LM2596 LM2596 SIMPLE SWITCHER Power Converter 150 kHz3A Step-Down Voltage Regulator Literature Number: SNVS124B LM2596 SIMPLE SWITCHER ® Power Converter 150 kHz 3A Step-Down Voltage Regulator General Description Features The LM2596 series of regulators are monolithic integrated circuits that provide all the active functions for a step-down (buck) switching regulator, capable of driving a 3A load with excellent line and load regulation. These devices are available in fixed output voltages of 3.3V, 5V, 12V, and an adjustable output version. Requiring a minimum number of external components, these regulators are simple to use and include internal frequency compensation†, and a fixed-frequency oscillator. The LM2596 series operates at a switching frequency of 150 kHz thus allowing smaller sized filter components than what would be needed with lower frequency switching regulators. Available in a standard 5-lead TO-220 package with several different lead bend options, and a 5-lead TO-263 surface mount package. A standard series of inductors are available from several different manufacturers optimized for use with the LM2596 series. This feature greatly simplifies the design of switch-mode power supplies. Other features include a guaranteed ± 4% tolerance on output voltage under specified input voltage and output load conditions, and ± 15% on the oscillator frequency. External shutdown is included, featuring typically 80 µA standby current. Self protection features include a two stage frequency reducing current limit for the output switch and an over temperature shutdown for complete protection under fault conditions. n 3.3V, 5V, 12V, and adjustable output versions n Adjustable version output voltage range, 1.2V to 37V ± 4% max over line and load conditions n Available in TO-220 and TO-263 packages n Guaranteed 3A output load current n Input voltage range up to 40V n Requires only 4 external components n Excellent line and load regulation specifications n 150 kHz fixed frequency internal oscillator n TTL shutdown capability n Low power standby mode, IQ typically 80 µA n High efficiency n Uses readily available standard inductors n Thermal shutdown and current limit protection Typical Application Applications n Simple high-efficiency step-down (buck) regulator n On-card switching regulators n Positive to negative converter Note: †Patent Number 5,382,918. (Fixed Output Voltage Versions) 01258301 SIMPLE SWITCHER ® and Switchers Made Simple ® are registered trademarks of National Semiconductor Corporation. © 2002 National Semiconductor Corporation DS012583 www.national.com LM2596 SIMPLE SWITCHER Power Converter 150 kHz 3A Step-Down Voltage Regulator May 2002 LM2596 Connection Diagrams and Ordering Information Bent and Staggered Leads, Through Hole Package 5-Lead TO-220 (T) Surface Mount Package 5-Lead TO-263 (S) 01258303 01258302 Order Number LM2596S-3.3, LM2596S-5.0, LM2596S-12 or LM2596S-ADJ See NS Package Number TS5B Order Number LM2596T-3.3, LM2596T-5.0, LM2596T-12 or LM2596T-ADJ See NS Package Number T05D www.national.com 2 Human Body Model (Note 2) (Note 1) Lead Temperature If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications. Maximum Supply Voltage ON /OFF Pin Input Voltage 2 kV S Package 45V Vapor Phase (60 sec.) +215˚C Infrared (10 sec.) +245˚C −0.3 ≤ V ≤ +25V T Package (Soldering, 10 sec.) +260˚C −0.3 ≤ V ≤+25V Maximum Junction Temperature +150˚C Feedback Pin Voltage Output Voltage to Ground (Steady State) −1V Power Dissipation Internally limited Storage Temperature Range −65˚C to +150˚C Operating Conditions −40˚C ≤ TJ ≤ +125˚C Temperature Range Supply Voltage ESD Susceptibility 4.5V to 40V LM2596-3.3 Electrical Characteristics Specifications with standard type face are for TJ = 25˚C, and those with boldface type apply over full Operating Temperature Range LM2596-3.3 Symbol Parameter Conditions Typ (Note 3) Limit (Note 4) Units (Limits) SYSTEM PARAMETERS (Note 5) Test Circuit Figure 1 VOUT η Output Voltage Efficiency 4.75V ≤ VIN ≤ 40V, 0.2A ≤ ILOAD ≤ 3A VIN = 12V, ILOAD = 3A 3.3 V 3.168/3.135 V(min) 3.432/3.465 V(max) 73 % LM2596-5.0 Electrical Characteristics Specifications with standard type face are for TJ = 25˚C, and those with boldface type apply over full Operating Temperature Range LM2596-5.0 Symbol Parameter Conditions Typ (Note 3) Limit (Note 4) Units (Limits) SYSTEM PARAMETERS (Note 5) Test Circuit Figure 1 VOUT η Output Voltage Efficiency 7V ≤ VIN ≤ 40V, 0.2A ≤ ILOAD ≤ 3A VIN = 12V, ILOAD = 3A 5.0 V 4.800/4.750 V(min) 5.200/5.250 V(max) 80 % LM2596-12 Electrical Characteristics Specifications with standard type face are for TJ = 25˚C, and those with boldface type apply over full Operating Temperature Range LM2596-12 Symbol Parameter Conditions Typ (Note 3) Limit (Note 4) Units (Limits) SYSTEM PARAMETERS (Note 5) Test Circuit Figure 1 VOUT η Output Voltage Efficiency 15V ≤ VIN ≤ 40V, 0.2A ≤ ILOAD ≤ 3A VIN = 25V, ILOAD = 3A 12.0 90 3 V 11.52/11.40 V(min) 12.48/12.60 V(max) % www.national.com LM2596 Absolute Maximum Ratings LM2596 LM2596-ADJ Electrical Characteristics Specifications with standard type face are for TJ = 25˚C, and those with boldface type apply over full Operating Temperature Range LM2596-ADJ Symbol Parameter Conditions Typ (Note 3) Limit (Note 4) Units (Limits) SYSTEM PARAMETERS (Note 5) Test Circuit Figure 1 VFB Feedback Voltage 4.5V ≤ VIN ≤ 40V, 0.2A ≤ ILOAD ≤ 3A 1.230 V VOUT programmed for 3V. Circuit of Figure 1 η Efficiency VIN = 12V, VOUT = 3V, ILOAD = 3A 1.193/1.180 V(min) 1.267/1.280 V(max) 73 % All Output Voltage Versions Electrical Characteristics Specifications with standard type face are for TJ = 25˚C, and those with boldface type apply over full Operating Temperature Range. Unless otherwise specified, VIN = 12V for the 3.3V, 5V, and Adjustable version and VIN = 24V for the 12V version. ILOAD = 500 mA LM2596-XX Symbol Parameter Conditions Typ (Note 3) Limit (Note 4) Units (Limits) DEVICE PARAMETERS Ib fO VSAT DC ICL IL Feedback Bias Current Oscillator Frequency Saturation Voltage Adjustable Version Only, VFB = 1.3V (Note 6) IOUT = 3A (Notes 7, 8) (Note 8) 100 Min Duty Cycle (OFF) (Note 9) 0 Current Limit Peak Current (Notes 7, 8) 127/110 kHz(min) 173/173 kHz(max) 1.4/1.5 V(max) kHz Quiescent Current (Note 9) ISTBY Standby Quiescent Current ON/OFF pin = 5V (OFF) V % 4.5 Output = 0V (Notes 7, 9) IQ Thermal Resistance nA (max) 1.16 Max Duty Cycle (ON) Output Leakage Current nA 50/100 150 Output = −1V (Note 10) θJC 10 A 3.6/3.4 A(min) 6.9/7.5 A(max) 50 µA(max) 30 mA(max) 2 mA 5 (Note 10) mA 10 mA(max) 200/250 µA(max) 80 µA TO-220 or TO-263 Package, Junction to Case 2 ˚C/W θJA TO-220 Package, Junction to Ambient (Note 11) 50 ˚C/W θJA TO-263 Package, Junction to Ambient (Note 12) 50 ˚C/W θJA TO-263 Package, Junction to Ambient (Note 13) 30 ˚C/W θJA TO-263 Package, Junction to Ambient (Note 14) 20 ˚C/W 1.3 V ON/OFF CONTROL Test Circuit Figure 1 ON /OFF Pin Logic Input VIH Threshold Voltage VIL www.national.com Low (Regulator ON) 0.6 V(max) High (Regulator OFF) 2.0 V(min) 4 LM2596 All Output Voltage Versions Electrical Characteristics (Continued) Specifications with standard type face are for TJ = 25˚C, and those with boldface type apply over full Operating Temperature Range. Unless otherwise specified, VIN = 12V for the 3.3V, 5V, and Adjustable version and VIN = 24V for the 12V version. ILOAD = 500 mA LM2596-XX Symbol IH Parameter Conditions ON /OFF Pin Input Current IL Typ (Note 3) VLOGIC = 2.5V (Regulator OFF) Limit (Note 4) 5 VLOGIC = 0.5V (Regulator ON) Units (Limits) µA 15 µA(max) 5 µA(max) 0.02 µA Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. Note 2: The human body model is a 100 pF capacitor discharged through a 1.5k resistor into each pin. Note 3: Typical numbers are at 25˚C and represent the most likely norm. Note 4: All limits guaranteed at room temperature (standard type face) and at temperature extremes (bold type face). All room temperature limits are 100% production tested. All limits at temperature extremes are guaranteed via correlation using standard Statistical Quality Control (SQC) methods. All limits are used to calculate Average Outgoing Quality Level (AOQL). Note 5: External components such as the catch diode, inductor, input and output capacitors, and voltage programming resistors can affect switching regulator system performance. When the LM2596 is used as shown in the Figure 1 test circuit, system performance will be as shown in system parameters section of Electrical Characteristics. Note 6: The switching frequency is reduced when the second stage current limit is activated. Note 7: No diode, inductor or capacitor connected to output pin. Note 8: Feedback pin removed from output and connected to 0V to force the output transistor switch ON. Note 9: Feedback pin removed from output and connected to 12V for the 3.3V, 5V, and the ADJ. version, and 15V for the 12V version, to force the output transistor switch OFF. Note 10: VIN = 40V. Note 11: Junction to ambient thermal resistance (no external heat sink) for the TO-220 package mounted vertically, with the leads soldered to a printed circuit board with (1 oz.) copper area of approximately 1 in2. Note 12: Junction to ambient thermal resistance with the TO-263 package tab soldered to a single