6:0]
Volume
001 1000
+12.0 dB
...
...
000 0001
+0.5 dB
000 0000
0 dB
111 1111
-0.5 dB
...
...
001 1001
-51.5 dB
Step Size:
0.5 dB
DS773F1
CS42L55
6.16
Beep Frequency & On Time (Address 14h)
7
6
5
4
3
2
1
0
FREQ3
FREQ2
FREQ1
FREQ0
ONTIME3
ONTIME2
ONTIME1
ONTIME0
6.16.1 Beep Frequency
Sets the frequency of the beep signal.
FREQ[3:0]
Frequency (Fs = 12, 24 or 48 kHz)
0000
254.76 Hz
0001
509.51 Hz
0010
571.65 Hz
0011
651.04 Hz
0100
689.34 Hz
0101
756.04 Hz
0110
869.45 Hz
0111
976.56 Hz
1000
1019.02 Hz
1001
1171.88 Hz
1010
1302.08 Hz
1011
1378.67 Hz
1100
1562.50 Hz
1101
1674.11 Hz
1110
1953.13 Hz
1111
2130.68 Hz
Application:
“Beep Generator” on page 31
Notes:
1. This setting must not change when BEEP is enabled.
2. Beep frequency will scale directly with sample rate, Fs, but is fixed at the nominal Fs within each
speed mode.
DS773F1
53
CS42L55
6.16.2 Beep On Time
Sets the on duration of the beep signal.
ONTIME[3:0]
On Time (Fs = 12, 24 or 48 kHz)
0000
~86 ms
0001
~430 ms
0010
~780 ms
0011
~1.20 s
0100
~1.50 s
0101
~1.80 s
0110
~2.20 s
0111
~2.50 s
1000
~2.80 s
1001
~3.20 s
1010
~3.50 s
1011
~3.80 s
1100
~4.20 s
1101
~4.50 s
1110
~4.80 s
1111
~5.20 s
Application:
“Beep Generator” on page 31
Notes:
1. This setting must not change when BEEP is enabled.
2. Beep on time will scale inversely with sample rate, Fs, but is fixed at the nominal Fs within each speed
mode.
6.17
Beep Volume & Off Time (Address 15h)
7
6
5
4
3
2
1
0
OFFTIME2
OFFTIME1
OFFTIME0
BPVOL4
BPVOL3
BPVOL2
BPVOL1
BPVOL0
6.17.1 Beep Off Time
Sets the off duration of the beep signal.
OFFTIME[2:0]
Off Time (Fs = 12, 24 or 48 kHz)
000
~1.23 s
001
~2.58 s
010
~3.90 s
011
~5.20 s
100
~6.60 s
101
~8.05 s
110
~9.35 s
111
~10.80 s
Application:
“Beep Generator” on page 31
Notes:
1. This setting must not change when BEEP and/or REPEAT is enabled.
2. Beep off time will scale inversely with sample rate, Fs, but is fixed at the nominal Fs within each speed
mode.
54
DS773F1
CS42L55
6.17.2 Beep Volume
Sets the volume of the beep signal.
BPVOL[4:0]
Gain
00110
+12.0 dB
···
···
00000
0 dB
11111
-2 dB
11110
-4 dB
···
···
00111
-50 dB
Step Size:
2 dB
Application:
“Beep Generator” on page 31
Note:
6.18
This setting must not change when BEEP is enabled.
Beep & Tone Configuration (Address 16h)
7
6
5
4
3
2
1
0
BEEP1
BEEP0
Reserved
TREBCF1
TREBCF0
BASSCF1
BASSCF0
TCEN
6.18.1 Beep Configuration
Configures a beep mixed with the HP and Line output.
BEEP[1:0]
Beep Occurrence
00
Off
01
Single
10
Multiple
11
Continuous
Application:
“Beep Generator” on page 31
Notes:
1. When used in analog pass through mode, the output alternates between the signal from the PGA and
the beep signal. The beep signal does not mix with the analog signal from the PGA.
2. Re-engaging the beep before it has completed its initial cycle will cause the beep signal to remain ON
for the maximum ONTIME duration.
6.18.2 Treble Corner Frequency
Sets the corner frequency for the treble shelving filter.
DS773F1
TREBCF[1:0]
Treble Corner Frequency Setting
00
5 kHz
01
7 kHz
10
10 kHz
11
15 kHz
55
CS42L55
6.18.3 Bass Corner Frequency
Sets the corner frequency for the bass shelving filter.
BASSCF[1:0]
Bass Corner Frequency Setting
00
50 Hz
01
100 Hz
10
200 Hz
11
250 Hz
6.18.4 Tone Control Enable
Configures the treble and bass activation.
