MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 FEATURES D Supply Voltage Supervisor/Monitor With D Low Supply Voltage Range, 1.8 V to 3.6 V D Ultra-Low Power Consumption: D D -- Active Mode: 365 A at 1 MHz, 2.2 V -- Standby Mode (VLO): 0.5 A -- Off Mode (RAM Retention): 0.1 A Wake-Up From Standby Mode in Less Than 1 s 16-Bit RISC Architecture, 62.5-ns Instruction Cycle Time D Three-Channel Internal DMA D 12-Bit Analog-to-Digital (A/D) Converter With Internal Reference, Sample-and-Hold, and Autoscan Feature D Dual 12-Bit Digital-to-Analog (D/A) Converters With Synchronization D 16-Bit Timer_A With Three D Capture/Compare Registers 16-Bit Timer_B With Seven Capture/Compare-With-Shadow Registers On-Chip Comparator D D Four Universal Serial Communication Interfaces (USCIs) -- USCI_A0 and USCI_A1 -- Enhanced UART Supporting Auto-Baudrate Detection -- IrDA Encoder and Decoder -- Synchronous SPI -- USCI_B0 and USCI_B1 -- I2Ct -- Synchronous SPI Programmable Level Detection D Brownout Detector D Bootstrap Loader D Serial Onboard Programming, No External Programming Voltage Needed Programmable Code Protection by Security Fuse 116KB+256B Flash Memory, 8KB RAM Available in 113-Pin Ball Grid Array (BGA) D D D For Complete Module Descriptions, See the MSP430x2xx Family User’s Guide, Literature Number SLAU144 SUPPORTS DEFENSE, MEDICAL APPLICATIONS D D D D D D D AEROSPACE, AND Controlled Baseline One Assembly/Test Site One Fabrication Site Extended Product Life Cycle Extended Product--Change Notification Product Traceability SnPb Solder Ball Alloy for Increased Reliability description The Texas Instruments MSP430 family of ultralow-power microcontrollers consists of several devices featuring different sets of peripherals targeted for various applications. The architecture, combined with five low-power modes is optimized to achieve extended battery life in portable measurement applications. The device features a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that contribute to maximum code efficiency. The calibrated digitally controlled oscillator (DCO) allows wake-up from low-power modes to active mode in less than 1 s. This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. These devices have limited built-in ESD protection. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. I2C is a registered trademark of Philips Incorporated. Copyright 2008, Texas Instruments Incorporated PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. POST OFFICE BOX 655303 DALLAS, TEXAS 75265 1 MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 description (continued) The MSP430F2618 is a microcontroller configuration with two built-in 16-bit timers, a fast 12-bit A/D converter, a comparator, dual 12-bit D/A converters, four universal serial communication interface (USCI) modules, DMA, and up to 64 I/O pins. Typical applications include sensor systems, industrial control applications, hand-held meters, etc. AVAILABLE OPTIONS PACKAGED DEVICES TA PLASTIC 113-PIN BGA (GQW) --40C to 105C MSP430F2618TGQW DEVELOPMENT TOOL SUPPORT All MSP430 microcontrollers include an Embedded Emulation Module (EEM) allowing advanced debugging and programming through easy-to-use development tools. Recommended hardware options include: D Debugging and Programming Interface -- MSP-FET430UIF (USB) -- MSP-FET430PIF (Parallel Port) D Debugging and Programming Interface with Target Board -- MSP-FET430U64 -- MSP-FET430U80 D Standalone Target Board -- MSP-TS430PM64 D Production Programmer -- 2 MSP-GANG430 POST OFFICE BOX 655303 DALLAS, TEXAS 75265 MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 pin designation A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 C1 C2 C3 C11 C12 D1 D2 D4 D5 D6 D7 D8 D9 D11 D12 E1 E2 E4 E5 E6 E7 E8 E9 E11 E12 F1 F2 F4 F5 F8 F9 F11 F12 G1 G2 G4 G5 G8 G9 G11 G12 H1 H2 H4 H5 H6 H7 H8 H9 H11 H12 J1 J2 J4 J5 J6 J7 J8 J9 J11 J12 K1 K2 K11 K12 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 Note: For terminal assignments, see the MSP430F261x Terminal Functions table. POST OFFICE BOX 655303 DALLAS, TEXAS 75265 3 MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 functional block diagram XIN/ XT2IN XOUT/ XT2OUT 2 2 DVCC1/2 ACLK Oscillators Basic Clock SMCLK System+ MCLK 16MHz CPU 1MB incl. 16 Registers Emulation JTAG Interface Flash 120kB 116kB 92kB 92kB 56kB DVSS1/2 AVCC RAM 4kB 8kB 8kB 4kB 4kB ADC12 12-Bit 8 Channels AVSS DAC12 12-Bit 2 Channels Voltage Out Ports P1/P2 2x8 I/O Interrupt capability Ports P3/P4 P5/P6 4x8 I/O P7.x/P8.x 2x8/ 1x16 Ports P7/P8 2x8/1x16 I/O USCI A0 UART/ LIN, IrDA, SPI USCI B0 SPI, I2C MAB MDB Brownout Protection SVS, SVM Hardware Multiplier MPY, MPYS, MAC, MACS DMA Controller 3 Channels Timer_B7 Watchdog WDT+ 15-Bit RST/NMI 4 P3.x/P4.x P5.x/P6.x 2x8 4x8 P1.x/P2.x POST OFFICE BOX 655303 DALLAS, TEXAS 75265 Timer_A3 3 CC Registers Comp_A+ 7 CC Registers, Shadow Reg 8 Channels USCI A1 UART/ LIN, IrDA, SPI USCI B1 SPI, I2C MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 Terminal Functions TERMINAL NAME NO NO. I/O / DESCRIPTION AVCC A2 Analog supply voltage, positive terminal. Supplies only the analog portion of ADC12 and DAC12. AVSS B2, B3 Analog supply voltage, negative terminal. Supplies only the analog portion of ADC12 and DAC12. DVCC1 A1 Digital supply voltage, positive terminal. Supplies all digital parts. DVSS1 A3 Digital supply voltage, negative terminal. Supplies all digital parts. DVCC2 F12 Digital supply voltage, positive terminal. Supplies all digital parts. DVSS2 E12 Digital supply voltage, negative terminal. Supplies all digital parts. P1.0/TACLK/ CAOUT G2 I/O General-purpose digital I/O pin/Timer_A, clock signal TACLK input/Comparator_A output P1.1/TA0 H1 I/O General-purpose digital I/O pin/Timer_A, capture: CCI0A input, compare: Out0 output/BSL transmit P1.2/TA1 H2 I/O General-purpose digital I/O pin/Timer_A, capture: CCI1A input, compare: Out1 output P1.3/TA2 J1 I/O General-purpose digital I/O pin/Timer_A, capture: CCI2A input, compare: Out2 output P1.4/SMCLK J2 I/O General-purpose digital I/O pin/SMCLK signal output P1.5/TA0 K1 I/O General-purpose digital I/O pin/Timer_A, compare: Out0 output P1.6/TA1 K2 I/O General-purpose digital I/O pin/Timer_A, compare: Out1 output P1.7/TA2 L1 I/O General-purpose digital I/O pin/Timer_A, compare: Out2 output P2.0/ACLK/CA2 M1 I/O General-purpose digital I/O pin/ACLK output/Comparator_A input P2.1/TAINCLK/ CA3 M2 I/O General-purpose digital I/O pin/Timer_A, clock signal at INCLK P2.2/CAOUT/ TA0/CA4 M3 I/O General-purpose digital I/O pin/Timer_A, capture: CCI0B input/Comparator_A output/BSL receive/Comparator_A input P2.3/CA0/TA1 L3 I/O General-purpose digital I/O pin/Timer_A, compare: Out1 output/Comparator_A input P2.4/CA1/TA2 L4 I/O General-purpose digital I/O pin/Timer_A, compare: Out2 output/Comparator_A input P2.5/Rosc/CA5 M4 I/O General-purpose digital I/O pin/input for external resistor defining the DCO nominal frequency/Comparator_A input P2.6/ADC12CLK/ DMAE0/CA6 J4 I/O General-purpose digital I/O pin/conversion clock – 12-bit ADC/DMA channel 0 external trigger/Comparator_A input P2.7/TA0/CA7 L5 I/O General-purpose digital I/O pin/Timer_A, compare: Out0 output/Comparator_A input P3.0/UCB0STE/ UCA0CLK M5 I/O General-purpose digital I/O pin/USCI B0 slave transmit enable/USCI A0 clock input/output P3.1/UCB0SIMO/ UCB0SDA L6 I/O General-purpose digital I/O pin/USCI B0 slave in/master out in SPI mode, SDA I2C data in I2C mode P3.2/UCB0SOMI/ UCB0SCL M6 I/O General-purpose digital I/O pin/USCI B0 slave out/master in in SPI mode, SCL I2C clock in I2C mode P3.3/UCB0CLK/ UCA0STE L7 I/O General-purpose digital I/O/USCI B0 clock input/output, USCI A0 slave transmit enable P3.4/UCA0TXD/ UCA0SIMO M7 I/O General-purpose digital I/O pin/USCIA transmit data output in UART mode, slave data in/master out in SPI mode P3.5/UCA0RXD/ UCA0SOMI L8 I/O General-purpose digital I/O pin/USCI A0 receive data input in UART mode, slave data out/master in in SPI mode POST OFFICE BOX 655303 DALLAS, TEXAS 75265 5 MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 Terminal Functions (Continued) TERMINAL NAME NO NO. I/O / DESCRIPTION P3.6/UCA1TXD/ UCA1SIMO M8 I/O General-purpose digital I/O pin/USCI A1 transmit data output in UART mode, slave data in/master out in SPI mode P3.7/UCA1RXD/ UCA1SOMI L9 I/O General-purpose digital I/O pin/USCIA1 receive data input in UART mode, slave data out/master in in SPI mode P4.0/TB0 M9 I/O General-purpose digital I/O pin/Timer_B, capture: CCI0A/B input, compare: Out0 output P4.1/TB1 J9 I/O General-purpose digital I/O pin/Timer_B, capture: CCI1A/B input, compare: Out1 output P4.2/TB2 M10 I/O General-purpose digital I/O pin/Timer_B, capture: CCI2A/B input, compare: Out2 output P4.3/TB3 L10 I/O General-purpose digital I/O pin/Timer_B, capture: CCI3A/B input, compare: Out3 output P4.4/TB4 M11 I/O General-purpose digital I/O pin/Timer_B, capture: CCI4A/B input, compare: Out4 output P4.5/TB5 M12 I/O General-purpose digital I/O pin/Timer_B, capture: CCI5A/B input, compare: Out5 output P4.6/TB6 L12 I/O General-purpose digital I/O pin/Timer_B, capture: CCI6A input, compare: Out6 output P4.7/TBCLK K11 I/O General-purpose digital I/O pin/Timer_B, clock signal TBCLK input P5.0/UCB1STE/ UCA1CLK K12 I/O General-purpose digital I/O pin/USCI B1 slave transmit enable/USCI A1 clock input/output P5.1/UCB1SIMO/ UCB1SDA J11 I/O General-purpose digital I/O pin/USCI B1slave in/master out in SPI mode, SDA I2C data in I2C mode P5.2/UCB1SOMI/ UCB1SCL J12 I/O General-purpose digital I/O pin/USCI B1slave out/master in in SPI mode, SCL I2C clock in I2C mode P5.3/UCB1CLK/ UCA1STE H11 I/O General-purpose digital I/O/USCI B1 clock input/output, USCI A1 slave transmit enable P5.4/MCLK H12 I/O General-purpose digital I/O pin/main system clock MCLK output P5.5/SMCLK G11 I/O General-purpose digital I/O pin/submain system clock SMCLK output P5.6/ACLK G12 I/O General-purpose digital I/O pin/auxiliary clock ACLK output P5.7/TBOUTH/ SVSOUT F11 I/O General-purpose digital I/O pin/switch all PWM digital output ports to high impedance -Timer_B TB0 to TB6/SVS comparator output P6.0/A0 D4 I/O General-purpose digital I/O pin/analog input A0 – 12-bit ADC P6.1/A1 A4 I/O General-purpose digital I/O pin/analog input A1 – 12-bit ADC P6.2/A2 B4 I/O General-purpose digital I/O pin/analog input A2 – 12-bit ADC P6.3/A3 B1 I/O General-purpose digital I/O pin/analog input A3 – 12-bit ADC P6.4/A4 C1 I/O General-purpose digital I/O pin/analog input A4 – 12-bit ADC P6.5/A5/DAC1 C2 C3 I/O General-purpose digital I/O pin/analog input A5 – 12-bit ADC/DAC12.1 output P6.6/A6/DAC0 D1 I/O General-purpose digital I/O pin/analog input A6 – 12-bit ADC/DAC12.0 output P6.7/A7/DAC1/ SVSIN D2 I/O General-purpose digital I/O pin/analog input a7 – 12-bit ADC/DAC12.1 output/SVS input P7.0 E11 I/O General-purpose digital I/O pin P7.1 D12 I/O General-purpose digital I/O pin P7.2 D11 I/O General-purpose digital I/O pin P7.3 C12 I/O General-purpose digital I/O pin P7.4 C11 I/O General-purpose digital I/O pin P7.5 B12 I/O General-purpose digital I/O pin P7.6 A12 I/O General-purpose digital I/O pin P7.7 A11 I/O General-purpose digital I/O pin 6 POST OFFICE BOX 655303 DALLAS, TEXAS 75265 MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 Terminal Functions (Continued) TERMINAL NAME NO NO. I/O / DESCRIPTION P8.0 B10 I/O General-purpose digital I/O pin P8.1 A10 I/O General-purpose digital I/O pin P8.2 D9 I/O General-purpose digital I/O pin P8.3 A9 I/O General-purpose digital I/O pin P8.4 B9 I/O General-purpose digital I/O pin P8.5 B8 I/O General-purpose digital I/O pin P8.6/XT2OUT A8 O General-purpose digital I/O pin/Output terminal of crystal oscillator XT2 P8.7/XT2IN A7 I General-purpose digital I/O pin/Input port for crystal oscillator XT2. Only standard crystals can be connected. XT2OUT O Output terminal of crystal oscillator XT2 XT2IN I Input port for crystal oscillator XT2 RST/NMI B5 I Reset input, nonmaskable interrupt input port, or bootstrap loader start (in flash devices). TCK A5 I Test clock (JTAG). TCK is the clock input port for device programming test and bootstrap loader start. TDI/TCLK A6 I Test data input or test clock input. The device protection fuse is connected to TDI/TCLK. TDO/TDI B7 I/O TMS B6 I Test mode select. TMS is used as an input port for device programming and test. VeREF+/DAC0 F2 I Input for an external reference voltage/DAC12.0 output VREF+ E2 O Output of positive terminal of the reference voltage in the ADC12 VREF-- /VeREF-- G1 I Negative terminal for the reference voltage for both sources, the internal reference voltage, or an external applied reference voltage XIN E1 I Input port for crystal oscillator XT1. Standard or watch crystals can be connected. XOUT F1 O Output port for crystal oscillator XT1. Standard or watch crystals can be connected. L2, E4 F4, G4 H4, D5 E5, F5 G5, H5 J5, D6 E6, H6 J6, D7 E7, H7 J7, D8 E8, F8 G8, H8 J8, E9 F9, G9 H9, B11 L11 NA Reserved pins. Connection to D/AVSS recommended. Reserved Test data output port. TDO/TDI data output or programming data input terminal. POST OFFICE BOX 655303 DALLAS, TEXAS 75265 7 MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 short-form description CPU The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations, other than program-flow instructions, are performed as register operations in conjunction with seven addressing modes for source operand and four addressing modes for destination operand. Program Counter PC/R0 Stack Pointer SP/R1 SR/CG1/R2 Status Register Constant Generator The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-register operation execution time is one cycle of the CPU clock. Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and constant generator, respectively. The remaining registers are general-purpose registers. Peripherals are connected to the CPU using data, address, and control buses, and can be handled with all instructions. instruction set The instruction set consists of 51 instructions with three formats and seven address modes. Each instruction can operate on word and byte data. Table 1 shows examples of the three types of instruction formats; the address modes are listed in Table 2. CG2/R3 General-Purpose Register R4 General-Purpose Register R5 General-Purpose Register R6 General-Purpose Register R7 General-Purpose Register R8 General-Purpose Register R9 General-Purpose Register R10 General-Purpose Register R11 General-Purpose Register R12 General-Purpose Register R13 General-Purpose Register R14 General-Purpose Register R15 Table 1. Instruction Word Formats Dual operands, source-destination e.g., ADD R4,R5 R4 + R5 ------> R5 Single operands, destination only e.g., CALL R8 PC ---->(TOS), R8----> PC Relative jump, un/conditional e.g., JNE Jump-on-equal bit = 0 Table 2. Address Mode Descriptions ADDRESS MODE Register Indexed Symbolic (PC relative) Absolute Indirect Indirect autoincrement Immediate NOTE: S = source 8 S D D D D D D D D D D SYNTAX EXAMPLE MOV Rs,Rd MOV R10,R11 MOV X(Rn),Y(Rm) MOV 2(R5),6(R6) MOV EDE,TONI OPERATION R10 ----> R11 M(2+R5)----> M(6+R6) M(EDE) ----> M(TONI) MOV &MEM,&TCDAT M(MEM) ----> M(TCDAT) MOV @Rn,Y(Rm) MOV @R10,Tab(R6) M(R10) ----> M(Tab+R6) D MOV @Rn+,Rm MOV @R10+,R11 M(R10) ----> R11 R10 + 2----> R10 D MOV #X,TONI MOV #45,TONI D = destination POST OFFICE BOX 655303 DALLAS, TEXAS 75265 #45 ----> M(TONI) MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 operating modes The MSP430 has one active mode and five software-selectable low-power modes of operation. An interrupt event can wake up the device from any of the five low-power modes, service the request, and restore back to the low-power mode on return from the interrupt program. The following six operating modes can be configured by software: D Active mode (AM) -- All clocks are active. D Low-power mode 0 (LPM0) -- CPU is disabled. -- ACLK and SMCLK remain active. MCLK is disabled. D Low-power mode 1 (LPM1) -- CPU is disabled. -- ACLK and SMCLK remain active. MCLK is disabled. -- DCO’s dc generator is disabled if DCO not used in active mode. D Low-power mode 2 (LPM2) -- CPU is disabled. -- MCLK and SMCLK are disabled. -- DCO’s dc generator remains enabled. -- ACLK remains active. D Low-power mode 3 (LPM3) -- CPU is disabled. -- MCLK and SMCLK are disabled. -- DCO’s dc generator is disabled. -- ACLK remains active. D Low-power mode 4 (LPM4) -- CPU is disabled. -- ACLK is disabled. -- MCLK and SMCLK are disabled. -- DCO’s dc generator is disabled. -- Crystal oscillator is stopped. POST OFFICE BOX 655303 DALLAS, TEXAS 75265 9 MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 interrupt vector addresses The interrupt vectors and the power-up starting address are located in the address range 0x0FFFF to 0x0FFC0. The vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence. If the reset vector (0x0FFFE) contains 0xFFFF (e.g., flash is not programmed), the CPU enters LPM4 after power-up. INTERRUPT SOURCE INTERRUPT FLAG Power-up External Reset Watchdog Flash Key Violation PC out of range (see Note 1) PORIFG WDTIFG RSTIFG KEYV (see Note 2) SYSTEM INTERRUPT WORD ADDRESS PRIORITY Reset 0x0FFFE 31, highest NMI Oscillator Fault Flash memory access violation NMIIFG OFIFG ACCVIFG (see Notes 2 and 6) (Non)maskable (Non)maskable (Non)maskable 0x0FFFC 30 Timer_B7 TBCCR0 CCIFG (see Note 3) Maskable 0x0FFFA 29 Timer_B7 TBCCR1 to TBCCR6 CCIFGs, TBIFG (see Notes 2 and 3) Maskable 0x0FFF8 28 Comparator_A+ CAIFG Maskable 0x0FFF6 27 Watchdog timer+ WDTIFG Maskable 0x0FFF4 26 Timer_A3 TACCR0 CCIFG (see Note 3) Maskable 0x0FFF2 25 Timer_A3 TACCR1 CCIFG TACCR2 CCIFG TAIFG (see Notes 2 and 3) Maskable 0x0FFF0 24 USCI_A0/USCI_B0 receive USCI_B0 I2C status UCA0RXIFG, UCB0RXIFG (see Notes 2 and 4) Maskable 0x0FFEE 23 USCI_A0/USCI_B0 transmit USCI_B0 I2C receive/transmit UCA0TXIFG, UCB0TXIFG (see Note 2 and 5) Maskable 0x0FFEC 22 ADC12 ADC12IFG (see Notes 2 and 3) Maskable 0x0FFEA 21 0x0FFE8 20 I/O port P2 (eight flags) P2IFG.0 to P2IFG.7 (see Notes 2 and 3) Maskable 0x0FFE6 19 I/O port P1 (eight flags) P1IFG.0 to P1IFG.7 (see Notes 2 and 3) Maskable 0x0FFE4 18 USCI_A0/USCI_B1 receive USCI_B1 I2C status UCA1RXIFG, UCB1RXIFG (see Notes 2 and 4) Maskable 0x0FFE2 17 USCI_A1/USCI_B1 transmit USCI_B1 I2C receive/transmit UCA1TXIFG, UCB1TXIFG (see Notes 2 and 5) Maskable 0x0FFE0 16 DMA DMA0IFG, DMA1IFG, DMA2IFG (see Notes 2 and 3) Maskable 0x0FFDE 15 DAC12 DAC12_0IFG, DAC12_1IFG (see Notes 2 and 3) Maskable 0x0FFDC 14 Reserved (see Notes 7 and 8) Reserved 0x0FFDA to 0 0FFC0 0x0FFC0 13 to 0, 0 l lowest t NOTES: 1. A reset is executed if the CPU tries to fetch instructions from within the module register memory address range (0x00000 to 0x001FF) or from within unused address ranges. 2. Multiple source flags. 3. Interrupt flags are located in the module. 4. In SPI mode: UCB0RXIFG. In I2C mode: UCALIFG, UCNACKIFG, ICSTTIFG, UCSTPIFG. 5. In UART/SPI mode: UCB0TXIFG. In I2C mode: UCB0RXIFG, UCB0TXIFG. 6. (Non)maskable: The individual interrupt-enable bit can disable an interrupt event, but the general-interrupt enable cannot. 7. The address 0x0FFBE is used as bootstrap loader security key (BSLSKEY). A 0x0AA55 at this location disables the BSL completely. A zero disables the erasure of the flash if an invalid password is supplied. 8. The interrupt vectors at addresses 0x0FFDA to 0x0FFC0 are not used in this device and can be used for regular program code if necessary. 10 POST OFFICE BOX 655303 DALLAS, TEXAS 75265 MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 special function registers Most interrupt enable bits are collected in the lowest address space. Special-function register bits not allocated to a functional purpose are not physically present in the device. This arrangement provides simple software access. interrupt enable 1 and 2 Address 7 6 00h 5 4 ACCVIE rw--0 3 2 1 0 NMIIE OFIE WDTIE rw--0 rw--0 rw--0 Interrupt Enable Register 1 WDTIE Watchdog timer interrupt enable. Inactive if watchdog mode is selected. Active if watchdog timer is configured as general-purpose timer. OFIE Oscillator fault interrupt enable NMIIE Nonmaskable interrupt enable ACCVIE Flash memory access violation interrupt enable Address 7 6 5 4 01h 3 2 1 0 UCB0TXIE UCB0RXIE UCA0TXIE UCA0RXIE rw--0 rw--0 rw--0 rw--0 Interrupt Enable Register 2 UCA0RXIE USCI_A0 receive interrupt enable UCA0TXIE USCI_A0 transmit interrupt enable UCB0RXIE USCI_B0 receive interrupt enable UCB0TXIE USCI_B0 transmit interrupt enable POST OFFICE BOX 655303 DALLAS, TEXAS 75265 11 MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 interrupt flag register 1 and 2 Address 7 6 5 02h 4 3 2 1 0 NMIIFG RSTIFG PORIFG OFIFG WDTIFG rw--0 rw--(0) rw--(1) rw--1 rw--(0) Interrupt Flag Register 1 WDTIFG Set on watchdog timer overflow or security key violation Reset on VCC power-on or a reset condition at the RST/NMI pin in reset mode. OFIFG Flag set on oscillator fault7 PORIFG Power-on interrupt flag. Set on VCC power up. RSTIFG External reset interrupt flag. Set on a reset condition at RST/NMI pin in reset mode. Reset on VCC power up. NMIIFG Set via RST/NMI pin Address 7 6 5 4 03h 3 2 1 0 UCB0TX IFG UCB0RX IFG UCA0TX IFG UCA0RX IFG rw--1 rw--0 rw--1 rw--0 Interrupt Flag Register 2 UCA0RXIFG USCI_A0 receive interrupt flag UCA0TXIFG USCI_A0 transmit interrupt flag UCB0RXIFG USCI_B0 receive interrupt flag UCB0TXIFG USCI_B0 transmit interrupt flag L eg e n d 12 rw : rw -0 ,1 : rw -(0 ,1 ) B it ca n b e rea d a n d w ritten . B it ca n b e rea d a n d w ritten . It is R e s et o r S e t b y P U C . B it ca n b e rea d a n d w ritten . It is R e s et o r S e t b y P O R . S F R b it is n o t p re s en t in d e vice . POST OFFICE BOX 655303 DALLAS, TEXAS 75265 MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 memory organization Memory Main: interrupt vector Main: code memory Size Flash Flash 116KB 0x0FFFF -- 0x0FFC0 0x1FFFF -- 0x03100 RAM (total) Size Extended Size Mirrored Size 8kB 0x030FF -- 0x01100 6kB 0x030FF -- 0x01900 2kB 0x018FF -- 0x01100 Information memory Size Flash 256 Byte 0x010FF -- 0x01000 Boot memory Size ROM 1KB 0x00FFF -- 0x00C00 Size 2KB 0x009FF -- 0x00200 16-bit 8-bit 8-bit SFR 0x001FF -- 0x00100 0x000FF -- 0x00010 0x0000F -- 0x00000 RAM (mirrored at 0x18FF to 0x01100) Peripherals bootstrap loader (BSL) The MSP430 BSL enables users to program the flash memory or RAM using a UART serial interface. Access to the MSP430 memory via the BSL is protected by a user-defined password. For complete description of the features of the BSL and its implementation, see the application report Features of the MSP430 Bootstrap Loader, literature number SLAA089. BSL Function Pins Data Transmit H1 - P1.1 Data Receive M3 - P2.2 flash memory The flash memory can be programmed via the JTAG port, the bootstrap loader, or in-system by the CPU. The CPU can perform single-byte and single-word writes to the flash memory. Features of the flash memory include: D Flash memory has n segments of main memory and four segments of information memory (A to D) of 64 bytes each. Each segment in main memory is 512 bytes in size. D Segments 0 to n may be erased in one step, or each segment may be individually erased. D Segments A to D can be erased individually, or as a group with segments 0 to n. Segments A to D are also called information memory. D Segment A contains calibration data. After reset, segment A is protected against programming or erasing. It can be unlocked, but care should be taken not to erase this segment if the calibration data is required. D Flash content integrity check with marginal read modes peripherals Peripherals are connected to the CPU through data, address, and control buses and can be handled using all instructions. For complete module descriptions, see the MSP430x2xx Family User’s Guide, literature number SLAU144. POST OFFICE BOX 655303 DALLAS, TEXAS 75265 13 MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 DMA controller The DMA controller allows movement of data from one memory address to another without CPU intervention. For example, the DMA controller can be used to move data from the ADC12 conversion memory to RAM. Using the DMA controller can increase the throughput of peripheral modules. The DMA controller reduces system power consumption by allowing the CPU to remain in sleep mode without having to awaken to move data to or from a peripheral. oscillator and system clock The clock system in the MSP43x261x family of devices is supported by the basic clock module that includes support for a 32768-Hz watch crystal oscillator, an internal very low-power low-frequency oscillator, an internal digitally controlled oscillator (DCO), and a high-frequency crystal oscillator. The basic clock module is designed to meet the requirements of both low system cost and low power consumption. The internal DCO provides a fast turn-on clock source and stabilizes in less than 1 s. The basic clock module provides the following clock signals: D Auxiliary clock (ACLK), sourced from a 32768-Hz watch crystal, a high-frequency crystal, or a very low-power LF oscillator D Main clock (MCLK), the system clock used by the CPU D Sub-Main clock (SMCLK), the subsystem clock used by the peripheral modules The DCO settings to calibrate the DCO output frequency are stored in the information memory segment A. 14 POST OFFICE BOX 655303 DALLAS, TEXAS 75265 MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 calibration data stored in information memory segment A Calibration data is stored for the DCO and for the ADC12. It is organized in a tag-length-value (TLV) structure. TAGS USED BY THE ADC CALIBRATION TAGS NAME ADDRESS VALUE TAG_DCO_30 0x10F6 0x01 DCO frequency calibration at VCC = 3 V and TA = 25C at calibration TAG_ADC12_1 0x10DA 0x10 ADC12_1 calibration tag -- 0xFE Identifier for empty memory areas TAG_EMPTY DESCRIPTION LABELS USED BY THE ADC CALIBRATION TAGS LABEL CONDITION AT CALIBRATION / DESCRIPTION SIZE ADDRESS OFFSET CAL_ADC_25T85 INCHx = 0x1010; REF2_5 = 1, TA = 85C word 0x000E CAL_ADC_25T30 INCHx = 0x1010; REF2_5 = 1, TA = 30C word 0x000C CAL_ADC_25VREF_FACTOR REF2_5 = 1, TA = 30C word 0x000A CAL_ADC_15T85 INCHx = 0x1010; REF2_5 = 0, TA = 85C word 0x0008 CAL_ADC_15T30 INCHx = 0x1010; REF2_5 = 0, TA = 30C word 0x0006 REF2_5 = 0, TA = 30C word 0x0004 CAL_ADC_OFFSET External VREF = 1.5 V, fADC12CLK = 5 MHz word 0x0002 CAL_ADC_GAIN_FACTOR CAL_ADC_15VREF_FACTOR External VREF = 1.5 V, fADC12CLK = 5 MHz word 0x0000 CAL_BC1_1MHZ -- byte 0x0007 CAL_DCO_1MHZ -- byte 0x0006 CAL_BC1_8MHZ -- byte 0x0005 CAL_DCO_8MHZ -- byte 0x0004 CAL_BC1_12MHZ -- byte 0x0003 CAL_DCO_12MHZ -- byte 0x0002 CAL_BC1_16MHZ -- byte 0x0001 CAL_DCO_16MHZ -- byte 0x0000 brownout, supply voltage supervisor (SVS) The brownout circuit is implemented to provide the proper internal reset signal to the device during power on and power off. The SVS circuitry detects if the supply voltage drops below a user selectable level and supports both supply voltage supervision (the device is automatically reset) and supply voltage monitoring (SVM) (the device is not automatically reset). The CPU begins code execution after the brownout circuit releases the device reset. However, VCC may not have ramped to VCC(min) at that time. The user must ensure that the default DCO settings are not changed until VCC reaches VCC(min). If desired, the SVS circuit can be used to determine when VCC reaches VCC(min). digital I/O There are up to eight 8-bit I/O ports implemented—ports P1 through P8: D D D D D D All individual I/O bits are independently programmable. Any combination of input, output, and interrupt conditions is possible. Edge-selectable interrupt input capability for all eight bits of ports P1 and P2. Read/write access to port-control registers is supported by all instructions. Each I/O has an individually programmable pullup/pulldown resistor. Ports P7/P8 can be accessed word-wise. POST OFFICE BOX 655303 DALLAS, TEXAS 75265 15 MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 watchdog timer+ (WDT+) The primary function of the WDT+ module is to perform a controlled system restart after a software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed in an application, the module can be configured as an interval timer and can generate interrupts at selected time intervals. hardware multiplier The multiplication operation is supported by a dedicated peripheral module. The module performs 16×16, 16×8, 8×16, and 8×8 bit operations. The module is capable of supporting signed and unsigned multiplication as well as signed and unsigned multiply and accumulate operations. The result of an operation can be accessed immediately after the operands have been loaded into the peripheral registers. No additional clock cycles are required. universal serial communication interface (USCI) The USCI modules are used for serial data communication. The USCI module supports synchronous communication protocols such as SPI (3 pin or 4 pin) or I2C, and asynchronous combination protocols such as UART, enhanced UART with automatic baudrate detection (LIN), and IrDA. The USCI A module provides support for SPI (3 pin or 4 pin), UART, enhanced UART, and IrDA. The USCI B module provides support for SPI (3 pin or 4 pin) and I2C. 16 POST OFFICE BOX 655303 DALLAS, TEXAS 75265 MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 timer_A3 Timer_A3 is a 16-bit timer/counter with three capture/compare registers. Timer_A3 can support multiple capture/compares, PWM outputs, and interval timing. Timer_A3 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. TIMER_A3 SIGNAL CONNECTIONS INPUT PIN NUMBER DEVICE INPUT SIGNAL MODULE INPUT NAME G2 -- P1.0 TACLK TACLK ACLK ACLK SMCLK SMCLK M2 -- P2.1 TAINCLK INCLK H1 -- P1.1 TA0 CCI0A M3 -- P2.2 H2 -- P1.2 TA0 CCI0B DVSS GND DVCC VCC TA1 CCI1A CAOUT (internal) CCI1B DVSS GND DVCC VCC MODULE BLOCK MODULE OUTPUT SIGNAL Timer NA OUTPUT PIN NUMBER H1 - P1.1 CCR0 TA0 K1 - P1.5 L5 - P2.7 H2 - P1.2 K2 - P1.6 CCR1 TA1 L3 - P2.3 ADC12 (internal) DAC12_0 (internal) DAC12_1 (internal) J1 -- P1.3 TA2 CCI2A ACLK (internal) CCI2B DVSS GND DVCC VCC POST OFFICE BOX 655303 J1 - P1.3 CCR2 TA2 L1 - P1.7 L4 - P2.4 DALLAS, TEXAS 75265 17 MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 timer_B7 Timer_B7 is a 16-bit timer/counter with seven capture/compare registers. Timer_B7 can support multiple capture/compares, PWM outputs, and interval timing. Timer_B7 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. TIMER_B3/B7 SIGNAL CONNECTIONS† INPUT PIN NUMBER DEVICE INPUT SIGNAL MODULE INPUT NAME K11 -- P4.7 TBCLK TBCLK ACLK ACLK SMCLK SMCLK K11 -- P4.7 TBCLK INCLK M9 -- P4.0 TB0 CCI0A M9-- P4.0 MODULE OUTPUT SIGNAL Timer NA OUTPUT PIN NUMBER M9 - P4.0 ADC12 (internal) TB0 