printed circuit board with 0.5 in2 of (1 oz.) copper area. Note 13: Junction to ambient thermal resistance with the TO-263 package tab soldered to a single sided printed circuit board with 2.5 in2 of (1 oz.) copper area. Note 14: Junction to ambient thermal resistance with the TO-263 package tab soldered to a double sided printed circuit board with 3 in2 of (1 oz.) copper area on the LM2596S side of the board, and approximately 16 in2 of copper on the other side of the p-c board. See Application Information in this data sheet and the thermal model in Switchers Made Simple™ version 4.3 software. Typical Performance Characteristics Normalized Output Voltage (Circuit of Figure 1) Line Regulation 01258304 Efficiency 01258305 5 01258306 www.national.com LM2596 Typical Performance Characteristics Switch Saturation Voltage (Circuit of Figure 1) (Continued) Switch Current Limit 01258307 Operating Quiescent Current 01258310 Minimum Operating Supply Voltage 01258311 ON /OFF Pin Current (Sinking) 01258313 www.national.com 01258309 01258308 Shutdown Quiescent Current ON /OFF Threshold Voltage Dropout Voltage Switching Frequency 01258314 6 01258312 01258315 LM2596 Typical Performance Characteristics (Circuit of Figure 1) (Continued) Feedback Pin Bias Current 01258316 7 www.national.com LM2596 Typical Performance Characteristics Discontinuous Mode Switching Waveforms VIN = 20V, VOUT = 5V, ILOAD = 500 mA L = 10 µH, COUT = 330 µF, COUT ESR = 45 mΩ Continuous Mode Switching Waveforms VIN = 20V, VOUT = 5V, ILOAD = 2A L = 32 µH, COUT = 220 µF, COUT ESR = 50 mΩ 01258317 01258318 Horizontal Time Base: 2 µs/div. Horizontal Time Base: 2 µs/div. A: Output Pin Voltage, 10V/div. A: Output Pin Voltage, 10V/div. B: Inductor Current 1A/div. B: Inductor Current 0.5A/div. C: Output Ripple Voltage, 50 mV/div. C: Output Ripple Voltage, 100 mV/div. Load Transient Response for Discontinuous Mode VIN = 20V, VOUT = 5V, ILOAD = 500 mA to 2A L = 10 µH, COUT = 330 µF, COUT ESR = 45 mΩ Load Transient Response for Continuous Mode VIN = 20V, VOUT = 5V, ILOAD = 500 mA to 2A L = 32 µH, COUT = 220 µF, COUT ESR = 50 mΩ 01258320 Horizontal Time Base: 200 µs/div. 01258319 A: Output Voltage, 100 mV/div. (AC) Horizontal Time Base: 100 µs/div. B: 500 mA to 2A Load Pulse A: Output Voltage, 100 mV/div. (AC) B: 500 mA to 2A Load Pulse Test Circuit and Layout Guidelines Fixed Output Voltage Versions 01258322 CIN — 470 µF, 50V, Aluminum Electrolytic Nichicon “PL Series” COUT — 220 µF, 25V Aluminum Electrolytic, Nichicon “PL Series” D1 — 5A, 40V Schottky Rectifier, 1N5825 L1 — 68 µH, L38 www.national.com 8 LM2596 Test Circuit and Layout Guidelines (Continued) Adjustable Output Voltage Versions 01258323 where VREF = 1.23V Select R1 to be approximately 1 kΩ, use a 1% resistor for best stability. CIN — 470 µF, 50V, Aluminum Electrolytic Nichicon “PL Series” COUT — 220 µF, 35V Aluminum Electrolytic, Nichicon “PL Series” D1 — 5A, 40V Schottky Rectifier, 1N5825 L1 — 68 µH, L38 R1 — 1 kΩ, 1% CFF — See Application Information Section FIGURE 1. Standard Test Circuits and Layout Guides As in any switching regulator, layout is very important. Rapidly switching currents associated with wiring inductance can generate voltage transients which can cause problems. For minimal inductance and ground loops, the wires indicated by heavy lines should be wide printed circuit traces and should be kept as short as possible. For best results, external components should be located as close to the switcher lC as possible using ground plane construction or single point grounding. If open core inductors are used, special care must be taken as to the location and positioning of this type of inductor. Allowing the inductor flux to intersect sensitive feedback, lC groundpath and COUT wiring can cause problems. When using the adjustable version, special care must be taken as to the location of the feedback resistors and the associated wiring. Physically locate both resistors near the IC, and route the wiring away from the inductor, especially an open core type of inductor. (See application section for more information.) 9 www.national.com LM2596 LM2596 Series Buck Regulator Design Procedure (Fixed Output) PROCEDURE (Fixed Output Voltage Version) EXAMPLE (Fixed Output Voltage Version) Given: VOUT = Regulated Output Voltage (3.3V, 5V or 12V) Given: VOUT = 5V VIN(max) = Maximum DC Input Voltage ILOAD(max) = Maximum Load Current VIN(max) = 12V ILOAD(max) = 3A 1. Inductor Selection (L1) A. Select the correct inductor value selection guide from Figures Figure 4, Figure 5, or Figure 6. (Output voltages of 3.3V, 5V, or 12V respectively.) For all other voltages, see the design procedure for the adjustable version. B. From the inductor value selection guide, identify the inductance region intersected by the Maximum Input Voltage line and the Maximum Load Current line. Each region is identified by an inductance value and an inductor code (LXX). C. Select an appropriate inductor from the four manufacturer’s part numbers listed in Figure 8. 1. Inductor Selection (L1) A. Use the inductor selection guide for the 5V version shown in Figure 5. B. From the inductor value selection guide shown in Figure 5, the inductance region intersected by the 12V horizontal line and the 3A vertical line is 33 µH, and the inductor code is L40. C. The inductance value required is 33 µH. From the table in Figure 8, go to the L40 line and choose an inductor part number from any of the four manufacturers shown. (In most instance, both through hole and surface mount inductors are available.) 2. Output Capacitor Selection (COUT) A. In the majority of applications, low ESR (Equivalent Series Resistance) electrolytic capacitors between 82 µF and 820 µF and low ESR solid tantalum capacitors between 10 µF and 470 µF provide the best results. This capacitor should be located close to the IC using short capacitor leads and short copper traces. Do not use capacitors larger than 820 µF . For additional information, see section on output capacitors in application information section. B. To simplify the capacitor selection procedure, refer to the quick design component selection table shown in Figure 2. This table contains different input voltages, output voltages, and load currents, and lists various inductors and output capacitors that will provide the best design solutions. C. The capacitor voltage rating for electrolytic capacitors should be at least 1.5 times greater than the output voltage, and often much higher voltage ratings are needed to satisfy the low ESR requirements for low output ripple voltage. D. For computer aided design software, see Switchers Made Simple™ version 4.3 or later. 2. Output Capacitor Selection (COUT) A. See section on output capacitors in application information section. B. From the quick design component selection table shown in Figure 2, locate the 5V output voltage section. In the load current column, choose the load current line that is closest to the current needed in your application, for this example, use the 3A line. In the maximum input voltage column, select the line that covers the input voltage needed in your application, in this example, use the 15V line. Continuing on this line are recommended inductors and capacitors that will provide the best overall performance. The capacitor list contains both through hole electrolytic and surface mount tantalum capacitors from four different capacitor manufacturers. It is recommended that both the manufacturers and the manufacturer’s series that are listed in the table be used. In this example aluminum electrolytic capacitors from several different manufacturers are available with the range of ESR numbers needed. 330 µF 35V Panasonic HFQ Series 330 µF 35V Nichicon PL Series C. For a 5V output, a capacitor voltage rating at least 7.5V or more is needed. But even a low ESR, switching grade, 220 µF 10V aluminum electrolytic capacitor would exhibit approximately 225 mΩ of ESR (see the curve in Figure 14 for the ESR vs voltage rating). This amount of ESR would result in relatively high output ripple voltage. To reduce the ripple to 1% of the output voltage, or less, a capacitor with a higher value or with a higher voltage rating (lower ESR) should be selected. A 16V or 25V capacitor will reduce the ripple voltage by approximately half. www.national.com 10 PROCEDURE (Fixed Output Voltage Version) (Continued) EXAMPLE (Fixed Output Voltage Version) 3. Catch Diode Selection (D1) A. The catch diode current rating must be at least 1.3 times greater than the maximum load current. Also, if the power supply design must withstand a continuous output short, the diode should have a current rating equal to the maximum current limit of the LM2596. The most stressful condition for this diode is an overload or shorted output condition. B. The reverse voltage rating of the diode should be at least 1.25 times the maximum input voltage. C. This diode must be fast (short reverse recovery time) and must be located close to the LM2596 using short leads and short printed circuit traces. Because of their fast switching speed and low forward voltage drop, Schottky diodes provide the best performance and efficiency, and should be the first choice, especially in low output voltage