TCEN
6.19
Bass and Treble Control
0
Disabled
1
Enabled
Tone Control (Address 17h)
7
6
5
4
3
2
1
0
TREB3
TREB2
TREB1
TREB0
BASS3
BASS2
BASS1
BASS0
6.19.1 Treble Gain
Sets the gain of the treble shelving filter.
TREB[3:0]
Gain Setting
0000
+12.0 dB
···
···
0111
+1.5 dB
1000
0 dB
1001
-1.5 dB
···
···
1111
-10.5 dB
Step Size:
1.5 dB
6.19.2 Bass Gain
Sets the gain of the bass shelving filter.
56
BASS[3:0]
Gain Setting
0000
+12.0 dB
···
···
0111
+1.5 dB
1000
0 dB
1001
-1.5 dB
···
···
1111
-10.5 dB
Step Size:
1.5 dB
DS773F1
CS42L55
6.20
Master Volume Control:
MSTA (Address 18h) & MSTB (Address 19h)
7
6
5
4
3
2
1
0
MSTxVOL7
MSTxVOL6
MSTxVOL5
MSTxVOL4
MSTxVOL3
MSTxVOL2
MSTxVOL1
MSTxVOL0
6.20.1 Master Volume Control
Sets the volume of the signal out the DSP.
6.21
MSTxVOL[7:0]
Master Volume
0001 1000
+12.0 dB
···
···
0000 0000
0 dB
1111 1111
-0.5 dB
1111 1110
-1.0 dB
···
···
0011 0100
-102 dB
···
···
0001 1001
-102 dB
Step Size:
0.5 dB
Headphone Volume Control:
HPA (Address 1Ah) & HPB (Address 1Bh)
7
6
5
4
3
2
1
0
HPxMUTE
HPxVOL6
HPxVOL5
HPxVOL4
HPxVOL3
HPxVOL2
HPxVOL1
HPxVOL0
6.21.1 Headphone Channel x Mute
Configures an analog mute on the headphone amplifier.
HPxMUTE
HP Amp Mute
0
Disabled
1
Enabled
6.21.2 Headphone Volume Control
Sets the volume of the signal out of the headphone amplifier.
HPxVOL[6:0]
Heaphone Volume
0111111
12 dB
...
...
0001100
12 dB
...
...
0000001
+1.0 dB
0000000
0 dB
1111111
-1.0 dB
...
...
1000100
-60.0 dB (Actual volume is approximately -58 dB. (Note 1))
...
...
1000000
-60.0 dB (Actual volume is approximately -58 dB. (Note 1))
Step Size:
1.0 dB
Note:
1. The step size may deviate from 1.0 dB. Refer to Figure 25 and Figure 26 on page 69.
DS773F1
57
CS42L55
6.22
Line Volume Control:
LINEA (Address 1Ch) & LINEB (Address 1Dh)
7
6
5
4
3
2
1
0
LINExMUTE
LINExVOL6
LINExVOL5
LINExVOL4
LINExVOL3
LINExVOL2
LINExVOL1
LINExVOL0
6.22.1 Line Channel x Mute
Configures an analog mute on the line amplifier.
LINExMUTE
HP Amp Mute
0
Disabled
1
Enabled
6.22.2 Line Volume Control
Sets the volume of the signal out of the line amplifier.
LINExVOL[6:0]
Line Volume
0111111
12 dB
...
...
0001100
12 dB
...
...
0000001
+1.0 dB
0000000
0 dB
1111111
-1.0 dB
...
...
1000100
-60.0 dB (Actual volume is approximately -58 dB. (Note 1))
...
...
1000000
-60.0 dB (Actual volume is approximately -58 dB. (Note 1))
Step Size:
1.0 dB
Note:
1. The step size may deviate from 1.0 dB. Refer to Figure 25 on page 69 and Figure 26 on page 69.
58
DS773F1
CS42L55
6.23
Analog Input Advisory Volume (Address 1Eh)
7
6
5
4
3
2
1
0
AINADV7
AINADV6
AINADV5
AINADV4
AINADV3
AINADV2
AINADV1
AINADV0
6.23.1 Analog Input Advisory Volume
Defines the maximum analog input volume level used by the class H controller to determine the appropriate supply for the HP and Line amplifiers.
6.24
AINADV[7:0]
Defined Input Volume
0001 1000
Reserved
···
···
0000 0001
Reserved
0000 0000
0 dB
1111 1111
-0.5 dB
1111 1110
-1.0 dB
···
···
0011 0100
-102 dB
···
···
0001 1001
-102 dB
Step Size:
0.5 dB
Digital Input Advisory Volume (Address 1Fh)
7
6
5
4
3
2
1
0
DINADV7
DINADV6
DINADV5
DINADV4
DINADV3
DINADV2
DINADV1
DINADV0
6.24.1 Digital Input Advisory Volume
Defines the maximum digital input volume level used by the class H controller to determine the appropriate supply for the HP and Line amplifiers.
