TI MSP430F5131IDA

MSP430F51x1
MSP430F51x2
www.ti.com
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
MIXED SIGNAL MICROCONTROLLER
FEATURES
1
•
23
•
•
•
•
•
•
•
•
Low Supply Voltage Range:
3.6 V Down to 1.8 V
Ultralow Power Consumption
– Active Mode (AM): 180 µA/MHz
– Standby Mode (LPM3 WDT Mode, 3 V):
1.1 µA
– Off Mode (LPM4 RAM Retention, 3 V):
0.9 µA
– Shutdown Mode (LPM4.5, 3 V): 0.25 µA
Wake-Up From Standby Mode in Less Than
5 µs
16-Bit RISC Architecture, Extended Memory,
40-ns Instruction Cycle Time
Flexible Power Management System
– Fully Integrated LDO With Programmable
Regulated Core Supply Voltage
– Supply Voltage Supervision, Monitoring,
and Brownout
Unified Clock System
– FLL Control Loop for Frequency
Stabilization
– Low-Power Low-Frequency Internal Clock
Source (VLO)
– Low-Frequency Trimmed Internal Reference
Source (REFO)
– 32-kHz Crystals (XT1)
– High-Frequency Crystals up to 25 MHz
(XT1)
Hardware Multiplier Supporting 32-Bit
Operations
Three Channel DMA
Up to Twelve 5-V Tolerant Digital Push/Pull
I/Os With Up to 20-mA Drive Strength(1)
•
•
•
•
•
•
•
•
•
•
(1)
16-Bit Timer TD0 With Three Capture/Compare
Registers and Support of High-Resolution
Mode
16-Bit Timer TD1 With Three Capture/Compare
Registers and Support of High-Resolution
Mode
16-Bit Timer TA0 With Three Capture/Compare
Registers
Universal Serial Communication Interfaces(1)
– USCI_A0 Supporting
– Enhanced UART Supporting AutoBaudrate Detection
– IrDA Encoder and Decoder
– Synchronous SPI
– USCI_B0 Supporting
– I2C™
– Synchronous SPI
10-Bit 200-ksps Analog-to-Digital (A/D)
Converter
– Internal Reference
– Sample-and-Hold
– Autoscan Feature
– Up to Eight External Channels, Two Internal
Channels, Including Temperature Sensor(1)
Up to 16-Channel On-Chip Comparator
Including an Ultralow-Power Mode(1)
Serial Onboard Programming, No External
Programming Voltage Needed
Family Members are Summarized in Table 1
Available in 40-Pin QFN (RSB) and 38-Pin
TSSOP (DA) Packages (See Table 2)
For Complete Module Descriptions, See the
MSP430x5xx and MSP430x6xx Family User's
Guide (SLAU208) (1)
Full functionality in the 40-pin QFN package options. For the
available features of other packages see Terminal Functions.
1
2
3
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
MSP430 is a trademark of Texas Instruments.
All other trademarks are the property of their respective owners.
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.
Copyright © 2010–2013, Texas Instruments Incorporated
MSP430F51x1
MSP430F51x2
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
www.ti.com
DESCRIPTION
The Texas Instruments MSP430™ family of ultralow-power microcontrollers consists of several devices featuring
different sets of peripherals targeted for various applications. The architecture, combined with five low-power
modes, is optimized to achieve extended battery life in portable measurement applications. The device features a
powerful 16-bit RISC CPU, 16-bit registers, and constant generators that contribute to maximum code efficiency.
The digitally controlled oscillator (DCO) allows wake up from low-power modes to active mode in less than 5 µs.
The MSP430F51x2 series are microcontroller configurations with two 16-bit high-resolution timers, universal
serial communication interfaces (USCI_A0 and USCI_B0), 32-bit hardware multiplier, a high performance 10-bit
analog-to-digital (A/D) converter, on-chip comparator, three-channel DMA, 5-V tolerant I/Os, and up to 29 I/O
pins.
The MSP430F51x1 series are microcontroller configurations with two 16-bit high-resolution timers, universal
serial communication interfaces (USCI_A0 and USCI_B0), 32-bit hardware multiplier, on-chip comparator, threechannel DMA, 5-V tolerant I/Os, and up to 29 I/O pins.
Typical applications for these devices include analog and digital sensor systems, LED lighting, digital power
supply, motor control, remote controls, thermostats, digital timers, hand-held meters, etc.
Family members available are summarized in Table 1.
Table 1. Family Members
USCI
(1)
(2)
Device
Flash
(KB)
SRAM
(KB)
MSP430F5172
32
2
3
MSP430F5152
16
2
MSP430F5132
8
MSP430F5171
ADC10_A
(Ch)
Comp_B
(Ch)
I/O
9 ext, 2 int
16
31
40 QFN
8 ext, 2 int
15
29
38 TSSOP
9 ext, 2 int
16
31
40 QFN
8 ext, 2 int
15
29
38 TSSOP
9 ext, 2 int
16
31
40 QFN
8 ext, 2 int
15
29
38 TSSOP
16
31
40 QFN
15
29
38 TSSOP
16
31
40 QFN
15
29
38 TSSOP
16
31
40 QFN
15
29
38 TSSOP
Channel A:
UART, IrDA,
SPI
Channel B:
SPI, I2C
3, 3
1
1
3
3, 3
1
1
1
3
3, 3
1
1
32
2
3
3, 3
1
1
-
MSP430F5151
16
2
3
3, 3
1
1
-
MSP430F5131
8
1
3
3, 3
1
1
-
Timer_A (1) Timer_D (2)
Package
Each number in the sequence represents an instantiation of Timer_A with its associated number of capture compare registers and PWM
output generators available. For example, a number sequence of 3, 5 would represent two instantiations of Timer_A, the first
instantiation having 3 and the second instantiation having 5 capture compare registers and PWM output generators, respectively.
Each number in the sequence represents an instantiation of Timer_D with its associated number of capture compare registers and PWM
output generators available. For example, a number sequence of 3, 5 would represent two instantiations of Timer_D, the first
instantiation having 3 and the second instantiation having 5 capture compare registers and PWM output generators, respectively.
Table 2. Ordering Information (1)
TA
–40°C to 85°C
(1)
(2)
2
PACKAGED DEVICES (2)
PLASTIC 38-PIN DA (TSSOP)
PLASTIC 40-PIN RSB (QFN)
MSP430F5132IDA
MSP430F5132IRSB
MSP430F5152IDA
MSP430F5152IRSB
MSP430F5172IDA
MSP430F5172IRSB
MSP430F5131IDA
MSP430F5131IRSB
MSP430F5151IDA
MSP430F5151IRSB
MSP430F5171IDA
MSP430F5171IRSB
For the most current package and ordering information, see the Package Option Addendum at the end
of this document, or see the TI web site at www.ti.com.
Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.
Submit Documentation Feedback
Copyright © 2010–2013, Texas Instruments Incorporated
MSP430F51x1
MSP430F51x2
www.ti.com
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
Functional Block Diagram, MSP430F51x2
DVCC
AVCC
RST/NMI
DVSS
AVSS
XIN XOUT
Unified
Clock
System
ACLK
SMCLK
DVIO
DVSS
32KB
16KB
8KB
2KB
2KB
1KB
Power
Management
Flash
RAM
LDO
SVM/SVS
Brownout
P1.x
8
P2.x
8
P3.x
8
PJ.x
7
SYS
I/O Ports
I/O Ports
I/O Ports
I/O Ports
Watchdog
P1
8 I/Os
2x 5V 20mA
Interrupt
and Wakeup
Pullup/down
Resistors
P2
8 I/Os
8x 5V 20mA
Interrupt
and Wakeup
Pullup/down
Resistors
P3
8 I/Os
2x 5V 20mA
PJ
7 I/Os
Pullup/down
Resistors
Pullup/down
Resistors
Port
Mapping
Controller
MCLK
CPUXV2
and
Working
Registers
3 DMA
Channel
EEM
(S: 3+1)
TD1
TD0
JTAG/
SBW
Interface
TA0
MPY32
Timer_A
3 CC
Registers
COMP_B
USCI
Timer_D
Timer_D
≤256 MHz
≤256 MHz
A0: UART,
3 CC
3 CC
IrDA, SPI
Registers
Registers
With Buffer With Buffer
EventControl EventControl B0: SPI, I2C
ADC10_A
10 Bit
200 KSPS
9 Channels
16 Channels
High,
Medium, and
Ultralow
Power
Modes
REF
CRC16
Voltage
Reference
Functional Block Diagram, MSP430F51x1
DVCC
AVCC
RST/NMI
DVSS
AVSS
XIN XOUT
Unified
Clock
System
ACLK
SMCLK
32KB
16KB
8KB
Flash
DVIO
DVSS
2KB
2KB
1KB
Power
Management
RAM
LDO
SVM/SVS
Brownout
P1.x
8
P2.x
8
P3.x
8
PJ.x
7
SYS
I/O Ports
I/O Ports
I/O Ports
I/O Ports
Watchdog
P1
8 I/Os
2x 5V 20mA
Interrupt
and Wakeup
Pullup/down
Resistors
P2
8 I/Os
8x 5V 20mA
Interrupt
and Wakeup
Pullup/down
Resistors
P3
8 I/Os
2x 5V 20mA
PJ
7 I/Os
Pullup/down
Resistors
Pullup/down
Resistors
Port
Mapping
Controller
MCLK
CPUXV2
and
Working
Registers
3 DMA
Channel
EEM
(S: 3+1)
TD0
JTAG/
SBW
Interface
TA0
MPY32
Timer_A
3 CC
Registers
TD1
USCI
Timer_D
Timer_D
≤256 MHz
≤256 MHz
A0: UART,
3 CC
3 CC
IrDA, SPI
Registers
Registers
With Buffer With Buffer
EventControl EventControl B0: SPI, I2C
Copyright © 2010–2013, Texas Instruments Incorporated
COMP_B
16 Channels
High,
Medium, and
Ultralow
Power
Modes
REF
CRC16
Voltage
Reference
Submit Documentation Feedback
3
MSP430F51x1
MSP430F51x2
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
www.ti.com
AVSS
PJ.5/XIN
PJ.4/XOUT
AVCC
P3.7/PM_TA0.0/A6*/CB10
P3.6/PM_TA0.1/A7*/VEREF-*/CB11
P3.5/PM_TA0.2/A8*/VEREF+*/CB12
RST/NMI/SBWTDIO
TEST/SBWTCK
P3.4/PM_TD0CLK/PM_MCLK
Pin Designation, MSP430F51x2IRSB and MSP430F51x1IRSB
* Only MSP430F51x2 devices
4
Submit Documentation Feedback
1 39 38 37 36 35 34 33 32
2
3
4
RSB PACKAGE
5
(TOP VIEW)
6
7
8
9
12 13 14 15 16 17 18 19
29
28
27
26
25
24
23
22
P3.3/PM_TA0CLK/PM_CBOUT/CB13
P3.2/PM_TD0.0/PM_SMCLK/CB14
PJ.6/TD1CLK/TD0.1/CB15
DVCC
DVSS
VCORE
P3.1/PM_TEC1FLT0/PM_TD1.2
P3.0/PM_TEC1FLT2/PM_TD1.1
P2.7/PM_TEC1CLR/PM_TEC1FLT1/PM_TD1.0
P2.6/PM_TEC0FLT1/PM_TD0.2
P1.6/PM_TD0.0
P1.7/PM_TD0.1
P2.0/PM_TD0.2
P2.1/PM_TD1.0
P2.2/PM_TD1.1
P2.3/PM_TD1.2
DVIO
DVSS
P2.4/PM_TEC0CLR/PM_TEC0FLT2/PM_TD0.0
P2.5/PM_TEC0FLT0/PM_TD0.1
P1.0/PM_UCA0CLK/PM_UCB0STE/A0*/CB0
P1.1/PM_UCA0TXD/PM_UCA0SIMO/A1*/CB1
P1.2/PM_UCA0RXD/PM_UCA0SOMI/A2*/CB2
P1.3/PM_UCB0CLK/PM_UCA0STE/A3*/CB3
P1.4/PM_UCB0SIMO/PM_UCB0SDA/A4*/CB4
P1.5/PM_UCB0SOMI/PM_UCB0SCL/A5*/CB5
PJ.0/SMCLK/TDO/CB6
PJ.1/MCLK/TDI/TCLK/CB7
PJ.2/ADC10CLK/TMS/CB8
PJ.3/ACLK/TCK/CB9
Copyright © 2010–2013, Texas Instruments Incorporated
MSP430F51x1
MSP430F51x2
www.ti.com
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
Pin Designation, MSP430F51x2IDA and MSP430F51x1IDA
AVCC
PJ.4/XOUT
PJ.5/XIN
AVSS
P1.0/PM_UCA0CLK/PM_UCB0STE/A0*/CB0
P1.1/PM_UCA0TXD/PM_UCA0SIMO/A1*/CB1
P1.2/PM_UCA0RXD/PM_UCA0SOMI/A2*/CB2
P1.3/PM_UCB0CLK/PM_UCA0STE/A3*/CB3
P1.4/PM_UCB0SIMO/PM_UCB0SDA/A4*/CB4
P1.5/PM_UCB0SOMI/PM_UCB0SCL/A5*/CB5
PJ.0/SMCLK/TDO/CB6
PJ.1/MCLK/TDI/TCLK/CB7
PJ.2/ADC10CLK/TMS/CB8
PJ.3/ACLK/TCK/CB9
P1.6/PM_TD0.0
P1.7/PM_TD0.1
P2.0/PM_TD0.2
P2.1/PM_TD1.0
P2.2/PM_TD1.1
* Only MSP430F51x2
Copyright © 2010–2013, Texas Instruments Incorporated
1
38
2
37
3
36
4
35
5
34
6
33
7
32
8
31
9
DA PACKAGE 30
10 (TOP VIEW)
29
11
28
12
27
13
26
14
25
15
24
16
23
17
22
18
21
19
20
P3.6/PM_TA0.1/A7*/VEREF-*-/CB11
P3.5/PM_TA0.2/A8*/VEREF+*/CB12
RST/NMI/SBWTDIO
TEST/SBWTCK
P3.3/PM_TA0CLK/PM_CBOUT/CB13
P3.2/PM_TD0.0/PM_SMCLK/CB14
PJ.6/TD1CLK/TD0.1/CB15
DVCC
DVSS
VCORE
P3.1/PM_TEC1FLT0/PM_TD1.2
P3.0/PM_TEC1FLT2/PM_TD1.1
P2.7/PM_TEC1CLR/PM_TEC1FLT1/PM_TD1.0
P2.6/PM_TEC0FLT1/PM_TD0.2
P2.5/PM_TEC0FLT0/PM_TD0.1
P2.4/PM_TEC0CLR/PM_TEC0FLT2/PM_TD0.0
DVSS
DVIO
P2.3/PM_TD1.2
Submit Documentation Feedback
5
MSP430F51x1
MSP430F51x2
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
www.ti.com
Terminal Functions
Table 3. Terminal Functions
TERMINAL
NAME
P1.0/
PM_UCA0CLK/
<br/>
PM_UCB0STE/
A0/
CB0 (2)
P1.1/
PM_UCA0TXD/
PM_UCA0SIMO/
A1/
CB1 (2)
P1.2/
PM_UCA0RXD/
PM_UCA0SOMI/
A2/
CB2 (2)
P1.3/
PM_UCB0CLK/
<br/>
PM_UCA0STE/
A3/
CB3 (2)
P1.4/
PM_UCB0SIMO/
PM_UCB0SDA/
A4/
CB4 (2)
P1.5/
PM_UCB0SOMI/
PM_UCB0SCL/
A5/
CB5 (2)
PJ.0/
SMCLK/
TDO/
CB6
PJ.1/
MCLK/
TDI/TCLK/
CB7
I/O (1)
NO.
RSB
1
2
3
4
5
6
7
8
DESCRIPTION
DA
5
6
7
8
9
10
11
12
I/O
General-purpose digital I/O
Clock signal input – USCI_A0 SPI slave mode
Clock signal output – USCI_A0 SPI master mode
Slave transmit enable – USCI_B0 SPI mode
Analog input A0 – 10-bit ADC (see )
Comparator_B Input 0
I/O
General-purpose digital I/O
Transmit data – USCI_A0 UART mode
Slave in, master out – USCI_A0 SPI mode
Analog input A1 – 10-bit ADC (2)
Comparator_B Input 1
I/O
General-purpose digital I/O
Receive data – USCI_A0 UART mode
Slave out, master in – USCI_A0 SPI mode
Analog input A2 – 10-bit ADC (2)
Comparator_B Input 2
I/O
General-purpose digital I/O
Clock signal input – USCI_B0 SPI slave mode
Clock signal output – USCI_B0 SPI master mode
Slave transmit enable – USCI_A0 SPI mode
Analog input A3 – 10-bit ADC (2)
Comparator_B Input 3
I/O
General-purpose digital I/O
Slave in, master out – USCI_B0 SPI mode
I2C data – USCI_B0 I2C mode
Analog input A4 – 10-bit ADC (2)
Comparator_B Input 4
I/O
General-purpose digital I/O
Slave out, master in – USCI_B0 SPI mode
I2C clock – USCI_B0 I2C mode
Analog input A5 – 10-bit ADC (2)
Comparator_B Input 5
I/O
General-purpose digital I/O
SMCLK clock output
Test data output port
Comparator_B Input 6
I/O
General-purpose digital I/O
MCLK clock output
Test data input or test clock input
Comparator_B Input 7
PJ.2/
ADC10CLK/
TMS/
CB8
9
13
I/O
General-purpose digital I/O
ADC10_A clock output
Test mode select
Comparator_B Input 8
PJ.3/
ACLK/
TCK/
CB9
10
14
I/O
General-purpose digital I/O
ACLK output port
Test clock
Comparator_B Input 9
P1.6/
PM_TD0.0
11
15
I/O, DVIO
General-purpose digital I/O
TD0 CCR0 compare output/capture input
P1.7/
PM_TD0.1
12
16
I/O, DVIO
General-purpose digital I/O
TD0 CCR1 compare output/capture input
P2.0/
PM_TD0.2
13
17
I/O, DVIO
General-purpose digital I/O
TD0 CCR2 compare output/capture input
(1)
(2)
6
I = input, O = output, N/A = not available on this package offering
The ADC10_A module is available on MSP430F51x2 devices. The secondary pin functions Ax (ADC10_A channel x) available only in
MSP430F51x2 devices.
Submit Documentation Feedback
Copyright © 2010–2013, Texas Instruments Incorporated
MSP430F51x1
MSP430F51x2
www.ti.com
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
Table 3. Terminal Functions (continued)
TERMINAL
NAME
I/O (1)
NO.
DESCRIPTION
RSB
DA
P2.1/
PM_TD1.0
14
18
I/O, DVIO
General-purpose digital I/O
TD1 CCR0 compare output/capture input
P2.2/
PM_TD1.1
15
19
I/O, DVIO
General-purpose digital I/O
TD1 CCR1 compare output/capture input
P2.3/
PM_TD1.2
16
20
I/O, DVIO
General-purpose digital I/O
TD1 CCR2 compare output/capture input
DVIO
17
21
5V tolerant digital I/O power supply
DVSS
18
22
Digital ground supply
General-purpose digital I/O
TD0 external clear input/TD0 fault input channel 2 (controlled by module input enable)
<br/>
TD0 CCR0 compare output
P2.4/
PM_TEC0CLR/
PM_TEC0FLT2/
PM_TD0.0
19
23
I/O, DVIO
P2.5/
PM_TEC0FLT0/
PM_TD0.1
20
24
General-purpose digital I/O
I/O, DVIO TD0 fault input channel 0
TD0 CCR1 compare output
P2.6/
PM_TEC0FLT1/
PM_TD0.2
21
25
General-purpose digital I/O
I/O, DVIO TD0 fault input channel 1
TD0 CCR2 compare output
P2.7/
PM_TEC1CLR/
PM_TEC1FLT1/
PM_TD1.0
22
26
I/O, DVIO
P3.0/
PM_TEC1FLT2 /
PM_TD1.1
23
27
General-purpose digital I/O
I/O, DVIO TD1 fault input channel 2
TD1 CCR1 compare output
P3.1/
PM_TEC1FLT0/
PM_TD1.2
24
28
General-purpose digital I/O
I/O, DVIO TD1 fault input channel 0
TD1 CCR2 compare output
VCORE
25
29
Regulated core power supply
DVSS
26
30
Digital ground supply
DVCC
27
31
Digital power supply
PJ.6/
TD1CLK/
TD0.1/
CB15
28
32
I/O
General-purpose digital I/O
TD1 clock input
TD0 CCR1 compare output
Comparator_B Input 15
P3.2/
PM_TD0.0/
PM_SMCLK/
CB14
29
33
I/O
General-purpose digital I/O
TD0 CCR0 capture input
SMCLK output
Comparator_B Input 14
P3.3/
PM_TA0CLK/
PM_CBOUT/
CB13
30
34
I/O
General-purpose digital I/O
TA0 clock input
Comparator_B output
Comparator_B Input 13
P3.4/
PM_TD0CLK/
PM_MCLK
31
-
I/O
General-purpose digital I/O
TD0 clock input
MCLK output
TEST/
SBWTCK
32
35
Test mode pin – select digital I/O on JTAG pins
Spy-Bi-Wire input clock
RST/
NMI/
SBWTDIO
33
36
Reset input active low
Non-maskable interrupt input
Spy-By-Wire data input/output
General-purpose digital I/O
TD1 external clear/TD1 fault input channel 1 (controlled by module input enable)
<br/>
TD1 CCR0 compare output
Copyright © 2010–2013, Texas Instruments Incorporated
Submit Documentation Feedback
7
MSP430F51x1
MSP430F51x2
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
www.ti.com
Table 3. Terminal Functions (continued)
TERMINAL
NAME
P3.5/
PM_TA0.2/
A8 (3)
VEREF+/
CB12
I/O (1)
NO.
RSB
34
DESCRIPTION
DA
37
I/O
General-purpose digital I/O
TA0 CCR2 compare output/capture input
Analog input A8 – 10-bit ADC (3)
Positive terminal for the ADC's reference voltage for an external applied reference voltage
Comparator_B Input 12
P3.6/
PM_TA0.1/
A7 (3)/
VEREF-/
CB11
35
38
I/O
General-purpose digital I/O
TA0 CCR1 compare output/capture input
Analog input A7 – 10-bit ADC (3)
Negative terminal for the ADC's reference voltage for an external applied reference voltage
Comparator_B Input 11
P3.7/
PM_TA0.0/
A6 (3)/
CB10
36
-
I/O
General-purpose digital I/O
TA0 CCR0 compare output/capture input
Analog input A6 – 10-bit ADC (3)
Comparator_B Input 10
AVCC
37
1
PJ.4/
XOUT
38
2
I/O
General-purpose digital I/O
Output terminal of crystal oscillator
PJ.5/
XIN
39
3
I/O
General-purpose digital I/O
Input terminal for crystal oscillator
AVSS
40
4
-
NA
QFN pad
(3)
8
Analog power supply
Analog ground supply
Recommended to connect to DVSS externally
The ADC10_A module is available on MSP430F51x2 devices. The secondary pin functions Ax (ADC10_A channel x) available only in
MSP430F51x2 devices.
Submit Documentation Feedback
Copyright © 2010–2013, Texas Instruments Incorporated
MSP430F51x1
MSP430F51x2
www.ti.com
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
SHORT-FORM DESCRIPTION
CPU
The MSP430 CPU has a 16-bit RISC architecture
that is highly transparent to the application. All
operations, other than program-flow instructions, are
performed as register operations in conjunction with
seven addressing modes for source operand and four
addressing modes for destination operand.
Program Counter
PC/R0
Stack Pointer
SP/R1
Status Register
SR/CG1/R2
Constant Generator
CG2/R3
General-Purpose Register
R4
General-Purpose Register
R5
General-Purpose Register
R6
General-Purpose Register
R7
General-Purpose Register
R8
General-Purpose Register
R9
Peripherals are connected to the CPU using data,
address, and control buses and can be handled with
all instructions.
General-Purpose Register
R10
General-Purpose Register
R11
Instruction Set
General-Purpose Register
R12
The instruction set consists of the original 51
instructions with three formats and seven address
modes and additional instructions for the expanded
address range. Each instruction can operate on word
and byte data. Table 4 shows examples of the three
types of instruction formats; Table 5 shows the
address modes.
General-Purpose Register
R13
General-Purpose Register
R14
General-Purpose Register
R15
The CPU is integrated with 16 registers that provide
reduced instruction execution time. The register-toregister operation execution time is one cycle of the
CPU clock.
Four of the registers, R0 to R3, are dedicated as
program counter, stack pointer, status register, and
constant generator, respectively. The remaining
registers are general-purpose registers.
Table 4. Instruction Word Formats
FORMAT
EXAMPLE
Dual operands, source-destination
ADD
Single operands, destination only
R4 + R5 → R5
R8
PC → (TOS), R8 → PC
CALL
Relative jump, un/conditional
OPERATION
R4,R5
JNE
Jump-on-equal bit = 0
Table 5. Address Mode Descriptions
(1)
ADDRESS MODE
S (1)
D (1)
Register
+
+
MOV Rs,Rd
MOV R10,R11
R10 → R11
Indexed
+
+
MOV X(Rn),Y(Rm)
MOV 2(R5),6(R6)
M(2+R5) → M(6+R6)
Symbolic (PC relative)
+
+
MOV EDE,TONI
Absolute
+
+
MOV & MEM, & TCDAT
Indirect
+
MOV @Rn,Y(Rm)
MOV @R10,Tab(R6)
M(R10) → M(Tab+R6)
Indirect autoincrement
+
MOV @Rn+,Rm
MOV @R10+,R11
M(R10) → R11
R10 + 2 → R10
Immediate
+
MOV #X,TONI
MOV #45,TONI
#45 → M(TONI)
SYNTAX
EXAMPLE
OPERATION
M(EDE) → M(TONI)
M(MEM) → M(TCDAT)
S = source, D = destination
Copyright © 2010–2013, Texas Instruments Incorporated
Submit Documentation Feedback
9
MSP430F51x1
MSP430F51x2
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
www.ti.com
Operating Modes
The MSP430 has one active mode and six software-selectable low-power modes of operation. An interrupt event
can wake up the device from any of the five low-power modes, service the request, and restore back to the lowpower mode on return from the interrupt program.
The following seven operating modes can be configured by software:
• Active mode (AM)
– All clocks are active
• Low-power mode 0 (LPM0)
– CPU is disabled
– ACLK and SMCLK remain active, MCLK is disabled
– FLL loop control remains active
• Low-power mode 1 (LPM1)
– CPU is disabled
– FLL loop control is disabled
– ACLK and SMCLK remain active, MCLK is disabled
• Low-power mode 2 (LPM2)
– CPU is disabled
– MCLK and FLL loop control and DCOCLK are disabled
– DCO's dc-generator remains enabled
– ACLK remains active
• Low-power mode 3 (LPM3)
– CPU is disabled
– MCLK, FLL loop control, and DCOCLK are disabled
– DCO's dc-generator is disabled
– ACLK remains active
• Low-power mode 4 (LPM4)
– CPU is disabled
– ACLK is disabled
– MCLK, FLL loop control, and DCOCLK are disabled
– DCO's dc-generator is disabled
– Crystal oscillator is stopped
– Complete data retention
• Low-power mode 5 (LPM4.5)
– Internal regulator disabled
– No data retention
– Wakeup from RST/NMI, P1, and P2
10
Submit Documentation Feedback
Copyright © 2010–2013, Texas Instruments Incorporated
MSP430F51x1
MSP430F51x2
www.ti.com
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
Interrupt Vector Addresses
The interrupt vectors and the power-up start address are located in the address range 0FFFFh to 0FF80h. The
vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence.
Table 6. Interrupt Sources, Flags, and Vectors
SYSTEM
INTERRUPT
WORD
ADDRESS
PRIORITY
Reset
0FFFEh
63, highest
SVMLIFG, SVMHIFG, DLYLIFG, DLYHIFG,
VLRLIFG, VLRHIFG, VMAIFG, JMBNIFG,
JMBOUTIFG (SYSSNIV) (1)
(Non)maskable
0FFFCh
62
User NMI
NMI
Oscillator Fault
Flash Memory Access Violation
NMIIFG, OFIFG, ACCVIFG (SYSUNIV) (1)
(Non)maskable
0FFFAh
61
Comp_B
CBIIFG, CBIFG (CBIV) (1)
Maskable
0FFF8h
60
Maskable
0FFF6h
59
Maskable
0FFF4h
58
INTERRUPT SOURCE
System Reset
Power-Up
External Reset
Watchdog Timeout, Key Violation
Flash Memory Key Violation
System NMI
PMM
Vacant Memory Access
JTAG Mailbox
TEC0
INTERRUPT FLAG
WDTIFG, KEYV (SYSRSTIV) (1)
(2)
(2)
(3)
TEC0FLTIFG, TEC0EXCLRIFG,
TEC0AXCLRIFG (1) (3)
TD0
TD0CCR0 CCIFG0
(3)
TD0
TD0CCR1 CCIFG1, ... TD0CCR2 CCIFG2,
TD0IFG, TD0HFLIFG, TD0HFHIFG, TD0HLKIFG,
TD0HUNLKIFG (TD0IV) (1) (3)
Maskable
0FFF2h
57
Watchdog Timer_A Interval
Timer Mode
WDTIFG
Maskable
0FFF0h
56
USCI_A0 Receive or Transmit
UCA0RXIFG, UCA0TXIFG (UCA0IV)
(1) (3)
Maskable
0FFEEh
55
USCI_B0 Receive or Transmit
UCB0RXIFG, UCB0TXIFG, I2C Status Interrupt
Flags (UCB0IV) (1) (3)
Maskable
0FFECh
54
ADC10_A (MSP430F51x2 only)
ADC10IFG0, ADC10INIFG, ADC10LOIFG,
ADC10HIIFG, ADC10TOVIFG, ADC10OVIFG
(ADC10IV) (1) (3)
Maskable
0FFEAh
53
TA0
TA0CCR0 CCIFG0 (3)
Maskable
0FFE8h
52
TA0
TA0CCR1 CCIFG1 ... TA0CCR2 CCIFG2,
TA0IFG (TA0IV) (1) (3)
Maskable
0FFE6h
51
DMA
DMA0IFG, DMA1IFG, DMA2IFG (DMAIV) (1)
Maskable
0FFE4h
50
TEC1
TEC1FLTIFG, TEC1EXCLRIFG,
TEC1AXCLRIFG (1) (3)
Maskable
0FFE2
49
TD1
TD1CCR0 CCIFG0 (3)
Maskable
0FFE0h
48
TD1
TD1CCR1 CCIFG1 ... TD1CCR2 CCIFG2,
TD1IFG, TD1HFLIFG, TD1HFHIFG, TD1HLKIFG,
TD1HUNLKIFG (TD1IV) (1) (3)
Maskable
0FFDEh
47
(3)
Maskable
0FFDCh
46
(1) (3)
Maskable
0FFDAh
45
0FFD8h
44
⋮
⋮
0FF80h
0, lowest
I/O Port P1
I/O Port P2
P1IFG.0 to P1IFG.7 (P1IV) (1)
P2IFG.0 to P2IFG.7 (P2IV)
Reserved
(1)
(2)
(3)
(4)
(3)
Reserved (4)
Multiple source flags
A reset is generated if the CPU tries to fetch instructions from within peripheral space or vacant memory space.