applications. Ultra-fast recovery, or High-Efficiency rectifiers also provide good results. Ultra-fast recovery diodes typically have reverse recovery times of 50 ns or less. Rectifiers such as the 1N5400 series are much too slow and should not be used. 3. Catch Diode Selection (D1) 4. Input Capacitor (CIN) A low ESR aluminum or tantalum bypass capacitor is needed between the input pin and ground pin to prevent large voltage transients from appearing at the input. This capacitor should be located close to the IC using short leads. In addition, the RMS current rating of the input capacitor should be selected to be at least 1⁄2 the DC load current. The capacitor manufacturers data sheet must be checked to assure that this current rating is not exceeded. The curve shown in Figure 13 shows typical RMS current ratings for several different aluminum electrolytic capacitor values. For an aluminum electrolytic, the capacitor voltage rating should be approximately 1.5 times the maximum input voltage. Caution must be exercised if solid tantalum capacitors are used (see Application Information on input capacitor). The tantalum capacitor voltage rating should be 2 times the maximum input voltage and it is recommended that they be surge current tested by the manufacturer. Use caution when using ceramic capacitors for input bypassing, because it may cause severe ringing at the VIN pin. For additional information, see section on input capacitors in Application Information section. 4. Input Capacitor (CIN) The important parameters for the Input capacitor are the input voltage rating and the RMS current rating. With a nominal input voltage of 12V, an aluminum electrolytic capacitor with a voltage rating greater than 18V (1.5 x VIN) would be needed. The next higher capacitor voltage rating is 25V. The RMS current rating requirement for the input capacitor in a buck regulator is approximately 1⁄2 the DC load current. In this example, with a 3A load, a capacitor with a RMS current rating of at least 1.5A is needed. The curves shown in Figure 13 can be used to select an appropriate input capacitor. From the curves, locate the 35V line and note which capacitor values have RMS current ratings greater than 1.5A. A 680 µF/ 35V capacitor could be used. For a through hole design, a 680 µF/35V electrolytic capacitor (Panasonic HFQ series or Nichicon PL series or equivalent) would be adequate. other types or other manufacturers capacitors can be used provided the RMS ripple current ratings are adequate. For surface mount designs, solid tantalum capacitors can be used, but caution must be exercised with regard to the capacitor surge current rating (see Application Information on input capacitors in this data sheet). The TPS series available from AVX, and the 593D series from Sprague are both surge current tested. A. Refer to the table shown in Figure 11. In this example, a 5A, 20V, 1N5823 Schottky diode will provide the best performance, and will not be overstressed even for a shorted output. 11 www.national.com LM2596 LM2596 Series Buck Regulator Design Procedure (Fixed Output) LM2596 LM2596 Series Buck Regulator Design Procedure (Fixed Output) Conditions Inductor (Continued) Output Capacitor Through Hole Electrolytic Surface Mount Tantalum Output Load Max Input Inductance Inductor Panasonic Nichicon AVX TPS Sprague Voltage Current Voltage (µH) (#) HFQ Series PL Series Series 595D Series (V) (A) (V) 3.3 3 2 5 3 2 12 3 2 5 22 L41 (µF/V) (µF/V) (µF/V) (µF/V) 470/25 560/16 330/6.3 390/6.3 7 22 L41 560/35 560/35 330/6.3 390/6.3 10 22 L41 680/35 680/35 330/6.3 390/6.3 40 33 L40 560/35 470/35 330/6.3 390/6.3 6 22 L33 470/25 470/35 330/6.3 390/6.3 10 33 L32 330/35 330/35 330/6.3 390/6.3 40 47 L39 330/35 270/50 220/10 330/10 8 22 L41 470/25 560/16 220/10 330/10 10 22 L41 560/25 560/25 220/10 330/10 15 33 L40 330/35 330/35 220/10 330/10 40 47 L39 330/35 270/35 220/10 330/10 9 22 L33 470/25 560/16 220/10 330/10 20 68 L38 180/35 180/35 100/10 270/10 40 68 L38 180/35 180/35 100/10 270/10 15 22 L41 470/25 470/25 100/16 180/16 18 33 L40 330/25 330/25 100/16 180/16 30 68 L44 180/25 180/25 100/16 120/20 40 68 L44 180/35 180/35 100/16 120/20 15 33 L32 330/25 330/25 100/16 180/16 20 68 L38 180/25 180/25 100/16 120/20 40 150 L42 82/25 82/25 68/20 68/25 FIGURE 2. LM2596 Fixed Voltage Quick Design Component Selection Table www.national.com 12 PROCEDURE (Adjustable Output Voltage Version) EXAMPLE (Adjustable Output Voltage Version) Given: VOUT = Regulated Output Voltage Given: VIN(max) = Maximum Input Voltage ILOAD(max) = Maximum Load Current F = Switching Frequency (Fixed at a nominal 150 kHz). VIN(max) = 28V ILOAD(max) = 3A F = Switching Frequency (Fixed at a nominal 150 kHz). 1. Programming Output Voltage (Selecting R1 and R2, as shown in Figure 1 ) 1. Programming Output Voltage (Selecting R1 and R2, as shown in Figure 1 ) Use the following formula to select the appropriate resistor values. Select R1 to be 1 kΩ, 1%. Solve for R2. VOUT = 20V R2 = 1k (16.26 − 1) = 15.26k, closest 1% value is 15.4 kΩ. R2 = 15.4 kΩ. Select a value for R1 between 240Ω and 1.5 kΩ. The lower resistor values minimize noise pickup in the sensitive feedback pin. (For the lowest temperature coefficient and the best stability with time, use 1% metal film resistors.) 2. Inductor Selection (L1) A. Calculate the inductor Volt • microsecond constant E • T (V • µs), from the following formula: 2. Inductor Selection (L1) A. Calculate the inductor Volt • microsecond constant (E • T), where VSAT = internal switch saturation voltage = 1.16V and VD = diode forward voltage drop = 0.5V B. E • T = 34.2 (V • µs) C. ILOAD(max) = 3A B. Use the E • T value from the previous formula and match it with the E • T number on the vertical axis of the Inductor Value Selection Guide shown in Figure 7. C. on the horizontal axis, select the maximum load current. D. Identify the inductance region intersected by the E • T value and the Maximum Load Current value. Each region is identified by an inductance value and an inductor code (LXX). E. Select an appropriate inductor from the four manufacturer’s part numbers listed in Figure 8. D. From the inductor value selection guide shown in Figure 7, the inductance region intersected by the 34 (V • µs) horizontal line and the 3A vertical line is 47 µH, and the inductor code is L39. E. From the table in Figure 8, locate line L39, and select an inductor part number from the list of manufacturers part numbers. 13 www.national.com LM2596 LM2596 Series Buck Regulator Design Procedure (Adjustable Output) LM2596 LM2596 Series Buck Regulator Design Procedure (Adjustable Output) (Continued) PROCEDURE (Adjustable Output Voltage Version) EXAMPLE (Adjustable Output Voltage Version) 3. Output Capacitor Selection (COUT) 3. Output Capacitor SeIection (COUT) A. In the majority of applications, low ESR electrolytic or solid tantalum capacitors between 82 µF and 820 µF provide the best results. This capacitor should be located close to the IC using short capacitor leads and short copper traces. Do not use capacitors larger than 820 µF. For additional information, see section on output capacitors in application information section. B. To simplify the capacitor selection procedure, refer to the quick design table shown in Figure 3. This table contains different output voltages, and lists various output capacitors that will provide the best design solutions. C. The capacitor voltage rating should be at least 1.5 times greater than the output voltage, and often much higher voltage ratings are needed to satisfy the low ESR requirements needed for low output ripple voltage. A. See section on COUT in Application Information section. B. From the quick design table shown in Figure 3, locate the output voltage column. From that column, locate the output voltage closest to the output voltage in your application. In this example, select the 24V line. Under the output capacitor section, select a capacitor from the list of through hole electrolytic or surface mount tantalum types from four different capacitor manufacturers. It is recommended that both the manufacturers and the manufacturers series that are listed in the table be used. In this example, through hole aluminum electrolytic capacitors from several different manufacturers are available. 220 µF/35V Panasonic HFQ Series 150 µF/35V Nichicon PL Series C. For a 20V output, a capacitor rating of at least 30V or more is needed. In this example, either a 35V or 50V capacitor would work. A 35V rating was chosen, although a 50V rating could also be used if a lower output ripple voltage is needed. Other manufacturers or other types of capacitors may also be used, provided the capacitor specifications (especially the 100 kHz ESR) closely match the types listed in the table. Refer to the capacitor manufacturers data sheet for this information. 4. Feedforward Capacitor (CFF) (See Figure 1) For output voltages greater than approximately 10V, an additional capacitor is required. The compensation capacitor is typically between 100 pF and 33 nF, and is wired in parallel with the output voltage setting resistor, R2. It provides additional stability for high output voltages, low input-output voltages, and/or very low ESR output capacitors, such as solid tantalum capacitors. 