ELPIDA EBE21AD4AGFA-6E-E

PRELIMINARY DATA SHEET
2GB Registered DDR2 SDRAM DIMM
EBE21AD4AGFA (256M words × 72 bits, 2 Ranks)
Specifications
Features
• Density: 2GB
• Organization
 256M words × 72 bits, 2 ranks
• Mounting 36 pieces of 512M bits DDR2 SDRAM
sealed in FBGA
• Package: 240-pin socket type dual in line memory
module (DIMM)
 PCB height: 30.0mm
 Lead pitch: 1.0mm
 Lead-free (RoHS compliant)
• Power supply: VDD = 1.8V ± 0.1V
• Data rate: 667Mbps/533Mbps/400Mbps (max.)
• Four internal banks for concurrent operation
(components)
• Interface: SSTL_18
• Burst lengths (BL): 4, 8
• /CAS Latency (CL): 3, 4, 5
• Precharge: auto precharge option for each burst
access
• Refresh: auto-refresh, self-refresh
• Refresh cycles: 8192 cycles/64ms
 Average refresh period
7.8µs at 0°C ≤ TC ≤ +85°C
3.9µs at +85°C < TC ≤ +95°C
• Operating case temperature range
 TC = 0°C to +95°C
• Double-data-rate architecture; two data transfers per
clock cycle
• The high-speed data transfer is realized by the 4 bits
prefetch pipelined architecture
• Bi-directional differential data strobe (DQS and /DQS)
is transmitted/received with data for capturing data at
the receiver
• DQS is edge-aligned with data for READs; centeraligned with data for WRITEs
• Differential clock inputs (CK and /CK)
• DLL aligns DQ and DQS transitions with CK
transitions
• Commands entered on each positive CK edge; data
referenced to both edges of DQS
• Posted /CAS by programmable additive latency for
better command and data bus efficiency
• Off-Chip-Driver Impedance Adjustment and On-DieTermination for better signal quality
• /DQS can be disabled for single-ended Data Strobe
operation
• 1 piece of PLL clock driver, 4 pieces of register driver
and 1 piece of serial EEPROM (2K bits EEPROM) for
Presence Detect (PD)
Document No. E0866E11 (Ver. 1.1)
Date Published February 2006 (K) Japan
Printed in Japan
URL: http://www.elpida.com
Elpida Memory, Inc. 2006
EBE21AD4AGFA
Ordering Information
Part number
Data rate
Mbps (max.)
Component
1
JEDEC speed bin*
(CL-tRCD-tRP)
EBE21AD4AGFA-6E-E
667
DDR2-667 (5-5-5)
EBE21AD4AGFA-5C-E
533
DDR2-533 (4-4-4)
EBE21AD4AGFA-4A-E
400
DDR2-400 (3-3-3)
Package
Contact
pad
Mounted devices
EDE5104AGSE-6E-E
240-pin DIMM
(lead-free)
Gold
EDE5104AGSE-6E-E
EDE5104AGSE-5C-E
EDE5104AGSE-6E-E
EDE5104AGSE-5C-E
EDE5104AGSE-4A-E
Note: 1. Module /CAS latency = component CL + 1.
Pin Configurations
Front side
1 pin
64 pin 65 pin
120 pin
121 pin
184 pin 185 pin
240 pin
Back side
Pin No.
Pin name
Pin No.
Pin name
Pin No.
Pin name
Pin No.
Pin name
1
VREF
61
A4
121
VSS
181
VDD
2
VSS
62
VDD
122
DQ4
182
A3
3
DQ0
63
A2
123
DQ5
183
A1
4
DQ1
64
VDD
124
VSS
184
VDD
5
VSS
65
VSS
125
DQS9
185
CK0
6
/DQS0
66
VSS
126
/DQS9
186
/CK0
7
DQS0
67
VDD
127
VSS
187
VDD
8
VSS
68
Par_In
128
DQ6
188
A0
9
DQ2
69
VDD
129
DQ7
189
VDD
10
DQ3
70
A10
130
VSS
190
BA1
11
VSS
71
BA0
131
DQ12
191
VDD
12
DQ8
72
VDD
132
DQ13
192
/RAS
13
DQ9
73
/WE
133
VSS
193
/CS0
14
VSS
74
/CAS
134
DQS10
194
VDD
15
/DQS1
75
VDD
135
/DQS10
195
ODT0
16
DQS1
76
/CS1
136
VSS
196
A13
17
VSS
77
ODT1
137
NC
197
VDD
18
/RESET
78
VDD
138
NC
198
VSS
19
NC
79
VSS
139
VSS
199
DQ36
20
VSS
80
DQ32
140
DQ14
200
DQ37
21
DQ10
81
DQ33
141
DQ15
201
VSS
22
DQ11
82
VSS
142
VSS
202
DQS13
23
VSS
83
/DQS4
143
DQ20
203
/DQS13
24
DQ16
84
DQS4
144
DQ21
204
VSS
25
DQ17
85
VSS
145
VSS
205
DQ38
Preliminary Data Sheet E0866E11 (Ver. 1.1)
2
EBE21AD4AGFA
Pin No.
Pin name
Pin No.
Pin name
Pin No.
Pin name
Pin No.
Pin name
26
VSS
86
DQ34
146
DQS11
206
DQ39
27
/DQS2
87
DQ35
147
/DQS11
207
VSS
28
DQS2
88
VSS
148
VSS
208
DQ44
29
VSS
89
DQ40
149
DQ22
209
DQ45
30
DQ18
90
DQ41
150
DQ23
210
VSS
31
DQ19
91
VSS
151
VSS
211
DQS14
32
VSS
92
/DQS5
152
DQ28
212
/DQS14
33
DQ24
93
DQS5
153
DQ29
213
VSS
34
DQ25
94
VSS
154
VSS
214
DQ46
35
VSS
95
DQ42
155
DQS12
215
DQ47
36
/DQS3
96
DQ43
156
/DQS12
216
VSS
37
DQS3
97
VSS
157
VSS
217
DQ52
38
VSS
98
DQ48
158
DQ30
218
DQ53
39
DQ26
99
DQ49
159
DQ31
219
VSS
40
DQ27
100
VSS
160
VSS
220
NC
41
VSS
101
SA2
161
CB4
221
NC
42
CB0
102
NC
162
CB5
222
VSS
43
CB1
103
VSS
163
VSS
223
DQS15
44
VSS
104
/DQS6
164
DQS17
224
/DQS15
45
/DQS8
105
DQS6
165
/DQS17
225
VSS
46
DQS8
106
VSS
166
VSS
226
DQ54
47
VSS
107
DQ50
167
CB6
227
DQ55
48
CB2
108
DQ51
168
CB7
228
VSS
49
CB3
109
VSS
169
VSS
229
DQ60
50
VSS
110
DQ56
170
VDD
230
DQ61
51
VDD
111
DQ57
171
CKE1
231
VSS
52
CKE0
112
VSS
