NJRC NJW4303

NJW4303
PWM 3-PHASE DC BRUSHLESS MOTOR CONTROLLER
„ GENERAL DESCRIPTION
The NJW4303 is a 3-Phase Brushless DC Motor Control
pre-driver IC with PWM control. It generates the most optimal
current flow patterns by receiving rotor magnetic pole detection
signals from hall elements of 3-phase brushless motor.
Operational voltage range for the IC has margin as 9.0V to
35V(maximum voltage of 40V), and it fits for a 12V/24V power
supply. It is possible to put practical use such as speed control by
internal oscillation circuit, and torque limiter control by current
sensory circuit. With NJW4303, high reliability of various motor
drive controls can be realized by a variety of function and a
substantial protection circuit.
„ FEATURES
• Maximum Supply Voltage
• Operating Voltage
• 3-Phase Full-Wave PWM Predriver
• Low-side Gate Voltage Clamp
• Internal PWM Oscillation Circuit
• Current Protection Circuit
• Low-Voltage Protection Circuit
• Forward/Reverse Direction
„ PACKAGE OUTLINE
NJW4303V
: 40V
: 9.0 V to 35V
: Hi-side: Pch-FET/ Low-side: Nch-FET
: Gate Voltage=18V max.
: Frequency Setting by External Capacitor
: Current limit=0.25V±10%
: Changeable while Rotating
: Controllable Dead-Time Settings
: Using External Capacitor
: Stop with S/S Pin
• Soft-Start Function
• ON/OFF Function
• Brake Function
• Lock Protection System
• Thermal Shutdown Circuit
• 120°/60° Phase Difference Change Function
• Multi-FG Output
: 2bit Input Change Type
• Bi-CDMOS Technology
• Package Outline
: SSOP32
„ PIN CONNECTION
1pin
VREF
H1+
H1H2+
H2H3+
H3N.C
FG
FR
BR
N1
N2
DEC
S/S
VERR
Ver. 2009-11-13
VCC
UH
VH
WH
N.C
N.C
GND
UL
VL
WL
N.C
ILIMIT
FRC
Ct
OSC
GND
1.VREF
2.H1+
3.H14.H2+
5.H26.H3+
7.H38.N.C
9.FG
10.FR
11.BR
12.N1
13.N2
14.DEC
15.S/S
16.VERR
17.GND
18.OSC
19.Ct
20.FRC
21.ILIMIT
22.N.C
23.WL
24.VL
25.UL
26.GND
27.N.C
28.N.C
29.WH
30.VH
31.UH
32.VCC
-1-
NJW4303
„ PIN FUNCTION LIST
Pin#
Terminal
Function
Name
1
VREF
2
H1+
Remark
5V Output Voltage Terminal
Outputs Supply Voltage of 5V
Hall Element Input Terminal H1+
Use with H1-
3
H1-
Hall Element Input Terminal H1-
Use with H1+
4
H2+
Hall Element Input TerminalH2+
Use with H2-
5
H2-
Hall Element Input Terminal H2-
Use with H2+
6
H3+
Hall Element Input Terminal H3+
Use with H3-
7
H3-
Hall Element Input Terminal H3-
Use with H3+
8,22,27,28
N.C.
No Connection
No Connection
9
FG
FG pulse Output Terminal
Output Rotary Signal
10
FR
11
BR
Short Brake Input Terminal
L, or Open=Rotation, H=Short Brake
12
N1
FG Pattern Switching Terminal1
Set FG Pattern by Combination with N2. Cf. the below table
13
N2
FG Pattern Switching Terminal2
Set FG Pattern by Combination with N1. Cf. the below table
14
DEC
Hall Input Phase Switching Terminal
L, or Open=120° Hall Input, H=60° Hall Input
15
S/S
Start and Stop input Terminal
L, or Open=Start, H=Stop
16
VERR
Forward/Reverse Direction
L, or Open=Forward Direction, H=Reverse Direction
Input Terminal
Set Output ON Duty
Error Amp Voltage Input Terminal
H=Output ON Duty 100%, L=Output ON Duty 0%
Pull-up to VREF PIN in nonuse
17,26
GND
Logic Ground Terminal
18
OSC
PWM Control Capacitor Terminal
19
Ct
Lock Protection Capacitor
Connection Terminal
Connecting with Ground
Insert a Capacitor between Grounds. Set PWM frequency
depending on the value of the Capacitor
Insert a Capacitor between Grounds. Depending on the value of the
Capacitor, set On/Off timer for the Output at the time of activated
Lock Protection.
Dead-Time Capacitor Connection
Insert a Capacitor between Grounds. Depending on the value of the
Terminal
Capacitor, set Output Dead Band at the time of FR switching
Over Current Sensing Terminal
Connect to the ground side of the external driver
WL
Output Terminal WL
Connect to Nch Gate Driver
VL
Output Terminal VL
Connect to Nch Gate Driver
25
UL
Output Terminal UL
Connect to Nch Gate Driver
29
WH
Output Terminal WH
Connect to Pch Gate Driver
30
VH
Output Terminal VH
Connect to Pch Gate Driver
31
UH
Output Terminal UH
Connect to Pch Gate Driver
32
VCC
Motor Voltage Supply Terminal
Connect motor power source to the terminal
20
FRC
21
ILIMIT
23
24
* All Ground Pins must be connected at the outside.
* Electrical potential of all unused output pins must be fixed at the outside.
FG Pattern by combination with N1 and N2
No.
