72 Mb (2M x 36 & 4M x 18) DDR-IIP (Burst of 2) CIO Synchronous SRAMs . (2.5 Cycle Read Latency) Features • 2M x 36 or 4M x 18. • On-chip delay-locked loop (DLL) for wide data valid window. • Common data input/output bus. • Synchronous pipeline read with self-timed late write operation. • Double data rate (DDR-IIP) interface for read and write input ports. • Fixed 2-bit burst for read and write operations. • Clock stop support. • Two input clocks (K and K) for address and control registering at rising edges only. • Industrial temperature available upon request. Advanced Information May 2009 • Two echo clocks (CQ and CQ) that are delivered simultaneously with data. • +1.8V core power supply and 1.5, 1.8V VDDQ, used with 0.75, 0.9V VREF. • HSTL input and output levels. • Registered addresses, write and read controls, byte writes, data in, and data outputs. • Full data coherency. • Boundary scan using limited set of JTAG 1149.1 functions. • Byte write capability. • Fine ball grid array (FBGA) package - 15mm x 17mm body size - 1mm pitch - 165-ball (11 x 15) array • Programmable impedance output drivers via 5x user-supplied precision resistor. Description The 72Mb IS61DDPB22M36 and IS61DDPB24M18 are synchronous, high-performance CMOS static random access memory (SRAM) devices. These SRAMs have a common I/O bus. The rising edge of K clock initiates the read/write operation, and all internal operations are self-timed. Refer to the Timing Reference Diagram for Truth Table on page 8 for a description of the basic operations of these DDR-IIP (Burst of 2) CIO SRAMs. The input addresses are registered on all rising edges of the K clock. The DQ bus operates at double data rate for reads and writes. The following are registered internally on the rising edge of the K clock: • Read and write addresses • Address load • Read/write enable Byte writes • Data-in • Data-out Integrated Silicon Solution, Inc. Rev. 00A 03/31/08 The following are registered on the rising edge of the K clock: • Byte writes • Data-in for second burst addresses • Data-out Byte writes can change with the corresponding datain to enable or disable writes on a per-byte basis. An internal write buffer enables the data-ins to be registered one cycle later than the write address. The first data-in burst is clocked with the rising edge of the next K clock, and the second burst is timed to the following rising edge of the K clock. During the burst read operation, at the first burst the data-outs are updated from output registers off the second rising edge of the K clock (2.5 cycles later). At the second burst, the data-outs are updated with the fourth rising edge of the corresponding K clock (see page 8). The device is operated with a single +1.8V power supply and is compatible with HSTL I/O interfaces. 1 I D72 Mb (2M x 36 & 4M x 18) DDR-IIP (Burst of 2) CIO Synchronous SRAMs 3 x36 FBGA Pinout (Top View) A 1 2 3 4 5 6 7 8 9 10 11 CQ NC/SA* SA R/W BW2 K BW1 LD SA SA CQ B NC DQ27 DQ18 SA BW3 K BW0 SA NC NC DQ8 C NC NC DQ28 VSS SA NC SA VSS NC DQ17 DQ7 D NC DQ29 DQ19 VSS VSS VSS VSS VSS NC NC DQ16 E NC NC DQ20 VDDQ VSS VSS VSS VDDQ NC DQ15 DQ6 F NC DQ30 DQ21 VDDQ VDD VSS VDD VDDQ NC NC DQ5 G NC DQ31 DQ22 VDDQ VDD VSS VDD VDDQ NC NC DQ14 H Doff VREF VDDQ VDDQ VDD VSS VDD VDDQ VDDQ VREF ZQ J NC NC DQ32 VDDQ VDD VSS VDD VDDQ NC DQ13 DQ4 K NC NC DQ23 VDDQ VDD VSS VDD VDDQ NC DQ12 DQ3 L NC DQ33 DQ24 VDDQ VSS VSS VSS VDDQ NC NC DQ2 M NC NC DQ34 VSS VSS VSS VSS VSS NC DQ11 DQ1 N NC DQ35 DQ25 VSS SA SA SA VSS NC NC DQ10 P NC NC DQ26 SA SA NC SA SA NC DQ9 DQ0 R TDO TCK SA SA SA NC SA SA SA TMS TDI * The following pins are reserved for higher densities: 2A for 144Mb • BW0 controls writes to DQ0–DQ8; BW1 controls writes to DQ9–DQ17; BW2 controls writes to DQ18–DQ26; BW3 controls writes to DQ27–DQ35. x18 FBGA Pinout (Top