CCI0B DVSS GND DVCC VCC J9 -- P4.1 TB1 CCI1A J9 - P4.1 J9 -- P4.1 TB1 CCI1B ADC12 (internal) DVSS GND M10 -- P4.2 M10 -- P4.2 DVCC VCC TB2 CCI2A TB2 CCI2B DVSS GND DVCC VCC L10 -- P4.3 TB3 CCI3A L10 -- P4.3 TB3 CCI3B DVSS GND DVCC VCC M11 -- P4.4 TB4 CCI4A M11 -- P4.4 TB4 CCI4B DVSS GND DVCC VCC M12 -- P4.5 TB5 CCI5A M12 -- P4.5 TB5 CCI5B DVSS GND L12 -- P4.6 18 MODULE BLOCK DVCC VCC TB6 CCI6A ACLK (internal) CCI6B DVSS GND DVCC VCC CCR0 CCR1 TB1 M10 - P4.2 CCR2 TB2 DAC_0(internal) DAC_1(internal) L10 - P4.3 CCR3 TB3 M11 - P4.4 CCR4 TB4 M12 - P4.5 CCR5 TB5 L12 - P4.6 CCR6 POST OFFICE BOX 655303 TB0 DALLAS, TEXAS 75265 TB6 MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 comparator_A+ The primary function of the comparator_A+ module is to support precision slope analog-to-digital conversions, battery-voltage supervision, and monitoring of external analog signals. ADC12 The ADC12 module supports fast 12-bit analog-to-digital conversions. The module implements a 12-bit SAR core, sample select control, reference generator, and a 16-word conversion-and-control buffer. The conversion-and-control buffer allows up to 16 independent ADC samples to be converted and stored without any CPU intervention. DAC12 The DAC12 module is a 12-bit, R-ladder, voltage-output digital-to-analog converter (DAC). The DAC12 may be used in 8-bit or 12-bit mode and may be used in conjunction with the DMA controller. When multiple DAC12 modules are present, they may be grouped together for synchronous operation. POST OFFICE BOX 655303 DALLAS, TEXAS 75265 19 MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 peripheral file map PERIPHERAL FILE MAP DMA† DAC12† ADC12 † 20 DMA channel 2 transfer size DMA2SZ 0x01F2 DMA channel 2 destination address DMA2DA 0x01EE DMA channel 2 source address DMA2SA 0x01EA DMA channel 2 control DMA2CTL 0x01E8 DMA channel 1 transfer size DMA1SZ 0x01E6 DMA channel 1 destination address DMA1DA 0x01E2 DMA channel 1 source address DMA1SA 0x01DE DMA channel 1 control DMA1CTL 0x01DC DMA channel 0 transfer size DMA0SZ 0x01DA DMA channel 0 destination address DMA0DA 0x01D6 DMA channel 0 source address DMA0SA 0x01D2 DMA channel 0 control DMA0CTL 0x01D0 DMA module interrupt vector word DMAIV 0x0126 DMA module control 1 DMACTL1 0x0124 DMA module control 0 DMACTL0 0x0122 DAC12_1 data DAC12_1DAT 0x01CA DAC12_1 control DAC12_1CTL 0x01C2 DAC12_0 data DAC12_0DAT 0x01C8 DAC12_0 control DAC12_0CTL 0x01C0 Interrupt-vector-word register ADC12IV 0x01A8 Inerrupt-enable register ADC12IE 0x01A6 Inerrupt-flag register ADC12IFG 0x01A4 Control register 1 ADC12CTL1 0x01A2 Control register 0 ADC12CTL0 0x01A0 Conversion memory 15 ADC12MEM15 0x015E Conversion memory 14 ADC12MEM14 0x015C Conversion memory 13 ADC12MEM13 0x015A Conversion memory 12 ADC12MEM12 0x0158 Conversion memory 11 ADC12MEM11 0x0156 Conversion memory 10 ADC12MEM10 0x0154 Conversion memory 9 ADC12MEM9 0x0152 Conversion memory 8 ADC12MEM8 0x0150 Conversion memory 7 ADC12MEM7 0x014E Conversion memory 6 ADC12MEM6 0x014C Conversion memory 5 ADC12MEM5 0x014A Conversion memory 4 ADC12MEM4 0x0148 Conversion memory 3 ADC12MEM3 0x0146 Conversion memory 2 ADC12MEM2 0x0144 Conversion memory 1 ADC12MEM1 0x0142 Conversion memory 0 ADC12MEM0 0x0140 MSP430F261x devices only POST OFFICE BOX 655303 DALLAS, TEXAS 75265 MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 PERIPHERAL FILE MAP (CONTINUED) ADC12 (continued) Timer_B7 _ Timer_A3 _ ADC memory-control register15 ADC12MCTL15 0x008F ADC memory-control register14 ADC12MCTL14 0x008E ADC memory-control register13 ADC12MCTL13 0x008D ADC memory-control register12 ADC12MCTL12 0x008C ADC memory-control register11 ADC12MCTL11 ADC memory-control register10 ADC12MCTL10 0x008A ADC memory-control register9 ADC12MCTL9 0x0089 ADC memory-control register8 ADC12MCTL8 0x0088 ADC memory-control register7 ADC12MCTL7 0x0087 ADC memory-control register6 ADC12MCTL6 0x0086 ADC memory-control register5 ADC12MCTL5 0x0085 ADC memory-control register4 ADC12MCTL4 0x0084 ADC memory-control register3 ADC12MCTL3 0x0083 ADC memory-control register2 ADC12MCTL2 0x0082 ADC memory-control register1 ADC12MCTL1 0x0081 ADC memory-control register0 ADC12MCTL0 0x0080 Capture/compare register 6 TBCCR6 0x019E Capture/compare register 5 TBCCR5 0x019C Capture/compare register 4 TBCCR4 0x019A Capture/compare register 3 TBCCR3 0x0198 Capture/compare register 2 TBCCR2 0x0196 Capture/compare register 1 TBCCR1 0x0194 Capture/compare register 0 TBCCR0 0x0192 Timer_B register TBR 0x0190 Capture/compare control 6 TBCCTL6 0x018E Capture/compare control 5 TBCCTL5 0x018C Capture/compare control 4 TBCCTL4 0x018A Capture/compare control 3 TBCCTL3 0x0188 Capture/compare control 2 TBCCTL2 0x0186 Capture/compare control 1 TBCCTL1 0x0184 Capture/compare control 0 TBCCTL0 0x0182 Timer_B control TBCTL 0x0180 Timer_B interrupt vector TBIV 0x011E Capture/compare register 2 TACCR2 0x0176 Capture/compare register 1 TACCR1 0x0174 Capture/compare register 0 TACCR0 0x0172 Timer_A register TAR 0x0170 0x008B Reserved 0x016E Reserved 0x016C Reserved 0x016A Reserved 0x0168 Capture/compare control 2 TACCTL2 0x0166 Capture/compare control 1 TACCTL1 0x0164 Capture/compare control 0 TACCTL0 0x0162 Timer_A control TACTL 0x0160 Timer_A interrupt vector TAIV 0x012E POST OFFICE BOX 655303 DALLAS, TEXAS 75265 21 MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 PERIPHERAL FILE MAP (CONTINUED) Hardware Multiplier Sum extend SUMEXT 0x013E Result high word RESHI 0x013C Result low word RESLO 0x013A Second operand OP2 0x0138 Multiply signed +accumulate/operand1 MACS 0x0136 Multiply+accumulate/operand1 MAC 0x0134 Multiply signed/operand1 MPYS 0x0132 Multiply unsigned/operand1 MPY 0x0130 Flash control 4 FCTL4 0x01BE Flash control 3 FCTL3 0x012C Flash control 2 FCTL2 0x012A Flash control 1 FCTL1 0x0128 Watchdog Watchdog Timer control WDTCTL 0x0120 USCI A0/B0 / USCI A0 auto baud rate control UCA0ABCTL 0x005D USCI A0 transmit buffer UCA0TXBUF 0x0067 USCI A0 receive buffer UCA0RXBUF 0x0066 USCI A0 status UCA0STAT 0x0065 USCI A0 modulation control UCA0MCTL 0x0064 USCI A0 baud rate control 1 UCA0BR1 0x0063 USCI A0 baud rate control 0 UCA0BR0 0x0062 USCI A0 control 1 UCA0CTL1 0x0061 USCI A0 control 0 UCA0CTL0 0x0060 USCI A0 IrDA receive control UCA0IRRCTL 0x005F USCI A0 IrDA transmit control UCA0IRTCLT 0x005E USCI B0 transmit buffer UCB0TXBUF 0x006F USCI B0 receive buffer UCB0RXBUF 0x006E USCI B0 status UCB0STAT 0x006D USCI B0 I2C Interrupt enable UCB0CIE 0x006C USCI B0 baud rate control 1 UCB0BR1 0x006B USCI B0 baud rate control 0 UCB0BR0 0x006A USCI B0 control 1 UCB0CTL1 0x0069 USCI B0 control 0 UCB0CTL0 0x0068 USCI B0 I2C slave address UCB0SA 0x011A USCI B0 I2C own address UCB0OA 0x0118 USCI A1 auto baud rate control UCA1ABCTL 0x00CD USCI A1 transmit buffer UCA1TXBUF 0x00D7 USCI A1 receive buffer UCA1RXBUF 0x00D6 USCI A1 status UCA1STAT 0x00D5 USCI A1 modulation control UCA1MCTL 0x00D4 USCI A1 baud rate control 1 UCA1BR1 0x00D3 USCI A1 baud rate control 0 UCA1BR0 0x00D2 USCI A1 control 1 UCA1CTL1 0x00D1 USCI A1 control 0 UCA1CTL0 0x00D0 USCI A1 IrDA receive control UCA1IRRCTL 0x00CF USCI A1 IrDA transmit control UCA1IRTCLT 0x00CE Flash USCI A1/B1 / 22 POST OFFICE BOX 655303 DALLAS, TEXAS 75265 MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 PERIPHERAL FILE MAP (CONTINUED) USCI A1/B1 / (continued) USCI B1 transmit buffer UCB1TXBUF 0x00DF USCI B1 receive buffer UCB1RXBUF 0x00DE USCI B1 status UCB1STAT 0x00DD USCI B1 I2C Interrupt enable UCB1CIE 0x00DC USCI B1 baud rate control 1 UCB1BR1 0x00DB USCI B1 baud rate control 0 UCB1BR0 0x00DA USCI B1 control 1 UCB1CTL1 0x00D9 USCI B1 control 0 UCB1CTL0 0x00D8 USCI B1 I2C slave address UCB1SA 0x017E USCI B1 I2C own address UCB1OA 0x017C USCI A1/B1 interrupt enable UC1IE 0x0006 USCI A1/B1 interrupt flag UC1IFG 0x0007 Comparator_A port disable CAPD 0x005B Comparator_A control2 CACTL2 0x005A Comparator_A control1 CACTL1 0x0059 Basic clock system control3 BCSCTL3 0x0053 Basic clock system control2 BCSCTL2 0x0058 Basic clock system control1 BCSCTL1 0x0057 DCO clock frequency control DCOCTL 0x0056 Brownout, SVS SVS control register (reset by brownout signal) SVSCTL 0x0055 Port PA Port PA resistor enable PAREN 0x0014 Port PA selection PASEL 0x003E Port PA direction PADIR 0x003C Port PA output PAOUT 0x003A Port PA input PAIN 0x0038 Port P8 resistor enable P8REN 0x0015 Port P8 selection P8SEL 0x003F Port P8 direction P8DIR 0x003D Port P8 output P8OUT 0x003B Port P8 input P8IN 0x0039 Port P7 resistor enable P7REN 0x0014 Port P7 selection P7SEL 0x003E Port P7 direction P7DIR 0x003C Port P7 output P7OUT 0x003A Port P7 input P7IN 0x0038 Port P6 resistor enable P6REN 0x0013 Port P6 selection P6SEL 0x0037 Port P6 direction P6DIR 0x0036 Port P6 output P6OUT 0x0035 Port P6 input P6IN 0x0034 Port P5 resistor enable P5REN 0x0012 Port P5 selection P5SEL 0x0033 Port P5 direction P5DIR 0x0032 Port P5 output P5OUT 0x0031 Port P5 input P5IN 0x0030 Comparator_A+ p _ Basic Clock Port P8 Port P7 Port P6 Port P5 POST OFFICE BOX 655303 DALLAS, TEXAS 75265 23 MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 PERIPHERAL FILE MAP (CONTINUED) Port P4 Port P3 Port P2 Port P1 Special p Functions 24 Port P4 selection P4SEL 0x001F Port P4 resistor enable P4REN 0x0011 Port P4 direction P4DIR 0x001E Port P4 output P4OUT 0x001D Port P4 input P4IN 0x001C Port P3 resistor enable P3REN 0x0010 Port P3 selection P3SEL 0x001B Port P3 direction P3DIR 0x001A Port P3 output P3OUT 0x0019 Port P3 input P3IN 0x0018 Port P2 resistor enable P2REN 0x002F Port P2 selection P2SEL 0x002E Port P2 interrupt enable P2IE 0x002D Port P2 interrupt-edge select P2IES 0x002C Port P2 interrupt flag P2IFG 0x002B Port P2 direction P2DIR 0x002A Port P2 output P2OUT 0x0029 Port P2 input P2IN 0x0028 Port P1 resistor enable P1REN 0x0027 Port P1 selection P1SEL 0x0026 Port P1 interrupt enable P1IE 0x0025 Port P1 interrupt-edge select P1IES 0x0024 Port P1 interrupt flag P1IFG 0x0023 Port P1 direction P1DIR 0x0022 Port P1 output P1OUT 0x0021 Port P1 input P1IN 0x0020 SFR interrupt flag2 IFG2 0x0003 SFR interrupt flag1 IFG1 0x0002 SFR interrupt enable2 IE2 0x0001 SFR interrupt enable1 IE1 0x0000 POST OFFICE BOX 655303 DALLAS, TEXAS 75265 MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 absolute maximum ratings (see Note 1) Voltage applied at VCC to VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . --0.3 V to 4.1 V Voltage applied to any pin (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . --0.3 V to VCC + 0.3 V Diode current at any device terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 mA Storage temperature: Unprogrammed device (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . --55C to 150C Programmed device (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . --40C to 105C NOTES: 1. Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. 2. All voltages referenced to VSS. The JTAG fuse-blow voltage, VFB, is allowed to exceed the absolute maximum rating. The voltage is applied to the TDI/TCLK pin when blowing the JTAG fuse. 3. Higher temperature may be applied during board soldering process according to the current JEDEC J-STD-020 specification, with peak reflow temperatures not higher than classified on the device label on the shipping boxes or reels. recommended operating conditions MIN MAX Supply voltage during program execution, VCC PARAMETER AVCC = DVCC = VCC (see Note 1) 1.8 3.6 V Supply voltage during flash memory programming, VCC AVCC = DVCC = VCC (see Note 1) 2.2 3.6 V Supply voltage, VSS AVSS = DVSS = VSS 0.0 0.0 V I version --40 85 T version --40 105 VCC = 1.8 V, Duty cycle = 50% 10% dc 4.15 VCC = 2.7 V, Duty cycle = 50% 10% dc 12 VCC 3.3 V, Duty cycle = 50% 10% dc 16 Operating free-air free air temperature, temperature TA Processor frequency fSYSYTEM (maximum MCLK frequency) (see Notes 2 and 3 and Figure 1) UNIT C MHz NOTES: 1. It is recommended to power AVCC and DVCC from the same source. A maximum difference of 0.3 V between AVCC and DVCC can be tolerated during power-up. 2. The MSP430 CPU is clocked directly with MCLK. Both the high and low phase of MCLK must not exceed the pulse width of the specified maximum frequency. 3. Modules might have a different maximum input clock specification. See the specification of the respective module in this data sheet. Legend: System Frequency --MHz 16 MHz Supply voltage range during flash memory programming 12 MHz Supply voltage range during program execution 7.5 MHz 4.15 MHz 1.8 V 2.2 V 2.7 V 3.3 V 3.6 V Supply Voltage --V NOTE: Minimum processor frequency is defined by system clock. Flash program or erase operations require a minimum VCC of 2.2 V. Figure 1. Operating Area POST OFFICE BOX 655303 DALLAS, TEXAS 75265 25 MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) active mode supply current into VCC excluding external current (see Notes 1 and 2) PARAMETER IAM, 1MHz IAM, 1MHz IAM, 4kHz Active mode (AM) current (1 MHz) Active mode (AM) current (1 MHz) Active mode (AM) current (4 kHz) TEST CONDITIONS TA TYP MAX 365 395 375 420 515 560 525 595 330 370 340 390 460 495 470 520 2.1 9 105_C 15 31 --40_C to 85_C 3 11 19 32 fDCO = fMCLK = fSMCLK = 1 MHz, fACLK = 32,768 32 768 Hz, Hz Program executes from flash, BCSCTL1 = CALBC1_1MHZ, CALBC1 1MHZ DCOCTL = CALDCO_1MHZ, _ CPUOFF = 0 0, SCG0 = 0 0, SCG1 = 0, 0 OSCOFF = 0 --40_C to 85_C fDCO = fMCLK = fSMCLK = 1 MHz, fACLK = 32,768 32 768 Hz, Hz Program executes in RAM, BCSCTL1 = CALBC1_1MHZ, CALBC1 1MHZ DCOCTL = CALDCO_1MHZ, _ CPUOFF = 0 0, SCG0 = 0 0, SCG1 = 0, 0 OSCOFF = 0 --40_C to 85_C fMCLK = fSMCLK = fACLK = 32,768 Hz/8 = 4,096 Hz, fDCO = 0 Hz, Program executes in flash, SELMx = 11, SELS = 1, DIVMx = DIVSx = DIVAx = 11, CPUOFF = 0, SCG0 = 1, SCG1 = 0, OSCOFF = 0 --40_C to 85_C 105_C --40_C to 85_C 105_C 105_C --40_C to 85_C 105_C VCC 22V 2.2 3V 22V 2.2 3V MIN UNIT A A 22V 2.2 A 3V 105_C fMCLK = fSMCLK = fDCO(0, 0) 100 kHz, --40_C to 85_C 67 86 22V 2.2 fACLK = 0 Hz, Hz 105_C 80 99 Active mode (AM) Program executes in flash, IAM,100kHz A RSELx = 0, DCOx = 0, current (100 kHz) --40_C to 85_C 84 107 CPUOFF = 0 0, SCG0 = 0 0, SCG1 = 0, 0 3V 105_C 99 128 OSCOFF = 1 NOTES: 1. All inputs are tied to 0 V or VCC. Outputs do not source or sink any current. 