EN29SL160 EN29SL160 16 Megabit (2048K x 8-bit / 1024K x 16-bit) Flash Memory Boot Sector Flash Memory, CMOS 1.8 Volt-only FEATURES • Single power supply operation - Full voltage range:1.65-2.2 volt for read and write operations. - Regulated voltage range: 1.8-2.2 volt read and write operations • High performance - Access times as fast as 90 ns • High performance program/erase speed - Byte/Word program time: 5µs/7µs typical - Sector erase time: 500ms typical • JEDEC Standard Embedded Erase and Program Algorithms • JEDEC standard DATA# polling and toggle bits feature • Low power consumption (typical values at 5 MHz) - 7 mA typical active read current - 15 mA typical program/erase current - 0.2 μA typical standby current • Unlock Bypass Program command supported • Single Sector and Chip Erase • Sector Unprotect Mode • Flexible Sector Architecture: - Eight 8-Kbyte and thirty-one 64-Kbyte sectors (byte mode) - Eight 4-Kword and thirty-one 32-Kword sectors (word mode) • WP#/ACC Input pin: - Write protect (WP#) function allows protection of two outermost boot sectors, regardless of sector protect status - Acceleration (ACC) function acceleration program timing. • Sector protection: - Hardware locking of sectors to prevent program or erase operations within individual sectors - Additionally, temporary Sector Unprotect allows code changes in previously locked sectors. • Erase Suspend / Resume modes: Read or program another Sector during Erase Suspend Mode • Low Vcc write inhibit < 1.2V • Minimum 100K endurance cycle • - Package Options 48-pin TSOP (Type 1) 48-ball 6mm x 8mm TFBGA 48-ball 5mm x 6mm WFBGA 48-ball 5mm x 6mm WLGA • Commercial and industrial temperature Range GENERAL DESCRIPTION The EN29SL160 is an 16-Megabit, electrically erasable, read/write non-volatile flash memory, organized as 2,097,152 bytes or 1,048,576 words. Any byte can be programmed typically in 5µs. The EN29SL160 features 1.8V voltage read and write operation, with access time as fast as 90ns to eliminate the need for WAIT statements in high-performance microprocessor systems. The EN29SL160 has separate Output Enable (OE#), Chip Enable (CE#), and Write Enable (WE#) controls, which eliminate bus contention issues. This device is designed to allow either single Sector or full chip erase operation, where each sector can be individually protected against program/erase operations or temporarily unprotected to erase or program. The device can sustain a minimum of 100K program/erase cycles on each sector. This Data Sheet may be revised by subsequent versions 1 or modifications due to changes in technical specifications. ©2004 Eon Silicon Solution, Inc., www.eonssi.com Rev. G, Issue Date: 2008/09/09 EN29SL160 CONNECTION DIAGRAMS A15 A14 A13 A12 A11 A10 A9 A8 A19 NC WE# RESET# NC WP#/ACC RY/BY# A18 A17 A7 A6 A5 A4 A3 A2 A1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Standard TSOP This Data Sheet may be revised by subsequent versions or modifications due to changes in technical specifications. 2 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 ©2004 Eon Silicon Solution, Inc., www.eonssi.com Rev. G, Issue Date: 2008/09/09 A16 BYTE# Vss DQ15/A-1 DQ7 DQ14 DQ6 DQ13 DQ5 DQ12 DQ4 Vcc DQ11 DQ3 DQ10 DQ2 DQ9 DQ1 DQ8 DQ0 OE# Vss CE# A0 EN29SL160 WFBGA and WLGA Top View, Balls Facing Down A6 A2 A5 A1 A4 A0 A3 CE# A2 VSS B6 A4 B5 A3 B4 A5 B3 DQ8 B2 OE# B1 DQ0 C6 A6 C5 A7 D6 F6 E6 A17 NC NC G6 WE# H6 Reset# H5 D5 WP WP#/ACC #/A NC C4 DQ1 A10 I3 DQ10 C1 I5 A8 C3 DQ9 A9 I4 A18 C2 I6 DQ4 H2 D2 NC A19 D1 F1 E1 DQ2 VDD DQ3 G1 DQ12 H1 DQ13 I2 DQ5 I1 DQ14 J6 A11 J5 A13 J4 A12 J3 DQ11 J2 DQ6 J1 DQ15 K5 A14 K4 A15 K3 A16 K2 DQ7 K1 VSS Notes: 1. 2. RY/BY#, Byte# are not available for WFBGA package. It is organized as 1M x 16 (16Mbit) This Data Sheet may be revised by subsequent versions or modifications due to changes in technical specifications. 3 ©2004 Eon Silicon Solution, Inc., www.eonssi.com Rev. G, Issue Date: 2008/09/09 EN29SL160 TABLE 1. PIN DESCRIPTION Pin Name FIGURE 1. LOGIC DIAGRAM Function A0-A19 20 Addresses DQ0-DQ14 15 Data Inputs/Outputs DQ15 / A-1 DQ15 (data input/output, word mode), A-1 (LSB address input, byte mode) CE# Chip Enable OE# Output Enable RESET# Hardware Reset Pin RY/BY# Ready/Busy Output WE# Write Enable WP#/ACC Hardware write protect/acceleration pin Vcc Supply Voltage (1.65-2.2V) Vss Ground NC Not Connected to anything BYTE# Byte/Word Mode This Data Sheet may be revised by subsequent versions or modifications due to changes in technical specifications. 4 ©2004 Eon Silicon Solution, Inc., www.eonssi.com Rev. G, Issue Date: 2008/09/09 EN29SL160 Table 2. Top Boot Sector Address Tables (EN29SL160T) Sector Size (Kbytes/ Kwords) Address Range (in hexadecimal) 64/32 Byte mode (x8) 000000–00FFFF Word Mode (x16) 00000–07FFF X 64/32 010000–01FFFF 08000–0FFFF X 64/32 020000–02FFFF 10000–17FFF X X 64/32 030000–03FFFF 18000–1FFFF X X X 64/32 040000–04FFFF 20000–27FFF 1 X X X 64/32 050000–05FFFF 28000–2FFFF 1 0 X X X 64/32 060000–06FFFF 30000–37FFF 1 1 X X X 64/32 070000–07FFFF 38000–3FFFF 0 0 0 X X X 64/32 080000–08FFFF 40000–47FFF 1 0 0 1 X X X 64/32 090000–09FFFF 48000–4FFFF 0 1 0 1 0 X X X 64/32 0A0000–0AFFFF 50000–57FFF 0 1 0 1 1 X X X 64/32 0B0000–0BFFFF 58000–5FFFF SA12 0 1 1 0 0 X X X 64/32 0C0000–0CFFFF 60000–67FFF SA13 0 1 1 0 1 X X X 64/32 0D0000–0DFFFF 68000–6FFFF SA14 0 1 1 1 0 X X X 64/32 0E0000–0EFFFF 70000–77FFF SA15 0 1 1 1 1 X X X 64/32 0F0000–0FFFFF 78000–7FFFF SA16 1 0 0 0 0 X X X 64/32 100000–10FFFF 80000–87FFF SA17 1 0 0 0 1 X X X 64/32 110000–11FFFF 88000–8FFFF SA18 1 0 0 1 0 X X X 64/32 120000–12FFFF 90000–97FFF SA19 1 0 0 1 1 X X X 64/32 130000–13FFFF 98000–9FFFF SA20 1 0 1 0 0 X X X 64/32 140000–14FFFF A0000–A7FFF SA21 1 0 1 0 1 X X X 64/32 150000–15FFFF A8000–AFFFF SA22 1 0 1 1 0 X X X 64/32 160000–16FFFF B0000–B7FFF SA23 1 0 1 1 1 X X X 64/32 170000–17FFFF B8000–BFFFF SA24 1 1 0 0 0 X X X 64/32 180000–18FFFF C0000–C7FFF SA25 1 1 0 0 1 X X X 64/32 190000–19FFFF C8000–CFFFF SA26 1 1 0 1 0 X X X 64/32 1A0000–1AFFFF D0000–D7FFF SA27 1 1 0 1 1 X X X 64/32 1B0000–1BFFFF D8000–DFFFF SA28 1 1 1 0 0 X X X 64/32 1C0000–1CFFFF E0000–E7FFF SA29 1 1 1 0 1 X X X 64/32 1D0000–1DFFFF E8000–EFFFF SA30 1 1 1 1 0 X X X 64/32 1E0000–1EFFFF F0000–F7FFF Sector A19 A18 A17 A16 A15 A14 A13 A12 SA0 0 0 0 0 0 X X X SA1 0 0 0 0 1 X X SA2 0 0 0 1 0 X X SA3 0 0 0 1 1 X SA4 0 0 1 0 0 SA5 0 0 1 0 SA6 0 0 1 SA7 0 0 1 SA8 0 1 SA9 0 SA10 SA11 SA31 1 1 1 1 1 0 0 0 8/4 1F0000–1F1FFF F8000–F8FFF SA32 1 1 1 1 1 0 0 1 8/4 1F2000–1F3FFF F9000–F9FFF SA33 1 1 1 1 1 0 1 0 8/4 1F4000–1F5FFF FA000–FAFFF SA34 1 1 1 1 1 0 1 1 8/4 1F6000–1F7FFF FB000–FBFFF SA35 1 1 1 1 1 1 0 0 8/4 1F8000–1F9FFF FC000–FCFFF SA36 1 1 1 1 1 1 0 1 8/4 1FA000–1FBFFF FD000–FDFFF SA37 1 1 1 1 1 1 1 0 8/4 1FC000–1FDFFF FE000–FEFFF SA38 1 1 1 1 1 1 1 1 8/4 1FE000–1FFFFF FF000–FFFFF This Data Sheet may be revised by subsequent versions or modifications due to changes in technical specifications. 5 ©2004 Eon Silicon Solution, Inc., www.eonssi.com Rev. G, Issue Date: 2008/09/09 EN29SL160 Table 3. Bottom Boot Sector Address Tables (EN29SL160B) Sector Size (Kbytes/ Kwords) Address Range (in hexadecimal) 8/4 Byte mode (x8) 000000–001FFF Word Mode(x16) 00000–00FFF 8/4 002000–003FFF 01000–01FFF 0 8/4 004000–005FFF 02000–02FFF 1 1 8/4 006000–007FFF 03000–03FFF 0 0 8/4 008000–009FFF 04000–04FFF 1 0 1 8/4 00A000–00BFFF 05000–05FFF 1 1 0 8/4 00C000–00DFFF 06000–06FFF 1 8/4 00E000–00FFFF 07000–07FFF X 64/32 010000–01FFFF 08000–0FFFF X 64/32 020000–02FFFF 10000–17FFF X X 64/32 030000–03FFFF 18000–1FFFF X X 64/32 040000–04FFFF 20000–27FFF X X X 64/32 050000–05FFFF 28000–2FFFF X X X 64/32 060000–06FFFF 30000–37FFF 1 X X X 64/32 070000–07FFFF 38000–3FFFF 0 X X X 64/32 080000–08FFFF 40000–47FFF 0 1 X X X 64/32 090000–09FFFF 48000–4FFFF 0 1 0 X X X 64/32 0A0000–0AFFFF 50000–57FFF 0 1 1 X X X 64/32 0B0000–0BFFFF 1 1 0 0 X X X 64/32 0C0000–0CFFFF 58000–5FFFF 60000–67FFF 0 1 1 0 1 X X X 64/32 0D0000–0DFFFF 68000–6FFFF SA21 0 1 1 1 0 X X X 64/32 0E0000–0EFFFF 70000–77FFF SA22 0 1 1 1 1 X X X 64/32 0F0000–0FFFFF 78000–7FFFF SA23 1 0 0 0 0 X X X 64/32 100000–10FFFF 80000–87FFF SA24 1 0 0 0 1 X X X 64/32 110000–11FFFF 88000–8FFFF SA25 1 0 0 1 0 X X X 64/32 120000–12FFFF 90000–97FFF SA26 1 0 0 1 1 X X X 64/32 130000–13FFFF 98000–9FFFF SA27 1 0 1 0 0 X X X 64/32 140000–14FFFF A0000–A7FFF SA28 1 0 1 0 1 X X X 64/32 150000–15FFFF A8000–AFFFF SA29 1 0 1 1 0 X X X 64/32 160000–16FFFF B0000–B7FFF SA30 1 0 1 1 1 X X X 64/32 170000–17FFFF B8000–BFFFF SA31 1 1 0 0 0 X X X 64/32 180000–18FFFF C0000–C7FFF SA32 1 1 0 0 1 X X X 64/32 190000–19FFFF C8000–CFFFF Sector SA0 A19 0 A18 0 A17 0 A16 0 A15 0 A14 0 A13 0 A12 0 SA1 0 0 0 0 0 0 0 1 SA2 0 0 0 0 0 0 1 SA3 0 0 0 0 0 0 SA4 0 0 0 0 0 1 SA5 0 0 0 0 0 SA6 0 0 0 0 0 SA7 0 0 0 0 0 1 1 SA8 0 0 0 0 1 X X SA9 0 0 0 1 0 X X SA10 0 0 0 1 1 X SA11 0 0 1 0 0 X SA12 0 0 1 0 1 SA13 0 0 1 1 0 SA14 0 0 1 1 SA15 0 1 0 0 SA16 0 1 0 SA17 0 1 SA18 0 1 SA19 0 SA20 SA33 1 1 0 1 0 X X X 64/32 1A0000–1AFFFF D0000–D7FFF SA34 1 1 0 1 1 X X X 64/32 1B0000–1BFFFF D8000–DFFFF SA35 1 1 1 0 0 X X X 64/32 1C0000–1CFFFF E0000–E7FFF SA36 1 1 1 0 1 X X X 64/32 1D0000–1DFFFF E8000–EFFFF SA37 1 1 1 1 0 X X X 64/32 1E0000–1EFFFF F0000–F7FFF SA38 1 1 1 1 1 X X X 64/32 1F0000–1FFFFF F8000–FFFFF This Data Sheet may be revised by subsequent versions or modifications due to changes in technical specifications. 