ETC PLL650-02XM

PLL650-02
Low EMI Network LAN Clock
FEATURES
•
•
•
•
•
•
•
•
Full CMOS output swing with 40-mA output drive
capability. 25-mA output drive at TTL level.
Advanced, low power, sub-micron CMOS processes.
25MHz fundamental crystal or clock input.
4 outputs at 50MHz, 2 outputs selectable at 25MHz or
125MHz, 1 output selectable at 25MHz or 100MHz.
2 SDRAM selectable frequencies of 66.6, 75, 83.3,
100MHz (Double Drive Strength).
All non SDRAM outputs can be disabled (tri-state)
Spread spectrum technology selectable for EMI
reduction from ±0.5%, ±0.75% for SDRAM and 100MHz
output.
Zero PPM synthesis error in all clocks.
Ideal for Network switches.
3.3V operation.
Available in 24-Pin 150mil SSOP.
VDD
1
24
VDD
XIN
2
23
VDD
XOUT/50MHz_OE*^
3
22
25MHz/100MHz
21
GND
20
SDRAMx2
19
GND
18
SDRAMx2
17
VDD
GND
4
VDD
5
50MHz/FS0*^
6
GND
7
50MHz/FS1*^
8
50MHz/FS2*T
PLL650-02
•
•
•
PIN CONFIGURATION
9
16
VDD
FS3T
10
15
25MHz/125MHz
50MHz/SS0*T
11
14
GND
VDD
12
13
25MHz/125MHz
Note: SDRAMx2: Double Drive strength. T: Tri-Level input ^: Internal pull-up
resistor. *: Bi-directional pin (input value is latched upon power-up).
DESCRIPTIONS
The PLL 650-02 is a low cost, low jitter, and high
performance clock synthesizer. With PhaseLink’s
proprietary analog Phase Locked Loop techniques, the chip
accepts 25 MHz crystal, and produces multiple output
clocks for networking chips, PCI devices, SDRAM, and
ASICs, with double drive strength for its SDRAM outputs.
FREQUENCY TABLE
FS1
FS0
SDRAM
0
0
100MHzSST
0
Disable
0
25MHz
0
1
75MHz SST
M
125MHz
M
Disable
1
0
83.3MHzSST
1
25MHz
1
100MHzSST
1
1
66.6MHzSST
FS3
Pin 13, 15
FS2
Pin 22
FS(2:3): Tri-level inputs.
SST: SST modulation applied (see selection table)
BLOCK DIAGRAM
XIN
XOUT
XTAL
OSC
Control
Logic
4
50MHz
(can be disabled)
2
25MHz/125MHz
(can be disabled)
2
SDRAM (66.6, 75, 83.3, 100MHz)
FS (0:3)
1
25MHz/100MHz
(can be disabled)
47745 Fremont Blvd., Fremont, California 94538 TEL (510) 492-0990 FAX (510) 492-0991
Rev 05/02/01 Page 1
PLL650-02
Low EMI Network LAN Clock
PIN DESCRIPTIONS
Name
Number
Type
Description
XIN
2
I
25MHz fundamental crystal input (20pF C L parallel resonant). C L have been
integrated into the chip. No external C L capacitor is required.
XOUT/50MHz_OE
3
B
Crystal connection pin. At power-up, this pin latches 50MHz_OE (output
enable selector for all 50MHz outputs. Disabled when 50MHz_OE is logical
zero. Has 120kΩ internal pull up resistor.
50MHz/FS(0:2)
50MHz/SS0
6,8,9,11
B
Bi-directional pins. 50MHz outputs. These pins latch FS(0:2) and SS0 at
power-up. 60kΩ internal pull up resistors on pins 6 and 8.
FS3
10
I
Tri-level input pin. FS3 input put.
25MHz/125MHz
13,15
O
25MHz (reference) or 125MHz outputs. Can be disabled with FS3 = 1.