2. The currents are characterized with a micro crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF. The internal and external load capacitance is chosen to closely match the required 9 pF. 26 POST OFFICE BOX 655303 DALLAS, TEXAS 75265 MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) typical characteristics -- active mode supply current (into DVCC + AVCC) 7.0 10.0 6.0 Active Mode Current -- mA 9.0 Active Mode Current -- mA TA = 85 C fDCO = 16 MHz 8.0 fDCO = 12 MHz 7.0 6.0 5.0 fDCO = 8 MHz 4.0 3.0 2.0 0.0 1.5 2.0 2.5 3.0 5.0 4.0 VCC = 3 V TA = 85 C 3.0 TA = 25 C 2.0 VCC = 2.2 V 1.0 fDCO = 1 MHz 1.0 TA = 25 C 3.5 4.0 0.0 0.0 VCC -- Supply Voltage -- V Figure 2. Active Mode Current vs VCC, TA = 25C POST OFFICE BOX 655303 4.0 8.0 12.0 16.0 fDCO -- DCO Frequency -- MHz Figure 3. Active Mode Current vs DCO Frequency DALLAS, TEXAS 75265 27 MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) low-power mode supply current into VCC excluding external current (see Notes 1 and 2) PARAMETER ILPM0, 1MHz ILPM0, 100kHz ILPM2 ILPM3,LFXT1 Low-power mode 0 (LPM0) current, current see Note 3 Low-power mode 0 (LPM0) current, current see Note 3 Low-power mode 2 (LPM2) current, current see Note 4 Low-power mode 3 (LPM3) current, current see Note 4 TEST CONDITIONS TA TYP MAX 68 83 83 98 87 105 100 125 37 49 50 62 40 55 57 73 23 33 35 46 25 36 40 55 --40C 0.8 1.2 25C 1 1.3 fMCLK = 0 MHz, fSMCLK = fDCO = 1 MHz, MHz fACLK = 32,768 Hz, BCSCTL1 = CALBC1_1MHZ, CALBC1 1MHZ DCOCTL = CALDCO_1MHZ, _ CPUOFF = 1 1, SCG0 = 0 0, SCG1 = 0, 0 OSCOFF = 0 --40_C to 85_C fMCLK = 0MHz, fSMCLK = fDCO(0, 0) 100 kHz, kHz fACLK = 0 Hz, RSELx = 0, DCOx = 0, CPUOFF = 1 1, SCG0 = 0 0, SCG1 = 0, 0 OSCOFF = 1 fMCLK = fSMCLK = 0 MHz, fDCO = 1 MHz, fACLK = 32 32,768 768 Hz, Hz BCSCTL1 = CALBC1_1MHZ, DCOCTL = CALDCO_1MHZ, CPUOFF = 1 1, SCG0 = 0 0, SCG1 = 1, 1 OSCOFF = 0 --40_C to 85_C fDCO = fMCLK = fSMCLK = 0 MHz, MHz fACLK = 32,768 Hz, CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 105_C --40_C to 85_C 105_C 105_C --40_C to 85_C 105_C --40_C to 85_C 105_C --40_C to 85_C 105_C 85C ILPM3,VLO fDCO = fMCLK = fSMCLK = 0 MHz, MHz fACLK from internal LF oscillator (VLO), CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 22V 2.2 3V 22V 2.2 3V 22V 2.2 3V 22V 2.2 MIN 4.6 7 105C 14 24 --40C 0.9 1.3 1.1 1.5 25C 85C Low-power mode 3 ((LPM3)) current, see N Note t 4 VCC 3V 5.5 8 105C 17 30 --40C 0.4 1.0 25C 0.5 1.0 4.3 6.5 85C 22V 2.2 105C 14 24 --40C 0.6 1.2 0.6 1.2 25C 85C 105C 3V 5 7.5 16.5 29.5 UNIT A A A A A NOTES: 1. All inputs are tied to 0 V or VCC. Outputs do not source or sink any current. 2. The currents are characterized with a micro crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF. The internal and external load capacitance is chosen to closely match the required 9 pF. 3. Current for Brownout and WDT+ is included. The WDT+ is clocked by SMCLK. 4. Current for Brownout and WDT+ is included. The WDT+ is clocked by ACLK. 28 POST OFFICE BOX 655303 DALLAS, TEXAS 75265 MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) low-power mode supply current into VCC excluding external current (see Notes 1 and 2) (continued) PARAMETER ILPM4 ILPM4 TEST CONDITIONS Low-power mode 4 (LPM4) current, see Note 3 Low-power mode 4 (LPM4) current, see Note 3 TA fDCO = fMCLK = fSMCLK = 0 MHz, MHz fACLK = 0 Hz, CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1 fDCO = fMCLK = fSMCLK = 0 MHz, MHz fACLK = 0 Hz, CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1 VCC TYP MAX 0.1 0.5 0.1 0.5 4 6 105C 13 23 --40C 0.2 0.5 25C 0.2 0.5 4.7 7 14 24 --40C 25C 85C 85C 22V 2.2 3V 105C MIN UNIT A A A A NOTES: 1. All inputs are tied to 0 V or VCC. Outputs do not source or sink any current. 2. The currents are characterized with a micro crystal CC4V--T1A SMD crystal with a load capacitance of 9 pf. The internal and external load capacitance is chosen to closely match the required 9 pf. 3. Current for Brownout included. ILPM4 -- Low--power mode current -- uA typical characteristics -- LPM4 current 16.0 15.0 14.0 13.0 12.0 11.0 10.0 9.0 8.0 Vcc = 3.6V 7.0 Vcc = 3.0V 6.0 5.0 Vcc = 2.2V 4.0 3.0 2.0 1.0 Vcc = 1.8V 0.0 --40.0 --20.0 0.0 20.0 40.0 60.0 80.0 100.0 120.0 TA -- Temperature -- C Figure 4. ILPM4 -- LPM4 Current vs. Temperature POST OFFICE BOX 655303 DALLAS, TEXAS 75265 29 MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 Schmitt-trigger inputs -- ports P1 through P8, RST/NMI, JTAG, XIN, and XT2IN (see Note 1) PARAMETER VIT+ VIT-- TEST CONDITIONS Positive-going Positive going input threshold voltage Negative-going Negative going input threshold voltage Vhys Input voltage hysteresis (VIT+ -- VIT--) RPull Pullup/pulldown resistor Pullup: VIN = VSS, Pulldown: VIN = VCC CI Input capacitance VIN = VSS or VCC VCC MIN TYP MAX 0.45 VCC 0.75 VCC 2.2 V 1.0 1.65 3V 1.35 2.25 0.25 VCC 0.55 VCC 2.2 V 0.55 1.2 3V 0.75 1.65 2.2 V 0.2 1.0 3V 0.3 1.0 20 35 50 5 UNIT V V V kΩ pF NOTE 1: XIN and XT2IN in bypass mode only. inputs -- ports P1 and P2 PARAMETER tint TEST CONDITIONS External interrupt timing Port P1, P2: P1.x to P2.x, external trigger pulse width to set the interrupt flag (see Note 1) VCC 2.2 V/3 V MIN MAX 20 UNIT ns NOTE 1: The external signal sets the interrupt flag every time the minimum t(int) parameters are met. It may be set with trigger signals shorter than t(int). leakage current -- ports P1 through P8 (see Note 1 and 2) PARAMETER Ilkg (Px.x) TEST CONDITIONS High-impedance leakage current see Notes 1 and 2 VCC 2.2 V/3 V MIN MAX UNIT 50 nA NOTES: 1. The leakage current is measured with VSS or VCC applied to the corresponding pin(s), unless otherwise noted. 2. The leakage of digital port pins is measured individually. The port pin is selected for input and the pullup/pulldown resistor is disabled. 30 POST OFFICE BOX 655303 DALLAS, TEXAS 75265 MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) standard inputs -- RST/NMI PARAMETER TEST CONDITIONS VCC MIN MAX UNIT VIL Low-level input voltage 2.2 V/3 V VSS VSS+0.6 V VIH High-level input voltage 2.2 V/3 V 0.8VCC VCC V UNIT outputs -- ports P1 through P8 PARAMETER TEST CONDITIONS VCC IOH(max) = --1.5 mA (see Note 1) VOH 22V 2.2 IOH(max) = --6 mA (see Note 2) High level output voltage High-level IOH(max) = --1.5 mA (see Note 1) 3V IOH(max) = --6 mA (see Note 2) IOL(max) = 1.5 mA (see Note 1) VOL 22V 2.2 IOL(max) = 6 mA (see Note 2) Low level output voltage Low-level IOL(max) = 1.5 mA (see Note 1) 3V IOL(max) = 6 mA (see Note 2) NOTES: 1. The maximum total current, voltage drop specified. 2. The maximum total current, voltage drop specified. MIN MAX VCC --0.25 VCC VCC --0.6 VCC VCC --0.25 VCC VCC --0.6 VCC VSS VSS+0.25 VSS VSS+0.6 VSS VSS+0.25 VSS VSS+0.6 V V IOH(max) and IOL(max), for all outputs combined, should not exceed 12 mA to satisfy the maximum IOH(max) and IOL(max), for all outputs combined, should not exceed 48 mA to satisfy the maximum output frequency -- ports P1 through P8 PARAMETER VCC MIN fPx.y Port output frequency with load P1.4/SMCLK, CL = 20 pF, RL = 1 kΩ (see Notes 1 and 2) 2.2 V DC 10 3.0 V DC 12 fPort_CLK Clock output frequency P2.0/ACLK/CA2, P1.4/SMCLK, CL = 20 pF (see Note 2) 2.2 V DC 12 3.3 V DC 16 t(Xdc) Duty cycle of output frequency q y TEST CONDITIONS TYP MAX P5.6/ACLK, CL = 20 pF, LF mode 30 50 70 P5.6/ACLK, CL = 20 pF, XT1 mode 40 50 60 P5.4/MCLK, CL = 20 pF, XT1 mode 40 P5.4/MCLK, CL = 20 pF, DCO 50% -- 15 ns P1.4/SMCLK, CL = 20 pF, XT2 mode P1.4/SMCLK, CL = 20 pF, DCO UNIT MHz MHz % 60 50 50% + 15 ns 40 60 50% -- 15 ns 50% + 15 ns % NOTES: 1. A resistive divider with 2 times 0.5 kΩ between VCC and VSS is used as load. The output is connected to the center tap of the divider. 2. The output voltage reaches at least 10% and 90% VCC at the specified toggle frequency. POST OFFICE BOX 655303 DALLAS, TEXAS 75265 31 MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) typical characteristics -- outputs TA = 25C VCC = 2.2 V P4.5 20.0 TA = 85C 15.0 10.0 5.0 0.0 0.0 0.5 1.0 1.5 2.0 50.0 I OL -- Typical Low-Level Output Current -- mA I OL -- Typical Low-Level Output Current -- mA 25.0 TYPICAL LOW-LEVEL OUTPUT CURRENT vs LOW-LEVEL OUTPUT VOLTAGE of one pin TYPICAL LOW-LEVEL OUTPUT CURRENT vs LOW-LEVEL OUTPUT VOLTAGE of one pin VCC = 3 V P4.5 40.0 TA = 85C 30.0 20.0 10.0 0.0 0.0 2.5 TA = 25C 0.5 VOL -- Low-Level Output Voltage -- V 1.0 TYPICAL HIGH-LEVEL OUTPUT CURRENT vs HIGH-LEVEL OUTPUT VOLTAGE of one pin I OH -- Typical High-Level Output Current -- mA I OH -- Typical High-Level Output Current -- mA --10.0 --15.0 --25.0 0.0 TA = 85C TA = 25C 0.5 1.0 1.5 2.0 2.5 VOH -- High-Level Output Voltage -- V 3.0 3.5 VCC = 3 V P4.5 --10.0 --20.0 --30.0 --40.0 TA = 85C --50.0 0.0 TA = 25C 0.5 1.0 1.5 Figure 8 POST OFFICE BOX 655303 2.0 2.5 3.0 VOH -- High-Level Output Voltage -- V Figure 7 32 2.5 TYPICAL HIGH-LEVEL OUTPUT CURRENT vs HIGH-LEVEL OUTPUT VOLTAGE of one pin 0.0 VCC = 2.2 V P4.5 --5.0 --20.0 2.0 Figure 6 Figure 5 0.0 1.5 VOL -- Low-Level Output Voltage -- V DALLAS, TEXAS 75265 3.5 MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) POR/brownout reset (BOR) (see Notes 1 and 2) PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT VCC(start) operating voltage dVCC/dt ± 3 V/s 0.7 ¢ V(B_IT--) V V(B_IT--) negative going VCC reset threshold voltage dVCC/dt ± 3 V/s 1.71 V Vhys(B_IT--) VCC reset threshold hysteresis dVCC/dt ± 3 V/s 210 mV td(BOR) BOR reset release delay time 2000 s treset Pulse length at RST/NMI pin to accept a reset 70 2.2 V / 3 V 2 130 s NOTES: 1. The current consumption of the brownout module is included in the ICC current consumption data. The voltage level V(B_IT--) + Vhys(B_IT--) is 1.8 V. 2. During power up, the CPU begins code execution following a period of td(BOR) after VCC = V(B_IT--) + Vhys(B_IT--). The default DCO settings must not be changed until VCC VCC(MIN), where VCC(min) is the minimum supply voltage for the desired operating frequency. VCC Vhys(B_IT-) V(B_IT-) VCC(Start) 1 0 td(BOR) Figure 9. POR/Brownout Reset (BOR) vs Supply Voltage POST OFFICE BOX 655303 DALLAS, TEXAS 75265 33 MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) typical characteristics -- POR/brownout reset (BOR) VCC 3V VCC(drop) -- V 2 VCC = 3 V Typical Conditions 1.5 t pw 1 VCC(drop) 0.5 0 0.001 1 1000 1 ns tpw -- Pulse Width -- s 1 ns tpw -- Pulse Width -- s Figure 10. VCC(drop) Level With a Square Voltage Drop to Generate a POR/Brownout Signal VCC 2 3V VCC(drop) -- V VCC = 3 V 1.5 t pw Typical Conditions 1 VCC(drop) 0.5 0 0.001 tf = tr 1 1000 tf tr tpw -- Pulse Width -- s tpw -- Pulse Width -- s Figure 11. VCC(drop) Level With a Triangle Voltage Drop to Generate a POR/Brownout Signal 34 POST OFFICE BOX 655303 DALLAS, TEXAS 75265 MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) SVS (supply voltage supervisor/monitor) PARAMETER t(SVSR) TEST CONDITIONS MIN dVCC/dt > 30 V/ms (see Figure 12) 5 MAX 150 dVCC/dt 30 V/ms 2000 td(SVSon) SVSON, switch from VLD = 0 to VLD 0, VCC = 3 V tsettle VLD 0‡ V(SVSstart) VLD 0, VCC/dt 3 V/s (see Figure 12) 20 1.55 VLD = 1 VCC/dt 3 V/s (see Figure 12) Vhys(SVS_IT--) hys(SVS IT--) VCC/dt 3 V/s (see Figure 12), External voltage applied on A7 VCC/dt 3 V/s (see Figure 12 and Figure 13) V(SVS_IT--) (SVS IT ) VCC/dt 3 V/s (see Figure 12 and Figure 13), External voltage applied on A7 ICC(SVS) (see Note 1) TYP VLD = 2 to 14 VLD = 15 70 120 s 150 s 12 s 1.7 V 210 mV V(SVS_IT--) 0.004 V(SVS_IT--) 0.016 4.4 20 VLD = 1 1.8 1.9 2.05 VLD = 2 1.94 2.1 2.25 VLD = 3 2.05 2.2 2.37 VLD = 4 2.14 2.3 2.48 VLD = 5 2.24 2.4 2.6 VLD = 6 2.33 2.5 2.71 VLD = 7 2.46 2.65 2.86 VLD = 8 2.58 2.8 3 VLD = 9 2.69 2.9 3.13 VLD = 10 2.83 3.05 3.29 VLD = 11 2.94 3.2 3.42 VLD = 12 3.11 3.35 3.61† VLD = 13 3.24 3.5 3.76† VLD = 14 3.43 3.7† 3.99† VLD = 15 1.1 1.2 1.3 10 15 VLD 0, VCC = 2.2 V/3 V UNIT V mV V A † The recommended operating voltage range is limited to 3.6 V. tsettle is the settling time that the comparator o/p needs to have a stable level after VLD is switched VLD 0 to a different VLD value between 2 and 15. The overdrive is assumed to be > 50 mV. NOTE 1: The current consumption of the SVS module is not included in the ICC current consumption data. ‡ POST OFFICE BOX 655303 DALLAS, TEXAS 75265 35 MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 typical characteristics AVCC V(SVS_IT--) V(SVSstart) Software sets VLD >0: SVS is active Vhys(SVS_IT--) Vhys(B_IT--) V(B_IT--) VCC(start) Brownout Brownout Region Brownout Region 1 0 SVS out t d(BOR) 1 0 td(SVSon) Set POR 1 td(BOR) SVS Circuit is Active From VLD > to VCC < V(B_IT--) td(SVSR) undefined 0 Figure 12. SVS Reset (SVSR) vs Supply Voltage VCC 3V t pw 2 Rectangular Drop VCC(min) VCC(min) -- V 1.5 Triangular Drop 1 1 ns 1 ns VCC 3V 0.5 t pw 0 1 10 100 1000 tpw -- Pulse Width -- s VCC(min) tf = tr tf tr t -- Pulse Width -- s Figure 13. VCC(min): Square Voltage Drop and Triangle Voltage Drop to Generate an SVS Signal (VLD = 1) 36 POST OFFICE BOX 655303 DALLAS, TEXAS 75265 MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) main DCO characteristics D All ranges selected by RSELx overlap with RSELx + 1: RSELx = 0 overlaps RSELx = 1, ... RSELx = 14 overlaps RSELx = 15. D DCO control bits DCOx have a step size as defined by parameter SDCO. D Modulation control bits MODx select how often fDCO(RSEL,DCO+1) is used within the period of 32 DCOCLK cycles. The frequency fDCO(RSEL,DCO) is used for the remaining cycles. The frequency is an average equal to: f average = 32 × f DCO(RSEL,DCO) × f DCO(RSEL,DCO+1) MOD × f DCO(RSEL,DCO)+(32−MOD) × f DCO(RSEL,DCO+1) DCO frequency PARAMETER VCC Supply voltage TEST CONDITIONS VCC MIN TYP MAX RSELx < 14 1.8 3.6 RSELx = 14 2.2 3.6 RSELx = 15 3.0 3.6 UNIT V fDCO(0,0) DCO frequency (0, 0) RSELx = 0, DCOx = 0, MODx = 0 2.2 V/3 V 0.06 0.14 MHz fDCO(0,3) DCO frequency (0, 3) RSELx = 0, DCOx = 3, MODx = 0 2.2 V/3 V 0.07 0.17 MHz fDCO(1,3) DCO frequency (1, 3) RSELx = 1, DCOx = 3, MODx = 0 2.2 V/3 V 0.10 0.20 MHz fDCO(2,3) DCO frequency (2, 3) RSELx = 2, DCOx = 3, MODx = 0 2.2 V/3 V 0.14 0.28 MHz fDCO(3,3) DCO frequency (3, 3) RSELx = 3, DCOx = 3, MODx = 0 2.2 V/3 V 0.20 0.40 MHz fDCO(4,3) DCO frequency (4, 3) RSELx = 4, DCOx = 3, MODx = 0 2.2 V/3 V 0.28 0.54 MHz fDCO(5,3) DCO frequency (5, 3) RSELx = 5, DCOx = 3, MODx = 0 2.2 V/3 V 0.39 0.77 MHz fDCO(6,3) DCO frequency (6, 3) RSELx = 6, DCOx = 3, MODx = 0 2.2 V/3 V 0.54 1.06 MHz fDCO(7,3) DCO frequency (7, 3) RSELx = 7, DCOx = 3, MODx = 0 2.2 V/3 V 0.80 1.50 MHz fDCO(8,3) DCO frequency (8, 3) RSELx = 8, DCOx = 3, MODx = 0 2.2 V/3 V 1.10 2.10 MHz fDCO(9,3) DCO frequency (9, 3) RSELx = 9, DCOx = 3, MODx = 0 2.2 V/3 V 1.60 3.00 MHz fDCO(10,3) DCO frequency (10, 3) RSELx = 10, DCOx = 3, MODx = 0 2.2 V/3 V 2.50 4.30 MHz fDCO(11,3) DCO frequency (11, 3) RSELx = 11, DCOx = 3, MODx = 0 2.2 V/3 V 3.00 5.50 MHz fDCO(12,3) DCO frequency (12, 3) RSELx = 12, DCOx = 3, MODx = 0 2.2 V/3 V 4.30 7.30 MHz fDCO(13,3) DCO frequency (13, 3) RSELx = 13, DCOx = 3, MODx = 0 2.2 V/3 V 6.00 9.60 MHz fDCO(14,3) DCO frequency (14, 3) RSELx = 14, DCOx = 3, MODx = 0 2.2 V/3 V 8.60 13.9 MHz fDCO(15,3) DCO frequency (15, 3) RSELx = 15, DCOx = 3, MODx = 0 3V 12.0 18.5 MHz fDCO(15,7) DCO frequency (15, 7) RSELx = 15, DCOx = 7, MODx = 0 3V 16.0 26.0 MHz SRSEL Frequency step between range RSEL and RSEL+1 SRSEL = fDCO(RSEL+1,DCO)/fDCO(RSEL,DCO) 2.2 V/3 V 1.55 ratio SDCO Frequency step between tap DCO and DCO+1 SDCO = fDCO(RSEL,DCO+1)/fDCO(RSEL,DCO) 2.2 V/3 V 1.05 1.08 1.12 ratio Measured at P1.4/SMCLK 2.2 V/3 V 40 50 60 Duty cycle POST OFFICE BOX 655303 DALLAS, TEXAS 75265 % 37 MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) calibrated DCO frequencies -- tolerance at calibration PARAMETER TEST CONDITIONS Frequency tolerance at calibration TA VCC MIN TYP MAX UNIT 25C 3V --1 0.2 +1 % 25C 3V 0.990 1 1.010 MHz fCAL(1MHz) 1-MHz calibration value BCSCTL1 = CALBC1_1MHZ, DCOCTL = CALDCO_1MHZ, Gating time: 5 ms fCAL(8MHz) 8-MHz calibration value BCSCTL1 = CALBC1_8MHZ, DCOCTL = CALDCO_8MHZ, Gating time: 5ms 25C 3V 7.920 8 8.080 MHz fCAL(12MHz) 12-MHz calibration value BCSCTL1 = CALBC1_12MHZ, DCOCTL = CALDCO_12MHZ, Gating time: 5ms 25C 3V 11.88 12 12.12 MHz fCAL(16MHz) 16-MHz calibration value BCSCTL1 = CALBC1_16MHZ, DCOCTL = CALDCO_16MHZ, Gating time: 2 ms 25C 3V 15.84 16 16.16 MHz calibrated DCO frequencies -- tolerance over temperature 0C to 85C TA VCC MIN TYP MAX UNIT 1-MHz tolerance over temperature PARAMETER 0C to 85C 3V --2.5 0.5 +2.5 % 8-MHz tolerance over temperature 0C to 85C 3V --2.5 1.0 +2.5 % 12-MHz tolerance over temperature 0C to 85C 3V --2.5 1.0 +2.5 % 16-MHz