View) 1 2 3 SA 4 5 6 7 8 9 10 11 R/W BW1 K NC/SA* LD SA SA CQ BW0 SA NC NC DQ8 VSS NC DQ7 A CQ SA B NC DQ9 NC SA NC/SA* K C NC NC NC VSS SA NC SA NC D NC NC DQ10 VSS VSS VSS VSS VSS NC NC NC E NC NC DQ11 VDDQ VSS VSS VSS VDDQ NC NC DQ6 F NC DQ12 NC VDDQ VDD VSS VDD VDDQ NC NC DQ5 G NC NC DQ13 VDDQ VDD VSS VDD VDDQ NC NC NC H Doff VREF VDDQ VDDQ VDD VSS VDD VDDQ VDDQ VREF ZQ J NC NC NC VDDQ VDD VSS VDD VDDQ NC DQ4 NC K NC NC DQ14 VDDQ VDD VSS VDD VDDQ NC NC DQ3 L NC DQ15 NC VDDQ VSS VSS VSS VDDQ NC NC DQ2 M NC NC NC VSS VSS VSS VSS VSS NC DQ1 NC N NC NC DQ16 VSS SA SA SA VSS NC NC NC P NC NC DQ17 SA SA NC SA SA NC NC DQ0 R TDO TCK SA SA SA NC SA SA SA TMS TDI * The following pin is reserved for higher densities: 7A for 144Mb, 5B for 288Mb. • BW0 controls writes to DQ0–DQ8; BW1 controls writes to DQ9–DQ17 2 Integrated Silicon Solution, Inc. Rev. 00A 03/31/08 I 3 D 72DMb (2M x 36 & 4M x 18) DDR-IIP (Burst of 2) CIO Synchronous SRAMs Pin Description Symbol Pin Number Description K, K 6B, 6A Input clock. CQ, CQ 11A, 1A Output echo clock. Doff 1H DLL disable when low. SA 3A, 9A, 10A, 4B, 8B, 5C, 7C, 5N, 6N, 7N, 4P, 5P, 7P, 8P, 3R, 4R, 2M x 36 address inputs. 5R, 7R,8R, 9R SA 2A, 3A, 9A, 10A, 4B, 8B, 5C, 7C, 5N, 6N, 7N, 4P, 5P, 7P, 8P, 3R, 4M x 18 address inputs. 4R, 5R, 7R, 8R, 9R DQ0–DQ8 DQ9–DQ17 DQ18–DQ26 DQ27–DQ35 11P, 11M, 11L, 11K, 11J, 11F, 11E, 11C, 11B 10P, 11N, 10M, 10K, 10J, 11G, 10E, 11D, 10C 3B, 3D, 3E, 3F, 3G, 3K, 3L, 3N, 3P 2B, 3C, 2D, 2F, 2G, 3J, 2L, 3M, 2N 2M x 36 DQ pins DQ0–DQ8 DQ9–DQ17 11P, 10M, 11L, 11K, 10J, 11F, 11E, 10C, 11B 2B, 3D, 3E, 2F, 3G, 3K, 2L, 3N, 3P 4M x 18 DQ pins R/W 4A Read/write control. Read when active high. LD 8A Synchronizes load. Loads new address when low. BW0, BW1, BW2, BW3 7B, 7A, 5A,5B 2M x 36 byte write control, active low. BW0, BW1 7B, 5A 4M x 18 byte write control, active low. VREF 2H, 10H Input reference level. VDD 5F, 7F, 5G, 7G, 5H, 7H, 5J, 7J, 5K, 7K Power supply. VDDQ 4E,8E,4F,8F,4G,8G,3H,4H,8H,9H,4J,8J,4K,8K,4L,8L Output power supply. VSS 4C, 8C, 4D, 5D, 6D, 7D, 8D, 5E, 6E, 7E, 6F, 6G, 6H, 6J, 6K, 5L, 6L, 7L, 4M, 5M, 6M, 7M, 8M, 4N, 8N Ground ZQ 11H Output driver impedance control. TMS, TDI, TCK 10R, 11R, 2R IEEE 1149.1 test inputs (1.8V LVTTL levels). TDO 1R IEEE 1149.1 test output (1.8V LVTTL level). NC 2A, 1B, 9B, 10B, 1C, 2C, 9C, 1D, 9D, 10D, 1E, 2E, 9E, 1F, 9F, 10F, 1G, 9G, 10G, 1J, 2J, 9J, 1K, 2K, 9K, 1L, 9L, 10L, 1M, 2M, 9M, 1N, 9N, 10N, 1P, 2P, 9P, 6R, 6P, 6C x36 Configuration NC 7A, 1B, 3B, 5B, 9B, 10B, 1C, 2C, 3C, 9C, 11C, 1D, 2D, 9D, 10D, x18 Configuration 11D, 1E, 2E, 9E, 10E, 1F, 3F, 9F, 10F, 1G, 2G, 9G, 10G, 11G, 1J, 2J, 3J, 9J, 11J, 1K, 2K, 9K, 10K, 1L, 3L, 9L, 10L, 1M, 2M, 3M, 9M, 11M, 1N, 2N, 9N, 10N, 11N, 1P, 2P, 9P, 10P, 6R, 6P, 6C Integrated Silicon Solution, Inc. Rev. 00A 03/31/08 3 I 72 D Mb (2M x 36 & 4M x 18) DDR-IIP (Burst of 2) CIO Synchronous SRAMs 3 Block Diagram 36 (or 18) Data Reg 36 (or 18) 4 (or 2) 72 (or 36) Output Driver 2M x 36 (4M x 18) Memory Array 36 (or 18) Output Select R/W BWx Control Logic 20 (or 21) Sense Amps LD Add Reg & Burst Control Write/Read Decode 20 (or 21) Output Reg Write Driver Address A0 36 (or 18) DQ (Data-Out & Data-In) CQ, CQ (Echo Clock Out) K K DOFF Clock Gen Select Output Control SRAM Features Read Operations The SRAM operates continuously in a burst-of-two mode. Read cycles are started by registering R/W in active high state at the rising edge of the K clock. The K and K clocks are also used to control the timing to the outputs. The data corresponding to the first address is clocked 2.5 cycles later by the rising edge of the K clock. The data corresponding to the second burst is clocked 3 cycles later by the following rising edge of the K clock. A set of free-running echo clocks, CQ and CQ, are produced internally with timings identical to