172
VDD
232
DQS16
53
VDD
113
/DQS7
173
NC
233
/DQS16
54
NC
114
DQS7
174
NC
234
VSS
55
/Err_Out
115
VSS
175
VDD
235
DQ62
56
VDD
116
DQ58
176
A12
236
DQ63
57
A11
117
DQ59
177
A9
237
VSS
58
A7
118
VSS
178
VDD
238
VDDSPD
59
VDD
119
SDA
179
A8
239
SA0
60
A5
120
SCL
180
A6
240
SA1
Preliminary Data Sheet E0866E11 (Ver. 1.1)
3
EBE21AD4AGFA
Pin Description
Pin name
Function
A0 to A13
Address input
Row address
Column address
A10 (AP)
Auto precharge
BA0, BA1
Bank select address
DQ0 to DQ63
Data input/output
A0 to A13
A0 to A9, A11
CB0 to CB7
Check bit (Data input/output)
/RAS
Row address strobe command
/CAS
Column address strobe command
/WE
Write enable
/CS0, /CS1
Chip select
CKE0, CKE1
Clock enable
CK0
Clock input
/CK0
Differential clock input
DQS0 to DQS17, /DQS0 to /DQS17
Input and output data strobe
SCL
Clock input for serial PD
SDA
Data input/output for serial PD
SA0 to SA2
Serial address input
VDD
Power for internal circuit
VDDSPD
Power for serial EEPROM
VREF
Input reference voltage
VSS
Ground
ODT0, ODT1
ODT control
/RESET
Reset pin (forces register and PLL inputs low) *
Par_In*
2
/Err_Out*
1
Parity bit for the address and control bus
2
NC
Parity error found on the address and control bus
No connection
Notes: 1. Reset pin is connected to both OE of PLL and reset to register.
2. /Err_Out (Pin No. 55) and Par_In (Pin No. 68) are for optional function to check address and command
parity.
Preliminary Data Sheet E0866E11 (Ver. 1.1)
4
EBE21AD4AGFA
Serial PD Matrix
Byte No. Function described
0
1
Number of bytes utilized by module
manufacturer
Total number of bytes in serial PD
device
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
Hex value
Comments
1
0
0
0
0
0
0
0
80H
128 bytes
0
0
0
0
1
0
0
0
08H
256 bytes
2
Memory type
0
0
0
0
1
0
0
0
08H
DDR2 SDRAM
3
Number of row address
0
0
0
0
1
1
1
0
0EH
14
4
Number of column address
0
0
0
0
1
0
1
1
0BH
11
5
Number of DIMM ranks
0
1
1
0
0
0
0
1
61H
2
6
Module data width
0
1
0
0
1
0
0
0
48H
72
7
Module data width continuation
0
0
0
0
0
0
0
0
00H
0
8
Voltage interface level of this assembly 0
0
0
0
0
1
0
1
05H
SSTL 1.8V
9
DDR SDRAM cycle time, CL = 5
-6E
0
0
1
1
0
0
0
0
30H
3.0ns*
-5C
0
0
1
1
1
1
0
1
3DH
3.75ns*
-4A
0
1
0
1
0
0
0
0
50H
5.0ns*
0
1
0
0
0
1
0
1
45H
0.45ns*
-5C
0
1
0
1
0
0
0
0
50H
0.5ns*
1
-4A
0
1
1
0
0
0
0
0
60H
0.6ns*
1
0
0
0
0
0
1
1
0
06H
ECC, Address/
Command Parity
10
SDRAM access from clock (tAC)
-6E
11
DIMM configuration type
12
Refresh rate/type
1
0
0
0
0
0
1
0
82H
7.8µs
13
Primary SDRAM width
0
0
0
0
0
1
0
0
04H
×4
14
Error checking SDRAM width
0
0
0
0
0
1
0
0
04H
×4
Reserved
0
0
0
0
0
0
0
0
00H
0
0
0
0
0
1
1
0
0
0CH
4, 8
0
0
0
0
0
1
0
0
04H
4
0
0
1
1
1
0
0
0
38H
3, 4, 5
15
16
17
18
SDRAM device attributes:
Burst length supported
SDRAM device attributes: Number of
banks on SDRAM device
SDRAM device attributes:
/CAS latency
1
1
1
1
19
DIMM Mechanical Characteristics
0
0
0
0
0
0
0
1
01H
4.00mm max.
20
DIMM type information
0
0
0
0
0
0
0
1
01H
Registered
21
SDRAM module attributes
0
0
0
0
0
0
0
0
00H
Normal
22
SDRAM device attributes: General
0
0
0
0
0
0
1
1
03H
Weak Driver
50Ω ODT Support
23
Minimum clock cycle time at CL = 4
-6E, -5C
0
0
1
1
1
1
0
1
3DH
3.75ns*
0
1
0
1
0
0
0
0
50H
5.0ns*
1
0
1
0
1
0
0
0
0
50H
0.5ns*
1
0
1
1
0
0
0
0
0
60H
0.6ns*
1
-4A
24
Maximum data access time (tAC) from
clock at CL = 4
-6E, -5C
-4A
25
Minimum clock cycle time at CL = 3
0
1
0
1
0
0
0
0
50H
5.0ns*
1
26
Maximum data access time (tAC) from
clock at CL = 3
0
1
1
0
0
0
0
0
60H
0.6ns*
1
27
Minimum row precharge time (tRP)
0
0
1
1
1
1
0
0
3CH
15ns
Preliminary Data Sheet E0866E11 (Ver. 1.1)
5
1
EBE21AD4AGFA
Byte No.
Function described
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
Hex value
Comments
28
Minimum row active to row active
delay (tRRD)
0
0
0
1
1
1
1
0
1EH
7.5ns
29
Minimum /RAS to /CAS delay (tRCD) 0
0
1
1
1
1
0
0
3CH
15ns
30
Minimum active to precharge time
(tRAS)
-6E, -5C
0
0
1
0
1
1
0
1
2DH
45ns
0
0
1
0
1
0
0
0
28H
40ns
-4A
31
Module rank density
0
0
0
0
0
0
0
1
01H
1GB
32
Address and command setup time
before clock (tIS)
-6E
0
0
1
0
0
0
0
0
20H
0.20ns*
1
-5C
0
0
1
0
0
1
0
1
25H
0.25ns*
1
-4A
0
0
1
1
0
1
0
1
35H
0.35ns*
1
0
0
1
0
1
0
0
0
28H
0.28ns*
1
-5C
0
0
1
1
1
0
0
0
38H
0.38ns*
1
-4A
0
1
0
0
1
0
0
0
48H
0.48ns*
1
0
0
0
1
0
0
0
0
10H
0.10ns*
1
0
0
0
1
0
1
0
1
15H
0.15ns*
1
Data input hold time after clock (tDH)