(Non)maskable: the individual interrupt-enable bit can disable an interrupt event, but the general-interrupt enable cannot disable it.
Interrupt flags are located in the module.
Reserved interrupt vectors at addresses are not used in this device and can be used for regular program code if necessary. To maintain
compatibility with other devices, it is recommended to reserve these locations.
Copyright © 2010–2013, Texas Instruments Incorporated
Submit Documentation Feedback
11
MSP430F51x1
MSP430F51x2
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
www.ti.com
Memory Organization
Memory
Main: interrupt vector
Main: code memory
Size
Flash
Flash
MSP430F5132, MSP430F5131
MSP430F5152, MSP430F5151
MSP430F5172, MSP430F5171
8KB
00FFFFh to 00FF80h
00FFFFh to 00E000h
16KB
00FFFFh to 00FF80h
00FFFFh to 00C000h
32KB
00FFFFh to 00FF80h
00FFFFh to 008000h
Size
RAM
1KB
2KB
2KB
001FFFh to 001C00h
0023FFh to 001C00h
0023FFh to 001C00h
512 Byte
512 Byte
512 Byte
Info A
128B
0019FF to 001980h
128B
0019FF to 001980h
128B
0019FF to 001980h
Info B
128B
00197F to 001900h
128B
00197F to 001900h
128B
00197F to 001900h
Info C
128B
0018FF to 001880h
128B
0018FF to 001880h
128B
0018FF to 001880h
Info D
128B
00187F to 001800h
128B
00187F to 001800h
128B
00187F to 001800h
Sector 0
Size
Information memory
(Flash)
Size
Bootstrap loader (BSL)
memory
Peripherals
2K
2KB
2KB
BSL 3
512B
0017FFh to 001600h
512B
0017FFh to 001600h
512B
0017FFh to 001600h
BSL 2
512B
0015FFh to 001400h
512B
0015FFh to 001400h
512B
0015FFh to 001400h
BSL 1
512B
0013FFh to 001200h
512B
0013FFh to 001200h
512B
0013FFh to 001200h
BSL 0
512B
0011FFh to 001000h
512B
0011FFh to 001000h
512B
0011FFh to 001000h
Size
Flash
4KB
000FFFh to 000000h
4KB
000FFFh to 000000h
4KB
000FFFh to 000000h
Bootstrap Loader (BSL)
The BSL enables users to program the flash memory or RAM using a UART serial interface. Access to the
device memory via the BSL is protected by user-defined password. A bootstrap loader security key is provided to
disable the BSL completely or to disable the erasure of the flash if an invalid password is supplied. For complete
description of the features of the BSL and its implementation, see MSP430 Programming Via the Bootstrap
Loader (SLAU319).
Table 7. BSL Functions
DESCRIPTION
12
BSL FUNCTION
40-PIN QFN RSB
PACKAGE
38-PIN TSSOP DA
PACKAGE
RST/NMI/SBWTDIO
Entry sequence signal
Entry sequence signal
TEST/SBWTCK
Entry sequence signal
Entry sequence signal
Data transmit
P3.7
P3.5
Data receive
P3.6
P3.6
VCC
Power Supply
Power Supply
VSS
Ground Supply
Ground Supply
Submit Documentation Feedback
Copyright © 2010–2013, Texas Instruments Incorporated
MSP430F51x1
MSP430F51x2
www.ti.com
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
Flash Memory
The flash memory can be programmed via the JTAG port, Spy-Bi-Wire (SBW), the BSL, or in-system by the
CPU. The CPU can perform single-byte, single-word, and long-word writes to the flash memory. Features of the
flash memory include:
• Flash memory has n segments of main memory and four segments of information memory (A to D) of
128 bytes each. Each segment in main memory is 512 bytes in size.
• Segments 0 to n may be erased in one step, or each segment may be individually erased.
• Segments A to D can be erased individually, or as a group with segments 0 to n. Segments A to D are also
called information memory.
• Segment A can be locked separately.
RAM Memory
The RAM memory is made up of n sectors. Each sector can be completely powered down to save leakage;
however, all data is lost. Features of the RAM memory include:
• RAM memory has n sectors. The size of a sector can be found in the Memory Organization section.
• Each sector 0 to n can be complete disabled; however, data retention is lost.
• Each sector 0 to n automatically enters low-power retention mode when possible.
Peripherals
Peripherals are connected to the CPU through data, address, and control buses and can be handled using all
instructions. For complete module descriptions, see the MSP430x5xx and MSP430x6xx Family User's Guide
(SLAU208).
Digital I/O
There are up to three 8-bit I/O ports implemented. Port PJ contains seven individual I/O pins, common to all
devices.
• All individual I/O bits are independently programmable.
• Any combination of input, output, and interrupt conditions is possible.
• Programmable pullup or pulldown on all ports.
• Programmable drive strength on all ports.
• Edge-selectable interrupt input capability for all the eight bits of ports P1 and P2.
• Read/write access to port-control registers is supported by all instructions.
• Ports can be accessed byte-wise. P1 and P2 can also be accessed word-wise (PA).
• The input and output voltage levels of the pins supplied by DVIO (see Table 3) are defined by the voltage
supplied by DVIO (up to 5V).
Copyright © 2010–2013, Texas Instruments Incorporated
Submit Documentation Feedback
13
MSP430F51x1
MSP430F51x2
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
www.ti.com
Port Mapping Controller
The port mapping controller allows the flexible and reconfigurable mapping of digital functions to Port P1, Port
P2, and Port P3.
Table 8. Port Mapping Mnemonics and Functions
VALUE
PxMAPy MNEMONIC
0
PM_NONE
1
2
3
4
5
6
None
DVSS
PM_UCA0CLK
USCI_A0 clock input/output (direction controlled by USCI)
PM_UCB0STE
USCI_B0 SPI slave transmit enable (direction controlled by USCI)
PM_UCA0TXD
USCI_A0 UART TXD (Direction controlled by USCI - output)
PM_UCA0SIMO
USCI_A0 SPI slave in master out (direction controlled by USCI)
PM_UCB0SOMI
USCI_B0 SPI slave out master in (direction controlled by USCI)
PM_UCB0SCL
USCI_B0 I2C clock (open drain and direction controlled by USCI)
PM_UCA0RXD
USCI_A0 UART RXD (Direction controlled by USCI - input)
PM_UCA0SOMI
USCI_A0 SPI slave out master in (direction controlled by USCI)
PM_UCB0SIMO
USCI_B0 SPI slave in master out (direction controlled by USCI)
PM_UCB0SDA
USCI_B0 I2C data (open drain and direction controlled by USCI)
PM_UCB0CLK
USCI_B0 clock input/output (direction controlled by USCI)
PM_UCA0STE
USCI_A0 SPI slave transmit enable (direction controlled by USCI)
PM_TD0.0
TD0 input capture channel 0
TD0 output compare channel 0
8
PM_TD0.1
TD0 input capture channel 1
TD0 output compare channel 1
9
PM_TD0.2
TD0 input capture channel 2
TD0 output compare channel 2
10
PM_TD1.0
TD1 input capture channel 0
TD1 output compare channel 0
11
PM_TD1.1
TD1 input capture channel 1
TD1 output compare channel 1
12
PM_TD1.2
TD1 input capture channel 2
TD1 output compare channel 2
PM_CLR1TD0.0
TD0 external clear input
PM_FLT1_2TD0.0
TD0 fault input channel 2
14
PM_FLT1_0TD0.1
TD0 fault input channel 0
TD0 output compare channel 1
15
PM_FLT1_1TD0.2
TD0 fault input channel 1
TD0 output compare channel 2
PM_CLR2TD1.0
TD1 external clear input (controlled by
module input enable)
PM_FLT2_1TD1.0
TD1 fault input channel 1 (controlled
by module input enable)
17
PM_FLT2_2TD1.1
TD1 fault input channel 2
TD1 output compare channel 1
18
PM_FLT2_0TD1.2
TD1 fault input channel 0
TD1 output compare channel 2
19
PM_TD0.0SMCLK
TD0 input capture channel 0
SMCLK output
20
PM_TA0CLKCBOUT
TA0 input clock
Comparator_B output
21
PM_TD0CLKMCLK
TD0 input clock
MCLK output
22
PM_TA0_0
TA0 input capture channel 0
TA0 output compare channel 0
23
PM_TA0_1
TA0 input capture channel 1
TA0 output compare channel 1
24
PM_TA0_2
TA0 input capture channel 2
TA0 output compare channel 2
25
PM_DMAE0SMCLK
DMAE0 input
SMCLK output
26
PM_DMAE1MCLK
DMAE1 input
MCLK output
27
PM_DMAE2SVM
DMAE2 input
SVM output
28
PM_TD0OUTH
TD0 3-state input
ADC10CLK
29
PM_TD1OUTH
TD1 3-state input
ACLK
None
DVSS
16
30
31 (0FFh)
14
OUTPUT PIN FUNCTION
7
13
(1)
INPUT PIN FUNCTION
Reserved
(1)
PM_ANALOG
TD0 output compare channel 0
TD1 output compare channel 0
Disables the output driver as well as the input Schmitt-trigger to prevent
parasitic cross currents when applying analog signals.
The value of the PM_ANALOG mnemonic is set to 0FFh. The port mapping registers are only 5 bits wide and the upper bits are ignored
resulting in a read out value of 31.
Submit Documentation Feedback
Copyright © 2010–2013, Texas Instruments Incorporated
MSP430F51x1
MSP430F51x2
www.ti.com
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
Table 9. Default Mapping
PIN
PxMAPy MNEMONIC
INPUT PIN FUNCTION
OUTPUT PIN FUNCTION
PM_UCA0CLK
PM_UCB0STE
USCI_A0 clock input/output
(direction controlled by USCI)
USCI_B0 SPI slave transmit enable
(direction controlled by USCI)
P1.1/PM_UCA0TXD/
PM_UCA0SIMO/A1/CB1
PM_UCA0TXD
PM_UCA0SIMO
USCI_A0 UART TXD (Direction
controlled by USCI - output)
USCI_A0 SPI slave in master out
(direction controlled by USCI)
P1.2/PM_UCA0RXD/
PM_UCA0SOMI/A2/CB2
PM_UCA0RXD
PM_UCA0SOMI
USCI_A0 UART RXD (Direction
controlled by USCI - input)
USCI_A0 SPI slave out master in
(direction controlled by USCI)
P1.3/PM_UCB0CLK/
PM_UCA0STE/A3/CB3
PM_UCB0CLK
PM_UCA0STE
USCI_B0 clock input/output
(direction controlled by USCI)
USCI_A0 SPI slave transmit enable
(direction controlled by USCI)
P1.4/PM_UCB0SIMO/
PM_UCB0SDA/A4/CB4
PM_UCB0SIMO
PM_UCB0SDA
USCI_B0 SPI slave in master out
(direction controlled by USCI)
USCI_B0 I2C data (open drain and
direction controlled by USCI)
P1.5/PM_UCB0SOMI/
PM_UCB0SCL/A5/CB5
PM_UCB0SOMI
PM_UCB0SCL
USCI_B0 SPI slave out master in
(direction controlled by USCI)
USCI_B0 I2C clock (open drain and
direction controlled by USCI)
P1.6/PM_TD0.0
PM_TD0.0
TD0 input capture channel 0
TD0 output compare channel 0
P1.7/PM_TD0.1
PM_TD0.1
TD0 input capture channel 1
TD0 output compare channel 1
P2.0/PM_TD0.2
PM_TD0.2
TD0 input capture channel 2
TD0 output compare channel 2
P2.1/PM_TD1.0
PM_TD1.0
TD1 input capture channel 0
TD1 output compare channel 0
P2.2/PM_TD1.1
PM_TD1.1
TD1 input capture channel 1
TD1 output compare channel 1
P2.3/PM_TD1.2
PM_TD1.2
TD1 input capture channel 2
TD1 output compare channel 2
P2.4/PM_TEC0CLR/
PM_TEC0FLT2/PM_TD0.0
PM_CLR1TD0.0
PM_FLT1_2TD0.0
TD0 external clear input (controlled
by module input enable)
TD0 fault input channel 2
(controlled by module input enable)
TD0 output compare channel 0
P2.5/PM_TEC0FLT0/PM_TD0.1
PM_FLT1_0TD0.1
TD0 fault input channel 0
TD0 output compare channel 1
P2.6/PM_TEC0FLT1/PM_TD0.2
PM_FLT1_1TD0.2
TD0 fault input channel 1
TD0 output compare channel 2
P2.7/PM_TEC1CLR/
PM_TEC1FLT1/PM_TD1.0
PM_CLR2TD1.0
PM_FLT2_1TD1.0
TD1 external clear input (controlled
by module input enable)
TD1 fault input channel 1
(controlled by module input enable)
TD1 output compare channel 0
P3.0/PM_TEC1FLT2/
PM_TD1.1
PM_FLT2_2TD1.1
TD1 fault input channel 2
TD1 output compare channel 1
P3.1/PM_TEC1FLT0/
PM_TD1.2
PM_FLT2_0TD1.2
TD1 fault input channel 0
TD1 output compare channel 2
P3.2/PM_TD0.0/
PM_SMCLK/CB14
PM_TD0.0SMCLK
TD0 input capture channel 0
SMCLK output
P3.3/PM_TA0CLK/
PM_CBOUT/CB13
PM_TA0CLKCBOUT
TA0 input clock
Comparator_B output
P3.4/PM_TD0CLK/
PM_MCLK
PM_TD0CLKMCLK
TD0 input clock
MCLK output
P3.5/PM_TA0.2/
VEREF+/CB12
PM_TA3_2
TA0 input capture channel 0
TA0 output compare channel 0
P3.6/PM_TA0.1/A7
VEREF-/CB11
PM_TA3_1
TA0 input capture channel 1
TA0 output compare channel 1
P3.7/PM_TA0.0/
A6/CB10
PM_TA3_0
TA0 input capture channel 2
TA0 output compare channel 2
P1.0/PM_UCA0CLK/
PM_UCB0STE/A0/CB0
Copyright © 2010–2013, Texas Instruments Incorporated
Submit Documentation Feedback
15
MSP430F51x1
MSP430F51x2
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
www.ti.com
Oscillator and System Clock
The clock system (Unified Clock System, UCS) module includes support for a 32-kHz watch crystal oscillator and
high-frequency crystal oscillator, an internal very-low-power low-frequency oscillator (VLO), an internal trimmed
low-frequency oscillator (REFO), and an integrated internal digitally controlled oscillator (DCO). The UCS module
is designed to meet the requirements of both low system cost and low power consumption. The UCS module
features digital frequency locked loop (FLL) hardware that, in conjunction with a digital modulator, stabilizes the
DCO frequency to a programmable multiple of the watch crystal frequency. The internal DCO provides a fast
turn-on clock source and stabilizes in less than 5 µs. The UCS module provides the following clock signals:
• Auxiliary clock (ACLK), sourced from a 32-kHz watch crystal or high-frequency crystal (LFXT1), the internal
low-frequency oscillator (VLO), the trimmed low-frequency oscillator (REFO), or the internal digitally-controlled
oscillator DCO.
• Main clock (MCLK), the system clock used by the CPU. MCLK can be sourced by same sources available to
ACLK.
• Sub-Main clock (SMCLK), the subsystem clock used by the peripheral modules. SMCLK can be sourced by
same sources available to ACLK.
• ACLK/n, the buffered output of ACLK, ACLK/2, ACLK/4, ACLK/8, ACLK/16, ACLK/32.
Power Management Module (PMM)
The PMM includes an integrated voltage regulator that supplies the core voltage to the device and contains
programmable output levels to provide for power optimization. The PMM also includes supply voltage supervisor
(SVS) and supply voltage monitoring (SVM) circuitry, as well as brownout protection. The brownout circuit is
implemented to provide the proper internal reset signal to the device during power-on and power-off. The
SVS/SVM circuitry detects if the supply voltage drops below a user-selectable level and supports both supply
voltage supervision (the device is automatically reset) and supply voltage monitoring (SVM, the device is not
automatically reset). SVS and SVM circuitry is available on the primary supply and core supply.
Hardware Multiplier
The multiplication operation is supported by a dedicated peripheral module. The module performs operations with
32-bit, 24-bit, 16-bit, and 8-bit operands. The module is capable of supporting signed and unsigned multiplication
as well as signed and unsigned multiply and accumulate operations
Watchdog Timer (WDT_A)
The primary function of the watchdog timer (WDT_A) module is to perform a controlled system restart after a
software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog
function is not needed in an application, the module can be configured as an interval timer and can generate
interrupts at selected time intervals.
System Module (SYS)
The SYS module handles many of the system functions within the device. These include power-on reset and
power-up clear handling, NMI source selection and management, reset interrupt vector generators, bootstrap
loader entry mechanisms, and configuration management (device descriptors). It also includes a data exchange
mechanism via JTAG called a JTAG mailbox that can be used in the application.
16
Submit Documentation Feedback
Copyright © 2010–2013, Texas Instruments Incorporated
MSP430F51x1
MSP430F51x2
www.ti.com
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
Table 10. System Module Interrupt Vector Registers
INTERRUPT VECTOR
REGISTER
INTERRUPT EVENT
OFFSET
No interrupt pending
00h
Brownout (BOR)
02h
RST/NMI (POR)
04h
DoBOR (BOR)
06h
LPM5 wakeup (BOR)
08h
Security violation (BOR)
0Ah
SVSL (POR)
0Ch
SVSH (POR)
0Eh
SVML_OVP (POR)
SYSRSTIV, System Reset
WORD ADDRESS
SVMH_OVP (POR)
019Eh
12h
14h
WDT timeout (PUC)
16h
WDT key violation (PUC)
18h
KEYV flash key violation (PUC)
1Ah
Reserved
1Ch
Peripheral area fetch (PUC)
1Eh
PMM key violation (PUC)
20h
SYSSNIV, System NMI
Reserved
22h to 3Eh
No interrupt pending
00h
SVMLIFG
02h
SVMHIFG
04h
DLYLIFG
06h
SYSUNIV, User NMI
Copyright © 2010–2013, Texas Instruments Incorporated
VMAIFG
Lowest
Highest
08h
019Ch
0Ah
JMBINIFG
0Ch
JMBOUTIFG
0Eh
VLRLIFG
10h
VLRHIFG
12h
Reserved
14h to 1Eh
No interrupt pending
00h
NMIFG
02h
OFIFG
Highest
10h
DoPOR (POR)
DLYHIFG
PRIORITY
019Ah
Lowest
Highest
04h
ACCVIFG
06h
Reserved
08h to 1Eh
Lowest
Submit Documentation Feedback
17
MSP430F51x1
MSP430F51x2
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
www.ti.com
DMA Controller
The DMA controller allows movement of data from one memory address to another without CPU intervention. For
example, the DMA controller can be used to move data from the ADC10_A conversion memory to RAM. Using
the DMA controller can increase the throughput of peripheral modules. The DMA controller reduces system
power consumption by allowing the CPU to remain in sleep mode, without having to wake to move data to or
from a peripheral.
Table 11. DMA Trigger Assignments
TRIGGER
(1)
18
(1)
CHANNEL
0
1
2
0
DMAREQ
DMAREQ
DMAREQ
1
TA0CCR0 CCIFG
TA0CCR0 CCIFG
TA0CCR0 CCIFG
2
TA0CCR2 CCIFG
TA0CCR2 CCIFG
TA0CCR2 CCIFG
3
TD0CCR0 CCIFG
TD0CCR0 CCIFG
TD0CCR0 CCIFG
4
TD0CCR2 CCIFG
TD0CCR2 CCIFG
TD0CCR2 CCIFG
5
TD1CCR0 CCIFG
TD1CCR0 CCIFG
TD1CCR0 CCIFG
6
TD1CCR2 CCIFG
TD1CCR2 CCIFG
TD1CCR2 CCIFG
7
Reserved
Reserved
Reserved
8
Reserved
Reserved
Reserved
9
Reserved
Reserved
Reserved
10
Reserved
Reserved
Reserved
11
Reserved
Reserved
Reserved
12
Reserved
Reserved
Reserved
13
Reserved
Reserved
Reserved
14
Reserved
Reserved
Reserved
15
Reserved
Reserved
Reserved
16
UCA0RXIFG
UCA0RXIFG
UCA0RXIFG
17
UCA0TXIFG
UCA0TXIFG
UCA0TXIFG
18
UCB0RXIFG
UCB0RXIFG
UCB0RXIFG
19
UCB0TXIFG
UCB0TXIFG
UCB0TXIFG
20
Reserved
Reserved
Reserved
21
Reserved
Reserved
Reserved
22
Reserved
Reserved
Reserved
23
Reserved
Reserved
Reserved
24
ADC10IFG0
ADC10IFG0
ADC10IFG0
25
Reserved
Reserved
Reserved
26
Reserved
Reserved
Reserved
27
Reserved
Reserved
Reserved
28
Reserved
Reserved
Reserved
29
MPY ready
MPY ready
MPY ready
30
DMA2IFG
DMA0IFG
DMA1IFG
31
DMAE0
DMAE0
DMAE0
Reserved DMA triggers may be used by other devices in the family. Reserved DMA triggers do not
cause any DMA trigger event when selected.
Submit Documentation Feedback
Copyright © 2010–2013, Texas Instruments Incorporated
MSP430F51x1
MSP430F51x2
www.ti.com
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
Universal Serial Communication Interface (USCI)
The USCI modules are used for serial data communication. The USCI module supports synchronous
communication protocols such as SPI (3 or 4 pin) and I2C, and asynchronous communication protocols such as
UART, enhanced UART with automatic baudrate detection, and IrDA. Each USCI module contains two modules,
A and B.
The USCI_Ax module provides support for SPI (3 or 4 pin), UART, enhanced UART, or IrDA.
The USCI_Bx module provides support for SPI (3 or 4 pin) or I2C.
TA0
TA0 is a 16-bit timer/counter with three capture/compare registers. TA0 can support multiple capture/compares,
PWM outputs, and interval timing. TA0 also has extensive interrupt capabilities. Interrupts may be generated
from the counter on overflow conditions and from each of the capture/compare registers.
Table 12. TA0 Signal Connections
INPUT PIN NUMBER
DEVICE
INPUT
SIGNAL
MODULE
INPUT
SIGNAL
MODULE
BLOCK
MODULE
OUTPUT
SIGNAL
DEVICE
OUTPUT
SIGNAL
OUTPUT PIN NUMBER
RSB
(40-PIN QFN)
DA
(38-PIN
TSSOP)
P3.3 - 30
P3.3 - 34
TA0CLK
TACLK
ACLK
(internal)
ACLK
ACLK
ACLK
SMCLK
(internal)
SMCLK
SMCLK
SMCLK
P3.3 - 30
P3.3 - 34
TA0CLK
P3.7 - 36
-
TA0.0
-
-
CBOUT
CCI0B
-
-
VSS
GND
-
-
VCC
VCC
P3.6 - 35
-
TA0.1
CCI1A
P3.6 - 35
P3.6 - 38
ACLK
CCI1B
ADC10_A (1)
(internal)
ADC10SHSx
= 001b
ADC10_A (1)
(internal)
ADC10SHSx
= 001b
(1)
RSB
(40-PIN QFN)
DA
(38-PIN
TSSOP)
-
-
-
-
-
-
TACLK
-
-
CCI0A
P3.7 - 36
-
-
-
-
-
-
-
Timer
CCR0
NA
TA0
NA
TA0.0
-
-
-
-
VSS
GND
-
-
-
-
VCC
VCC
-
-
P3.5 - 34
P3.5 - 37
TA0.2
CCI2A
P3.5 - 34
P3.5 - 37
-
-
VSS
CCI2B
-
-
-
-
VSS
GND
-
-
-
-
VCC
VCC
-
-
CCR1
CCR2
TA1
TA2
TA0.1
TA0.2
The ADC10_A trigger is available on MSP430F51x2 devices.
Copyright © 2010–2013, Texas Instruments Incorporated
Submit Documentation Feedback
19
MSP430F51x1
MSP430F51x2
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
www.ti.com
TD0
TD0 is a 16-bit timer/counter with three capture/compare registers supporting up to 256-MHz / 4-ns resolution.
TD0 can support multiple capture/compares, PWM outputs, and interval timing. TD0 also has extensive interrupt
capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the
capture/compare registers. External fault inputs as well as a external timer counter clear is supported along with
interrupt flags from the TEC0 module.
Table 13. TD0 Signal Connections
INPUT PIN NUMBER
RSB
(40-PIN QFN)
DA
(38-PIN
TSSOP)
DEVICE
INPUT
SIGNAL
MODULE
INPUT
SIGNAL
MODULE
BLOCK
MODULE
OUTPUT
SIGNAL
DEVICE
OUTPUT
SIGNAL
OUTPUT PIN NUMBER
RSB
(40-PIN QFN)
DA
(38-PIN
TSSOP)
P3.4 - 31
-
TD0CLK
TDCLK
-
-
ACLK
(internal)
ACLK (
internal)
ACLK
ACLK
-
-
SMCLK (
internal)
SMCLK (
internal)
SMCLK
SMCLK
-
-
P3.4 - 31
-
TD0CLK
TDCLK
-
-
-
-
-
CLK0
-
-
Timer
NA
NA
P2.4 - 19
P2.4 - 23
TEC0CLR
TECXCLR
-
-
P1.6 - 11 (1)
P1.6 - 15 (1)
TD0.0
CCI0A
P1.6 - 11 (1)
P1.6 - 15 (1)
P3.2 - 29
P3.2 - 33
TD0.0
CCI0B
P2.4 - 19
P2.4 - 23
-
-
VSS
GND
ADC10_A
(internal)
ADC10SHSx
= 010b (2)
ADC10_A
(internal)
ADC10SHSx
= 010b (2)
-
CCR0
TD0
TD0
-
-
VCC
VCC
-
P2.5 - 20
P2.5 - 24
TEC0FLT0
TECXFLT0
-
-
P1.7 - 12 (1)
P1.7 - 16 (1)
TD0.1
CCI1A
P1.7 - 12 (1)
P1.7 - 16 (1)
CBOUT
(internal)
CBOUT
(internal)
TD0.1
CCI1B
PJ.6 - 28
PJ.6 - 32
-
-
VSS
GND
CCR1
-
-
VCC
VCC
TD1
TD1
P2.5 - 20
P2.5 - 24
ADC10_A
(internal)
ADC10SHSx
= 011b (2)
ADC10_A
(internal)
ADC10SHSx
= 011b (2)
P2.6 - 21
P2.6 - 20
TEC0FLT1
TECXFLT1
-
-
P2.0 - 13 (1)
P2.0 - 17 (1)
TD0.2
CCI2A
P2.0 - 13 (1)
P2.0 - 17 (1)
ACLK
(internal)
ACLK
(internal)
TD0.2
CCI2B
P2.6 - 21
P2.6 - 25
-
-
VSS
GND
-
-
-
-
VCC
VCC
-
-
P2.4 - 19
P2.4 - 23
TEC0FLT2
TECXFLT2
-
-
(1)
(2)
20
CCR2
TD2
TD2
Pins P1.6 for TD0.0, P1.7 for TD0.1, and P2.0 for TD0.2 are optimized for matching.
The ADC10_A trigger is available on MSP430F51x2 devices.
Submit Documentation Feedback
Copyright © 2010–2013, Texas Instruments Incorporated
MSP430F51x1
MSP430F51x2
www.ti.com
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
TD1
TD1 is a 16-bit timer/counter with three capture/compare registers supporting up to 256-MHz / 4-ns resolution.
TD1 can support multiple capture/compares, PWM outputs, and interval timing. TD1 also has extensive interrupt
capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the
capture/compare registers. External fault inputs as well as a external timer counter clear is supported along with
interrupt flags from the TEC0 module.