the data-outs. The echo clocks can be used as data capture clocks by the receiver device. Whenever LD is low, a new address is registered at the rising edge of the K clock. A NOP operation (LD is high) does not terminate the previous read. The output drivers disable automatically to a high state. Write Operations Write operations can also be initiated at every rising edge of the K clock whenever R/W is low. The write address is also registered at that time. When the address needs to change, LD needs to be low simultaneously to be registered by the rising edge of K. Again, the write always occurs in bursts of two. Because of its common I/O architecture, the data bus must be tri-stated at least one cycle before the new data-in is presented at the DQ bus. The write data is provided in a ‘late write’ mode; that is, the data-in corresponding to the first address of the burst, is presented one cycle later or at the rising edge of the next K clock. The data-in corresponding to the second write burst address follows next, registered by the rising edge of K. 4 Integrated Silicon Solution, Inc. Rev. 00A 03/31/08 72 Mb (2M x 36 & 4M x 18) DDR-II (Burst of 2) CIO Synchronous SRAMs 72 Mb (2M x 36 & 4M x 18) DDR-IIP (Burst of 2) CIO Synchronous SRAMs D I 3 The data-in provided for writing is initially kept in write buffers. The information on these buffers is written into the array on the following write cycle. A read cycle to the last write address produces data from the write buffers. Similarly, a read address followed by the same write address produces the latest write data. The SRAM maintains data coherency. During a write, the byte writes independently control which byte of any of the two burst addresses is written (see X18/X36 Write Truth Tables on page 9 and Timing Reference Diagram for Truth Table on page 8). Whenever a write is disabled (R/W is high at the rising edge of K), data is not written into the memory. RQ Programmable Impedance An external resistor, RQ, must be connected between the ZQ pin on the SRAM and VSS to enable the SRAM to adjust its output driver impedance. The value of RQ must be 5x the value of the intended line impedance driven by the SRAM. For example, an RQ of 250Ω results in a driver impedance of 50Ω. The allowable range of RQ to guarantee impedance matching is between 175Ω and 350Ω, with the tolerance described in Programmable Impedance Output Driver DC Electrical Characteristics on page 13. The RQ resistor should be placed less than two inches away from the ZQ ball on the SRAM module. The capacitance of the loaded ZQ trace must be less than 3 pF. The ZQ pin can also be directly connected to VDDQ to obtain a minimum impedance setting. ZQ must never be connected to VSS. Programmable Impedance and Power-Up Requirements Periodic readjustment of the output driver impedance is necessary as the impedance is greatly affected by drifts in supply voltage and temperature. At power-up, the driver impedance is in the middle of allowable impedances values. The final impedance value is achieved within 2048 clock cycles. Integrated Silicon Solution, Inc. Rev. 00A 03/31/08 5 72 Mb (2M x 36 & 4M x 18) DDR-IIP (Burst of 2) CIO Synchronous SRAMs Application Example The following figure depicts an implementation of four 4M x 18 DDR-IIP SRAMs with common I/Os. SRAM #1 SRAM #4 ZQ R=250 CQ/CQ ZQ R=250 CQ/CQ DQ0–17 Vt R SA LD R/W BW0 BW1 K K DQ0–17 LD R/W BW0 BW1 SA K K Data-In/Data-Out Echo Clock Echo Clock Address R Vt LD R/W BW Memory Controller Source CLK Source CLK R=50 Vt=VREF Power-Up and Power-Down Sequences The following sequence is used for power-up: 1. The power supply inputs must be applied in the following order while keeping Doff in LOW logic state: 1) VDD 2) VDDQ 3) VREF 2. Start applying stable clock inputs (K, K, C, and C). 