DINADV[7:0]
Defined Input Volume
0001 1000
Reserved
···
···
0000 0001
Reserved
0000 0000
0 dB
1111 1111
-0.5 dB
1111 1110
-1.0 dB
···
···
0011 0100
-102 dB
···
···
0001 1001
-102 dB
Step Size:
0.5 dB
Note: Between the headphone and line, the final output voltage from the charge pump is dictated by
the highest required advisory volume. When any respective amplifier is powered down, the charge pump’s
voltage automatically adjusts to the appropriate level.
DS773F1
59
CS42L55
6.25
ADC & PCM Channel Mixer (Address 20h)
7
6
5
4
3
2
1
0
PCMBSWP1
PCMBSWP0
PCMASWP1
PCMASWP0
ADCBSWP1
ADCBSWP0
ADCASWP1
ADCASWP0
6.25.1 PCM Mix Channel Swap
Configures a mix/swap of the PCM Mix to the headphone/line outputs.
PCMxSWP[1:0]
PCM Mix to HP/LINEOUTA
PCM Mix to HP/LINEOUTB
00
Left
Right
(Left + Right)/2
(Left + Right)/2
Right
Left
01
10
11
6.25.2 ADC Mix Channel Swap
Configures a mix/swap of the ADC Mix to the headphone/line outputs. .
ADCxSWP[1:0]
ADC Mix to HP/LINEOUTA Channel
ADC Mix to HP/LINEOUTB Channel
00
Left
Right
(Left + Right)/2
(Left + Right)/2
Right
Left
01
10
11
6.26
Limiter Min/Max Thresholds (Address 21h)
7
6
5
4
3
2
1
0
LMAX2
LMAX1
LMAX0
CUSH2
CUSH1
CUSH0
Reserved
Reserved
6.26.1 Limiter Maximum Threshold
Sets the maximum level, below full-scale, at which to limit and attenuate the output signal at the attack
rate (LIMARATE - “Limiter Release Rate” on page 62).
LMAX[2:0]
Threshold Setting
000
0 dB
001
-3 dB
010
-6 dB
011
-9 dB
100
-12 dB
101
-18 dB
110
-24 dB
111
-30 dB
Application:
“Limiter” on page 32
Note: Bass, Treble and digital gain settings that boost the signal beyond the maximum threshold may
trigger an attack.
60
DS773F1
CS42L55
6.26.2 Limiter Cushion Threshold
Sets the minimum level at which to disengage the Limiter’s attenuation at the release rate (LIMRRATE “Limiter Release Rate” on page 62) until levels lie between the LMAX and CUSH thresholds.
CUSH[2:0]
Threshold Setting
000
0 dB
001
-3 dB
010
-6 dB
011
-9 dB
100
-12 dB
101
-18 dB
110
-24 dB
111
-30 dB
Application:
“Limiter” on page 32
Note:
6.27
This setting is usually set slightly below the LMAX threshold.
Limiter Control, Release Rate (Address 22h)
7
6
5
4
3
2
1
0
LIMIT
LIMIT_ALL
LIMRRATE5
LIMRRATE4
LIMRRATE3
LIMRRATE2
LIMRRATE1
LIMRRATE0
6.27.1 Peak Detect and Limiter
Configures the peak detect and limiter circuitry.
LIMIT
Limiter Status
0
Disabled
1
Enabled
Application:
“Limiter” on page 32
6.27.2 Peak Signal Limit All Channels
Sets how channels are attenuated when the limiter is enabled.
DS773F1
LIMIT_ALL
Limiter action:
0
Apply the necessary attenuation on a specific channel only when the signal amplitudes on that specific channel rises above LMAX.
Remove attenuation on a specific channel only when the signal amplitude on that specific channel falls below
CUSH.
1
Apply the necessary attenuation on BOTH channels when the signal amplitudes on any ONE channel rises
above LMAX.
Remove attenuation on BOTH channels only when the signal amplitude on BOTH channels fall below CUSH.
Application:
“Limiter” on page 32
61
CS42L55
6.27.3 Limiter Release Rate
Sets the rate at which the limiter releases the digital attenuation from levels below the CUSH[2:0] threshold (“Limiter Cushion Threshold” on page 61) and returns the analog output level to the MSTxVOL[7:0]
(“Master Volume Control” on page 57) setting.