N1
1
2
-2-
N2
FG
H
H
1/2 Frequency Signal from H1
H
L/OPEN
Signal from H1
3
L/OPEN
H
1/2 Frequency Signal from 3 Hall Compound Signals
4
L/OPEN
L/OPEN
3 Hall Compound Signals
NJW4303
„ BLOCK DIAGLAM
FG
VREF
VREF
VCC
UVLO
UH
TSD
S/S
DEC
VH
N1
Rotor
Position
Decode
N2
H1+
H1H2+
H2H3+
H3-
+
-
WH
+
UL
+
-
FR
VL
Dead
Time
FRC
BR
OSC
VERR
GND
Saw
Oscillator
WL
PWM Logic
+
-
+
-
ILIMIT
Lock
Detect
Ct
-3-
NJW4303
(Ta=25°C)
„ ABSOLUTE MAXIMUM RATINGS
PARAMETER
SYMBOL
RATINGS
UNIT
Remark
Supply Voltage
Hi-side Output Terminal Voltage
FG Terminal Voltage
LIMIT Terminal Voltage
VERR Terminal Voltage
Hall Input Terminal Voltage
Logic Input Terminal Voltage
Reference Voltage Output
Current
Hi-side Output Current
Low-side Output Current
FG Output Current
Power Dissipation
Operating Ambient Temperature
Storage Temperature
VCC
VOH
VFG
VLIM
VVERR
VIH
VIN
40
40
7
3.5
6
4.5
7
V
V
V
V
V
V
V
IREF
30
mA
VREF PIN
IOH
IOL
IFG
PD
Topr
Tstg
40
±40
15
1190
-40 to +85
-50 to +150
mA
mA
mA
mW
°C
°C
UH, VH, WH PIN
UL, VL, WL PIN
FG PIN
Ú Board Mounted
VCC PIN
UH, VH, WH PIN
FG PIN
ILIMIT PIN
VERR PIN
H1+, H1-, H2+, H2-, H3+, H3- PIN
BR, FR, DEC, N1/N2, S/S PIN
Ú Mounted on designated board based on EIA/JEDEC. (114.3x76.2x1.6mm: 2Layers, FR-4)
(Ta=25°C)
„ RECOMMENDED OPERATIONAL CONDITIONS
PARAMETER
Logic Supply Voltage
-4-
SYMBOL
VCC
TEST CONDITION
MIN.
9.0
TYP.
24.0
MAX.
35.0
UNIT
V
NJW4303
„ ELECTRICAL CHARACTERISTICS
VCC=24V, VIH1+= VIH3+=3.0V, VIH1-= VIH2-= VIH3-=2.0V, VIH2+=1.0V, VIN= VLIM= VCT=0V,
VVERR=4.5V, VOSC=4.5V→0.5V, CVREF=1uF, Ta=25°C
PARAMETER
SYMBOL
TEST CONDITION
MIN.
„ GENERAL
Supply current 1
ICC1
VCC=12V
Supply current 2
ICC2
„ THERMAL SHUTDOWN BLOCK
Thermal shutdown operating
TTSD1
Thermal shutdown recovery
TTSD2
Thermal shutdown hysteresis
∆TTSD
„ UNDER VOLTAGE LOCK OUT BLOCK
VCC Decreasing
UVLO operating voltage
VUVLO1
6.3
VCC Increasing
UVLO recovery voltage
VUVLO2
6.8
UVLO hysteresis voltage
∆VUVLO
„ LOCK PROTECTION BLOCK (Ct PIN)
High level voltage
VHCt
3.30
Low level voltage
VLCt
0.90
Lock charge current
ICHGCt
2.5
Lock discharge current
IDCHGCt
0.25
ICHGCt/IDCHGCt
Lock charge/discharge current
„ REFERENCE VOLTAGE BLOCK (VREF PIN)
Reference voltage supply
VREF
IVREF=1mA
4.5
IVREF=1 to 10 mA
Load regulation
∆VLOVREF
VCC=9 to 35V, IVREF=1 mA
Line regulation
∆VLIVREF
„ HALL AMP BLOCK (H1+, H1-, H2+, H2-, H3+, H3- PIN)
10
Hysteresis Voltage range
∆VHYSIH
Input bias current
IBIH
Per each input
„ HI-SIDE BLOCK (UH, VH, WH PIN)
Hi-side output voltage
VOLH
IOH=30 mA
Hi-side leak current
IOLEAKH
VOH=35V
„ LOW-SIDE BLOCK (UL, VL, WL PIN)
Low-side output H voltage1
VOHL1
IOLSOURCE=30 mA ,VCC=12V
8.0
Low-side output H voltage2
VOHL2
IOLSOURCE=30 mA
8.0
Low-side output L voltage
VOLL
IOLSINK=30 mA
Low-side clamp voltage
VCLL
IOLSOURCE=0.1 mA ,VCC=35V
„ FG OUTPUT (FG PIN)
Output voltage
VFGL
IFG=10 mA
Leak current
ILEAKFG
VFG=5V
-
TYP.
MAX.
UNIT
5.3
6.4
8.3
9.4
mA
mA
170
135
35
-
°C
°C
°C
6.8
7.3
0.5
7.3
7.8
-
V
V
V
3.55
1.00
5.5
0.55
10
3.80
1.30
9.0
0.90
-
uA
uA
-
5.0
15
50
5.5
60
100
V
mV
mV
30
-
50
1.5
mV
uA
0.5
-
1.0
1
V
uA
10.0
10.0
0.5
-
1.0
18
V
V
V
V
0.3
-
0.7
1
V
uA
-5-
NJW4303
„ ELECTRICAL CHARACTERISTICS
VCC=24V, VIH1+= VIH3+=3.0V, VIH1-= VIH2-= VIH3-=2.0V, VIH2+=1.0V, VIN= VLIM= VCT=0V,
VVERR=4.5V, VOSC=4.5V→0.5V, CVREF=1uF, Ta=25°C
PARAMETER
SYMBOL
TEST CONDITION
MIN.