4. Feedforward Capacitor (CFF) The table shown in Figure 3 contains feed forward capacitor values for various output voltages. In this example, a 560 pF capacitor is needed. This capacitor type can be ceramic, plastic, silver mica, etc. (Because of the unstable characteristics of ceramic capacitors made with Z5U material, they are not recommended.) www.national.com 14 (Continued) PROCEDURE (Adjustable Output Voltage Version) EXAMPLE (Adjustable Output Voltage Version) 5. Catch Diode Selection (D1) A. The catch diode current rating must be at least 1.3 times greater than the maximum load current. Also, if the power supply design must withstand a continuous output short, the diode should have a current rating equal to the maximum current limit of the LM2596. The most stressful condition for this diode is an overload or shorted output condition. B. The reverse voltage rating of the diode should be at least 1.25 times the maximum input voltage. C. This diode must be fast (short reverse recovery time) and must be located close to the LM2596 using short leads and short printed circuit traces. Because of their fast switching speed and low forward voltage drop, Schottky diodes provide the best performance and efficiency, and should be the first choice, especially in low output voltage applications. Ultra-fast recovery, or High-Efficiency rectifiers are also a good choice, but some types with an abrupt turn-off characteristic may cause instability or EMl problems. Ultra-fast recovery diodes typically have reverse recovery times of 50 ns or less. Rectifiers such as the 1N4001 series are much too slow and should not be used. 5. Catch Diode Selection (D1) 6. Input Capacitor (CIN) A low ESR aluminum or tantalum bypass capacitor is needed between the input pin and ground to prevent large voltage transients from appearing at the input. In addition, the RMS current rating of the input capacitor should be selected to be at least 1⁄2 the DC load current. The capacitor manufacturers data sheet must be checked to assure that this current rating is not exceeded. The curve shown in Figure 13 shows typical RMS current ratings for several different aluminum electrolytic capacitor values. This capacitor should be located close to the IC using short leads and the voltage rating should be approximately 1.5 times the maximum input voltage. If solid tantalum input capacitors are used, it is recomended that they be surge current tested by the manufacturer. Use caution when using a high dielectric constant ceramic capacitor for input bypassing, because it may cause severe ringing at the VIN pin. For additional information, see section on input capacitors in application information section. 6. Input Capacitor (CIN) The important parameters for the Input capacitor are the input voltage rating and the RMS current rating. With a nominal input voltage of 28V, an aluminum electrolytic aluminum electrolytic capacitor with a voltage rating greater than 42V (1.5 x VIN) would be needed. Since the the next higher capacitor voltage rating is 50V, a 50V capacitor should be used. The capacitor voltage rating of (1.5 x VIN) is a conservative guideline, and can be modified somewhat if desired. The RMS current rating requirement for the input capacitor of a buck regulator is approximately 1⁄2 the DC load current. In this example, with a 3A load, a capacitor with a RMS current rating of at least 1.5A is needed. The curves shown in Figure 13 can be used to select an appropriate input capacitor. From the curves, locate the 50V line and note which capacitor values have RMS current ratings greater than 1.5A. Either a 470 µF or 680 µF, 50V capacitor could be used. For a through hole design, a 680 µF/50V electrolytic capacitor (Panasonic HFQ series or Nichicon PL series or equivalent) would be adequate. Other types or other manufacturers capacitors can be used provided the RMS ripple current ratings are adequate. For surface mount designs, solid tantalum capacitors can be used, but caution must be exercised with regard to the capacitor surge current rting (see Application Information or input capacitors in this data sheet). The TPS series available from AVX, and the 593D series from Sprague are both surge current tested. A. Refer to the table shown in Figure 11. Schottky diodes provide the best performance, and in this example a 5A, 40V, 1N5825 Schottky diode would be a good choice. The 5A diode rating is more than adequate and will not be overstressed even for a shorted output. To further simplify the buck regulator design procedure, National Semiconductor is making available computer design software to be used with the Simple Switcher line ot switching regulators. Switchers Made Simple (version 4.3 or later) is available on a 31⁄2" diskette for IBM compatible computers. 15 www.national.com LM2596 LM2596 Series Buck Regulator Design Procedure (Adjustable Output) LM2596 LM2596 Series Buck Regulator Design Procedure (Adjustable Output) Output Voltage (V) Through Hole Output Capacitor Surface Mount Output Capacitor Panasonic Nichicon PL Feedforward AVX TPS Sprague Feedforward HFQ Series Series Capacitor Series 595D Series Capacitor (µF/V) (µF/V) (µF/V) (µF/V) 2 820/35 820/35 33 nF 330/6.3 470/4 33 nF 4 560/35 470/35 10 nF 330/6.3 390/6.3 10 nF 6 470/25 470/25 3.3 nF 220/10 330/10 3.3 nF 1.5 nF 9 330/25 330/25 1.5 nF 100/16 180/16 12 330/25 330/25 1 nF 100/16 180/16 1 nF 15 220/35 220/35 680 pF 68/20 120/20 680 pF 24 220/35 150/35 560 pF 33/25 33/25 220 pF 28 100/50 100/50 390 pF 10/35 15/50 220 pF FIGURE 3. Output Capacitor and Feedforward Capacitor Selection Table LM2596 Series Buck Regulator Design Procedure INDUCTOR VALUE SELECTION GUIDES (For Continuous Mode Operation) 01258326 01258324 FIGURE 6. LM2596-12 FIGURE 4. LM2596-3.3 01258327 01258325 FIGURE 7. LM2596-ADJ FIGURE 5. LM2596-5.0 www.national.com 16 Inductance Current (µH) (A) Schott LM2596 LM2596 Series Buck Regulator Design Procedure (Continued) Renco Pulse Engineering Through Surface Through Surface Hole Mount Hole Mount Through Hole Coilcraft Surface Surface Mount Mount L15 22 0.99 67148350 67148460 RL-1284-22-43 RL1500-22 PE-53815 PE-53815-S DO3308-223 L21 68 0.99 67144070 67144450 RL-5471-5 RL1500-68 PE-53821 PE-53821-S DO3316-683 L22 47 1.17 67144080 67144460 RL-5471-6 — PE-53822 PE-53822-S DO3316-473 L23 33 1.40 67144090 67144470 RL-5471-7 — PE-53823 PE-53823-S DO3316-333 L24 22 1.70 67148370 67148480 RL-1283-22-43 — PE-53824 PE-53825-S DO3316-223 L25 15 2.10 67148380 67148490 RL-1283-15-43 — PE-53825 PE-53824-S DO3316-153 L26 330 0.80 67144100 67144480 RL-5471-1 — PE-53826 PE-53826-S DO5022P-334 L27 220 1.00 67144110 67144490 RL-5471-2 — PE-53827 PE-53827-S DO5022P-224 L28 150 1.20 67144120 67144500 RL-5471-3 — PE-53828 PE-53828-S DO5022P-154 L29 100 1.47 67144130 67144510 RL-5471-4 — PE-53829 PE-53829-S DO5022P-104 L30 68 1.78 67144140 67144520 RL-5471-5 — PE-53830 PE-53830-S DO5022P-683 L31 47 2.20 67144150 67144530 RL-5471-6 — PE-53831 PE-53831-S DO5022P-473 L32 33 2.50 67144160 67144540 RL-5471-7 — PE-53932 PE-53932-S DO5022P-333 L33 22 3.10 67148390 67148500 RL-1283-22-43 — PE-53933 PE-53933-S DO5022P-223 L34 15 3.40 67148400 67148790 RL-1283-15-43 — PE-53934 PE-53934-S DO5022P-153 L35 220 1.70 67144170 — RL-5473-1 — PE-53935 PE-53935-S — L36 150 2.10 67144180 — RL-5473-4 — PE-54036 PE-54036-S — L37 100 2.50 67144190 — RL-5472-1 — PE-54037 PE-54037-S — L38 68 3.10 67144200 — RL-5472-2 — PE-54038 PE-54038-S — L39 47 3.50 67144210 — RL-5472-3 — PE-54039 PE-54039-S — L40 33 3.50 67144220 67148290 RL-5472-4 — PE-54040 PE-54040-S — L41 22 3.50 67144230 67148300 RL-5472-5 — PE-54041 PE-54041-S — L42 150 2.70 67148410 — RL-5473-4 — PE-54042 PE-54042-S — L43 100 3.40 67144240 — RL-5473-2 — PE-54043 — L44 68 3.40 67144250 — RL-5473-3 — PE-54044 — FIGURE 8. Inductor Manufacturers Part Numbers Coilcraft Inc. Coilcraft Inc., Europe Pulse Engineering Inc. Phone (800) 322-2645 FAX (708) 639-1469 Phone +11 1236 730 595 FAX +44 1236 730 627 Phone (619) 674-8100 FAX (619) 674-8262 Pulse Engineering Inc., Phone +353 93 24 107 Europe FAX +353 93 24 459 Renco Electronics Inc. Phone (800) 645-5828 FAX (516) 586-5562 Phone (612) 475-1173 FAX (612) 475-1786 Schott Corp. FIGURE 9. Inductor Manufacturers Phone Numbers 17 www.national.com LM2596 LM2596 Series Buck Regulator Design Procedure Nichicon Corp. Panasonic AVX Corp. Sprague/Vishay (Continued) Phone (708) 843-7500 FAX (708) 843-2798 Phone (714) 373-7857 FAX (714) 373-7102 Phone (803) 448-9411 FAX (803) 448-1943 Phone (207) 324-4140 FAX (207) 324-7223 FIGURE 10. Capacitor Manufacturers Phone Numbers VR 3A Diodes Surface Mount Schottky Ultra Fast 4A–6A Diodes Through Hole Schottky Recovery 20V SK32 30V 30WQ03 SK33 All of these diodes are rated to at least 50V. 40V SK34 50V SK35 or MBRS360 More 30WQ05 SR302 MBR320 1N5821 MBR330 31DQ03 1N5822 Ultra Fast Schottky Recovery All of these diodes are rated to at least 50V. All of these diodes are rated to at least 50V. 50WQ03 50WQ04 30WF10 31DQ04 Through Hole Schottky Ultra Fast Recovery SR502 1N5823 SB520 SR503 1N5824 SB530 All of these diodes are rated to at least 50V. SR504 MBR340 MURS320 1N5825 MUR320 MURS620 SR305 SB540 50WF10 MBR350 50WQ05 31DQ05 18 MUR620 HER601 SB550 50SQ080 FIGURE 11. Diode