Table 14. TD1 Signal Connections
INPUT PIN NUMBER
DEVICE
INPUT
SIGNAL
MODULE
INPUT
SIGNAL
PJ.6 - 32
TD1CLK
ACLK
SMCLK(
internal)
SMCLK
PJ.6 - 28
RSB
(40-PIN
QFN)
DA
(38-PIN
TSSOP)
PJ.6 - 28
ACLK
(internal)
-
MODULE
BLOCK
MODULE
OUTPUT
SIGNAL
DEVICE
OUTPUT
SIGNAL
OUTPUT PIN NUMBER
RSB
(40-PIN
QFN)
DA
(38-PIN
TSSOP)
TDCLK
-
-
ACLK
ACLK
-
-
SMCLK
SMCLK
-
-
PJ.6 - 32
TD1CLK
TDCLK
-
-
-
from TD0
(internal)
CLK0
Timer
NA
NA
P2.7 - 22
P2.7 - 26
TEC1CLR
TECxCLR
-
-
P2.1 - 14 (1)
P2.1 - 18 (1)
TD1.0
CCI0A
P2.1 - 14 (1)
P2.1 - 18 (1)
-
-
TD1.0
CCI0B
P2.7 - 22
P2.7 - 26
-
-
VSS
GND
-
-
-
-
VCC
VCC
-
-
CCR0
TD0
TD0
P3.1 - 24
P3.1 - 28
TEC1FLT0
TECXFLT0
-
-
P2.2 - 15 (1)
P2.2 - 19 (1)
TD1.1
CCI1A
P2.2 - 15 (1)
P2.2 - 19 (1)
CBOUT
(internal)
CBOUT
(internal)
TD1.1
CCI1B
P3.0 - 23
P3.0 - 27
-
-
VSS
GND
-
-
-
-
VCC
VCC
-
-
P2.7 - 22
P2.7 - 26
TEC1FLT1
TECXFLT1
-
P2.3 - 16
(1)
ACLK
(internal)
-
(1)
P2.3 - 20
(1)
ACLK
(internal)
-
TD1.2
CCI2A
TD1.2
CCI2B
VSS
GND
CCR1
TD1
TD1
P2.3 - 16
(1)
P3.1 - 24
CCR2
TD2
TD2
P2.3 - 20 (1)
P3.1 - 28
-
-
-
VCC
VCC
-
-
P3.0 - 23
P3.0 - 27
TEC1FLT2
TECXFLT2
-
-
Pins P2.1 for TD1.0, P2.2 for TD1.1, and P2.3 for TD1.2 are optimized for matching.
Copyright © 2010–2013, Texas Instruments Incorporated
Submit Documentation Feedback
21
MSP430F51x1
MSP430F51x2
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
www.ti.com
Comparator_B
The primary function of the Comparator_B module is to support precision slope analog-to-digital conversions,
battery voltage supervision, and monitoring of external analog signals.
ADC10_A (MSP430F51x2 Only)
The ADC10_A module supports fast, 10-bit analog-to-digital conversions. The module implements a 10-bit SAR
core, sample select control, reference generator and a conversion result buffer. A window comparator with a
lower and upper limit allows CPU independent result monitoring with three window comparator interrupt flags.
CRC16
The CRC16 module produces a signature based on a sequence of entered data values and can be used for data
checking purposes. The CRC16 module signature is based on the CRC-CCITT standard.
REF Voltage Reference
The reference module (REF) is responsible for generation of all critical reference voltages that can be used by
the various analog peripherals in the device.
Embedded Emulation Module (EEM) (S Version)
The Embedded Emulation Module (EEM) supports real-time in-system debugging. The S version of the EEM
implemented on all devices has the following features:
• Three hardware triggers or breakpoints on memory access
• One hardware trigger or breakpoint on CPU register write access
• Up to four hardware triggers can be combined to form complex triggers or breakpoints
• One cycle counter
• Clock control on module level
22
Submit Documentation Feedback
Copyright © 2010–2013, Texas Instruments Incorporated
MSP430F51x1
MSP430F51x2
www.ti.com
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
Peripheral File Map
Table 15. Peripherals
MODULE NAME
BASE ADDRESS
OFFSET ADDRESS
RANGE
Special Functions (see Table 16)
0100h
000h-01Fh
PMM (see Table 17)
0120h
000h-00Fh
Flash Control (see Table 18)
0140h
000h-00Fh
CRC16 (see Table 19)
0150h
000h-007h
RAM Control (see Table 20)
0158h
000h-001h
Watchdog (see Table 21)
015Ch
000h-001h
UCS (see Table 22)
0160h
000h-01Fh
SYS (see Table 23)
0180h
000h-01Fh
Shared Reference (see Table 24)
01B0h
000h-001h
Port Mapping Control (see Table 25)
01C0h
000h-007h
Port Mapping Port P1 (see Table 26)
01C8h
000h-007h
Port Mapping Port P2 (see Table 27)
01D0h
000h-007h
Port Mapping Port P3 (see Table 28)
01D8h
000h-007h
Port P1, P2 (see Table 29)
0200h
000h-01Fh
Port P3 (see Table 30)
0220h
000h-01Fh
Port PJ (see Table 31)
0320h
000h-01Fh
TA0 (see Table 32)
03C0h
000h-03Fh
32-Bit Hardware Multiplier (see Table 33)
04C0h
000h-02Fh
DMA General Control (see Table 34)
0500h
000h-00Fh
DMA Channel 0 (see Table 35)
0500h
010h-00Ah
DMA Channel 1 (see Table 36)
0500h
020h-00Ah
DMA Channel 2 (see Table 37)
0500h
030h-00Ah
USCI_A0 (see Table 38)
05C0h
000h-01Fh
USCI_B0 (see Table 38)
05E0h
000h-01Fh
ADC10_A (see Table 40)
(MSP430F51x2 only)
0740h
000h-01Fh
Comparator_B (see Table 41)
08C0h
000h-00Fh
000h-03Fh
TD0 (see Table 42)
0B00h
TEC0 (see Table 44)
0C00h
000h-007h
TD1 (see Table 43)
0B40h
000h-03Fh
TEC1 (see Table 45)
0C20h
000h-007h
Copyright © 2010–2013, Texas Instruments Incorporated
Submit Documentation Feedback
23
MSP430F51x1
MSP430F51x2
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
www.ti.com
Table 16. Special Function Registers (Base Address: 0100h)
REGISTER DESCRIPTION
REGISTER
OFFSET
SFR interrupt enable
SFRIE1
00h
SFR interrupt flag
SFRIFG1
02h
SFR reset pin control
SFRRPCR
04h
Table 17. PMM Registers (Base Address: 0120h)
REGISTER DESCRIPTION
REGISTER
OFFSET
PMM Control 0
PMMCTL0
00h
PMM control 1
PMMCTL1
02h
SVS high side control
SVSMHCTL
04h
SVS low side control
SVSMLCTL
06h
PMM interrupt flags
PMMIFG
0Ch
PMM interrupt enable
PMMIE
0Eh
PMM Power Mode 5 control register 0
PMM5CTL0
10h
Table 18. Flash Control Registers (Base Address: 0140h)
REGISTER DESCRIPTION
REGISTER
OFFSET
Flash control 1
FCTL1
00h
Flash control 3
FCTL3
04h
Flash control 4
FCTL4
06h
Table 19. CRC16 Registers (Base Address: 0150h)
REGISTER DESCRIPTION
REGISTER
OFFSET
CRC data input
CRC16DI
00h
CRC result
CRC16INIRES
04h
Table 20. RAM Control Registers (Base Address: 0158h)
REGISTER DESCRIPTION
RAM control 0
REGISTER
RCCTL0
OFFSET
00h
Table 21. Watchdog Registers (Base Address: 015Ch)
REGISTER DESCRIPTION
Watchdog timer control
REGISTER
WDTCTL
OFFSET
00h
Table 22. UCS Registers (Base Address: 0160h)
REGISTER DESCRIPTION
REGISTER
OFFSET
UCS control 0
UCSCTL0
00h
UCS control 1
UCSCTL1
02h
UCS control 2
UCSCTL2
04h
UCS control 3
UCSCTL3
06h
UCS control 4
UCSCTL4
08h
UCS control 5
UCSCTL5
0Ah
UCS control 6
UCSCTL6
0Ch
UCS control 7
UCSCTL7
0Eh
UCS control 8
UCSCTL8
10h
24
Submit Documentation Feedback
Copyright © 2010–2013, Texas Instruments Incorporated
MSP430F51x1
MSP430F51x2
www.ti.com
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
Table 23. SYS Registers (Base Address: 0180h)
REGISTER DESCRIPTION
REGISTER
OFFSET
System control
SYSCTL
00h
Bootstrap loader configuration area
SYSBSLC
02h
JTAG mailbox control
SYSJMBC
06h
JTAG mailbox input 0
SYSJMBI0
08h
JTAG mailbox input 1
SYSJMBI1
0Ah
JTAG mailbox output 0
SYSJMBO0
0Ch
JTAG mailbox output 1
SYSJMBO1
0Eh
Bus Error vector generator
SYSBERRIV
18h
User NMI vector generator
SYSUNIV
1Ah
System NMI vector generator
SYSSNIV
1Ch
Reset vector generator
SYSRSTIV
1Eh
Table 24. Shared Reference Registers (Base Address: 01B0h)
REGISTER DESCRIPTION
Shared reference control
REGISTER
REFCTL
OFFSET
00h
Table 25. Port Mapping Controller (Base Address: 01C0h)
REGISTER DESCRIPTION
REGISTER
OFFSET
Port mapping password register
PMAPPWD
00h
Port mapping control register
PMAPCTL
02h
Table 26. Port Mapper for Port P1 (Base Address: 01C8h)
REGISTER DESCRIPTION
REGISTER
OFFSET
Port P1.0 mapping register
P1MAP0
00h
Port P1.1 mapping register
P1MAP1
01h
Port P1.2 mapping register
P1MAP2
02h
Port P1.3 mapping register
P1MAP3
03h
Port P1.4 mapping register
P1MAP4
04h
Port P1.5 mapping register
P1MAP5
05h
Port P1.6 mapping register
P1MAP6
06h
Port P1.7 mapping register
P1MAP7
07h
Table 27. Port Mapper for Port P2 (Base Address: 01D0h)
REGISTER DESCRIPTION
REGISTER
OFFSET
Port P2.0 mapping register
P2MAP0
00h
Port P2.1 mapping register
P2MAP2
01h
Port P2.2 mapping register
P2MAP2
02h
Port P2.3 mapping register
P2MAP3
03h
Port P2.4 mapping register
P2MAP4
04h
Port P2.5 mapping register
P2MAP5
05h
Port P2.6 mapping register
P2MAP6
06h
Port P2.7 mapping register
P2MAP7
07h
Copyright © 2010–2013, Texas Instruments Incorporated
Submit Documentation Feedback
25
MSP430F51x1
MSP430F51x2
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
www.ti.com
Table 28. Port Mapper for Port P3 (Base Address: 01D8h)
REGISTER DESCRIPTION
REGISTER
OFFSET
Port P3.0 mapping register
P3MAP0
00h
Port P3.1 mapping register
P3MAP1
01h
Port P3.2 mapping register
P3MAP2
02h
Port P3.3 mapping register
P3MAP3
03h
Port P3.4 mapping register
P3MAP4
04h
Port P3.5 mapping register
P3MAP5
05h
Port P3.6 mapping register
P3MAP6
06h
Port P3.7 mapping register
P3MAP7
07h
Table 29. Port Registers Port P1, P2 (Base Addresses: 0200h)
REGISTER DESCRIPTION
REGISTER
OFFSET
Port P1 input
P1IN
00h
Port P1 output
P1OUT
02h
Port P1 direction
P1DIR
04h
Port P1 pullup/pulldown enable
P1REN
06h
Port P1 drive strength
P1DS
08h
Port P1 selection
P1SEL
0Ah
Port P1 interrupt vector word
P1IV
0Eh
Port P1 interrupt edge select
P1IES
18h
Port P1 interrupt enable
P1IE
1Ah
Port P1 interrupt flag
P1IFG
1Ch
Port P2 input
P2IN
01h
Port P2 output
P2OUT
03h
Port P2 direction
P2DIR
05h
Port P2 pullup/pulldown enable
P2REN
07h
Port P2 drive strength
P2DS
09h
Port P2 selection
P2SEL
0Bh
Port P2 interrupt vector word
P2IV
1Eh
Port P2 interrupt edge select
P2IES
19h
Port P2 interrupt enable
P2IE
1Bh
Port P2 interrupt flag
P2IFG
1Dh
Table 30. Port Registers P3 (Base Addresses: 0220h)
REGISTER DESCRIPTION
REGISTER
OFFSET
Port P3 input
P3IN
00h
Port P3 output
P3OUT
02h
Port P3 direction
P3DIR
04h
Port P3 pullup/pulldown enable
P3REN
06h
Port P3 drive strength
P3DS
08h
Port P3 selection
P3SEL
0Ah
26
Submit Documentation Feedback
Copyright © 2010–2013, Texas Instruments Incorporated
MSP430F51x1
MSP430F51x2
www.ti.com
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
Table 31. Port Registers PJ (Base Addresses: 0320h)
REGISTER DESCRIPTION
REGISTER
OFFSET
Port PJ input
PJIN
00h
Port PJ output
PJOUT
02h
Port PJ direction
PJDIR
04h
Port PJ pullup/pulldown enable
PJREN
06h
Port PJ drive strength
PJDS
08h
Port PJ selection
PJSEL
0Ah
Table 32. TA0 Registers (Base Address: 03C0h)
REGISTER DESCRIPTION
REGISTER
OFFSET
TA0 control
TA0CTL
00h
Capture/compare control 0
TA0CCTL0
02h
Capture/compare control 1
TA0CCTL1
04h
Capture/compare control 2
TA0CCTL2
06h
TA0 counter register
TA0R
10h
Capture/compare register 0
TA0CCR0
12h
Capture/compare register 1
TA0CCR1
14h
Capture/compare register 2
TA0CCR2
16h
TA0 expansion register 0
TA0EX0
20h
TA0 interrupt vector
TA0IV
2Eh
Table 33. 32-Bit Hardware Multiplier Registers (Base Address: 04C0h)
REGISTER DESCRIPTION
REGISTER
OFFSET
16-bit operand 1 – multiply
MPY
00h
16-bit operand 1 – signed multiply
MPYS
02h
16-bit operand 1 – multiply accumulate
MAC
04h
16-bit operand 1 – signed multiply accumulate
MACS
06h
16-bit operand 2
OP2
08h
16 × 16 result low word
RESLO
0Ah
16 × 16 result high word
RESHI
0Ch
16 × 16 sum extension register
SUMEXT
0Eh
32-bit operand 1 – multiply low word
MPY32L
10h
32-bit operand 1 – multiply high word
MPY32H
12h
32-bit operand 1 – signed multiply low word
MPYS32L
14h
32-bit operand 1 – signed multiply high word
MPYS32H
16h
32-bit operand 1 – multiply accumulate low word
MAC32L
18h
32-bit operand 1 – multiply accumulate high word
MAC32H
1Ah
32-bit operand 1 – signed multiply accumulate low word
MACS32L
1Ch
32-bit operand 1 – signed multiply accumulate high word
MACS32H
1Eh
32-bit operand 2 – low word
OP2L
20h
32-bit operand 2 – high word
OP2H
22h
32 × 32 result 0 – least significant word
RES0
24h
32 × 32 result 1
RES1
26h
32 × 32 result 2
RES2
28h
32 × 32 result 3 – most significant word
RES3
2Ah
MPY32 control register 0
MPY32CTL0
2Ch
Copyright © 2010–2013, Texas Instruments Incorporated
Submit Documentation Feedback
27
MSP430F51x1
MSP430F51x2
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
www.ti.com
Table 34. DMA General Control (Base Address: 0500h)
REGISTER DESCRIPTION
REGISTER
OFFSET
DMA module control 0
DMACTL0
00h
DMA module control 1
DMACTL1
02h
DMA module control 2
DMACTL2
04h
DMA module control 3
DMACTL3
06h
DMA module control 4
DMACTL4
08h
DMA interrupt vector
DMAIV
0Eh
Table 35. DMA Channel 0 (Base Address: 0510h)
REGISTER DESCRIPTION
REGISTER
OFFSET
DMA channel 0 control
DMA0CTL
00h
DMA channel 0 source address low
DMA0SAL
02h
DMA channel 0 source address high
DMA0SAH
04h
DMA channel 0 destination address low
DMA0DAL
06h
DMA channel 0 destination address high
DMA0DAH
08h
DMA channel 0 transfer size
DMA0SZ
0Ah
Table 36. DMA Channel 1 (Base Address: 0520h)
REGISTER DESCRIPTION
REGISTER
OFFSET
DMA channel 1 control
DMA1CTL
00h
DMA channel 1 source address low
DMA1SAL
02h
DMA channel 1 source address high
DMA1SAH
04h
DMA channel 1 destination address low
DMA1DAL
06h
DMA channel 1 destination address high
DMA1DAH
08h
DMA channel 1 transfer size
DMA1SZ
0Ah
Table 37. DMA Channel 2 (Base Address: 0530h)
REGISTER DESCRIPTION
REGISTER
OFFSET
DMA channel 2 control
DMA2CTL
00h
DMA channel 2 source address low
DMA2SAL
02h
DMA channel 2 source address high
DMA2SAH
04h
DMA channel 2 destination address low
DMA2DAL
06h
DMA channel 2 destination address high
DMA2DAH
08h
DMA channel 2 transfer size
DMA2SZ
0Ah
28
Submit Documentation Feedback
Copyright © 2010–2013, Texas Instruments Incorporated
MSP430F51x1
MSP430F51x2
www.ti.com
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
Table 38. USCI0_A Registers (Base Address: 05C0h)
REGISTER DESCRIPTION
REGISTER
OFFSET
USCI control 0
UCA0CTL0
01h
USCI control 1
UCA0CTL1
00h
USCI baud rate 0
UCA0BR0
06h
USCI baud rate 1
UCA0BR1
07h
USCI modulation control
UCA0MCTL
08h
USCI status
UCA0STAT
0Ah
USCI receive buffer
UCA0RXBUF
0Ch
USCI transmit buffer
UCA0TXBUF
0Eh
USCI LIN control
UCA0ABCTL
10h
USCI IrDA transmit control
UCA0IRTCTL
12h
USCI IrDA receive control
UCA0IRRCTL
13h
USCI interrupt enable
UCA0IE
1Ch
USCI interrupt flags
UCA0IFG
1Dh
USCI interrupt vector word
UCA0IV
1Eh
Table 39. USCI0_B Registers (Base Address: 05E0h)
REGISTER DESCRIPTION
REGISTER
OFFSET
USCI synchronous control 0
UCB0CTL0
00h
USCI synchronous control 1
UCB0CTL1
01h
USCI synchronous bit rate 0
UCB0BR0
06h
USCI synchronous bit rate 1
UCB0BR1
07h
USCI synchronous status
UCB0STAT
0Ah
USCI synchronous receive buffer
UCB0RXBUF
0Ch
USCI synchronous transmit buffer
UCB0TXBUF
0Eh
USCI I2C own address
UCB0I2COA
10h
USCI I2C slave address
UCB0I2CSA
12h
USCI interrupt enable
UCB0IE
1Ch
USCI interrupt flags
UCB0IFG
1Dh
USCI interrupt vector word
UCB0IV
1Eh
Table 40. ADC10_A Registers (MSP430F51x2 Devices Only) (Base Address: 0740h)
REGISTER DESCRIPTION
REGISTER
OFFSET
ADC10_A Control register 0
ADC10CTL0
00h
ADC10_A Control register 1
ADC10CTL1
02h
ADC10_A Control register 2
ADC10CTL2
04h
ADC10_A Window Comparator Low Threshold
ADC10LO
06h
ADC10_A Window Comparator High Threshold
ADC10HI
08h
ADC10_A Memory Control Register 0
ADC10MCTL0
0Ah
ADC10_A Conversion Memory Register
ADC10MEM0
12h
ADC10_A Interrupt Enable
ADC10IE
1Ah
ADC10_A Interrupt Flags
ADC10IGH
1Ch
ADC10_A Interrupt Vector Word
ADC10IV
1Eh
Copyright © 2010–2013, Texas Instruments Incorporated
Submit Documentation Feedback
29
MSP430F51x1
MSP430F51x2
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
www.ti.com
Table 41. Comparator_B Registers (Base Address: 08C0h)
REGISTER DESCRIPTION
REGISTER
OFFSET
Comparator_B control register 0
CBCTL0
00h
Comparator_B control register 1
CBCTL1
02h
Comparator_B control register 2
CBCTL2
04h
Comparator_B control register 3
CBCTL3
06h
Comparator_B interrupt register
CBINT
0Ch
Comparator_B interrupt vector word
CBIV
0Eh
Table 42. TD0 Registers (Base Address: 0B00h)
REGISTER DESCRIPTION
REGISTER
OFFSET
TD0 Control 0
TD0CTL0
00h
TD0 Control 1
TD0CTL1
02h
TD0 Control 2
TD0CTL2
04h
TD0 Counter Register
TD0R
06h
Capture/compare control 0
TD0CCTL0
08h
Capture/compare register 0
TD0CCR0
0Ah
Capture/compare Latch 0
TD0CL0
0Ch
Capture/compare control 1
TD0CCTL1
0Eh
Capture/compare register 1
TD0CCR1
10h
Capture/compare Latch 1
TD0CL1
12h
Capture/compare control 2
TD0CCTL2
14h
Capture/compare register 2
TD0CCR2
16h
Capture/compare Latch 2
TD0CL2
18h
TD0 High-Resolution Control 0
TD0HCTL0
38h
TD0 High-Resolution Control 1
TD0HCTL1
3Ah
TD0 High-Resolution Interrupt
TD0HINT
3Ch
TD0 Interrupt Vector
TD0IV
3Eh
Table 43. TD1 Registers (Base Address: 0B40h)
REGISTER DESCRIPTION
REGISTER
OFFSET
TD1 Control 0
TD1CTL0
00h
TD1 Control 1
TD1CTL1
02h
TD1 Control 2
TD1CTL2
04h
TD1 Counter Register
TD1R
06h
Capture/compare control 0
TD1CCTL0
08h
Capture/compare register 0
TD1CCR0
0Ah
Capture/compare Latch 0
TD1CL0
0Ch
Capture/compare control 1
TD1CCTL1
0Eh
Capture/compare register 1
TD1CCR1
10h
Capture/compare Latch 1
TD1CL1
12h
Capture/compare control 2
TD1CCTL2
14h
Capture/compare register 2
TD1CCR2
16h
Capture/compare Latch 2
TD1CL2
18h
TD1 High-Resolution Control 0
TD1HCTL0
38h
TD1 High-Resolution Control 1
TD1HCTL1
3Ah
TD1 High-Resolution Interrupt
TD1HINT
3Ch
TD1 Interrupt Vector
TD1IV
3Eh
30
Submit Documentation Feedback
Copyright © 2010–2013, Texas Instruments Incorporated
MSP430F51x1
MSP430F51x2
www.ti.com
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
Table 44. TEC0 Registers (Base Address: 0C00h)
REGISTER DESCRIPTION
REGISTER
OFFSET
Timer Event Control 0 External Control 0
TEC0CTL0
00h
Timer Event Control 0 External Control
TEC0CTL1
02h
Timer Event Control 0 External Control
TEC0CTL2
04h
Timer Event Control 0 Status
TEC0STA
06h
Timer Event Control 0 External Interrupt
TEC0XINT
08h
Timer Event Control 0 External Interrupt Vector
TEC0IV
0Ah
Table 45. TEC1 Registers (Base Address: 0C20h)
REGISTER DESCRIPTION
REGISTER
OFFSET
Timer Event Control 1 External Control 0
TEC1CTL0
00h
Timer Event Control 1 External Control
TEC1CTL1
02h
Timer Event Control 1 External Control
TEC1CTL2
04h
Timer Event Control 1 Status
TEC1STA
06h
Timer Event Control 1 External Interrupt
TEC1XINT
08h
Timer Event Control 1 External Interrupt Vector
TEC1IV
0Ah
Copyright © 2010–2013, Texas Instruments Incorporated
Submit Documentation Feedback
31
MSP430F51x1
MSP430F51x2
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
www.ti.com
Absolute Maximum Ratings (1)
over operating free-air temperature range (unless otherwise noted)
Voltage VCC applied at DVCC to DVSS
–0.3 V to 4.1 V
Voltage VIO applied at VIO to DVSS
–0.3 V to 6.1 V
Voltage applied to any pin (excluding VCORE) (2)
–0.3 V to VCC + 0.3 V
Diode current at any device pin
±2 mA
Storage temperature range, Tstg
–55°C to 150°C
Maximum operating junction temperature, TJ
(1)
(2)
95°C
Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
All voltages referenced to VSS. VCORE is for internal device usage only. No external DC loading or voltage should be applied.
Thermal Packaging Characteristics
Low-K board (JESD51-3)
θJA
Junction-to-ambient thermal resistance, still air
High-K board (JESD51-7)
θJC
32
Junction-to-case thermal resistance
Submit Documentation Feedback
QFN (RSB)
87°C/W
TSSOP (DA)
109°C/W
QFN (RSB)
35°C/W
TSSOP (DA)
69°C/W
QFN (RSB)
36°C/W
TSSOP (DA)
19°C/W
Copyright © 2010–2013, Texas Instruments Incorporated
MSP430F51x1
MSP430F51x2
www.ti.com
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
Recommended Operating Conditions
Typical values are specified at VCC = 3.3 V and TA = 25°C (unless otherwise noted)
MIN
Supply voltage during program execution and flash
programming
V(AVCC) = V(DVCC) = VCC (1) (2)
VCC
1.8
3.6
V
2.0
3.6
V
PMMCOREVx = 0, 1, 2
2.2
3.6
V
PMMCOREVx = 0, 1, 2, 3
2.4
3.6
V
5.5
V
85
°C
(3)
Supply voltage of pins P1.6, P1.7, P2.0 to P2.7, P3.0, and P3.1 supplied by VIO
Supply voltage V(AVSS) = V(DVSS) = VSS
TA
Operating free-air temperature
–40
TJ
1.8
Operating junction temperature
–40
0
C(VCORE) Recommended capacitor at VCORE
Internal power dissipation
PIO
V
85
470
C(DVCC)/
Capacitor ratio of DVCC to VCORE
C(VCORE)
PINT
UNIT
PMMCOREVx = 0, 1
VSS
Processor frequency (maximum MCLK frequency) (4)
(see Figure 1)
MAX
PMMCOREVx = 0
VIO
fSYSTEM
NOM
°C
nF
10
(5)
PMMCOREVx = 0,
1.8 V ≤ VCC ≤ 3.6 V
(default condition)
0
12
PMMCOREVx = 1,
2.0 V ≤ VCC ≤ 3.6 V
0
16
PMMCOREVx = 2,
2.2 V ≤ VCC ≤ 3.6 V
0
20
PMMCOREVx = 3,
2.4 V ≤ VCC ≤ 3.6 V
0
25
MHz
VCC x I(DVCC)
W
I/O power dissipation of the I/O pins powered by DVCC
(VCC - VIOH) x IIOH +
VIOL x IIOL
W
PIO5
I/O power dissipation of the I/O pins powered by VIO
(VIO - VIOH5) x IIOH5 +
VIOL5 x IIOL5
W
PMAX
Maximum allowed power dissipation, PMAX > PIO + PIO5 + PINT
(TJ - TA)/θJA
W
(1)
(2)
(3)
(4)
(5)
It is recommended to power AVCC and DVCC from the same source. A maximum difference of 0.3 V between V(AVCC) and V(DVCC)
can be tolerated during power up and operation.
The minimum supply voltage is defined by the supervisor SVS levels when it is enabled. See the PMM, SVS High Side threshold
parameters for the exact values and further details.
It is recommended to power DVCC and AVCC prior to DVIO. At DVCC and AVCC voltages higher than 1.8 V, the maximum difference
of 0.3 V between DVIO and DVCC and AVCC can be exceeded.
The MSP430 CPU is clocked directly with MCLK. Both the high and low phase of MCLK must not exceed the pulse duration of the
specified maximum frequency.
Modules may have a different maximum input clock specification. See the specification of the respective module in this data sheet.
Copyright © 2010–2013, Texas Instruments Incorporated
Submit Documentation Feedback
33
MSP430F51x1
MSP430F51x2
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
www.ti.com
25
System Frequency - MHz
3
20
2
2, 3
1
1, 2
1, 2, 3
0, 1
0, 1, 2
0, 1, 2, 3
16
12
0
0
1.8
2.0
2.2
2.4
3.6
Supply Voltage - V
The numbers within the fields denote the supported PMMCOREVx settings.
Figure 1. Frequency vs Supply Voltage
34
Submit Documentation Feedback
Copyright © 2010–2013, Texas Instruments Incorporated
MSP430F51x1
MSP430F51x2
www.ti.com
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
Electrical Characteristics
Active Mode Supply Current Into VCC Excluding External Current
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
IAM,
IAM,
Flash
RAM
EXECUTION
MEMORY
Flash
RAM
VCC
3V
3V
FREQUENCY (fDCO = fMCLK = fSMCLK)
PMM
CORE
Vx
1 MHz
8 MHz
12 MHz
TYP
MAX
TYP
MAX
0
0.24
0.27
1.48
1.60
1
0.26
-
1.66
-
2
0.28
-
1.83
-
3
0.28
-
1.83
0
0.17
0.2
0.89
1
0.18
-
1.00
2
0.20
-
3
0.20
-
TYP
20 MHz
25 MHz
UNIT
MAX
TYP
MAX
TYP
MAX
-
-
-
-
-
-
2.48
2.7
-
-
-
-
2.72
-
4.50
4.8
-
-
-
2.66
-
4.40
-
5.60
6.15
0.97
-
-
-
-
-
-
-
1.49
1.62
-
-
-
-
1.14
-
1.68
-
2.75
3.0
-
-
1.20
-
1.78
-
2.92
-
3.64
4.0
mA
mA
Low-Power Mode Supply Currents (Into VCC) Excluding External Current
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1)
PARAMETER
ILPM0,
1MHz
ILPM2
Low-power mode 0
Low-power mode 2
VCC
PMM
CORE
Vx
TYP
2.2 V
0
3V
3
2.2 V
3V
2.2 V
3V
2.2 V
ILPM3,
XT1LF
Low-power mode 3,
crystal mode
3V
2.2 V
3V
2.2 V
3V
2.2 V
3V
2.2 V
ILPM3,
VLO
Low-power mode 3,
VLO mode
3V
2.2 V
3V
2.2 V
3V
ILPM4
ILPM4.5
(1)
(2)
Low-power mode 4
Low-power mode 4.5
3V
-40°C
25°C
MAX
TYP
82
90
88
100
0
10
3
9
60°C
TYP
MAX
87
95
85
100
90
104
88
104
12
10
12.5
12.5
13
13
11
15
12
14
1.8
2.0
2.5
-
3.5
6.0
2.0
2.2
3.0
-
3.7
6.0
-
1.9
-
2.5
-
4.0
-
2.1
-
2.2
-
2.5
-
4.0
-
1.8
-
2.0
-
2.5
-
4.2
-
2.0
-
2.2
-
2.8
-
4.2
-
1.9
-
2.0
2.5
2.9
-
4.8
6.5
2.1
-
2.2
2.5
3.0
-
5.2
7.0
1.0
-
1.0
1.25
1.6
-
3.5
4.5
1.1
-
1.2
1.4
1.5
-
3.6
5.0
1.0
-
1.1
-
1.8
-
3.0
-
1.3
-
1.1
-
2.0
-
3.2
-
1.1
-
1.1
-
1.8
-
3.1
-
1.1
-
1.2
-
2.0
-
3.2
-
1.1
-
1.1
1.4
1.9
-
3.5
5.0
1.1
-
1.2
1.5
2.1
-
4.0
5.2
0
0.8
-
0.9
1.3
1.4
-
3.5
4.7
1
0.8
-
1.0
-
1.4
-
3.5
-
2
0.8
-
1.0
-
1.5
-
3.6
-
1
2
3
0
1
2
3
TYP
85
90
85
100
12.5
10
11.5
11
1.7
-
2.0
-
1.8
85°C
MAX
0
MAX
(2)
3
0.9
-
1.0
1.3
1.6
-
3.6
5.0
2.2 V
x
0.06
-
0.20
0.26
0.33
-
0.60
0.9
3V
x
0.07
-
0.25
0.29
0.37
-
0.77
0.9
UNIT
µA
µA
µA
µA
µA
µA
All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current. DVIO = DVCC = AVCC.