6 ©2004 Eon Silicon Solution, Inc., www.eonssi.com Rev. G, Issue Date: 2008/09/09 EN29SL160 PRODUCT SELECTOR GUIDE Product Number Speed Option EN29SL160 Full Voltage Range: Vcc=1.65 – 2.2 V -90 Max Access Time, ns (tacc) 90 Max CE# Access, ns (tce) 90 Max OE# Access, ns (toe) 35 BLOCK DIAGRAM This Data Sheet may be revised by subsequent versions or modifications due to changes in technical specifications. 7 ©2004 Eon Silicon Solution, Inc., www.eonssi.com Rev. G, Issue Date: 2008/09/09 EN29SL160 TABLE 3. OPERATING MODES 16M FLASH USER MODE TABLE Reset# A0-A19 (Note 1) DQ0DQ7 DQ8-DQ15 Byte# Byte# = VIL = VIH Operation CE# OE# Read Write L L H H L/H AIN DOUT DOUT High-Z L Vcc ± 0.2V H L (Note 1) AIN DIN DIN High-Z X X H Vcc± 0.2V High-Z High-Z High-Z H H H X X X L X High-Z High-Z High-Z X X X L X X High-Z High-Z High-Z X X X VID (Note 1) DIN DIN X L H L VID X DIN X X L H L VID (Note 1) AIN Sector Address, A6 = L, A1 = H, A0 = L Sector Address, A6 = L, A1 = H, A0 = L DIN X X CMOS Standby Output Disable Hardware Reset Temporary Sector Unprotect WE# WP#/ ACC Sector Protect (Note 2) Sector Unprotect (Note 2) L=logic low= VIL, H=Logic High= VIH, VID = VHH =10.0 ± 1.0V, X=Don’t Care (either L or H, but not floating!), DIN=Data In, DOUT=Data Out, AIN=Address In, Notes: 1. If WP#/ACC = VIL , the two outermost boot sectors are protected. If WP#/ACC = VIH the outermost boot sector protection depends on whether they were last protected or unprotected. If WP#/ACC = VHH, all sectors will be unprotected. 2. Please refer to “ Sector / Sector Group Protection and Unprotection “, Flowchart 7a and Flowchart 7b. TABLE 4. DEVICE IDENTIFICTION (Autoselect Codes) 16M FLASH MANUFACTURER/DEVICE ID TABLE Description OE # W E# A19 to A12 A11 to A10 A9 A8 X X VID X X X SA Mode Manufacturer ID: Eon Device ID Word L L H L L H (top boot block) Byte L L H Device ID Word L L H Byte L L H L L H (bottom boot block) Sector Protection Verification 2 CE # A7 A6 A5 to A2 A1 A0 DQ8 to DQ15 DQ7 to DQ0 H X L X L L X 1Ch VID X X L X L H 22h E4h X E4h X VID X X L X L H 22h E7h X E7h X VID X X L X H L 1 X X 01h (Protected) 00h (Unprotected) Note: 1. If a manufacturing ID is read with A8=L, the chip will output a configuration code 7Fh. A further Manufacturing ID must be read with A8=H. 2. A9 = VID is for HV A9 Autoselect mode only. A9 must be ≤ Vcc (CMOS logic level) for Command Autoselect Mode. This Data Sheet may be revised by subsequent versions or modifications due to changes in technical specifications. 8 ©2004 Eon Silicon Solution, Inc., www.eonssi.com Rev. G, Issue Date: 2008/09/09 EN29SL160 USER MODE DEFINITIONS Word / Byte Configuration The signal set on the BYTE# Pin controls whether the device data I/O pins DQ15-DQ0 operate in the byte or word configuration. When the Byte# Pin is set at logic ‘1’, then the device is in word configuration, DQ15-DQ0 are active and are controlled by CE# and OE#. On the other hand, if the Byte# Pin is set at logic ‘0’, then the device is in byte configuration, and only data I/O pins DQ0-DQ7 are active and controlled by CE# and OE#. The data I/O pins DQ8DQ14 are tri-stated, and the DQ15 pin is used as an input for the LSB (A-1) address function. Standby Mode The EN29SL160 has a CMOS-compatible standby mode, which reduces the current to < 0.2µA (typical). It is placed in CMOS-compatible standby when the CE# pin is at VCC ± 0.2. RESET# and BYTE# pin must also be at CMOS input levels. If CE# and RESET# are held at VIH, but not within VCC ± 0.2V, the device will be in the standby modes, but the standby current will be greater. The outputs are in a high-impedance state independent of the OE# input. Read Mode The device is automatically set to reading array data after device power-up. No commands are required to retrieve data. The device is also ready to read array data after completing an Embedded Program or Embedded Erase algorithm. After the device accepts an Erase Suspend command, the device enters the Erase Suspend mode. The system can read array data using the standard read timings, except that if it reads at an address within erase-suspended sectors, the device outputs status data. After completing a programming operation in the Erase Suspend mode, the system may once again read array data with the same exception. See “Erase Suspend/Erase Resume Commands” for more additional information. The system must issue the reset command to re-enable the device for reading array data if DQ5 goes high, or while in the autoselect mode. See the “Reset Command” additional details. Output Disable Mode When the OE# pin is at a logic high level (VIH), the output from the EN29SL260 is disabled. The output pins are placed in a high impedance state. Auto Select Identification Mode The autoselect mode provides manufacturer and device identification, and sector protection verification, through identifier codes output on DQ15–DQ0. This mode is primarily intended for programming equipment to automatically match a device to be programmed with its corresponding programming algorithm. However, the autoselect codes can also be accessed in-system through the command register. When using programming equipment, the autoselect mode requires VID ( 9.0 V to 11.0 V) on address pin A9. Address pins A8, A6, A1, and A0 must be as shown in Autoselect Codes table. In addition, when verifying sector protection, the sector address must appear on the appropriate highest order address bits. Refer to the corresponding Sector Address Tables. The Command Definitions table shows the remaining address bits that are don’t-care. When all necessary bits have been set as required, the programming equipment may then read the corresponding identifier code on DQ15–DQ0. This Data Sheet may be revised by subsequent versions or modifications due to changes in technical specifications. 9 ©2004 Eon Silicon Solution, Inc., www.eonssi.com Rev. G, Issue Date: 2008/09/09 EN29SL160 To access the autoselect codes in-system; the host system can issue the autoselect command via the command register, as shown in the Command Definitions table. This method does not require VID. See “Command Definitions” for details on using the autoselect mode. Write Mode Write operations, including programming data and erasing sectors of memory, require the host system to write a command or command sequence to the device. Write cycles are initiated by placing the byte or word address on the device’s address inputs while the data to be written is input on DQ[7:0] in Byte Mode (BYTE# = L) or on DQ[15:0] in Word Mode (BYTE# = H). The host system must drive the CE# and WE# pins Low and the OE# pin High for a valid write operation to take place. All addresses are latched on the falling edge of WE# and CE#, whichever happens later. All data is latched on the rising edge of WE# or CE#, whichever happens first. The system is not required to provide further controls or timings. The device automatically provides internally generated program / erase pulses and verifies the programmed /erased cells’ margin. The host system can detect completion of a program or erase operation by observing the RY/BY# pin, or by reading the DQ[7] (Data# Polling) and DQ[6] (Toggle) status bits. The ‘Command Definitions’ section of this document provides details on the specific device commands implemented in the EN29SL160. RESET#: Hardware Reset Pin The RESET# pin provides a hardware method of resetting the device to reading array data. When the RESET# pin is driven low for at least a period of tRP, the device immediately terminates any operation in progress, tristates all output pins, and ignores all read/write commands for the duration of the RESET# pulse. The device also resets the internal state machine to reading array data. The operation that was interrupted should be reinitiated once the device is ready to accept another command sequence, to ensure data integrity. Current is reduced for the duration of the RESET# pulse. When RESET# is held at Vss±0.3 V, the device draws CMOS standby current (Icc2). If RESET# is held at VIL but not within Vss±0.3 V, the standby current will be greater. The RESET# pin may be tied to the system reset circuitry. A system reset would thus also reset the Flash memory, enabling the system to read the boot-up firm- ware from the Flash memory. If RESET# is asserted during a program or erase operation, the RY/BY# pin will immediately go to a “1” but the actual internal operations may be active until tREADY (During Embedded Algorithms: 20uS) amount of time has passed. The system thus must wait at least tREADY amount of time after the RESET# is asserted. If RESET# is asserted when a program or erase operation is not executing (RY/BY# pin is “1”), the reset operation is completed within a time of tREADY (Not during Embedded Algorithms: 500nS). The system can read data tRH after the RESET# pin returns to VIH. Refer to the DC Characteristics tables Icc3 for RESET# parameters and to the figures at page 26 on datasheet for the timing diagram. Sector /Sector Group Protection and Unprotection The hardware sector protection feature disables both program and erase operations in any sector. The hardware sector unprotection feature re-enables both program and erase operations in previously protected sectors. There are two methods to enabling this hardware protection circuitry. The first one requires only that the RESET# pin be at VID and then standard microprocessor timings can be used to enable or This Data Sheet may be revised by subsequent versions or modifications due to changes in technical specifications. 