3. After clock signals have stabilized, change Doff to HIGH logic state. 4. Once the Doff is switched to HIGH logic state, wait an additional 1024 clock cycles to lock the DLL. NOTES: 1. The power-down sequence must be done in reverse of the power-up sequence. 2. VDDQ can be allowed to exceed VDD by no more than 0.6V. 3. VREF can be applied concurrently with VDDQ. 6 Integrated Silicon Solution, Inc. Rev. 00A 03/31/08 72 Mb (2M x 36 & 4M x 18) 72 Mb (2M x 36 of & 2) 4MCIO x 18) DDR-II (Burst Synchronous SRAMs DDR-IIP (Burst of 2) CIO Synchronous SRAMs D I 3 State Diagram Power Up Load NOP Load Load Write Load Load New Address Load Read DDR-IIP Read Write Load DDR-IIP Write Notes: 1. Read refers to read active status with R/W = high. 2. Write refers to write active status with R/W = low. 3. Load refers to read new address active status with LD = low. 4. Load is read new address inactive status with LD = high. The Timing Reference Diagram for Truth Table on page 8 is helpful in understanding the clock and write truth tables, as it shows the cycle relationship between clocks, address, data in, data out, and controls. All read and write commands are issued at the beginning of cycle “t”. Linear Burst Sequence Table Burst Sequence SA0 First Address 1 Second Address 0 Integrated Silicon Solution, Inc. Rev. 00A 03/31/08 7 I D72 Mb (2M x 36 & 4M x 18) DDR-IIP (Burst of 2) CIO Synchronous SRAMs 3 Timing Reference Diagram for Truth Table Cycle t t+1 Read A t+2.5 t+2 NOP NOP tw Write B t+3 Write B tw+1 K Clock K Clock LD R/W BW 0,1,2,3 Address A B Data-In/ Data-Out (DQ) QA DB QA+1 CQ Clock CQ Clock Clock Truth Table (Use the following table with the Timing Reference Diagram for Truth Table.) Mode Clock Controls Data-Out/Data-In K LD R/W QA / DB QA+1 / DB+1 Stop Clock Stop X X Previous state Previous state No Operation (NOP) L H H H High-Z High-Z Read A L H L X D out at K (t + 2.5) Write B L H X L DB (tW + 1) D out at K (t + 3) DB (tW + 1.5) Notes: 1. The internal burst counter is always fixed as two-bit. 2. X = don’t care; H = logic “1”; L = logic “0”. 3. A read operation is started when control signal R/W is active high. 4. A write operation is started when control signal R/W is active low. 5. Before entering into the stop clock, all pending read and write commands must be completed. 6. For timing definitions, refer to the AC Characteristics on page 15. Signals must have AC specifications at timings indicated in parenthesis with respect to switching clocks K and K. 8 Integrated Silicon Solution, Inc. Rev. 00A 03/31/08 72 Mb (2M x 36 & 4M x 18) D DDR-IIP (Burst of 2) CIO Synchronous SRAMs 3 X36 Write Truth Table Use the following table with the Timing Reference Diagram for Truth Table on page 8. Operation K (tw) Write Byte 0 K (tw + 0.5) BW0 BW1 BW2 BW3 DB L→Η L H H H D0-8 (tw + 1) Write Byte 1 L→H H L H H D9-17 (tw + 1) Write Byte 2 L→H H H L H D18-26 (tw + 1) Write Byte 3 L→H H H H L D27-35 (tw + 1) Write All Bytes L→H L L L L D0-35 (tw + 1) Abort Write L→H H H H H Don’t care DB+1 Write Byte 0 L→H L H H H D0-8 (tw + 1.5) Write Byte 1 L→H H L H H D9-17 (tw+1.5) Write Byte 2 L→H H H L H D18-26 (tw+1.5) Write Byte 3 L→H H H H L D27-35 (tw+1.5) Write All Bytes L→H L L L L D0-35 (tw+1.5) Abort Write L→H H H H H Don’t care Notes; 1. For all cases. R/W must be active low during the rising edge of K occurring at time tW. 2. For timing definitions, refer to the AC Characteristics on page 15. Signals must have AC specifications with respect to switching clocks K and K. X18 Write Truth Table (Use this table with the Timing Reference Diagram for Truth Table on page 8.) Operation K (tw) Write Byte 0 on B K (tw+0.5) BW0 BW1 DB L→H L H D0-8 (tw + 1) Write Byte 1 on B L→H H L D9–17 (tw + 1) Write All Bytes on B L→H L L D0–17 (tw + 1) Abort Write on B L→H H H Don’t care DB+1 Write Byte 1 on B+1 L→H L H D0–8 (tw + 1.5) Write Byte 2 on B+1 L→H H L D9–17 (tw + 1.5) Write All Bytes on B+1 L→H L L D0–17 (tw + 1.5) Abort Write on B+1 L→H H H Don’t care Notes; 1. Refer to Timing Reference Diagram for Truth Table on page 8. Cycle time starts at n and is referenced to the K clock. 