tolerance over temperature 0C to 85C % fCAL(1MHz) fCAL(8MHz) fCAL(12MHz) fCAL(16MHz) 38 1-MHz 1 MHz calibration value 8-MHz 8 MHz calibration value 12-MHz 12 MHz calibration value 16 MHz calibration value 16-MHz TEST CONDITIONS BCSCTL1 = CALBC1_1MHZ, CALBC1 1MHZ, DCOCTL = CALDCO_1MHZ, Gating time: 5ms BCSCTL1 = CALBC1_8MHZ, CALBC1 8MHZ, DCOCTL = CALDCO_8MHZ, Gating time: 5 ms 0C 0 C to 85C 85 C 0C 0 C to 85C 85 C BCSCTL1 = CALBC1_12MHZ, CALBC1 12MHZ, DCOCTL = CALDCO_12MHZ, Gating time: 5 ms 0C 0 C to 85C 85 C BCSCTL1 = CALBC1_16MHZ, DCOCTL = CALDCO CALDCO_16MHZ, 16MHZ Gating time: 2 ms 0C to 85C POST OFFICE BOX 655303 DALLAS, TEXAS 75265 3V --3.0 2.0 +3.0 2.2 V 0.970 1 1.030 3V 0.975 1 1.025 3.6 V 0.970 1 1.030 2.2 V 7.760 8 8.400 3V 7.800 8 8.200 3.6 V 7.600 8 8.240 2.2 V 11.64 12 12.36 3V 11.64 12 12.36 3.6 V 11.64 12 12.36 3V 15.52 16 16.48 3.6 V 15.00 16 16.48 MHz MHz MHz MHz MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) calibrated DCO frequencies -- tolerance over supply voltage VCC TA VCC 1-MHz tolerance over VCC 25C 8-MHz tolerance over VCC 25C 12-MHz tolerance over VCC 16-MHz tolerance over VCC PARAMETER TEST CONDITIONS MIN TYP MAX UNIT 1.8 V to 3.6 V --3 2 +3 % 1.8 V to 3.6 V --3 2 +3 % 25C 2.2 V to 3.6 V --3 2 +3 % 25C 3.0 V to 3.6 V --6 2 +3 % 25C 1.8 V to 3.6 V 0.970 1 1.030 MHz fCAL(1MHz) 1-MHz calibration value BCSCTL1 = CALBC1_1MHZ, DCOCTL = CALDCO_1MHZ, Gating time: 5 ms fCAL(8MHz) 8-MHz calibration value BCSCTL1 = CALBC1_8MHZ, DCOCTL = CALDCO_8MHZ, Gating time: 5 ms 25C 1.8 V to 3.6 V 7.760 8 8.240 MHz fCAL(12MHz) 12-MHz calibration value BCSCTL1 = CALBC1_12MHZ, DCOCTL = CALDCO_12MHZ, Gating time: 5 ms 25C 2.2 V to 3.6 V 11.64 12 12.36 MHz fCAL(16MHz) 16-MHz calibration value BCSCTL1 = CALBC1_16MHZ, DCOCTL = CALDCO_16MHZ, Gating time: 2 ms 25C 3.0 V to 3.6 V 15.00 16 16.48 MHz MIN TYP MAX calibrated DCO frequencies -- overall tolerance PARAMETER TEST CONDITIONS TA VCC 1-MHz tolerance overall --40C to 105C 1.8 V to 3.6 V --5 2 +5 % 8-MHz tolerance overall --40C to 105C 1.8 V to 3.6 V --5 2 +5 % 12-MHz tolerance overall --40C to 105C 2.2 V to 3.6 V --5 2 +5 % --6 3 +6 % 16-MHz tolerance overall UNIT --40C to 105C 3 V to 3.6 V --40C to 105C 1.8 V to 3.6 V 0.950 1 1.050 MHz fCAL(1MHz) 1-MHz calibration value BCSCTL1 = CALBC1_1MHZ, DCOCTL = CALDCO_1MHZ, Gating time: 5ms fCAL(8MHz) 8-MHz calibration value BCSCTL1 = CALBC1_8MHZ, DCOCTL = CALDCO_8MHZ, Gating time: 5ms --40C to 105C 1.8 V to 3.6 V 7.600 8 8.400 MHz 12-MHz calibration value BCSCTL1 = CALBC1_12MHZ, DCOCTL = CALDCO_12MHZ, Gating time: 5ms --40C to 105C 2.2 V to 3.6 V 11.40 12 12.60 MHz 16-MHz calibration value BCSCTL1 = CALBC1_16MHZ, DCOCTL = CALDCO_16MHZ, Gating time: 2 ms --40C to 105C 3 V to 3.6 V 15.00 16 17.00 MHz fCAL(12MHz) fCAL(16MHz) POST OFFICE BOX 655303 DALLAS, TEXAS 75265 39 MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) typical characteristics -- calibrated 1-MHz DCO frequency 1.02 Frequency -- MHz 1.01 TA = 105 C 1.00 TA = 85 C TA = 25 C 0.99 TA = --40 C 0.98 1.5 2.0 2.5 3.0 3.5 4.0 VCC -- Supply Voltage -- V Figure 14. Calibrated 1-MHz Frequency vs VCC typical characteristics -- calibrated 8-MHz DCO frequency 8.20 TA = 105 C 8.15 Frequency -- MHz 8.10 8.05 8.00 TA = 85 C TA = 25 C 7.95 TA = --40 C 7.90 7.85 7.80 1.5 2.0 2.5 3.0 VCC -- Supply Voltage -- V 3.5 4.0 Figure 15. Calibrated 8-MHz Frequency vs VCC 40 POST OFFICE BOX 655303 DALLAS, TEXAS 75265 MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) typical characteristics -- calibrated 12-MHz DCO frequency 12.2 Frequency -- MHz 12.1 TA = --40 C TA = 25 C 12.0 TA = 85 C 11.9 TA = 105 C 11.8 11.7 1.5 2.0 2.5 3.0 3.5 4.0 VCC -- Supply Voltage -- V Figure 16. Calibrated 12-MHz Frequency vs VCC typical characteristics -- calibrated 16-MHz DCO frequency 16.1 16.0 Frequency -- MHz TA = --40 C 15.9 TA = 25 C TA = 85 C 15.8 TA = 105 C 15.7 15.6 1.5 2.0 2.5 3.0 3.5 4.0 VCC -- Supply Voltage -- V Figure 17. Calibrated 16-MHz Frequency vs VCC POST OFFICE BOX 655303 DALLAS, TEXAS 75265 41 MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) wake-up from low-power modes (LPM3/LPM4) PARAMETER tDCO,LPM3/4 tCPU,LPM3/4 TEST CONDITIONS DCO clock wake wake-up up time from LPM3/4 (see Note 1) VCC MIN TYP MAX BCSCTL1= CALBC1_1MHZ, DCOCTL = CALDCO_1MHZ 2.2 V/3 V 2 BCSCTL1= CALBC1_8MHZ, DCOCTL = CALDCO_8MHZ 2.2 V/3 V 1.5 BCSCTL1= CALBC1_12MHZ, DCOCTL = CALDCO_12MHZ 2.2 V/3 V 1 BCSCTL1= CALBC1_16MHZ, DCOCTL = CALDCO_16MHZ 3V 1 UNIT s s CPU wake-up time from LPM3/4 (see Note 2) 1/fMCLK + tClock,LPM3/4 NOTES: 1. The DCO clock wake-up time is measured from the edge of an external wake-up signal (e.g., port interrupt) to the first clock edge observable externally on a clock pin (MCLK or SMCLK). 2. Parameter applicable only if DCOCLK is used for MCLK. typical characteristics -- DCO clock wake-up time from LPM3/4 DCO Wake Time -- us 10.00 1.00 0.10 0.10 RSELx = 0...11 RSELx = 12...15 1.00 10.00 DCO Frequency -- MHz Figure 18. Clock Wake-Up Time From LPM3 vs DCO Frequency 42 POST OFFICE BOX 655303 DALLAS, TEXAS 75265 MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) DCO with external resistor ROSC (see Note 1) PARAMETER TEST CONDITIONS VCC TYP 2.2 V 1.8 3V 1.95 UNIT fDCO,ROSC DCO output frequency with ROSC DCOR = 1 1, RSELx = 4 4, DCOx = 3 3, MODx = 0 0, TA = 25C MHz Dt Temperature drift DCOR = 1, RSELx = 4, DCOx = 3, MODx = 0 2.2 V/3 V 0.1 %/C DV Drift with VCC DCOR = 1, RSELx = 4, DCOx = 3, MODx = 0 2.2 V/3 V 10 %/V NOTE 1: ROSC = 100 k. Metal film resistor, type 0257. 0.6 watt with 1% tolerance and TK = 50ppm/C. typical characteristics -- DCO with external resistor ROSC 10.00 DCO Frequency -- MHz DCO Frequency -- MHz 10.00 1.00 0.10 RSELx = 4 0.01 10.00 100.00 1000.00 1.00 0.10 RSELx = 4 0.01 10.00 10000.00 ROSC -- External Resistor -- kOhm 10000.00 Figure 20. DCO Frequency vs ROSC, VCC = 3.0 V, TA = 25C 2.50 2.50 ROSC = 100k 2.00 1.75 1.50 1.25 1.00 ROSC = 270k 0.75 0.50 --25.0 0.0 25.0 50.0 75.0 ROSC = 100k 2.00 1.75 1.50 1.25 1.00 ROSC = 270k 0.75 0.50 ROSC = 1M 0.25 2.25 DCO Frequency -- MHz 2.25 DCO Frequency -- MHz 1000.00 ROSC -- External Resistor -- kOhm Figure 19. DCO Frequency vs ROSC, VCC = 2.2 V, TA = 25C 0.00 --50.0 100.00 ROSC = 1M 0.25 100.0 0.00 1.5 TA -- Temperature -- C Figure 21. DCO Frequency vs Temperature, VCC = 3.0 V POST OFFICE BOX 655303 2.0 2.5 3.0 3.5 4.0 VCC -- Supply Voltage -- V Figure 22. DCO Frequency vs VCC, TA = 25C DALLAS, TEXAS 75265 43 MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) crystal oscillator, LFXT1, low frequency modes (see Note 4) PARAMETER TEST CONDITIONS VCC fLFXT1,LF LFXT1 oscillator crystal frequency, LF mode 0/1 XTS = 0, LFXT1Sx = 0 or 1 1.8 V to 3.6 V fLFXT1,LF,logic LFXT1 oscillator logic level square wave input frequency, LF mode XTS = 0, LFXT1Sx = 3, XCAPx = 0 1.8 V to 3.6 V OALF CL,eff Oscillation allowance for LF crystals Integrated effective load capacitance LF mode capacitance, (see Note 1) MIN TYP MAX 32,768 10,000 32,768 XTS = 0, LFXT1Sx = 0, fLFXT1,LF = 32,768 kHz, CL,eff = 6 pF 500 XTS = 0, LFXT1Sx = 0; fLFXT1,LF = 32,768 kHz, CL,eff = 12 pF 200 UNIT Hz 50,000 Hz kΩ XTS = 0, XCAPx = 0 1 XTS = 0, XCAPx = 1 5.5 XTS = 0, XCAPx = 2 8.5 XTS = 0, XCAPx = 3 11 Duty cycle LF mode XTS = 0, Measured at P1.4/ACLK, fLFXT1,LF = 32,768 Hz fFault,LF Oscillator fault frequency, LF mode (see Note 3) XTS = 0, LFXT1Sx = 3, XCAPx = 0 (see Note 2) 2.2 V/3 V 30 2.2 V/3 V 10 50 pF 70 % 10,000 Hz NOTES: 1. Includes parasitic bond and package capacitance (approximately 2 pF per pin). Since the PCB adds additional capacitance, it is recommended to verify the correct load by measuring the ACLK frequency. For a correct setup, the effective load capacitance should always match the specification of the used crystal. 2. Measured with logic level input frequency but also applies to operation with crystals. 3. Frequencies below the MIN specification set the fault flag, frequencies above the MAX specification do not set the fault flag, and frequencies in between might set the flag. 4. To improve EMI on the LFXT1 oscillator the following guidelines should be observed. -- Keep the trace between the device and the crystal as short as possible. -- Design a good ground plane around the oscillator pins. -- Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT. -- Avoid running PCB traces under or adjacent to the XIN and XOUT pins. -- Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins. -- If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins. -- Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other documentation. This signal is no longer required for the serial programming adapter. 5. Applies only if using an external logic-level clock source. Not applicable when using a crystal or resonator. 44 POST OFFICE BOX 655303 DALLAS, TEXAS 75265 MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) internal very low power, low frequency oscillator (VLO) PARAMETER TEST CONDITIONS TA --40C to 85C fVLO VLO frequency dfVLO/dT VLO frequency temperature drift See Note 1 dfVLO/dVCC VLO frequency supply voltage drift See Note 2 105C VCC 2 2 V/3 V 2.2 2.2 V/3 V 25C 1.8V -- 3.6V MIN TYP MAX 4 12 20 22 UNIT kHz 0.5 %/C 4 %/V NOTES: 1. Calculated using the box method: I version: (MAX(--40_C to 85_C) -- MIN(--40_C to 85_C))/MIN(--40_C to 85_C)/(85_C -- (--40_C)) T version: (MAX(--40_C to 105_C) -- MIN(--40_C to 105_C))/MIN(--40_C to 105_C)/(105_C -- (--40_C)) 2. Calculated using the box method: (MAX(1.8 V to 3.6V) -- MIN(1.8V to 3.6V))/MIN(1.8 V to 3.6V)/(3.6 V -- 1.8 V) POST OFFICE BOX 655303 DALLAS, TEXAS 75265 45 MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) crystal oscillator, LFXT1, high frequency modes (see Note 5) PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT fLFXT1,HF0 LFXT1 oscillator crystal frequency, HF mode 0 XTS = 1, LFXT1Sx = 0, XCAPx = 0 1.8 V to 3.6 V 0.4 1 MHz fLFXT1,HF1 LFXT1 oscillator crystal frequency, HF mode 1 XTS = 1, LFXT1Sx = 1, XCAPx = 0 1.8 V to 3.6 V 1 4 MHz LFXT1 oscillator ill t crystal t l frequency, f HF mode 2 1.8 V to 3.6 V 2 10 fLFXT1,HF2 XTS = 1, LFXT1Sx = 2, XCAPx = 0 2.2 V to 3.6 V 2 12 2 16 LFXT1 oscillator logic level square-wave square wave input frequency, HF mode 1.8 V to 3.6 V 0.4 10 XTS = 1, LFXT1Sx = 3, XCAPx = 0 2.2 V to 3.6 V 0.4 12 0.4 16 fLFXT1,HF,logic OAHF CL,eff Duty cycle fFault,HF Oscillation allowance for HF crystals (see Figure 23 and Figure 24) Integrated effective load capacitance, HF mode (see Note 1) HF mode 3 V to 3.6 V 3 V to 3.6 V XTS = 1, XCAPx = 0, LFXT1Sx = 0, fLFXT1,HF = 1 MHz, CL,eff = 15 pF 2700 XTS = 1, XCAPx = 0, LFXT1Sx = 1, fLFXT1,HF = 4 MHz, CL,eff = 15 pF 800 XTS = 1, XCAPx = 0, LFXT1Sx = 2, fLFXT1,HF = 16 MHz, CL,eff = 15 pF 300 XTS = 1, XCAPx = 0 (see Note 2) 2.2 V/3 V XTS = 1, XCAPx = 0, Measured at P1.4/ACLK, fLFXT1,HF = 16 MHz 2.2 V/3 V 40 2.2 V/3 V 30 Oscillator fault frequency, HF mode XTS = 1, LFXT1Sx = 3, XCAPx = 0 (see Note 4) (see Note 3) 40 50 MHz Ω 1 XTS = 1, XCAPx = 0, Measured at P1.4/ACLK, fLFXT1,HF = 10 MHz MHz pF 60 % 50 60 300 kHz NOTES: 1. Includes parasitic bond and package capacitance (approximately 2 pF per pin). Since the PCB adds additional capacitance it is recommended to verify the correct load by measuring the ACLK frequency. For a correct setup the effective load capacitance should always match the specification of the used crystal. 2. Requires external capacitors at both terminals. Values are specified by crystal manufacturers. 3. Measured with logic level input frequency but also applies to operation with crystals. 4. Frequencies below the MIN specification set the fault flag, frequencies above the MAX specification do not set the fault flag, and frequencies in between might set the flag. 5. To improve EMI on the LFXT1 oscillator the following guidelines should be observed. -- Keep the trace between the device and the crystal as short as possible. -- Design a good ground plane around the oscillator pins. -- Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT. -- Avoid running PCB traces under or adjacent to the XIN and XOUT pins. -- Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins. -- If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins. -- Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other documentation. This signal is no longer required for the serial programming adapter. 46 POST OFFICE BOX 655303 DALLAS, TEXAS 75265 MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) typical characteristics -- LFXT1 oscillator in HF mode (XTS = 1) Oscillation Allowance -- Ohms 100000.00 10000.00 1000.00 LFXT1Sx = 3 100.00 LFXT1Sx = 2 LFXT1Sx = 1 10.00 0.10 1.00 10.00 100.00 Crystal Frequency -- MHz Figure 23. Oscillation Allowance vs Crystal Frequency, CL,eff = 15 pF, TA = 25C 1500.0 XT Oscillator Supply Current -- uA 1400.0 1300.0 LFXT1Sx = 3 1200.0 1100.0 1000.0 900.0 800.0 700.0 600.0 500.0 400.0 300.0 LFXT1Sx = 2 200.0 100.0 0.0 0.0 LFXT1Sx = 1 4.0 8.0 12.0 16.0 20.0 Crystal Frequency -- MHz Figure 24. XT Oscillator Supply Current vs Crystal Frequency, CL,eff = 15 pF, TA = 25C POST OFFICE BOX 655303 DALLAS, TEXAS 75265 47 MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) crystal oscillator, XT2 (see Note 5) PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT fXT2 XT2 oscillator crystal frequency, mode 0 XT2Sx = 0 1.8 V to 3.6 V 0.4 1 MHz fXT2 XT2 oscillator crystal frequency, mode 1 XT2Sx = 1 1.8 V to 3.6 V 1 4 MHz XT2 oscillator ill t crystal t l frequency, f mode 2 1.8 V to 3.6 V 2 10 fXT2 XT2Sx = 2 2.2 V to 3.6 V 2 12 3 V to 3.6 V 2 16 XT2 oscillator ill t llogic i llevell square-wave input frequency 1.8 V to 3.6 V 0.4 10 XT2Sx = 3 2.2 V to 3.6 V 0.4 12 3 V to 3.6 V 0.4 16 fXT2 OA CL,eff Duty cycle fFault Oscillation allowance (see Figure 23 and Figure 24) Integrated effective load capacitance, HF mode (see Note 1) XT2Sx = 0, fXT2 = 1 MHz, CL,eff = 15 pF 2700 XT2Sx = 1, fXT2 = 4 MHz, CL,eff = 15 pF 800 XT2Sx = 2, fXT1,HF = 16 MHz, CL,eff = 15 pF 300 See Note 2 Measured at P1.4/SMCLK, fXT2 = 16 MHz Oscillator fault frequency, HF mode XT2Sx = 3, (see Note 3) (see Note 4) pF 40 50 60 40 50 60 2 2 V/3 V 2.2 2.2 V/3 V MHz Ω 1 Measured at P1.4/SMCLK, fXT2 = 10 MHz MHz % 30 300 kHz NOTES: 1. Includes parasitic bond and package capacitance (approximately 2 pF per pin). Since the PCB adds additional capacitance, it is recommended to verify the correct load by measuring the ACLK frequency. For a correct setup, the effective load capacitance should always match the specification of the used crystal. 2. Requires external capacitors at both terminals. Values are specified by crystal manufacturers. 3. Measured with logic level input frequency but also applies to operation with crystals. 4. Frequencies below the MIN specification set the fault flag, frequencies above the MAX specification do not set the fault flag, and frequencies in between might set the flag. 5. To improve EMI on the LFXT1 oscillator the following guidelines should be observed. -- Keep the trace between the device and the crystal as short as possible. -- Design a good ground plane around the oscillator pins. -- Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT. -- Avoid running PCB traces under or adjacent to the XIN and XOUT pins. -- Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins. -- If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins. -- Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other documentation. This signal is no longer required for the serial programming adapter. 