10 ©2004 Eon Silicon Solution, Inc., www.eonssi.com Rev. G, Issue Date: 2008/09/09 EN29SL160 disable this feature. See Flowchart 7a and 7b for the algorithm and Figure 12 for the timings. When doing Sector Unprotect, all the other sectors should be protected first. The second method is meant for programming equipment. This method requires VID be applied to both OE# and A9 pin and non-standard microprocessor timings are used. This method is described in a separate document called EN29SL160 Supplement, which can be obtained by contacting a representative of Eon Silicon Solution, Inc. Top Boot Sector/Sector Group Organization Table (EN29SL160T) for (Un)Protection Sector / Sector Group A19-A12 Sector/Sector Group Size SA 0 00000XXX 00001XXX 00010XXX 00011XXX 001XXXXX 010XXXXX 011XXXXX 100XXXXX 101XXXXX 110XXXXX 11100XXX 11101XXX 11110XXX 11111000 11111001 11111010 11111011 11111100 11111101 11111110 11111111 64 Kbytes SA 1-SA 3 SA 4-SA 7 SA 8-SA11 SA12-SA15 SA16-SA19 SA20-SA23 SA24-SA27 SA28-SA30 SA31 SA32 SA33 SA34 SA35 SA36 SA37 SA38 190 (3x64) Kbytes 256 (4 x 64) Kbytes 256 (4 x 64) Kbytes 256 (4 x 64) Kbytes 256 (4 x 64) Kbytes 256 (4 x 64) Kbytes 256 (4 x 64) Kbytes 190 (3x64) Kbytes 8 Kbytes 8 Kbytes 8 Kbytes 8 Kbytes 8 Kbytes 8 Kbytes 8 Kbytes 8 Kbytes Bottom Boot Sector/Sector Group Organization Table (EN29SL160B) for (Un)Protection Sector / Sector Group A19-A12 Sector/Sector Group Size SA38 11111XXX 11110XXX 11101XXX 11100XXX 110XXXXX 101XXXXX 100XXXXX 011XXXXX 010XXXXX 001XXXXX 00011XXX 00010XXX 00001XXX 00000111 00000110 00000101 00000100 00000011 00000010 00000001 00000000 64 Kbytes SA37-SA35 SA34-SA31 SA30-SA27 SA26-SA23 SA22-SA19 SA18-SA15 SA14-SA11 SA10-SA08 SA SA SA SA SA SA SA SA 7 6 5 4 3 2 1 0 This Data Sheet may be revised by subsequent versions or modifications due to changes in technical specifications. 11 190 (3x64) Kbytes 256 (4 x 64) Kbytes 256 (4 x 64) Kbytes 256 (4 x 64) Kbytes 256 (4 x 64) Kbytes 256 (4 x 64) Kbytes 256 (4 x 64) Kbytes 190 (3x64) Kbytes 8 Kbytes 8 Kbytes 8 Kbytes 8 Kbytes 8 Kbytes 8 Kbytes 8 Kbytes 8 Kbytes ©2004 Eon Silicon Solution, Inc., www.eonssi.com Rev. G, Issue Date: 2008/09/09 EN29SL160 Write Protect / Accelerated Program (WP# / ACC) The WP#/ACC pin provides two functions. The Write Protect (WP#) function provides a hardware method of protecting the outermost two 8K-byte Boot Sector. The ACC function allows faster manufacturing throughput at the factory, using an external high voltage. When WP#/ACC is Low, the device protects the outermost two 8K-byte Boot Sector; no matter the sectors are protected or unprotected using the method described in “Sector/Sector Group Protection & Chip Unprotection”, Program and Erase operations in these sectors are ignored. When WP#/ACC is High, the device reverts to the previous protection status of the outermost two 8K-byte boot sector. Program and Erase operations can now modify the data in the two outermost 8K-byte Boot Sector unless the sector is protected using Sector Protection. When WP#/ACC is raised to VHH the memory automatically enters the Unlock Bypass mode(please refer to “Command Definitions”), temporarily unprotects every protected sectors, and reduces the time required for program operation. The system would use a two-cycle program command sequence as required by the Unlock Bypass mode. When WP#/ACC returns to VIH or VIL, normal operation resumes. The transitions from VIH or VIL to VHH and from VHH to VIH or VIL must be slower than tBVHH,B see Figure 11. Note that the WP#/ACC pin must not be left floating or unconnected. In addition, WP#/ACC pin must not be at VHH for operations other than accelerated programming. It could cause the device to be damaged. Never raise this pin to VHH from any mode except Read mode, otherwise the memory may be left in an indeterminate state. A 0.1µF capacitor should be connected between the WP#/ACC pin and the VSS Ground pin to decouple the current surges from the power supply. The PCB track widths must be sufficient to carry the currents required during Unlock Bypass Program. Temporary Sector Unprotect Start This feature allows temporary unprotection of previously protected sector groups to change data while in-system. The Sector Unprotect mode is activated by setting the RESET# pin to VID. During this mode, formerly protected sectors can be programmed or erased by simply selecting the sector addresses. Once is removed from the RESET# pin, all the previously protected sectors are protected again. See accompanying figure and timing diagrams for more details. Notes: 1. All protected sectors unprotected. 2. Previously protected sectors protected again. Reset#=VID (note 1) Perform Erase or Program Operations Reset#=VIH Temporary Sector Unprotect Completed (note 2) Automatic Sleep Mode The automatic sleep mode minimizes Flash device energy consumption. The device automatically enables this mode when addresses remain stable for tacc + 30ns. The automatic sleep mode is independent of the CE#, WE# and OE# control signals. Standard address access timings provide new data when addresses are changed. While in sleep mode, output is latched and always available to the system. Icc5 in the DC Characteristics table represents the automatic sleep mode current specification. This Data Sheet may be revised by subsequent versions or modifications due to changes in technical specifications. 12 ©2004 Eon Silicon Solution, Inc., www.eonssi.com Rev. G, Issue Date: 2008/09/09 EN29SL160 Hardware Data Protection The command sequence requirement of unlock cycles for programming or erasing provides data protection against inadvertent writes as seen in the Command Definitions table. Additionally, the following hardware data protection measures prevent accidental erasure or programming, which might otherwise be caused by false system level signals during Vcc power up and power down transitions, or from system noise. Low VCC Write Inhibit When Vcc is less than VLKO, the device does not accept any write cycles. This protects data during Vcc power up and power down. The command register and all internal program/erase circuits are disabled, and the device resets. Subsequent writes are ignored until Vcc is greater than VLKO. The system must provide the proper signals to the control pins to prevent unintentional writes when Vcc is greater than VLKO. Write Pulse “Glitch” protection Noise pulses of less than 5 ns (typical) on OE#, CE# or WE# do not initiate a write cycle. Logical Inhibit Write cycles are inhibited by holding any one of OE# = VIL, CE# = VIH, or WE# = VIH. To initiate a write cycle, CE# and WE# must be a logical zero while OE# is a logical one. If CE#, WE#, and OE# are all logical zero (not recommended usage), it will be considered a read. Power-up Write Inhibit During power-up, the device automatically resets to READ mode and locks out write cycles. Even with CE# = VIL, WE# = VIL and OE# = VIH, the device will not accept commands on the rising edge of WE#. This Data Sheet may be revised by subsequent versions or modifications due to changes in technical specifications. 