LIMRRATE[5:0]
Release Time
00 0000
Fastest Release
···
···
11 1111
Slowest Release
Application:
“Limiter” on page 32
Note: The limiter release rate is user-selectable but is also a function of the sampling frequency, Fs,
and the DIGSFT (“Digital Soft Ramp” on page 46) setting unless the disable bit (“Limiter Soft Ramp Disable” on page 66) is enabled.
6.28
Limiter Attack Rate (Address 23h)
7
6
5
4
3
2
1
0
Reserved
Reserved
LIMARATE5
LIMARATE4
LIMARATE3
LIMARATE2
LIMARATE1
LIMARATE0
6.28.1 Limiter Attack Rate
Sets the rate at which the limiter applies digital attenuation from levels above the MAX[2:0] threshold
(“Limiter Maximum Threshold” on page 60).
LIMARATE[5:0]
Attack Time
00 0000
Fastest Attack
···
···
11 1111
Slowest Attack
Application:
“Limiter” on page 32
Note: The limiter attack rate is user-selectable but is also a function of the sampling frequency, Fs, and
the DIGSFT (“Digital Soft Ramp” on page 46) setting unless the disable bit (“Limiter Soft Ramp Disable”
on page 66) is enabled.
6.29
ALC Enable & Attack Rate (Address 24h)
7
6
5
4
3
2
1
0
ALCB
ALCA
ALCARATE5
AALCRATE4
ALCARATE3
ALCARATE2
ALCARATE1
ALCARATE0
6.29.1 ALCx
Configures the automatic level controller (ALC).
62
ALC
ALC Status
0
Disabled
1
Enabled
Application:
“Automatic Level Control (ALC)” on page 24
DS773F1
CS42L55
6.29.2 ALC Attack Rate
Sets the rate at which the ALC applies analog and/or digital attenuation from levels above the AMAX[2:0]
threshold (“ALC Maximum Threshold” on page 64).
ALCARATE[5:0]
Attack Time
00 0000
Fastest Attack
···
···
11 1111
Slowest Attack
Application:
“Automatic Level Control (ALC)” on page 24
Note: The ALC attack rate is user-selectable but is also a function of the sampling frequency, Fs, the
ANLGZCx (“Analog Zero Cross” on page 46) and the DIGSFT (“Digital Soft Ramp” on page 46) setting
unless the respective disable bit (“ALCx Soft Ramp Disable” on page 65 or “ALCx Zero Cross Disable” on
page 65) is enabled.
6.30
ALC Release Rate (Address 25h)
7
6
5
4
3
2
1
0
Reserved
Reserved
ALCRRATE5
ALCRRATE4
ALCRRATE3
ALCRRATE2
ALCRRATE1
ALCRRATE0
6.30.1 ALC Release Rate
Sets the rate at which the ALC releases the analog and/or digital attenuation from levels below the
MIN[2:0] threshold (“Limiter Cushion Threshold” on page 61) and returns the signal level to the PGAxVOL[5:0] (“PGAx Volume” on page 49) and ADCxVOL[7:0] (“ADCx Volume” on page 50) setting.
ALCRRATE[5:0]
Release Time
00 0000
Fastest Release
···
···
11 1111
Slowest Release
Application:
“Automatic Level Control (ALC)” on page 24
Notes:
1. The ALC release rate is user-selectable but is also a function of the sampling frequency, Fs, and the
DIGSFT (“Digital Soft Ramp” on page 46) and ANLGZCx (“Analog Zero Cross” on page 46) setting.
2. The Release Rate setting must always be slower than the Attack Rate.
DS773F1
63
CS42L55
6.31
ALC Threshold (Address 26h)
7
6
5
4
3
2
1
0
ALCMAX2
ALCMAX1
ALCMAX0
ALCMIN2
ALCMIN1
ALCMIN0
Reserved
Reserved
6.31.1 ALC Maximum Threshold
Sets the maximum level, below full-scale, at which to limit and attenuate the input signal at the attack rate
(ALCARATE - “ALC Attack Rate” on page 63).
MAX[2:0]
Threshold Setting
000
0 dB
001
-3 dB
010
-6 dB
011
-9 dB
100
-12 dB
101
-18 dB
110
-24 dB
111
-30 dB
Application:
“Automatic Level Control (ALC)” on page 24
6.31.2 ALC Minimum Threshold
Sets the minimum level at which to disengage the ALC’s attenuation or amplify the input signal at the release rate (ALCRRATE - “ALC Release Rate” on page 63) until levels lie between the ALCMAX and ALCMIN thresholds.
ALCMIN[2:0]
Threshold Setting
000
0 dB
001
-3 dB
010
-6 dB
011
-9 dB
100
-12 dB
101
-18 dB
110
-24 dB
111
-30 dB
Application:
“Automatic Level Control (ALC)” on page 24
Note:
6.32
This setting is usually set slightly below the ALCMAX threshold.