2. For all cases, R/W must be active low during the rising edge of K occurring at tw. 3. For timing definitions, refer to the AC Characteristics on page 15. Signals must have AC specs with respect to switching clocks K and K. Integrated Silicon Solution, Inc. Rev. 00A 03/31/08 9 3 I 72 Mb (2M x 36 & 4M x 18) D DDR-IIP (Burst of 2) CIO Synchronous SRAMs Absolute Maximum Ratings Item Symbol Rating Units Power supply voltage VDD -0.5 to 2.9 V Output power supply voltage VDDQ -0.5 to 2.9 V -0.5 to VDD+0.3 V VDOUT -0.5 to 2.6 V Operating temperature TA 0 to 70 °C Junction temperature TJ 110 °C Storage temperature TSTG -55 to +125 °C Input voltage Data out voltage VIN Note: Stresses greater than those listed in this table can cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this datasheet is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. 10 Integrated Silicon Solution, Inc. Rev. 00A 03/31/08 I 72 Mb (2M x 36 & 4M x 18) D DDR-IIP (Burst of 2) CIO Synchronous SRAMs 3 Recommended DC Operating Conditions (TA = 0 to +70° C) Parameter Maximum Units Notes 1.8 - 5% 1.8 + 5% V 1 VDDQ 1.4 1.9 V 1 Input high voltage VIH VREF +0.1 VDDQ + 0.2 V 1, 2 Input low voltage VIL -0.2 VREF - 0.1 V 1, 3 VREF 0.68 0.95 V 1, 5 VIN - CLK -0.2 VDDQ + 0.2 V 1, 4 Supply voltage Output driver supply voltage Input reference voltage Clocks signal voltage 1. 2. 3. 4. 5. Symbol Minimum VDD Typical All voltages are referenced to VSS. All VDD, VDDQ, and VSS pins must be connected. VIH(Max) AC = See 0vershoot and Undershoot Timings. VIL(Min) AC = See 0vershoot and Undershoot Timings. VIN-CLK specifies the maximum allowable DC excursions of each clock (K and K). Peak-to-peak AC component superimposed on VREF may not exceed 5% of VREF. 0vershoot and Undershoot Timings 20% Min Cycle Time VIL(Min) AC VDDQ+0.6V Undershoot Timing VDDQ GND VIH(Max) AC Overshoot Timing GND-0.6V 20% Min Cycle Time PBGA Thermal Characteristics Item Symbol Rating Units Thermal resistance junction to ambient (airflow = 1m/s) RΘJA TBD ° C/W Thermal resistance junction to case RΘJC TBD ° C/W Thermal resistance junction to pins RΘJB TBD ° C/W Integrated Silicon Solution, Inc. Rev. 00A 03/31/08 11 D 72 Mb (2M x 36 & 4M x 18) DDR-IIP (Burst of 2) CIO Synchronous SRAMs 3 I Capacitance (TA = 0 to +70° C, VDD = 1.8V -5%, +5%, f = 1MHz) Parameter Symbol Test Condition Maximum Units Input capacitance CIN VIN = 0V 4 pF Data-in/Out capacitance (DQ0–DQ35) CDQ VDIN = 0V 4 pF VCLK = 0V 4 pF Clocks Capacitance (K and K) CCLK DC Electrical Characteristics (TA = 0 to + 70 C, VDD = 1.8V -5%, +5%) Parameter Symbol Minimum Maximum Units Notes IDD33 IDD40 IDD50 — — — 600 550 500 x18 average power supply operating current (IOUT = 0, VIN = VIH or VIL) IDD33 IDD40 IDD50 — — — 600 550 500 Power supply standby current (R = VIH, W = VIH. All other inputs = VIH or VIH, IIH = 0) ISBSS — 200 mA Input leakage current, any input (except JTAG) (VIN = VSS or VDD) ILI -2 +2 uA Output leakage current (VOUT = VSS or VDDQ, Q in High-Z) ILO -2 +2 uA Output “high” level voltage (IOH = -6mA) VOH VDDQ -.4 VDDQ V 2, 4 Output “low” level voltage (IOL = +6mA) VOL VSS VSS+.4 V 2, 4 ILIJTAG -100 +100 uA 5 x36 average power supply operating current (IOUT = 0, VIN = VIH or VIL) JTAG leakage current (VIN = VSS or VDD) mA 1, 3 mA 1, 3 1 1. IOUT = chip output current. 2. Minimum impedance output driver. 3. The numeric suffix indicates the part operating at speed, as indicated in AC Characteristics on page 15. 2 4. JEDEC Standard JESD8-6 Class 1 compatible. 