SDRAMx2
18,20
O
SDRAM outputs with double drive strength determined by FS(0:1) value.
25MHz/100MHz
22
O
25MHz (reference) or 100MHz output. Can be disabled with FS2 = M.
VDD
1,5,12,
16,17,23,24
P
3.3V power supply.
GND
4,7,14,19,21
P
Ground.
SPREAD SPECTRUM SELECTION TABLE
SS0
SST modulation
0
±0.75% center
M
OFF
1
±0.5% center
FUNCTIONAL DESCRIPTION
Selectable spread spectrum and output frequencies
The PLL650-02 provides selectable spread spectrum modulation and selectable output frequencies. Selection is made by
connecting specific pins to a logical “zero” or “one”, or by leaving them not connected (tri-level inputs or internal pull-up)
according to the frequency and spread spectrum selection tables shown on pages 1 and 2 respectively.
In order to reduce pin usage, the PLL650-02 uses tri-level input pins. These pins allow 3 levels for input selection: namely, 0
(Connect to GND), 1 (Connect to VDD), M (Do not connect). Thus, unlike the two-level selection pins, the tri-level input pins are
in the “M” (mid) state when not connected. In order to connect a tri-level pin to a logical “zero”, the pin must be connected to
GND. Likewise, in order to connect to a logical “one” the pin must be connected to VDD.
Pin 3 (XOUT/50MHz_OE) is a bi-directional pin used to disable the 50MHz output pins. Pin 6 (FS0) and pin 8 (FS1) are bidirectional pins used to select the SDRAM output frequency upon power-up. Pin 9 (FS2) and pin 11 (FS3) are tri-level bidirectional pins used to select the output frequency of pins 13, 15 and 22, as shown in the frequency table on page 1. After the
input signals have been latched, pins 6, 8, 9, and 11 serve as 50 MHz frequency outputs.
47745 Fremont Blvd., Fremont, California 94538 TEL (510) 492-0990 FAX (510) 492-0991
Rev 05/02/01 Page 2
PLL650-02
Low EMI Network LAN Clock
Connecting a bi-directional pin
A bi-directional pin serves as input upon power-up, and as output as soon as the inputs have been latched. The value of the
input is latched-in upon power-up. Depending on the pin (see pin description), the input can be tri-level or a standard two-level.
Unlike unidirectional pins, bi-directional pins cannot be connected directly to GND or VDD in order to set the input to "0" or "1",
since the pin also needs to serve as output. In the case of two level input pins, an internal pull-up resistor is present. This allows
a default value to be set when no external pull down resistor is connected between the pin and GND (by definition, a tri-level
input has a the default value of "M" (mid) if it is not connected). In order to connect a bi-directional pin to a non-default value, the
input must be connected to GND or VDD through an external pull-down/pull-up resistor. Note: when the output load presents a
low impedance in comparison to the internal pull-up resistor, the internal pull-up resistor may not be sufficient to pull the input up
to a logical “one”, and an external pull-up resistor may be required.
For bi-directional inputs, the external loading resistor between the pin and GND has to be sufficiently small (compared to the
internal pull-up resistor) so that the pin voltage be pulled below 0.8V (logical “zero”). In order to avoid loading effects when the
pin serves as output, the value of the external pull-down resistor should however be kept as large as possible. In general, it is
recommended to use an external resistor of around one sixth to one quarter of the internal pull-up resistor (see Application
Diagram). Note: when the output is used to drive a load presenting an small resistance between the output pin and VDD, this
resistance is in essence connected in parallel to the internal pull-up resistor. In such a case, the external pull-down resistor may
have to be dimensioned smaller to guarantee that the pin voltage will be low enough achieve the desired logical “zero”. This is
particularly true when driving 74FXX TTL components.