0
-6E
0
0
1
1
0
0
0
18H
0.18ns*
1
33
34
Address and command hold time
after clock (tIH)
-6E
Data input setup time before clock
(tDS)
-6E, -5C
-4A
35
-5C
0
0
1
0
0
0
1
1
23H
0.23ns*
1
-4A
0
0
1
0
1
0
0
0
28H
0.28ns*
1
1
36
Write recovery time (tWR)
0
0
1
1
1
1
0
0
3CH
15ns*
37
Internal write to read command delay
(tWTR)
0
-6E, -5C
0
0
1
1
1
1
0
1EH
7.5ns*
0
1
0
1
0
0
0
28H
10ns*
0
0
1
1
1
1
0
1EH
7.5ns*
0
0
0
0
0
0
0
00H
TBD
-4A
38
39
0
Internal read to precharge command
0
delay (tRTP)
Memory analysis probe
0
characteristics
1
1
1
40
Extension of Byte 41 and 42
0
0
0
0
0
0
0
0
00H
Undefined
41
Active command period (tRC)
-6E, -5C
0
0
1
1
1
1
0
0
3CH
60ns*
1
0
0
1
1
0
1
1
1
37H
55ns*
1
-4A
42
Auto refresh to active/
Auto refresh command cycle (tRFC)
0
1
1
0
1
0
0
1
69H
105ns*
43
SDRAM tCK cycle max. (tCK max.)
1
0
0
0
0
0
0
0
80H
8ns*
44
Dout to DQS skew
-6E
0
0
0
1
1
0
0
0
18H
0.24ns*
1
-5C
0
0
0
1
1
1
1
0
1EH
0.30ns*
1
-4A
0
0
1
0
0
0
1
1
23H
0.35ns*
1
0
0
1
0
0
0
1
0
22H
0.34ns*
1
-5C
0
0
1
0
1
0
0
0
28H
0.40ns*
1
-4A
0
0
1
0
1
1
0
1
2DH
0.45ns*
1
0
0
0
0
1
1
1
1
0FH
15µs
45
46
Data hold skew (tQHS)
-6E
PLL relock time
Preliminary Data Sheet E0866E11 (Ver. 1.1)
6
1
1
EBE21AD4AGFA
Byte No.
Function described
47 to 61
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
Hex value
0
0
0
0
0
0
0
0
00H
Comments
62
SPD Revision
0
0
0
1
0
0
1
0
12H
63
Checksum for bytes 0 to 62
-6E
Rev. 1.2
0
0
0
1
0
0
1
0
12H
-5C
0
1
0
1
0
1
1
0
56H
-4A
1
1
0
1
0
0
0
0
D0H
0
1
1
1
1
1
1
1
7FH
Continuation
code
Elpida Memory
64 to 65
Manufacturer’s JEDEC ID code
66
Manufacturer’s JEDEC ID code
1
1
1
1
1
1
1
0
FEH
67 to 71
Manufacturer’s JEDEC ID code
0
0
0
0
0
0
0
0
00H
72
Manufacturing location
×
×
×
×
×
×
×
×
××
(ASCII-8bit
code)
73
Module part number
0
1
0
0
0
1
0
1
45H
E
74
Module part number
0
1
0
0
0
0
1
0
42H
B
75
Module part number
0
1
0
0
0
1
0
1
45H
E
76
Module part number
0
0
1
1
0
0
1
0
32H
2
77
Module part number
0
0
1
1
0
0
0
1
31H
1
78
Module part number
0
1
0
0
0
0
0
1
41H
A
79
Module part number
0
1
0
0
0
1
0
0
44H
D
80
Module part number
0
0
1
1
0
1
0
0
34H
4
81
Module part number
0
1
0
0
0
0
0
1
41H
A
82
Module part number
0
1
0
0
0
1
1
1
47H
G
83
Module part number
0
1
0
0
0
1
1
0
46H
F
84
Module part number
0
1
0
0
0
0
0
1
41H
A
85
Module part number
0
0
1
0
1
1
0
1
2DH
—
86
Module part number
-6E
0
0
1
1
0
1
1
0
36H
6
-5C
0
0
1
1
0
1
0
1
35H
5
-4A
0
0
1
1
0
1
0
0
34H
4
0
1
0
0
0
1
0
1
45H
E
0
1
0
0
0
0
1
1
43H
C
87
Module part number
-6E
-5C
0
1
0
0
0
0
0
1
41H
A
88
Module part number
-4A
0
0
1
0
1
1
0
1
2DH
—
89
Module part number
0
1
0
0
0
1
0
1
45H
E
90
Module part number
0
0
1
0
0
0
0
0
20H
(Space)
91
Revision code
0
0
1
1
0
0
0
0
30H
Initial
92
Revision code
0
0
1
0
0
0
0
0
20H
(Space)
93
Manufacturing date
×
×
×
×
×
×
×
×
××
94
Manufacturing date
×
×
×
×
×
×
×
×
××
Year code
(BCD)
Week code
(BCD)
95 to 98
Module serial number
99 to 127
Manufacture specific data
Note: 1. These specifications are defined based on component specification, not module.
Preliminary Data Sheet E0866E11 (Ver. 1.1)
7
EBE21AD4AGFA
Block Diagram
VSS
/RCS1
/RCS0
DQS0
/DQS0
RS
RS
DM /CS
4
RS
DQ0 to DQ3
DQS1
/DQS1
DQ0
to DQ3
4
DQS2
DQS10
RS
DQ0
to DQ3
DQS3
D1
DQ0
to DQ3
DQS11
RS
DQ0
to DQ3
DQS /DQS
D2
DM /CS
DQ0
to DQ3
DQS12
/DQS12
4
RS
DQ0
to DQ3
D3
DM /CS
DQ0
to DQ3
/DQS4
4
RS
DQ0
to DQ3
DQS /DQS
D4
DM /CS
DQ0
to DQ3
RS
DQS5
DQS14
RS
/DQS5
/DQS14
DM /CS
4
RS
DQ0
to DQ3
DQS /DQS
D5
DM /CS
DQ0
to DQ3
DQS15
RS
/DQS15
DM /CS
DQ48 to DQ51
4
RS
DQ0
to DQ3
/DQS16
4
RS
DQ0
to DQ3
/DQS17
/RAS
/CAS
CKE0
CKE1
/WE
/ODT0
/ODT1
4
RS
RS
RS
RS
RS
R
E
G
I
S
T
E
R
/RST
P
L
L
/RESET
OE
SCL
SDA
RS
4
DM
/CS DQS /DQS
DQ0
to DQ3
/CS DQS /DQS
DM
D31
/CS DQS /DQS
DQ0
to DQ3
D14
D32
RS
RS
RS
4
/CS DQS /DQS
DQ0
to DQ3
DM
/CS DQS /DQS
DQ0
to DQ3
D15
D33
RS
RS
RS
4
DM
/CS DQS /DQS
DQ0
to DQ3
/CS DQS /DQS
DQ0
to DQ3
D16
D34
RS
RS
4
RS
/CS DQS /DQS
DQ0
to DQ3
DM
/CS DQS /DQS
DQ0
to DQ3
D17
D35
Signals for Address and Command Parity Function
VSS
VDD
SDA
U0
RA0 to RA13 -> A0 to A13: SDRAMs D0 to D35
D30
DQ0
to DQ3
D13
Serial PD
SCL
RBA0 to RBA1 -> BA0 to BA1: SDRAMs D0 to D35
C0 Register
C1
PAR_IN
WP A0 A1 A2
A1
PPO
/QERR
/RRAS -> /RAS: SDRAMs D0 to D35
SA0 SA1 SA2
/RCAS -> /CAS: SDRAMs D0 to D35
RCKE1 -> CKE: SDRAMs D18 to D35
RODT1 -> ODT: SDRAMs D18 to D35
VDDSPD
VDD
C0 Register
C1