The currents are characterized with a Micro Crystal MS1V-T1K SMD crystal with a load capacitance of 12.5 pF. The internal and
external load capacitance are chosen to closely match the required 9 pF.
Copyright © 2010–2013, Texas Instruments Incorporated
Submit Documentation Feedback
35
MSP430F51x1
MSP430F51x2
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
www.ti.com
Schmitt-Trigger Inputs – General Purpose I/O (P1.0 to P1.5, P3.2 to P3.7, and PJ.0 to PJ.6)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
VIT+
Positive-going input threshold voltage
VIT–
Negative-going input threshold voltage
Vhys
Input voltage hysteresis (VIT+ – VIT–)
RPull
Pullup/pulldown resistor
For pullup: VIN = VSS
For pulldown: VIN = VCC
CI
Input capacitance
VIN = VSS or VCC
VCC
MIN
1.8 V
0.80
1.40
3V
1.50
2.10
1.8 V
0.45
1.00
3V
0.75
1.65
1.8 V
0.3
0.8
3V
0.4
1.0
20
TYP
35
MAX
UNIT
V
V
V
50
kΩ
5
pF
Schmitt-Trigger Inputs – General Purpose I/O (P1.6 and P1.7, P2.0 to P2.7, and P3.0 and P3.1)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
VIT+
TEST CONDITIONS
Positive-going input threshold voltage
VIT–
Negative-going input threshold voltage
Vhys
Input voltage hysteresis (VIT+ – VIT–)
RPull
Pullup/pulldown resistor
For pullup: VIN = VSS
For pulldown: VIN = VCC
CI
Input capacitance
VIN = VSS or VCC
VIO
MIN
1.8 V
0.80
1.40
3V
1.20
2.00
5V
2.10
2.50
1.8 V
0.45
0.90
3V
0.75
1.30
5V
1.10
1.60
1.8 V
0.27
0.45
3V
0.45
0.65
5V
0.9
1.2
20
TYP
35
MAX
UNIT
V
V
V
50
kΩ
5
pF
Inputs – Ports P1 and P2 (1)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
External interrupt timing (2)
t(int)
(1)
(2)
TEST CONDITIONS
VCC or VIO
Port P1.0 to P1.5, External trigger pulse duration to
set interrupt flag
1.8 V to 3.6 V
20
1.8 V to 5 V
25
Port P1.6 and P1.7, and P2.0 to P2.7, External
trigger pulse duration to set interrupt flag
MIN
MAX
UNIT
ns
Some devices may contain additional ports with interrupts. See the block diagram and terminal function descriptions.
An external signal sets the interrupt flag every time the minimum interrupt pulse duration t(int) is met. It may be set by trigger signals
shorter than t(int).
Leakage Current – General Purpose I/O
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
Ilkg(Px.y)
(1)
(2)
36
High-impedance
leakage current
Port P1.0 to P1.5, P3.0 to
P3.7, PJ.0 to PJ.6
Port P1.6 and P1.7, P2.0 to
P2.7
TEST CONDITIONS
VCC
MIN
TYP
MAX
1.8 V to 3.6 V
±1
±50
1.8 V to 5 V
±1
±50
UNIT
(1) (2)
nA
The leakage current is measured with VSS or VCC applied to the corresponding pin(s), unless otherwise noted.
The leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup or pulldown resistor is
disabled.
Submit Documentation Feedback
Copyright © 2010–2013, Texas Instruments Incorporated
MSP430F51x1
MSP430F51x2
www.ti.com
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
Outputs – Ports P1 to P3, PJ (Full Drive Strength, P1.0 to P1.5, P3.2 to P3.7, PJ.0 to PJ.6)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
I(OHmax) = –3 mA
VOH
High-level output voltage
I(OHmax) = –10 mA (2)
I(OHmax) = –5 mA (1)
I(OHmax) = –15 mA (2)
I(OLmax) = 3 mA
VOL
Low-level output voltage
(2)
1.8 V
3V
(1)
I(OLmax) = 10 mA (2)
I(OLmax) = 5 mA (1)
I(OLmax) = 15 mA (2)
(1)
VCC
(1)
1.8 V
3V
MIN
MAX
VCC – 0.25
VCC
VCC – 0.60
VCC
VCC – 0.25
VCC
VCC – 0.60
VCC
UNIT
V
VSS VSS + 0.25
VSS VSS + 0.60
VSS VSS + 0.25
V
VSS VSS + 0.60
The maximum total current, I(OHmax) and I(OLmax), for all outputs combined should not exceed ±48 mA to hold the maximum voltage drop
specified.
The maximum total current, I(OHmax) and I(OLmax), for all outputs combined should not exceed ±100 mA to hold the maximum voltage
drop specified.
Outputs – Ports P1 to P3 (Full Drive Strength, P1.6 and P1.7, P2.0 to P2.7, P3.0 and P3.1)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
I(OH5max) = –3 mA
I(OH5max) = –10 mA (2)
VOH5
High-level output voltage
I(OH5max) = –5 mA (1)
I(OH5max) = –15 mA (2)
I(OH5max) = –7 mA (1)
I(OH5max) = –20 mA (2)
I(OL5max) = 3 mA (1)
I(OL5max) = 10 mA (2)
VOL5
Low-level output voltage
I(OL5max) = 5 mA (1)
I(OL5max) = 15 mA (2)
I(OL5max) = 7 mA (1)
I(OL5max) = 20 mA (2)
(1)
(2)
VIO
(1)
1.8 V
3V
5V
1.8 V
3V
5V
MIN
MAX
VIO – 0.25
VCC
VIO – 0.60
VCC
VIO – 0.25
VCC
VIO – 0.60
VCC
VIO – 0.25
VIO
VIO – 0.60
VIO
UNIT
V
VSS VSS + 0.25
VSS VSS + 0.60
VSS VSS + 0.25
VSS VSS + 0.60
V
VSS VSS + 0.25
VSS VSS + 0.60
The maximum total current, I(OH5max) and I(OL5max), for all outputs combined should not exceed ±48 mA to hold the maximum voltage
drop specified.
The maximum total current, I(OH5max) and I(OL5max), for all outputs combined should not exceed ±200 mA to hold the maximum voltage
drop specified.
Outputs – Ports P1 to P3, PJ (Reduced Drive Strength, P1.0 to P1.5, P3.2 to P3.7, PJ.0 to PJ.6)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1)
PARAMETER
TEST CONDITIONS
I(OHmax) = –1 mA
VOH
High-level output voltage
I(OHmax) = –3 mA (3)
I(OHmax) = –2 mA (2)
I(OHmax) = –6 mA (3)
I(OLmax) = 1 mA (2)
VOL
Low-level output voltage
I(OLmax) = 3 mA (3)
I(OLmax) = 2 mA
(3)
1.8 V
3V
1.8 V
(2)
I(OLmax) = 6 mA (3)
(1)
(2)
VCC
(2)
3V
MIN
MAX
VCC – 0.25
VCC
VCC – 0.60
VCC
VCC – 0.25
VCC
VCC – 0.60
VCC
UNIT
V
VSS VSS + 0.25
VSS VSS + 0.60
VSS VSS + 0.25
V
VSS VSS + 0.60
Selecting reduced drive strength may reduce EMI.
The maximum total current, I(OHmax) and I(OLmax), for all outputs combined, should not exceed ±48 mA to hold the maximum voltage drop
specified.
The maximum total current, I(OHmax) and I(OLmax), for all outputs combined, should not exceed ±100 mA to hold the maximum voltage
drop specified.
Copyright © 2010–2013, Texas Instruments Incorporated
Submit Documentation Feedback
37
MSP430F51x1
MSP430F51x2
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
www.ti.com
Outputs – Ports P1 to P3 (Reduced Drive Strength, P1.6 and P1.7, P2.0 to P2.7, P3.0 and P3.1)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1)
PARAMETER
TEST CONDITIONS
I(OH5max) = –1 mA
VIO
(2)
1.8 V
I(OH5max) = –3 mA (3)
VOH5
I(OH5max) = –2 mA (2)
High-level output voltage
3V
I(OH5max) = –6 mA (3)
I(OH5max) = –4 mA (2)
5.0 V
I(OL5max) = -12 mA (3)
I(OL5max) = 1 mA (2)
I(OL5max) = 2 mA (2)
Low-level output voltage
VCC
VIO – 0.60
VCC
VIO – 0.25
VCC
VIO – 0.60
VCC
VIO – 0.25
VIO
VIO – 0.60
VIO
5.0 V
I(OL5max) = 12 mA (3)
(3)
VIO – 0.25
3V
I(OL5max) = 6 mA (3)
I(OH5max) = 4 mA (2)
(1)
(2)
MAX
1.8 V
I(OL5max) = 3 mA (3)
VOL5
MIN
UNIT
V
VSS VSS + 0.25
VSS VSS + 0.60
VSS VSS + 0.25
VSS VSS + 0.60
V
VSS VSS + 0.25
VSS VSS + 0.60
Selecting reduced drive strength may reduce EMI.
The maximum total current, I(OH5max) and I(OL5max), for all outputs combined, should not exceed ±48 mA to hold the maximum voltage
drop specified.
The maximum total current, I(OH5max) and I(OL5max), for all outputs combined, should not exceed ±200 mA to hold the maximum voltage
drop specified.
Output Frequency – Ports P1.0 to P1.5, P3.2 to P3.7, PJ.0 to PJ.6
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
fPx.y
fPort_CLK
(1)
(2)
TEST CONDITIONS
Port output frequency
(with load)
PJ.0/SMCLK
CL = 20 pF, RL = 1 kΩ (1)
Clock output frequency
PJ.3/ACLK
PJ.0/SMCLK
PJ.1/MCLK
CL = 20 pF (2)
(2)
MIN
VCC = 1.8 V
PMMCOREVx = 0
16
VCC = 3 V
PMMCOREVx = 3
25
VCC = 1.8 V
PMMCOREVx = 0
16
VCC = 3 V
PMMCOREVx = 3
25
MAX
UNIT
MHz
MHz
A resistive divider with 2 × 0.5 kΩ between VCC and VSS is used as load. The output is connected to the center tap of the divider.
The output voltage reaches at least 10% and 90% VCC at the specified toggle frequency.
Output Frequency – Ports P1.6 and P1.7, P2.0 to P2.7, P3.0 and P3.1
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
Port output frequency
(with load)
fPx.y
fPort_CLK
(1)
(2)
38
Clock output frequency
TEST CONDITIONS
P1.6 port mapper SMCLK from P3.4
CL = 20 pF, RL = 1 kΩ (1) (2)
P1.6 port mapper SMCLK from P3.4
CL = 20 pF (2)
MIN
VCC = 1.8 V, VIO = 1.8 V
PMMCOREVx = 0
16
VCC = 3 V, VIO = 3 V
PMMCOREVx = 3
25
VCC = 3 V, VIO = 5 V
PMMCOREVx = 3
25
VCC = 1.8 V, VIO = 1.8V
PMMCOREVx = 0
16
VCC = 3 V, VIO = 3 V
PMMCOREVx = 3
25
VCC = 3 V, VIO = 5 V
PMMCOREVx = 3
25
MAX
UNIT
MHz
MHz
A resistive divider with 2 × 0.5 kΩ between VCC and VSS is used as load. The output is connected to the center tap of the divider.
The output voltage reaches at least 10% and 90% VCC at the specified toggle frequency.
Submit Documentation Feedback
Copyright © 2010–2013, Texas Instruments Incorporated
MSP430F51x1
MSP430F51x2
www.ti.com
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
Typical Characteristics – Outputs, Reduced Drive Strength (PxDS.y = 0), Ports P1.0 to P1.5,
P3.2 to P3.7, PJ.0 to PJ.6
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
TYPICAL LOW-LEVEL OUTPUT CURRENT
vs
LOW-LEVEL OUTPUT VOLTAGE
TYPICAL LOW-LEVEL OUTPUT CURRENT
vs
LOW-LEVEL OUTPUT VOLTAGE
8.0
VCC = 3.0 V
Px.y
IOL – Typical Low-Level Output Current – mA
IOL – Typical Low-Level Output Current – mA
25.0
TA = 25°C
20.0
TA = 85°C
15.0
10.0
5.0
0.0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
7.0
TA = 85°C
6.0
5.0
4.0
3.0
2.0
1.0
0.0
0.0
3.5
1.5
2.0
TYPICAL HIGH-LEVEL OUTPUT CURRENT
vs
HIGH-LEVEL OUTPUT VOLTAGE
0.0
0.0
VCC = 3.0 V
Px.y
IOH – Typical High-Level Output Current – mA
IOH – Typical High-Level Output Current – mA
1.0
Figure 3.
TYPICAL HIGH-LEVEL OUTPUT CURRENT
vs
HIGH-LEVEL OUTPUT VOLTAGE
-5.0
-10.0
TA = 85°C
-20.0
0.5
VOL – Low-Level Output Voltage – V
VOL – Low-Level Output Voltage – V
Figure 2.
-15.0
TA = 25°C
VCC = 1.8 V
Px.y
TA = 25°C
VCC = 1.8 V
Px.y
-1.0
-2.0
-3.0
-4.0
TA = 85°C
-5.0
-6.0
TA = 25°C
-7.0
-8.0
-25.0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
VOH – High-Level Output Voltage – V
Figure 4.
Copyright © 2010–2013, Texas Instruments Incorporated
3.5
0.0
0.5
1.0
1.5
VOH – High-Level Output Voltage – V
2.0
Figure 5.
Submit Documentation Feedback
39
MSP430F51x1
MSP430F51x2
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
www.ti.com
Typical Characteristics – Outputs, Full Drive Strength (PxDS.y = 1), Ports P1.0 to P1.5, P3.2 to
P3.7, PJ.0 to PJ.6
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
TYPICAL LOW-LEVEL OUTPUT CURRENT
vs
LOW-LEVEL OUTPUT VOLTAGE
TA = 25°C
VCC = 3.0 V
Px.y
55.0
50.0
IOL – Typical Low-Level Output Current – mA
IOL – Typical Low-Level Output Current – mA
60.0
TYPICAL LOW-LEVEL OUTPUT CURRENT
vs
LOW-LEVEL OUTPUT VOLTAGE
TA = 85°C
45.0
40.0
35.0
30.0
25.0
20.0
15.0
10.0
5.0
0.0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
24
VCC = 1.8 V
Px.y
TA = 85°C
16
12
8
4
0
0.0
3.5
IOH – Typical High-Level Output Current – mA
IOH – Typical High-Level Output Current – mA
-10.0
-15.0
-20.0
-25.0
-30.0
-35.0
-40.0
-45.0
TA = 85°C
-55.0
TA = 25°C
0.5
VCC = 1.8 V
Px.y
-4
-8
-12
TA = 85°C
-16
TA = 25°C
-20
1.0
1.5
2.0
2.5
3.0
VOH – High-Level Output Voltage – V
Figure 8.
40
2.0
0
VCC = 3.0 V
Px.y
0.0
1.5
TYPICAL HIGH-LEVEL OUTPUT CURRENT
vs
HIGH-LEVEL OUTPUT VOLTAGE
0.0
-60.0
1.0
Figure 7.
TYPICAL HIGH-LEVEL OUTPUT CURRENT
vs
HIGH-LEVEL OUTPUT VOLTAGE
-50.0
0.5
VOL – Low-Level Output Voltage – V
VOL – Low-Level Output Voltage – V
Figure 6.
-5.0
TA = 25°C
20
Submit Documentation Feedback
3.5
0.0
0.5
1.0
1.5
2.0
VOH – High-Level Output Voltage – V
Figure 9.
Copyright © 2010–2013, Texas Instruments Incorporated
MSP430F51x1
MSP430F51x2
www.ti.com
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
Typical Characteristics – Outputs, Reduced Drive Strength (PxDS.y = 0), Ports P1.6 and P1.7,
P2.0 to P2.7, P3.0 and P3.1
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
TYPICAL LOW-LEVEL OUTPUT CURRENT
vs
LOW-LEVEL OUTPUT VOLTAGE
TYPICAL LOW-LEVEL OUTPUT CURRENT
vs
LOW-LEVEL OUTPUT VOLTAGE
30
DVCC = 3.0 V
DVIO = 5.0 V
IOL - Typical Low-Level Output Current - mA
IOL - Typical Low-Level Output Current - mA
60
TA = 25°C
50
40
TA = 85°C
30
20
10
0
25
TA = 25°C
20
TA = 85°C
15
10
5
0
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
5.5
0
0.5
1
1.5
2
2.5
3
3.5
V OL - Low -Level Output Voltage - V
Figure 10.
V OL - Low -Level Output Voltage - V
Figure 11.
TYPICAL LOW-LEVEL OUTPUT CURRENT
vs
LOW-LEVEL OUTPUT VOLTAGE
TYPICAL HIGH-LEVEL OUTPUT CURRENT
vs
HIGH-LEVEL OUTPUT VOLTAGE
10
0
DVCC = 1.8 V
V DD = 1.8
5.5 V
DVIO
TA = 25°C
IOH - Typical High-Level Output Current - mA
IOL - Typical Low-Level Output Current - mA
DVCC = 3.0 V
V DD = 3.0
5.5 V
DVIO
8
TA = 85°C
6
4
2
0
DVCC = 3.0 V
V CC= =5.0
3.0V V
DVIO
-10
-20
-30
-40
TA = 85°C
-50
-60
TA = 25°C
-70
-80
0
0.5
1
1.5
V OL - Low -Level Output Voltage - V
Figure 12.
Copyright © 2010–2013, Texas Instruments Incorporated
2
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
5.5
V OH - High-Level Output Voltage - V
Figure 13.
Submit Documentation Feedback
41
MSP430F51x1
MSP430F51x2
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
www.ti.com
Typical Characteristics – Outputs, Reduced Drive Strength (PxDS.y = 0), Ports P1.6 and P1.7,
P2.0 to P2.7, P3.0 and P3.1 (continued)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
TYPICAL HIGH-LEVEL OUTPUT CURRENT
vs
HIGH-LEVEL OUTPUT VOLTAGE
TYPICAL HIGH-LEVEL OUTPUT CURRENT
vs
HIGH-LEVEL OUTPUT VOLTAGE
0
DVCC = 3.0 V
V DD = 5.5
DVIO
3.0 V
IOH - Typical High-Level Output Current - mA
IOH - Typical High-Level Output Current - mA
0
-5
-10
-15
TA = 85°C
-20
-25
TA = 25°C
-30
-2
-4
-6
TA = 85°C
-8
TA = 25°C
-10
0
0.5
1
1.5
2
2.5
3
V OH - High-Level Output Voltage - V
Figure 14.
42
DVCC = 1.8 V
V DD = 5.5
DVIO
1.8 V
Submit Documentation Feedback
3.5
0
0.5
1
1.5
2
V OH - High-Level Output Voltage - V
Figure 15.
Copyright © 2010–2013, Texas Instruments Incorporated
MSP430F51x1
MSP430F51x2
www.ti.com
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
Typical Characteristics – Outputs, Full Drive Strength (PxDS.y = 1), Ports P1.6 and P1.7, P2.0 to
P2.7, P3.0 and P3.1
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
TYPICAL LOW-LEVEL OUTPUT CURRENT
vs
LOW-LEVEL OUTPUT VOLTAGE
TYPICAL LOW-LEVEL OUTPUT CURRENT
vs
LOW-LEVEL OUTPUT VOLTAGE
DVCC = 3.0 V
DVIO = 5.0 V
130
120
IOL - Typical Low-Level Output Current - mA
IOL - Typical Low-Level Output Current - mA
140
TA = 25°C
110
100
TA = 85°C
90
80
70
60
50
40
30
20
10
0
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
5.5
TA = 25°C
TA = 85°C
0.5
1
1.5
2
2.5
3
3.5
V OL - Low -Level Output Voltage - V
Figure 16.
V OL - Low -Level Output Voltage - V
Figure 17.
TYPICAL LOW-LEVEL OUTPUT CURRENT
vs
LOW-LEVEL OUTPUT VOLTAGE
TYPICAL HIGH-LEVEL OUTPUT CURRENT
vs
HIGH-LEVEL OUTPUT VOLTAGE
DVCC = 1.8 V
V DD = 1.8
5.5 V
DVIO
IOH - Typical High-Level Output Current - mA
IOL - Typical Low-Level Output Current - mA
DVCC = 3.0 V
V DD = 3.0
5.5 V
DVIO
0
30
TA = 25°C
25
20
TA = 85°C
15
10
5
0
0
80
75
70
65
60
55
50
45
40
35
30
25
20
15
10
5
0
0.5
1
1.5
V OL - Low -Level Output Voltage - V
Figure 18.
Copyright © 2010–2013, Texas Instruments Incorporated
2
0
-10
-20
-30
-40
-50
-60
-70
-80
-90
-100
-110
-120
-130
-140
-150
-160
-170
-180
-190
-200
DVCC = 3.0 V
V CC= =5.0
3.0VV
DVIO
TA = 85°C
TA = 25°C
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
5.5
V OH - High-Level Output Voltage - V
Figure 19.
Submit Documentation Feedback
43
MSP430F51x1
MSP430F51x2
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
www.ti.com
Typical Characteristics – Outputs, Full Drive Strength (PxDS.y = 1), Ports P1.6 and P1.7, P2.0 to
P2.7, P3.0 and P3.1 (continued)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
0
-5
-10
-15
-20
-25
-30
-35
-40
-45
-50
-55
-60
-65
-70
-75
-80
-85
-90
0
DVCC = 3.0 V
V DD = 5.5
DVIO
3.0 V
TA = 85°C
TA = 25°C
DVCC = 1.8 V
V DD = 5.5
DVIO
1.8 V
-5
-10
-15
TA = 85°C
-20
TA = 25°C
-25
-30
0
0.5
1
1.5
2
2.5
3
V OH - High-Level Output Voltage - V
Figure 20.
44
TYPICAL HIGH-LEVEL OUTPUT CURRENT
vs
HIGH-LEVEL OUTPUT VOLTAGE
IOH - Typical High-Level Output Current - mA
IOH - Typical High-Level Output Current - mA
TYPICAL HIGH-LEVEL OUTPUT CURRENT
vs
HIGH-LEVEL OUTPUT VOLTAGE
Submit Documentation Feedback
3.5
0
0.5
1
1.5
2
V OH - High-Level Output Voltage - V
Figure 21.
Copyright © 2010–2013, Texas Instruments Incorporated
MSP430F51x1
MSP430F51x2
www.ti.com
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
Crystal Oscillator, XT1, Low-Frequency Mode
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
VCC
MIN
fOSC = 32768 Hz, XTS = 0,
XT1BYPASS = 0, XT1DRIVEx = 1,
TA = 25°C
IDVCC.LF
Differential XT1 oscillator crystal
current consumption from lowest
drive setting, LF mode
fOSC = 32768 Hz, XTS = 0,
XT1BYPASS = 0, XT1DRIVEx = 2,
TA = 25°C
fXT1,LF,SW
XT1 oscillator logic-level squarewave input frequency, LF mode
XTS = 0, XT1BYPASS = 1
CL,eff
fFault,LF
tSTART,LF
Integrated effective load
capacitance, LF mode
0.170
32768
XTS = 0, XT1BYPASS = 0
OALF
3V
0.290
XT1 oscillator crystal frequency,
LF mode
MAX
UNIT
0.075
fOSC = 32768 Hz, XTS = 0,
XT1BYPASS = 0, XT1DRIVEx = 3,
TA = 25°C
fXT1,LF0
Oscillation allowance for
LF crystals
TYP
10
32.768
XTS = 0,
XT1BYPASS = 0, XT1DRIVEx = 0,
fXT1,LF = 32768 Hz, CL,eff = 6 pF
210
XTS = 0,
XT1BYPASS = 0, XT1DRIVEx = 1,
fXT1,LF = 32768 Hz, CL,eff = 12 pF
300
µA
Hz
50
kHz
kΩ
XTS = 0, XCAPx = 0
2
XTS = 0, XCAPx = 1
5.5
XTS = 0, XCAPx = 2
8.5
XTS = 0, XCAPx = 3
12.0
pF
Duty cycle, LF mode
XTS = 0, Measured at ACLK,
fXT1,LF = 32768 Hz
30
70
%
Oscillator fault frequency,
LF mode
XTS = 0
10
10000
Hz
Startup time, LF mode
Copyright © 2010–2013, Texas Instruments Incorporated
fOSC = 32768 Hz, XTS = 0,
XT1BYPASS = 0, XT1DRIVEx = 0,
TA = 25°C, CL,eff = 12 pF
fOSC = 32768 Hz, XTS = 0,
XT1BYPASS = 0, XT1DRIVEx = 3,
TA = 25°C, CL,eff = 12 pF
1000
3V
ms
500
Submit Documentation Feedback
45
MSP430F51x1
MSP430F51x2
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
www.ti.com
Crystal Oscillator, XT1, High-Frequency Mode (1)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
IDVCC,HF
TEST CONDITIONS
Differential XT1 oscillator crystal
current consumption from lowest
drive setting, HF mode
VCC
MIN
TYP
fOSC = 4 MHz,
XTS = 1, XOSCOFF = 0,
XT1BYPASS = 0, XT1DRIVEx = 0,
TA = 25°C
200
fOSC = 12 MHz,
XTS = 1, XOSCOFF = 0,
XT1BYPASS = 0, XT1DRIVEx = 1,
TA = 25°C
260
fOSC = 20 MHz,
XTS = 1, XOSCOFF = 0,
XT1BYPASS = 0, XT1DRIVEx = 2,
TA = 25°C
MAX
UNIT
µA
3V
325
fOSC = 32 MHz,
XTS = 1, XOSCOFF = 0,
XT1BYPASS = 0, XT1DRIVEx = 3,
TA = 25°C
450
fXT1,HF0
XT1 oscillator crystal frequency,
HF mode 0
XTS = 1,
XT1BYPASS = 0, XT1DRIVEx = 0 (2)
4
8
MHz
fXT1,HF1
XT1 oscillator crystal frequency,
HF mode 1
XTS = 1,
XT1BYPASS = 0, XT1DRIVEx = 1 (2)
8
16
MHz
fXT1,HF2
XT1 oscillator crystal frequency,
HF mode 2
XTS = 1,
XT1BYPASS = 0, XT1DRIVEx = 2 (2)
16
24
MHz
fXT1,HF3
XT1 oscillator crystal frequency,
HF mode 3
XTS = 1,
XT1BYPASS = 0, XT1DRIVEx = 3 (2)
24
32
MHz
fXT1,HF,SW
XT1 oscillator logic-level squarewave input frequency, HF mode
XTS = 1,
XT1BYPASS = 1 (3)
0.7
32
MHz
Oscillation allowance for
HF crystals (4)
OAHF
tSTART,HF
CL,eff
(1)
(2)
(3)
(4)
(5)
(6)
46
Startup time, HF mode
Integrated effective load
capacitance, HF mode (5)
(2)
XTS = 1,
XT1BYPASS = 0, XT1DRIVEx = 0,
fXT1,HF = 6 MHz, CL,eff = 15 pF
450
XTS = 1,
XT1BYPASS = 0, XT1DRIVEx = 1,
fXT1,HF = 12 MHz, CL,eff = 15 pF
320
XTS = 1,
XT1BYPASS = 0, XT1DRIVEx = 2,
fXT1,HF = 20 MHz, CL,eff = 15 pF
200
XTS = 1,
XT1BYPASS = 0, XT1DRIVEx = 3,
fXT1,HF = 32 MHz, CL,eff = 15 pF
200
fOSC = 6 MHz, XTS = 1,
XT1BYPASS = 0, XT1DRIVEx = 0,
TA = 25°C, CL,eff = 15 pF
0.5
fOSC = 20 MHz, XTS = 1,
XT1BYPASS = 0, XT1DRIVEx = 2,
TA = 25°C, CL,eff = 15 pF
(6)
XTS = 1
kΩ
3V
ms
0.3
1
pF
To improve EMI on the XT1 oscillator the following guidelines should be observed.
(a) Keep the traces between the device and the crystal as short as possible.
(b) Design a good ground plane around the oscillator pins.
(c) Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.
(d) Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.
(e) Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins.
(f) If conformal coating is used, ensure that it does not induce capacitive or resistive leakage between the oscillator pins.
Maximum frequency of operation of the entire device cannot be exceeded.
When XT1BYPASS is set, the VLO, REFO, XT1 circuits are automatically powered down.
Oscillation allowance is based on a safety factor of 5 for recommended crystals.
Includes parasitic bond and package capacitance (approximately 2 pF per pin).
Since the PCB adds additional capacitance, it is recommended to verify the correct load by measuring the ACLK frequency. For a
correct setup, the effective load capacitance should always match the specification of the used crystal.