Selection Table www.national.com Ultra Fast Recovery SR304 MBRS340 30WQ04 1N5820 Surface Mount LM2596 Block Diagram 01258321 FIGURE 12. relatively high RMS currents flowing in a buck regulator’s input capacitor, this capacitor should be chosen for its RMS current rating rather than its capacitance or voltage ratings, although the capacitance value and voltage rating are directly related to the RMS current rating. The RMS current rating of a capacitor could be viewed as a capacitor’s power rating. The RMS current flowing through the capacitors internal ESR produces power which causes the internal temperature of the capacitor to rise. The RMS current rating of a capacitor is determined by the amount of current required to raise the internal temperature approximately 10˚C above an ambient temperature of 105˚C. The ability of the capacitor to dissipate this heat to the surrounding air will determine the amount of current the capacitor can safely sustain. Capacitors that are physically large and have a large surface area will typically have higher RMS current ratings. For a given capacitor value, a higher voltage electrolytic capacitor will be physically larger than a lower voltage capacitor, and thus be able to dissipate more heat to the surrounding air, and therefore will have a higher RMS current rating. The consequences of operating an electrolytic capacitor above the RMS current rating is a shortened operating life. The higher temperature speeds up the evaporation of the capacitor’s electrolyte, resulting in eventual failure. Selecting an input capacitor requires consulting the manufacturers data sheet for maximum allowable RMS ripple current. For a maximum ambient temperature of 40˚C, a general guideline would be to select a capacitor with a ripple current rating of approximately 50% of the DC load current. For ambient temperatures up to 70˚C, a current rating of 75% of the DC load current would be a good choice for a conservative design. The capacitor voltage rating must be at least 1.25 times greater than the maximum input voltage, and often a much higher voltage capacitor is needed to satisfy the RMS current requirements. Application Information PIN FUNCTIONS +VIN — This is the positive input supply for the IC switching regulator. A suitable input bypass capacitor must be present at this pin to minimize voltage transients and to supply the switching currents needed by the regulator. Ground — Circuit ground. Output — Internal switch. The voltage at this pin switches between (+VIN − VSAT) and approximately −0.5V, with a duty cycle of approximately VOUT/VIN. To minimize coupling to sensitive circuitry, the PC board copper area connected to this pin should be kept to a minimum. Feedback — Senses the regulated output voltage to complete the feedback loop. ON /OFF — Allows the switching regulator circuit to be shut down using logic level signals thus dropping the total input supply current to approximately 80 µA. Pulling this pin below a threshold voltage of approximately 1.3V turns the regulator on, and pulling this pin above 1.3V (up to a maximum of 25V) shuts the regulator down. If this shutdown feature is not needed, the ON /OFF pin can be wired to the ground pin or it can be left open, in either case the regulator will be in the ON condition. EXTERNAL COMPONENTS INPUT CAPACITOR CIN — A low ESR aluminum or tantalum bypass capacitor is needed between the input pin and ground pin. It must be located near the regulator using short leads. This capacitor prevents large voltage transients from appearing at the input, and provides the instantaneous current needed each time the switch turns on. The important parameters for the Input capacitor are the voltage rating and the RMS current rating. Because of the 19 www.national.com LM2596 Application Information RMS ripple current rating, voltage rating, and capacitance value. For the output capacitor, the ESR value is the most important parameter. (Continued) A graph shown in Figure 13 shows the relationship between an electrolytic capacitor value, its voltage rating, and the RMS current it is rated for. These curves were obtained from the Nichicon “PL” series of low ESR, high reliability electrolytic capacitors designed for switching regulator applications. Other capacitor manufacturers offer similar types of capacitors, but always check the capacitor data sheet. “Standard” electrolytic capacitors typically have much higher ESR numbers, lower RMS current ratings and typically have a shorter operating lifetime. Because of their small size and excellent performance, surface mount solid tantalum capacitors are often used for input bypassing, but several precautions must be observed. A small percentage of solid tantalum capacitors can short if the inrush current rating is exceeded. This can happen at turn on when the input voltage is suddenly applied, and of course, higher input voltages produce higher inrush currents. Several capacitor manufacturers do a 100% surge current testing on their products to minimize this potential problem. If high turn on currents are expected, it may be necessary to limit this current by adding either some resistance or inductance before the tantalum capacitor, or select a higher voltage capacitor. As with aluminum electrolytic capacitors, the RMS ripple current rating must be sized to the load current. The output capacitor requires an ESR value that has an upper and lower limit. For low output ripple voltage, a low ESR value is needed. This value is determined by the maximum allowable output ripple voltage, typically 1% to 2% of the output voltage. But if the selected capacitor’s ESR is extremely low, there is a possibility of an unstable feedback loop, resulting in an oscillation at the output. Using the capacitors listed in the tables, or similar types, will provide design solutions under all conditions. If very low output ripple voltage (less than 15 mV) is required, refer to the section on Output Voltage Ripple and Transients for a post ripple filter. An aluminum electrolytic capacitor’s ESR value is related to the capacitance value and its voltage rating. In most cases, higher voltage electrolytic capacitors have lower ESR values (see Figure 14 ). Often, capacitors with much higher voltage ratings may be needed to provide the low ESR values required for low output ripple voltage. The output capacitor for many different switcher designs often can be satisfied with only three or four different capacitor values and several different voltage ratings. See the quick design component selection tables in Figure 2 and 4 for typical capacitor values, voltage ratings, and manufacturers capacitor types. Electrolytic capacitors are not recommended for temperatures below −25˚C. The ESR rises dramatically at cold temperatures and typically rises 3X @ −25˚C and as much as 10X at −40˚C. See curve shown in Figure 15. Solid tantalum capacitors have a much better ESR spec for cold temperatures and are recommended for temperatures below −25˚C. FEEDFORWARD CAPACITOR (Adjustable Output Voltage Version) CFF — A Feedforward Capacitor CFF, shown across R2 in Figure 1 is used when the ouput voltage is greater than 10V or when COUT has a very low ESR. This capacitor adds lead compensation to the feedback loop and increases the phase margin for better loop stability. For CFF selection, see the design procedure section. 01258329 01258328 FIGURE 14. Capacitor ESR vs Capacitor Voltage Rating (Typical Low ESR Electrolytic Capacitor) FIGURE 13. RMS Current Ratings for Low ESR Electrolytic Capacitors (Typical) CATCH DIODE Buck regulators require a diode to provide a return path for the inductor current when the switch turns off. This must be a fast diode and must be located close to the LM2596 using short leads and short printed circuit traces. Because of their very fast switching speed and low forward voltage drop, Schottky diodes provide the best performance, especially in low output voltage applications (5V and lower). Ultra-fast recovery, or High-Efficiency rectifiers are also a OUTPUT CAPACITOR COUT — An output capacitor is required to filter the output and provide regulator loop stability. Low impedance or low ESR Electrolytic or solid tantalum capacitors designed for switching regulator applications must be used. When selecting an output capacitor, the important capacitor parameters are; the 100 kHz Equivalent Series Resistance (ESR), the www.national.com 20 LM2596 Application Information (Continued) good choice, but some types with an abrupt turnoff characteristic may cause instability or EMI problems. Ultra-fast recovery diodes typically have reverse recovery times of 50 ns or less. Rectifiers such as the 1N5400 series are much too slow and should not be used. 01258331 FIGURE 16. (∆IIND) Peak-to-Peak Inductor Ripple Current (as a Percentage of the Load Current) vs Load Current By allowing the percentage of inductor ripple current to increase for low load currents, the inductor value and size can be kept relatively low. When operating in the continuous mode, the inductor current waveform ranges from a triangular to a sawtooth type of waveform (depending on the input voltage), with the average value of this current waveform equal to the DC output load current. Inductors