APPLICATION DIAGRAM
Internal to chip
External Circuitry
VDD
Rup
Power Up
Reset
R
RB
Output
Latched
Input
Latch
EN
Clock Load
Bi-directional pin
RUP/4
Jumper options
NOTE: Rup=120k Ω for 50MHz/OE (Pin3); Rup=60k
Ω for FS(0:1) . R starts from 1 to 0 while RB starts from 0 to 1.
47745 Fremont Blvd., Fremont, California 94538 TEL (510) 492-0990 FAX (510) 492-0991
Rev 05/02/01 Page 3
PLL650-02
Low EMI Network LAN Clock
Electrical Specifications
1. Absolute Maximum Ratings
PARAMETERS
SYMBOL
MIN.
MAX.
UNITS
V CC
- 0.5
7
V
Input Voltage Range
VI
- 0.5
V CC + 0.5
V
Output Voltage Range
VO
- 0.5
V CC + 0.5
V
260
°C
-65
150
°C
0
70
°C
Supply Voltage Range
Soldering Temperature
Storage Temperature
TS
Ambient Operating Temperature
Exposure of the device under conditions beyond the limits specified by Maximum Ratings for extended periods may cause
permanent damage to the device and affect product reliability. These conditions represent a stress rating only, and functional
operations of the device at these or any other conditions above the operational limits noted in this specification is not implied.
2. AC Specification
PARAMETERS
CONDITIONS
MIN.
TYP.
MAX.
UNITS
10
25
27
MHz
Input Frequency
Output Rise Time
0.8V to 2.0V with no load
1.5
ns
Output Fall Time
2.0V to 0.8V with no load
1.5
ns
Duty Cycle*
At VDD/2
55
%
Max. Absolute Jitter
Short term
Max. Jitter, cycle to cycle
45
50
ps
±150
80
ps
* : in case SDRAM output is selected to be 83.3MHz, the duty cycle of output pin 22 will be 40%-60% if its output frequency is selected to be 100MHz
(FS2=1). In all other situations, pin 22 will also have a 50%-50% typical duty cycle.
47745 Fremont Blvd., Fremont, California 94538 TEL (510) 492-0990 FAX (510) 492-0991
Rev 05/02/01 Page 4
PLL650-02
Low EMI Network LAN Clock
3. DC Specification
PARAMETERS
SYMBOL
CONDITIONS
MIN.
TYP.
Operating Voltage
VDD
3.13
Input High Voltage
V IH
VDD/2
Input Low Voltage
V IL
VDD/2
Input High Voltage
V IH
For all Tri-level input
Input Low Voltage
V IL
For all Tri-level input
Input High Voltage
V IH
For all normal input
Input Low Voltage
V IL
For all normal input
Output High Voltage
V OH
I OH = -25mA
Output Low Voltage
V OL
I OL = 25mA
Output High Voltage At
CMOS Level
V OH
I OH = -8mA
Operating Supply Current
I DD
No Load
Short-circuit Current
IS
Nominal output current*
I out
CMOS output level
Nominal output current*
I out
TTL output level
Internal pull-up resistor
R up
Internal pull-up resistor
R up
MAX.
UNITS
3.47
V
V
VDD/2 - 1
VDD-0.5
V
V
0.5
2
V
V
0.8
2.4
V
V
0.4
VDD-0.4
V
V
35
mA
±100
mA
35
40
mA
20
25
mA
Pins 6,8
60
kΩ
Pin 3
120
kΩ
*: SDRAM output strengths are doubled (i.e. min. CMOS level is 70mA, typ. CMOS level is 80mA)
47745 Fremont Blvd., Fremont, California 94538 TEL (510) 492-0990 FAX (510) 492-0991
Rev 05/02/01 Page 5
WWW.ALLDATASHEET.COM
Copyright © Each Manufacturing Company.
All Datasheets cannot be modified without permission.
This datasheet has been download from :
www.AllDataSheet.com
100% Free DataSheet Search Site.
Free Download.
No Register.
Fast Search System.
www.AllDataSheet.com