5. For JTAG inputs only. 6. Currents are estimates only and need to be verified. 12 Integrated Silicon Solution, Inc. Rev. 00A 03/31/08 I D 72 Mb (2M x 36 & 4M x 18) DDR-IIP (Burst of 2) CIO Synchronous SRAMs 3 Typical AC Input Characteristics Item Symbol Minimum AC input logic high VIH (ac) VREF + 0.2 AC input logic low VIL (ac) Clock input logic high (K, K) VIH-CLK (ac) Clock input logic low (K, K) VIL-CLK (ac) 1. 2. 3. 4. Maximum Notes 1, 2, 3, 4 VREF - 0.2 VREF + 0.2 1, 2, 3, 4 1, 2, 3 VREF - 0.2 1, 2, 3 The peak-to-peak AC component superimposed on VREF may not exceed 5% of the DC component of VREF. Performance is a function of VIH and VIL levels to clock inputs. See the AC Input Definition diagram. See the AC Input Definition diagram. The signals should swing monotonically with no steps rail-to-rail with input signals never ringing back past VIH (AC) and VIL (AC) during the input setup and input hold window. VIH (AC) and VIL (AC) are used for timing purposes only. AC Input Definition K VREF K VRAIL VIH (AC) VREF Setup Time Hold Time VIL (AC) V-RAIL Programmable Impedance Output Driver DC Electrical Characteristics (TA = 0 to +70° C, VDD = 1.8V -5%, +5%, VDDQ = 1.5, 1.8V) Parameter Symbol Minimum Maximum Units Notes Output “high” level voltage VOH VDDQ / 2 VDDQ V 1, 3 Output “low” level voltage VOL VSS VDDQ / 2 V 2, 3 VDDQ- 1. IOH = ----------------2 ⁄ RQ -------- 5 ± 15% @ VOH = VDDQ / 2 For: 175Ω ≤RQ ≤350Ω. RQ VDDQ- ⁄ -------2. IOL = ---------------- 5 ± 15% @ VOL = VDDQ / 2 For: 175Ω ≤RQ ≤350Ω. 2 3. Parameter tested with RQ = 250Ω and VDDQ = 1.5V. Integrated Silicon Solution, Inc. Rev. 00A 03/31/08 13 3 I D 72 Mb (2M x 36 & 4M x 18) DDR-IIP (Burst of 2) CIO Synchronous SRAMs AC Test Conditions (TA = 0 to +70° C, VDD = 1.8V -5%, +5%, VDDQ = 1.5, 1.8V) Parameter Symbol Conditions Units VDDQ 1.5, 1.8 V Input high level VIH VREF+0.5 V Input Low Level VIL VREF-0.5 V VREF 0.75, 0.9 V Input rise time TR 0.35 ns Input fall time TF 0.35 ns Output timing reference level VREF V Clocks reference level VREF V Output driver supply voltage Input reference voltage Output load conditions Notes 1, 2 1. See AC Test Loading. 2. Parameter tested with RQ = 250Ω and VDDQ = 1.5V. AC Test Loading 50 Ω Q 50 Ω 0.75, 0.9V 5pF Test Comparator 0.75, 0.9V 14 Integrated Silicon Solution, Inc. Rev. 00A 03/31/08 72 Mb (2M x 36 & 4M x 18) DDR-IIP (Burst of 2) CIO Synchronous SRAMs AC CHARACTERISTICS (Vdd = 1.8V + 0.1V, TA = 0 ºC to 70 ºC) DDR IIP ISSI Parameter Description 400 min 375 max min 333 max min 300 max min max unit tKHKH K Clock Cycle Time 2.50 7.50 2.66 7.50 3.00 7.50 3.30 7.50 tKHKL Input Clock (K/K) HIGH 0.40 0.40 0.40 0.40 tKHKH tKLKH tKHKH Input Clock (K/K) LOW K Clock Rise to K Clock Rise (rising edge to rising 0.40 1.06 0.40 1.13 0.40 1.28 0.40 1.40 tKHKH ns notes ns edge) Setup Times tAVKH Address Setup to K Clock Rise 0.40 0.40 0.40 0.40 ns 2 tIVKH tIVKH Control Setup to K Clock Rise (R, W) Double Data Rate Control Setup to Clock (K, K) 0.40 0.28 0.40 0.28 0.40 0.28 0.40 0.28 ns ns 2 tDVKH Data Input Setup to Clock (K/K) Rise 0.28 0.28 0.28 0.28 ns 2 Rise (BWS 0, BWS 1, BWS 2, BWS 3) 2 Hold Times tKHAX Address Hold after K Clock Rise 0.40 0.40 0.40 0.40 ns tKHIX tKHIX Control Hold after K Clock Rise Double Data Rate Control Hold after Clock (K/K) 0.40 0.28 0.40 0.28 0.40 0.28 0.40 0.28 ns ns tKHDX Rise (BWS 0, BWS 1, BWS 2, BWS 3) Data Input Hold after Clock (K/K) Rise 0.28 0.28 0.28 0.28 ns Output Times K/K Clock Rise to Data Valid tCHQV tCHQX Data Output Hold after Output K/K Clock Rise (Active to Active) K/K Clock Rise to Echo Clock Valid -0.45 tCHCQV -0.45 tCHCQX Echo Clock Hold after K/K Clock Rise tCQHQV Echo Clock High to Data Valid tCQHQX tCHQZ Echo Clock High to Data Invalid tCHQX1 Clock (K/K) Rise to High-Z (Active to High-Z) Clock (K/K) Rise to Low-Z 0.45 0.45 -0.45 0.45 -0.45 0.45 -0.45 0.20 -0.20 0.45 -0.45 -0.20 -0.45 ns ns 0.45 ns 0.20 ns 1 0.45 ns ns 1 1 ns 1 ns -0.20 0.45 -0.45 1 1 -0.45 0.20 0.45 0.45 -0.45 0.45 0.20 -0.20 -0.45 0.45 -0.45 DLL Timing tKC Var Clock Phase Jitter tKC lock DLL Lock Time (K) tDoffLowToReset Doff Low period to DLL Reset 0.20 0.20 0.20 2048 2048 2048 5 5 5 0.20 ns cycles ns Notes: 1. See AC Test Loading on page 14. 