Requires external capacitors at both terminals. Values are specified by crystal manufacturers.
Submit Documentation Feedback
Copyright © 2010–2013, Texas Instruments Incorporated
MSP430F51x1
MSP430F51x2
www.ti.com
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
Crystal Oscillator, XT1, High-Frequency Mode(1) (continued)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
fFault,HF
(7)
(8)
TEST CONDITIONS
VCC
MIN
TYP
MAX
50
60
%
300
kHz
Duty cycle, HF mode
XTS = 1, Measured at ACLK,
fXT1,HF2 = 20 MHz
40
Oscillator fault frequency,
HF mode (7)
XTS = 1 (8)
30
UNIT
Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag.
Frequencies in between might set the flag.
Measured with logic-level input frequency but also applies to operation with crystals.
Internal Very-Low-Power Low-Frequency Oscillator (VLO)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
VCC
fVLO
VLO frequency
Measured at ACLK
1.8 V to 3.6 V
dfVLO/dT
VLO frequency temperature drift
Measured at ACLK (1)
1.8 V to 3.6 V
Measured at ACLK (2)
1.8 V to 3.6 V
Measured at ACLK
1.8 V to 3.6 V
dfVLO/dVCC VLO frequency supply voltage drift
Duty cycle
(1)
(2)
MIN
TYP
MAX
6
9.4
14
0.5
50
kHz
%/°C
4
40
UNIT
%/V
60
%
Calculated using the box method: (MAX(-40 to 85°C) MIN(-40 to 85°C)) / MIN(85°C (40°C)). The coefficient is negative.
Calculated using the box method: (MAX(1.8 to 3.6 V) MIN(1.8 to 3.6 V)) / MIN(1.8 to 3.6 V) / (3.6 V 1.8 V). The coefficient is positive.
Internal Reference, Low-Frequency Oscillator (REFO)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
IREFO
fREFO
TEST CONDITIONS
VCC
MAX
1.8 V to 3.6 V
3
REFO frequency calibrated
Measured at ACLK
1.8 V to 3.6 V
32768
Full temperature range
1.8 V to 3.6 V
±3.5
3V
±1.5
REFO absolute tolerance calibrated
TA = 25°C
REFO frequency temperature drift
Measured at ACLK (1)
1.8 V to 3.6 V
dfREFO/dVCC
REFO frequency supply voltage drift
Measured at ACLK (2)
1.8 V to 3.6 V
Duty cycle
Measured at ACLK
1.8 V to 3.6 V
REFO startup time
40%/60% duty cycle
1.8 V to 3.6 V
(1)
(2)
TYP
TA = 25°C
dfREFO/dT
tSTART
MIN
REFO oscillator current consumption
µA
Hz
0.01
50
%
%
%/°C
1.0
40
UNIT
%/V
60
25
%
µs
Calculated using the box method: (MAX(-40 to 85°C) MIN(-40 to 85°C)) / MIN(85°C (40°C))
Calculated using the box method: (MAX(1.8 to 3.6 V) MIN(1.8 to 3.6 V)) / MIN(1.8 to 3.6 V) / (3.6 V 1.8 V)
Copyright © 2010–2013, Texas Instruments Incorporated
Submit Documentation Feedback
47
MSP430F51x1
MSP430F51x2
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
www.ti.com
DCO Frequency
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
(1)
MIN
TYP
MAX
UNIT
fDCO(0,0)
DCO frequency (0, 0)
DCORSELx = 0, DCOx = 0, MODx = 0
0.07
0.20
MHz
fDCO(0,31)
DCO frequency (0, 31) (1)
DCORSELx = 0, DCOx = 31, MODx = 0
0.70
1.70
MHz
fDCO(1,0)
DCO frequency (1, 0) (1)
DCORSELx = 1, DCOx = 0, MODx = 0
0.15
0.38
MHz
fDCO(1,31)
DCO frequency (1, 31) (1)
DCORSELx = 1, DCOx = 31, MODx = 0
1.47
3.45
MHz
(1)
fDCO(2,0)
DCO frequency (2, 0)
DCORSELx = 2, DCOx = 0, MODx = 0
0.32
0.75
MHz
fDCO(2,31)
DCO frequency (2, 31) (1)
DCORSELx = 2, DCOx = 31, MODx = 0
3.17
7.38
MHz
fDCO(3,0)
DCO frequency (3, 0) (1)
DCORSELx = 3, DCOx = 0, MODx = 0
0.64
1.51
MHz
(1)
fDCO(3,31)
DCO frequency (3, 31)
DCORSELx = 3, DCOx = 31, MODx = 0
6.07
14.0
MHz
fDCO(4,0)
DCO frequency (4, 0) (1)
DCORSELx = 4, DCOx = 0, MODx = 0
1.3
3.2
MHz
fDCO(4,31)
DCO frequency (4, 31) (1)
DCORSELx = 4, DCOx = 31, MODx = 0
12.3
28.2
MHz
(1)
fDCO(5,0)
DCO frequency (5, 0)
DCORSELx = 5, DCOx = 0, MODx = 0
2.5
6.0
MHz
fDCO(5,31)
DCO frequency (5, 31) (1)
DCORSELx = 5, DCOx = 31, MODx = 0
23.7
54.1
MHz
fDCO(6,0)
DCO frequency (6, 0) (1)
DCORSELx = 6, DCOx = 0, MODx = 0
4.6
10.7
MHz
fDCO(6,31)
DCO frequency (6, 31) (1)
DCORSELx = 6, DCOx = 31, MODx = 0
39.0
88.0
MHz
(1)
fDCO(7,0)
DCO frequency (7, 0)
DCORSELx = 7, DCOx = 0, MODx = 0
8.5
19.6
MHz
fDCO(7,31)
DCO frequency (7, 31) (1)
DCORSELx = 7, DCOx = 31, MODx = 0
60
135
MHz
SDCORSEL
Frequency step between range
DCORSEL and DCORSEL + 1
SRSEL = fDCO(DCORSEL+1,DCO)/fDCO(DCORSEL,DCO)
1.2
2.4
ratio
SDCO
Frequency step between tap
DCO and DCO + 1
SDCO = fDCO(DCORSEL,DCO+1)/fDCO(DCORSEL,DCO)
1.02
1.12
ratio
Duty cycle
Measured at SMCLK
dfDCO/dT
DCO frequency temperature drift
fDCO = 1 MHz, VCORE = 1.2 V/2.0 V
0.1
%/°C
dfDCO/dVCORE
DCO frequency voltage drift
fDCO = 1 MHz
1.9
%/V
(1)
40
50
60
%
When selecting the proper DCO frequency range (DCORSELx), the target DCO frequency, fDCO, should be set to reside within the
range of fDCO(n, 0),MAX ≤ fDCO ≤ fDCO(n, 31),MIN, where fDCO(n, 0),MAX represents the maximum frequency specified for the DCO frequency,
range n, tap 0 (DCOx = 0) and fDCO(n,31),MIN represents the minimum frequency specified for the DCO frequency, range n, tap 31 (DCOx
= 31). This ensures that the target DCO frequency resides within the range selected. It should also be noted that if the actual fDCO
frequency for the selected range causes the FLL or the application to select tap 0 or 31, the DCO fault flag is set to report that the
selected range is at its minimum or maximum tap setting.
Typical DCO Frequency, VCC = 3.0 V, TA = 25°C
100
fDCO – MHz
10
DCOx = 31
1
0.1
DCOx = 0
0
1
2
3
4
5
6
7
DCORSEL
Figure 22. Typical DCO frequency
48
Submit Documentation Feedback
Copyright © 2010–2013, Texas Instruments Incorporated
MSP430F51x1
MSP430F51x2
www.ti.com
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
PMM, Brown-Out Reset (BOR)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
1.45
V
1.50
V
40
275
mV
V(DVCC_BOR_IT-)
BORH on voltage,
DVCC falling level
dDVCC/dt < 3 V/s
V(DVCC_BOR_IT+)
BORH off voltage,
DVCC rising level
dDVCC/dt < 3 V/s
V(DVCC_BOR_hys)
BORH hysteresis
V(VCORE_BOR_IT-)
BORL on voltage,
VCORE falling level
DVCC = 1.8 V to 3.6 V
0.69
0.87
V
V(VCORE_BOR_IT+)
BORL off voltage,
VCORE rising level
DVCC = 1.8 V to 3.6 V
0.83
1.05
V
V(VCORE_BOR_hys)
BORL hysteresis
200
mV
tdBOR
BORL reset release time
2000
µs
tRESET
Pulse duration required at RST/NMI
pin to accept a reset
0.80
1.30
60
2
µs
PMM, Core Voltage
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
VCORE3(AM)
Core voltage, active
mode, PMMCOREV = 3
2.4 V ≤ DVCC ≤ 3.6 V, 0 mA ≤ I(VCORE) ≤ 25 mA
1.90
V
VCORE2(AM)
Core voltage, active
mode, PMMCOREV = 2
2.2 V ≤ DVCC ≤ 3.6 V, 0 mA ≤ I(VCORE) ≤ 21 mA
1.80
V
VCORE1(AM)
Core voltage, active
mode, PMMCOREV = 1
2.0 V ≤ DVCC ≤ 3.6 V, 0 mA ≤ I(VCORE) ≤ 17 mA
1.60
V
VCORE0(AM)
Core voltage, active
mode, PMMCOREV = 0
1.8 V ≤ DVCC ≤ 3.6 V, 0 mA ≤ I(VCORE) ≤ 13 mA
1.40
V
VCORE3(LPM)
Core voltage, active
mode, PMMCOREV = 3
2.4 V ≤ DVCC ≤ 3.6 V, 0 mA ≤ I(VCORE) ≤ 30 µA
1.94
V
VCORE2(LPM)
Core voltage, low-current
2.2 V ≤ DVCC ≤ 3.6 V, 0 µA ≤ I(VCORE) ≤ 30 µA
mode, PMMCOREV = 2
1.84
V
VCORE1(LPM)
Core voltage, low-current
2.0 V ≤ DVCC ≤ 3.6 V, 0 µA ≤ I(VCORE) ≤ 30 µA
mode, PMMCOREV = 1
1.64
V
VCORE0(LPM)
Core voltage, low-current
1.8 V ≤ DVCC ≤ 3.6 V, 0 µA ≤ I(VCORE) ≤ 30 µA
mode, PMMCOREV = 0
1.44
V
Copyright © 2010–2013, Texas Instruments Incorporated
Submit Documentation Feedback
49
MSP430F51x1
MSP430F51x2
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
www.ti.com
PMM, SVS High Side
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
SVSHE = 0, DVCC = 3.6 V
I(SVSH)
SVS current consumption
V(SVSH_IT–)
V(SVSH_IT+)
tpd(SVSH)
t(SVSH)
SVSH off voltage level
SVSH propagation delay
SVSH on or off delay time
dVDVCC/dt
50
SVSH on voltage level
DVCC rise time
Submit Documentation Feedback
TYP
MAX
0
UNIT
nA
SVSHE = 1, DVCC = 3.6 V, SVSHFP = 0
200
nA
SVSHE = 1, DVCC = 3.6 V, SVSHFP = 1
2
µA
SVSHE = 1, SVSHRVL = 0
1.59
1.64
1.69
SVSHE = 1, SVSHRVL = 1
1.79
1.84
1.91
SVSHE = 1, SVSHRVL = 2
1.98
2.04
2.11
SVSHE = 1, SVSHRVL = 3
2.10
2.16
2.23
SVSHE = 1, SVSMHRRL = 0
1.62
1.74
1.81
SVSHE = 1, SVSMHRRL = 1
1.88
1.94
2.01
SVSHE = 1, SVSMHRRL = 2
2.07
2.14
2.21
SVSHE = 1, SVSMHRRL = 3
2.20
2.26
2.33
SVSHE = 1, SVSMHRRL = 4
2.32
2.40
2.48
SVSHE = 1, SVSMHRRL = 5
2.56
2.70
2.84
SVSHE = 1, SVSMHRRL = 6
2.85
3.00
3.15
SVSHE = 1, SVSMHRRL = 7
2.85
3.00
3.15
SVSHE = 1, dVDVCC/dt = 10 mV/µs,
SVSHFP = 1
2.5
SVSHE = 1, dVDVCC/dt = ±1 mV/µs,
SVSHFP = 0
25
V
V
µs
SVSHE = 0 -> 1
SVSHFP = 1
12.5
SVSHE = 0 -> 1
SVSHFP = 0
100
µs
0
1000
V/s
Copyright © 2010–2013, Texas Instruments Incorporated
MSP430F51x1
MSP430F51x2
www.ti.com
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
PMM, SVM High Side
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
SVMHE = 0, DVCC = 3.6 V
I(SVMH)
V(SVMH)
SVMH current consumption
SVMH on or off voltage level
t(SVMH)
SVMH propagation delay
SVMH on or off delay time
MAX
UNIT
0
nA
SVMHE = 1, DVCC = 3.6 V, SVMHFP = 0
200
nA
SVMHE = 1, DVCC = 3.6 V, SVMHFP = 1
2.0
µA
SVMHE = 1, SVSMHRRL = 0
1.65
1.74
1.86
SVMHE = 1, SVSMHRRL = 1
1.85
1.94
2.02
SVMHE = 1, SVSMHRRL = 2
2.02
2.14
2.22
SVMHE = 1, SVSMHRRL = 3
2.18
2.26
2.35
SVMHE = 1, SVSMHRRL = 4
2.32
2.40
2.48
SVMHE = 1, SVSMHRRL = 5
2.56
2.70
2.84
SVMHE = 1, SVSMHRRL = 6
2.85
3.00
3.15
SVMHE = 1, SVSMHRRL = 7
2.85
3.00
3.15
SVMHE = 1, SVMHOVPE = 1
tpd(SVMH)
TYP
V
3.75
SVMHE = 1, dVDVCC/dt = 10 mV/µs,
SVMHFP = 1
2.5
µs
SVMHE = 1, dVDVCC/dt = 1 mV/µs,
SVMHFP = 0
20
µs
SVMHE = 0 -> 1,
SVSHFP = 1
12.5
SVMHE = 0 -> 1,
SVSHFP = 0
100
µs
PMM, SVS Low Side
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
SVSLE = 0, PMMCOREV = 2
I(SVSL)
t(SVSL)
tpd(SVSL)
SVSL current consumption
SVSL on or off delay time
SVSL propagation delay
TYP
MAX
UNIT
0
nA
SVSLE = 1, PMMCOREV = 2, SVSLFP = 0
200
nA
SVSLE = 1, PMMCOREV = 2, SVSLFP = 1
2.0
µA
SVSLE = 1, dVCORE/dt = 10 mV/µs,
SVSLFP = 1
6
SVSLE = 1, dVCORE/dt = 1 mV/µs,
SVSLFP = 0
50
µs
SVMHE = 0 -> 1,
SVSLFP = 1
12.5
SVMHE = 0 -> 1,
SVSLFP = 0
100
µs
PMM, SVM Low Side
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
SVMLE = 0, PMMCOREV = 2
I(SVML)
tpd(SVML)
t(SVML)
SVML current consumption
SVML propagation delay
SVML on or off delay time
Copyright © 2010–2013, Texas Instruments Incorporated
MIN
TYP
MAX
UNIT
0
nA
SVMLE = 1, PMMCOREV = 2, SVMLFP = 0
200
nA
SVMLE = 1, PMMCOREV = 2, SVMLFP = 1
2.0
µA
SVMLE = 1, dVCORE/dt = 10 mV/µs,
SVMLFP = 1
2.5
SVMLE = 1, dVCORE/dt = 1 mV/µs,
SVMLFP = 0
30
µs
SVMLE = 0 -> 1,
SVSLFP = 1
12.5
SVMLE = 0 -> 1,
SVSLFP = 0
100
µs
Submit Documentation Feedback
51
MSP430F51x1
MSP430F51x2
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
www.ti.com
Wake-Up From Low-Power Modes
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP MAX
UNIT
fMCLK ≥ 4 MHz
3
6.5
1 MHz < fMCLK <
4 MHz
4
8.0
150
165
µs
Wake-up time from LPM4.5 to
active mode
2
3
ms
Wake-up time from RST or
BOR event to active mode
2
3
ms
tFAST-WAKE-UP
Wake-up time from LPM2,
LPM3, or LPM4 to active mode
PMMCOREVx = 0 = SVSMLRRLx = n
(where n = 0, 1, 2, or 3), SVSLFP = 1
tSLOW-WAKE-UP
Wake-up time from LPM2,
LPM3, or LPM4 to active mode
PMMCOREVx = 0 = SVSMLRRLx = n
(where n = 0, 1, 2, or 3), SVSLFP = 0
tWAKE-UP LPM5
tWAKE-UP-RESET
µs
Timer_A
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
VCC
fTA
Timer_A input clock frequency
Internal: SMCLK, ACLK
External: TACLK
Duty cycle = 50% ± 10%
1.8 V, 3 V
tTA,cap
Timer_A capture timing
All capture inputs.
Minimum pulse duration required for
capture.
1.8 V, 3 V
MIN
TYP
MAX
UNIT
25
MHz
20
ns
USCI (UART Mode)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
fUSCI
USCI input clock frequency
fmax,BITCLK
Maximum BITCLK clock frequency
(equals baud rate in MBaud) (1)
tτ
UART receive deglitch time
(1)
52
TEST CONDITIONS
VCC
MIN
TYP
Internal: SMCLK, ACLK
External: UCLK
Duty cycle = 50% ± 10%
MAX
UNIT
fSYSTEM
MHz
1
MHz
2.2 V
50
150
200
3V
50
150
200
ns
The DCO wake-up time must be considered in LPM3/4. The wake-up time must be considered in LPMx.5.
Submit Documentation Feedback
Copyright © 2010–2013, Texas Instruments Incorporated
MSP430F51x1
MSP430F51x2
www.ti.com
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
USCI (SPI Master Mode)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 23 and
Figure 24)
PARAMETER
fUSCI
USCI input clock frequency
TEST CONDITIONS
PMMCOREV = 0
tSU,MI
SOMI input data setup time
PMMCOREV = 3
PMMCOREV = 0
tHD,MI
SOMI input data hold time
PMMCOREV = 3
tVALID,MO
tHD,MO
MIN
1.8 V
55
3V
38
2.4 V
30
3V
25
1.8 V
0
3V
0
2.4 V
0
3V
0
TYP
MAX
UNIT
fSYSTEM
MHz
ns
ns
UCLK edge to SIMO valid,
CL = 20 pF, PMMCOREV = 0
1.8 V
20
3V
18
UCLK edge to SIMO valid,
CL = 20 pF, PMMCOREV = 3
2.4 V
16
CL = 20 pF,
PMMCOREV = 0
1.8 V
-10
3V
-8
CL = 20 pF,
PMMCOREV = 3
2.4 V
-10
3V
-8
SIMO output data valid time
SIMO output data hold time
Copyright © 2010–2013, Texas Instruments Incorporated
VCC
SMCLK, ACLK
Duty cycle = 50% ± 10%
3V
ns
15
Submit Documentation Feedback
ns
ns
53
MSP430F51x1
MSP430F51x2
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
www.ti.com
1/fUCxCLK
CKPL = 0
UCLK
CKPL = 1
tLOW/HIGH
tLOW/HIGH
tHD,MI
tSU,MI
SOMI
tVALID,MO
SIMO
Figure 23. SPI Master Mode, CKPH = 0
1/fUCxCLK
CKPL = 0
UCLK
CKPL = 1
tLOW/HIGH
tLOW/HIGH
tSU,MI
tHD,MI
SOMI
tVALID,MO
SIMO
Figure 24. SPI Master Mode, CKPH = 1
54
Submit Documentation Feedback
Copyright © 2010–2013, Texas Instruments Incorporated
MSP430F51x1
MSP430F51x2
www.ti.com
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
USCI (SPI Slave Mode)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 25 and
Figure 26)
PARAMETER
TEST CONDITIONS
PMMCOREV = 0
tSTE,LEAD
STE lead time, STE low to clock
PMMCOREV = 3
PMMCOREV = 0
tSTE,LAG
STE lag time, Last clock to STE high
PMMCOREV = 3
PMMCOREV = 0
tSTE,ACC
STE access time, STE low to SOMI data out
PMMCOREV = 3
PMMCOREV = 0
tSTE,DIS
STE disable time, STE high to SOMI high
impedance
PMMCOREV = 3
PMMCOREV = 0
tSU,SI
SIMO input data setup time
PMMCOREV = 3
PMMCOREV = 0
tHD,SI
SIMO input data hold time
PMMCOREV = 3
tVALID,SO
tHD,SO
SOMI output data valid time
MIN
11
3V
8
2.4 V
7
3V
6
1.8 V
3
3V
3
2.4 V
3
3V
3
TYP
MAX
ns
ns
ns
1.8 V
66
3V
50
2.4 V
36
3V
30
1.8 V
30
3V
23
2.4 V
16
3V
13
1.8 V
5
3V
5
2.4 V
2
3V
2
1.8 V
5
3V
5
2.4 V
5
3V
5
UNIT
ns
ns
ns
ns
ns
ns
ns
ns
ns
UCLK edge to SOMI valid,
CL = 20 pF,
PMMCOREV = 0
1.8 V
76
3V
60
UCLK edge to SOMI valid,
CL = 20 pF,
PMMCOREV = 3
2.4 V
44
3V
40
CL = 20 pF,
PMMCOREV = 0
1.8 V
18
3V
12
CL = 20 pF,
PMMCOREV = 3
2.4 V
10
3V
8
SOMI output data hold time
Copyright © 2010–2013, Texas Instruments Incorporated
VCC
1.8 V
Submit Documentation Feedback
ns
ns
ns
ns
55
MSP430F51x1
MSP430F51x2
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
www.ti.com
tSTE,LAG
tSTE,LEAD
STE
1/fUCxCLK
CKPL = 0
UCLK
CKPL = 1
tLOW/HIGH
tSU,SIMO
tLOW/HIGH
tHD,SIMO
SIMO
tACC
tDIS
tVALID,SOMI
SOMI
Figure 25. SPI Slave Mode, CKPH = 0
tSTE,LAG
tSTE,LEAD
STE
1/fUCxCLK
CKPL = 0
UCLK
CKPL = 1
tLOW/HIGH
tLOW/HIGH
tHD,SI
tSU,SI
SIMO
tACC
tDIS
tVALID,SO
SOMI
Figure 26. SPI Slave Mode, CKPH = 1
56
Submit Documentation Feedback
Copyright © 2010–2013, Texas Instruments Incorporated
MSP430F51x1
MSP430F51x2
www.ti.com
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
USCI (I2C Mode)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 27)
PARAMETER
TEST CONDITIONS
VCC
MIN
TYP
Internal: SMCLK, ACLK
External: UCLK
Duty cycle = 50% ± 10%
MAX
UNIT
fSYSTEM
MHz
400
kHz
fUSCI
USCI input clock frequency
fSCL
SCL clock frequency
tHD,STA
Hold time (repeated) START
tSU,STA
Setup time for a repeated START
tHD,DAT
Data hold time
2.2 V, 3 V
0
ns
tSU,DAT
Data setup time
2.2 V, 3 V
250
ns
2.2 V, 3 V
fSCL ≤ 100 kHz
fSCL > 100 kHz
fSCL ≤ 100 kHz
fSCL > 100 kHz
fSCL ≤ 100 kHz
tSU,STO
Setup time for STOP
tSP
Pulse duration of spikes suppressed by input
filter
fSCL > 100 kHz
tSU,STA
tHD,STA
2.2 V, 3 V
2.2 V, 3 V
2.2 V, 3 V
0
4.0
µs
0.6
4.7
µs
0.6
4.0
µs
0.6
2.2 V
50
600
3V
50
600
tHD,STA
ns
tBUF
SDA
tLOW
tHIGH
tSP
SCL
tSU,DAT
tSU,STO
tHD,DAT
Figure 27. I2C Mode Timing
Copyright © 2010–2013, Texas Instruments Incorporated
Submit Documentation Feedback
57
MSP430F51x1
MSP430F51x2
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
www.ti.com
10-Bit ADC, Power Supply and Input Range Conditions (MSP430F51x2 Devices Only)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1)
PARAMETER
TEST CONDITIONS
VCC
AVCC
Analog supply voltage
AVCC and DVCC are connected together,
AVSS and DVSS are connected together,
V(AVSS) = V(DVSS) = 0 V
V(Ax)
Analog input voltage range (2)
All ADC10_A pins: P1.0 to P1.5 and P3.6 and P3.7
terminals
Operating supply current into
AVCC terminal, REF module
and reference buffer off
fADC10CLK = 5 MHz, ADC10ON = 1, REFON = 0,
SHT0 = 0, SHT1 = 0, ADC10DIV = 0,
ADC10SREF = 00
Operating supply current into
AVCC terminal, REF module
on, reference buffer on
MIN
TYP
MAX
UNIT
1.8
3.6
V
0
AVCC
V
2.2 V
60
90
3V
75
100
fADC10CLK = 5 MHz, ADC10ON = 1, REFON = 1,
SHT0 = 0, SHT1 = 0, ADC10DIV = 0,
ADC10SREF = 01
3V
113
130
µA
Operating supply current into
AVCC terminal, REF module
off, reference buffer on
fADC10CLK = 5 MHz, ADC10ON = 1, REFON = 0,
SHT0 = 0, SHT1 = 0, ADC10DIV = 0,
ADC10SREF = 10, VEREF = 2.5 V
3V
105
125
µA
Operating supply current into
AVCC terminal, REF module
off, reference buffer off
fADC10CLK = 5 MHz, ADC10ON = 1, REFON = 0,
SHT0 = 0, SHT1 = 0, ADC10DIV = 0,
ADC10SREF = 11, VEREF = 2.5 V
3V
70
95
µA
CI
Input capacitance
Only one terminal Ax can be selected at one time
from the pad to the ADC10_A capacitor array
including wiring and pad.
2.2 V
3.5
RI
Input MUX ON resistance
IADC10_A
(1)
(2)
µA
pF
AVCC > 2.0V, 0 V ≤ VAx ≤ AVCC
36
1.8V < AVCC < 2.0V, 0 V ≤ VAx ≤ AVCC
96
kΩ
The leakage current is defined in the leakage current table with P6.x/Ax parameter.
The analog input voltage range must be within the selected reference voltage range VR+ to VR– for valid conversion results. The external
reference voltage requires decoupling capacitors. See ().
10-Bit ADC, Timing Parameters (MSP430F51x2 Devices Only)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
VCC
MIN
TYP
MAX
UNIT
For specified performance of ADC10_A linearity
parameters
2.2 V, 3 V
0.45
5
5.5
MHz
Internal ADC10_A
oscillator (1)
ADC10DIV = 0, fADC10CLK = fADC10OSC
2.2 V, 3 V
4.2
4.8
5.4
MHz
2.2 V, 3 V
2.4
Conversion time
REFON = 0, Internal oscillator, 12 ADC10CLK
cycles, 10-bit mode
fADC10OSC = 4 MHz to 5 MHz
fADC10CLK
fADC10OSC
tCONVERT
TEST CONDITIONS
µs
External fADC10CLK from ACLK, MCLK or SMCLK,
ADC10SSEL ≠ 0
tADC10ON
Turn on settling time of
the ADC
tSample
Sampling time
(1)
(2)
(3)
(4)
58
See
3.0
(2)
(3)
100
ns
RS = 1000 Ω, RI = 96 kΩ, CI = 3.5 pF (4)
1.8 V
3
µs
RS = 1000 Ω, RI = 36 kΩ, CI = 3.5 pF (4)
3V
1
µs
The ADC10OSC is sourced directly from MODOSC inside the UCS.
12 × ADC10DIV × 1/fADC10CLK
The condition is that the error in a conversion started after tADC10ON is less than ±0.5 LSB. The reference and input signal are already
settled.
Approximately eight Tau (τ) are needed to get an error of less than ±0.5 LSB
Submit Documentation Feedback
Copyright © 2010–2013, Texas Instruments Incorporated
MSP430F51x1
MSP430F51x2
www.ti.com
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
10-Bit ADC, Linearity Parameters (MSP430F51x2 Devices Only)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
EI
Integral
linearity error
1.4 V ≤ (VEREF+ – VEREF-)min ≤ 1.6 V
±1.0
1.6 V < (VEREF+ – VEREF-)min ≤ VAVCC
±1.0
ED
Differential
linearity error
(VEREF+ – VEREF-)min ≤ (VEREF+ – VEREF-),
CVEREF+ = 20 pF
±1.0
LSB
EO
Offset error
(VEREF+ – VEREF-)min ≤ (VEREF+ – VEREF-),
Internal impedance of source RS < 100 Ω,
CVEREF+ = 20 pF
±1.0
LSB
±1.0
LSB
±1.5
LSB
Gain error, external
reference
Gain error, external
reference, buffered
EG
Gain error, internal
reference
MIN
Total unadjusted
error, internal
reference
TYP
(VEREF+ – VEREF-)min ≤ (VEREF+ – VEREF-),
CVEREF+ = 20 pF
See
(1)
See
MAX
UNIT
LSB
±1.5% VREF
Total unadjusted
error, external
(VEREF+ – VEREF-)min ≤ (VEREF+ – VEREF-),
buffered and
CVEREF+ = 20 pF
unbuffered reference
ET
(1)
VCC
±1.0
(1)
±2.0
LSB
±1.5% VREF
Dominated by the absolute voltage of the integrated reference voltage.