PAR_IN
100kΩ
Serial PD
D0 to D35
D0 to D35
VREF
VSS
VDD
VDD
Par_In
RCKE0 -> CKE: SDRAMs D0 to D17
RODT0 -> ODT: SDRAMs D0 to D17
RS
D12
RS
DM
CB4 to CB7
D26
/RWE -> /WE: SDRAMs D0 to D35
RS
CK0
/CK0
D8
DQ0
to DQ3
CS DQS /DQS
RS
DQS /DQS
/RCS1 -> /CS: SDRAMs D18 to D35
RS
/RESET*3
PCK7*3
DQ0
to DQ3
DM /CS
/RCS0 -> /CS: SDRAMs D0 to D17
RS
RS
RS
DQS /DQS
DM
DQ0
to DQ3
/CS DQS /DQS
DQ0
to DQ3
DM
DQ60 to DQ63
D25
DQS17
DM /CS
RS
DQ0
to DQ3
RS
4
DQS /DQS
RS
/DQS8
A0 to A13
D7
DM /CS
RS
DQS8
BA0 to BA1
DQS /DQS
D29
RS
DM
DQ52 to DQ55
D24
DQS16
DM /CS
/CS0*2
/CS1*2
DQ0
to DQ3
/CS DQS /DQS
RS
DQS /DQS
RS
/DQS7
CB0 to CB3
D6
DM /CS
RS
DQS7
DQ56 to DQ59
DQS /DQS
/CS DQS /DQS
DQ0
to DQ3
DM
DQ44 to DQ47
RS
DQS6
/DQS6
RS
DQS /DQS
D23
DM
DQ0
to DQ3
D11
RS
DM
D22
D28
RS
DQS /DQS
DQ36 to DQ39
/CS DQS /DQS
DQ0
to DQ3
D10
/CS DQS /DQS
DQ0
to DQ3
DM
/DQS13
DM /CS
RS
4
4
DQS13
D27
RS
DQ28 to DQ31
RS
RS
DQS4
/CS DQS /DQS
RS
DQS /DQS
D21
DM
/CS DQS /DQS
DQ0
to DQ3
DM
DQ20 to DQ23
RS
DQS /DQS
RS
4
DQS /DQS
D20
DM
DQ0
to DQ3
D9
RS
DM
DQ12 to DQ15
D19
/CS DQS /DQS
DQ0
to DQ3
RS
DQS /DQS
/DQS11
DM /CS
DQ40 to DQ43
DQS /DQS
DM /CS
RS
/DQS3
DQ32 to DQ35
DM
RS
4
DQ4 to /DQ7
RS
4
RS
DQS /DQS
D18
/DQS10
DM /CS
DQ24 to DQ27
DM /CS
DQ0
to DQ3
RS
/DQS2
DQ16 to DQ19
DQS /DQS
D0
RS
RS
DM /CS
DQ8 to DQ11
RS
DQS9
/DQS9
/Err_Out
VSS
VDD
D0 to D35
C0 Register
C1
PAR_IN
/PCK7*3
VDD
VDD
PCK0 to PCK6, PCK8, PCK9 -> CK: SDRAMs D0 to D35
/PCK0 to /PCK6, /PCK8, /PCK9 -> /CK: SDRAMs D0 to D35
PCK7 -> CK: register
/PCK7 -> /CK: register
D0 to D35: 512M bits DDR2 SDRAM
U0: 2k bits EEPROM
RS: 22Ω
PLL: CUA877
Register: SSTUA32866
B1
PPO
/QERR
PPO
/QERR
C0 Register
C1
PAR_IN
A2
B2
PPO
/QERR
Register A1 and A2 share the a part of
Address and Command input signal set.
Register B1 and B2 share the rest part of
Address and Command input signal set.
Notes:
1. DQ wring may be changed within a nibble.
2. /CS0 connects to D/CS and /CS1 connects to /CSR on
register1 and register2.
/CS1 connects to D/CS and /CS0 connects to /CSR on
register3 and register4.
3. /RESET, PCK7 and /PCK7 connect to all registers.
CKE and /ODT connect to a register.
Other signals connect to two of four registers.
Preliminary Data Sheet E0866E11 (Ver. 1.1)
8
EBE21AD4AGFA
Differential Clock Net Wiring (CK0, /CK0)
0ns (nominal)
SDRAM
PLL
120Ω
OUT1
SDRAM
120Ω
CK0
IN
/CK0
Register 1
C
120Ω
C
120Ω
Register 3
120Ω
OUT'N'
Feedback in
Register 2
C
Feedback out
Register 4
Notes: 1. The clock delay from the input of the PLL clock to the input of any SDRAM or register willl
be set to 0ns (nominal).
2. Input, output and feedback clock lines are terminated from line to line as shown, and not
from line to ground.
3. Only one PLL output is shown per output type. Any additional PLL outputs will be wired
in a similar manner.
4. Termination resistors for the PLL feedback path clocks are located as close to the
input pin of the PLL as possible.
Preliminary Data Sheet E0866E11 (Ver. 1.1)
9
EBE21AD4AGFA
Electrical Specifications
• All voltages are referenced to VSS (GND).
Absolute Maximum Ratings
Parameter
Symbol
Value
Unit
Note
Voltage on any pin relative to VSS
VT
–0.5 to +2.3
V
1
Supply voltage relative to VSS
VDD
–0.5 to +2.3
V
Short circuit output current
IOS
50
mA
Power dissipation
PD
18
W
1
Operating case temperature
TC
0 to +95
°C
1, 2
Storage temperature
Tstg
–55 to +100
°C
1
Notes: 1 DDR2 SDRAM component specification.
2. Supporting 0°C to +85°C and being able to extend to +95°C with doubling auto-refresh commands in
frequency to a 32ms period (tREFI = 3.9µs) and higher temperature self-refresh entry via the control of
EMRS (2) bit A7 is required.
Caution
Exposing the device to stress above those listed in Absolute Maximum Ratings could cause
permanent damage. The device is not meant to be operated under conditions outside the limits
described in the operational section of this specification. Exposure to Absolute Maximum Rating
conditions for extended periods may affect device reliability.
DC Operating Conditions (TC = 0°C to +85°C) (DDR2 SDRAM Component Specification)
Parameter
Symbol
min.
typ.
max.
Unit
Notes
Supply voltage
VDD, VDDQ
1.7
1.8
1.9
V
4
VSS
0
0
0
V
3.6
VDDSPD
1.7
—
Input reference voltage
VREF
0.49 × VDDQ
0.50 × VDDQ 0.51 × VDDQ
V
V
1, 2
Termination voltage
VTT
VREF − 0.04
VREF
VREF + 0.04
V
3
DC input logic high
VIH (DC)
VREF + 0.125