Noise Gate Control (Address 27h)
7
6
5
4
3
2
1
0
NGALL
NG
NG_BOOST
THRESH2
THRESH1
THRESH0
NGDELAY1
NGDELAY0
6.32.1 Noise Gate All Channels
Sets which channels are attenuated when clipping on any single channel occurs.
64
NGALL
Noise Gate triggered by:
0
Individual channel; Any channel that falls below the threshold setting triggers the noise gate attenuation for
ONLY that channel.
1
Both channels A & B; Both channels must fall below the threshold setting for the noise gate attenuation to
take effect.
DS773F1
CS42L55
6.32.2 Noise Gate Enable
Configures the noise gate.
NG
Noise Gate Status
0
Disabled
1
Enabled
6.32.3 Noise Gate Threshold and Boost
THRESH sets the threshold level of the noise gate. Input signals below the threshold level will be attenuated to -96 dB. NG_BOOST configures a +30 dB boost to the threshold settings.
THRESH[2:0]
Minimum Setting (NG_BOOST = ‘0’b)
Minimum Setting (NG_BOOST = ‘1’b)
000
-64 dB
-34 dB
001
-67 dB
-36 dB
010
-70 dB
-40 dB
011
-73 dB
-43 dB
100
-76 dB
-46 dB
101
-82 dB
-52 dB
110
Reserved
-58 dB
111
Reserved
-64 dB
6.32.4 Noise Gate Delay Timing
Sets the delay time before the noise gate attacks.
NGDELAY[1:0]
Delay Setting
00
50 ms
01
100 ms
10
150 ms
11
200 ms
Note: The Noise Gate attack rate is a function of the sampling frequency, Fs, and the DIGSFT (“Digital
Soft Ramp” on page 46) setting unless the disable bit (“ALCx Soft Ramp Disable” on page 65) is enabled.
6.33
ALC and Limiter Soft Ramp, Zero Cross Disables (Address 28h)
7
6
5
4
3
ALCBSRDIS
ALCBZCDIS
ALCASRDIS
ALCAZCDIS
LIMSRDIS
2
1
0
Reserved
Reserved
6.33.1 ALCx Soft Ramp Disable
Configures an override of the analog soft ramp setting.
ALCxSRDIS
ALC Soft Ramp Disable
0
OFF; ALC Attack Rate is dictated by the DIGSFT (“Digital Soft Ramp” on page 46) setting
1
ON; ALC volume changes take effect in one step, regardless of the DIGSFT setting.
6.33.2 ALCx Zero Cross Disable
Configures an override of the analog zero cross setting.
DS773F1
ALCxZCDIS
ALC Zero Cross Disable
0
OFF; ALC Attack Rate is dictated by the ANLGZC (“Analog Zero Cross” on page 46) setting
1
ON; ALC volume changes take effect at any time, regardless of the ANLGZC setting.
65
CS42L55
6.33.3 Limiter Soft Ramp Disable
Configures an override of the digital soft ramp setting.
LIMSRDIS
6.34
Limiter Soft Ramp Disable
0
OFF; Limiter Attack Rate is dictated by the DIGSFT (“Digital Soft Ramp” on page 46) setting
1
ON; Limiter volume changes take effect in one step, regardless of the DIGSFT setting.
Status (Address 29h) (Read Only)
For bits [6:0] in this register, a “1” means the associated error condition has occurred at least once since the
register was last read. A”0” means the associated error condition has NOT occurred since the last reading
of the register. Reading the register resets these bits to 0.
7
6
5
4
3
2
1
0
HPDETECT
SPCLKERR
DSPBOVFL
DSPAOVFL
MIXBOVFL
MIXAOVFL
ADCBOVFL
ADCAOVFL
6.34.1 HPDETECT Pin Status (Read Only)
Indicates the status of the HPDETECT pin.
HPDETECT
Pin State
0
Low
1
High
6.34.2 Serial Port Clock Error (Read Only)
Indicates the status of the MCLK to LRCK ratio.
SPCLKERR
Serial Port Clock Status:
0
MCLK/LRCK ratio is valid.
1
MCLK/LRCK ratio is not valid.
Application:
“Serial Port Clocking” on page 34
Note:
nizes.
On initial power up and application of clocks, this bit will report ‘1’b as the serial port re-synchro-
6.34.3 DSP Engine Overflow (Read Only)
Indicates the over-range status in the DSP data path.
DSPxOVFL
DSP Overflow Status:
0
No digital clipping has occurred in the data path after the DSP.
1
Digital clipping has occurred in the data path after the DSP.
6.34.4 MIXx Overflow (Read Only)
Indicates the over-range status in the PCM mix data path.