2. During normal operation, VIH, VIL, TRISE, and TFALL of inputs must be within 20% of VIH, VIL, TRISE, and TFALL of clock. Integrated Silicon Solution, Inc. Rev. 00A 03/31/08 15 72 Mb (2M x 36 & 4M x 18) DDR-IIP (Burst of 2) CIO Synchronous SRAMs Read, Write, and NOP Timing Diagram NOP Read Read Read NOP NOP Write Write Read Read NOP NOP 1 2 3 4 5 6 7 8 9 10 11 12 A2 A3 A4 (burst of 2) (burst of 2) (burst of 2) 4.5 (Note 3) (burst of 2) (burst of 2) (burst of 2) (burst of 2) K tKHKL tKHKH tKHKL tKHKH tKLKH K tIVKH tKHIX LD R/W SA A0 A1 tAVKH tKHAX DQ tCHQV tCHQZ tCHQX tCHQX1 Q01 Q02 Q11 Q12 A5 tDVKH tKHDX tCHQV D21 D22 D31 D32 Q41 Q42 tCHCQV tCHCQX CQ tCHCQV tCHCQX CQ Don’t Care 16 Undefined Integrated Silicon Solution, Inc. Rev. 00A 03/31/08 72 Mb (2M x 36 & 4M x 18) DDR-IIP (Burst of 2) CIO Synchronous SRAMs 3 I D IEEE 1149.1 TAP and Boundary Scan The SRAM provides a limited set of JTAG functions to test the interconnection between SRAM I/Os and printed circuit board traces or other components. There is no multiplexer in the path from I/O pins to the RAM core. In conformance with IEEE Standard 1149.1, the SRAM contains a TAP controller, instruction register, boundary scan register, bypass register, and ID register. The TAP controller has a standard 16-state machine that resets internally on power-up. Therefore, a TRST signal is not required. Signal List • • • • TCK: test clock TMS: test mode select TDI: test data-in TDO: test data-out JTAG DC Operating Characteristics (TA = 0 to +70° C) Operates with JEDEC Standard 8-5 (1.8V) logic signal levels Parameter Symbol Minimum Typical Maximum Units Notes JTAG input high voltage VIH1 1.3 — VDD+0.3 V 1 JTAG input low voltage VIL1 -0.3 — 0.5 V 1 JTAG output high level VOH1 VDD-0.4 — VDD V 1, 2 JTAG output low level VOL1 VSS — 0.4 V 1, 3 1. 2. 3. All JTAG inputs and outputs are LVTTL-compatible. IOH1 ≥ -2mA IOL1 ≥ +2mA. JTAG AC Test Conditions (TA = 0 to +70° C, VDD = 1.8V -5%, +5%) Parameter Symbol Conditions Units Input pulse high level VIH1 1.3 V Input pulse low level VIL1 0.5 V Input rise time TR1 1.0 ns Input fall time TF1 1.0 ns 0.9 V Input and output timing reference level Integrated Silicon Solution, Inc. Rev. 00A 03/31/08 17 72 Mb (2M x 36 & 4M x 18) D DDR-IIP (Burst of 2) CIO Synchronous SRAMs I 3 JTAG AC Characteristics (TA = 0 to +70° C, VDD = 1.8V -5%, +5%) Parameter Symbol Minimum Maximum Units TCK cycle time tTHTH 20 — ns TCK high pulse width tTHTL 7 — ns TCk low pulse width tTLTH 7 — ns TMS setup tMVTH 4 — ns TMS hold tTHMX 4 — ns TDI setup tDVTH 4 — ns TDI hold tTHDX 4 — ns TCK low to valid data tTLOV — 7 ns Notes 1 1. See AC Test Loading on page 14. JTAG Timing Diagram tTHTL tTLTH tTHTH TCK tTHMX TMS tMVTH tTHDX TDI tDVTH TDO tTLOV 18 Integrated Silicon Solution, Inc. Rev. 00A 03/31/08 72 Mb (2M x 36 & 4M x 18) D DDR-IIP (Burst of 2) CIO Synchronous SRAMs 3 I Scan Register Definition Register Name Bit Size x18 or x36 Instruction 3 Bypass 1 ID 32 Boundary Scan 109 ID Register Definition Field Bit Number and Description Part Revision Number (31:29) Part Configuration (28:12) JEDEC Code (11:1) Start Bit (0) 4M x 18 000 00def0wx0t0q0b0s0 000 101 001 00 1 2M x 36 000 00def0wx0t0q0b0s0 000 101 001 00 1 Part Configuration Definition: def = 011 for 72Mb wx = 11 for x36, 10 for x18 t = 1 for DLL, 0 for non-DLL q = 1 for QUADB2, 0 for DDR-II, DDR-IIP b = 1 for burst of 4, 0 for burst of 2 s = 1 for separate I/0, 0 for common I/O Integrated Silicon Solution, Inc. Rev. 00A 03/31/08 19 I 72 D Mb (2M x 36 & 4M x 18) DDR-IIP (Burst of 2) CIO Synchronous SRAMs 3 Instruction Set Code Instruction TDO Output Notes 000 EXTEST Boundary Scan Register 2,6 001 IDCODE 32-bit Identification Register 010 SAMPLE-Z Boundary Scan Register 1, 2 011 PRIVATE Do not use 5 100 SAMPLE Boundary Scan Register 4 101 PRIVATE Do not use 5 110 PRIVATE Do not use 5 111 BYPASS Bypass Register 3 1. Places Qs in high-Z in order to sample all input data, regardless of other SRAM inputs. 