VDDQ + 0.3
V
DC input low
VIL (DC)
−0.3

VREF – 0.125
V
AC input logic high
-6E
VIH (AC)
VREF + 0.200


V
-5C, -4A
VIH (AC)
VREF + 0.250


V
AC input low
-6E
VIL (AC)


VREF – 0.200
V
-5C, -4A
VIL (AC)


VREF − 0.250
V
Notes: 1. The value of VREF may be selected by the user to provide optimum noise margin in the system. Typically
the value of VREF is expected to be about 0.5 × VDDQ of the transmitting device and VREF are expected
to track variations in VDDQ.
2. Peak to peak AC noise on VREF may not exceed ±2% VREF (DC).
3. VTT of transmitting device must track VREF of receiving device.
4. VDDQ must be equal to VDD.
Preliminary Data Sheet E0866E11 (Ver. 1.1)
10
EBE21AD4AGFA
DC Characteristics 1 (TC = 0°C to +85°C, VDD = 1.8V ± 0.1V, VSS = 0V)
Parameter
Operating current
(ACT-PRE)
Operating current
(ACT-READ-PRE)
Precharge power-down
standby current
Precharge quiet standby
current
Idle standby current
Active power-down
standby current
Active standby current
Operating current
(Burst read operating)
Operating current
(Burst write operating)
Symbol
IDD0
Grade
-6E
-5C
-4A
max
3970
3660
3250
Unit
Test condition
mA
one bank; tCK = tCK (IDD), tRC = tRC (IDD),
tRAS = tRAS min.(IDD);
CKE is H, /CS is H between valid commands;
Address bus inputs are SWITCHING;
Data bus inputs are SWITCHING
mA
one bank; IOUT = 0mA;
BL = 4, CL = CL(IDD), AL = 0;
tCK = tCK (IDD), tRC = tRC (IDD),
tRAS = tRAS min.(IDD); tRCD = tRCD (IDD);
CKE is H, /CS is H between valid commands;
Address bus inputs are SWITCHING;
Data pattern is same as IDD4W
mA
all banks idle;
tCK = tCK (IDD);
CKE is L;
Other control and address bus inputs are STABLE;
Data bus inputs are FLOATING
mA
all banks idle;
tCK = tCK (IDD);
CKE is H, /CS is H;
Other control and address bus inputs are STABLE;
Data bus inputs are FLOATING
mA
all banks idle;
tCK = tCK (IDD);
CKE is H, /CS is H;
Other control and address bus inputs are
SWITCHING;
Data bus inputs are SWITCHING
IDD1
-6E
-5C
-4A
4320
3980
3560
IDD2P
-6E
-5C
-4A
970
930
810
IDD2Q
-6E
-5C
-4A
1510
1470
1250
-6E
-5C
-4A
1870
1650
1430
-6E
IDD3P-F -5C
-4A
2050
2010
1790
mA
-6E
IDD3P-S -5C
-4A
1510
1470
1250
mA
-6E
-5C
-4A
3160
2940
2710
mA
IDD2N
IDD3N
IDD4R
IDD4W
-6E
-5C
-4A
-6E
-5C
-4A
5620
4830
4140
5440
4830
4140
all banks open;
tCK = tCK (IDD);
Fast PDN Exit
CKE is L;
MRS(12) = 0
Other control and
address bus inputs are
STABLE;
Slow PDN Exit
Data bus inputs are
MRS(12) = 1
FLOATING
all banks open;
tCK = tCK (IDD), tRAS = tRAS max.(IDD),
tRP = tRP (IDD);
CKE is H, /CS is H between valid commands;
Other control and address bus inputs are
SWITCHING;
Data bus inputs are SWITCHING
mA
all banks open, continuous burst reads, IOUT = 0mA;
BL = 4, CL = CL(IDD), AL = 0;
tCK = tCK (IDD), tRAS = tRAS max.(IDD),
tRP = tRP (IDD);
CKE is H, /CS is H between valid commands;
Address bus inputs are SWITCHING;
Data pattern is same as IDD4W
mA
all banks open, continuous burst writes;
BL = 4, CL = CL(IDD), AL = 0;
tCK = tCK (IDD), tRAS = tRAS max.(IDD),
tRP = tRP (IDD);
CKE is H, /CS is H between valid commands;
Address bus inputs are SWITCHING;
Data bus inputs are SWITCHING
Preliminary Data Sheet E0866E11 (Ver. 1.1)
11
EBE21AD4AGFA
Parameter
Auto-refresh current
Self-refresh current
Operating current
(Bank interleaving)
Symbol
Grade
max
IDD5
-6E
-5C
-4A
6790
6200
5710
IDD6
IDD7
310
-6E
-5C
-4A
7730
7420
6850
Unit
Test condition
mA
tCK = tCK (IDD);
Refresh command at every tRFC (IDD) interval;
CKE is H, /CS is H between valid commands;
Other control and address bus inputs are SWITCHING;
Data bus inputs are SWITCHING
mA
Self Refresh Mode;
CK and /CK at 0V;
CKE ≤ 0.2V;
Other control and address bus inputs are FLOATING;
Data bus inputs are FLOATING
mA
all bank interleaving reads, IOUT = 0mA;
BL = 4, CL = CL(IDD), AL = tRCD (IDD) −1 × tCK (IDD);
tCK = tCK (IDD), tRC = tRC (IDD), tRRD = tRRD(IDD),
tRCD = 1 × tCK (IDD);
CKE is H, CS is H between valid commands;
Address bus inputs are STABLE during DESELECTs;
Data pattern is same as IDD4W;
Notes: 1.
2.
3.
4.
IDD specifications are tested after the device is properly initialized.
Input slew rate is specified by AC Input Test Condition.
IDD parameters are specified with ODT disabled.
Data bus consists of DQ, DM, DQS, /DQS, RDQS, /RDQS, LDQS, /LDQS, UDQS, and /UDQS. IDD
values must be met with all combinations of EMRS bits 10 and 11.
5. Definitions for IDD
L is defined as VIN ≤ VIL (AC) (max.)
H is defined as VIN ≥ VIH (AC) (min.)
STABLE is defined as inputs stable at an H or L level
FLOATING is defined as inputs at VREF = VDDQ/2
SWITCHING is defined as:
inputs changing between H and L every other clock cycle (once per two clocks) for address and control
signals, and inputs changing between H and L every other data transfer (once per clock) for DQ signals
not including masks or strobes.
6. Refer to AC Timing for IDD Test Conditions.
AC Timing for IDD Test Conditions
For purposes of IDD testing, the following parameters are to be utilized.
DDR2-667
DDR2-533
DDR2-400
Parameter
5-5-5
4-4-4
3-3-3
Unit
CL(IDD)
5
4
3
tCK
tRCD(IDD)
15
15
15
ns
tRC(IDD)
60
60
55
ns
tRRD(IDD)
7.5
7.5
7.5
ns
tCK(IDD)
3
3.75
5
ns
tRAS(min.)(IDD)
45
45
40
ns
tRAS(max.)(IDD)
70000
70000
70000
ns
tRP(IDD)
15
15
15
ns
tRFC(IDD)
105
105
105
ns
Preliminary Data Sheet E0866E11 (Ver. 1.1)
12
EBE21AD4AGFA
DC Characteristics 2 (TC = 0°C to +85°C, VDD, VDDQ = 1.8V ± 0.1V)
(DDR2 SDRAM Component Specification)
Parameter
Symbol
Value
Unit
Notes
Input leakage current
ILI
2
µA
VDD ≥ VIN ≥ VSS
Output leakage current
ILO
5
µA
VDDQ ≥ VOUT ≥ VSS
VTT + 0.603
V
5
VTT − 0.603
V
5
Output timing measurement reference level VOTR
0.5 × VDDQ
V
1
Output minimum sink DC current
IOL
+13.4
mA
3, 4, 5
Output minimum source DC current
IOH
−13.4
mA
2, 4, 5
Minimum required output pull-up under AC
VOH
test load
Maximum required output pull-down under
VOL
AC test load
Notes: 1.
2.
3.
4.
5.
The VDDQ of the device under test is referenced.
VDDQ = 1.7V; VOUT = 1.42V.
VDDQ = 1.7V; VOUT = 0.28V.
The DC value of VREF applied to the receiving device is expected to be set to VTT.
After OCD calibration to 18Ω at TC = 25°C, VDD = VDDQ = 1.8V.
DC Characteristics 3 (TC = 0°C to +85°C, VDD, VDDQ = 1.8V ± 0.1V)
(DDR2 SDRAM Component Specification)
Parameter
Symbol
min.
max.
Unit
Notes
AC differential input voltage
VID (AC)
0.5
VDDQ + 0.6
V
1, 2
AC differential cross point voltage
VIX (AC)
0.5 × VDDQ − 0.175
0.5 × VDDQ + 0.175
V
2
AC differential cross point voltage
VOX (AC)
0.5 × VDDQ − 0.125
0.5 × VDDQ + 0.125
V
3
Notes: 1. VID(AC) specifies the input differential voltage |VTR -VCP| required for switching, where VTR is the true
input signal (such as CK, DQS, LDQS or UDQS) and VCP is the complementary input signal (such as
/CK, /DQS, /LDQS or /UDQS). The minimum value is equal to VIH(AC) − VIL(AC).
2. The typical value of VIX(AC) is expected to be about 0.5 × VDDQ of the transmitting device and VIX(AC)
is expected to track variations in VDDQ . VIX(AC) indicates the voltage at which differential input signals
must cross.
3. The typical value of VOX(AC) is expected to be about 0.5 × VDDQ of the transmitting device and
VOX(AC) is expected to track variations in VDDQ . VOX(AC) indicates the voltage at which differential
output signals must cross.
VDDQ
VTR
Crossing point
VID
VIX or VOX
VCP
VSSQ
Differential Signal Levels*1, 2
Preliminary Data Sheet E0866E11 (Ver. 1.1)
13
EBE21AD4AGFA
ODT DC Electrical Characteristics (TC = 0°C to +85°C, VDD, VDDQ = 1.8V ± 0.1V)
(DDR2 SDRAM Component Specification)
Parameter
Symbol
min
typ
max
Unit
Note
Rtt effective impedance value for EMRS (A6, A2) = 0, 1; 75 Ω
Rtt1(eff)
60
75
90
Ω
1
Rtt effective impedance value for EMRS (A6, A2) = 1, 0; 150 Ω
Rtt2(eff)
120
150
180
Ω
1
Rtt effective impedance value for EMRS (A6, A2) = 1, 1; 50 Ω
Rtt3(eff)
40
50
60
Ω
1
Deviation of VM with respect to VDDQ/2
∆VM
−6