„ OVER CURRENT SENSOR BLOCK (ILIMIT PIN)
Sense voltage
VDETLIM
0.225
Input bias current
IBILM
„ ERROR AMP BLOCK (VERR PIN)
PWM0% sense voltage
VPWM1VERR PWMDUTY=0%
PWM100% sense voltage
VPWM2VERR PWMDUTY=100%
3.6
Input bias current
IBVERR
„ OSCILLATOR BLOCK (OSC PIN)
Saw wave peak voltage
VPOSC
2.7
Saw wave bottom voltage
VBOSC
1.00
OSC charge current
ICHGOSC
30
OSC discharge current
IDCHGOSC
1
Oscillation frequency
fOSC
COSC=1000pF
„ FR DEAD TIME BLOC (FRC PIN)
High level voltage
VHFRC
3.15
Low level voltage
VLFRC
0.9
FRC charge current
ICHGFRC
16
FRC discharge current
IDCHGFRC
8
FRC dead band time1
tDFRC1
CFRC=1uF
FRC dead band time2
tDFRC2
CFRC=1uF
„ CONTOROL INPUT BLOCK (FR, BR, DEC, N1, N2, S/S PIN)
Input High level current
IHIN
VIN=4.5V,per each input
25
Input low level current
ILIN
VIN=0V,per each input
Pull-down resistance
RIN
„ PIN OPERATIONAL CONDITIONS
PARAMETER
SYMBOL
TEST CONDITION
„ HALLAMP INPUT (H1+, H1-, H2+, H2-, H3+, H3- PIN)
Peak to peak
Hall Input Sensitivity
∆VMIH
Hall Input voltage range
VICMIH
„ CONTOROL INPUT (FR, BR, DEC, N1, N2, S/S PIN)
High level voltage
VHIN
Low level voltage
VLIN
„ VERR INPUT (VERR PIN)
Input voltage range
VICMVERR
-6-
TYP.
MAX.
UNIT
0.250
1.6
0.275
5.0
V
uA
1.6
0.5
5.0
V
V
uA
3.0
1.35
50
2
28
3.3
1.60
70
3
-
V
V
uA
mA
kHz
3.5
1.0
26
18
140
100
3.85
1.2
36
28
-
V
V
uA
uA
ms
ms
40
110
60
1
-
uA
uA
kΩ
MIN.
TYP.
MAX.
UNIT
0.1
0
-
3.5
V
V
2
0
-
5
0.8
V
V
0
-
4.5
V
NJW4303
„ PIN / CIRCUIT OPERATIONAL DEFINITION
¡ Hall Input Pin Input Common-Mode Voltage Definition ¡ Hall Input Hysteresis Voltage Definition
(Hall Amp Block)
(Hall Amp Block)
VICMIH
VIH
3.5V
3.5V
LOGIC INVERSION
LOGIC INVERSION
∆V HYSIH
0V
0V
¡ Input pins thresh operational Definition
(FR, BR, N1, N2, DEC, S/S PIN)
¡ FR Dead Time Definition (FR Dead Time Block)
V IN
ROTATING
DIRECTION
RVS
STOP
5V
FWD
RVS
STOP
(FORWARD)
(REVERSE)
(REVERSE)
VFR
2V
HIGH Level Voltage
0.8V
2.0V
VFRC
VVREF
Undefined
TIME t
0.8V
LOW Level Voltage
TIME t
0V
tDFRC1
tDFRC2
¡Oscillation Frequency Definition(Oscillation Bloc)
VOSC
tCHGOSC
Time t
tDCHGOSC
¡ PWM 100% Sensory Voltage / PWM 100% Sensory Voltage Definition (Error Amplifier Block)
VVERR
V
V
POSC
Full speed ( = PWM 100%)
variable speed control
VVERR
VOSC
BOSC
stop ( = PWM 0%)
-7-
NJW4303
¡ Sensing Voltage/ Reset Voltage Definition (Over Current Sensing Block)
V OSC
V DET LIM
V ILIMIT
time
V OL
(V UL,V VL,V WL)
Active
L
Active
time
Motor
Action
Rotation
STOP
Rotation
time
¡ Lock Protection Detection/ Reset Time Definition (Lock Protection Block)
VCt
V HCt
V LCt
time
tDCt
tRCt
¡ THERMAL SHUTDOWN OPERATIONSL DEFINITION (Thermal shutdown block)
TSD RESET TEMP
(NORMAL
OPERATION)
0°C
HYSTERESIS
TEMP
85°C
TSD OPERATING
TEMP
(OUTPUT STOP)
120°C 150°C 170°C
TEMP
¡ UNDER VOLTAGE PROTECTION OPERATIONAL DEFENITION (UNDER VOLTAGE PROTECTION BLOCK)
VCC
35.0V
UVLO RESET VOLTAGE
(NORMAL OPERATION)
9.0V
VUVLO2
HYSTERESIS VOLTAGE
VUVLO1
UVLO OPERATING VOLTAGE
(OUTPUT STOP)
0V
-8-
NJW4303
„ TRUTH TABLE
¡ INPUT VS OUTPUT TRUTH TABLE1 (DEC=L, H1+>H1-, H2+>H2-, H3+>H3-="H", Don't Care="X")
H1
H2
H3
H
H
L
L
L
L
H
H
H
L
L
L
L
H
H
H
L
H
H
H
L
L
L
H
H
H
L
L
L
L
H
H
H
L
L
L
H
H
H
L
L
L
L
H
H
H
L
L
L
H
H
H
L
H
H
H
L
L
L
L
H
H
H
L
L
L
L
H
H
H
L
H
H
H
L
L
L
L
H
H
H
L
L
L
L
H
H
H
L
H
H
H
L
L
L
L
H
H
H
L
L
L
L
H
H
H
L
H
H
H
L
L
L
L
H
H
H
L
L
L
L
H
H
H
L
H
Hi-Z
H
H
L
L
L
L
H
H
H
L
L
L
L
H
H
L
Hi-Z
L
Hi-Z
L
H
L
H
Hi-Z
H
H
L
L
L
L
H
H
H
L
L
L
L
H
H
L
Hi-Z
L
Hi-Z
L
H
L
H
Hi-Z
H
H
L
L
L
H
L
H
H
H
L
L
L
L
L
H
H
H
L
Hi-Z