13 ©2004 Eon Silicon Solution, Inc., www.eonssi.com Rev. G, Issue Date: 2008/09/09 EN29SL160 COMMAND DEFINITIONS The operations of EN29SL160 are selected by one or more commands written into the command register to perform Read/Reset Memory, Read ID, Read Sector Protection, Program, Sector Erase, Chip Erase, Erase Suspend and Erase Resume. Commands are made up of data sequences written at specific addresses via the command register. The sequences for the specified operation are defined in the Command Definitions table (Table 5). Incorrect addresses, incorrect data values or improper sequences will reset the device to Read Mode. Table 5. EN29SL160 Command Definitions Cycles Bus Cycles Command Sequence Read Reset Autoselect Manufacturer ID Device ID Top Boot Device ID Bottom Boot Sector Protect Verify 1 1 Word RA xxx 4 Word Byte Word Byte nd 4 Word AA AA 3 2 2 6 6 1 1 555 55 2AA 555 2AA 555 2AA AA AAA 4 2AA 555 AAA 555 AAA XXX XXX 555 AAA 555 AAA xxx xxx 90 555 555 4 Byte Cycle Addr Data AA 555 AAA 555 AAA th 3 Cycle Addr Data th th 4 5 6 Cycle Addr Data Cycle Addr Data Cycle Addr Data 2AA 555 2AA 555 55 555 AAA 10 55 SA 30 RD F0 AAA 4 rd 2 555 Byte Word Byte Word Unlock Bypass Byte Unlock Bypass Program Unlock Bypass Reset Word Chip Erase Byte Word Sector Erase Byte Erase Suspend Erase Resume Program st 1 Cycle Addr Data AAA 555 AAA 555 AAA 55 55 AA A0 90 AA AA 2AA 555 2AA 555 PA XXX 2AA 555 2AA 555 90 555 55 90 555 AA 90 AAA 555 AAA 555 AAA 55 55 A0 000 100 000 200 X01 X02 X01 X02 (SA) X02 (SA) X04 7F 1C 7F 1C 22E4 E4 22E7 E7 XX00 XX01 00 01 PA PD 20 PD 00 555 AAA 555 AAA 55 55 80 80 555 AAA 555 AAA AA AA B0 30 Address and Data values indicated in hex RA = Read Address: address of the memory location to be read. This is a read cycle. RD = Read Data: data read from location RA during Read operation. This is a read cycle. PA = Program Address: address of the memory location to be programmed. X = Don’t-Care PD = Program Data: data to be programmed at location PA SA = Sector Address: address of the Sector to be erased or verified. Address bits A19-A12 uniquely select any Sector. Reading Array Data The device is automatically set to reading array data after power up. No commands are required to retrieve data. The device is also ready to read array data after completing an Embedded Program or Embedded Erase algorithm. Following an Erase Suspend command, Erase Suspend mode is entered. The system can read array data using the standard read timings, with the only difference in that if it reads at an address within erase suspended sectors, the device outputs status data. After completing a programming This Data Sheet may be revised by subsequent versions or modifications due to changes in technical specifications. 14 ©2004 Eon Silicon Solution, Inc., www.eonssi.com Rev. G, Issue Date: 2008/09/09 EN29SL160 operation in the Erase Suspend mode, the system may once again read array data with the same exception. The Reset command must be issued to re-enable the device for reading array data if DQ5 goes high, or while in the autoselect mode. See next section for details on Reset. Reset Command Writing the reset command to the device resets the device to reading array data. Address bits are don’t-care for this command. The reset command may be written between the sequence cycles in an erase command sequence before erasing begins. This resets the device to reading array data. Once erasure begins, however, the device ignores reset commands until the operation is complete. The reset command may be written between the sequence cycles in a program command sequence before programming begins. This resets the device to reading array data (also applies to programming in Erase Suspend mode). Once programming begins, however, the device ignores reset commands until the operation is complete. The reset command may be written between the sequence cycles in an autoselect command sequence. Once in the autoselect mode, the reset command must be written to return to reading array data (also applies to autoselect during Erase Suspend). If DQ5 goes high during a program or erase operation, writing the reset command returns the device to reading array data (also applies during Erase Suspend). Autoselect Command Sequence The autoselect command sequence allows the host system to access the manufacturer and devices codes, and determine whether or not a sector is protected. The Command Definitions table shows the address and data requirements. This is an alternative to the method that requires VID on address bit A9 and is intended for PROM programmers. Two unlock cycles followed by the autoselect command initiate the autoselect command sequence. Autoselect mode is then entered and the system may read at addresses shown in Table 4 any number of times, without needing another command sequence. The system must write the reset command to exit the autoselect mode and return to reading array data. Word / Byte Programming Command The device may be programmed by byte or by word, depending on the state of the Byte# Pin. Programming the EN29SL160 is performed by using a four bus-cycle operation (two unlock write cycles followed by the Program Setup command and Program Data Write cycle). When the program command is executed, no additional CPU controls or timings are necessary. An internal timer terminates the program operation automatically. Address is latched on the falling edge of CE# or WE#, whichever is last; data is latched on the rising edge of CE# or WE#, whichever is first. Programming status may be checked by sampling data on DQ7 (DATA# polling) or on DQ6 (toggle bit). When the program operation is successfully completed, the device returns to read mode and the user can read the data programmed to the device at that address. Note that data can not be programmed from a 0 to a 1. Only an erase operation can change a data from 0 to 1. When programming time limit is exceeded, DQ5 will produce a logical “1” and a Reset command can return the device to Read mode. This Data Sheet may be revised by subsequent versions or modifications due to changes in technical specifications. 15 ©2004 Eon Silicon Solution, Inc., www.eonssi.com Rev. G, Issue Date: 2008/09/09 EN29SL160 Unlock Bypass To speed up programming operation, the Unlock Bypass Command may be used. Once this feature is activated, the shorter two-cycle Unlock Bypass Program command can be used instead of the normal four-cycle Program Command to program the device. During the unlock bypass mode, only the Unlock Bypass Program and Unlock Bypass Reset command can be accepted. This mode is exited after issuing the Unlock Bypass Reset Command. The device powers up with this feature disabled The device provides accelerated program operations through the WP#/ACC pin. When WP#/ACC is asserted to VHH, the device automatically enters the Unlock Bypass mode. The system may then write the two-cycle Unlock Bypass Program command sequence. B B Chip Erase Command Chip erase is a six-bus-cycle operation. The chip erase command sequence is initiated by writing two unlock cycles, followed by a set-up command. Two additional unlock write cycles are then followed by the chip erase command, which in turn invokes the Embedded Erase algorithm. The device does not require the system to preprogram prior to erase. The Embedded Erase algorithm automatically preprograms and verifies the entire memory for an all zero data pattern prior to electrical erase. The system is not required to provide any controls or timings during these operations. The Command Definitions table shows the address and data requirements for the chip erase command sequence. Any commands written to the chip during the Embedded Chip Erase algorithm are ignored. The system can determine the status of the erase operation by using DQ7, DQ6, or DQ2. See “Write Operation Status” for information on these status bits. When the Embedded Erase algorithm is complete, the device returns to reading array data and addresses are no longer latched. Flowchart 4 illustrates the algorithm for the erase operation. See the Erase/Program Operations tables in “AC Characteristics” for parameters, and to the Chip/Sector Erase Operation Timings for timing waveforms. Sector Erase Command Sequence Sector erase is a six bus cycle operation. The sector erase command sequence is initiated by writing two un-lock cycles, followed by a set-up command. Two additional unlock write cycles are then followed by the address of the sector to be erased, and the sector erase command. The Command Definitions table shows the address and data requirements for the sector erase command sequence. Once the sector erase operation has begun, only the Erase Suspend command is valid. All other commands are ignored. When the Embedded Erase algorithm is complete, the device returns to reading array data and addresses are no longer latched. The system can determine the status of the erase operation by using DQ7, DQ6, or DQ2. Refer to “Write Operation Status” for information on these status bits. Flowchart 4 illustrates the algorithm for the erase operation. Refer to the Erase/Program Operations tables in the “AC Characteristics” section for parameters, and to the Sector Erase Operations Timing diagram for timing waveforms. Erase Suspend / Resume Command The Erase Suspend command allows the system to interrupt a sector erase operation and then read data from, or program data to, any sector not selected for erasure. This command is valid only during the sector erase operation. The Erase Suspend command is ignored if written during the chip This Data Sheet may be revised by subsequent versions or modifications due to changes in technical specifications. 