66
MIXxOVFL
PCM Overflow Status:
0
No digital clipping has occurred in the data path of the ADC and PCM mix of the DSP.
1
Digital clipping has occurred in the data path of the ADC and PCM mix of the DSP.
DS773F1
CS42L55
6.34.5 ADCx Overflow (Read Only)
Indicates the over-range status in the ADC signal path.
6.35
ADCxOVFL
ADC Overflow Status:
0
No clipping has occurred anywhere in the ADC signal path.
1
Clipping has occurred in the ADC signal path.
Charge Pump Frequency (Address 2Ah)
7
6
5
4
3
2
1
0
Reserved
Reserved
Reserved
Reserved
CHGFREQ3
CHGFREQ2
CHGFREQ1
CHGFREQ0
6.35.1 Charge Pump Frequency
Sets the charge pump frequency on FLYN and FLYP.
CHGFREQ[3:0]
N
0000
0
...
0101
5
...
1111
15
Formula:
Frequency = 1.5 MHz/(N+2)
Note: The output THD+N performance improves at higher frequencies; power consumption increases
at higher frequencies.
DS773F1
67
CS42L55
7. PCB LAYOUT CONSIDERATIONS
7.1
Power Supply
As with any high-resolution converter, the CS42L55 requires careful attention to power supply and grounding arrangements if its potential performance is to be realized. Figure 1 on page 10 shows the recommended power arrangements, with VA and VCP connected to clean supplies. VLDO, which powers the digital
circuitry, may be run from the system logic supply. Alternatively, VLDO may be powered from the analog
supply via a ferrite bead. In this case, no additional devices should be powered from VLDO.
7.2
Grounding
Extensive use of power and ground planes, ground plane fill in unused areas and surface mount decoupling
capacitors are recommended. Decoupling capacitors should be as close to the pins of the CS42L55 as possible. The low value ceramic capacitor should be closest to the pin and should be mounted on the same
side of the board as the CS42L55 to minimize inductance effects. All signals, especially clocks, should be
kept away from the FILT+ and VQ pins in order to avoid unwanted coupling into the modulators. The FILT+,
VQ, +VHPFILT and -VHPFILT capacitors must be positioned to minimize the electrical path from each respective pin to AGND. The CDB42L55 evaluation board demonstrates the optimum layout and power supply arrangements.
7.3
QFN Thermal Pad
The CS42L55 comes in a compact QFN package. The under side of the QFN package reveals a large metal
pad that serves as a thermal relief to provide for maximum heat dissipation. This pad must mate with an
equally dimensioned copper pad on the PCB and must be electrically connected to ground. A series of vias
should be used to connect this copper pad to one or more larger ground planes on other PCB layers. In split
ground systems, it is recommended that this thermal pad be connected to AGND for best performance. The
CDB42L55 evaluation board demonstrates the optimum thermal pad and via configuration.
68
DS773F1
CS42L55
8. ANALOG VOLUME NON-LINEARITY (DNL & INL)
12
0.52
Actual Output Volume, dB
10
Actual Step Size, dB
0.5
0.48
0.46
0.44
0.42
-6
-5
-4
-3
-2
0.4
-1 0
1 2 3 4 5
PGA Volume Setting
6
7
8
9
4
2
0
-2
-4
-6
-8
0
1 2 3 4 5 6
PGA Volume Setting
0.6
0.4
0.2
-40
-30
-20
-10
10 11 12
-1 0
-2 0
-3 0
-4 0
-5 0
-6 0
0
+10
HP/Line Volume Setting
Figure 25. HP/Line Step Size vs. Volume Setting
DS773F1
9
0
0
-50
8
10
Actual Output Volume, dB
0.8
-60
7
Figure 24. PGA Output Volume vs. Volume Setting
1
Actual Step Size, dB
6
-6 -5 -4 -3 -2 -1
10 11
Figure 23. PGA Step Size vs. Volume Setting
8
+20
-6 0
-5 0
-4 0
-3 0
-2 0
-1 0
0
10
20
H P /L in e V o lu m e S e ttin g
Figure 26. HP/Line Output Volume vs. Volume Setting
69
CS42L55
9. ADC & DAC DIGITAL FILTERS
0
0.25
−10
0.2
−20
0.1
−30
0.05
−40
Amplitude dB
Amplitude dB
0.15
0
−0.05
−50
−60
−0.1
−70
−0.15
−80
−0.2
−90
−0.25
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
−100
0.5
Frequency (normalized to Fs)
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
Figure 28. ADC Stopband Rejection
0
0
−1
−10
−2
−20
−3
−30
−4
Amplitude dB
Amplitude dB
0.1
Frequency (normalized to Fs)
Figure 27. ADC Passband Ripple
−40
−50
−5
−6
−60
−7
−70