L
Hi-Z
L
Hi-Z
BR
L
TSD UVLO
OFF
OFF
S/S
L
VERR
H
FR
L
DEC
L
N1
L
N2
L
L
OFF
OFF
L
H
H
L
L
L
L
OFF
OFF
L
H
X
L
L
L
L
L
L
L
L
L
H
OFF
OFF
OFF
X
X
ON
X
OFF
OFF
OFF
X
ON
X
X
L
L
L
H
X
X
X
X
X
L
X
X
X
X
X
X
X
X
X
X
X
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
UH
VH
WH
UL
VL
WL
FG
Hi-Z
Hi-Z
L
L
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
L
L
L
Hi-Z
Hi-Z
Hi-Z
H
L
L
L
L
L
H
H
L
L
L
L
L
H
H
L
Hi-Z
L
Hi-Z
L
Hi-Z
L
Hi-Z
H
L
L
Hi-Z
L
Hi-Z
Hi-Z
Hi-Z
Hi-Z
L
Hi-Z
Hi-Z
L
L
Hi-Z
Hi-Z
L
L
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
L
Hi-Z
Hi-Z
Hi-Z
L
L
Hi-Z
L
L
Hi-Z
Hi-Z
Hi-Z
L
L
H
H
L
L
H
L
L
L
L
L
L
L
L
H
H
L
H
H
L
L
H
H
L
L
L
L
L
L
L
H
H
L
Hi-Z
L
Hi-Z
L
Hi-Z
L
Hi-Z
L
Hi-Z
L
Hi-Z
L
Hi-Z
H
L
L
Hi-Z
Hi-Z
Hi-Z
L
L
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
L
L
L
Hi-Z
Hi-Z
Hi-Z
Hi-Z
L
Hi-Z
Hi-Z
Hi-Z
Hi-Z
L
L
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
L
L
L
Hi-Z
Hi-Z
Hi-Z
L
Hi-Z
L
Hi-Z
L
Hi-Z
L
Hi-Z
Hi-Z
Hi-Z
Hi-Z
L
L
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
L
L
L
Hi-Z
Hi-Z
Hi-Z
L
Hi-Z
L
Hi-Z
L
Hi-Z
L
Hi-Z
Hi-Z
Hi-Z
Hi-Z
L
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
L
L
L
L
L
L
L
L
L
L
L
Hi-Z
L
Hi-Z
L
VREF
COMMENT
ON
FR="L"
FWD Rotation
ON
FR="H"
REV Rotation
ON
FRC="L"
FWD Rotation
ON
LOCK PROTECTION
Operation
ON
OVER CURRENT
Operation
ON
VERR="L"
PWM Operation
ON
S/S="H"
STOP Operation
ON
UVLO=ON
UVLO Operation
ON
TSD=ON
TSD Operation
ON
BR="H"
BRAKE Operation
Hi-Z
L
L
L
L
L
L
L
L
L
L
L
L
L
L
Hi-Z
L
Hi-Z
L
¡ INPUT VS OUTPUT TRUTH TABLE2 (DEC=L, Invalid Code Pattern)
(H1+>H1-, H2+>H2-, H3+>H3-="H", Don't Care="X")
H1
H
H2
H
H3
H
L
L
L
H
H
H
L
L
L
BR
L
H
TSD UVLO
X
X
X
X
S/S
VERR
FR
DEC
N1
N2
UH
VH
WH
UL
VL
WL
X
X
X
L
L
L
Hi-Z
Hi-Z
Hi-Z
L
L
L
X
X
X
L
L
L
L
L
L
L
L
L
FG
L
Hi-Z
L
Hi-Z
VREF
COMMENT
ON
Invalid Code Pattern
ON
Invalid Code Pattern
BR="H" BARKE Operation
-9-
NJW4303
¡ INPUT VS OUTPUT TRUTH TABLE3 (DEC=H, H1+>H1-, H2+>H2-, H3+>H3-="H", Don't Care="X")
H1
H2
H3
H
H
H
L
L
L
H
H
H
L
L
L
H
H
H
BR
L
TSD UVLO
OFF
OFF
S/S
L
VERR
H
FR
L
DEC
H
N1
L
N2
L
UH
VH
WH
UL
VL
WL
FG
Hi-Z
Hi-Z
L
L
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
L
L
L
Hi-Z
Hi-Z
Hi-Z
H
L
L
L
L
L
H
H
L
L
L
L
L
H
H
Hi-Z
L
Hi-Z
L
Hi-Z
L
L
L
Hi-Z
L
Hi-Z
H
L
L
L
H
H
H
L
L
L
H
H
H
L
L
L
H
H
H
L
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
L
L
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
L
L
L
L
H
H
L
L
L
L
L
H
H
H
L
L
L
Hi-Z
L
Hi-Z
L
Hi-Z
L
H
L
L
OFF
OFF
L
H
H
H
L
L
L
L
L
L
Hi-Z
Hi-Z
H
H
H
L
L
L
H
H
H
L
L
L
H
H
H
Hi-Z
Hi-Z
L
L
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
L
L
L
Hi-Z
Hi-Z
Hi-Z
L
OFF
OFF
L
X
X
H
L
L
L
L
L
L
L
L
Hi-Z
L
Hi-Z
L
L
H
H
H
L
L
L
H
H
H
Hi-Z
Hi-Z
L
L
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
L
L
L
Hi-Z
Hi-Z
Hi-Z
Hi-Z
L
Hi-Z
L
Hi-Z
OFF
OFF
L
X
X
H
L
L
L
L
L
L
L
L
Hi-Z
L
Hi-Z
L
H
H
H
L
L
L
H
H
H
L
L
L
H
H
H
Hi-Z
Hi-Z
L
L
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
L
L
L
Hi-Z
Hi-Z
Hi-Z
Hi-Z
L
Hi-Z
L
Hi-Z
Hi-Z
L
Hi-Z
L
L
L
H
H
H
L
L
L
H
H
H
L
L
L
H
H
H
L
L
OFF
X
OFF
X
L
H
L
X
X
X
H
H
L
L
L
L
Hi-Z
Hi-Z
Hi-Z
L
L
L
L
L
L
L
L
L
L
L
H
H
H
L
L
L
H
H
H
Hi-Z
L
Hi-Z
L
Hi-Z
X
ON
X
X
X
H
L
L
Hi-Z
Hi-Z
Hi-Z
L
L
L
L
L
L
L
H
H
H
L
L
L
H
H
H
L
L
L
H
H
H
Hi-Z
L
Hi-Z
L
Hi-Z
L
L
L
L
H
H
H
L
L
L
L
H
H
H
L
L
L
L
H
H
H
L
Hi-Z
L
Hi-Z
L
Hi-Z
L
L
H
ON
X
X
X
X
X
X
X
X
X
H
H
L
L
L
L
Hi-Z
L
Hi-Z
Hi-Z
L
ON
FR="L"
FWD Rotation
ON
FR="H"
REV Rotation
ON
LOCK PROTECTION
Operation
ON
OVER CURRENT
Operation
ON
VERR="L"
PWM Operation
ON
S/S="H"
STOP Operation
ON