2. TDI is sampled as an input to the first ID register to allow for the serial shift of the external TDI data. 3. BYPASS register is initiated to VSS when BYPASS instruction is invoked. The BYPASS register also holds the last serially loaded TDI when exiting the shift-DR state. 4. SAMPLE instruction does not place DQs in high-Z. 5. This instruction is reserved. Invoking this instruction will cause improper SRAM functionality. 6. This EXTEST is not IEEE 1149.1-compliant. By default, it places Q in high-Z. If the internal register on the scan chain is set high, Q will be updated with information loaded via a previous SAMPLE instruction. The actual transfer occurs during the update IR state after EXTEST is loaded. The value of the internal register can be changed during SAMPLE and EXTEST only. List of IEEE 1149.1 Standard Violations • • • • • 7.2.1.b, e 7.7.1.a-f 10.1.1.b, e 10.7.1.a-d 6.1.1.d JTAG Block Diagram TDI Bypass Register (1 bit) Identification Register (32 bits) TDO Instruction Register (3 bits) Control Signals TMS TAP Controller TCK 20 Integrated Silicon Solution, Inc. Rev. 00A 03/31/08 72 Mb (2M x 36 & 4M x 18) D DDR-IIP (Burst of 2) CIO Synchronous SRAMs 3 I TAP Controller State Machine 1 Test Logic Reset 0 0 Run Test Idle 1 1 Select DR 0 0 1 1 Select IR 1 Capture IR Capture DR 0 0 0 Shift IR 0 Shift DR 1 1 1 1 Exit1 IR Exit1 DR 0 0 0 0 Pause DR Pause IR 1 1 Exit2 DR Exit2 IR 0 0 1 1 Update DR 0 Integrated Silicon Solution, Inc. Rev. 00A 03/31/08 1 Update IR 1 0 21 3 72 Mb (2M x 36 & 4M x 18) D DDR-IIP (Burst of 2) CIO Synchronous SRAMs D I Boundary Scan Exit Order The same length is used for x18 and x36 I/O configuration. Order Pin ID Order Pin ID 1 2 3 4 Order Pin ID 6R 37 6P 37 10D 73 2C 9E 74 3E 6N 7P 39 10C 75 2D 40 11D 76 2E 5 7N 41 9C 77 1E 6 7R 7 8R 42 9D 78 2F 43 11B 79 3F 8 8P 44 9 9R 45 11C 80 1G 9B 81 1F 10 11P 46 10B 82 3G 11 10P 47 11A 83 2G 12 10N 48 10A 84 1H 13 9P 49 9A 85 1J 14 10M 50 8B 86 2J 15 11N 51 7C 87 3K 16 9M 52 6C 88 3J 17 9N 53 8A 89 2K 18 11L 54 7A 90 1K 19 11M 55 7B 91 2L 20 9L 56 6B 92 3L 21 10L 57 6A 93 1M 22 11K 58 5B 94 1L 23 10K 59 5A 95 3N 24 9J 60 4A 96 3M 25 9K 61 5C 97 1N 26 10J 62 4B 98 2M 27 11J 63 3A 99 3P 28 11H 64 2A 100 2N 29 10G 65 1A 101 2P 30 9G 66 2B 102 1P 31 11F 67 3B 103 3R 32 11G 68 1C 104 4R 33 9F 69 1B 105 4P 34 10F 70 3D 106 5P 35 11E 71 3C 107 5N 36 10E 72 1D 108 5R 109 Internal Notes: 1) NC pins as defined on FBGA pinouts on page 2 are read as “don’t cares”. 2) State of Internal pin (#109) is loaded via JTAG 22 Integrated Silicon Solution, Inc. Rev. 00A 03/31/08 72 Mb (2M x 36 & 4M x 18) DDR-IIP (Burst of 2) CIO Synchronous SRAMs 11 x 15 FBGA Dimensions Integrated Silicon Solution, Inc. Rev. 00A 03/31/08 23 72 Mb (2M x 36 & 4M x 18) DDR-IIP (Burst of 2) CIO Synchronous SRAMs ORDERING INFORMATION Commercial Range: 0°C to +70°C Speed 400 MHz 375 MHz 24 Order Part No. IS61DDPB22M36-400M3 IS61DDPB22M36-400M3L IS61DDPB24M18-400M3 IS61DDPB24M18-400M3L IS61DDPB22M36-375M3 IS61DDPB22M36-375M3L IS61DDPB24M18-375M3 IS61DDPB24M18-375M3L Organization 2Mx36 2Mx36 4Mx18 4Mx18 2Mx36 2Mx36 4Mx18 4Mx18 Package 165 BGA 165 BGA, Lead-free 165 BGA 165 BGA, Lead-free 165 BGA 165 BGA, Lead-free 165 BGA 165 BGA, Lead-free Integrated Silicon Solution, Inc. Rev. 00A 03/31/08