48 POST OFFICE BOX 655303 DALLAS, TEXAS 75265 MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) typical characteristics -- XT2 oscillator Oscillation Allowance -- Ohms 100000.00 10000.00 1000.00 XT2Sx = 3 100.00 XT2Sx = 2 XT2Sx = 1 10.00 0.10 1.00 10.00 100.00 Crystal Frequency -- MHz XT Oscillator Supply Current -- uA Figure 25. Oscillation Allowance vs Crystal Frequency, CL,eff = 15 pF, TA = 25C 1600.0 1500.0 1400.0 1300.0 1200.0 1100.0 1000.0 900.0 800.0 700.0 600.0 500.0 400.0 300.0 200.0 100.0 0.0 0.0 XT2Sx = 3 XT2Sx = 2 XT2Sx = 1 4.0 8.0 12.0 16.0 20.0 Crystal Frequency -- MHz Figure 26. XT2 Oscillator Supply Current vs Crystal Frequency, CL,eff = 15 pF, TA = 25C POST OFFICE BOX 655303 DALLAS, TEXAS 75265 49 MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) Timer_A PARAMETER TEST CONDITIONS fTA Timer A clock frequency Timer_A Internal: SMCLK, ACLK, TACLK INCLK INCLK, External: TACLK, Duty cycle = 50% 10% tTA,cap Timer_A, capture timing TA0, TA1, TA2 VCC MIN MAX 2.2 V 10 3.3 V 16 2.2 V/3 V 20 UNIT MHz ns Timer_B PARAMETER TEST CONDITIONS fTB Timer B clock frequency Timer_B Internal: SMCLK, ACLK, TBCLK External: TBCLK, Duty cycle = 50% 10% tTB,cap Timer_B, capture timing TB0, TB1, TB2 50 POST OFFICE BOX 655303 DALLAS, TEXAS 75265 VCC MIN MAX 2.2 V 10 3.3 V 16 2.2 V/3 V 20 UNIT MHz ns MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) USCI (UART mode) PARAMETER fUSCI USCI input clock frequency fBITCLK BITCLK clock frequency (equals baud rate in MBaud) t UART receive deglitch time (see Note 1) TEST CONDITIONS VCC MIN TYP Internal: SMCLK, ACLK External: UCLK Duty cycle = 50% 10% 2.2 V /3 V MAX UNIT fSYSTEM MHz 1 MHz 2.2 V 50 150 600 ns 3V 50 100 600 ns NOTE 1: Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. To ensure that pulses are correctly recognized their width should exceed the maximum specification of the deglitch time. USCI (SPI master mode) (see Figure 27 and Figure 28) PARAMETER fUSCI USCI input clock frequency tSU,MI SOMI input data setup time tHD,MI SOMI input data hold time tVALID,MO SIMO output data valid time TEST CONDITIONS VCC MIN SMCLK, ACLK Duty cycle = 50% 10% UCLK edge to SIMO valid; CL = 20 pF 2.2 V 110 3V 75 2.2 V 0 3V 0 MAX UNIT fSYSTEM MHz ns ns 2.2 V 30 3V 20 ns 1 with t LO∕HI ≥ max(t VALID,MO(USCI) + t SU,SI(Slave), t SU,MI(USCI) + t VALID,SO(Slave)). 2t LO∕HI For the slave parameters tSU,SI(Slave) and tVALID,SO(Slave), see the SPI parameters of the attached slave. NOTE 1: f UCxCLK = USCI (SPI slave mode) (see Figure 29 and Figure 30) PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT tSTE,LEAD STE lead time, STE low to clock 2.2 V/3 V tSTE,LAG STE lag time, Last clock to STE high 2.2 V/3 V tSTE,ACC STE access time, STE low to SOMI data out 2.2 V/3 V 50 ns tSTE,DIS STE disable time, STE high to SOMI high impedance 2.2 V/3 V 50 ns tSU,SI SIMO input data setup time tHD,SI SIMO input data hold time tVALID,SO SOMI output data valid time UCLK edge to SOMI valid; CL = 20 pF 50 ns 10 2.2 V 20 3V 15 2.2 V 10 3V 10 ns ns ns 2.2 V 75 110 3V 50 75 ns 1 with t LO∕HI ≥ max(t VALID,MO(Master) + t SU,SI(USCI), t SU,MI(Master) + t VALID,SO(USCI)) 2t LO∕HI For the master parameters tSU,MI(Master) and tVALID,MO(Master), see the SPI parameters of the attached master. NOTE 1: f UCxCLK = POST OFFICE BOX 655303 DALLAS, TEXAS 75265 51 MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) 1/fUCxCLK CKPL=0 UCLK CKPL=1 tLO/HI tLO/HI tSU,MI tHD,MI SOMI tVALID,MO SIMO Figure 27. SPI Master Mode, CKPH = 0 1/fUCxCLK CKPL=0 UCLK CKPL=1 tLO/HI tLO/HI tSU,MI SOMI tVALID,MO SIMO Figure 28. SPI Master Mode, CKPH = 1 52 POST OFFICE BOX 655303 DALLAS, TEXAS 75265 tHD,MI MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) tSTE,LEAD tSTE,LAG STE 1/fUCxCLK CKPL=0 UCLK CKPL=1 tLO/HI tLO/HI tSU,SI tHD,SI SIMO tSTE,ACC tVALID,SO tSTE,DIS SOMI Figure 29. SPI Slave Mode, CKPH = 0 tSTE,LEAD tSTE,LAG STE 1/fUCxCLK CKPL=0 UCLK CKPL=1 tLO/HI tLO/HI tSU,SI tHD,SI SIMO tSTE,ACC tVALID,SO tSTE,DIS SOMI Figure 30. SPI Slave Mode, CKPH = 1 POST OFFICE BOX 655303 DALLAS, TEXAS 75265 53 MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) USCI (I2C mode) (see Figure 31) PARAMETER fUSCI USCI input clock frequency fSCL SCL clock frequency TEST CONDITIONS VCC MIN TYP Internal: SMCLK, ACLK External: UCLK Duty cycle = 50% 10% 2.2 V/3 V fSCL 100 kHz UNIT fSYSTEM MHz 400 kHz 4.0 tHD,STA Hold time (repeated) Start tSU,STA Setup time for a repeated Start tHD,DAT Data hold time 2.2 V/3 V 0 tSU,DAT Data setup time 2.2 V/3 V 250 ns tSU,STO Setup time for Stop 2.2 V/3 V 4.0 s tSP Pulse width of spikes suppressed by input filter 2.2 V 50 150 600 3V 50 100 600 fSCL > 100 kHz fSCL 100 kHz fSCL > 100 kHz tHD,STA 2 2 V/3 V 2.2 0 MAX 2 2 V/3 V 2.2 4.7 SDA tSP SCL tSU,DAT tSU,STO tHD,DAT Figure 31. I2C Mode Timing 54 POST OFFICE BOX 655303 DALLAS, TEXAS 75265 s s 0.6 tSU,STA tHD,STA 1/fSCL s s 0.6 ns ns MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) Comparator_A+ (see Note 1) PARAMETER TEST CONDITIONS VCC MIN TYP MAX 2.2 V 25 40 3V 45 60 2.2 V 30 50 3V 45 71 I(DD) CAON = 1 1, CARSEL = 0 0, CAREF = 0 I(Refladder/Refdiode) CAON = 1, CARSEL = 0, CAREF = 1/2/3 1/2/3, no load at P2.3/CA0/TA1 P2 3/CA0/TA1 and P2.4/CA1/TA2 V(IC) CAON =1 2.2 V/3 V 0 PCA0 = 1, CARSEL = 1, CAREF = 1, no load at P2.3/CA0/TA1 and P2.4/CA1/TA2 2.2 V/3 V 0.23 0.24 0.25 PCA0 = 1, CARSEL = 1, CAREF = 2, no load at P2.3/CA0/TA1 and P2.4/CA1/TA2 2.2 V/3 V 0.47 0.48 0.5 2.2 V 390 480 540 3V 400 490 550 V(Ref025) V(Ref050) Common-mode input voltage Voltage at 0.25 V V CC node CC Voltage at 0.5V V CC node CC VCC --1 UNIT A A V V(RefVT) See Figure 35 and Figure 36 PCA0 = 1, CARSEL = 1, CAREF = 3, no load at P2.3/CA0/TA1 P2 3/CA0/TA1 and P2.4/CA1/TA2, TA = 85C V(offset) Offset voltage See Note 2 2.2 V/3 V --30 30 mV Vhys Input hysteresis CAON=1 2.2 V/3 V 0 0.7 1.4 mV TA = 25 25C, C, Overdrive 10 mV, Without filter: CAF = 0 2.2 V 80 165 300 3V 70 120 240 TA = 25 25C, C, Overdrive 10 mV, With filter: CAF = 1 2.2 V 1.4 1.9 2.8 3V 0.9 1.5 2.2 t(response) Response time, low-to-high low to high and high-to-low (see Note 3) mV ns s NOTES: 1. The leakage current for the Comparator_A+ terminals is identical to Ilkg(Px.x) specification. 2. The input offset voltage can be cancelled by using the CAEX bit to invert the Comparator_A+ inputs on successive measurements. The two successive measurements are then summed together. 3. The response time is measured at P2.2/CAOUT/TA0/CA4 with an input voltage step, with Comparator_A+ already enabled (CAON = 1). If CAON is set at the same time, a settling time of up to 300 ns is added to the response time. POST OFFICE BOX 655303 DALLAS, TEXAS 75265 55 MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) 0V 0 VCC 1 CAF CAON To Internal Modules Low Pass Filter + _ V+ V-- 0 0 1 1 CAOUT Set CAIFG Flag 2.0 s Figure 32. Block Diagram of Comparator_A Module VCAOUT Overdrive V-400 mV t(response) V+ Figure 33. Overdrive Definition CASHORT CA0 CA1 1 VIN + -- IOUT = 10A Comparator_A+ CASHORT = 1 Figure 34. Comparator_A+ Short Resistance Test Condition 56 POST OFFICE BOX 655303 DALLAS, TEXAS 75265 MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) typical characteristics -- Comparator A+ 650 650 VCC = 2.2 V V(REFVT) -- Reference Volts --mV 600 Typical 550 500 450 400 --45 --25 --5 15 35 55 75 600 Typical 550 500 450 400 --45 95 --25 --5 15 35 55 75 95 TA -- Free-Air Temperature -- C TA -- Free-Air Temperature -- C Figure 36. V(RefVT) vs Temperature, VCC = 2.2 V Figure 35. V(RefVT) vs Temperature, VCC = 3 V 100.00 Short Resistance -- k V(REFVT) -- Reference Volts --mV VCC = 3 V VCC = 1.8V VCC = 2.2V VCC = 3.0V 10.00 VCC = 3.6V 1.00 0.0 0.2 0.4 0.6 0.8 1.0 VIN/VCC -- Normalized Input Voltage -- V/V Figure 37. Short Resistance vs VIN/VCC POST OFFICE BOX 655303 DALLAS, TEXAS 75265 57 MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) 12-bit ADC power supply and input range conditions (see Note 1) PARAMETER TEST CONDITIONS AVCC Analog supply voltage AVCC and DVCC are connected together, AVSS and DVSS are connected together, V(AVSS) = V(DVSS) = 0 V V(P6.x/Ax) Analog input voltage (see Note 2) All P6.0/A0 to P6.7/A7 terminals. Analog inputs selected in ADC12MCTLx register and P6Sel.x = 1, 0 x 7, V(AVSS) VP6.x/Ax V(AVCC) IADC12 Operating supply current into AVCC terminal (see Note 3) fADC12CLK = 5 MHz, ADC12ON = 1, REFON = 0, SHT0 = 0, SHT1 = 0, ADC12DIV = 0 IREF+ Operating p g supply pp y current i into AVCC terminal i l (see Note 4) fADC12CLK = 5 MHz, ADC12ON = 0, REFON = 1, REF2_5V = 1 fADC12CLK = 5 MHz, ADC12ON = 0, REFON = 1, REF2_5V = 0 CI † Input capacitance Only one terminal can be selected at one time, P6.x/Ax RI† Input MUX ON resistance 0 V VAx VAVCC VCC MIN TYP MAX UNIT 2.2 3.6 V 0 VAVCC V 2.2 V 0.65 0.8 3V 0.8 1.0 3V 0.5 0.7 2.2 V 0.5 0.7 3V 0.5 0.7 2.2 V 3V mA mA A 40 pF 2000 † Limits verified by design NOTES: 1. The leakage current is defined in the leakage current table with P6.x/Ax parameter. 2. The analog input voltage range must be within the selected reference voltage range VR+ to VR-- for valid conversion results. 3. The internal reference supply current is not included in current consumption parameter IADC12. 4. The internal reference current is supplied via terminal AVCC. Consumption is independent of the ADC12ON control bit, unless a conversion is active. The REFON bit enables to settle the built-in reference before starting an A/D conversion. 12-bit ADC external reference (see Note 1) PARAMETER TEST CONDITIONS MIN MAX UNIT VeREF+ > VREF-- /VeREF-- (see Note 2) 1.4 VAVCC V Negative external reference voltage input VeREF+ > VREF-- /VeREF-- (see Note 3) 0 1.2 V (VeREF+ -- VREF--/VeREF-- ) Differential external reference voltage input VeREF+ > VREF-- /VeREF-- (see Note 4) 1.4 VAVCC V IVeREF+ Static input current 0V VeREF+ VAVCC 2.2 V/3 V 1 A IVREF--/VeREF-- Static input current 0V VeREF-- VAVCC 2.2 V/3 V 1 A VeREF+ Positive external reference voltage input VREF-- /VeREF-- VCC NOTES: 1. The external reference is used during conversion to charge and discharge the capacitance array. The input capacitance, Ci, is also the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the recommendations on analog-source impedance to allow the charge to settle for 12-bit accuracy. 2. The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced accuracy requirements. 3. The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced accuracy requirements. 4. The accuracy limits minimum external differential reference voltage. Lower differential reference voltage levels may be applied with reduced accuracy requirements. 58 POST OFFICE BOX 655303 DALLAS, TEXAS 75265 MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) 12-bit ADC built-in reference PARAMETER VREF+ AVCC(min) IVREF+ IL(VREF)+ † Positive built-in reference voltage output AVCC minimum voltage, positive built-in built in reference active TEST CONDITIONS VCC REF2_5V = 1 (2.5 V) IVREF+max IVREF+ IVREF+min 3V REF2_5V = 0 (1.5 V) IVREF+max IVREF+ IVREF+min 2.2 V/3 V 2.2 V/3 V MIN TYP --40C to 85C 2.4 2.5 2.6 105C 2.37 2.5 2.64 --40C to 85C 1.44 1.5 1.56 105C 1.42 1.5 1.57 REF2_5V = 0, IVREF+max IVREF+ IVREF+min 2.2 REF2_5V = 1, --0.5mA IVREF+ IVREF+min 2.8 REF2_5V = 1, --1mA IVREF+ IVREF+min 2.9 Load current out of VREF+ terminal Load-current regulation VREF+ regulation, terminal TA IVREF+ = 500 A +/-- 100 A Analog input voltage ~0.75 0 75 V, V REF2_5V = 0 MAX 0.01 --0.5 3V 0.01 --1 2.2 V 2 3V 2 IVREF+ = 500 A 100 A Analog input voltage ~1.25 V, REF2_5V = 1 3V 2 3V 20 Load current regulation VREF+ terminal IVREF+ = 100 A 900 A, F, at ~0.5 0 5 VREF+, CVREF+= 5 F Error of conversion result 1 LSB CVREF+ Capacitance at pin VREF+ (see Note 1) REFON =1, 0 mA IVREF+ IVREF+max 2.2 V/3 V TREF+† Temperature coefficient of built-in reference IVREF+ is a constant in the range of 0 mA IVREF+ 1 mA 2.2 V/3 V tREFON† Settle time of internal reference voltage (see Figure 38 and Note 2) IVREF+ = 0.5 mA, CVREF+ = 10 F, VREF+ = 1.5 V, VAVCC = 2.2 V 5 V V 2.2 V IDL(VREF) +‡ UNIT 10 mA LSB ns F 100 17 ppm/C ms † Limits characterized Limits verified by design NOTES: 1. The internal buffer operational amplifier and the accuracy specifications require an external capacitor. All INL and DNL tests use two capacitors between pins VREF+ and AVSS and VREF-- /VeREF-- and AVSS: 10 F tantalum and 100 nF ceramic. 2. The condition is that the error in a conversion started after tREFON is less than 0.5 LSB. The settling time depends on the external capacitive load. ‡ POST OFFICE BOX 655303 DALLAS, TEXAS 75265 59 MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) typical characteristics -- ADC12 CVREF+ 100 F tREFON .66 x CVREF+ [ms] with CVREF+ in F 10 F 1 F 0 1 ms 10 ms 100 ms tREFON Figure 38. Typical Settling Time of Internal Reference tREFON vs External Capacitor on VREF+ 60 POST OFFICE BOX 655303 DALLAS, TEXAS 75265 MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) From Power Supply DVCC + -10 F 100 nF AVCC + -10 F Apply External Reference [VeREF+] or Use Internal Reference [VREF+] 100 nF 10 F MSP430F261x MSP430F241x 100 nF VREF --/VeREF-- + -10 F AVSS VREF+ or VeREF+ + -- Apply External Reference DVSS 100 nF Figure 39. Supply Voltage and Reference Voltage Design VREF--/VeREF-- External Supply From Power Supply DVCC + -10 F 100 nF AVCC + -Apply External Reference [VeREF+] or Use Internal Reference [VREF+] 10 F 100 nF AVSS MSP430F261x MSP430F241x VREF+ or VeREF+ + -10 F DVSS 100 nF Reference Is Internally Switched to AVSS VREF-- /VeREF-- Figure 40. Supply Voltage and Reference Voltage Design VREF--/VeREF-- = AVSS, Internally Connected POST OFFICE BOX 655303 DALLAS, TEXAS 75265 61 MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) 12-bit ADC timing parameters PARAMETER TEST CONDITIONS fADC12CLK fADC12OSC Internal ADC12 oscillator VCC MIN TYP MAX UNIT For specified performance of ADC12 linearity parameters 2.2V/3 V 0.45 5 6.3 MHz ADC12DIV = 0, fADC12CLK = fADC12OSC 2.2 V/ 3 V 3.7 5 6.3 MHz CVREF+ 5 F, Internal oscillator, fADC12OSC = 3.7 MHz to 6.3 MHz 2.2 V/ 3 V 2.06 tCONVERT Conversion time tADC12ON‡ Turn-on settling time of the ADC See Note 1 tSample‡ Sampling time RS = 400 , RI = 1000 , CI = 30 pF, = [RS + RI] x CI;(see Note 2) External fADC12CLK from ACLK, MCLK or SMCLK, ADC12SSEL 0 3.51 s s 13 ADC12DIV 1/fADC12CLK 100 3V 1220 2.2 V 1400 ns ns † Limits characterized Limits verified by design NOTES: 1. The condition is that the error in a conversion started after tADC12ON is less than 0.5 LSB. The reference and input signal are already settled. 2. Approximately ten Tau () are needed to get an error of less than 0.5 LSB: tSample = ln(2n+1) x (RS + RI) x CI+ 800 ns where n = ADC resolution = 12, RS = external source resistance. ‡ 12-bit ADC linearity parameters PARAMETER TEST CONDITIONS VCC EI Integral linearity error 1.4 V (VeREF+ -- VREF-- /VeREF-- ) min 1.6 V 1.6 V < (VeREF+ -- VREF-- /VeREF-- ) min VAVCC ED Differential linearity error (VeREF+ -- VREF-- /VeREF-- )min (VeREF+ -- VREF-- /VeREF-- ), CVREF+ = 10 F (tantalum) and 100 nF (ceramic) 2.2 V/3 V EO Offset error (VeREF+ -- VREF-- /VeREF-- )min (VeREF+ -- VREF-- /VeREF-- ), Internal impedance of source RS < 100 , CVREF+ = 10 F (tantalum) and 100 nF (ceramic) 2.2 V/3 V EG Gain error (VeREF+ -- VREF-- /VeREF-- )min (VeREF+ -- VREF-- /VeREF-- ), CVREF+ = 10 F (tantalum) and 100 nF (ceramic) ET Total unadjusted error (VeREF+ -- VREF-- /VeREF-- )min (VeREF+ -- VREF-- /VeREF-- ), CVREF+ = 10 F (tantalum) and 100 nF (ceramic) 62 POST OFFICE BOX 655303 DALLAS, TEXAS 75265 2 2 V/3 V 2.2 MIN TYP MAX 2 1.7 UNIT LSB 1 LSB 2 4 LSB 2.2 V/3 V 1.1 2 LSB 2.2 V/3 V 2 5 LSB MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) 12-bit ADC temperature sensor and built-in VMID TEST CONDITIONS PARAMETER VCC MIN TYP MAX ISENSOR Operating supply current into AVCC terminal (see Note 1) REFON = 0, INCH = 0Ah, ADC12ON = 1, TA = 25_C 2.2 V 40 120 3V 60 160 VSENSOR† See Note 2 ADC12ON = 1, INCH = 0Ah, TA = 0C 2.2 V 986 3V 986 2.2 V 3.55 3V 3.55 TCSENSOR† ADC12ON = 1, 1 INCH = 0Ah 2.2 V 30 3V 30 UNIT A A mV mV/C tSENSOR(sample)† Sample time required if channel 10 is selected (see Note 3) ADC12ON = 1, INCH = 0Ah, Error of conversion result 1 LSB IVMID Current into divider at channel 11 (see Note 4) ADC12ON = 1, 1 INCH = 0Bh VMID AVCC divider at channel 11 ADC12ON = 1, INCH = 0Bh, VMID is ~0.5 x VAVCC 2.2 V 1.1 1.10.04 3V 1.5 1.500.04 tVMID(sample) Sample time required if channel 11 is selected (see Note 5) ADC12ON = 1, INCH = 0Bh, Error of conversion result 1 LSB 2.2 V 1400 3V 1220 s s 2.2 V NA 3V NA A A V ns † Limits characterized NOTES: 1. The sensor current ISENSOR is consumed if (ADC12ON = 1 and REFON = 1) or if (ADC12ON = 1, INCH = 0Ah and sample signal is high). When REFON = 1, ISENSOR is already included in IREF+. 2. The temperature sensor offset can be as much as 20_C. A single-point calibration is recommended to minimize the offset error of the built-in temperature sensor. 3. The typical equivalent impedance of the sensor is 51 k. The sample time required includes the sensor-on time tSENSOR(on). 4. No additional current is needed. The VMID is used during sampling. 5. The on time tVMID(on) is included in the sampling time tVMID(sample); no additional on time is needed. POST OFFICE BOX 655303 DALLAS, TEXAS 75265 63 MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) 12-bit DAC supply specifications PARAMETER AVCC IDD PSRR Analog supply voltage Supply current, single DAC channel (see Notes 1 and 2) Power-supply rejection ratio (see Notes 3 and 4) TEST CONDITIONS VCC TA AVCC = DVCC, AVSS = DVSS = 0 V MIN TYP 2.20 MAX UNIT 3.60 --40C to 85C 50 110 105C 69 150 2.2V/3V 50 130 DAC12AMPx = 5, DAC12IR = 1, DAC12_xDAT = 0x0800, VeREF+ = VREF+ = AVCC 2.2V/3V 200 440 DAC12AMPx = 7, DAC12IR = 1, DAC12_xDAT = 0x0800, VeREF+ = VREF+ = AVCC 2.2V/3V 700 1500 DAC12AMPx = 2, DAC12IR = 0, DAC12_xDAT = 0x0800 2 2V/3V 2.2V/3V DAC12AMPx = 2, DAC12IR = 1, DAC12_xDAT = x00800 , VeREF+ = VREF+ = AVCC V A DAC12_xDAT = 800h, VREF = 1.5 V, AVCC = 100mV DAC12_xDAT = 800h, VREF = 1.5 V or 2.5 V, AVCC = 100mV 2.2V 70 dB 3V NOTES: 1. No load at the output pin, DAC12_0 or DAC12_1, assuming that the control bits for the shared pins are set properly. 2. Current into reference terminals not included. If DAC12IR = 1 current flows through the input divider; see Reference Input specifications. 3. PSRR = 20 logAVCC/VDAC12_xOUT} 4. VREF is applied externally. The internal reference is not used. 64 POST OFFICE BOX 655303 DALLAS, TEXAS 75265 MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) 12-bit DAC linearity specifications (see Figure 41) PARAMETER TEST CONDITIONS Resolution INL DNL VCC MIN 12-bit monotonic Integral nonlinearity (see Note 1) Differential nonlinearity (see Note 1) Offset voltage without calibration (see Notes 1 and 2) EO Offset voltage with calibration (see Notes 1 and 2) dE(O)/dT Offset error temperature coefficient (see Note 1) EG Gain error (see Note 1) dE(G)/dT Gain temperature coefficient (see Note 1) tOffset_Cal Offset Cal Time ffor offset Ti ff t calibration lib ti (see Note 3) TYP MAX 12 VREF = 1.5 V DAC12AMPx = 7, DAC12IR = 1 2.2 V VREF = 2.5 V DAC12AMPx = 7, DAC12IR = 1 3V VREF = 1.5 V DAC12AMPx = 7, DAC12IR = 1 2.2 V VREF = 2.5 V DAC12AMPx = 7, DAC12IR = 1 3V VREF = 1.5 V DAC12AMPx = 7, DAC12IR = 1 2.2 V VREF = 2.5 V DAC12AMPx = 7, DAC12IR = 1 3V VREF = 1.5 V DAC12AMPx = 7, DAC12IR = 1 2.2 V VREF = 2.5 V DAC12AMPx = 7, DAC12IR = 1 3V UNIT bits 2.0 20 8.0 80 LSB 0.4 04 1.0 10 LSB 21 21 mV 2.5 25 2.2 V/3 V VREF = 1.5 V 2.2 V VREF = 2.5 V 3V 30 V/C 3.50 3 50 2.2 V/3 V ppm of FSR/C 10 DAC12AMPx = 2 % FSR 100 DAC12AMPx = 3, 5 32 2.2 V/3 V DAC12AMPx = 4, 6, 7 ms 6 NOTES: 1. Parameters calculated from the best-fit curve from 0x0A to 0xFFF. The best-fit curve method is used to deliver coefficients “a” and “b” of the first-order equation: y = a + b x. VDAC12_xOUT = EO + (1 + EG) (VeREF+/4095) DAC12_xDAT, DAC12IR = 1. 2. The offset calibration works on the output operational amplifier. Offset calibration is triggered setting bit DAC12CALON. 3. The offset calibration can be done if DAC12AMPx = {2, 3, 4, 5, 6, 7}. The output operational amplifier is switched off with DAC12AMPx = {0, 1}. The DAC12 module should be configured prior to initiating calibration. Port activity during calibration may affect accuracy and is not recommended. DAC VOUT DAC Output VR+ RLoad = AV CC 2 CLoad = 100pF Offset Error Positive Negative Ideal transfer function Gain Error DAC Code Figure 41. Linearity Test Load Conditions and Gain/Offset Definition POST OFFICE BOX 655303 DALLAS, TEXAS 75265 65 MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) typical characteristics -- 12-bit DAC, linearity specifications TYPICAL INL ERROR vs DIGITAL INPUT DATA INL -- Integral Nonlinearity Error -- LSB 4 VCC = 2.2 V, VREF = 1.5V DAC12AMPx = 7 DAC12IR = 1 3 2 1 0 --1 --2 --3 --4 0 512 1024 1536 2048 2560 3072 3584 4095 DAC12_xDAT -- Digital Code TYPICAL DNL ERROR vs DIGITAL INPUT DATA DNL -- Differential Nonlinearity Error -- LSB 2.0 VCC = 2.2 V, VREF = 1.5V DAC12AMPx = 7 DAC12IR = 1 1.5 1.0 0.5 0.0 --0.5 --1.0 --1.5 --2.0 0 512 1024 1536 2048 2560 DAC12_xDAT -- Digital Code 66 POST OFFICE BOX 655303 DALLAS, TEXAS 75265 3072 3584 4095 MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) 12-bit DAC output specifications PARAMETER TEST CONDITIONS VCC MIN No Load, VeREF+ = AVCC, DAC12_xDAT = 0h, DAC12IR = 1, DAC12AMPx = 7 VO Output voltage range (see Note 1 and Figure 44) No Load, VeREF+ = AVCC, DAC12_xDAT = 0FFFh, DAC12IR = 1, DAC12AMPx = 7 RLoad= 3 k, VeREF+ = AVCC, DAC12_xDAT = 0h, DAC12IR = 1, DAC12AMPx = 7 Max DAC12 load capacitance IL(DAC12) Max DAC12 load current 0 0.005 AVCC --0.05 AVCC 0 0.1 AVCC --0.13 AVCC 100 2.2V --0.5 +0.5 3V --1.0 +1.0 RLoad= 3 k, VO/P(DAC12) = 0 V, DAC12AMPx = 7, DAC12_xDAT = 0h RO/P(DAC12) RLoad= 3 k, VO/P(DAC12) = AVCC, DAC12AMPx = 7, DAC12_xDAT = 0FFFh UNIT V 2.2 V/3 V Output resistance (see Figure 44) MAX 2 2 V/3 V 2.2 RLoad= 3 k, VeREF+ = AVCC, DAC12_xDAT = 0FFFh, DAC12IR = 1, DAC12AMPx = 7 CL(DAC12) TYP 2.2 V/3 V RLoad= 3 k, 0.3 V < VO/P(DAC12) < AVCC -- 0.3 V, DAC12AMPx = 7 150 250 150 250 1 4 pF mA NOTE 1: Data is valid after the offset calibration of the output amplifier. RO/P(DAC12_x) Max RLoad ILoad AV CC DAC12 2 O/P(DAC12_x) CLoad= 100pF Min 0.3 AV CC --0.3V VOUT AV CC Figure 44. DAC12_x Output Resistance Tests POST OFFICE BOX 655303 DALLAS, TEXAS 75265 67 MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) 12-bit DAC reference input specifications PARAMETER TEST CONDITIONS Reference input voltage range VeREF+ VCC DAC12IR = 0, (see Notes 1 and 2) MIN 2 2 V/3 V 2.2 DAC12IR = 1, (see Notes 3 and 4) DAC12_0 IR = DAC12_1 IR = 0 NOTES: 1. 2. 3. 4. 5. Reference input p resistance i MAX AVCC/3 AVCC+0.2 AVcc AVcc+0.2 20 DAC12_0 IR = 1, DAC12_1 IR = 0 Ri(VREF+), Ri(VeREF+) TYP DAC12_0 IR = 0, DAC12_1 IR = 1 DAC12_0 IR = DAC12_1 IR = 1 DAC12_0 SREFx = DAC12_1 SREFx (see Note 5) 2.2 V/3 V UNIT V M 40 48 56 20 24 28 k For a full-scale output, the reference input voltage can be as high as 1/3 of the maximum output voltage swing (AVCC). The maximum voltage applied at reference input voltage terminal VeREF+ = [AVCC -- VE(O)] / [3*(1 + EG)]. For a full-scale output, the reference input voltage can be as high as the maximum output voltage swing (AVCC). The maximum voltage applied at reference input voltage terminal VeREF+ = [AVCC -- VE(O)] / (1 + EG). When DAC12IR = 1 and DAC12SREFx = 0 or 1 for both channels, the reference input resistive dividers for each DAC are in parallel reducing the reference input resistance. 12-bit DAC dynamic specifications, Vref = VCC, DAC12IR = 1 (see Figure 45 and Figure 46) PARAMETER tON tS(FS) tS(C-C) SR DAC12 on-time TEST CONDITIONS DAC12_xDAT _ = 800h,, ErrorV(O) < 0.5 LSB (see Note 1 and Figure 45) Settling S ttli time, ti full scale DAC12_xDAT DAC12 DAT = 80h F7Fh 80h Settling S ttli time, ti code to code DAC12_xDAT DAC12 xDAT = 3F8h 408h 408h 3F8h 3F8h BF8h C08h BF8h Slew rate DAC12 DAT = DAC12_xDAT 80h F7Fh 80h Glitch Glit h energy, full scale DAC12_xDAT DAC12 DAT = 80h F7Fh 80h VCC MIN DAC12AMPx = 0 {2, 3, 4} DAC12AMPx = 0 {5, 6} 2.2 V/3 / V DAC12AMPx = 0 7 DAC12AMPx = 2 DAC12AMPx = 3, 5 2.2 V/3 V DAC12AMPx = 4, 6, 7 DAC12AMPx = 2 TYP MAX 60 120 15 30 6 12 100 200 40 80 15 30 DAC12AMPx = 3, 5 2 2.2 V/3 V DAC12AMPx = 4, 6, 7 DAC12AMPx = 3, 5 2.2 V/3 V 0.05 0.12 0.35 0.7 1.5 2.7 DAC12AMPx = 4, 6, 7 DAC12AMPx = 2 2.2 V/3 V DAC12AMPx = 4, 6, 7 150 30 Conversion 1 ILoad Glitch Energy Conversion 2 AV CC +/-- 1/2 LSB CLoad = 100pF tsettleLH Figure 45. Settling Time and Glitch Energy Testing 68 Conversion 3 +/-- 1/2 LSB 2 RO/P(DAC12.x) POST OFFICE BOX 655303 s V/s 600 DAC12AMPx = 3, 5 VOUT s 1 DAC12AMPx = 2 RLoad = 3 k s 5 NOTES: 1. RLoad and CLoad are connected to AVSS (not AVCC/2) in Figure 45. 2. Slew rate applies to output voltage steps 200 mV. DAC Output UNIT DALLAS, TEXAS 75265 tsettleHL nV-ss nV MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) Conversion 1 Conversion 2 Conversion 3 VOUT 90% 90% 10% 10% tSRLH tSRHL Figure 46. Slew Rate Testing 12-bit DAC, dynamic specifications (continued) (TA = 25C, unless otherwise noted) PARAMETER TEST CONDITIONS VCC MIN DAC12AMPx = {2, 3, 4}, DAC12SREFx = 2, DAC12IR = 1, DAC12_xDAT = 800h BW--3dB 3-dB bandwidth, VDC = 1.5 V, VAC = 0.1 VPP (see Figure 47) Channel to channel crosstalk Channel-to-channel (see Note 1 and Figure 48) DAC12AMPx = {5, 6}, DAC12SREFx = 2, DAC12IR = 1, DAC12_xDAT = 800h DAC12_0DAT = 80h<-->F7Fh, RLoad = 3 k, DAC12_1DAT = 800h, No load, fDAC12_0OUT = 10 kHz, Duty cycle = 50% MAX UNIT 40 180 2.2 V/3 V DAC12AMPx = 7, DAC12SREFx = 2, DAC12IR = 1, DAC12_xDAT = 800h DAC12_0DAT = 800h, No load, DAC12_1DAT = 80h<-->F7Fh, RLoad = 3 k, fDAC12_1OUT = 10 kHz, Duty cycle = 50% TYP kHz 550 --80 2 2 V/3 V 2.2 dB --80 NOTE 1: RLOAD = 3 k, CLOAD = 100 pF Ve REF+ ILoad DAC12_x RLoad = 3 k AV CC 2 DACx AC CLoad = 100pF DC Figure 47. Test Conditions for 3-dB Bandwidth Specification ILoad DAC12_0 AV CC DAC12_xDAT 080h 2 DAC0 CLoad= 100pF VREF+ ILoad e RLoad AV CC 7F7h 080h V OUT V DAC12_xOUT 2 DAC1 080h V DAC12_yOUT RLoad DAC12_1 7F7h fToggle CLoad= 100pF Figure 48. Crosstalk Test Conditions POST OFFICE BOX 655303 DALLAS, TEXAS 75265 69 MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) flash memory TEST CONDITIONS PARAMETER VCC MIN TYP MAX UNIT VCC(PGM/ERASE) Program and erase supply voltage 2.2 3.6 V fFTG Flash Timing Generator frequency 257 476 kHz IPGM Supply current from DVCC during program 2.2 V/ 3.6 V 3 5 mA IERASE Supply current from DVCC during erase 2.2 V/ 3.6 V 3 7 mA tCPT Cumulative program time See Note 1 2.2 V/ 3.6 V 10 ms tCMErase Cumulative mass erase time See Note 2 2.2 V/ 3.6 V 200 104 Program/Erase endurance ms 105 cycles tRetention Data retention duration TJ = 25C tWord Word or byte program time See Note 3 100 35 years tFTG tBlock, 0 Block program time for first byte or word See Note 3 30 tFTG tBlock, 1-63 Block program time for each additional byte or word See Note 3 21 tFTG tBlock, End Block program end-sequence wait time See Note 3 6 tFTG tMass Erase Mass erase time (see Note 4) See Note 3 10593 tFTG tSeg Erase Segment erase time See Note 3 4819 tFTG NOTES: 1. The cumulative program time must not be exceeded when writing to a 64-byte flash block. This parameter applies to all programming methods: individual word/byte write and block write modes. 2. The mass erase duration generated by the flash timing generator is at least 11.1 ms ( = 5297x1/fFTG,max = 5297 1/476 kHz). To achieve the required cumulative mass erase time, the Flash Controller’s mass erase operation can be repeated until this time is met. A worst-case minimum of 19 cycles is required. 3. These values are hardwired into the Flash Controller’s state machine (tFTG = 1/fFTG). 4. To erase the complete code area, the mass erase must be performed once with a dummy address in the range of the lower 64-kB flash addresses and once with the dummy address in the upper 64-kB flash addresses. RAM PARAMETER VRAMh TEST CONDITIONS See Note 1 CPU halted MIN 1.6 MAX UNIT V NOTE 1: This parameter defines the minimum supply voltage when the data in program memory RAM remain unchanged. No program execution should take place during this supply voltage condition. 70 POST OFFICE BOX 655303 DALLAS, TEXAS 75265 MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) JTAG interface TEST CONDITIONS PARAMETER fTCK TCK input frequency See Note 1 RInternal Internal pullup resistance on TMS, TCK, TDI/TCLK See Note 2 VCC MIN TYP MAX 2.2 V 0 5 3V 0 10 2.2 V/ 3 V 25 60 90 MIN MAX UNIT MHz k NOTES: 1. fTCK may be restricted to meet the timing requirements of the module selected. 2. TMS, TDI/TCLK, and TCK pullup resistors are implemented in all versions. JTAG fuse (see Note 1) PARAMETER TEST CONDITIONS VCC(FB) Supply voltage during fuse-blow condition VFB Voltage level on TDI/TCLK for fuse blow (F versions) IFB Supply current into TDI/TCLK during fuse blow tFB Time to blow fuse TA = 25C 2.5 6 UNIT V 7 V 100 mA 1 ms NOTE 1: Once the fuse is blown, no further access to the MSP430 JTAG/Test and emulation features is possible. The JTAG block is switched to bypass mode. POST OFFICE BOX 655303 DALLAS, TEXAS 75265 71 MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 APPLICATION INFORMATION Port P1 pin schematic: P1.0 to P1.7, input/output with Schmitt trigger Pad Logic P1REN.x P1DIR.x 0 0 Module X OUT 1 0 DVCC 1 P1.0/TACLK/CAOUT P1.1/TA0 P1.2/TA1 P1.3/TA2 P1.4/SMCLK P1.5/TA0 P1.6/TA1 P1.7/TA2 P1SEL.x P1IN.x EN Module X IN D P1IE.x P1IRQ.x EN Q Set P1IFG.x P1SEL.x P1IES.x 72 1 Direction 0: Input 1: Output 1 P1OUT.x DVSS Interrupt Edge Select POST OFFICE BOX 655303 DALLAS, TEXAS 75265 MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 Port P1 (P1.0 to P1.7) pin functions PIN NAME (P1.X) (P1 X) P1.0/TACLK / X 0 FUNCTION P1.0 (I/O) Timer_A3.TACLK CAOUT P1.1/TA0 / P1.2/TA1 / P1.3/TA2 / 1 2 3 P1.4/SMCLK / 4 P1.5/TA0 / 5 7 0 0 1 1 0 Timer_A3.CCI0A 0 1 Timer_A3.TA0 1 1 I: 0; O: 1 0 Timer_A3.CCI0A 0 1 Timer_A3.TA0 1 1 I: 0; O: 1 0 Timer_A3.CCI0A 0 1 Timer_A3.TA0 1 1 I: 0; O: 1 0 P1.2 (I/O) P1.3 (I/O) P1.4 (I/O) P1.5 (I/O) Timer_A3.TA0 P1.7/TA2 / P1SEL.x I: 0; O: 1 1 Timer_A3.CCI0A 6 P1DIR.x I: 0; O: 1 P1.1 (I/O) SMCLK P1.6/TA1 / CONTROL BITS / SIGNALS 1 1 I: 0; O: 1 0 0 1 1 1 I: 0; O: 1 0 Timer_A3.CCI0A 0 1 Timer_A3.TA1 1 1 I: 0; O: 1 0 Timer_A3.CCI0A 0 1 Timer_A3.TA2 1 1 P1.6 (I/O) P1.7 (I/O) POST OFFICE BOX 655303 DALLAS, TEXAS 75265 73 MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 Port P2 pin schematic: P2.0 to P2.4, P2.6, and P2.7, input/output with Schmitt trigger Pad Logic To Comparator_A From Comparator_A CAPD.x P2REN.x P2DIR.x 0 0 Module X OUT 1 0 DVCC 1 Bus Keeper EN P2SEL.x P2IN.x EN D Module X IN P2IE.x P2IRQ.x EN Q Set P2IFG.x P2SEL.x P2IES.x 74 1 Direction 0: Input 1: Output 1 P2OUT.x DVSS Interrupt Edge Select POST OFFICE BOX 655303 DALLAS, TEXAS 75265 P2.0/ACLK/CA2 P2.1/TAINCLK/CA3 P2.2/CAOUT/TA0/CA4 P2.3/CA0/TA1 P2.4/CA1/TA2 P2.6/ADC12CLK/ DMAE0/CA6 P2.7/TA0/CA7 MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 Port P2.0, P2.3, P2.4, P2.6 and P2.7 pin functions PIN NAME (P2.X) (P2 X) P2.0/ACLK/CA2 / / P2.1/TAINCLK/CA3 / / P2.2/CAOUT/TA0/ / / / CA4 P2.3/CA0/TA1 / / P2.4/CA1/TA2 / / P2.6/ADC12CLK/ / / DMAE0/CA6 P2.7/TA0/CA7 / / X 0 1 2 3 4 6 7 CONTROL BITS / SIGNALS FUNCTION CAPD.x P2DIR.x P2SEL.x P2.0 (I/O) 0 I: 0; O: 1 0 ACLK 0 1 1 CA2 1 X X P2.1 (I/O) 0 I: 0; O: 1 0 Timer_A3.INCLK 0 0 1 DVSS 0 1 1 CA3 1 X X P2.2 (I/O) 0 I: 0; O: 1 0 CAOUT 0 1 1 TA0 0 0 1 CA4 1 X X P2.3 (I/O) 0 I: 0; O: 1 0 Timer_A3.TA1 0 1 1 CA0 1 X X P2.4 (I/O) 0 I: 0; O: 1 0 Timer_A3.TA2 0 1 X CA1 1 X 1 P2.6 (I/O) 0 I: 0; O: 1 0 ADC12CLK 0 1 1 DMAE0 0 0 1 CA6 1 X X P2.7 (I/O) 0 I: 0; O: 1 0 Timer_A3.TA0 0 1 1 CA7 1 X X NOTE: X: Don’t care. POST OFFICE BOX 655303 DALLAS, TEXAS 75265 75 MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 Port P2 pin schematic: P2.5, input/output with Schmitt trigger Pad Logic To Comparator From Comparator CAPD.5 To DCO in DCO DCOR P2REN.5 P2DIR.5 0 0 Module X OUT 1 0 DVCC 1 1 Direction 0: Input 1: Output 1 P2OUT.5 DVSS P2.5/ROSC/CA5 Bus Keeper EN P2SEL.x P2IN.5 EN Module X IN D P2IE.5 P2IRQ.5 EN Q Set P2IFG.5 P2SEL.5 Interrupt Edge Select P2IES.5 Port P2.5 pin functions PIN NAME (P2.X) (P2 X) P2.5/R / OSC//CA5 X 5 FUNCTION CONTROL BITS / SIGNALS CAPD DCOR P2DIR.5 P2.5 (I/O) 0 0 I: 0; O: 1 0 ROSC (see Note 2) 0 1 X X DVSS 0 0 1 1 CA5 1 or selected 0 X X NOTES: 1. X: Don’t care. 2. If Rosc is used it is connected to an external resistor. 76 POST OFFICE BOX 655303 DALLAS, TEXAS 75265 P2SEL.5 MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 Port P3 pin schematic: P3.0 to P3.7, input/output with Schmitt trigger Pad Logic P3REN.x P3DIR.x 0 Module direction P3OUT.x DVSS 0 DVCC 1 1 Direction 0: Input 1: Output 1 0 Module X OUT 1 P3.0/UCB0STE/UCA0CLK P3.1/UCB0SIMO/UCB0SDA P3.2/UCB0SOMI/UCB0SCL P3.3/UCB0CLK/UCA0STE P3.4/UCA0TXD/UCA0SIMO P3.5/UCA0RXD/UCA0SOMI P3.6/UCA1TXD/UCA1SIMO P3.7/UCA1RXD/UCA1SOMI P3SEL.x P3IN.x EN Module X IN D Port P3.0 to P3.7 pin functions PIN NAME (P3.X) (P3 X) X P3.0/UCB0STE/ / / UCA0CLK 0 P3.1/UCB0SIMO/ / / UCB0SDA 1 P3.2/UCB0SOMI/ / / UCB0SCL 2 P3.3/UCB0CLK/ / / UCA0STE 3 P3.4/UCA0TXD/ / / UCA0SIMO 4 P3.5/UCA0RXD/ / / UCA0SOMI 5 P3.6/UCA1TXD/ / / UCA1SIMO 6 P3.7/UCA1RXD/ / / UCA1SOMI 7 NOTES: 1. 2. 3. 4. FUNCTION P3.0 (I/O) UCB0STE/UCA0CLK (see Note 2 and 4) P3.1 (I/O) UCB0SIMO/UCB0SDA (see Note 2 and 3) P3.2 (I/O) UCB0SOMI/UCB0SCL (see Note 2 and 3) P3.3 (I/O) UCB0CLK/UCA0STE (see Note 2) P3.4 (I/O) UCA0TXD/UCA0SIMO (see Note 2) P3.5 (I/O) UCA0RXD/UCA0SOMI (see Note 2) P3.6 (I/O) UCA1TXD/UCA1SIMO (see Note 2) P3.7 (I/O) UCA1RXD/UCA1SOMI (see Note 2) CONTROL BITS / SIGNALS P3DIR.x P3SEL.x I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 X: Don’t care. The pin direction is controlled by the USCI module. In case the I2C functionality is selected the output drives only the logical 0 to VSS level. UCA0CLK function takes precedence over UCB0STE function. If the pin is required as UCA0CLK input or output, USCI A0/B0 is forced to 3-wire SPI mode if 4-wire SPI mode is selected. POST OFFICE BOX 655303 DALLAS, TEXAS 75265 77 MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 Port P4 pin schematic: P4.0 to P4.7, input/output with Schmitt trigger Pad Logic P4REN.x P4DIR.x 0 0 Module X OUT 1 0 DVCC 1 1 Direction 0: Input 1: Output 1 P4OUT.x DVSS P4.0/TB0 P4.1/TB1 P4.2/TB2 P4.3/TB3 P4.4/TB4 P4.5/TB5 P4.6/TB6 P4.7/TBCLK P4SEL.x P4IN.x EN Module X IN D Port P4.0 to P4.7 pin functions PIN NAME (P4.X) (P4 X) P4.0/TB0 / P4.1/TB1 / P4.2/TB2 / P4.3/TB3 / P4.4/TB4 / P4.5/TB5 / X 0 1 2 3 4 5 FUNCTION P4DIR.x P4SEL.x I: 0; O: 1 0 Timer_B7.CCI0A and Timer_B7.CCI0B 0 1 Timer_B7.TB0 1 1 P4.0 (I/O) P4.1 (I/O) I: 0; O: 1 0 Timer_B7.CCI1A and Timer_B7.CCI1B 0 1 Timer_B7.TB1 1 1 P4.2 (I/O) I: 0; O: 1 0 Timer_B7.CCI2A and Timer_B7.CCI2B 0 1 Timer_B7.TB2 1 1 P4.3 (I/O) I: 0; O: 1 0 Timer_B7.CCI3A and Timer_B7.CCI3B 0 1 Timer_B7.TB3 1 1 P4.4 (I/O) I: 0; O: 1 0 Timer_B7.CCI4A and Timer_B7.CCI4B 0 1 Timer_B7.TB4 1 1 I: 0; O: 1 0 0 1 P4.5 (I/O) Timer_B7.CCI5A and Timer_B7.CCI5B Timer_B7.TB5 P4.6/TB6 / 6 P4.6 (I/O) Timer_B7.CCI6A and Timer_B7.CCI6B Timer_B7.TB6 P4.7/TBCLK / 7 P4.7 (I/O) Timer_B7.TBCLK 78 CONTROL BITS / SIGNALS POST OFFICE BOX 655303 DALLAS, TEXAS 75265 1 1 I: 0; O: 1 0 0 1 1 1 I: 0; O: 1 0 1 1 MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 Port P5 pin schematic: P5.0 to P5.7, input/output with Schmitt trigger Pad Logic P5REN.x P5DIR.x 0 Module Direction 1 P5OUT.x 0 Module X OUT DVSS 0 DVCC 1 1 Direction 0: Input 1: Output 1 P5.0/UCB1STE/UCA1CLK P5.1/UCB1SIMO/UCB1SDA P5.2/UCB1SOMI/UCB1SCL P5.3/UCB1CLK/UCA1STE P5.4/MCLK P5.5/SMCLK P5.6/ACLK P5.7/TBOUTH/SVSOUT P5SEL.x P5IN.x EN Module X IN D Port P5.0 to P5.7 pin functions PIN NAME (P5.X) (P5 X) X P5.0/UCB1STE/ / / UCA1CLK 0 P5.1/UCB1SIMO/ / / UCB1SDA 1 P5.2/UCB1SOMI/ / / UCB1SCL 2 P5.3/UCB1CLK/ / / UCA1STE 3 P5.4/MCLK / 4 P5.5/SMCLK / 5 FUNCTION P5.0 (I/O) UCB1STE/UCA1CLK (see Note 2 and 4) P5.1 (I/O) UCB1SIMO/UCB1SDA (see Note 2 and 3) P5.2 (I/O) UCB1SOMI/UCB1SCL (see Note 2 and 3) P5.3 (I/O) UCB1CLK/UCA1STE (see Note 2) P5.0 (I/O) MCLK 6 NOTES: 1. 2. 3. 4. 7 P5SEL.x I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 1 1 0 1 1 I: 0; O: 1 0 1 1 P5.7 (I/O) I: 0; O: 1 0 TBOUTH 0 1 SVSOUT 1 1 P5.2 (I/O) ACLK P5.7/TBOUTH/ / / SVSOUT P5DIR.x I: 0; O: 1 P5.1 (I/O) SMCLK P5.6/ACLK / CONTROL BITS / SIGNALS X: Don’t care. The pin direction is controlled by the USCI module. In case the I2C functionality is selected the output drives only the logical 0 to VSS level. UCA1CLK function takes precedence over UCB1STE function. If the pin is required as UCA1CLK input or output USCI A1/B1 will be forced to 3-wire SPI mode if 4-wire SPI mode is selected. POST OFFICE BOX 655303 DALLAS, TEXAS 75265 79 MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 Port P6 pin schematic: P6.0 to P6.4, input/output with Schmitt trigger Pad Logic ADC12 Ax P6REN.x P6DIR.x 0 0 Module X OUT 1 0 DVCC 1 1 Direction 0: Input 1: Output 1 P6OUT.x DVSS P6.0/A0 P6.1/A1 P6.2/A2 P6.3/A3 P6.4/A4 Bus Keeper EN P6SEL.x P6IN.x EN Module X IN D Port P6.0 to P6.4 pin functions PIN NAME (P6.X) (P6 X) P6.0/A0 / X 0 FUNCTION P6.0 (I/O) A0 (see Note 2) P6.1/A1 / 1 P6.2/A2 / 2 P6.3/A3 / 3 P6.1 (I/O) A1 (see Note 2) P6.2 (I/O) A2 (see Note 2) P6.3 (I/O) A3 (see Note 2) P6.4/A4 / 4 P6.4 (I/O) A4 (see Note 2) NOTES: 1. X: Don’t care. 2. The ADC12 channel Ax is connected to AVss internally if not selected. 80 POST OFFICE BOX 655303 DALLAS, TEXAS 75265 CONTROL BITS / SIGNALS P6DIR.x P6SEL.x I: 0; O: 1 0 X X I: 0; O: 1 0 X X I: 0; O: 1 0 X X I: 0; O: 1 0 X X I: 0; O: 1 0 X X MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 Port P6 pin schematic: P6.5 and P6.6, input/output with Schmitt trigger Pad Logic DAC12_0OUT DAC12AMP > 0 ADC12 Ax ADC12 Ax P6REN.x P6DIR.x 0 0 Module X OUT 1 0 DVCC 1 1 Direction 0: Input 1: Output 1 P6OUT.x DVSS P6.5/A5/DAC1 P6.6/A6/DAC0 Bus Keeper EN P6SEL.x P6IN.x EN Module X IN D Port P6.5 to P6.6 pin functions CONTROL BITS / SIGNALS PIN NAME (P6.X) P6.5/A5/DAC1† / / † X 5 FUNCTION P6.5 (I/O) 6 P6SEL.x CAPD.x or DAC12AMP > 0 I: 0; O: 1 0 0 DVSS 1 1 0 A5 (see Note 2) X X 1 DAC1 (DA12OPS= 1, see Note 3) P6.6/A6/DAC0† / / † P6DIR.x X X 1 I: 0; O: 1 0 0 DVSS 1 1 0 A6 (see Note 2) X X 1 DAC0 (DA12OPS= 0, see Note 3) X X 1 P6.6 (I/O) † MSP430F261x devices only NOTES: 1. X: Don’t care. 2. The ADC12 channel Ax is connected to AVss internally if not selected. 3. The DAC outputs are floating if not selected. POST OFFICE BOX 655303 DALLAS, TEXAS 75265 81 MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 Port P6 pin schematic: P6.7, input/output with Schmitt trigger Pad Logic to SVS Mux VLD = 15 DAC12_0OUT DAC12AMP > 0 ADC12 A7 from ADC12 P6REN.7 P6DIR.7 0 0 Module X OUT 1 0 DVCC 1 1 Direction 0: Input 1: Output 1 P6OUT.7 DVSS P6.7/A7/DAC1/SVSIN Bus Keeper EN P6SEL.7 P6IN.7 EN Module X IN D Port P6.7 pin functions PIN NAME (P6.X) (P6 X) P6.7/A7/DAC1†/ / / †/ SVSIN† X 7 FUNCTION P6.7 (I/O) P6DIR.x P6SEL.x I: 0; O: 1 0 DVSS 1 1 A7 (see Note 2) X X DAC1 (DA12OPS= 0, see Note 3) X X SVSIN (VLD = 15) X X NOTES: 1. X: Don’t care. 2. The ADC12 channel Ax is connected to AVss internally if not selected. 3. The DAC outputs are floating if not selected. † MSP430F261x devices only 82 CONTROL BITS / SIGNALS POST OFFICE BOX 655303 DALLAS, TEXAS 75265 MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 Port P7 pin schematic: P7.0 to P7.7, input/output with Schmitt trigger† Pad Logic P7REN.x P7DIR.x 0 0 1 P7OUT.x 0 VSS 1 DVSS 0 DVCC 1 1 Direction 0: Input 1: Output P7.x P7SEL.x P7IN.x EN Module X IN D Port P7.0 to P7.7 pin functions† PIN NAME (P7.X) (P7 X) P7.0 X 0 FUNCTION P7.0 (I/O) Input P7.1 1 P7.2 2 P7.1 (I/O) Input P7.2 (I/O) Input P7.3 3 P7.3 (I/O) Input P7.4 4 P7.4 (I/O) Input P7.5 5 P7.6 6 P7.5 (I/O) Input P7.6 (I/O) Input P7.7 7 P7.7 (I/O) Input † CONTROL BITS / SIGNALS P7DIR.x P7SEL.x I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 80-pin devices only POST OFFICE BOX 655303 DALLAS, TEXAS 75265 83 MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 Port P8 pin schematic: P8.0 to P8.5, input/output with Schmitt trigger† Pad Logic P8REN.x P8DIR.x 0 0 1 P8OUT.x 0 VSS 1 DVSS 0 DVCC 1 1 Direction 0: Input 1: Output P8.0 P8.1 P8.2 P8.3 P8.4 P8.5 P8SEL.x P8IN.x EN Module X IN D Port P8.0 to P8.5 pin functions† PIN NAME (P8.X) (P8 X) P8.0 X 0 FUNCTION P8.0 (I/O) Input P8.1 1 P8.2 2 P8.1 (I/O) Input P8.2 (I/O) Input P8.3 3 P8.3 (I/O) Input P8.4 4 P8.4 (I/O) Input P8.5 5 P8.5 (I/O) Input † 80-pin devices only 84 POST OFFICE BOX 655303 DALLAS, TEXAS 75265 CONTROL BITS / SIGNALS P8DIR.x P8SEL.x I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 Port P8 pin schematic: P8.6, input/output with Schmitt trigger† BCSCTL3.XT2Sx = 11 0 XT2CLK From P8.7/XIN 1 P8.7/XIN XT2 off Pad Logic P8SEL.7 P8REN.6 P8DIR.6 0 0 Module X OUT 1 0 DVCC 1 1 Direction 0: Input 1: Output 1 P8OUT.6 DVSS P8.6/XOUT Bus Keeper EN P8SEL.6 P8IN.6 EN Module X IN D Port P8.6 pin functions† PIN NAME (P8.X) (P8 X) P8.6/XOUT / † X 6 FUNCTION CONTROL BITS / SIGNALS P8DIR.x P8SEL.x I: 0; O: 1 0 XOUT (default) 0 1 DVSS 1 1 P8.6 (I/O) 80-pin devices only POST OFFICE BOX 655303 DALLAS, TEXAS 75265 85 MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 Port P8 pin schematic: P8.7, input/output with Schmitt trigger† BCSCTL3.XT2Sx = 11 P8.6/XOUT XT2 off 0 XT2CLK 1 P8SEL.6 Pad Logic P8REN.7 0 P8DIR.7 0 0 Module X OUT 1 0 DVCC 1 1 Direction 0: Input 1: Output 1 P8OUT.7 DVSS P8.7/XIN Bus Keeper EN P8SEL.7 P8IN.7 EN Module X IN D Port P8.7 pin functions† PIN NAME (P8.X) (P8 X) P8.7/XIN / † X 7 FUNCTION P8DIR.x P8SEL.x I: 0; O: 1 0 XIN (default) 0 1 VSS 1 1 P8.7 (I/O) 80-pin devices only 86 CONTROL BITS / SIGNALS POST OFFICE BOX 655303 DALLAS, TEXAS 75265 MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 APPLICATION INFORMATION JTAG pins: TMS, TCK, TDI/TCLK, TDO/TDI, input/output with Schmitt trigger TDO Controlled by JTAG Controlled by JTAG JTAG TDO/TDI Controlled by JTAG DVCC DVCC TDI Fuse Burn and Test Fuse Test TDI/TCLK and Emulation Module DVCC TMS TMS DVCC During Programming Activity and During Blowing of the Fuse, Pin TDO/TDI Is Used to Apply the Test Input Data for JTAG Circuitry TCK TCK POST OFFICE BOX 655303 DALLAS, TEXAS 75265 87 MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 APPLICATION INFORMATION JTAG fuse check mode MSP430 devices that have the fuse on the TDI/TCLK terminal have a fuse check mode that tests the continuity of the fuse the first time the JTAG port is accessed after a power-on reset (POR). When activated, a fuse check current, ITF, of 1 mA at 3 V or 2.5 mA at 5 V can flow from the TDI/TCLK pin to ground if the fuse is not burned. Care must be taken to avoid accidentally activating the fuse check mode and increasing overall system power consumption. Activation of the fuse check mode occurs with the first negative edge on the TMS pin after power up or if the TMS is being held low during power up. The second positive edge on the TMS pin deactivates the fuse check mode. After deactivation, the fuse check mode remains inactive until another POR occurs. After each POR the fuse check mode has the potential to be activated. The fuse check current flows only when the fuse check mode is active and the TMS pin is in a low state (see Figure 49). Therefore, the additional current flow can be prevented by holding the TMS pin high (default condition). Time TMS Goes Low After POR TMS ITDI/TCLK ITF Figure 49. Fuse Check Mode Current 88 POST OFFICE BOX 655303 DALLAS, TEXAS 75265 MSP430F2618- EP MIXED SIGNAL MICROCONTROLLER SLAS632 -- DECEMBER 2008 Data Sheet Revision History LITERATURE NUMBER SLAS541 SLAS541A SLAS541B SLAS541C SLAS541D SUMMARY Product Preview release Production Data release Corrected the format and the content shown on the first page. Corrected pin number of P3.6 and P3.7 in 64-pin package in the terminal function list. Corrected the port schematics. Corrected “calibration data” section (page 20). Typos and formatting corrected. Added the figure “typical characteristics -- LPM4 current” (Page 33). Added preview of MSP430F261x BGA devices. Release to market of MSP430F261x BGA devices Added the ESD disclaimer (page 1). Added reserved BGA pins to the terminal function list (pages 10 and following). Corrected the references in the output port parameters (page 36). Corrected the cumulative program time of the flash (page 75). POST OFFICE BOX 655303 DALLAS, TEXAS 75265 89 PACKAGE OPTION ADDENDUM www.ti.com 2-Feb-2009 PACKAGING INFORMATION Orderable Device Status (1) MSP430F2618TGQWTEP ACTIVE BGA MI CROSTA R JUNI OR GQW 113 250 TBD SNPB Level-3-235C-168 HR V62/09620-01XA ACTIVE BGA MI CROSTA R JUNI OR GQW 113 250 TBD SNPB Level-3-235C-168 HR Package Type Package Drawing Pins Package Eco Plan (2) Qty Lead/Ball Finish MSL Peak Temp (3) (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. OTHER QUALIFIED VERSIONS OF MSP430F2618-EP : • Catalog: MSP430F2618 NOTE: Qualified Version Definitions: • Catalog - TI's standard catalog product Addendum-Page 1 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications. TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Amplifiers Data Converters DLP® Products DSP Clocks and Timers Interface Logic Power Mgmt Microcontrollers RFID RF/IF and ZigBee® Solutions amplifier.ti.com dataconverter.ti.com www.dlp.com dsp.ti.com www.ti.com/clocks interface.ti.com logic.ti.com power.ti.com microcontroller.ti.com www.ti-rfid.com www.ti.com/lprf Applications Audio Automotive Broadband Digital Control Medical Military Optical Networking Security Telephony Video & Imaging Wireless www.ti.com/audio www.ti.com/automotive www.ti.com/broadband www.ti.com/digitalcontrol www.ti.com/medical www.ti.com/military www.ti.com/opticalnetwork www.ti.com/security www.ti.com/telephony www.ti.com/video www.ti.com/wireless Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2009, Texas Instruments Incorporated