UVLO=ON
UVLO Operation
ON
TSD=ON
TSD Operation
ON
BR="H"
BRAKE Operation
L
Hi-Z
L
Hi-Z
L
Hi-Z
H
H
H
L
L
L
COMMENT
L
Hi-Z
L
Hi-Z
L
Hi-Z
H
H
H
L
L
L
VREF
L
L
L
L
L
L
L
¡ INPUT VS OUTPUT TRUTH TABLE4 (DEC=H, Invalid Code Pattern)
(H1+>H1-, H2+>H2-,H3+>H3-="H", Don't Care="X")
H1
H
H2
L
H3
H
L
H
L
H
L
H
L
H
L
- 10 -
BR
S/S
VERR
FR
DEC
N1
N2
UH
VH
WH
UL
VL
WL
L
TSD UVLO
X
X
X
X
X
H
L
L
Hi-Z
Hi-Z
Hi-Z
L
L
L
H
X
X
X
X
X
H
L
L
L
L
L
L
L
L
FG
L
Hi-Z
L
Hi-Z
VREF
COMMENT
ON
Invalid Code Pattern
ON
Invalid Code Pattern
BR="H" BARKE Operation
NJW4303
„ TIMING CHART
Ú Codes used in Hall input:
Logics of H1, H2, H3 are expressed with each
3-colum starting from the top.
High Logic = 1, Low Logic = 0
1. Normal Function→PWM Function
ELECTRIC DEGREE POSITION (deg)
0
60
120
180
240
300
360
420
480
540
600
660
720
H1
H2
HALL INPUT
H3
code
100
110
010
011
001
101
100
110
010
011
001
101
DEC(=L)
FR(=L)
N1(=L)
N2(=L)
FG
UH
Hi-SIDE
VH
WH
UL
LOW-SIDE
VL
WL
TORQUE
CONTROL
INPUT
VERR
OSC
Fullspeed (PWMDUTY=100%)
Reduced Speed (PWMDUTY=70%)
- 11 -
NJW4303
2. NORMAL FUNCTION→FORWARD/REVERSE SWITCHING while rotating
ELECTRIC DEGREE POSITION (deg)
0
60
120
180
240
300
360
420
480
540
600
660
720
H1
H2
HALL INPUT
H3
code
100
110
010
010
110
100
101
001
011
011
001
DEC(=L)
N1(=L)
N2(=L)
FG
FR
FORWARD/REVERS
INPUT
FRC
UH
Hi-SIDE
VH
WH
UL
LOW-SIDE
VL
WL
FR=L
- 12 -
Deadtime
FR=H
Deadtime
FR=L
101
NJW4303
3. NORMAL FUNCTION→BRAKE CONTROL→BRAKE RESET
ELECTRIC DEGREE POSITION (deg)
0
60
120
180
240
300
360
420
480
540
600
660
720
H1
HALL INPUT
H2
H3
code
100
110
010
011
001
101
100
110
010
011
001
101
DEC(=L)
FR(=L)
N1(=L)
N2(=L)
FG
BRAKE INPUT
BR
UH
Hi-SIDE
VH
WH
UL
LOW-SIDE
VL
WL
motor rotate function
BR=L
Deadtime
Brake function
BR=H
Deadtime
motor rotate function
BR=L
- 13 -
NJW4303
4. NORMAL FUNCTION→LOCK PROTECTION→LOCK RESET
ELECTRIC DEGREE POSITION (deg)
0
60
120
180
240
300
360
420
480
540
600
660
720
H1
HALL INPUT
H2
H3
code
100
110
010
011
011
011
011
001
101
100
110
DEC(=L)
FR(=L)
N1(=L)
N2(=L)
FG
CT PIN OUTPUT
CT
UH
HI-SIDE
VH
WH
UL
LOW-SIDE
VL
WL
motor rotate function
- 14 -
Lock function
motor rotate function
010
NJW4303
5. NORMAL FUNCTION→LOW VOLTAGE PROTECTION→NORMAL FUNCTION
ELECTRIC DEGREE POSITION (deg)
0
60
120
180
240
300
360
420
480
540
600
660
720
VCC
H1
H2
HALL INPUT
H3
code
100
110
010
011
001
101
100
110
010
011
001
101
DEC(=L)
FR(=L)
N1(=L)
N2(=L)
FG
HI-SIDE
UH
Hi-Z
VH
Hi-Z
WH
Hi-Z
UL
LOW-SIDE
VL
WL
TORQUE
CONTROL
INPUT
VERR
OSC
Fullspeed
motor stop (UVLO ON)
Fullspeed
- 15 -
NJW4303
6. NORMAL FUNCTION→STOP FUNCTION (S/S=H)→NORMAL FUNCTION
ELECTRIC DEGREE POSITION (deg)
0
60
120
180
240
300
360
420
480
540
600
660
720
VCC
S/S
H1
H2
HALL INPUT
H3
code
100
110
010
011
001
101
100
110
010
011
001
DEC(=L)
FR(=L)
N1(=L)
N2(=L)
FG
HI-SIDE
UH
Hi-Z
VH
Hi-Z
WH
Hi-Z
UL
LOW-SIDE
VL
WL
TORQUE
CONTROL
INPUT
VERR
OSC
Fullspeed
- 16 -
motor stop (STOP ON)
Fullspeed
101
NJW4303
7. SOFT START FUNCTION
ELECTRIC DEGREE POSITION (deg)
0
60
120
180
240
300
360
420
480
540
600
660
720
VCC
VREF
H1
H2
HALL INPUT
H3
code
110
110
010
011
001
101
100
110
010
011
001
101
DEC (=L)
FR(=L)
N1(=L)
N2(=L)
FG
UH
Hi-SIDE
VH
WH
UL
LOW-SIDE
VL
WL
VERR
TORQUE
CONTROL
INPUT
VERR
OSC
OFF
Soft Start (PWM)
Full speed (no PWM)
- 17 -
NJW4303
8. FG OUTPUT TIMING CHART
OUTPUT TIMING CHART 1 (120 deg Input Mode)
ELECTRIC DEGREE POSITION (deg)
0
60
120
180
240
300
360
420
480
540
600
660
720
H1
HALL INPUT
DEC=L or open
(120 deg input mode)
H2
H3
code
101
100
110
010
011
001
101