REF, External Reference (MSP430F51x2 Devices Only)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1)
PARAMETER
VEREF+
Positive external
reference voltage input
VEREFVEREF+ –
VEREF-
I(VEREF+)
I(VEREF-)
C(VEREF+/-)
(1)
(2)
(3)
(4)
(5)
TEST CONDITIONS
MAX
UNIT
1.4
AVCC
V
(3)
0
1.2
V
(4)
1.4
AVCC
V
±26
µA
±1
µA
VEREF+ > VEREF-
(2)
Negative external
reference voltage input
VEREF+ > VEREF-
Differential external
reference voltage input
VEREF+ > VEREF-
Static input current
Capacitance at
VEREF+/- terminal
VCC
1.4 V ≤ VEREF+ ≤ V(AVCC), VEREF- = 0 V,
fADC10CLK = 5 MHz, ADC10SHTx = 0x0001,
Conversion rate 200 ksps
2.2 V, 3 V
1.4 V ≤ VEREF+ ≤ V(AVCC), VEREF- = 0 V,
fADC10CLK = 5 MHZ, ADC10SHTX = 0x1000,
Conversion rate 20 ksps
2.2 V, 3 V
See
(5)
MIN
TYP
±8.5
10
µF
The external reference is used during ADC conversion to charge and discharge the capacitance array. The input capacitance, CI, is also
the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the
recommendations on analog-source impedance to allow the charge to settle for 10-bit accuracy.
The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced
accuracy requirements.
The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced
accuracy requirements.
The accuracy limits minimum external differential reference voltage. Lower differential reference voltage levels may be applied with
reduced accuracy requirements.
Two decoupling capacitors, 10 µF and 100 nF, should be connected to VEREF to decouple the dynamic current required for an external
reference source if it is used for the ADC10_A. See also the MSP430x5xx and MSP430x6xx Family User's Guide (SLAU208).
Copyright © 2010–2013, Texas Instruments Incorporated
Submit Documentation Feedback
59
MSP430F51x1
MSP430F51x2
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
www.ti.com
REF, Built-In Reference (MSP430F51x2 Devices Only)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1)
PARAMETER
Positive built-in
reference voltage
VREF+
AVCC(min)
AVCC minimum
voltage, Positive
built-in reference
active
Operating supply
current into AVCC
terminal (2)
IREF+
TEST CONDITIONS
VCC
MIN
TYP
MAX
REFVSEL = {2} for 2.5 V, REFON = 1
3V
2.51
±1.5%
REFVSEL = {1} for 2.0 V, REFON = 1
3V
1.99
±1.5%
REFVSEL = {0} for 1.5 V, REFON = 1
2.2 V, 3 V
1.5
±1.5%
REFVSEL = {0} for 1.5 V
1.8
REFVSEL = {1} for 2.0 V
2.3
REFVSEL = {2} for 2.5 V
2.8
UNIT
V
V
fADC10CLK = 5 MHz, REFON = 1, REFBURST = 0,
REFVSEL = {0} for 1.5 V
3V
15.5
19
µA
fADC10CLK = 5 MHz, REFON = 1, REFBURST = 0,
REFVSEL = {1} for 2.0 V
3V
18
24
µA
fADC10CLK = 5 MHz, REFON = 1, REFBURST = 0,
REFVSEL = {2} for 2.5 V
3V
21
30
µA
30
50
ppm/
°C
2.2 V
150
180
3V
150
190
REFON = 1, INCH = 0Ah,
ADC10ON = 1, TA = 30°C
2.2 V
765
3V
765
2.2 V
1.06
1.1
1.14
3V
1.46
1.5
1.54
TCREF+
Temperature
coefficient of builtin reference (3)
REFVSEL = (0, 1, 2}, REFON = 1
ISENSOR
Operating supply
current into AVCC
terminal (4)
REFON = 1, INCH = 0Ah,
ADC10ON = 1, TA = 30°C
VSENSOR
See
VMID
AVCC divider at
channel 11
ADC10ON = 1, INCH = 0Bh,
VMID is approximately 0.5 × VAVCC
tSENSOR
Sample time
required if
channel 10 is
selected (6)
ADC10ON = 1, INCH = 0Ah,
Error of conversion result ≤ 1 LSB
30
µs
Sample time
required if
channel 11 is
selected (7)
ADC10ON = 1, INCH = 0Bh,
Error of conversion result ≤ 1 LSB
1
µs
PSRR_DC
Power supply
rejection ratio (dc)
AVCC = AVCC (min) - AVCC(max),
TA = 25°C, REFVSEL = (0, 1, 2}, REFON = 1
120
PSRR_AC
Power supply
rejection ratio (ac)
AVCC = AVCC (min) - AVCC(max),
TA = 25°C, f = 1 kHz, ΔVpp = 100 mV,
REFVSEL = (0, 1, 2}, REFON = 1
6.4
tSETTLE
AVCC = AVCC (min) - AVCC(max)
Settling time of
(8) REFVSEL = (0, 1, 2},
reference voltage
REFON = 0 → 1
(sample)
tVMID
(sample)
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
60
(5)
µA
mV
300
V
µV/V
mV/V
TA = -40°C to 85°C
23
125
TA = 25°C
23
50
TA = 85°C
16
25
µs
The leakage current is defined in the leakage current table with P6.x/Ax parameter.
The internal reference current is supplied via terminal AVCC. Consumption is independent of the ADC10ON control bit, unless a
conversion is active. The REFON bit enables to settle the built-in reference before starting an A/D conversion.
Calculated using the box method: (MAX(-40 to 85°C) – MIN(-40 to 85°C)) / MIN(-40 to 85°C)/(85°C – (–40°C)).
The sensor current ISENSOR is consumed if (ADC10ON = 1 and REFON = 1) or (ADC10ON = 1 and INCH = 0Ah and sample signal is
high). When REFON = 1, ISENSOR is already included in IREF+.
The temperature sensor offset can be as much as ±20°C. A single-point calibration is recommended in order to minimize the offset error
of the built-in temperature sensor.
The typical equivalent impedance of the sensor is 51 kΩ. The sample time required includes the sensor-on time tSENSOR(on).
The on-time tVMID(on) is included in the sampling time tVMID(sample); no additional on time is needed.
The condition is that the error in a conversion started after tREFON is less than ±0.5 LSB.
Submit Documentation Feedback
Copyright © 2010–2013, Texas Instruments Incorporated
MSP430F51x1
MSP430F51x2
www.ti.com
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
Comparator_B
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
VCC
TEST CONDITIONS
VCC
MIN
Supply voltage
TYP
1.8
3.6
1.8 V
IAVCC_COMP
VREF
IAVCC_REF
CBPWRMD = 00, CBON = 1, CBRSx = 00
Comparator operating
supply current into
AVCC, Excludes
CBPWRMD = 01, CBON = 1, CBRSx = 00
reference resistor ladder
Reference voltage level
Quiescent current of
resistor ladder into
AVCC, Including REF
module current
VIC
Common mode input
range
VOFFSET
Input offset voltage
CIN
Input capacitance
RSIN
tPD
tPD,filter
Series input resistance
Propagation delay,
response time
Propagation delay with
filter active
tEN_CMP
Comparator enable time
tEN_REF
Resistor reference
enable time
TCCB_REF
Temperature coefficient
reference of VCB_REF
VCB_REF
Reference voltage for a
given tap
MAX
UNIT
V
38
2.2 V
31
38
3V
32
39
2.2 V,
3V
10
17
CBPWRMD = 10, CBON = 1, CBRSx = 00
2.2 V,
3V
0.2
0.85
CBREFLx = 01, CBREFACC = 0
≥1.8 V
1.5
±1.5%
CBREFLx = 10, CBREFACC = 0
≥2.2 V
2.0
±1.5%
CBREFLx = 11, CBREFACC = 0
≥3.0 V
2.5
±1.5%
CBREFACC = 0, CBREFLx = 01, CBRSx = 10,
REFON = 0, CBON = 0
2.2 V,
3V
10
17
µA
CBREFACC = 1, CBREFLx = 01, CBRSx = 10,
REFON = 0, CBON = 0
2.2 V,
3V
33
40
µA
VCC-1
V
µA
0
CBPWRMD = 00
CBPWRMD = 01, 10
±20
mV
±10
mV
4
kΩ
5
ON - switch closed
OFF - switch opened
3
V
pF
50
MΩ
CBPWRMD = 00, CBF = 0
450
CBPWRMD = 01, CBF = 0
600
ns
ns
CBPWRMD = 10, CBF = 0
50
µs
CBPWRMD = 00, CBON = 1, CBF = 1,
CBFDLY = 00
0.35
0.6
1.5
µs
CBPWRMD = 00, CBON = 1, CBF = 1,
CBFDLY = 01
0.6
1.0
1.8
µs
CBPWRMD = 00, CBON = 1, CBF = 1,
CBFDLY = 10
1.0
1.8
3.4
µs
CBPWRMD = 00, CBON = 1, CBF = 1,
CBFDLY = 11
1.8
3.4
6.5
µs
CBON = 0 to CBON = 1, CBPWRMD = 00, 01
1
CBON = 0 to CBON = 1, CBPWRMD = 10
CBON = 0 to CBON = 1
VIN = reference into resistor ladder,
n = 0 to 31
Copyright © 2010–2013, Texas Instruments Incorporated
1.0
VIN ×
(n+0.5)
/ 32
VIN ×
(n+1)
/ 32
2
µs
1.5
µs
1.5
µs
50
ppm/
°C
VIN ×
(n+1.5)
/ 32
Submit Documentation Feedback
V
61
MSP430F51x1
MSP430F51x2
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
www.ti.com
Timer_D, Power Supply and Reference Clock Conditions
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1)
PARAMETER
DVCC
Digital supply voltage
fREF,DCO
Timer_D input
reference clock
frequency
I(DVCC) at 64-MHz
Timer_D clock, clock
generator only
TEST CONDITIONS
VCC
V(DVSS) = 0 V
MIN
TYP MAX UNIT
1.8
3.6
PMMCOREVx = 0
1.8 V ≤
VCC ≤
3.6 V
8
12.0
PMMCOREVx = 1
2.0 V ≤
VCC ≤
3.6 V
8
16.0
PMMCOREVx = 2
2.2 V ≤
VCC ≤
3.6 V
8
20.0
PMMCOREVx = 3
2.4 V ≤
VCC ≤
3.6 V
8
25.5
V
MHz
freference = 8 MHz, MCx = 0, TDHREGEN = 1,
TDHMx = 0, TDHCLKCR = 0
253
320
µA
I(DVCC) at 128-MHz
I(128MHz) Timer_D clock, clock
generator only
freference = 16 MHz, MCx = 0, TDHREGEN = 1,
TDHMx = 0, TDHCLKCR = 0
285
360
µA
I(DVCC) at 200-MHz
I(200MHz) Timer_D clock, clock
generator only
freference = 25 MHz, MCx = 0, TDHREGEN = 1,
TDHMx = 0, TDHCLKCR = 1
280
345
µA
I(DVCC) at 256-MHz
I(256MHz) Timer_D clock, clock
generator only
freference = 16 MHz, MCx = 0, TDHREGEN = 1,
TDHMx = 1, TDHCLKCR = 1
265
330
µA
I(0,16,64)
I(DVCC)
TDHCLKRx = 0, TDHCLKSRx = 16, TDHCLKTRIM = 64
I(1,16,64)
I(DVCC)
TDHCLKRx = 1, TDHCLKSRx = 16, TDHCLKTRIM = 64
I(2,16,64)
I(DVCC)
TDHCLKRx = 2, TDHCLKSRx = 16, TDHCLKTRIM = 64
I(64MHz)
(1)
62
2.2 V
244
3.0 V
295
2.2 V
282
3.0 V
300
2.2 V
358
3.0 V
414
325
400
470
µA
µA
µA
The leakage current is defined in the leakage current table with P6.x/Ax parameter.
Submit Documentation Feedback
Copyright © 2010–2013, Texas Instruments Incorporated
MSP430F51x1
MSP430F51x2
www.ti.com
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
Timer_D, Local Clock Generator Frequency
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
fHRCG(0,0,64)
fHRCG(0,7,64)
fHRCG(0,15,64)
fHRCG(0,23,64)
fHRCG(0,31,0)
fHRCG(0,31,64)
fHRCG(0,31,128)
fHRCG(1,0,64)
fHRCG(1,7,64)
HRCG frequency (0, 0, 64)
HRCG frequency (0, 7, 64)
HRCG frequency (0, 15, 64)
HRCG frequency (0, 23, 64)
HRCG frequency (0, 31, 0)
HRCG frequency (0, 31, 64)
HRCG frequency (0, 31, 128)
HRCG frequency (1, 0, 64)
HRCG frequency (1, 7, 64)
Copyright © 2010–2013, Texas Instruments Incorporated
TEST CONDITIONS
MIN
TYP
MAX
UNIT
TDHREGEN = 0, TDHMx = 0, TDHCLKCR = 1,
TDHCLKRx = 0, TDHCLKSRx = 0,
TDHCLKTRIM = 64
39
56
73
MHz
TDHREGEN = 0, TDHMx = 1, TDHCLKCR = 1,
TDHCLKRx = 0, TDHCLKSRx = 0,
TDHCLKTRIM = 64
78
112
146
MHz
TDHREGEN = 0, TDHMx = 0, TDHCLKCR = 1,
TDHCLKRx = 0, TDHCLKSRx = 7,
TDHCLKTRIM = 64
46
66
86
MHz
TDHREGEN = 0, TDHMx = 1, TDHCLKCR = 1,
TDHCLKRx = 0, TDHCLKSRx = 7,
TDHCLKTRIM = 64
92
132
172
MHz
TDHREGEN = 0, TDHMx = 0, TDHCLKCR = 1,
TDHCLKRx = 0, TDHCLKSRx = 15,
TDHCLKTRIM = 64
55
78
101
MHz
TDHREGEN = 0, TDHMx = 1, TDHCLKCR = 1,
TDHCLKRx = 0, TDHCLKSRx = 15,
TDHCLKTRIM = 64
110
156
202
MHz
TDHREGEN = 0, TDHMx = 0, TDHCLKCR = 1,
TDHCLKRx = 0, TDHCLKSRx = 23,
TDHCLKTRIM = 64
61
87
113
MHz
TDHREGEN = 0, TDHMx = 1, TDHCLKCR = 1,
TDHCLKRx = 0, TDHCLKSRx = 23,
TDHCLKTRIM = 64
122
174
226
MHz
TDHREGEN = 0, TDHMx = 0, TDHCLKCR = 1,
TDHCLKRx = 0, TDHCLKSRx = 31,
TDHCLKTRIM = 0
36
56
73
MHz
TDHREGEN = 0, TDHMx = 1, TDHCLKCR = 1,
TDHCLKRx = 0, TDHCLKSRx = 31,
TDHCLKTRIM = 0
72
112
146
MHz
TDHREGEN = 0, TDHMx = 0, TDHCLKCR = 1,
TDHCLKRx = 0, TDHCLKSRx = 31,
TDHCLKTRIM = 64
68
98
128
MHz
TDHREGEN = 0, TDHMx = 1, TDHCLKCR = 1,
TDHCLKRx = 0, TDHCLKSRx = 31,
TDHCLKTRIM = 64
136
196
256
MHz
TDHREGEN = 0, TDHMx = 0, TDHCLKCR = 1,
TDHCLKRx = 0, TDHCLKSRx = 31,
TDHCLKTRIM = 128
97
138
180
MHz
TDHREGEN = 0, TDHMx = 1, TDHCLKCR = 1,
TDHCLKRx = 0, TDHCLKSRx = 31,
TDHCLKTRIM = 128
196
176
360
MHz
TDHREGEN = 0, TDHMx = 0, TDHCLKCR = 0,
TDHCLKRx = 1, TDHCLKSRx = 0,
TDHCLKTRIM = 64
71
101
131
MHz
TDHREGEN = 0, TDHMx = 1, TDHCLKCR = 0,
TDHCLKRx = 1, TDHCLKSRx = 0,
TDHCLKTRIM = 64
142
202
262
MHz
TDHREGEN = 0, TDHMx = 0, TDHCLKCR = 0,
TDHCLKRx = 1, TDHCLKSRx = 7,
TDHCLKTRIM = 64
84
120
156
MHz
TDHREGEN = 0, TDHMx = 1, TDHCLKCR = 0,
TDHCLKRx = 1, TDHCLKSRx = 7,
TDHCLKTRIM = 64
168
240
312
MHz
Submit Documentation Feedback
63
MSP430F51x1
MSP430F51x2
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
www.ti.com
Timer_D, Local Clock Generator Frequency (continued)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
fHRCG(1,15,64)
fHRCG(1,23,64)
fHRCG(1,31,0)
fHRCG(1,31,64)
fHRCG(1,31,128)
fHRCG(2,0,64)
fHRCG(2,7,64)
fHRCG(2,15,64)
fHRCG(2,23,64)
64
HRCG frequency (1, 15, 64)
HRCG frequency (1, 23, 64)
HRCG frequency (1, 31, 0)
HRCG frequency (1, 31, 64)
HRCG frequency (1, 31, 128)
HRCG frequency (2, 0, 64)
HRCG frequency (2, 7, 64)
HRCG frequency (2, 15, 64)
HRCG frequency (2, 23, 64)
Submit Documentation Feedback
TEST CONDITIONS
MIN
TYP
MAX
UNIT
TDHREGEN = 0, TDHMx = 0, TDHCLKCR = 0,
TDHCLKRx = 1, TDHCLKSRx = 15,
TDHCLKTRIM = 64
97
139
182
MHz
TDHREGEN = 0, TDHMx = 1, TDHCLKCR = 0,
TDHCLKRx = 1, TDHCLKSRx = 15,
TDHCLKTRIM = 64
196
278
364
MHz
TDHREGEN = 0, TDHMx = 0, TDHCLKCR = 0,
TDHCLKRx = 1, TDHCLKSRx = 23,
TDHCLKTRIM = 64
108
154
200
MHz
TDHREGEN = 0, TDHMx = 1, TDHCLKCR = 0,
TDHCLKRx = 1, TDHCLKSRx = 23,
TDHCLKTRIM = 64
216
308
400
MHz
TDHREGEN = 0, TDHMx = 0, TDHCLKCR = 0,
TDHCLKRx = 1, TDHCLKSRx = 31,
TDHCLKTRIM = 0
68
97
126
MHz
TDHREGEN = 0, TDHMx = 1, TDHCLKCR = 0,
TDHCLKRx = 1, TDHCLKSRx = 31,
TDHCLKTRIM = 0
136
194
252
MHz
TDHREGEN = 0, TDHMx = 0, TDHCLKCR = 0,
TDHCLKRx = 1, TDHCLKSRx = 31,
TDHCLKTRIM = 64
123
175
227
MHz
TDHREGEN = 0, TDHMx = 1, TDHCLKCR = 0,
TDHCLKRx = 1, TDHCLKSRx = 31,
TDHCLKTRIM = 64
246
350
454
MHz
TDHREGEN = 0, TDHMx = 0, TDHCLKCR = 0,
TDHCLKRx = 1, TDHCLKSRx = 31,
TDHCLKTRIM = 128
169
241
313
MHz
TDHREGEN = 0, TDHMx = 1, TDHCLKCR = 0,
TDHCLKRx = 1, TDHCLKSRx = 31,
TDHCLKTRIM = 128
338
482
616
MHz
TDHREGEN = 0, TDHMx = 0, TDHCLKCR = 1,
TDHCLKRx = 2, TDHCLKSRx = 0,
TDHCLKTRIM = 64
126
180
234
MHz
TDHREGEN = 0, TDHMx = 1, TDHCLKCR = 1,
TDHCLKRx = 1, TDHCLKSRx = 0,
TDHCLKTRIM = 64
252
360
468
MHz
TDHREGEN = 0, TDHMx = 0, TDHCLKCR = 1,
TDHCLKRx = 2, TDHCLKSRx = 7,
TDHCLKTRIM = 64
138
208
270
MHz
TDHREGEN = 0, TDHMx = 1, TDHCLKCR = 1,
TDHCLKRx = 2, TDHCLKSRx = 7,
TDHCLKTRIM = 6
276
416
540
MHz
TDHREGEN = 0, TDHMx = 0, TDHCLKCR = 1,
TDHCLKRx = 2, TDHCLKSRx = 15,
TDHCLKTRIM = 64
168
240
312
MHz
TDHREGEN = 0, TDHMx = 1, TDHCLKCR = 1,
TDHCLKRx = 2, TDHCLKSRx = 15,
TDHCLKTRIM = 64
336
480
624
MHz
TDHREGEN = 0, TDHMx = 0, TDHCLKCR = 1,
TDHCLKRx = 2, TDHCLKSRx = 23,
TDHCLKTRIM = 64
189
270
351
MHz
TDHREGEN = 0, TDHMx = 1, TDHCLKCR = 1,
TDHCLKRx = 2, TDHCLKSRx = 23,
TDHCLKTRIM = 64
378
540
702
MHz
Copyright © 2010–2013, Texas Instruments Incorporated
MSP430F51x1
MSP430F51x2
www.ti.com
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
Timer_D, Local Clock Generator Frequency (continued)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
fHRCG(2,31,0)
fHRCG(2,31,64)
fHRCG(2,31,128)
HRCG frequency (2, 31, 0)
HRCG frequency (2, 31, 64)
HRCG frequency (2, 31, 128)
TEST CONDITIONS
MIN
TYP
MAX
UNIT
TDHREGEN = 0, TDHMx = 0, TDHCLKCR = 1,
TDHCLKRx = 2, TDHCLKSRx = 31,
TDHCLKTRIM = 0
119
170
221
MHz
TDHREGEN = 0, TDHMx = 1, TDHCLKCR = 1,
TDHCLKRx = 2, TDHCLKSRx = 31,
TDHCLKTRIM = 0
238
340
442
MHz
TDHREGEN = 0, TDHMx = 0, TDHCLKCR = 1,
TDHCLKRx = 2, DHCLKSRx = 31,
TDHCLKTRIM = 64
212
303
394
MHz
TDHREGEN = 0, TDHMx = 1, TDHCLKCR = 1,
TDHCLKRx = 2, DHCLKSRx = 31,
TDHCLKTRIM = 64
424
606
788
MHz
TDHREGEN = 0, TDHMx = 0, TDHCLKCR = 1,
TDHCLKRx =2, TDHCLKSRx = 31,
TDHCLKTRIM = 128
290
413
537
MHz
TDHREGEN = 0, TDHMx = 1, TDHCLKCR = 1,
TDHCLKRx = 2, TDHCLKSRx = 31,
TDHCLKTRIM = 128
580
826
1074
MHz
SHRCG,0,SR
TDHCLKSRx step size in range 0
SHRCGSR = fHRCGSR(HRCGSR+1) - fHRCG(HRCGSR)
120
185
225
kHz
SHRCG,1,SR
TDHCLKSRx step size in range 1
SHRCGSR = fHRCGSR(HRCGSR+1) - fHRCG(HRCGSR)
220
325
395
kHz
SHRCG,2,SR
TDHCLKSRx step size in range 2
SHRCGSR = fHRCGSR(HRCGSR+1) - fHRCG(HRCGSR)
400
555
700
kHz
55
85
120
kHz
40
85
130
kHz
48 < TDHCLKTRIMx < 64,
step size in range 2
40
85
120
kHz
0 > = TDHCLKTRIMx < 16,
step size in range 0
90
160
230
kHz
80
160
230
kHz
48 < TDHCLKTRIMx < 64,
step size in range 2
80
160
230
kHz
0 > = TDHCLKTRIMx < 16,
step size in range 0
150
230
360
kHz
130
230
350
kHz
100
230
340
kHz
fHRCG = 8 MHz, TDHREGEN = 0
±0.17
%/°C
fHRCG = 16 MHz, TDHREGEN = 0
±0.16
%/°C
±0.16
%/°C
0 > = TDHCLKTRIMx < 16,
step size in range 0
SHRCG,0,TRIM
SHRCG,1,TRIM
SHRCG,2,TRIM
15 < TDHCLKTRIMx < 49,
step size in range 1
15 < TDHCLKTRIMx < 49,
step size in range 1
15 < TDHCLKTRIMx < 49,
step size in range 1
SHRCGSR = fHRCGSR(HRCGTRIM+1) fHRCG(HRCGTRIM), TDHCLKSRx = X, Y, Z
SHRCGSR = fHRCGSR(HRCGTRIM+1) fHRCG(HRCGTRIM), TDHCLKSRx = X, Y, Z
SHRCGSR = fHRCGSR(HRCGTRIM+1) fHRCG(HRCGTRIM), TDHCLKSRx = X, Y, Z
48 < TDHCLKTRIMx < 32,
step size in range 2
dfHRCG/dT
HRCG frequency temperature drift
fHRCG = 25 MHz, TDHREGEN = 0
fHRCG = 8/16/25 MHz, TDHREGEN = 1
dfHRCG/dVCORE
tSETTLE
HRCG frequency voltage drift
fHRCG = 8/16/25 MHz, TDHREGEN = 0
0
fHRCG = 8/16/25 MHz, TDHREGEN = 1
Settling time
TDHEN = 0 -> 1, TDHFW = 0
Settling time, fast wake-up
TDHEN = 0 -> 1, TDHFW = 1
Copyright © 2010–2013, Texas Instruments Incorporated
0
%/°C
5
0
3
5
%/V
%/V
9
µs
1.5
µs
Submit Documentation Feedback
65
MSP430F51x1
MSP430F51x2
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
www.ti.com
Timer_D, Trimmed Clock Frequencies
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
Frequency tolerance during trimming
MIN
TYP
-0.5
MAX
UNIT
+0.5
%
fTRIM(64MHz)
TDHMx = 0, TDHREGEN = 0, TDHCLKCR = 0,
TDHxCTL1 = TDHxCTL1_64
TA = 25°C,
VCC = 1.8 V
63
64
65
MHz
fTRIM(128MHz)
TDHMx = 0, TDHREGEN = 0, TDHCLKCR = 1,
TDHxCTL1 = TDHxCTL1_128
TA = 25°C,
VCC = 2.0 V
126
128
130
MHz
fTRIM(200MHz)
TDHMx = 0, TDHREGEN = 0, TDHCLKCR = 1,
TDHxCTL1 = TDHxCTL1_200
TA = 25°C,
VCC = 2.4 V
197
200
203
MHz
fTRIM(256MHz)
TDHMx = 1, TDHREGEN = 0, TDHCLKCR = 1,
TDHxCTL1 = TDHxCTL1_256
TA = 25°C,
VCC = 2.2 V
250
256
262
MHz
TYP
MAX
UNIT
Timer_D, Frequency Multiplication Mode
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
External frequency tolerance
0
%
E(TDHREGEN = 1,64)
freference = 8 MHz, TDHMx = 0, TDHREGEN = 1,
TDHCLKCR = 0, TDHCLKRx = 0
TA = 25°C,
VCC = 1.8 V
-1
+1
%
E(TDHREGEN = 1,128)
freference = 16 MHz, TDHMx = 0, TDHREGEN = 1,
TDHCLKCR = 1, TDHCLKRx = 0
TA = 25°C,
VCC = 2.0 V
-1
+1
%
E(TDHREGEN = 1,200)
freference = 25 MHz, TDHMx = 0, TDHREGEN = 1,
TDHCLKCR = 1, TDHCLKRx = 0
TA = 25°C,
VCC = 2.4 V
-1
+1
%
E(TDHREGEN = 1,256)
freference = 16 MHz, TDHMx = 1, TDHREGEN = 1,
TDHCLKCR = 1, TDHCLKRx = 0
TA = 25°C,
VCC =2.2 V
-1
+1
%
66
Submit Documentation Feedback
Copyright © 2010–2013, Texas Instruments Incorporated
MSP430F51x1
MSP430F51x2
www.ti.com
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
Timer_D, Input Capture and Output Compare Timing
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
tTD,cap
tTD0,cap,matching
tTD1,cap,matching
tTD01,cap,matching
tTD0,comp,matching
tTD1,comp,matching
tTD01,comp,matching
TEST CONDITIONS
MIN
TYP
MAX
UNIT
Timer_D input capture timing, minimum pulse duration
to trigger input capture event
fMAX = 262 MHz
4
Timer0_D input capture timing, matching between input
capture channels P1.6 to P1.7 and P2.0.
fMAX = 262 MHz
1
2
LSB
Timer0_D input capture timing, matching between input
capture channels. P2.4 to P2.5 and P2.6.
fMAX = 262 MHz
3
4
LSB
Timer1_D input capture timing, matching between input
capture channels P2.1 to P2.2 and P2.3.
fMAX = 262 MHz
2
3
LSB
Timer1_D input capture timing, matching between input
capture channels. P2.7 to P3.0 and P3.1.
fMAX = 262 MHz
2
4
LSB
Timer0_D and Timer1_D input capture timing, matching
between input capture channels. Timer0_D is the highresolution clock generator source.
fMAX = 262 MHz
4
8
LSB
Rising edges,
fMAX = 262 MHz
4
ns
Falling edges,
fMAX = 262 MHz
4
ns
Rising and falling edges,
fMAX = 262 MHz
8
ns
Rising edges,
fMAX = 262 MHz
4
ns
Falling edges,
fMAX = 262 MHz
4
ns
Rising and falling edges,
fMAX = 262 MHz
8
ns
All edges,
fMAX = 262 MHz
8
LSB
Timer0_D output compare timing, matching between
output capture compare channels for pins P1.6, P1.7,
and P2.0
Timer1_D output compare timing, matching between
output capture compare channels for pins P2.1, P2.2,
and P2.3
Timer0_D and Timer1_D output compare timing,
matching between output compare channels. Timer0_D
is the high-resolution clock generator source
Copyright © 2010–2013, Texas Instruments Incorporated
ns
Submit Documentation Feedback
67
MSP430F51x1
MSP430F51x2
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
www.ti.com
Flash Memory
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
TEST
CONDITIONS
PARAMETER
DVCC(PGM/ERASE) Program and erase supply voltage
MIN
TYP
1.8
MAX
3.6
UNIT
V
IPGM
Supply current from DVCC during program
3
5
mA
IERASE
Supply current from DVCC during erase
2
6.5
mA
IMERASE, IBANK
Supply current from DVCC during mass erase or bank erase
2
6.5
mA
tCPT
Cumulative program time
See
(1)
16
104
Program and erase endurance
ms
cycles
tRetention
Data retention duration
tWord
Word or byte program time
See
(2)
64
85
µs
tBlock,
0
Block program time for first byte or word
See
(2)
49
65
µs
1–(N–1)
Block program time for each additional byte or word, except for last
byte or word
See
(2)
37
49
µs
tBlock,
TJ = 25°C
105
100
years
Block program time for last byte or word
See
(2)
55
73
µs
tMass Erase
Mass erase time
See
(2)
23
32
ms
tSeg Erase
Segment erase time
See
(2)
23
32
ms
fMCLK,MGR
MCLK frequency in marginal read mode (FCLK4.MGR0 = 1 or
FCTL4.MGR1 = 1)
0
1
MHz
tBlock,
(1)
(2)
N
The cumulative program time must not be exceeded when writing to a 128-byte flash block. This parameter applies to all programming
methods: individual word or byte write and block write modes.