−8
−80
−9
−90
−100
0.4
0
0.43
0.46
0.49
0.52
0.55
0.58
0.61
−10
0.45
0.64
0.46
0.47
0.48
0.49
0.5
0.51
0.52
0.53
0.54
0.55
Frequency (normalized to Fs)
Frequency (normalized to Fs)
Figure 29. ADC Transition Band
Figure 30. ADC Transition Band Detail
0
0.03
−10
0.02
−20
−30
0
Magnitude (dB)
Magnitude (dB)
0.01
−0.01
−40
−50
−60
−0.02
−70
−0.03
−80
−0.04
−90
−0.05
0
0.05
0.1
0.15
0.2
0.25
0.3
frequency (Normalized to Fs)
0.35
0.4
0.45
0
0
0
−10
−10
−20
−20
−30
−40
0.4
0.5
0.6
frequency (Normalized to Fs)
0.7
0.8
0.9
0.53
0.54
1
−40
−50
−60
−60
0.42
0.44
0.46
0.48
0.5
0.52
0.54
frequency (Normalized to Fs)
0.56
0.58
Figure 33. DAC Transition Band
70
0.3
−30
−50
0.4
0.2
Figure 32. DAC Stopband
Magnitude (dB)
Magnitude (dB)
Figure 31. DAC Passband Ripple
0.1
0.6
0.45
0.46
0.47
0.48
0.49
0.5
0.51
frequency (Normalized to Fs)
0.52
Figure 34. DAC Transition Band (Detail)
DS773F1
CS42L55
10.PARAMETER DEFINITIONS
Dynamic Range
The ratio of the rms value of the signal to the rms sum of all other spectral components over the specified
bandwidth. Dynamic Range is a signal-to-noise ratio measurement over the specified band width made with
a -60 dB signal. 60 dB is added to resulting measurement to refer the measurement to full-scale. This technique ensures that the distortion components are below the noise level and do not affect the measurement.
This measurement technique has been accepted by the Audio Engineering Society, AES17-1991, and the
Electronic Industries Association of Japan, EIAJ CP-307. Expressed in decibels.
Total Harmonic Distortion + Noise
The ratio of the rms value of the signal to the rms sum of all other spectral components over the specified
bandwidth (typically 10 Hz to 20 kHz), including distortion components. Expressed in decibels. Measured
at -1 dBFS and -20 dBFS for the analog input and 0 dB and -20 dB for the analog output as suggested in
AES17-1991 Annex A.
Frequency Response
A measure of the amplitude response variation from 10 Hz to 20 kHz relative to the amplitude response at
1 kHz. Units in decibels.
Interchannel Isolation
A measure of crosstalk between the left and right channel pairs. Measured for each channel at the converter's output with no signal to the input under test and a full-scale signal applied to the other channel. Units in
decibels.
HP to ADC Isolation
A measure of crosstalk between the headphone amplifier and the ADC inputs. Measured for each channel
at the ADC’s output with no signal to the input and a full-scale signal applied to the headphone amplifier with
a 16 Ω or 10 kΩ load. Units in decibels.
Output Offset Voltage
Describes the DC offset voltage present at the amplifier’s output during a MUTE state. When measuring the
offset out the line amplifier, the line amplifier is ON while the headphone amplifier is OFF; when measuring
the offset out the headphone amplifier, the headphone amplifier is ON while the line amplifier is OFF. The
offset observed at the output of the HP/Line amplifiers is a result of the non-infinite CMRR of the output amplifier that exists due to CMOS process limitations and is proportional to the analog volume settings.
AC Load Resistance and Capacitance
RL and CL reflect the recommended minimum resistance and maximum capacitance required for the internal op-amp's stability and signal integrity. CL will effectively move the band-limiting pole of the amp in the
output stage. Increasing this value beyond the recommended 150 pF can cause the internal op-amp to become unstable.
Interchannel Gain Mismatch
The gain difference between left and right channel pairs. Units in decibels.
Gain Error
The deviation from the nominal full-scale analog output for a full-scale digital input.
Gain Drift
The change in gain value with temperature. Units in ppm/°C.
Offset Error
The deviation of the mid-scale transition (111...111 to 000...000) from the ideal.
DS773F1
71
CS42L55
11.PACKAGE DIMENSIONS
(Unless otherwise specified, linear tolerance is ±0.05 mm, and angular tolerance is ±2 deg.)