100
110
010
011
001
N1=H, N2=H
N1=H, N2=L
FG OUTPUT
N1=L, N2=H
N1=L, N2=L
OUTPUT TIMING CHART 2 (60 deg Input Mode)
ELECTRIC DEGREE POSITION (deg)
0
60
120
180
240
300
360
420
480
540
600
660
720
H1
HALL INPUT
DEC=H
(60 deg input mode)
H2
H3
code
100
110
111
011
001
000
100
110
111
011
001
000
N1=H, N2=H
N1=H, N2=L
FG OUTPUT
N1=L, N2=H
N1=L, N2=L
* When the status of N1/N2 is H/H or L/H, FG output is not synchronized with Hall input, because FG output is produced by using a frequency divider.
- 18 -
NJW4303
„ FUNCTION DESCRIPTION
¡ Lock Protection Block – Detect/Reset Time
Lock Protection can be done by charging/discharging to the capacitor CCt. Lock Protection Detect time (tDCt) and Reset
time (tRCt) are determined by the value of either Ct charging current (ICHGCt) or Ct discharging current (IDCHGCt) and the
value of the external capacitor CCt. To adjust Detect/Reset Time, change the value of CCt. The calculation formula for
Detect/Reset Time can be described in equation below: adjustment range for CCt is 0.1µF to 10µF.
Symbol
Formula
Detect Time
tDCt
tDCt ≅ 4.6  106  CCt
Reset Time
tRCt
6
tRCt ≅ 0.46  10  CCt
Comments
Figure1: Lock Protection Detect/ Reset Time Calculating Formula
When the motor is rotating, electric charge of CCt capacitor discharging is produced repeatedly by input from hall signal.
However, when we set the motor to low speed using the speed control application, input time from hall signal is longer,
with this, Ct voltage level will increase and malfunction can be expected. When this occurs, it is recommended to add
Ct discharge circuit by using FG signal output. Please refer to typical application circuit 2.
VREF
¡ Reference Voltage Block – How to use VREF
When using VREF pin, make sure that it is not oscillating.
Use the recommended VCC operational condition.
10k
10k
¡ Hall Amp Block - Capacitor
H1+/H2+/H3
Input from hall signal requires more than that of the Hall Input Sensitivity
(∆VMIH=100mV).
H1- to H3Hall Amp
pin connecting
Taking measures in keeping noise immunity, when using FG output,
Block
FG jitter can be expected. When this occurs, it is recommended
to add capacitors more than 0.01µF between Hall input pins.
20k
10k
¡ Hall Amp Block – How to use Hall IC
Hall IC
Hall input pins H1-, H2- and H3- are biased to VREF/2.
To keep Hall IC Output voltage within the Hall Input voltage range (VICMIH),
it needs to add 2 pieces of biased resistor for every H1+, H2+ and H3+ pins.
Figure2: Hall IC application
¡ Oscillation Block - Oscillation Frequency
OSC pin produce Oscillating wave by charging/discharging to the capacitor COSC. Oscillating frequency (fOSC) is
modulated by COSC, and determined by charging time (tCHGOSC) and discharging time (tDCHGOSC). The oscillation
frequency depends on tCHGOSC in great deal compare to tDCHGOSC, so that the calculation formula for oscillation frequency
can be described in equation below: adjustment range for COSC is 330pF to 2200pF.
Symbol
Oscillation Frequency
fOSC
Formula
Comments
FOSC ≅ 28  10-6 / COSC
Figure3: Oscillation Frequency Calculating Formula
¡ FR Dead Time Block – Dead Band Time
FR Dead band time is divided in two types depending on giving conditions.
The two dead band time are determined by the value of either FRC charged current or FRC discharge current IDCHGFRC,
and the value of an external capacitor. To adjust the dead band time, change the value of CFRC. FR dead band time can
be expressed as following: adjustment range for CFRC is more than 1pF.
Symbol
FR Dead Band Time1
FR Dead Band Time2
tDFRC1
tDFRC2
Formula
3
tDFRC1 ≅ 140  10  CFRC
3
tDFRC2 ≅ 140  10  CFRC
Comments
FR : H → L (open)
FR : L (open) → H
Figure4: Dead Band Time Calculating Formula
- 19 -
NJW4303
„ TYPICAL APPLICATION CIRCUIT 1
VM
+
RFG
FG-OUT
CVREF
CVCC
GND
VCC
VREF
FG
+
+
VREF
UVLO
UH
TSD
S/S
3Phase Motor
DEC
N
VH
N1
S
N2
H1+
H
H1H2+
H
H2H3+
H
H3-
Rotor
Position
Decode
+
-
WH
+
UL
+
-
FRC
VL
FR
CFRC
Dead
Time
BR
OSC
COSC
VERR
CVERR
Saw
Oscillator
WL
PWM Logic
+
-
+
-
GND
ILIMIT
Lock
Detect
Lowpass Filter
Cct
- 20 -
S
N
NJW4303
„ TYPICAL APPLICATION CIRCUIT 2
VM
+
CVREF
CVCC
VREF
+
+
GND
VCC
VREF
UVLO
UH
TSD
S/S
3Phase Motor
DEC
N
VH
N1
S
N2
H1+
H
+
-
H1H2+
H
WH
UL
H3+
+
-
H3-
FRC
VL
FR
CFRC
Dead
Time
BR
OSC
Saw
Oscillator
COSC
CVERR
WL
PWM Logic
+
-
VERR
RFG
S
N
+
-
H2-
H
Rotor
Position
Decode
ILIMIT
+
-
GND
Lock
Detect
Lowpass Filter
FG
V-IN
Ct
Cct
V-FG
COMP1
R2
C1
Comparator
FG-IN
+
R1
+
D1
R3
FG-OUT
<Reference Value>
C1=22nF
R1=10kΩ
R2=40kΩ
R3=10kΩ
D1:1S2076
COMP1:NJM2903
- 21 -
NJW4303
„ TYPICAL CHARACTERISTICS
VCC vs VREF
VCC vs ICC
6.0
10
5.5
8
5.0
7
4.5
6
4.0
VREF[V]
ICC [mA]
Tj=25[oC]
9
5
3.5
4
3.0
3
2.5
2
2.0
1
1.5
0
Tj=25[ oC]
IVREF =1[mA]
1.0
0
5
10
15
20
25
30
35
40
0
5
10
15
20
VCC [V]
IREF vs VREF
Tj=25[oC]
VCC =24[V]
40
Tj=25[oC]
VCC =24[V]
0.9
5.30
0.8
5.20
0.7
5.10
0.6
VOLH [V]
VREF [V]
35
1.0
5.40
5.00
0.5
4.90
0.4
4.80
0.3
4.70
0.2
4.60
0.1
4.50
0.0
0
5
10
15
20
25
30
0
5
10
15
20
IREF [mA]
25
30
35
40
45
IOH [mA]
IOLSINK vs VOLL
IOLSOURCE vs VOHL
1.0
11.0
Tj=25[ oC]
VCC =24[V]
0.9
Tj=25[oC]
VCC =24[V]
10.8
0.8
10.6
0.7
10.4
0.6
10.2
VOHL[V]
VOLL[V]
30
IOH vs VOLH
5.50
0.5
10.0
0.4
9.8
0.3
9.6
0.2
9.4
0.1
9.2
9.0
0.0
0
5
10
15
20
25
IOLSINK[mA]
- 22 -
25
VCC [V]
30
35
40
45
0
5
10
15
20
25
IOLSOURCE[mA]
30
35
40
45
NJW4303
„ TYPICAL CHARACTERISTICS
IFG vs VFGL
VCC vs VOHL
1.0
15
Tj=25[ oC]
IOLSOURCE=0.1[mA]
Tj=25[ oC]
VCC =24[V]
0.9
13
0.8
12
0.7
11
0.6
VFGL[V]
VOHL [V]
14
10
0.5
9
0.4
8
0.3
7
0.2
0.1
6
0.0
5
5
10
15
20
25
30
35
0
40
2
4
6
8
VCt vs ICHGCt
12
14
16
VCt vs IDCHGCt
9.00
0.90
o
Tj=25[ C]
VCC =24[V]
8.50
Tj=25[oC]
VCC =24[V]
0.85
8.00
0.80
7.50
0.75
7.00
0.70
6.50
0.65
IDCHGCt [uA]
ICHGCt [uA]
10
IFG[mA]
VCC [V]
6.00
5.50
0.60
0.55
5.00
0.50
4.50
0.45
4.00
0.40
3.50
0.35
3.00
0.30
0.25
2.50
0.50
1.00
1.50
2.00
2.50
3.00
3.50
0.50
4.00
1.00
1.50
2.00
2.50
3.00
3.50
4.00
VCt [V]
VCt [V]
VOSC vs IDCHGOSC
VOSC vs ICHGOSC
2.5
52.0
Tj=25[ oC]
VCC =24[V]
Tj=25[oC]
VCC =24[V]
51.5
2.0
51.0
IDCHGOSC [mA]
ICHGOSC [uA]
1.5
50.5
50.0
1.0
49.5
0.5
49.0
0.0
48.5
1.00
1.50
2.00
2.50
VOSC [V]
3.00
3.50
1.00
1.50
2.00
2.50
3.00
3.50
VOSC [V]
- 23 -
NJW4303
„ TYPICAL CHARACTERISTICS
VFRC vs IDCHGFRC
VFRC vs ICHGFRC
36
28
Tj=25[ oC]
VCC =24[V]
Tj=25[oC]
VCC =24[V]
26
32
24
30
22
28
20
IDCHGFRC [uA]
ICHGFRC [uA]
34
26
24
18
16
22
14
20
12
18
10
8
16
0.0
1.0
2.0
3.0
4.0
0.0
5.0
1.0
2.0
4.0
5.0
Ct vs tDCHGCt
Ct vs tCHGCt
50
5.0
o
o
Tj=25[ C]
VCC =24[V]
4.5
Tj=25[ C]
VCC =24[V]
45
4.0
40
3.5
35
3.0
30
tDCHGCt[ms]
tCHGCt[ms]
3.0
VFRC [V]
VFRC [V]
2.5
2.0
25
20
1.5
15
1.0
10
0.5
5
0.0
0
0.1
1.0
C t [uF]
10.0
0.1
1.0
C t [uF]
C OSC vs fOSC
1000
10.0
VCC vs fOSC
30.0
o
Tj=25[ C]
VCC =24[V]
Tj=25[ oC]
COSC =1000[pF]
29.5
100
fOSC [kHz]
fOSC[kHz]
29.0
10
28.5
28.0
27.5
27.0
1
100
1000
C OSC[pF]
- 24 -
10000
5
10
15
20
25
VCC [V]
30
35
40
NJW4303
„ TYPICAL CHARACTERISTICS
CFRC vs fDFRC1
CFRC vs fDFRC2
2000
2000
o
Tj=25[ C]
VCC =24[V]
Tj=25[ C]
VCC =24[V]
1800
1600
1600
1400
1400
1200
1200
fDRC2[ms]
fDFRC1[ms]
1800
o
1000
1000
800
800
600
600
400
400
200
200
0
0
0
2
4
6
8
10
12
0
2
4
6
C FRC[uF]
Tj vs ICC1
12
12
VCC =24[V]
10
10
8
8
ICC2 [mA]
ICC1 [mA]
10
Tj vs ICC2
12
VCC =12[V]
6
6
4
4
2
2
0
0
-50
-25
0
25
50
75
100
125
150
-50
-25
0
25
o
Tj [ C]
Tj vs VUVLO1
50
Tj [ oC]
75
100
125
150
Tj vs VUVLO2
9.0
9.0
VCC Decreasing
VCC Increasing
8.5
8.5
8.0
8.0
7.5
7.5
VUVLO2 [V]
VUVLO1 [V]
8
C FRC[uF]
7.0
7.0
6.5
6.5
6.0
6.0
5.5
5.5
5.0
5.0
-50
-25
0
25
50
Tj [oC]
75
100
125
150
-50
-25
0
25
50
Tj [ oC]
75
100
125
150
- 25 -
NJW4303
„ TYPICAL CHARACTERISTICS
Tj vs VREF
Tj vs ∆VHY SIH
50
5.5
VCC =24[V]
VCC =24[V]
5.4
45
IVREF =1[mA]
5.3
40
5.2
35
∆VHYSIH [mV]
VREF [V]
5.1
5.0
4.9
30
25
4.8
20
4.7
15
4.6
4.5
-50
-25
0
25
50
75
100
125
10
150
-50
-25
0
25
50
Tj [ oC]
75
100
125
150
Tj [ oC]
Tj vs IBIH
Tj vs VOLH
1.5
1.0
VCC =24[V]
1.4
VCC =24[V]
0.9
1.3
1.2
IOH =30[mA]
0.8
1.1
0.7
1.0
0.6
VOLH [V]
IBIH [nA]
0.9
0.8
0.7
0.6
0.5
0.4
0.5
0.3
0.4
0.3
0.2
0.2
0.1
0.1
0.0
0.0
-50
-25
0
25
50
75
100
125
-50
150
-25
0
25
Tj [oC]
50
75
100
125
150
Tj [oC]
Tj vs VOLL
Tj vs VOHL
1.0
11.0
VCC =24[V]
VCC =24[V]
0.9
IOLSINK=30[mA]
IOLSOURCE=30[mA]
10.5
0.8
0.7
10.0
VOLL [V]
VOHL2 [V]
0.6
9.5
0.5
0.4
9.0
0.3
0.2
8.5
0.1
8.0
-50
-25
0
25
50
o
Tj [ C]
- 26 -
75
100
125
150
0.0
-50
-25
0
25
50
Tj [oC]
75
100
125
150
NJW4303
„ TYPICAL CHARACTERISTICS
Tj vs VFGL
Tj vs VDETLIM
1.00
0.275
VCC =24[V]
0.90
VCC =24[V]
IFG=10[mA]
0.80
0.265
0.70
0.255
VDETLIM [V]
VFGL [V]
0.60
0.50
0.40
0.245
0.30
0.235
0.20
0.10
0.225
0.00
-50
-25
0
25
50
75
100
125
-50
150
-25
0
25
50
75
100
125
150
Tj [oC]
Tj [oC]
Tj vs IDCHGOSC
Tj vs ICHGOSC
70
3.0
VCC =24[V]
VCC =24[V]
2.8
VOSC =2.5[V]
65
VOSC =2.5[V]
2.6
60
2.4
IDCHGOSC [mA]
ICHGOSC [uA]
55
50
45
2.2
2.0
1.8
1.6
40
1.4
35
1.2
30
1.0
-50
-25
0
25
50
75
100
125
150
-50
-25
0
25
50
75
100
75
100
125
150
Tj [oC]
Tj [oC]
Tj vs fOSC
Tj vs RIN
34
250
VCC =24[V]
VCC =24[V]
COSC =1000[pF]
32
200
150
28
RIN [kohm]
fOSC [kHz]
30
26
100
24
50
22
0
20
-50
-25
0
25
50
Tj [ oC]
75
100
125
150
-50
-25
0
25
50
Tj [ oC]
125
150
- 27 -
NJW4303
„ TYPICAL CHARACTERISTICS
Tj vs VHCt
Tj vs VLCt
3.80
1.30
VCC =24[V]
3.75
VCC =24[V]
1.25
3.70
1.20
3.65
1.15
VLCt [V]
VHCt [V]
3.60
3.55
3.50
1.10
1.05
3.45
1.00
3.40
0.95
3.35
3.30
0.90
-50
-25
0
25
50
75
100
125
150
-50
-25
0
25
o
Tj [ C]
Tj vs ICHGCt
75
100
125
150
75
100
125
150
Tj vs IDCHGCt
9.0
0.90
VCC =24[V]
8.5
VCC =24[V]
0.85
VCt =2.5[V]
8.0
VCt =2.5[V]
0.80
7.5
0.75
7.0
0.70
6.5
0.65
IDCHGCt [uA]
ICHGCt [uA]
50
Tj [ oC]
6.0
5.5
5.0
0.60
0.55
0.50
4.5
0.45
4.0
0.40
3.5
0.35
3.0
0.30
0.25
2.5
-50
-25
0
25
50
Tj [oC]
75
100
125
150
-50
-25
0
25
50
Tj [oC]
[CAUTION]
The specifications on this databook are only
given for information , without any guarantee
as regards either mistakes or omissions. The
application circuits in this databook are
described only to show representative usages
of the product and not intended for the
guarantee or permission of any right including
the industrial rights.
- 28 -