are available in different styles such as pot core, toroid, E-core, bobbin core, etc., as well as different core materials, such as ferrites and powdered iron. The least expensive, the bobbin, rod or stick core, consists of wire wound on a ferrite bobbin. This type of construction makes for an inexpensive inductor, but since the magnetic flux is not completely contained within the core, it generates more Electro-Magnetic Interference (EMl). This magnetic flux can induce voltages into nearby printed circuit traces, thus causing problems with both the switching regulator operation and nearby sensitive circuitry, and can give incorrect scope readings because of induced voltages in the scope probe. Also see section on Open Core Inductors. When multiple switching regulators are located on the same PC board, open core magnetics can cause interference between two or more of the regulator circuits, especially at high currents. A torroid or E-core inductor (closed magnetic structure) should be used in these situations. The inductors listed in the selection chart include ferrite E-core construction for Schott, ferrite bobbin core for Renco and Coilcraft, and powdered iron toroid for Pulse Engineering. Exceeding an inductor’s maximum current rating may cause the inductor to overheat because of the copper wire losses, or the core may saturate. If the inductor begins to saturate, the inductance decreases rapidly and the inductor begins to look mainly resistive (the DC resistance of the winding). This can cause the switch current to rise very rapidly and force the switch into a cycle-by-cycle current limit, thus reducing the DC output load current. This can also result in overheating of the inductor and/or the LM2596. Different inductor types have different saturation characteristics, and this should be kept in mind when selecting an inductor. The inductor manufacturer’s data sheets include current and energy limits to avoid inductor saturation. 01258330 FIGURE 15. Capacitor ESR Change vs Temperature INDUCTOR SELECTION All switching regulators have two basic modes of operation; continuous and discontinuous. The difference between the two types relates to the inductor current, whether it is flowing continuously, or if it drops to zero for a period of time in the normal switching cycle. Each mode has distinctively different operating characteristics, which can affect the regulators performance and requirements. Most switcher designs will operate in the discontinuous mode when the load current is low. The LM2596 (or any of the Simple Switcher family) can be used for both continuous or discontinuous modes of operation. In many cases the preferred mode of operation is the continuous mode. It offers greater output power, lower peak switch, inductor and diode currents, and can have lower output ripple voltage. But it does require larger inductor values to keep the inductor current flowing continuously, especially at low output load currents and/or high input voltages. To simplify the inductor selection process, an inductor selection guide (nomograph) was designed (see Figure 4 through 8). This guide assumes that the regulator is operating in the continuous mode, and selects an inductor that will allow a peak-to-peak inductor ripple current to be a certain percentage of the maximum design load current. This peak-to-peak inductor ripple current percentage is not fixed, but is allowed to change as different design load currents are selected. (See Figure 16.) 21 www.national.com LM2596 Application Information voltage, the ESR of the output capacitor must be low, however, caution must be exercised when using extremely low ESR capacitors because they can affect the loop stability, resulting in oscillation problems. If very low output ripple voltage is needed (less than 20 mV), a post ripple filter is recommended. (See Figure 1.) The inductance required is typically between 1 µH and 5 µH, with low DC resistance, to maintain good load regulation. A low ESR output filter capacitor is also required to assure good dynamic load response and ripple reduction. The ESR of this capacitor may be as low as desired, because it is out of the regulator feedback loop. The photo shown in Figure 17 shows a typical output ripple voltage, with and without a post ripple filter. When observing output ripple with a scope, it is essential that a short, low inductance scope probe ground connection be used. Most scope probe manufacturers provide a special probe terminator which is soldered onto the regulator board, preferable at the output capacitor. This provides a very short scope ground thus eliminating the problems associated with the 3 inch ground lead normally provided with the probe, and provides a much cleaner and more accurate picture of the ripple voltage waveform. The voltage spikes are caused by the fast switching action of the output switch and the diode, and the parasitic inductance of the output filter capacitor, and its associated wiring. To minimize these voltage spikes, the output capacitor should be designed for switching regulator applications, and the lead lengths must be kept very short. Wiring inductance, stray capacitance, as well as the scope probe used to evaluate these transients, all contribute to the amplitude of these spikes. When a switching regulator is operating in the continuous mode, the inductor current waveform ranges from a triangular to a sawtooth type of waveform (depending on the input voltage). For a given input and output voltage, the peak-to-peak amplitude of this inductor current waveform remains constant. As the load current increases or decreases, the entire sawtooth current waveform also rises and falls. The average value (or the center) of this current waveform is equal to the DC load current. If the load current drops to a low enough level, the bottom of the sawtooth current waveform will reach zero, and the switcher will smoothly change from a continuous to a discontinuous mode of operation. Most switcher designs (irregardless how large the inductor value is) will be forced to run discontinuous if the output is lightly loaded. This is a perfectly acceptable mode of operation. (Continued) DISCONTINUOUS MODE OPERATION The selection guide chooses inductor values suitable for continuous mode operation, but for low current applications and/or high input voltages, a discontinuous mode design may be a better choice. It would use an inductor that would be physically smaller, and would need only one half to one third the inductance value needed for a continuous mode design. The peak switch and inductor currents will be higher in a discontinuous design, but at these low load currents (1A and below), the maximum switch current will still be less than the switch current limit. Discontinuous operation can have voltage waveforms that are considerable different than a continuous design. The output pin (switch) waveform can have some damped sinusoidal ringing present. (See Typical Performance Characteristics photo titled Discontinuous Mode Switching Waveforms) This ringing is normal for discontinuous operation, and is not caused by feedback loop instabilities. In discontinuous operation, there is a period of time where neither the switch or the diode are conducting, and the inductor current has dropped to zero. During this time, a small amount of energy can circulate between the inductor and the switch/ diode parasitic capacitance causing this characteristic ringing. Normally this ringing is not a problem, unless the amplitude becomes great enough to exceed the input voltage, and even then, there is very little energy present to cause damage. Different inductor types and/or core materials produce different amounts of this characteristic ringing. Ferrite core inductors have very little core loss and therefore produce the most ringing. The higher core loss of powdered iron inductors produce less ringing. If desired, a series RC could be placed in parallel with the inductor to dampen the ringing. The computer aided design software Switchers Made Simple (version 4.3) will provide all component values for continuous and discontinuous modes of operation. 01258332 FIGURE 17. Post Ripple Filter Waveform OUTPUT VOLTAGE RIPPLE AND TRANSIENTS The output voltage of a switching power supply operating in the continuous mode will contain a sawtooth ripple voltage at the switcher frequency, and may also contain short voltage spikes at the peaks of the sawtooth waveform. The output ripple voltage is a function of the inductor sawtooth ripple current and the ESR of the output capacitor. A typical output ripple voltage can range from approximately 0.5% to 3% of the output voltage. To obtain low ripple www.national.com 22 (Continued) LM2596 Application Information 1. Peak Inductor or peak switch current 2. Minimum load current before the circuit becomes discontinuous 3. Output Ripple Voltage = (∆IIND)x(ESR of COUT) = 0.62Ax0.1Ω=62 mV p-p 4. 