36L QFN (5 X 5 mm BODY) PACKAGE DRAWING (Note 2)
P2
D
e
b
P1
1.50 REF
PIN #1
CORNER
P2
1.50 REF
P1
Pin #1 IDENTIFIER
LASER MARKING
E2
E
A1
D2
L
A
Dim
MIN
A
A1
b
e
D
E
D2
E2
L
P1
P2
0.01773
0.00000
0.00591
0.19503
0.19503
0.13593
0.13593
0.01379
0.00985
0.00985
INCHES
NOM
0.00788
0.01576
0.1970
0.1970
0.1379
0.1379
0.1576
0.01182
0.01182
MAX
MIN
0.0197
0.00197
0.00985
0.45
0.00
0.15
0.19897
0.19897
0.13987
0.13987
0.01773
0.01379
0.01379
4.95
4.95
3.45
3.45
0.35
0.25
0.25
MILLIMETERS
NOM
0.20
0.40 REF
5.00
5.00
3.50
3.50
0.40
0.30
0.30
NOTE
MAX
0.50
0.05
0.25
5.05
5.05
3.55
3.55
0.45
0.35
0.35
1,3
1,3
1,3,4
1,3
1,3
1,3
1,3
1,3
1,3
1,3
1,3
JEDEC #: MO-220
Controlling Dimension is Millimeters.
1. Controlling dimensions are in millimeters.
2. Unless otherwise specified tolerance: Linear ±0.05 mm, Angular ±2 deg.
3. Dimensioning and tolerances per ASME Y 14.5M-1994.
4. Dimension lead width applies to the plated terminal and is measured 0.15 mm and 0.30 mm from the
terminal tip.
THERMAL CHARACTERISTICS
Parameter
Junction to Ambient Thermal Impedance
72
2 Layer Board
4 Layer Board
Symbol
Min
Typ
Max
Units
θJA
θJA
-
68
28
-
°C/Watt
°C/Watt
DS773F1
CS42L55
12.ORDERING INFORMATION
Product
Description
Package
Ultra Low Power, Stereo
CS42L55 CODEC w/ Class H HP Amp 36L-QFN
for Portable Apps
CDB42L55 CS42L55 Evaluation Board
-
Pb-Free
YES
No
Grade
Temp Range
Commercial -40°C to +85°C
-
-
Container Order #
Rail
CS42L55-CNZ
Tape & Reel CS42L55-CNZR
-
CDB42L55
13.REFERENCES
1. Philips Semiconductor, The I²C-Bus Specification: Version 2.1, January 2000.
http://www.semiconductors.philips.com
14.REVISION HISTORY
Revision
F1
Changes
Initial Release
Contacting Cirrus Logic Support
For all product questions and inquiries contact a Cirrus Logic Sales Representative.
To find the one nearest to you go to www.cirrus.com/corporate/contacts/sales.cfm
IMPORTANT NOTICE
Cirrus Logic, Inc. and its subsidiaries ("Cirrus") believe that the information contained in this document is accurate and reliable. However, the information is subject
to change without notice and is provided "AS IS" without warranty of any kind (express or implied). Customers are advised to obtain the latest version of relevant
information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale
supplied at the time of order acknowledgment, including those pertaining to warranty, indemnification, and limitation of liability. No responsibility is assumed by Cirrus
for the use of this information, including use of this information as the basis for manufacture or sale of any items, or for infringement of patents or other rights of third
parties. This document is the property of Cirrus and by furnishing this information, Cirrus grants no license, express or implied under any patents, mask work rights,
copyrights, trademarks, trade secrets or other intellectual property rights. Cirrus owns the copyrights associated with the information contained herein and gives consent for copies to be made of the information only for use within your organization with respect to Cirrus integrated circuits or other products of Cirrus. This consent
does not extend to other copying such as copying for general distribution, advertising or promotional purposes, or for creating any work for resale.
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE
IN PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, AUTOMOTIVE SAFETY OR SECURITY DEVICES, LIFE SUPPORT PRODUCTS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER’S RISK AND CIRRUS DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CIRRUS PRODUCT THAT IS USED IN SUCH A MANNER. IF THE CUSTOMER OR CUSTOMER’S CUSTOMER USES OR PERMITS THE USE OF CIRRUS PRODUCTS IN CRITICAL APPLICATIONS, CUSTOMER AGREES, BY SUCH USE, TO FULLY
INDEMNIFY CIRRUS, ITS OFFICERS, DIRECTORS, EMPLOYEES, DISTRIBUTORS AND OTHER AGENTS FROM ANY AND ALL LIABILITY, INCLUDING ATTORNEYS’ FEES AND COSTS, THAT MAY RESULT FROM OR ARISE IN CONNECTION WITH THESE USES.
Cirrus Logic, Cirrus, and the Cirrus Logic logo designs are trademarks of Cirrus Logic, Inc. All other brand and product names in this document may be trademarks
or service marks of their respective owners.
I²C is a registered trademark of Philips Semiconductor.
DS773F1
73