16 ©2004 Eon Silicon Solution, Inc., www.eonssi.com Rev. G, Issue Date: 2008/09/09 EN29SL160 erase operation or Embedded Program algorithm. Addresses are don’t-cares when writing the Erase Suspend command. When the Erase Suspend command is written during a sector erase operation, the device requires a maximum of 20 µs to suspend the erase operation. After the erase operation has been suspended, the system can read array data from or program data to any sector not selected for erasure. (The device “erase suspends” all sectors selected for erasure.) Normal read and write timings and command definitions apply. Reading at any address within erase-suspended sectors produces status data on DQ7–DQ0. The system can use DQ7, or DQ6 and DQ2 together, to determine if a sector is actively erasing or is erase-suspended. See “Write Operation Status” for information on these status bits. After an erase-suspended program operation is complete, the system can once again read array data within non-suspended sectors. The system can determine the status of the program operation using the DQ7 or DQ6 status bits, just as in the standard program operation. See “Write Operation Status” for more information. The Autoselect command is not supported during Erase Suspend Mode. The system must write the Erase Resume command (address bits are don’t-care) to exit the erase suspend mode and continue the sector erase operation. Further writes of the Resume command are ignored. Another Erase Suspend command can be written after the device has resumed erasing. WRITE OPERATION STATUS DQ7: DATA# Polling The EN29SL160 provides DATA# polling on DQ7 to indicate the status of the embedded operations. The DATA# Polling feature is active during the embedded Programming, Sector Erase, Chip Erase, and Erase Suspend. (See Table 6) When the embedded Programming is in progress, an attempt to read the device will produce the complement of the data last written to DQ7. Upon the completion of the embedded Programming, an attempt to read the device will produce the true data written to DQ7. For the embedded Programming, DATA# polling is valid after the rising edge of the fourth WE# or CE# pulse in the four-cycle sequence. When the embedded Erase is in progress, an attempt to read the device will produce a “0” at the DQ7 output. Upon the completion of the embedded Erase, the device will produce the “1” at the DQ7 output during the read cycles. For Chip Erase, the DATA# polling is valid after the rising edge of the sixth WE# or CE# pulse in the six-cycle sequence. DATA# polling is valid after the last rising edge of the WE# or CE# pulse for chip erase or sector erase. DATA# Polling must be performed at any address within a sector that is being programmed or erased and not a protected sector. Otherwise, DATA# polling may give an inaccurate result if the address used is in a protected sector. Just prior to the completion of the embedded operations, DQ7 may change asynchronously when the output enable (OE#) is low. This means that the device is driving status information on DQ7 at one instant of time and valid data at the next instant of time. Depending on when the system samples the DQ7 output, it may read the status of valid data. Even if the device has completed the embedded operations and DQ7 has a valid data, the data output on DQ0-DQ6 may be still invalid. The valid data on DQ0-DQ7 will be read on the subsequent read attempts. The flowchart for DATA# Polling (DQ7) is shown on Flowchart 5. The DATA# Polling (DQ7) timing diagram is shown in Figure 8. This Data Sheet may be revised by subsequent versions or modifications due to changes in technical specifications. 17 ©2004 Eon Silicon Solution, Inc., www.eonssi.com Rev. G, Issue Date: 2008/09/09 EN29SL160 RY/BY#: Ready/Busy The RY/BY# is a dedicated, open-drain output pin that indicates whether an Embedded Algorithm is in progress or completed. The RY/BY# status is valid after the rising edge of the final WE# pulse in the command sequence. Since RY/BY# is an open-drain output, several RY/BY# pins can be tied together in parallel with a pull-up resistor to Vcc. In the output-low period, signifying Busy, the device is actively erasing or programming. This includes programming in the Erase Suspend mode. If the output is high, signifying the Ready, the device is ready to read array data (including during the Erase Suspend mode), or is in the standby mode. DQ6: Toggle Bit I The EN29SL160 provides a “Toggle Bit” on DQ6 to indicate to the host system the status of the embedded programming and erase operations. (See Table 6) During an embedded Program or Erase operation, successive attempts to read data from the device at any address (by active OE# or CE#) will result in DQ6 toggling between “zero” and “one”. Once the embedded Program or Erase operation is completed, DQ6 will stop toggling and valid data will be read on the next successive attempts. During embedded Programming, the Toggle Bit is valid after the rising edge of the fourth WE# pulse in the four-cycle sequence. During Erase operation, the Toggle Bit is valid after the rising edge of the sixth WE# pulse for sector erase or chip erase. In embedded Programming, if the sector being written to is protected, DQ6 will toggles for about 2 μs, then stop toggling without the data in the sector having changed. In Sector Erase or Chip Erase, if all selected sectors are protected, DQ6 will toggle for about 100 μs. The chip will then return to the read mode without changing data in all protected sectors. The flowchart for the Toggle Bit (DQ6) is shown in Flowchart 6. The Toggle Bit timing diagram is shown in Figure 9. DQ5: Exceeded Timing Limits DQ5 indicates whether the program or erase time has exceeded a specified internal pulse count limit. Under these conditions DQ5 produces a “1.” This is a failure condition that indicates the program or erase cycle was not successfully completed. Since it is possible that DQ5 can become a 1 when the device has successfully completed its operation and has returned to read mode, the user must check again to see if the DQ6 is toggling after detecting a “1” on DQ5. The DQ5 failure condition may appear if the system tries to program a “1” to a location that is previously programmed to “0.” Only an erase operation can change a “0” back to a “1.” Under this condition, the device halts the operation, and when the operation has exceeded the timing limits, DQ5 produces a “1.” Under both these conditions, the system must issue the reset command to return the device to reading array data. DQ3: Sector Erase Timer After writing a sector erase command sequence, the output on DQ3 can be used to determine whether or not an erase operation has begun. (The sector erase timer does not apply to the chip erase command.) When sector erase starts, DQ3 switches from “0” to “1.” This device does not support multiple sector erase command sequences so it is not very meaningful since it immediately shows as a “1” after the first 30h command. Future devices may support this feature. This Data Sheet may be revised by subsequent versions or modifications due to changes in technical specifications. 18 ©2004 Eon Silicon Solution, Inc., www.eonssi.com Rev. G, Issue Date: 2008/09/09 EN29SL160 DQ2: Erase Toggle Bit II The “Toggle Bit” on DQ2, when used with DQ6, indicates whether a particular sector is actively erasing (that is, the Embedded Erase algorithm is in progress), or whether that sector is erasesuspended. Toggle Bit II is valid after the rising edge of the final WE# pulse in the command sequence. DQ2 toggles when the system reads at addresses within those sectors that have been selected for erasure. (The system may use either OE# or CE# to control the read cycles.) But DQ2 cannot distinguish whether the sector is actively erasing or is erase-suspended. DQ6, by comparison, indicates whether the device is actively erasing, or is in Erase Suspend, but cannot distinguish which sectors are selected for erasure. Thus, both status bits are required for sector and mode information. Refer to the following table to compare outputs for DQ2 and DQ6. Flowchart 6 shows the toggle bit algorithm, and the section “DQ2: Toggle Bit” explains the algorithm. See also the “DQ6: Toggle Bit I” subsection. Refer to the Toggle Bit Timings figure for the toggle bit timing diagram. The DQ2 vs. DQ6 figure shows the differences between DQ2 and DQ6 in graphical form. Reading Toggle Bits DQ6/DQ2 Refer to Flowchart 6 for the following discussion. Whenever the system initially begins reading toggle bit status, it must read DQ7–DQ0 at least twice in a row to determine whether a toggle bit is toggling. Typically, a system would note and store the value of the toggle bit after the first read. After the second read, the system would compare the new value of the toggle bit with the first. If the toggle bit is not toggling, the device has completed the program or erase operation. The system can read array data on DQ7–DQ0 on the following read cycle. However, if after the initial two read cycles, the system determines that the toggle bit is still toggling, the system also should note whether the value of DQ5 is high (see the section on DQ5). If it is, the system should then determine again whether the toggle bit is toggling, since the toggle bit may have stopped toggling just as DQ5 went high. If the toggle bit is no longer toggling, the device has successfully completed the program or erase operation. If it is still toggling, the device did not complete the operation successfully, and the system must write the reset command to return to reading array data. The remaining scenario is that the system initially determines that the toggle bit is toggling and DQ5 has not gone high. The system may continue to monitor the toggle bit and DQ5 through successive read cycles, determining the status as described in the previous paragraph. Alternatively, it may choose to perform other system tasks. In this case, the system must start at the beginning of the algorithm when it returns to determine the status of the operation (top of Flowchart 6). Write Operation Status Standar d Mode Erase Suspend Mode Operation DQ7 (note2) DQ6 DQ5 (note1) DQ3 DQ2 (note2) RY/BY# Embedded Program Algorithm DQ7# Toggle 0 N/A No toggle 0 Embedded Erase Algorithm 0 Toggle 0 1 Toggle 0 1 No Toggle 0 N/A Toggle 1 Data Data Data Data Data 1 DQ7# Toggle 0 N/A N/A 0 Reading within Erase Suspended Sector Reading within Non-Erase Suspended Sector Erase-Suspend Program 1. DQ5 switches to ‘1’ when an Embedded Program or Embedded Erase operation has exceeded the maximum timing limits. See “DQ5:Exceeded Timing Limits” for more information. 2. DQ7 and DQ2 require a valid address when reading status information. Refer to the appropriate subsection for further details. This Data Sheet may be revised by subsequent versions or modifications due to changes in technical specifications. 19 ©2004 Eon Silicon Solution, Inc., www.eonssi.com Rev. G, Issue Date: 2008/09/09 EN29SL160 Table 6. Status Register Bits DQ Name Logic Level ‘1’ ‘0’ 7 6 DATA# POLLING TOGGLE BIT DQ7 Definition Erase Complete or erase Sector in Erase suspend Erase On-Going Program Complete or data of non-erase Sector during Erase Suspend DQ7# ‘-1-0-1-0-1-0-1-’ DQ6 Program On-Going Erase or Program On-going Read during Erase Suspend Erase Complete ‘-1-1-1-1-1-1-1-‘ 5 ERROR BIT 3 ERASE TIME BIT 2 TOGGLE BIT ‘1’ ‘0’ ‘1’ ‘0’ Program or Erase Error Program or Erase On-going Erase operation start Erase timeout period on-going Chip Erase, Sector Erase or Erase suspend on currently addressed Sector. (When DQ5=1, Erase Error due to currently addressed Sector. Program during Erase Suspend ongoing at current address ‘-1-0-1-0-1-0-1-’ Erase Suspend read on non Erase Suspend Sector DQ2 Notes: DQ7 DATA# Polling: indicates the P/E C status check during Program or Erase, and on completion before checking bits DQ5 for Program or Erase Success. DQ6 Toggle Bit: remains at constant level when P/E operations are complete or erase suspend is acknowledged. Successive reads output complementary data on DQ6 while programming or Erase operation are on-going. DQ5 Error Bit: set to “1” if failure in programming or erase DQ3 Sector Erase Command Timeout Bit: Operation has started. Only possible command is Erase suspend (ES). DQ2 Toggle Bit: indicates the Erase status and allows identification of the erased Sector. This Data Sheet may be revised by subsequent versions or modifications due to changes in technical specifications. 20 ©2004 Eon Silicon Solution, Inc., www.eonssi.com Rev. G, Issue Date: 2008/09/09 EN29SL160 EMBEDDED ALGORITHMS Flowchart 1. Embedded Program START Write Program Command Sequence (shown below) Data# Poll Device Verify Data? Increment Address Last No Address? Yes Programming Done Flowchart 2. Embedded Program Command Sequence See the Command Definitions section for more information on WORD mode. 555H / AAH 2AAH / 55H 555H / A0H PROGRAM ADDRESS / PROGRAM DATA This Data Sheet may be revised by subsequent versions or modifications due to changes in technical specifications. 21 ©2004 Eon Silicon Solution, Inc., www.eonssi.com Rev. G, Issue Date: 2008/09/09 EN29SL160 Flowchart 3. Embedded Erase START Write Erase Command Sequence Data Poll from System or Toggle Bit successfully completed Data =FFh? No Yes Erase Done Flowchart 4. Embedded Erase Command Sequence See the Command Definitions section for more information on WORD mode. Chip Erase Sector Erase 555H/AAH 555H/AAH 2AAH/55H 2AAH/55H 555H/80H 555H/80H 555H/AAH 555H/AAH 2AAH/55H 2AAH/55H 555H/10H Sector Address/30H This Data Sheet may be revised by subsequent versions or modifications due to changes in technical specifications. 22 ©2004 Eon Silicon Solution, Inc., www.eonssi.com Rev. G, Issue Date: 2008/09/09 EN29SL160 Flowchart 5. DATA# Polling Algorithm Start Read Data DQ7 = Data? Yes No No DQ5 = 1? Yes Read Data (1) Notes: (1)This second read is necessary in case the first read was done at the exact instant when the status data was in transition. Yes DQ7 = Data? No Fail Pass Start Flowchart 6. Toggle Bit Algorithm Read Data twice No DQ6 = Toggle? Yes No DQ5 = 1? Yes Read Data twice (2) Notes: (2) This second set of reads is necessary in case the first set of reads was done at the exact instant when the status data was in transition. No DQ6 = Toggle? Yes Fail This Data Sheet may be revised by subsequent versions or modifications due to changes in technical specifications. 23 Pass ©2004 Eon Silicon Solution, Inc., www.eonssi.com Rev. G, Issue Date: 2008/09/09 EN29SL160 Flowchart 7a. In-System Sector Protect Flowchart START PLSCNT = 1 RESET# = VID Wait 1 μs No First Write Cycle = 60h? Temporary Sector Unprotect Mode Yes Set up sector address Sector Protect: Write 60h to sector addr with A6 = 0, A1 = 1, A0 = 0 Wait 150 μs Verify Sector Protect: Write 40h to sector address with A6 = 0, A1 = 1, A0 = 0 Increment PLSCNT Reset PLSCNT = 1 Wait 0.4 μs Read from sector address with A6 = 0, A1 = 1, A0=0 No PLSCNT = 25? No Data = 01h? Yes Yes Device failed Protect another sector? Yes No Remove VID from RESET# Write reset command Sector Protect Algorithm This Data Sheet may be revised by subsequent versions or modifications due to changes in technical specifications. Sector Protect complete 24 ©2004 Eon Silicon Solution, Inc., www.eonssi.com Rev. G, Issue Date: 2008/09/09 EN29SL160 Flowchart 7b. In-System Sector Unprotect Flowchart START PLSCNT = 1 Protect all sectors: The indicated portion of the sector protect algorithm must be performed for all unprotected sectors prior to issuing the first sector unprotect address (see Diagram 7a.) RESET# = VID Wait 1 μS No Temporary Sector Unprotect Mode First Write Cycle = 60h? Yes No All sectors protected? Yes Set up first sector address Sector Unprotect: Write 60H to sector address with A6 = 1, A1 = 1, A0 = 0 Wait 15 ms Increment PLSCNT Verify Sector Unprotect: Write 40h to sector address with A6 = 1, A1 = 1, A0 =0 Wait 0.4 μS No PLSCNT = 1000? Sector Unprotect Algorithm Read from sector address with A6 = 1, A1 = 1, A0 = 0 No Yes Yes Device failed Set up next sector address Data = 00h? No Last sector verified? Yes Remove VID from RESET# This Data Sheet may be revised by subsequent versions or modifications due to changes in technical specifications. 25 Write reset command Sector Unprotect complete ©2004 Eon Silicon Solution, Inc., www.eonssi.com Rev. G, Issue Date: 2008/09/09 EN29SL160 Table 7. DC Characteristics (Ta = 0°C to 70°C or – 40°C to 85°C; VCC = 1.65-2.2V) Symbol Parameter Test Conditions ILI Input Leakage Current ILO Output Leakage Current Active Read Current (Byte mode ) ICC1 Active Read Current (Word mode ) Min Max Unit 0V≤ VIN ≤ Vcc ±3 µA 0V≤ VOUT ≤ Vcc ±3 µA 12 22 mA 12 22 mA 0.2 5.0 µA 0.2 5.0 µA 15 30 mA 0.2 5.0 µA CE# = VIL, OE# = VIH, F=5MHz CE# = BYTE# = RESET# = Vcc ± 0.3V (Note 1) CE# = BYTE# = RESET# = Vcc ± 0.3V (Note 1) Byte program, Sector or Chip Erase in progress ICC2 Standby Current ( CMOS ) ICC3 VCC , Reset Current ICC4 Supply Current (Program or Erase) ICC5 Automatic Sleep Mode VIL Input Low Voltage -0.5 VIH Input High Voltage 0.7 x Vcc VOL Output Low Voltage VIH = Vcc ± 0.3 V VIL = Vss ± 0.3 V Typ 0.3 x VCC Vcc + 0.3 0.25 IOL = 2.0 mA Output High Voltage TTL IOH = -2.0 mA Output High Voltage CMOS IOH = -100 μA, VOH VID A9 Voltage (Electronic Signature) IID A9 Current (Electronic Signature) VLKO Supply voltage (Erase and Program lock-out) 0.85 x Vcc Vcc – 0.4V 9.0 A9 = VID 1.2 10.0 11.0 V 50 µA 1.5 V they draw power if not at full CMOS supply voltages. ©2004 Eon Silicon Solution, Inc., www.eonssi.com Rev. G, Issue Date: 2008/09/09 V V 1. BYTE# pin can also be GND ± 0.3V. BYTE# and RESET# pin input buffers are always enabled so that 26 V V Notes This Data Sheet may be revised by subsequent versions or modifications due to changes in technical specifications. V EN29SL160 Test Conditions Test Specifications Test Conditions -90 Unit Output Load Capacitance, CL 100 pF Input Rise and Fall times 5 ns Input Pulse Levels Input timing measurement reference levels Output timing measurement reference levels 0.0-2.0 V 1.0 V 1.0 V Output Load 1 TTL gate This Data Sheet may be revised by subsequent versions or modifications due to changes in technical specifications. 27 ©2004 Eon Silicon Solution, Inc., www.eonssi.com Rev. G, Issue Date: 2008/09/09 EN29SL160 AC CHARACTERISTICS Hardware Reset (Reset#) (Ta = 0°C to 70°C or – 40°C to 85°C; VCC = 1.65-2.2V) Parameter Std tREADY tREADY tRP tRH Description Reset# Pin Low to Read or Write Embedded Algorithms Reset# Pin Low to Read or Write Non Embedded Algorithms Reset# Pulse Width Reset# High Time Before Read Test Setup Speed options -90 Unit Max 20 μs Max 500 ns Min Min 500 50 ns ns Reset# Timings RY/BY# 0V CE# OE# tRH RESET# tRP tREADY Figure 1. Reset Timing NOT During Embbedded RY/BY# tREADY CE# OE# RESET# tRP tRH Figure 2. Reset Timings During Embedded This Data Sheet may be revised by subsequent versions or modifications due to changes in technical specifications. 28 ©2004 Eon Silicon Solution, Inc., www.eonssi.com Rev. G, Issue Date: 2008/09/09 EN29SL160 AC CHARACTERISTICS Word / Byte Configuration (Byte#) (Ta = 0°C to 70°C or – 40°C to 85°C; VCC = 1.65-2.2V) Std Parameter tBCS tCBH tRBH Speed Description Byte# to CE# switching setup time CE# to Byte# switching hold time RY/BY# to Byte# switching hold time Unit -90 0 0 0 Min Min Min ns ns ns CE# OE# Byte# tCBH tBCS Figure 3. Byte# timings for Read Operations CE# WE# Byte# tRBH tBCS RY/BY# Figure 4. Byte# timings for Write Operations Note: Switching BYTE# pin not allowed during embedded operations This Data Sheet may be revised by subsequent versions or modifications due to changes in technical specifications. 29 ©2004 Eon Silicon Solution, Inc., www.eonssi.com Rev. G, Issue Date: 2008/09/09 EN29SL160 Table 8. AC CHARACTERISTICS (Ta = 0°C to 70°C or – 40°C to 85°C; VCC = 1.65-2.2 V) Read-only Operations Characteristics Parameter Symbols JEDEC Standard Description tAVAV tRC Read Cycle Time tAVQV tACC Address to Output Delay tELQV tCE Chip Enable To Output Delay tGLQV tOE tEHQZ Speed Options Test Setup -90 Unit Min 90 ns CE# = VIL OE# = VIL Max 90 ns OE# = VIL Max 90 ns Output Enable to Output Delay Max 35 ns tDF Chip Enable to Output High Z Max 20 ns tGHQZ tDF Output Enable to Output High Z Max 20 ns tAXQX tOH Output Hold Time from Addresses, CE# or OE#, whichever occurs first Min 0 ns Notes : For – 90 Vcc =1.65 – 2.2V Output Load: 1 TTL gate and 100 pF Input Rise and Fall Times: 5 ns Input Pulse Levels: 0.0 V to Vcc Timing Measurement Reference Level, Input and Output: 1.0 V tRC Addresses Stable Addresses tACC CE# tDF tOE OE# tOEH WE# tCE tOH Output Valid Outputs HIGH Z Reset# RY/BY# 0V Figure 5. AC Waveforms for READ Operations This Data Sheet may be revised by subsequent versions or modifications due to changes in technical specifications. 30 ©2004 Eon Silicon Solution, Inc., www.eonssi.com Rev. G, Issue Date: 2008/09/09 EN29SL160 Table 9. AC CHARACTERISTICS (Ta = 0°C to 70°C or – 40°C to 85°C; VCC = 1.65-2.2V) Write (Erase/Program) Operations Parameter Symbols Speed Options Description JEDEC Standard -90 Unit tAVAV tWC Write Cycle Time Min 90 ns tAVWL tAS Address Setup Time Min 0 ns tWLAX tAH Address Hold Time Min 45 ns tDVWH tDS Data Setup Time Min 45 ns tWHDX tDH Data Hold Time Min 0 ns tOES Output Enable Setup Time Min 0 ns tGHWL tGHWL Read Recovery Time before Write (OE# High to WE# Low) Min 0 ns tELWL tCS CE# SetupTime Min 0 ns tWHEH tCH CE# Hold Time Min 0 ns tWLWH tWP Write Pulse Width Min 45 ns tWHDL tWPH Write Pulse Width High Min 20 ns tWHWH1 tWHWH1 Byte Typ 5 µs Word Typ 7 µs tWHWH2 tWHWH2 Typ 0.5 s Programming Operation Sector Erase Operation This Data Sheet may be revised by subsequent versions or modifications due to changes in technical specifications. 31 ©2004 Eon Silicon Solution, Inc., www.eonssi.com Rev. G, Issue Date: 2008/09/09 EN29SL160 Table 10. AC CHARACTERISTICS (Ta = 0°C to 70°C or – 40°C to 85°C; VCC = 1.65-2.2V) Write (Erase/Program) Operations Alternate CE# Controlled Writes Parameter Symbols Speed Options -90 Unit Min 90 ns Address Setup Time Min 0 ns tAH Address Hold Time Min 45 ns tDVEH tDS Data Setup Time Min 45 ns tEHDX tDH Data Hold Time Min 0 ns tOES Output Enable Setup Time Min 0 ns tGHEL tGHEL Read Recovery Time before Write (OE# High to CE# Low) Min 0 ns tWLEL tWS WE# SetupTime Min 0 ns tEHWH tWH WE# Hold Time Min 0 ns tELEH tCP CE# Pulse Width Min 45 ns tEHEL tCPH CE# Pulse Width High Min 20 ns tWHWH1 tWHWH1 Byte Typ 5 µs Word Typ 7 µs tWHWH2 tWHWH2 Typ 0.5 s JEDEC Standard Description tAVAV tWC Write Cycle Time tAVEL tAS tELAX Programming Operation Sector Erase Operation This Data Sheet may be revised by subsequent versions or modifications due to changes in technical specifications. 32 ©2004 Eon Silicon Solution, Inc., www.eonssi.com Rev. G, Issue Date: 2008/09/09 EN29SL160 Table 11. ERASE AND PROGRAMMING PERFORMANCE Typ Limits Max Unit Sector Erase Time 0.5 10 sec Chip Erase Time 17.5 Byte Programming Time 5 300 µs Word Programming Time 7 300 µs Byte 10.6 32 Word 7.4 11 Parameter Chip Programming Time Erase/Program Endurance Comments Excludes 00H programming prior to erasure sec Excludes system level overhead sec 100K Minimum 100K cycles cycles Table 12. LATCH UP CHARACTERISTICS Parameter Description Min Max Input voltage with respect to Vss on all pins except I/O pins (including A9, Reset# and OE#) -1.0 V 12.0 V Input voltage with respect to Vss on all I/O Pins -1.0 V Vcc + 1.0 V Vcc Current -100 mA 100 mA Note : These are latch up characteristics and the device should never be put under these conditions. Refer to Absolute Maximum ratings for the actual operating limits. Table 14. 48-PIN TSOP PIN CAPACITANCE @ 25°C, 1.0MHz ( VCC = 1.65-2.2V) Parameter Symbol Parameter Description Test Setup Typ Max Unit CIN Input Capacitance VIN = 0 6 7.5 pF COUT Output Capacitance VOUT = 0 8.5 12 pF CIN2 Control Pin Capacitance VIN = 0 7.5 9 pF Table 15. DATA RETENTION Parameter Description Test Conditions Min Unit 150°C 10 Years 125°C 20 Years Minimum Pattern Data Retention Time This Data Sheet may be revised by subsequent versions or modifications due to changes in technical specifications. 33 ©2004 Eon Silicon Solution, Inc., www.eonssi.com Rev. G, Issue Date: 2008/09/09 EN29SL160 AC CHARACTERISTICS Figure 6. AC Waveforms for Chip/Sector Erase Operations Timings Erase Command Sequence (last 2 cycles) tWC Addresses tAS 0x2AA Read Status Data (last two cycles) tAH SA VA VA 0x555 for chip erase CE# tGHWL tCH OE# tWP WE# tWPH tCS tWHWH2 Data 0x55 tDS 0x30 tDH Status tBUSY DOUT tRB RY/BY# VCC tVCS Notes: 1. SA=Sector Address (for sector erase), VA=Valid Address for reading status, Dout=true data at read address. 2. Vcc shown only to illustrate tvcs measurement references. It cannot occur as shown during a valid command sequence. This Data Sheet may be revised by subsequent versions or modifications due to changes in technical specifications. 34 ©2004 Eon Silicon Solution, Inc., www.eonssi.com Rev. G, Issue Date: 2008/09/09 EN29SL160 Figure 7. Program Operation Timings Program Command Sequence (last 2 cycles) tWC Addresses tAS 0x555 Program Command Sequence (last 2 cycles) tAH PA PA PA CE# tGHWL OE# tCH tWP WE# tWPH tWHWH1 tCS Data PD OxA0 Status DOUT tDS tRB tBUSY tDH RY/BY# tVCS VCC Notes: 1. PA=Program Address, PD=Program Data, DOUT is the true data at the program address. 2. VCC shown in order to illustrate tVCS measurement references. It cannot occur as shown during a valid command sequence. This Data Sheet may be revised by subsequent versions or modifications due to changes in technical specifications. 