+6
%
1
Note: 1. Test condition for Rtt measurements.
Measurement Definition for Rtt(eff)
Apply VIH (AC) and VIL (AC) to test pin separately, then measure current I(VIH(AC)) and I(VIL(AC)) respectively.
VIH(AC), and VDDQ values defined in SSTL_18.
Rtt(eff) =
VIH(AC) − VIL(AC)
I(VIH(AC)) − I(VIL(AC))
Measurement Definition for ∆VM
Measure voltage (VM) at test pin (midpoint) with no load.
∆VM =
2 × VM
VDDQ
− 1 × 100%
OCD Default Characteristics (TC = 0°C to +85°C, VDD, VDDQ = 1.8V ± 0.1V)
(DDR2 SDRAM Component Specification)
Parameter
min
typ
max
Unit
Notes
Output impedance
12.6
18
23.4
Ω
1
Pull-up and pull-down mismatch
0

4
Ω
1, 2
Output slew rate
1.5

5
V/ns
3, 4
Notes: 1. Impedance measurement condition for output source DC current: VDDQ = 1.7V; VOUT = 1420mV;
(VOUT−VDDQ)/IOH must be less than 23.4Ω for values of VOUT between VDDQ and VDDQ−280mV.
Impedance measurement condition for output sink DC current: VDDQ = 1.7V; VOUT = 280mV;
VOUT/IOL must be less than 23.4Ω for values of VOUT between 0V and 280mV.
2. Mismatch is absolute value between pull up and pull down, both are measured at same temperature and
voltage.
3. Slew rate measured from VIL(AC) to VIH(AC).
4. The absolute value of the slew rate as measured from DC to DC is equal to or greater than the slew rate
as measured from AC to AC. This is guaranteed by design and characterization.
Preliminary Data Sheet E0866E11 (Ver. 1.1)
14
EBE21AD4AGFA
Pin Capacitance (TA = 25°C, VDD = 1.8V ± 0.1V)
Parameter
Symbol
Pins
min.
max.
Unit
Notes
Input capacitance
CI1
Address, /RAS, /CAS, /WE,
/CS, CKE, ODT
2.5
3.5
pF
1
Input capacitance
CI2
CK, /CK
2
3
pF
2
Data and DQS input/output
capacitance
-6E
CO
DQ, DQS, /DQS, CB
2.5
3.5
pF
3
2.5
4.0
pF
3
-5C, -4A
Notes: 1. Register component specification.
2. PLL component specification.
3. DDR2 SDRAM component specification.
Preliminary Data Sheet E0866E11 (Ver. 1.1)
15
EBE21AD4AGFA
AC Characteristics (TC = 0°C to +85°C , VDD, VDDQ = 1.8V ± 0.1V, VSS = 0V)
(DDR2 SDRAM Component Specification)
Frequency (Mbps)
-6E
-5C
-4A
667
533
400
Parameter
Symbol
min.
max.
min.
max.
min.
max.
Unit
/CAS latency
CL
5
5
4
5
3
5
tCK
Active to read or write
command delay
tRCD
15

15

15

ns
Precharge command period
tRP
15

15

15

ns
tRC
60

60

55

ns
tAC
−450
+450
−500
+500
−600
+600
ps
tDQSCK −400
+400
−450
+450
−500
+500
ps
CK high-level width
tCH
0.45
0.55
0.45
0.55
0.45
0.55
tCK
CK low-level width
tCL
0.45
0.55
0.45
0.55
0.45
0.55
tCK
CK half period
tHP
min.
(tCL, tCH)

min.
(tCL, tCH)

min.
(tCL, tCH)

ps
Clock cycle time
tCK
3000
8000
3750
8000
5000
8000
ps
DQ and DM input hold time
tDH
175

225

275

ps
5
DQ and DM input setup time
tDS
100

100

150

ps
4
tIPW
0.6

0.6

0.6

tCK
tDIPW
0.35

0.35

0.35

tCK
tHZ

tAC max.

tAC max.

tAC max.
ps
tLZ
tAC min.
tAC max.
tAC min.
tAC max.
tAC min.
tAC max.
ps
tDQSQ

240

300

350
ps
tQHS

340

400

450
ps

tHP –
tQHS

tHP –
tQHS

ps
Active to active/auto refresh
command time
DQ output access time from
CK, /CK
DQS output access time from
CK, /CK
Control and Address input
pulse width for each input
DQ and DM input pulse width
for each input
Data-out high-impedance time
from CK,/CK
Data-out low-impedance time
from CK,/CK
DQS-DQ skew for DQS and
associated DQ signals
DQ hold skew factor
DQ/DQS output hold time from
tQH
DQS
Write command to first DQS
tDQSS
latching transition
tHP –
tQHS
DQS input high pulse width
tDQSH
0.35

0.35

0.35

tCK
DQS input low pulse width
tDQSL
0.35

0.35

0.35

tCK
0.2

0.2

0.2

tCK
0.2

0.2

0.2

tCK
2

2

2

tCK
DQS falling edge to CK setup
tDSS
time
DQS falling edge hold time from
tDSH
CK
Mode register set command
tMRD
cycle time
Notes
WL − 0.25 WL + 0.25 WL − 0.25 WL + 0.25 WL − 0.25 WL + 0.25 tCK
Write postamble
tWPST
0.4
0.6
0.4
0.6
0.4
0.6
tCK
Write preamble
tWPRE
0.35