These values are hardwired into the flash controller's state machine.
JTAG and Spy-Bi-Wire Interface
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
TEST
CONDITIONS
PARAMETER
MIN
TYP
MAX
UNIT
fSBW
Spy-Bi-Wire input frequency
2.2 V, 3 V
0
20
MHz
tSBW,Low
Spy-Bi-Wire low clock pulse duration
2.2 V, 3 V
0.025
15
µs
1
µs
15
100
0
5
MHz
10
MHz
80
kΩ
tSBW,
En
tSBW,Rst
Spy-Bi-Wire enable time (TEST high to acceptance of first clock edge)
TCK input frequency, 4-wire JTAG (2)
Rinternal
Internal pull-down resistance on TEST
(2)
68
2.2 V, 3 V
Spy-Bi-Wire return to normal operation time
fTCK
(1)
(1)
2.2 V
3V
0
2.2 V, 3 V
45
60
µs
Tools accessing the Spy-Bi-Wire interface need to wait for the minimum tSBW,En time after pulling the TEST/SBWTCK pin high before
applying the first SBWTCK clock edge.
fTCK may be restricted to meet the timing requirements of the module selected.
Submit Documentation Feedback
Copyright © 2010–2013, Texas Instruments Incorporated
MSP430F51x1
MSP430F51x2
www.ti.com
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
INPUT/OUTPUT SCHEMATICS
Port P1, P1.0 to P1.5, Input/Output With Schmitt Trigger
Pad Logic
To ADC10
INCHx = x
Pad Logic
To Comparator_B
From Comparator_B
CBPD.y
Pad Logic
P1REN.x
P1MAP.x = PMAP_ANALOG
P1DIR.x
0
From Port Mapping
1
P1OUT.x
0
From Port Mapping
1
DVSS
0
DVCC
1
Direction
0: Input
1: Output
P1DS.x
0: Low drive
1: High drive
P1SEL.x
P1IN.x
P1.0/PM_UCA0CLK/PM_UCB0STE/A0/CB0
P1.1/PM_UCA0TXD/PM_UCA0SIMO/A1/CB1
P1.2/PM_UCA0RXD/PM_UCA0SOMI/A2/CB2
P1.3/PM_UCB0CLK/PM_UCA0STE/A3/CB3
P1.4/PM_UCB0SIMO/PM_UCB0SDA/A4/CB4
P1.5/PM_UCB0SOMI/PM_UCB0SCL/A5/CB5
Bus
Holder
EN
To Port Mapping
1
D
P1IE.x
EN
P1IRQ.x
Q
P1IFG.x
P1SEL.x
P1IES.x
Set
Interrupt
Edge
Select
Copyright © 2010–2013, Texas Instruments Incorporated
Submit Documentation Feedback
69
MSP430F51x1
MSP430F51x2
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
www.ti.com
Table 46. Port P1 (P1.0 to P1.5) Pin Functions
PIN NAME (P1.x)
P1.0/
x
0
P1.x (I/O)
PM_UCA0CLK/
PM_UCB0STE/
UCA0CLK/UCB0STE
A0/
A0 (4)
CB0
CONTROL BITS/SIGNALS (1)
FUNCTION
(2) (3)
CB0
P1.1/
1
P1.x (I/O)
P1DIR.x
P1SEL.x
P1MAP.x
CBPD.y
I: 0; O: 1
0
X
0
0
1
default
0
X
1
31
INCHx = 0
X
X
X
X
1 (y = 0)
I: 0; O: 1
0
X
0
PM_UCA0TXD/
PM_UCA0SIMO/
PM_UCA0TXD/PM_UCA0SIMO (2)
0
1
default
0
A1/
A1 (4)
X
1
31
INCHx = 1
X
CB1
CB1
P1.2/
2
P1.x (I/O)
X
X
X
1 (y = 1)
I: 0; O: 1
0
X
0
PM_UCA0RXD/
PM_UCA0SOMI/
PM_UCA0RXD/PM_UCA0SOMI (2)
0
1
default
0
A2/
A2 (4)
X
1
31
INCHx = 2
X
CB2
CB2
X
X
X
1 (y = 2)
I: 0; O: 1
0
X
0
0
1
default
0
X
1
31
INCHx = 3
X
P1.3/
3
P1.x (I/O)
PM_UCB0CLK/
PM_UCA0STE/
UCB0CLK/UCA0STE
A3/
A3 (4)
CB3
(2)
CB3
P1.4/
4
P1.x (I/O)
PM_UCB0SIMO/
PM_UCB0SDA/
PM_UCB0SIMO/PM_UCB0SDA (2)
A4/
A4 (4)
CB4
CB4
P1.5/
5
P1.x (I/O)
PM_UCB0SOMI/
PM_UCB0SCL/
PM_UCB0SOMI/PM_UCB0SCL (2)
A5/
A5 (4)
CB5
CB5
(1)
(2)
(3)
(4)
(5)
70
(5)
(5)
X
X
X
1 (y = 3)
I: 0; O: 1
0
X
0
0
1
default
0
X
1
31
INCHx = 4
X
X
X
X
1 (y = 4)
I: 0; O: 1
0
X
0
0
1
default
0
X
1
31
INCHx = 5
X
X
X
X
1 (y = 5)
X = Don't care
The pin direction is controlled by the USCI module.
UCA0CLK function takes precedence over UCB0STE function. If the pin is required as UCA0CLK input or output, USCI B0 is forced to
3-wire SPI mode if 4-wire SPI mode is selected.
MSP430F51x2 device only.
If the I2C functionality is selected, the output drives only the logical 0 to VSS level.
Submit Documentation Feedback
Copyright © 2010–2013, Texas Instruments Incorporated
MSP430F51x1
MSP430F51x2
www.ti.com
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
Port P1, P1.6 to P1.7, Input/Output With Schmitt Trigger
Pad Logic
P1REN.x
P1DIR.x
0
From Port Mapping
1
P1OUT.x
0
From Port Mapping
1
DVSS
0
DVIO
1
1
Direction
0: Input
1: Output
P1.6/PM_TD0_0
P1.7/PM_TD0_1
P1DS.x
0: Low drive
1: High drive
P1SEL.x
P1IN.x
EN
To Port Mapping
D
P1IE.x
EN
P1IRQ.x
Q
P1IFG.x
P1SEL.x
P1IES.x
Set
Interrupt
Edge
Select
Table 47. Port P1 (P1.6 and P1.7) Pin Functions
PIN NAME (P1.x)
P1.6/
x
6
PM_TD0.0
P1.7/
PM_TD0.1
(1)
FUNCTION
P1DIR.x
P1SEL.x
I: 0; O: 1
0
X
0
1
default
TD0.TA0
1
1
default
P1.x (I/O)
I: 0; O: 1
0
X
TD0.CCI1A
0
1
default
TD0.TA1
1
1
default
P1.x (I/O)
TD0.CCI0A
7
CONTROL BITS/SIGNALS (1)
P1MAP.x
X = Don't care
Copyright © 2010–2013, Texas Instruments Incorporated
Submit Documentation Feedback
71
MSP430F51x1
MSP430F51x2
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
www.ti.com
Port P2, P2.0 to P2.7, Input/Output With Schmitt Trigger
Pad Logic
P2REN.x
P2DIR.x
0
From Port Mapping
1
P2OUT.x
0
From Port Mapping
1
0
DVIO
1
1
Direction
0: Input
1: Output
P2DS.x
0: Low drive
1: High drive
P2SEL.x
P2IN.x
EN
To Port Mapping
DVSS
P2.0/PM_TD0_2
P2.1/PM_TD1_0
P2.2/PM_TD1_1
P2.3/PM_TD1_2
P2.4/PM_TEC0CLR/PM_TEC0FLT2/PM_TD0_0
P2.5/PM_TEC0FLT0/PM_TD0_1
P2.6/PM_TEC0FLT1/PM_TD0_2
P2.7/PM_TEC1CLR/PM_TEC1FLT1/PM_TD1_0
D
P2IE.x
EN
P2IRQ.x
Q
P2IFG.x
P2SEL.x
P2IES.x
72
Submit Documentation Feedback
Set
Interrupt
Edge
Select
Copyright © 2010–2013, Texas Instruments Incorporated
MSP430F51x1
MSP430F51x2
www.ti.com
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
Table 48. Port P2 (P2.0 to P2.7) Pin Functions
PIN NAME (P2.x)
P2.0/
x
0
PM_TD0.2
P2.1/
1
2
PM_TD1.1
P2.3/
3
PM_TD1.2
P2.4/
4
CONTROL BITS/SIGNALS
P2DIR.x
P2SEL.x
I: 0; O: 1
0
X
0
1
default
TD0.TA2
1
1
default
P2.x (I/O)
I: 0; O: 1
0
X
TD1.CCI0A
0
1
default
TD1.TA0
1
1
default
P2.x (I/O)
I: 0; O: 1
0
X
TD1.CCI1A
0
1
default
TD1.TA1
1
1
default
P2.x (I/O)
I: 0; O: 1
0
0
TD1.CCI2A
0
1
default
TD1.TA2
1
1
default
P2.x (I/O)
I: 0; O: 1
0
X
P2.x (I/O)
TD0.CCI2A
PM_TD1.0
P2.2/
FUNCTION
P2MAP.x
PM_TEC0CLR/
TD0.TECEXTCLR, controlled by enable signals in the TEC0 module
0
1
default
PM_TEC0FLT2/
TD0.TECXFLT2, controlled by enable signals in the TEC0 module
0
1
default
PM_TD0.0
TD0.TA0
1
1
default
P2.x (I/O)
I: 0; O: 1
0
x
P2.5/
5
PM_TEC0FLT0/
TD0.TECXFLT0, controlled by enable signals in the TEC0 module
0
1
default
PM_TD0.1
TD0.TA1
1
1
default
P2.x (I/O)
I: 0; O: 1
0
X
P2.6/
6
PM_TEC0FLT1/
TD0.TECXFLT1, controlled by enable signals in the TEC0 module
0
1
default
PM_TD0.2
TD0.TA2
1
1
default
P2.x (I/O)
I: 0; O: 1
0
X
P2.7/
7
PM_TEC1CLR/
TD1.TECEXTCLR, controlled by enable signals in the TEC1 module
0
1
default
PM_TEC1FLT1/
TD1.TECXFLT1, controlled by enable signals in the TEC1 module
0
1
default
PM_TD1.0
TD1.TA0
1
1
default
Copyright © 2010–2013, Texas Instruments Incorporated
Submit Documentation Feedback
73
MSP430F51x1
MSP430F51x2
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
www.ti.com
Port P3, P3.0 and P3.1, Input/Output With Schmitt Trigger
Pad Logic
P3REN.x
P3DIR.x
0
From Port Mapping
1
P3OUT.x
0
From Port Mapping
1
DVSS
0
DVIO
1
1
Direction
0: Input
1: Output
P3.0/PM_TEC1FLT2/PM_TD1_1
P3.1/PM_TEC1FLT0/PM_TD1_2
P3DS.x
0: Low drive
1: High drive
P3SEL.x
P3IN.x
EN
To Port Mapping
D
Table 49. Port P3 (P3.0 and P3.1) Pin Functions
PIN NAME (P3.x)
P3.0/
x
0
CONTROL BITS/SIGNALS
FUNCTION
P3SEL.x
P3MAP.x
I: 0; O: 1
0
X
PM_TEC1FLT2/
TD1.TECXFLT2, controlled by enable signals in the TEC1 module
0
1
default
PM_TD1.1
TD1.TA1
1
1
default
P3.x (I/O)
P3.1/
I: 0; O: 1
0
X
PM_TEC1FLT0/
TD1.TECXFLT0, controlled by enable signals in the TEC1 module
0
1
default
PM_TD1.2
TD1.TA2
1
1
default
74
1
P3.x (I/O)
P3DIR.x
Submit Documentation Feedback
Copyright © 2010–2013, Texas Instruments Incorporated
MSP430F51x1
MSP430F51x2
www.ti.com
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
Port P3, P3.2 and P3.3, Input/Output With Schmitt Trigger
Pad Logic
To Comparator_B
From Comparator_B
CBPD.y
P3REN.x
P3MAP.x = PMAP_ANALOG
P3DIR.x
0
From Port Mapping
1
P3OUT.x
0
From Port Mapping
1
DVSS
0
DVCC
1
1
Direction
0: Input
1: Output
P3.2/PM_TD0_0/PM_SMCLK/CB14
P3.3/PM_TA0CLK/PM_CBOUT/CB13
P3DS.x
0: Low drive
1: High drive
P3SEL.x
P3IN.x
Bus
Holder
EN
To Port Mapping
D
Table 50. Port P3 (P3.2 and P3.3) Pin Functions
PIN NAME (P3.x)
P3.2/
x
2
FUNCTION
P3.x (I/O)
CONTROL BITS/SIGNALS (1)
P3DIR.x
P3SEL.x
P3MAP.x
CBPD.y
I: 0; O: 1
0
X
0
0
PM_TD0.0/
TD0.CCI0A
0
1
default
PM_SMCLK/
SMCLK output
1
1
default
0
CB14
CB14
X
X
X
1 (y = 14)
I: 0; O: 1
0
X
0
0
P3.3/
3
P3.x (I/O)
PM_TA0CLK/
TA0.TA0CLK
0
1
default
PM_CBOUT/
CBOUT
1
1
default
0
CB13
CB13
X
X
X
1 (y = 13)
(1)
X = Don't care
Copyright © 2010–2013, Texas Instruments Incorporated
Submit Documentation Feedback
75
MSP430F51x1
MSP430F51x2
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
www.ti.com
Port P3, P3.4, Input/Output With Schmitt Trigger
Pad Logic
To DCO
CBPD.y
P3REN.x
P3MAP.x = PMAP_ANALOG
P3DIR.x
0
From Port Mapping
1
P3OUT.x
0
From Port Mapping
1
DVSS
0
DVCC
1
1
Direction
0: Input
1: Output
P3.4/PM_TD0CLK/PM_MCLK
P3DS.x
0: Low drive
1: High drive
P3SEL.x
P3IN.x
Bus
Holder
EN
To Port Mapping
D
Table 51. Port P3 (P3.4) Pin Functions
PIN NAME (P3.x)
P3.4/
x
4
FUNCTION
P3.x (I/O)
CONTROL BITS/SIGNALS (1)
P3DIR.x
P3SEL.x
P3MAP.x
I: 0; O: 1
0
X
0
PM_TD0CLK/
TD0 clock input
0
1
default
0
PM_MCLK
MCLK output
1
1
default
0
(1)
76
X = Don't care
Submit Documentation Feedback
Copyright © 2010–2013, Texas Instruments Incorporated
MSP430F51x1
MSP430F51x2
www.ti.com
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
Port P3, P3.5, Input/Output With Schmitt Trigger
Pad Logic
To ADC10 reference VREF-
To ADC10
INCHx = x
To Comparator_B
From Comparator_B
CBPD.y
P3REN.x
P3MAP.x = PMAP_ANALOG
P3DIR.x
0
From Port Mapping
1
P3OUT.x
0
From Port Mapping
1
DVSS
0
DVCC
1
1
Direction
0: Input
1: Output
P3.5/PM_TA0_2/A8/VREF+/CB12
P3DS.x
0: Low drive
1: High drive
P3SEL.x
P3IN.x
Bus
Holder
EN
To Port Mapping
D
Table 52. Port P3 (P3.5) Pin Functions
PIN NAME (P3.x)
x
FUNCTION
CONTROL BITS/SIGNALS (1)
P3DIR.x
P3SEL.x
P3MAP.x
CBPD.y
I: 0; O: 1
0
X
0
TA0.CCI2A
0
1
default
0
TA0.TA2
1
1
default
0
VEREF+/
VEREF+ (2)
X
1
31
X
A8/
A8 (2)
X
1
INCHx=8
X
CB12
CB12
X
X
X
1 (y = 12)
P3.5/
PM_TA0.2/
(1)
(2)
5
P3.x (I/O)
X = Don't care
MSP430F51x2 devices only.
Copyright © 2010–2013, Texas Instruments Incorporated
Submit Documentation Feedback
77
MSP430F51x1
MSP430F51x2
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
www.ti.com
Port P3, P3.6, Input/Output With Schmitt Trigger
Pad Logic
To ADC10 reference VREF-
To ADC10
INCHx = x
To Comparator_B
From Comparator_B
CBPD.y
P3REN.x
P3MAP.x = PMAP_ANALOG
P3DIR.x
0
From Port Mapping
1
P3OUT.x
0
From Port Mapping
1
DVSS
0
DVCC
1
1
Direction
0: Input
1: Output
P3.6/PM_TA0_1/A7/VREF-/CB11
P3DS.x
0: Low drive
1: High drive
P3SEL.x
P3IN.x
Bus
Holder
EN
To Port Mapping
D
Table 53. Port P3 (P3.6) Pin Functions
PIN NAME (P3.x)
P3.6/
6
PM_TA0.1/
VEREF-/
A7/
78
FUNCTION
P3.x (I/O)
(2)
CONTROL BITS/SIGNALS (1)
P3DIR.x
P3SEL.x
P3MAP.x
CBPD.y
I: 0; O: 1
0
X
0
TA0.CCR0
0
1
default
0
TA0.TA1
1
1
default
0
X
1
31
X
X
1
31
INCHx = 7
X
X
X
0
1 (y = 11)
VEREFA7
CB11
(1)
(2)
(3)
x
(3)
(3)
CB11
X = Don't care
Default condition.
MSP430F51x2 devices only.
Submit Documentation Feedback
Copyright © 2010–2013, Texas Instruments Incorporated
MSP430F51x1
MSP430F51x2
www.ti.com
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
Port P3, P3.7, Input/Output With Schmitt Trigger
Pad Logic
To ADC10
INCHx = x
Pad Logic
To Comparator_B
From Comparator_B
CBPD.y
Pad Logic
P3REN.x
P3MAP.x = PMAP_ANALOG
P3DIR.x
0
From Port Mapping
1
P3OUT.x
0
From Port Mapping
1
DVSS
0
DVCC
1
1
Direction
0: Input
1: Output
P3.7/PM_TA0_0/A6/CB10
P3DS.x
0: Low drive
1: High drive
P3SEL.x
P3IN.x
Bus
Holder
EN
To Port Mapping
D
Table 54. Port P3 (P3.7) Pin Functions
PIN NAME (P3.x)
P3.7/
x
P3DIR.x
P3SEL.2
P3MAP.x
CBPD.y
I: 0; O: 1
0
X
0
0
1
default
0
TA0.TA0
1
1
default
0
A6/
A6 (2)
X
1
31
INCHx = 6
X
CB10
CB10
X
X
0
1 (y = 10)
(1)
(2)
P3.x (I/O)
(1)
CONTROL BITS/SIGNALS (1)
TA0.CCR0
PM_TA0.0/
7
FUNCTION
X = Don't care
MSP430F51x2 devices only.
Copyright © 2010–2013, Texas Instruments Incorporated
Submit Documentation Feedback
79
MSP430F51x1
MSP430F51x2
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
www.ti.com
Port J, J.0 JTAG pin TDO, Input/Output With Schmitt Trigger or Output
Pad Logic
To Comparator_B
From Comparator_B
CBPD.x
PJREN.x
PJDIR.x
0
DVCC
1
PJOUT.x
00
From JTAG
01
SMCLK
10
DVSS
0
DVCC
1
PJDS.0
0: Low drive
1: High drive
11
1
PJ.0/SMCLK/TDO/CB6
PJSEL.x
From JTAG
PJIN.x
EN
Bus
Holder
D
80
Submit Documentation Feedback
Copyright © 2010–2013, Texas Instruments Incorporated
MSP430F51x1
MSP430F51x2
www.ti.com
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
Port J, J.1 to J.3 JTAG pins TMS, TCK, TDI/TCLK, Input/Output With Schmitt Trigger or Output
Pad Logic
To Comparator_B
From Comparator_B
CBPD.x
PJREN.x
PJDIR.x
DVSS
PJOUT.x
DVSS
0
DVCC
1
1
0
1
00
From JTAG
01
MCLK/ADC10CLK/ACLK
10
PJDS.x
0: Low drive
1: High drive
11
PJ.1/MCLK/TDI/TCLK/CB7
PJ.2/ADC10CLK/TMSCB8
PJ.3/ACLK/TCK/CB9
PJSEL.x
From JTAG
PJIN.x
EN
To JTAG
Bus
Holder
D
Copyright © 2010–2013, Texas Instruments Incorporated
Submit Documentation Feedback
81
MSP430F51x1
MSP430F51x2
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
www.ti.com
Table 55. Port PJ (PJ.0 to PJ.3) Pin Functions
CONTROL BITS/ SIGNALS (1)
PIN NAME (PJ.x)
PJ.0/
x
0
FUNCTION
PJ.x (I/O) (2)
PJDIR.x
PJSEL.x
JTAG
MODE
CBPD.y
0
I: 0; O: 1
0
0
SMCLK/
SMCLK
1
1
0
0
TDO/
TDO (3)
X
X
1
X
CB6
CB6
PJ.1/
1
MCLK/
PJ.x (I/O) (2)
MCLK
TDI/TCLK/
TDI/TCLK
CB7
CB7
PJ.2/
2
ADC10CLK/
PJ.x (I/O) (2)
ADC10CLK (See
TMS/
TMS
CB8
CB8
PJ.3/
3
(3) (4)
PJ.x (I/O) (2)
ACLK/
ACLK
TCK/
TCK (3)
CB9
CB9
(1)
(2)
(3)
(4)
(5)
82
(3) (4)
(4)
(5)
)
X
X
0
1 (y = 6)
I: 0; O: 1
0
0
0
1
1
0
0
X
X
1
X
0
X
0
1 (y = 7)
I: 0; O: 1
0
0
0
1
1
0
0
X
X
1
X
X
X
0
1 (y = 8)
I: 0; O: 1
0
0
0
1
1
0
0
X
X
1
X
X
X
0
1 (y = 9)
X = Don't care
Default condition
The pin direction is controlled by the JTAG module.
In JTAG mode, pullups are activated automatically on TMS, TCK, and TDI/TCLK. PJREN.x are do not care.
MSP430F51x2 device only.
Submit Documentation Feedback
Copyright © 2010–2013, Texas Instruments Incorporated
MSP430F51x1
MSP430F51x2
www.ti.com
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
Port PJ.4, Input/Output With Schmitt Trigger
Pad Logic
From XT1
PJREN.4
PJDIR.4
DVSS
0
DVCC
1
1
0
1
PJOUT.4
0
DVSS
1
PJDS.x
0: Low drive
1: High drive
PJSEL.5
XT1BYPASS
PJ.4/XOUT
PJIN.4
EN
Module X IN
Bus
Keeper
D
Copyright © 2010–2013, Texas Instruments Incorporated
Submit Documentation Feedback
83
MSP430F51x1
MSP430F51x2
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
www.ti.com
Port PJ.5, Input/Output With Schmitt Trigger
Pad Logic
To XT1
PJREN.5
PJDIR.5
DVSS
0
DVCC
1
1
0
1
PJOUT.5
0
Module X OUT
1
PJ.5/XIN
PJDS.0
0: Low drive
1: High drive
PJSEL.5
PJIN.5
Bus
Keeper
EN
Module X IN
D
Table 56. Port PJ (PJ.4 and PJ.5) Pin Functions
CONTROL BITS/SIGNALS (1)
PIN NAME (PJ.x)
PJ.4/
x
4
XOUT
PJ.5/
XIN
(1)
(2)
(3)
(4)
84
5
FUNCTION
PJDIR.x
PJSEL.4
I: 0; O: 1
X
XOUT crystal mode (2)
X
(3)
PJ.x (I/O)
PJ.x (I/O)
PJSEL.5
XT1BYPAS
S
0
x
1
1
X
1
0
I: 0; O: 1
X
0
x
XIN crystal mode (4)
X
X
1
0
XIN bypass mode (4)
X
X
1
1
X = Don't care
Setting PJSEL.5 causes the general-purpose I/O to be disabled in crystal mode. When using bypass mode, PJ.4 can be used as
general-purpose I/O.
Setting PJSEL.5 causes the general-purpose I/O to be disabled in crystal mode. When using bypass mode, PJ.4 can be used as
general-purpose I/O.
Setting PJSEL.5 causes the general-purpose I/O to be disabled. Pending the setting of XT1BYPASS, PJ.5 is configured for crystal mode
or bypass mode.
Submit Documentation Feedback
Copyright © 2010–2013, Texas Instruments Incorporated
MSP430F51x1
MSP430F51x2
www.ti.com
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
Port PJ.6, Input/Output With Schmitt Trigger
Pad Logic
To Comparator_B
From Comparator_B
CBPD..x
PJREN.x
PJDIR.x
0
From Module
1
PJOUT.x
0
From Module
1
DVSS
0
DVCC
1
1
Direction
0: Input
1: Output
PJ.6/TD1CLK/TD0_1/CB15
PJDS.x
0: Low drive
1: High drive
PJSEL.x
PJIN.x
Bus
Holder
EN
To Port Mapping
D
Table 57. Port PJ (PJ.6) Pin Functions
PIN NAME (PJ.x)
PJ.6/
x
6
FUNCTION
PJ.x (I/O)
CONTROL BITS/SIGNALS (1)
PJDIR.x
PJSEL.x
CBPD.y
I: 0; O: 1
0
0
TD1CLK/
TD1 clock input
0
1
0
TD0.1/
TD0.TA1
1
1
0
CB15
CB15
X
X
1 (y = 15)
(1)
X = Don't care
Copyright © 2010–2013, Texas Instruments Incorporated
Submit Documentation Feedback
85
MSP430F51x1
MSP430F51x2
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
www.ti.com
DEVICE DESCRIPTORS
Table 58 list the complete contents of the device descriptor tag-length-value (TLV) structure for each device type.