35 ©2004 Eon Silicon Solution, Inc., www.eonssi.com Rev. G, Issue Date: 2008/09/09 EN29SL160 Figure 8. AC Waveforms for /DATA Polling During Embedded Algorithm Operations tRC Addresses VA VA VA tACC tCH tCE CE# tOE OE# tOEH tDF WE# tOH DQ[7] Complement DQ[6:0] Complement Status Data Status Data True Valid Data True Valid Data tBUSY RY/BY# Notes: 1. VA=Valid Address for reading Data# Polling status data 2. This diagram shows the first status cycle after the command sequence, the last status read cycle and the array data read cycle. Figure 9. AC Waveforms for Toggle Bit During Embedded Algorithm Operations tRC Addresses VA VA VA VA tACC tCH tCE CE# tOE OE# tOEH WE# tDF tOH Valid Status DQ6, DQ2 tBUSY (first read) Valid Status (second d) Valid Status Valid Data (stops toggling) RY/BY# This Data Sheet may be revised by subsequent versions or modifications due to changes in technical specifications. 36 ©2004 Eon Silicon Solution, Inc., www.eonssi.com Rev. G, Issue Date: 2008/09/09 EN29SL160 Figure 10. Alternate CE# Controlled Write Operation Timings 0x555 for Program 0x2AA for Erase PA for Program SA for Sector Erase 0x555 for Chip Erase Addresses VA tWC tAS tAH WE# tWH tGHEL OE# tCP tWS tCPH tCWHWH1 / tCWHWH2 CE# tDS tBUSY tDH Status Data DOUT PD for Program 0x30 for Sector Erase 0x10 for Chip Erase 0xA0 for Program RY/BY# tRH Reset# Notes: PA = address of the memory location to be programmed. PD = data to be programmed at byte address. VA = Valid Address for reading program or erase status Dout = array data read at VA Shown above are the last two cycles of the program or erase command sequence and the last status read cycle Reset# shown to illustrate tRH measurement references. It cannot occur as shown during a valid command sequence. Figure 11. DQ2 vs. DQ6 Enter Embedded Erase WE# Enter Erase Suspend Program Erase Suspend Erase Erase Resume Enter Suspend Program Enter Suspend Read Erase Suspend Read Erase DQ6 DQ2 This Data Sheet may be revised by subsequent versions or modifications due to changes in technical specifications. 37 ©2004 Eon Silicon Solution, Inc., www.eonssi.com Rev. G, Issue Date: 2008/09/09 Erase Complete EN29SL160 Figure 12. Sector Protect/Unprotect Timing Diagram VID Vcc RESET# 0V 0V tVIDR tVIDR SA, A6,A1,A0 Data 60h Valid Valid Valid 60h 40h Status Sector Protect/Unprotect Verify CE# >0.4μS WE# >1μS Sector Protect: 150 uS Sector Unprotect: 15 mS OE# Notes: Use standard microprocessor timings for this device for read and write cycles. For Sector Protect, use A6=0, A1=1, A0=0. For Sector Unprotect, use A6=1, A1=1, A0=0. Temporary Sector Unprotect Parameter Std tVIDR tRSP Speed Option -90 Description VID Rise and Fall Time RESET# Setup Time for Temporary Sector Unprotect Unit Min 500 ns Min 4 µs Figure 13. Temporary Sector Unprotect Timing Diagram VID RESET# 0 or 2 V 0 or 2 V tVIDR tVIDR CE# WE# tRSP RY/BY# This Data Sheet may be revised by subsequent versions or modifications due to changes in technical specifications. 38 ©2004 Eon Silicon Solution, Inc., www.eonssi.com Rev. G, Issue Date: 2008/09/09 EN29SL160 Write Protect / Accelerated Program Figure 14. Accelerated Program Timing Diagram This Data Sheet may be revised by subsequent versions or modifications due to changes in technical specifications. 39 ©2004 Eon Silicon Solution, Inc., www.eonssi.com Rev. G, Issue Date: 2008/09/09 EN29SL160 FIGURE 15. 48L TSOP 12mm x 20mm package outline This Data Sheet may be revised by subsequent versions or modifications due to changes in technical specifications. 40 ©2004 Eon Silicon Solution, Inc., www.eonssi.com Rev. G, Issue Date: 2008/09/09 EN29SL160 FIGURE 16. 48L TFBGA 6mm x 8mm package outline SYMBOL This Data Sheet may be revised by subsequent versions or modifications due to changes in technical specifications. 41 DIMENSION IN MM MIN. NOR MAX A --- --- 1.30 A1 0.23 0.29 --- A2 0.84 0.91 --- D 7.90 8.00 8.10 E 5.90 6.00 6.10 D1 --- 5.60 --- E1 --- 4.00 --- e --- 0.80 --- b 0.35 0.40 Note : 1. Coplanarity: 0.1 mm 0.45 ©2004 Eon Silicon Solution, Inc., www.eonssi.com Rev. G, Issue Date: 2008/09/09 EN29SL160 FIGURE 17. 48L WFBGA 5mm x 6mm package outline SYMBOL DIMENSION IN MM MIN. NOR MAX A --- --- 0.73 A1 0.16 0.21 0.26 A2 --- 0.436 --- D 4.90 5.00 5.10 E 5.90 6.00 6.10 D1 --- 2.50 --- E1 --- 5.00 --- e --- 0.50 --- øb 0.27 0.32 0.37 Note : 1. Coplanarity: 0.1 mm This Data Sheet may be revised by subsequent versions or modifications due to changes in technical specifications. 42 ©2004 Eon Silicon Solution, Inc., www.eonssi.com Rev. G, Issue Date: 2008/09/09 EN29SL160 FIGURE 18. 48L WLGA 5mm x 6mm package outline SYMBOL DIMENSION IN MM MIN. NOR MAX A --- --- 0.535 A1 0.02 0.05 0.08 D 4.90 5.00 5.10 E 5.90 6.00 6.10 D1 --- 2.50 --- E1 --- 5.00 --- e --- 0.50 --- øb 0.20 0.25 0.30 Note : 1. Coplanarity: 0.06 mm This Data Sheet may be revised by subsequent versions or modifications due to changes in technical specifications. 43 ©2004 Eon Silicon Solution, Inc., www.eonssi.com Rev. G, Issue Date: 2008/09/09 EN29SL160 ABSOLUTE MAXIMUM RATINGS Parameter Value Unit Storage Temperature -65 to +125 °C Plastic Packages -65 to +125 °C -55 to +125 °C 200 mA A9, OE#, Reset# and WP#/ACC2 -0.5 to +11.5 V All other pins 3 -0.5 to Vcc+0.5 V Vcc -0.5 to +4.0 V Ambient Temperature With Power Applied Output Short Circuit Current1 Voltage with Respect to Ground Notes: 1. No more than one output shorted at a time. Duration of the short circuit should not be greater than one second. 2. Minimum DC input voltage on A9, OE#, RESET# and WP#/ACC pins is –0.5V. During voltage transitions, A9, OE#, RESET# and WP#/ACC pins may undershoot Vss to –1.0V for periods of up to 50ns and to –2.0V for periods of up to 20ns. See figure below. Maximum DC input voltage on A9, OE#, and RESET# is 11.5V which may overshoot to 12.5V for periods up to 20ns. 3. Minimum DC voltage on input or I/O pins is –0.5 V. During voltage transitions, inputs may undershoot Vss to –1.0V for periods of up to 50ns and to –2.0 V for periods of up to 20ns. See figure below. Maximum DC voltage on output and I/O pins is Vcc + 0.5 V. During voltage transitions, outputs may overshoot to Vcc + 1.5 V for periods up to 20ns. See figure below. 4. Stresses above the values so mentioned above may cause permanent damage to the device. These values are for a stress rating only and do not imply that the device should be operated at conditions up to or above these values. Exposure of the device to the maximum rating values for extended periods of time may adversely affect the device reliability. RECOMMENDED OPERATING RANGES1 Parameter Ambient Operating Temperature Commercial Devices Industrial Devices Value Unit 0 to 70 -40 to 85 °C Regulated:2.0 to 2.2 Operating Supply Voltage Vcc V Full: 1.65 to 2.2 1. Recommended Operating Ranges define those limits between which the functionality of the device is guaranteed. Vcc +2.0V 0 0 Maximum Negative Overshoot Waveform Maximum Positive Overshoot Waveform This Data Sheet may be revised by subsequent versions or modifications due to changes in technical specifications. 44 ©2004 Eon Silicon Solution, Inc., www.eonssi.com Rev. G, Issue Date: 2008/09/09 EN29SL160 ORDERING INFORMATION EN29SL160 T - 90 T C P PACKAGING CONTENT (Blank) = Conventional P = Pb Free TEMPERATURE RANGE C = Commercial (0°C to +70°C) I = Industrial (-40°C to +85°C) PACKAGE T = 48-pin TSOP B = 48-Ball Thin Fine Pitch Ball Grid Array (TFBGA) 0.80mm pitch, 6mm x 8mm package M = 48-Ball Very-Very-Thin-Profile Fine Pitch Ball Grid Array (WFBGA) 0.50mm pitch, 5mm x 6mm package K = 48-Ball Very-Very-Thin-Profile Fine Pitch Land Grid Array (WLGA) SPEED 90 = 90ns BOOT CODE SECTOR ARCHITECTURE T = Top Sector B = Bottom Sector BASE PART NUMBER EN = Eon Silicon Solution Inc. 29SL = FLASH, 1.8V Read Program Erase 160 = 16 Megabit (2M x 8 / 1M x 16) This Data Sheet may be revised by subsequent versions or modifications due to changes in technical specifications. 45 ©2004 Eon Silicon Solution, Inc., www.eonssi.com Rev. G, Issue Date: 2008/09/09 EN29SL160 Revisions List Revision No Description Date A B 2005/12/15 2006/10/25 C D E F G Initial Release 1. change boot sector to eight 8Kbyte sector at page 1,4,5 2. change ICC1 Read current from 7 / 15mA to 12 / 22mA for typical and maximum condition 3. remove 70ns products at page 40 1. Add WFBGA and WLGA package 1. modify Sector Group Organization Table for (Un) Protection in page 11 2. Add Write Protect / Accelerated Program (WP# / ACC) function in page 12. 3. Correct the typo at Table 9,10 in page 31,32 for tWHWH1 from Max. to Typ. 4. Correct the Byte Programming Time (typ.) from 8 to 5 and Word Programming Time (typ.) from 8 to 7 at Table 11 ERASE AND PROGRAMMING PERFORMANCE in page 33. Correct the density configuration in ordering information, in page 45 Change the FBGA 48 Ball package thickness from 1.31mm to 1.30mm in page 41 Modify WFBGA and WLGA package Ball H6 from NC to Reset# in page 3 This Data Sheet may be revised by subsequent versions or modifications due to changes in technical specifications. 46 2007/9/21 2007/11/15 2008/03/04 2008/07/07 2008/09/09 ©2004 Eon Silicon Solution, Inc., www.eonssi.com Rev. G, Issue Date: 2008/09/09