0.35

0.35

tCK
275

375

475

ps
5
200

250

350

ps
4
Address and control input hold
tIH
time
Address and control input setup
tIS
time
Read preamble
tRPRE
0.9
1.1
0.9
1.1
0.9
1.1
tCK
Read postamble
tRPST
0.4
0.6
0.4
0.6
0.4
0.6
tCK
Preliminary Data Sheet E0866E11 (Ver. 1.1)
16
EBE21AD4AGFA
Frequency (Mbps)
-6E
-5C
-4A
667
533
400
Parameter
Symbol
min.
max.
min.
max.
min.
max.
Unit
Active to precharge command
tRAS
45
70000
45
70000
40
70000
ns
Active to auto-precharge delay tRAP
tRCD min. 
Active bank A to active bank B
command period
tRRD
7.5

7.5

Write recovery time
tWR
15

15

tDAL
(tWR/tCK)+

(tRP/tCK)
tWTR
7.5

7.5

10

ns
tRTP
7.5

7.5

7.5

ns
tXSNR
tRFC + 10 
tRFC + 10 
ns
tXSRD
200

200

200

tCK
tXP
2

2

2

tCK
tXARD
2

2

2

tCK
3
tXARDS 7− AL

6 − AL

6 − AL

tCK
2, 3
tCKE
3

3

3

tCK
tOIT
0
12
0
12
0
12
ns
tRFC
105

105

105

ns
tREFI

7.8

7.8

7.8
µs
tREFI

3.9

3.9

3.9
µs
tDELAY
tIS + tCK +

tIH
Auto precharge write recovery
+ precharge time
Internal write to read command
delay
Internal read to precharge
command delay
Exit self refresh to a non-read
command
Exit self refresh to a read
command
Exit precharge power down to
any non-read command
Exit active power down to read
command
Exit active power down to read
command
(slow exit/low power mode)
CKE minimum pulse width (high
and low pulse width)
Output impedance test driver
delay
Auto refresh to active/auto
refresh command time
Average periodic refresh
interval
(0°C ≤ TC ≤ +85°C)
(+85°C < TC ≤ +95°C)
Minimum time clocks remains
ON after CKE asynchronously
drops low
tRCD min. 
tRCD min. 
ns
7.5