01258333 FIGURE 18. Peak-to-Peak Inductor Ripple Current vs Load Current In a switching regulator design, knowing the value of the peak-to-peak inductor ripple current (∆IIND) can be useful for determining a number of other circuit parameters. Parameters such as, peak inductor or peak switch current, minimum load current before the circuit becomes discontinuous, output ripple voltage and output capacitor ESR can all be calculated from the peak-to-peak ∆IIND. When the inductor nomographs shown in Figure 4 through 8 are used to select an inductor value, the peak-to-peak inductor ripple current can immediately be determined. The curve shown in Figure 18 shows the range of (∆IIND) that can be expected for different load currents. The curve also shows how the peak-to-peak inductor ripple current (∆IIND) changes as you go from the lower border to the upper border (for a given load current) within an inductance region. The upper border represents a higher input voltage, while the lower border represents a lower input voltage (see Inductor Selection Guides). These curves are only correct for continuous mode operation, and only if the inductor selection guides are used to select the inductor value Consider the following example: VOUT = 5V, maximum load current of 2.5A OPEN CORE INDUCTORS Another possible source of increased output ripple voltage or unstable operation is from an open core inductor. Ferrite bobbin or stick inductors have magnetic lines of flux flowing through the air from one end of the bobbin to the other end. These magnetic lines of flux will induce a voltage into any wire or PC board copper trace that comes within the inductor’s magnetic field. The strength of the magnetic field, the orientation and location of the PC copper trace to the magnetic field, and the distance between the copper trace and the inductor, determine the amount of voltage generated in the copper trace. Another way of looking at this inductive coupling is to consider the PC board copper trace as one turn of a transformer (secondary) with the inductor winding as the primary. Many millivolts can be generated in a copper trace located near an open core inductor which can cause stability problems or high output ripple voltage problems. If unstable operation is seen, and an open core inductor is used, it’s possible that the location of the inductor with respect to other PC traces may be the problem. To determine if this is the problem, temporarily raise the inductor away from the board by several inches and then check circuit operation. If the circuit now operates correctly, then the magnetic flux from the open core inductor is causing the problem. Substituting a closed core inductor such as a torroid or E-core will correct the problem, or re-arranging the PC layout may be necessary. Magnetic flux cutting the IC device ground trace, feedback trace, or the positive or negative traces of the output capacitor should be minimized. Sometimes, locating a trace directly beneath a bobbin inductor will provide good results, provided it is exactly in the center of the inductor (because the induced voltages cancel themselves out), but if it is off center one direction or the other, then problems could arise. If flux problems are present, even the direction of the inductor winding can make a difference in some circuits. This discussion on open core inductors is not to frighten the user, but to alert the user on what kind of problems to watch out for when using them. Open core bobbin or “stick” inductors are an inexpensive, simple way of making a compact efficient inductor, and they are used by the millions in many different applications. VIN = 12V, nominal, varying between 10V and 16V. The selection guide in Figure 5 shows that the vertical line for a 2.5A load current, and the horizontal line for the 12V input voltage intersect approximately midway between the upper and lower borders of the 33 µH inductance region. A 33 µH inductor will allow a peak-to-peak inductor current (∆IIND) to flow that will be a percentage of the maximum load current. Referring to Figure 18, follow the 2.5A line approximately midway into the inductance region, and read the peak-to-peak inductor ripple current (∆IIND) on the left hand axis (approximately 620 mA p-p). As the input voltage increases to 16V, it approaches the upper border of the inductance region, and the inductor ripple current increases. Referring to the curve in Figure 18, it can be seen that for a load current of 2.5A, the peak-to-peak inductor ripple current (∆IIND) is 620 mA with 12V in, and can range from 740 mA at the upper border (16V in) to 500 mA at the lower border (10V in). Once the ∆IIND value is known, the following formulas can be used to calculate additional information about the switching regulator circuit. 23 www.national.com LM2596 Application Information material and the DC resistance, it could either act as a heat sink taking heat away from the board, or it could add heat to the board. (Continued) THERMAL CONSIDERATIONS The LM2596 is available in two packages, a 5-pin TO-220 (T) and a 5-pin surface mount TO-263 (S). The TO-220 package needs a heat sink under most conditions. The size of the heatsink depends on the input voltage, the output voltage, the load current and the ambient temperature. The curves in Figure 19 show the LM2596T junction temperature rises above ambient temperature for a 3A load and different input and output voltages. The data for these curves was taken with the LM2596T (TO-220 package) operating as a buck switching regulator in an ambient temperature of 25˚C (still air). These temperature rise numbers are all approximate and there are many factors that can affect these temperatures. Higher ambient temperatures require more heat sinking. The TO-263 surface mount package tab is designed to be soldered to the copper on a printed circuit board. The copper and the board are the heat sink for this package and the other heat producing components, such as the catch diode and inductor. The PC board copper area that the package is soldered to should be at least 0.4 in2, and ideally should have 2 or more square inches of 2 oz. (0.0028) in) copper. Additional copper area improves the thermal characteristics, but with copper areas greater than approximately 6 in2, only small improvements in heat dissipation are realized. If further thermal improvements are needed, double sided, multilayer PC board with large copper areas and/or airflow are recommended. The curves shown in Figure 20 show the LM2596S (TO-263 package) junction temperature rise above ambient temperature with a 2A load for various input and output voltages. This data was taken with the circuit operating as a buck switching regulator with all components mounted on a PC board to simulate the junction temperature under actual operating conditions. This curve can be used for a quick check for the approximate junction temperature for various conditions, but be aware that there are many factors that can affect the junction temperature. When load currents higher than 2A are used, double sided or multilayer PC boards with large copper areas and/or airflow might be needed, especially for high ambient temperatures and high output voltages. For the best thermal performance, wide copper traces and generous amounts of printed circuit board copper should be used in the board layout. (One exception to this is the output (switch) pin, which should not have large areas of copper.) Large areas of copper provide the best transfer of heat (lower thermal resistance) to the surrounding air, and moving air lowers the thermal resistance even further. Package thermal resistance and junction temperature rise numbers are all approximate, and there are many factors that will affect these numbers. Some of these factors include board size, shape, thickness, position, location, and even board temperature. Other factors are, trace width, total printed circuit copper area, copper thickness, single- or double-sided, multilayer board and the amount of solder on the board. The effectiveness of the PC board to dissipate heat also depends on the size, quantity and spacing of other components on the board, as well as whether the surrounding air is still or moving. Furthermore, some of these components such as the catch diode will add heat to the PC board and the heat can vary as the input voltage changes. For the inductor, depending on the physical size, type of core www.national.com 01258334 Circuit Data for Temperature Rise Curve TO-220 Package (T) Capacitors Through hole electrolytic Inductor Through hole, Renco Diode Through hole, 5A 40V, Schottky PC board 3 square inches single sided 2 oz. copper (0.0028") FIGURE 19. Junction Temperature Rise, TO-220 01258335 Circuit Data for Temperature Rise Curve TO-263 Package (S) Capacitors Surface mount tantalum, molded “D” size Inductor Surface mount, Pulse Engineering, 68 µH Diode Surface mount, 5A 40V, Schottky PC board 9 square inches single sided 2 oz. copper (0.0028") FIGURE 20. Junction Temperature Rise, TO-263 24 tures a constant threshold voltage for turn on and turn off (zener voltage plus approximately one volt). If hysteresis is needed, the circuit in Figure 24 has a turn ON voltage which is different than the turn OFF voltage. The amount of hysteresis is approximately equal to the value of the output voltage. If zener voltages greater than 25V are used, an additional 47 kΩ resistor is needed from the ON /OFF pin to the ground pin to stay within the 25V maximum limit of the ON /OFF