Table 58. 'F51x2 Device Descriptor Table (1)
'F5172
RSB
'F5172
DA
'F5152
RSB
'F5152
DA
'F5132
RSB
'F5132
DA
Value
Value
Value
Value
Value
Value
0x06
0x06
0x06
0x06
0x06
0x06
1
0x06
0x06
0x06
0x06
0x06
0x06
0x1A02
2
per unit
per unit
per unit
per unit
per unit
per unit
Device ID
0x1A04
1
0x30
0x30
0x2C
0x2C
0x28
0x28
Device ID
0x1A05
1
0x80
0x80
0x80
0x80
0x80
0x80
Hardware revision
0x1A06
1
0x30
030
0x30
0x30
0x30
0x30
Firmware revision
0x1A07
1
0x10
0x10
0x10
0x10
0x10
0x10
Die Record Tag
0x1A08
1
0x08
08
0x08
08
0x08
08
Die Record length
0x1A09
1
0x0A
0A
0x0A
0A
0x0A
0A
Info Block
Die Record
ADC10
Calibration
Size
bytes
Info length
0x1A00
1
CRC length
0x1A01
CRC value
Lot/Wafer ID
0x1A0A
4
per unit
per unit
per unit
per unit
per unit
per unit
0x1A0Eh
2
per unit
per unit
per unit
per unit
per unit
per unit
Die Y position
0x1A10
2
per unit
per unit
per unit
per unit
per unit
per unit
Test results
0x1A12
2
per unit
per unit
per unit
per unit
per unit
per unit
ADC10 Calibration Tag
0x1A14
1
0x13
0x13
0x13
0x13
0x13
0x13
ADC10 Calibration length
0x1A15
1
0x10
0x10
0x10
0x10
0x10
0x10
ADC Gain Factor
0x1A16
2
per unit
per unit
per unit
per unit
per unit
per unit
ADC Offset
0x1A18
2
per unit
per unit
per unit
per unit
per unit
per unit
ADC 1.5-V Reference
Temp. Sensor 30°C
0x1A1A
2
per unit
per unit
per unit
per unit
per unit
per unit
ADC 1.5-V Reference
Temp. Sensor 85°C
0x1A1C
2
per unit
per unit
per unit
per unit
per unit
per unit
ADC 2.0-V Reference
Temp. Sensor 30°C
0x1A1Eh
2
per unit
per unit
per unit
per unit
per unit
per unit
ADC 2.0-V Reference
Temp. Sensor 85°C
0x1A20
2
per unit
per unit
per unit
per unit
per unit
per unit
ADC 2.5-V Reference
Temp. Sensor 30°C
0x1A22
2
per unit
per unit
per unit
per unit
per unit
per unit
ADC 2.5-V Reference
Temp. Sensor 85°C
0x1A24
2
per unit
per unit
per unit
per unit
per unit
per unit
REF Tag
0x1A26
1
0x12
0x12
0x12
0x12
0x12
0x12
REF length
0x1A27
1
0x06
0x06
0x06
0x06
0x06
0x06
REF 1.5-V Reference
0x1A28
2
0xFF
0xFF
0xFF
0xFF
0xFF
0xFF
REF 2.0-V Reference
0x1A2A
2
0xFF
0xFF
0xFF
0xFF
0xFF
0xFF
REF 2.5-V Reference
0x1A2C
2
0xFF
0xFF
0xFF
0xFF
0xFF
0xFF
Timer_D Tag
0x1A2E
1
0x15
0x15
0x15
0x15
0x15
0x15
Timer_D0
Calibration
Timer_D length
0x1A2F
1
0x08
0x08
0x08
0x08
0x08
0x08
Timer_D 64-MHz frequency
0x1A30
2
per unit
per unit
per unit
per unit
per unit
per unit
Timer_D 128-MHz frequency
0x1A32
2
per unit
per unit
per unit
per unit
per unit
per unit
Timer_D 200-MHz frequency
0x1A34
2
per unit
per unit
per unit
per unit
per unit
per unit
Timer_D 256-MHz frequency
0x1A36
2
per unit
per unit
per unit
per unit
per unit
per unit
Timer_D Tag
0x1A38
1
0x15
0x15
0x15
0x15
0x15
0x15
Timer_D1
Calibration
86
Address
Die X position
REF User
Calibration
(1)
Description
Timer_D length
0x1A39
1
0x08
0x08
0x08
0x08
0x08
0x08
Timer_D 64-MHz frequency
0x1A3A
2
per unit
per unit
per unit
per unit
per unit
per unit
Timer_D 128-MHz frequency
0x1A3C
2
per unit
per unit
per unit
per unit
per unit
per unit
NA = Not applicable
Submit Documentation Feedback
Copyright © 2010–2013, Texas Instruments Incorporated
MSP430F51x1
MSP430F51x2
www.ti.com
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
Table 58. 'F51x2 Device Descriptor Table(1) (continued)
Peripheral
Descriptor
Interrupts
'F5172
RSB
'F5172
DA
'F5152
RSB
'F5152
DA
'F5132
RSB
'F5132
DA
Description
Address
Size
bytes
Value
Value
Value
Value
Value
Value
Timer_D 200-MHz frequency
0x1A3E
2
per unit
per unit
per unit
per unit
per unit
per unit
Timer_D 256-MHz frequency
0x1A40
2
per unit
per unit
per unit
per unit
per unit
per unit
Peripheral Descriptor Tag
0x1A42
1
0x02
0x02
0x02
0x02
0x02
0x02
Peripheral Descriptor Length
0x1A43
1
0x53
0x53
0x53
0x53
0x53
0x53
BSL Memory
0x1A44
2
0x8A08
0x8A08
0x8A08
0x8A08
0x8A08
0x8A08
Information Memory
0x1A46
2
0x860C
0x860C
0x860C
0x860C
0x860C
0x860C
RAM
0x1A48
2
0x2A0E
0x2A0E
0x2A0E
0x2A0E
0x280E
0x280E
Main Memory
0x1A4A
2
0x9240
0x9240
0x9060
0x9060
0x8E70
0x8E70
Delimiter
0x1A4C
1
0x00
0x00
0x00
0x00
0x00
0x00
Peripheral count
0x1A4D
1
0x1C
0x1C
0x1B
0x1B
0x1B
0x1B
MSP430CPUXV2
0x1A4E
2
0x2300
0x2300
0x2300
0x2300
0x2300
0x2300
SBW
0x1A50
2
0x0F00
0x0F00
0x0F00
0x0F00
0x0F00
0x0F00
EEM-S
0x1A52
2
0x0300
0x0300
0x0300
0x0300
0x0300
0x0300
TI BSL
0x1A54
2
0xFC00
0xFC00
0xFC00
0xFC00
0xFC00
0xFC00
SFR
0x1A56
2
0x4110
0x4110
0x4110
0x4110
0x4110
0x4110
PMM
0x1A58
2
0x3002
0x3002
0x3002
0x3002
0x3002
0x3002
FCTL
0x1A5A
2
0x3802
0x3802
0x3802
0x3802
0x3802
0x3802
CRC16
0x1A5C
2
0x3C01
0x3C01
0x3C01
0x3C01
0x3C01
0x3C01
CRC16_RB
0x1A5E
2
0x3D00
0x3D00
0x3D00
0x3D00
0x3D00
0x3D00
RAMCTL
0x1A60
2
0x4400
0x4400
0x4400
0x4400
0x4400
0x4400
WDT_A
0x1A62
2
0x4000
0x4000
0x4000
0x4000
0x4000
0x4000
UCS
0x1A64
2
0x4801
0x4801
0x4801
0x4801
0x4801
0x4801
SYS
0x1A66
2
0x4202
0x4202
0x4202
0x4202
0x4202
0x4202
Shared REF
0x1A68
2
0xA003
0xA003
0xA003
0xA003
0xA003
0xA003
Port Mapping
0x1A6A
2
0x1001
0x1001
0x1001
0x1001
0x1001
0x1001
Port 1/2
0x1A6C
2
0x5104
0x5104
0x5104
0x5104
0x5104
0x5104
Port 3/4
0x1A6E
2
0x5202
0x5202
0x5202
0x5202
0x5202
0x5202
Port J
0x1A70
2
0x5F10
0x5F10
0x5F10
0x5F10
0x5F10
0x5F10
TA0
0x1A72
2
0x610A
0x610A
0x610A
0x610A
0x610A
0x610A
MPY32
0x1A74
2
0x8510
0x8510
0x8510
0x8510
0x8510
0x8510
DMA with 3 channels
0x1A76
2
0x4704
0x4704
0x4704
0x4704
0x4704
0x4704
USCI_A0/B0
0x1A78
2
0x900C
0x900C
0x900C
0x900C
0x900C
0x900C
ADC10_A
0x1A7A
2
0xD318
0xD318
0xD318
0xD318
0xD318
0xD318
COMP_B
0x1A7C
2
0xA818
0xA818
0x1A919
0xA818
0x1A919
0xA818
TIMER_D0
0x1A7E
2
0xD624
0xD624
0xD624
0xD624
0xD624
0xD624
TIMER_D1
0x1A80
2
0x6D04
0x6D04
0x6D04
0x6D04
0x6D04
0x6D04
TEC_0
0x1A82
2
0x700C
0x700C
0x700C
0x700C
0x700C
0x700C
TEC_1
0x1A84
2
0x7002
0x7002
0x7002
0x7002
0x7002
0x7002
COMP_B
0x1A86
1
0xA8
0xA8
0xA8
0xA8
0xA8
0xA8
TEC_0
0x1A87
1
0x6D
0x6D
0x6D
0x6D
0x6D
0x6D
TIMER_D0
0x1A88
1
0x62
0x62
0x62
0x62
0x62
0x62
TIMER_D0
0x1A89
1
0x63
0x63
0x63
0x63
0x63
0x63
WDTIFG
0x1A8A
1
0x40
0x40
0x40
0x40
0x40
0x40
USCI_A0
0x1A8B
1
0x90
0x90
0x90
0x90
0x90
0x90
USCI_B0
0x1A8C
1
0x91
0x91
0x91
0x91
0x91
0x91
ADC10_A
0x1A8D
1
0xD0
0xD0
0xD0
0xD0
0xD0
0xD0
TA0.CCIFG0
0x1A8E
1
0x60
0x60
0x60
0x60
0x60
0x60
TA0.CCIFG1..4
0x1A8F
1
0x61
0x61
0x61
0x61
0x61
0x61
DMA
0x1A90
1
0x46
0x46
0x46
0x46
0x46
0x46
Copyright © 2010–2013, Texas Instruments Incorporated
Submit Documentation Feedback
87
MSP430F51x1
MSP430F51x2
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
www.ti.com
Table 58. 'F51x2 Device Descriptor Table(1) (continued)
Empty
'F5172
RSB
'F5172
DA
'F5152
RSB
'F5152
DA
'F5132
RSB
'F5132
DA
Value
Value
Value
Value
Value
Value
0x6E
0x6E
0x6E
0x6E
0x6E
0x6E
1
0x64
0x64
0x64
0x64
0x64
0x64
0x1A93
1
0x65
0x65
0x65
0x65
0x65
0x65
Port P1
0x1A94
1
0x50
0x50
0x50
0x50
0x50
0x50
Port P2
0x1A95
1
0x51
0x51
0x51
0x51
0x51
0x51
delimiter
0x1A96
1
0x00
0x00
0x00
0x00
0x00
0x00
Unused Memory
0x1A97 0x1AB9
0xFF
0xFF
0xFF
0xFF
0xFF
0xFF
Description
Address
Size
bytes
TEC_1
0x1A91
1
TIMER_D1
0x1A92
TIMER_D1
Table 59. 'F51x1 Device Descriptor Table (1)
'F5171
RSB
'F5171
DA
'F5151
RSB
'F5151
DA
'F5131
RSB
'F5131
DA
Value
Value
Value
Value
Value
Value
0x06
0x06
0x06
0x06
0x06
0x06
1
0x06
0x06
0x06
0x06
0x06
0x06
0x1A02
2
per unit
per unit
per unit
per unit
per unit
per unit
Device ID
0x1A04
1
0x2E
0x2E
0x2A
0x2A
0x26
0x26
Device ID
0x1A05
1
0x80
0x80
0x80
0x80
0x80
0x80
Hardware revision
0x1A06
1
0x30
0x30
0x30
0x30
0x30
0x30
Firmware revision
0x1A07
1
0x10
0x10
0x10
0x10
0x10
0x10
Die Record Tag
0x1A08
1
0x08
08
0x08
08
0x08
08
Die Record length
0x1A09
1
0x0A
0A
0x0A
0A
0x0A
0A
Info Block
Die Record
ADC10
Calibration
Size
bytes
Info length
0x1A00
1
CRC length
0x1A01
CRC value
Lot/Wafer ID
0x1A0A
4
per unit
per unit
per unit
per unit
per unit
per unit
0x1A0Eh
2
per unit
per unit
per unit
per unit
per unit
per unit
Die Y position
0x1A10
2
per unit
per unit
per unit
per unit
per unit
per unit
Test results
0x1A12
2
per unit
per unit
per unit
per unit
per unit
per unit
ADC10 Calibration Tag
0x1A14
1
0x05
0x05
0x05
0x05
0x05
0x05
ADC10 Calibration length
0x1A15
1
0x10
0x10
0x10
0x10
0x10
0x10
ADC Gain Factor
0x1A16
2
per unit
per unit
per unit
per unit
per unit
per unit
ADC Offset
0x1A18
2
per unit
per unit
per unit
per unit
per unit
per unit
ADC 1.5-V Reference
Temp. Sensor 30°C
0x1A1A
2
per unit
per unit
per unit
per unit
per unit
per unit
ADC 1.5-V Reference
Temp. Sensor 85°C
0x1A1C
2
per unit
per unit
per unit
per unit
per unit
per unit
ADC 2.0-V Reference
Temp. Sensor 30°C
0x1A1Eh
2
per unit
per unit
per unit
per unit
per unit
per unit
ADC 2.0-V Reference
Temp. Sensor 85°C
0x1A20
2
per unit
per unit
per unit
per unit
per unit
per unit
ADC 2.5-V Reference
Temp. Sensor 30°C
0x1A22
2
per unit
per unit
per unit
per unit
per unit
per unit
ADC 2.5-V Reference
Temp. Sensor 85°C
0x1A24
2
per unit
per unit
per unit
per unit
per unit
per unit
REF Tag
0x1A26
1
0x12
0x12
0x12
0x12
0x12
0x12
REF length
0x1A27
1
0x06
0x06
0x06
0x06
0x06
0x06
REF 1.5-V Reference
0x1A28
2
0xFF
0xFF
0xFF
0xFF
0xFF
0xFF
REF 2.0-V Reference
0x1A2A
2
0xFF
0xFF
0xFF
0xFF
0xFF
0xFF
REF 2.5-V Reference
0x1A2C
2
0xFF
0xFF
0xFF
0xFF
0xFF
0xFF
Timer_D Tag
0x1A2E
1
0x15
0x15
0x15
0x15
0x15
0x15
Timer_D0
Calibration
88
Address
Die X position
REF User
Calibration
(1)
Description
NA = Not applicable
Submit Documentation Feedback
Copyright © 2010–2013, Texas Instruments Incorporated
MSP430F51x1
MSP430F51x2
www.ti.com
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
Table 59. 'F51x1 Device Descriptor Table(1) (continued)
Timer_D1
Calibration
Peripheral
Descriptor
Interrupts
'F5171
RSB
'F5171
DA
'F5151
RSB
'F5151
DA
'F5131
RSB
'F5131
DA
Value
Value
Value
Value
Value
Value
0x08
0x08
0x08
0x08
0x08
0x08
2
per unit
per unit
per unit
per unit
per unit
per unit
0x1A32
2
per unit
per unit
per unit
per unit
per unit
per unit
0x1A34
2
per unit
per unit
per unit
per unit
per unit
per unit
Timer_D 256-MHz frequency
0x1A36
2
per unit
per unit
per unit
per unit
per unit
per unit
Timer_D Tag
0x1A38
1
0x15
0x15
0x15
0x15
0x15
0x15
Description
Address
Size
bytes
Timer_D length
0x1A2F
1
Timer_D 64-MHz frequency
0x1A30
Timer_D 128-MHz frequency
Timer_D 200-MHz frequency
Timer_D length
0x1A39
1
0x08
0x08
0x08
0x08
0x08
0x08
Timer_D 64-MHz frequency
0x1A3A
2
per unit
per unit
per unit
per unit
per unit
per unit
Timer_D 128-MHz frequency
0x1A3C
2
per unit
per unit
per unit
per unit
per unit
per unit
Timer_D 200-MHz frequency
0x1A3E
2
per unit
per unit
per unit
per unit
per unit
per unit
Timer_D 256-MHz frequency
0x1A40
2
per unit
per unit
per unit
per unit
per unit
per unit
Peripheral Descriptor Tag
0x1A42
1
0x02
0x02
0x02
0x02
0x02
0x02
Peripheral Descriptor Length
0x1A43
1
0x51
0x51
0x51
0x51
0x51
0x51
BSL Memory
0x1A44
2
0x8A08
0x8A08
0x8A08
0x8A08
0x8A08
0x8A08
Information Memory
0x1A46
2
0x860C
0x860C
0x860C
0x860C
0x860C
0x860C
RAM
0x1A48
2
0x2A0E
0x2A0E
0x2A0E
0x2A0E
0x280E
0x280E
Main Memory
0x1A4A
2
0x9240
0x9240
0x9060
0x9060
0x8E70
0x8E70
Delimiter
0x1A4C
1
0x00
0x00
0x00
0x00
0x00
0x00
Peripheral count
0x1A4D
1
0x1B
0x1B
0x1B
0x1B
0x1B
0x1B
MSP430CPUXV2
0x1A4E
2
0x2300
0x2300
0x2300
0x2300
0x2300
0x2300
SBW
0x1A50
2
0x0F00
0x0F00
0x0F00
0x0F00
0x0F00
0x0F00
EEM-S
0x1A52
2
0x0300
0x0300
0x0300
0x0300
0x0300
0x0300
TI BSL
0x1A54
2
0xFC00
0xFC00
0xFC00
0xFC00
0xFC00
0xFC00
SFR
0x1A56
2
0x4110
0x4110
0x4110
0x4110
0x4110
0x4110
PMM
0x1A58
2
0x3002
0x3002
0x3002
0x3002
0x3002
0x3002
FCTL
0x1A5A
2
0x3802
0x3802
0x3802
0x3802
0x3802
0x3802
CRC16
0x1A5C
2
0x3C01
0x3C01
0x3C01
0x3C01
0x3C01
0x3C01
CRC16_RB
0x1A5E
2
0x3D00
0x3D00
0x3D00
0x3D00
0x3D00
0x3D00
RAMCTL
0x1A60
2
0x4400
0x4400
0x4400
0x4400
0x4400
0x4400
WDT_A
0x1A62
2
0x4000
0x4000
0x4000
0x4000
0x4000
0x4000
UCS
0x1A64
2
0x4801
0x4801
0x4801
0x4801
0x4801
0x4801
SYS
0x1A66
2
0x4202
0x4202
0x4202
0x4202
0x4202
0x4202
Shared REF
0x1A68
2
0xA003
0xA003
0xA003
0xA003
0xA003
0xA003
Port Mapping
0x1A6A
2
0x1001
0x1001
0x1001
0x1001
0x1001
0x1001
Port 1/2
0x1A6C
2
0x5104
0x5104
0x5104
0x5104
0x5104
0x5104
Port 3/4
0x1A6E
2
0x5202
0x5202
0x5202
0x5202
0x5202
0x5202
Port J
0x1A70
2
0x5F10
0x5F10
0x5F10
0x5F10
0x5F10
0x5F10
TA0
0x1A72
2
0x610A
0x610A
0x610A
0x610A
0x610A
0x610A
MPY32
0x1A74
2
0x8510
0x8510
0x8510
0x8510
0x8510
0x8510
DMA with 3 channels
0x1A76
2
0x4704
0x4704
0x4704
0x4704
0x4704
0x4704
USCI_A0/B0
0x1A78
2
0x900C
0x900C
0x900C
0x900C
0x900C
0x900C
COMP_B
0x1A7A
2
0xA830
0xA830
0xA830
0xA830
0xA830
0xA830
TIMER_D0
0x1A7C
2
0xD624
0xD624
0xD624
0xD624
0xD624
0xD624
TIMER_D1
0x1A7E
2
0x6D04
0x6D04
0x6D04
0x6D04
0x6D04
0x6D04
TEC_0
0x1A80
2
0x700C
0x700C
0x700C
0x700C
0x700C
0x700C
TEC_1
0x1A82
2
0x7002
0x7002
0x7002
0x7002
0x7002
0x7002
COMP_B
0x1A83
1
0xA8
0xA8
0xA8
0xA8
0xA8
0xA8
TEC_0
0x1A84
1
0x6D
0x6D
0x6D
0x6D
0x6D
0x6D
Copyright © 2010–2013, Texas Instruments Incorporated
Submit Documentation Feedback
89
MSP430F51x1
MSP430F51x2
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
www.ti.com
Table 59. 'F51x1 Device Descriptor Table(1) (continued)
Empty
90
'F5171
RSB
'F5171
DA
'F5151
RSB
'F5151
DA
'F5131
RSB
'F5131
DA
Value
Value
Value
Value
Value
Value
0x62
0x62
0x62
0x62
0x62
0x62
1
0x63
0x63
0x63
0x63
0x63
0x63
0x1A87
1
0x40
0x40
0x40
0x40
0x40
0x40
USCI_A0
0x1A88
1
0x90
0x90
0x90
0x90
0x90
0x90
USCI_B0
0x1A89
1
0x91
0x91
0x91
0x91
0x91
0x91
ADC10_A
0x1A8A
1
0xD0
0xD0
0xD0
0xD0
0xD0
0xD0
Description
Address
Size
bytes
TIMER_D0
0x1A85
1
TIMER_D0
0x1A86
WDTIFG
TA0.CCIFG0
0x1A8B
1
0x60
0x60
0x60
0x60
0x60
0x60
TA0.CCIFG1..4
0x1A8C
1
0x61
0x61
0x61
0x61
0x61
0x61
DMA
0x1A8D
1
0x46
0x46
0x46
0x46
0x46
0x46
TEC_1
0x1A8E
1
0x6E
0x6E
0x6E
0x6E
0x6E
0x6E
TIMER_D1
0x1A8F
1
0x64
0x64
0x64
0x64
0x64
0x64
TIMER_D1
0x1A90
1
0x65
0x65
0x65
0x65
0x65
0x65
Port P1
0x1A91
1
0x50
0x50
0x50
0x50
0x50
0x50
Port P2
0x1A92
1
0x51
0x51
0x51
0x51
0x51
0x51
delimiter
0x1A93
1
0x00
0x00
0x00
0x00
0x00
0x00
Unused Memory
0x1A94 0x1AB9
0xFF
0xFF
0xFF
0xFF
0xFF
0xFF
Submit Documentation Feedback
Copyright © 2010–2013, Texas Instruments Incorporated
MSP430F51x1
MSP430F51x2
www.ti.com
SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013
REVISION HISTORY
REVISION
COMMENTS
SLAS619
Product Preview release
SLAS619A
Production Data release
SLAS619B
Changed Table 7.
SLAS619C
Changed Comparator_B VREF MAX from ±1% to ±1.5% for all test conditions in Comparator_B.
SLAS619D
Table 1, Corrected number of I/Os for all entries.
Functional Block Diagram, MSP430F51x2 and Functional Block Diagram, MSP430F51x1, Corrected typo on P2 port
name.
Recommended Operating Conditions, Corrected typo in fSYSTEM VCC conditions on VCORE = 3 row.
PMM, Brown-Out Reset (BOR), Changed parameter descriptions for V(DVCC_BOR_IT-) and V(VCORE_BOR_IT-).
SLAS619E
Table 10, changed "SYSRSTIV, System Reset" interrupt event at offset 1Ch to Reserved.
Low-Power Mode Supply Currents (Into VCC) Excluding External Current, Changed some typical and maximum current
numbers at 85°C.
Table 46, Corrected note regarding USCI CLK function taking precedence over USCI STE function.
SLAS619F
Removed all occurrences of ROSC; does not apply to this device.
SLAS619G
Recommended Operating Conditions, Added note regarding interaction between minimum VCC and SVSH.
Internal Reference, Low-Frequency Oscillator (REFO), Corrected tSTART UNIT (changed from µA to µs).
SLAS619H
Recommended Operating Conditions, Added test conditions for typical characteristics.
DCO Frequency, Added note (1).
Table 58 and Table 59, Corrected addresses of the Timer_D0 and Timer_D1 device descriptors.
SLAS619I
REF, External Reference (MSP430F51x2 Devices Only), Changed note (1) from "12-bit accuracy" to "10-bit accuracy".
Comparator_B, Changed description and symbol for TCCB_REF.
Flash Memory, Changed IMERASE, IBANK values.
Copyright © 2010–2013, Texas Instruments Incorporated
Submit Documentation Feedback
91
PACKAGE OPTION ADDENDUM
www.ti.com
11-Feb-2013
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package Pins Package Qty
Drawing
Eco Plan
Lead/Ball Finish
(2)
MSL Peak Temp
Op Temp (°C)
Top-Side Markings
(3)
(4)
MSP430F5131IDA
ACTIVE
TSSOP
DA
38
40
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
M430F5131
MSP430F5131IDAR
ACTIVE
TSSOP
DA
38
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
M430F5131
MSP430F5131IRSBR
ACTIVE
WQFN
RSB
40
3000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
M430
F5131
MSP430F5131IRSBT
ACTIVE
WQFN
RSB
40
250
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
M430
F5131
MSP430F5132IDA
ACTIVE
TSSOP
DA
38
40
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
M430F5132
MSP430F5132IDAR
ACTIVE
TSSOP
DA
38
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
M430F5132
MSP430F5132IRHAR
OBSOLETE
VQFN
RHA
40
TBD
Call TI
Call TI
MSP430F5132IRHAT
OBSOLETE
VQFN
RHA
40
TBD
Call TI
Call TI
MSP430F5132IRSBR
ACTIVE
WQFN
RSB
40
3000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
M430
F5132
MSP430F5132IRSBT
ACTIVE
WQFN
RSB
40
250
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
M430
F5132
MSP430F5151IDA
ACTIVE
TSSOP
DA
38
40
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
M430F5151
MSP430F5151IDAR
ACTIVE
TSSOP
DA
38
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
M430F5151
MSP430F5151IRSBR
ACTIVE
WQFN
RSB
40
3000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
M430
F5151
MSP430F5151IRSBT
ACTIVE
WQFN
RSB
40
250
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
M430
F5151
MSP430F5152IDA
ACTIVE
TSSOP
DA
38
40
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
M430F5152
MSP430F5152IDAR
ACTIVE
TSSOP
DA
38
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
M430F5152
MSP430F5152IRHAR
OBSOLETE
VQFN
RHA
40
TBD
Call TI
Call TI
MSP430F5152IRHAT
OBSOLETE
VQFN
RHA
40
TBD
Call TI
Call TI
MSP430F5152IRSBR
ACTIVE
WQFN
RSB
40
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
3000
Addendum-Page 1
M430
F5152
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
Orderable Device
11-Feb-2013
Status
(1)
Package Type Package Pins Package Qty
Drawing
Eco Plan
Lead/Ball Finish
(2)
MSL Peak Temp
Op Temp (°C)
Top-Side Markings
(3)
(4)
MSP430F5152IRSBT
ACTIVE
WQFN
RSB
40
250
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
M430
F5152
MSP430F5171IDA
ACTIVE
TSSOP
DA
38
40
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
M430F5171
MSP430F5171IDAR
ACTIVE
TSSOP
DA
38
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
M430F5171
MSP430F5171IRSBR
ACTIVE
WQFN
RSB
40
3000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
M430
F5171
MSP430F5171IRSBT
ACTIVE
WQFN
RSB
40
250
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
M430
F5171
MSP430F5172IDA
ACTIVE
TSSOP
DA
38
40
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
M430F5172
MSP430F5172IDAR
ACTIVE
TSSOP
DA
38
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
M430F5172
MSP430F5172IRSBR
ACTIVE
WQFN
RSB
40
3000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
M430
F5172
MSP430F5172IRSBT
ACTIVE
WQFN
RSB
40
250
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
M430
F5172
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
Addendum-Page 2
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
(4)
11-Feb-2013
Only one of markings shown within the brackets will appear on the physical device.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
Addendum-Page 3
PACKAGE MATERIALS INFORMATION
www.ti.com
12-Feb-2013
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device
Package Package Pins
Type Drawing
SPQ
Reel
Reel
A0
Diameter Width (mm)
(mm) W1 (mm)
B0
(mm)
K0
(mm)
P1
(mm)
W
Pin1
(mm) Quadrant
MSP430F5131IDAR
TSSOP
DA
38
2000
330.0
24.4
8.6
13.0
1.8
12.0
24.0
Q1
MSP430F5131IRSBR
WQFN
RSB
40
3000
330.0
12.4
5.3
5.3
1.5
8.0
12.0
Q2
MSP430F5131IRSBT
WQFN
RSB
40
250
180.0
12.4
5.3
5.3
1.5
8.0
12.0
Q2
MSP430F5132IDAR
TSSOP
DA
38
2000
330.0
24.4
8.6
13.0
1.8
12.0
24.0
Q1
MSP430F5132IRSBR
WQFN
RSB
40
3000
330.0
12.4
5.3
5.3
1.5
8.0
12.0
Q2
MSP430F5132IRSBT
WQFN
RSB
40
250
180.0
12.4
5.3
5.3
1.5
8.0
12.0
Q2
MSP430F5151IDAR
TSSOP
DA
38
2000
330.0
24.4
8.6
13.0
1.8
12.0
24.0
Q1
MSP430F5151IRSBR
WQFN
RSB
40
3000
330.0
12.4
5.3
5.3
1.5
8.0
12.0
Q2
MSP430F5151IRSBT
WQFN
RSB
40
250
180.0
12.4
5.3
5.3
1.5
8.0
12.0
Q2
MSP430F5152IDAR
TSSOP
DA
38
2000
330.0
24.4
8.6
13.0
1.8
12.0
24.0
Q1
MSP430F5152IRSBR
WQFN
RSB
40
3000
330.0
12.4
5.3
5.3
1.5
8.0
12.0
Q2
MSP430F5152IRSBT
WQFN
RSB
40
250
180.0
12.4
5.3
5.3
1.5
8.0
12.0
Q2
MSP430F5171IDAR
TSSOP
DA
38
2000
330.0
24.4
8.6
13.0
1.8
12.0
24.0
Q1
MSP430F5171IRSBR
WQFN
RSB
40
3000
330.0
12.4
5.3
5.3
1.5
8.0
12.0
Q2
MSP430F5171IRSBT
WQFN
RSB
40
250
180.0
12.4
5.3
5.3
1.5
8.0
12.0
Q2
MSP430F5172IDAR
TSSOP
DA
38
2000
330.0
24.4
8.6
13.0
1.8
12.0
24.0
Q1
MSP430F5172IRSBR
WQFN
RSB
40
3000
330.0
12.4
5.3
5.3
1.5
8.0
12.0
Q2
Pack Materials-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com
12-Feb-2013
*All dimensions are nominal
Device
Package Type
Package Drawing
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
MSP430F5131IDAR
MSP430F5131IRSBR
TSSOP
DA
38
2000
367.0
367.0
45.0
WQFN
RSB
40
3000
367.0
367.0
35.0
MSP430F5131IRSBT
WQFN
RSB
40
250
210.0
185.0
35.0
MSP430F5132IDAR
TSSOP
DA
38
2000
367.0
367.0
45.0
MSP430F5132IRSBR
WQFN
RSB
40
3000
367.0
367.0
35.0
MSP430F5132IRSBT
WQFN
RSB
40
250
210.0
185.0
35.0
MSP430F5151IDAR
TSSOP
DA
38
2000
367.0
367.0
45.0
MSP430F5151IRSBR
WQFN
RSB
40
3000
367.0
367.0
35.0
MSP430F5151IRSBT
WQFN
RSB
40
250
210.0
185.0
35.0
MSP430F5152IDAR
TSSOP
DA
38
2000
367.0
367.0
45.0
MSP430F5152IRSBR
WQFN
RSB
40
3000
367.0
367.0
35.0
MSP430F5152IRSBT
WQFN
RSB
40
250
210.0
185.0
35.0
MSP430F5171IDAR
TSSOP
DA
38
2000
367.0
367.0
45.0
MSP430F5171IRSBR
WQFN
RSB
40
3000
367.0
367.0
35.0
MSP430F5171IRSBT
WQFN
RSB
40
250
210.0
185.0
35.0
MSP430F5172IDAR
TSSOP
DA
38
2000
367.0
367.0
45.0
MSP430F5172IRSBR
WQFN
RSB
40
3000
367.0
367.0
35.0
Pack Materials-Page 2
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.
Products
Applications
Audio
www.ti.com/audio
Automotive and Transportation
www.ti.com/automotive
Amplifiers
amplifier.ti.com
Communications and Telecom
www.ti.com/communications
Data Converters
dataconverter.ti.com
Computers and Peripherals
www.ti.com/computers
DLP® Products
www.dlp.com
Consumer Electronics
www.ti.com/consumer-apps
DSP
dsp.ti.com
Energy and Lighting
www.ti.com/energy
Clocks and Timers
www.ti.com/clocks
Industrial
www.ti.com/industrial
Interface
interface.ti.com
Medical
www.ti.com/medical
Logic
logic.ti.com
Security
www.ti.com/security
Power Mgmt
power.ti.com
Space, Avionics and Defense
www.ti.com/space-avionics-defense
Microcontrollers
microcontroller.ti.com
Video and Imaging
www.ti.com/video
RFID
www.ti-rfid.com
OMAP Applications Processors
www.ti.com/omap
TI E2E Community
e2e.ti.com
Wireless Connectivity
www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2013, Texas Instruments Incorporated