ns
15

ns
Notes
(tWR/tCK)+

(tRP/tCK)
(tWR/tCK)+

(tRP/tCK)
tRFC + 10 
tIS + tCK +

tIH
tIS + tCK +

tIH
tCK
1
ns
Notes: 1.
2.
3.
4.
For each of the terms above, if not already an integer, round to the next higher integer.
AL: Additive Latency.
MRS A12 bit defines which active power down exit timing to be applied.
The figures of Input Waveform Timing 1 and 2 are referenced from the input signal crossing at the
VIH(AC) level for a rising signal and VIL(AC) for a falling signal applied to the device under test.
5. The figures of Input Waveform Timing 1 and 2 are referenced from the input signal crossing at the
VIH(DC) level for a rising signal and VIL(DC) for a falling signal applied to the device under test.
DQS
CK
/DQS
/CK
tDS
tDH
tDS
tIS
tDH
tIH
tIS
tIH
VDDQ
VIH (AC)(min.)
VIH (DC)(min.)
VREF
VIL (DC)(max.)
VIL (AC)(max.)
VSS
VDDQ
VIH (AC)(min.)
VIH (DC)(min.)
VREF
VIL (DC)(max.)
VIL (AC)(max.)
VSS
Input Waveform Timing 1 (tDS, tDH)
Input Waveform Timing 2 (tIS, tIH)
Preliminary Data Sheet E0866E11 (Ver. 1.1)
17
EBE21AD4AGFA
ODT AC Electrical Characteristics (DDR2 SDRAM Component Specification)
Parameter
Symbol
min
max
Unit
ODT turn-on delay
tAOND
2
2
tCK
ODT turn-on
-6E
tAON
tAC(min)
tAC(max) + 700
ps
1
-5C, -4A
tAON
tAC(min)
tAC(max) + 1000
ps
1
tAONPD
tAC(min) + 2000
2tCK + tAC(max) + 1000
ps
ODT turn-on (power down mode)
ODT turn-off delay
tAOFD
2.5
2.5
tCK
ODT turn-off
tAOF
tAC(min)
tAC(max) + 600
ps
ODT turn-off (power down mode)
tAOFPD
tAC(min) + 2000
2.5tCK + tAC(max) + 1000
ps
ODT to power down entry latency
tANPD
3
3
tCK
ODT power down exit latency
tAXPD
8
8
tCK
Notes
2
Notes: 1. ODT turn on time min is when the device leaves high impedance and ODT resistance begins to turn on.
ODT turn on time max is when the ODT resistance is fully on. Both are measured from tAOND.
2. ODT turn off time min is when the device starts to turn off ODT resistance.
ODT turn off time max is when the bus is in high impedance. Both are measured from tAOFD.
AC Input Test Conditions
Parameter
Symbol
Value
Unit
Notes
Input reference voltage
VREF
0.5 × VDDQ
V
1
Input signal maximum peak to peak swing
VSWING(max.)
1.0
V
1
Input signal maximum slew rate
SLEW
1.0
V/ns
2, 3
Notes: 1. Input waveform timing is referenced to the input signal crossing through the VREF level applied to the
device under test.
2. The input signal minimum slew rate is to be maintained over the range from VIL(DC) (max.) to VIH(AC)
(min.) for rising edges and the range from VIH(DC) (min.) to VIL(AC) (max.) for falling edges as shown in
the below figure.
3. AC timings are referenced with input waveforms switching from VIL(AC) to VIH(AC) on the positive
transitions and VIH(AC) to VIL(AC) on the negative transitions.
Start of rising edge input timing
Start of falling edge input timing
VDDQ
VIH (AC)(min.)
VIH (DC)(min.)
VSWING(max.)
VREF
VIL (DC)(max.)
VIL (AC)(max.)
Falling slew =
VSS
∆TR
∆TF
VIH (DC)(min.) − VIL (AC)(max.)
Rising slew =
∆TF
VIH (AC) min. − VIL (DC)(max.)
AC Input Test Signal Wave forms
Measurement point
DQ
VTT
RT =25 Ω
Output Load
Preliminary Data Sheet E0866E11 (Ver. 1.1)
18
∆TR
EBE21AD4AGFA
Pin Functions
CK, /CK (input pin)
The CK and the /CK are the master clock inputs. All inputs except DMs, DQSs and DQs are referred to the cross
point of the CK rising edge and the VREF level. When a read operation, DQSs and DQs are referred to the cross
point of the CK and the /CK. When a write operation, DQs are referred to the cross point of the DQS and the VREF
level. DQSs for write operation are referred to the cross point of the CK and the /CK.
/CS (input pin)
When /CS is low, commands and data can be input. When /CS is high, all inputs are ignored. However, internal
operations (bank active, burst operations, etc.) are held.
/RAS, /CAS, and /WE (input pins)
These pins define operating commands (read, write, etc.) depending on the combinations of their voltage levels.
See "Command operation".
A0 to A13 (input pins)
Row address (AX0 to AX13) is determined by the A0 to the A13 level at the cross point of the CK rising edge and the
VREF level in a bank active command cycle. Column address (AY0 to AY9, AY11) is loaded via the A0 to the A9
and A11 at the cross point of the CK rising edge and the VREF level in a read or a write command cycle. This
column address becomes the starting address of a burst operation.
A10 (AP) (input pin)
A10 defines the precharge mode when a precharge command, a read command or a write command is issued. If
A10 = high when a precharge command is issued, all banks are precharged. If A10 = low when a precharge
command is issued, only the bank that is selected by BA1, BA0 is precharged. If A10 = high when read or write
command, auto-precharge function is enabled. While A10 = low, auto-precharge function is disabled.
BA0, BA1 (input pin)
BA0, BA1 are bank select signals (BA). The memory array is divided into bank 0, bank 1, bank 2 and bank 3. (See
Bank Select Signal Table)
[Bank Select Signal Table]
BA0
BA1
Bank 0
L
L
Bank 1
H
L
Bank 2
L
H
Bank 3
H
H
Remark: H: VIH. L: VIL.
CKE (input pin)
CKE controls power down and self-refresh. The power down and the self-refresh commands are entered when the
CKE is driven low and exited when it resumes to high.
The CKE level must be kept for 1 CK cycle at least, that is, if CKE changes at the cross point of the CK rising edge
and the VREF level with proper setup time tIS, at the next CK rising edge CKE level must be kept with proper hold
time tIH.
DQ, CB (input and output pins)
Data are input to and output from these pins.
DQS (input and output pin)
DQS and /DQS provide the read data strobes (as output) and the write data strobes (as input).
Preliminary Data Sheet E0866E11 (Ver. 1.1)
19
EBE21AD4AGFA
VDD (power supply pins)
1.8V is applied. (VDD is for the internal circuit.)
VDDSPD (power supply pin)
1.8V is applied (For serial EEPROM).
VSS (power supply pin)
Ground is connected.
/RESET (input pin)
LVCMOS reset input. When /RESET is Low, all registers are reset.
Par_IN (Parity input pin)
Parity bit for the address and control bus.
/Err_Out (Error output pin)
Parity error found on the address and control bus.
Detailed Operation Part and Timing Waveforms
Refer to the EDE5104AGSE, EDE5108AGSE datasheet (E0715E). DM pins of component device fixed to VSS level
on the module board. DIMM /CAS latency = component CL + 1 for registered type.
Preliminary Data Sheet E0866E11 (Ver. 1.1)
20
EBE21AD4AGFA
Physical Outline
Unit: mm
4.00 max
0.5 min
4.00 min
(DATUM -A-)
Component area
(Front)
1
120
B
A
63.00
1.27 ± 0.10
55.00
4.00
Component area
(Back)
FULL R
30.00
240
17.80
121
10.00
133.35
3.00
Detail B
(DATUM -A-)
1.00
4.00
0.20 ± 0.15
2.50 ± 0.20
Detail A
2.50
FULL R
0.80 ± 0.05
3.80
5.00
1.50 ± 0.10
ECA-TS2-0093-01
Preliminary Data Sheet E0866E11 (Ver. 1.1)
21
EBE21AD4AGFA
CAUTION FOR HANDLING MEMORY MODULES
When handling or inserting memory modules, be sure not to touch any components on the modules, such as
the memory ICs, chip capacitors and chip resistors. It is necessary to avoid undue mechanical stress on
these components to prevent damaging them.
In particular, do not push module cover or drop the modules in order to protect from mechanical defects,
which would be electrical defects.
When re-packing memory modules, be sure the modules are not touching each other.
Modules in contact with other modules may cause excessive mechanical stress, which may damage the
modules.
MDE0202
NOTES FOR CMOS DEVICES
1
PRECAUTION AGAINST ESD FOR MOS DEVICES
Exposing the MOS devices to a strong electric field can cause destruction of the gate
oxide and ultimately degrade the MOS devices operation. Steps must be taken to stop
generation of static electricity as much as possible, and quickly dissipate it, when once
it has occurred. Environmental control must be adequate. When it is dry, humidifier
should be used. It is recommended to avoid using insulators that easily build static
electricity. MOS devices must be stored and transported in an anti-static container,
static shielding bag or conductive material. All test and measurement tools including
work bench and floor should be grounded. The operator should be grounded using
wrist strap. MOS devices must not be touched with bare hands. Similar precautions
need to be taken for PW boards with semiconductor MOS devices on it.
2
HANDLING OF UNUSED INPUT PINS FOR CMOS DEVICES
No connection for CMOS devices input pins can be a cause of malfunction. If no
connection is provided to the input pins, it is possible that an internal input level may be
generated due to noise, etc., hence causing malfunction. CMOS devices behave
differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed
high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected
to VDD or GND with a resistor, if it is considered to have a possibility of being an output
pin. The unused pins must be handled in accordance with the related specifications.
3
STATUS BEFORE INITIALIZATION OF MOS DEVICES
Power-on does not necessarily define initial status of MOS devices. Production process
of MOS does not define the initial operation status of the device. Immediately after the
power source is turned ON, the MOS devices with reset function have not yet been
initialized. Hence, power-on does not guarantee output pin levels, I/O settings or
contents of registers. MOS devices are not initialized until the reset signal is received.
Reset operation must be executed immediately after power-on for MOS devices having
reset function.
CME0107
Preliminary Data Sheet E0866E11 (Ver. 1.1)
22
EBE21AD4AGFA
The information in this document is subject to change without notice. Before using this document, confirm that this is the latest version.
No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Elpida Memory, Inc.
Elpida Memory, Inc. does not assume any liability for infringement of any intellectual property rights
(including but not limited to patents, copyrights, and circuit layout licenses) of Elpida Memory, Inc. or
third parties by or arising from the use of the products or information listed in this document. No license,
express, implied or otherwise, is granted under any patents, copyrights or other intellectual property
rights of Elpida Memory, Inc. or others.
Descriptions of circuits, software and other related information in this document are provided for
illustrative purposes in semiconductor product operation and application examples. The incorporation of
these circuits, software and information in the design of the customer's equipment shall be done under
the full responsibility of the customer. Elpida Memory, Inc. assumes no responsibility for any losses
incurred by customers or third parties arising from the use of these circuits, software and information.
[Product applications]
Elpida Memory, Inc. makes every attempt to ensure that its products are of high quality and reliability.
However, users are instructed to contact Elpida Memory's sales office before using the product in
aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment,
medical equipment for life support, or other such application in which especially high quality and
reliability is demanded or where its failure or malfunction may directly threaten human life or cause risk
of bodily injury.
[Product usage]
Design your application so that the product is used within the ranges and conditions guaranteed by
Elpida Memory, Inc., including the maximum ratings, operating supply voltage range, heat radiation
characteristics, installation conditions and other related characteristics. Elpida Memory, Inc. bears no
responsibility for failure or damage when the product is used beyond the guaranteed ranges and
conditions. Even within the guaranteed ranges and conditions, consider normally foreseeable failure
rates or failure modes in semiconductor devices and employ systemic measures such as fail-safes, so
that the equipment incorporating Elpida Memory, Inc. products does not cause bodily injury, fire or other
consequential damage due to the operation of the Elpida Memory, Inc. product.
[Usage environment]
This product is not designed to be resistant to electromagnetic waves or radiation. This product must be
used in a non-condensing environment.
If you export the products or technology described in this document that are controlled by the Foreign
Exchange and Foreign Trade Law of Japan, you must follow the necessary procedures in accordance
with the relevant laws and regulations of Japan. Also, if you export products/technology controlled by
U.S. export control regulations, or another country's export control laws or regulations, you must follow
the necessary procedures in accordance with such laws or regulations.
If these products/technology are sold, leased, or transferred to a third party, or a third party is granted
license to use these products, that third party must be made aware that they are responsible for
compliance with the relevant laws and regulations.
M01E0107
Preliminary Data Sheet E0866E11 (Ver. 1.1)
23