pin. (Continued) INVERTING REGULATOR The circuit in Figure 25 converts a positive input voltage to a negative output voltage with a common ground. The circuit operates by bootstrapping the regulator’s ground pin to the negative output voltage, then grounding the feedback pin, the regulator senses the inverted output voltage and regulates it. 01258336 FIGURE 21. Delayed Startup 01258337 01258338 This circuit has an ON/OFF threshold of approximately 13V. FIGURE 22. Undervoltage Lockout for Buck Regulator FIGURE 23. Undervoltage Lockout for Inverting Regulator DELAYED STARTUP The circuit in Figure 21 uses the the ON /OFF pin to provide a time delay between the time the input voltage is applied and the time the output voltage comes up (only the circuitry pertaining to the delayed start up is shown). As the input voltage rises, the charging of capacitor C1 pulls the ON /OFF pin high, keeping the regulator off. Once the input voltage reaches its final value and the capacitor stops charging, and resistor R2 pulls the ON /OFF pin low, thus allowing the circuit to start switching. Resistor R1 is included to limit the maximum voltage applied to the ON /OFF pin (maximum of 25V), reduces power supply noise sensitivity, and also limits the capacitor, C1, discharge current. When high input ripple voltage exists, avoid long delay time, because this ripple can be coupled into the ON /OFF pin and cause problems. This example uses the LM2596-5.0 to generate a −5V output, but other output voltages are possible by selecting other output voltage versions, including the adjustable version. Since this regulator topology can produce an output voltage that is either greater than or less than the input voltage, the maximum output current greatly depends on both the input and output voltage. The curve shown in Figure 26 provides a guide as to the amount of output load current possible for the different input and output voltage conditions. The maximum voltage appearing across the regulator is the absolute sum of the input and output voltage, and this must be limited to a maximum of 40V. For example, when converting +20V to −12V, the regulator would see 32V between the input pin and ground pin. The LM2596 has a maximum input voltage spec of 40V. Additional diodes are required in this regulator configuration. Diode D1 is used to isolate input voltage ripple or noise from coupling through the CIN capacitor to the output, under light or no load conditions. Also, this diode isolation changes the topology to closley resemble a buck configuration thus providing good closed loop stability. A Schottky diode is recommended for low input voltages, (because of its lower voltage drop) but for higher input voltages, a fast recovery diode could be used. Without diode D3, when the input voltage is first applied, the charging current of CIN can pull the output positive by several volts for a short period of time. Adding D3 prevents the output from going positive by more than a diode voltage. This delayed startup feature is useful in situations where the input power source is limited in the amount of current it can deliver. It allows the input voltage to rise to a higher voltage before the regulator starts operating. Buck regulators require less input current at higher input voltages. UNDERVOLTAGE LOCKOUT Some applications require the regulator to remain off until the input voltage reaches a predetermined voltage. An undervoltage lockout feature applied to a buck regulator is shown in Figure 22, while Figure 23 and 24 applies the same feature to an inverting circuit. The circuit in Figure 23 fea- 25 www.national.com LM2596 Application Information LM2596 Application Information (Continued) 01258339 This circuit has hysteresis Regulator starts switching at VIN = 13V Regulator stops switching at VIN = 8V FIGURE 24. Undervoltage Lockout with Hysteresis for Inverting Regulator 01258340 CIN — 68 µF/25V Tant. Sprague 595D 470 µF/50V Elec. Panasonic HFQ COUT — 47 µF/20V Tant. Sprague 595D 220 µF/25V Elec. Panasonic HFQ FIGURE 25. Inverting −5V Regulator with Delayed Startup be narrowed down to just a few values. Using the values shown in Figure 25 will provide good results in the majority of inverting designs. This type of inverting regulator can require relatively large amounts of input current when starting up, even with light loads. Input currents as high as the LM2596 current limit (approx 4.5A) are needed for at least 2 ms or more, until the output reaches its nominal output voltage. The actual time depends on the output voltage and the size of the output capacitor. Input power sources that are current limited or sources that can not deliver these currents without getting loaded down, may not work correctly. Because of the relatively high startup currents required by the inverting topology, the delayed startup feature (C1, R1 and R2) shown in Figure 25 is recommended. By delaying the regulator startup, the input capacitor is allowed to charge up to a higher voltage before the switcher begins operating. A portion of the high input current needed for startup is now supplied by the input capacitor (CIN). For severe start up conditions, the input capacitor can be made much larger than normal. 01258341 FIGURE 26. Inverting Regulator Typical Load Current Because of differences in the operation of the inverting regulator, the standard design procedure is not used to select the inductor value. In the majority of designs, a 33 µH, 3.5A inductor is the best choice. Capacitor selection can also www.national.com 26 OFF. With the inverting configuration, some level shifting is required, because the ground pin of the regulator is no longer at ground, but is now setting at the negative output voltage level. Two different shutdown methods for inverting regulators are shown in Figure 27 and 28. (Continued) INVERTING REGULATOR SHUTDOWN METHODS To use the ON /OFF pin in a standard buck configuration is simple, pull it below 1.3V ( @25˚C, referenced to ground) to turn regulator ON, pull it above 1.3V to shut the regulator 01258342 FIGURE 27. Inverting Regulator Ground Referenced Shutdown 01258343 FIGURE 28. Inverting Regulator Ground Referenced Shutdown using Opto Device 27 www.national.com LM2596 Application Information LM2596 Application Information (Continued) TYPICAL THROUGH HOLE PC BOARD LAYOUT, FIXED OUTPUT (1X SIZE), DOUBLE SIDED 01258344 CIN — 470 µF, 50V, Aluminum Electrolytic Panasonic, “HFQ Series” COUT — 330 µF, 35V, Aluminum Electrolytic Panasonic, “HFQ Series” D1 — 5A, 40V Schottky Rectifier, 1N5825 L1 — 47 µH, L39, Renco, Through Hole Thermalloy Heat Sink #7020 www.national.com 28 LM2596 Application Information (Continued) TYPICAL THROUGH HOLE PC BOARD LAYOUT, ADJUSTABLE OUTPUT (1X SIZE), DOUBLE SIDED 01258345 CIN — 470 µF, 50V, Aluminum Electrolytic Panasonic, “HFQ Series” COUT — 220 µF, 35V Aluminum Electrolytic Panasonic, “HFQ Series” D1 — 5A, 40V Schottky Rectifier, 1N5825 L1 — 47 µH, L39, Renco, Through Hole R1 — 1 kΩ, 1% R2 — Use formula in Design Procedure CFF — See Figure 3. Thermalloy Heat Sink #7020 FIGURE 29. PC Board Layout 29 www.national.com LM2596 Physical Dimensions inches (millimeters) unless otherwise noted 5-Lead TO-220 (T) Order Number LM2596T-3.3, LM2596T-5.0, LM2596T-12 or LM2596T-ADJ NS Package Number T05D www.national.com 30 inches (millimeters) unless otherwise noted (Continued) 5-Lead TO-263 Surface Mount Package (S) Order Number LM2596S-3.3, LM2596S-5.0, LM2596S-12 or LM2596S-ADJ NS Package Number TS5B LIFE SUPPORT POLICY NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user. National Semiconductor Corporation Americas Email: [email protected] www.national.com National Semiconductor Europe Fax: +49 (0) 180-530 85 86 Email: [email protected] Deutsch Tel: +49 (0) 69 9508 6208 English Tel: +44 (0) 870 24 0 2171 Français Tel: +33 (0) 1 41 91 8790 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. National Semiconductor Asia Pacific Customer Response Group Tel: 65-2544466 Fax: 65-2504466 Email: [email protected] National Semiconductor Japan Ltd. Tel: 81-3-5639-7560 Fax: 81-3-5639-7507 National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications. LM2596 SIMPLE SWITCHER Power Converter 150 kHz 3A Step-Down Voltage Regulator Physical Dimensions IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications. TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Applications Audio www.ti.com/audio Communications and Telecom www.ti.com/communications Amplifiers amplifier.ti.com Computers and Peripherals www.ti.com/computers Data Converters dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps DLP® Products www.dlp.com Energy and Lighting www.ti.com/energy DSP dsp.ti.com Industrial www.ti.com/industrial Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical Interface interface.ti.com Security www.ti.com/security Logic logic.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Power Mgmt power.ti.com Transportation and Automotive www.ti.com/automotive Microcontrollers microcontroller.ti.com Video and Imaging RFID www.ti-rfid.com OMAP Mobile Processors www.ti.com/omap Wireless Connectivity www.ti.com/wirelessconnectivity TI E2E Community Home Page www.ti.com/video e2e.ti.com Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated