NJW4303 PWM 3-PHASE DC BRUSHLESS MOTOR CONTROLLER GENERAL DESCRIPTION The NJW4303 is a 3-Phase Brushless DC Motor Control pre-driver IC with PWM control. It generates the most optimal current flow patterns by receiving rotor magnetic pole detection signals from hall elements of 3-phase brushless motor. Operational voltage range for the IC has margin as 9.0V to 35V(maximum voltage of 40V), and it fits for a 12V/24V power supply. It is possible to put practical use such as speed control by internal oscillation circuit, and torque limiter control by current sensory circuit. With NJW4303, high reliability of various motor drive controls can be realized by a variety of function and a substantial protection circuit. FEATURES • Maximum Supply Voltage • Operating Voltage • 3-Phase Full-Wave PWM Predriver • Low-side Gate Voltage Clamp • Internal PWM Oscillation Circuit • Current Protection Circuit • Low-Voltage Protection Circuit • Forward/Reverse Direction PACKAGE OUTLINE NJW4303V : 40V : 9.0 V to 35V : Hi-side: Pch-FET/ Low-side: Nch-FET : Gate Voltage=18V max. : Frequency Setting by External Capacitor : Current limit=0.25V±10% : Changeable while Rotating : Controllable Dead-Time Settings : Using External Capacitor : Stop with S/S Pin • Soft-Start Function • ON/OFF Function • Brake Function • Lock Protection System • Thermal Shutdown Circuit • 120°/60° Phase Difference Change Function • Multi-FG Output : 2bit Input Change Type • Bi-CDMOS Technology • Package Outline : SSOP32 PIN CONNECTION 1pin VREF H1+ H1H2+ H2H3+ H3N.C FG FR BR N1 N2 DEC S/S VERR Ver. 2009-11-13 VCC UH VH WH N.C N.C GND UL VL WL N.C ILIMIT FRC Ct OSC GND 1.VREF 2.H1+ 3.H14.H2+ 5.H26.H3+ 7.H38.N.C 9.FG 10.FR 11.BR 12.N1 13.N2 14.DEC 15.S/S 16.VERR 17.GND 18.OSC 19.Ct 20.FRC 21.ILIMIT 22.N.C 23.WL 24.VL 25.UL 26.GND 27.N.C 28.N.C 29.WH 30.VH 31.UH 32.VCC -1- NJW4303 PIN FUNCTION LIST Pin# Terminal Function Name 1 VREF 2 H1+ Remark 5V Output Voltage Terminal Outputs Supply Voltage of 5V Hall Element Input Terminal H1+ Use with H1- 3 H1- Hall Element Input Terminal H1- Use with H1+ 4 H2+ Hall Element Input TerminalH2+ Use with H2- 5 H2- Hall Element Input Terminal H2- Use with H2+ 6 H3+ Hall Element Input Terminal H3+ Use with H3- 7 H3- Hall Element Input Terminal H3- Use with H3+ 8,22,27,28 N.C. No Connection No Connection 9 FG FG pulse Output Terminal Output Rotary Signal 10 FR 11 BR Short Brake Input Terminal L, or Open=Rotation, H=Short Brake 12 N1 FG Pattern Switching Terminal1 Set FG Pattern by Combination with N2. Cf. the below table 13 N2 FG Pattern Switching Terminal2 Set FG Pattern by Combination with N1. Cf. the below table 14 DEC Hall Input Phase Switching Terminal L, or Open=120° Hall Input, H=60° Hall Input 15 S/S Start and Stop input Terminal L, or Open=Start, H=Stop 16 VERR Forward/Reverse Direction L, or Open=Forward Direction, H=Reverse Direction Input Terminal Set Output ON Duty Error Amp Voltage Input Terminal H=Output ON Duty 100%, L=Output ON Duty 0% Pull-up to VREF PIN in nonuse 17,26 GND Logic Ground Terminal 18 OSC PWM Control Capacitor Terminal 19 Ct Lock Protection Capacitor Connection Terminal Connecting with Ground Insert a Capacitor between Grounds. Set PWM frequency depending on the value of the Capacitor Insert a Capacitor between Grounds. Depending on the value of the Capacitor, set On/Off timer for the Output at the time of activated Lock Protection. Dead-Time Capacitor Connection Insert a Capacitor between Grounds. Depending on the value of the Terminal Capacitor, set Output Dead Band at the time of FR switching Over Current Sensing Terminal Connect to the ground side of the external driver WL Output Terminal WL Connect to Nch Gate Driver VL Output Terminal VL Connect to Nch Gate Driver 25 UL Output Terminal UL Connect to Nch Gate Driver 29 WH Output Terminal WH Connect to Pch Gate Driver 30 VH Output Terminal VH Connect to Pch Gate Driver 31 UH Output Terminal UH Connect to Pch Gate Driver 32 VCC Motor Voltage Supply Terminal Connect motor power source to the terminal 20 FRC 21 ILIMIT 23 24 * All Ground Pins must be connected at the outside. * Electrical potential of all unused output pins must be fixed at the outside. FG Pattern by combination with N1 and N2 No. N1 1 2 -2- N2 FG H H 1/2 Frequency Signal from H1 H L/OPEN Signal from H1 3 L/OPEN H 1/2 Frequency Signal from 3 Hall Compound Signals 4 L/OPEN L/OPEN 3 Hall Compound Signals NJW4303 BLOCK DIAGLAM FG VREF VREF VCC UVLO UH TSD S/S DEC VH N1 Rotor Position Decode N2 H1+ H1H2+ H2H3+ H3- + - WH + UL + - FR VL Dead Time FRC BR OSC VERR GND Saw Oscillator WL PWM Logic + - + - ILIMIT Lock Detect Ct -3- NJW4303 (Ta=25°C) ABSOLUTE MAXIMUM RATINGS PARAMETER SYMBOL RATINGS UNIT Remark Supply Voltage Hi-side Output Terminal Voltage FG Terminal Voltage LIMIT Terminal Voltage VERR Terminal Voltage Hall Input Terminal Voltage Logic Input Terminal Voltage Reference Voltage Output Current Hi-side Output Current Low-side Output Current FG Output Current Power Dissipation Operating Ambient Temperature Storage Temperature VCC VOH VFG VLIM VVERR VIH VIN 40 40 7 3.5 6 4.5 7 V V V V V V V IREF 30 mA VREF PIN IOH IOL IFG PD Topr Tstg 40 ±40 15 1190 -40 to +85 -50 to +150 mA mA mA mW °C °C UH, VH, WH PIN UL, VL, WL PIN FG PIN Ú Board Mounted VCC PIN UH, VH, WH PIN FG PIN ILIMIT PIN VERR PIN H1+, H1-, H2+, H2-, H3+, H3- PIN BR, FR, DEC, N1/N2, S/S PIN Ú Mounted on designated board based on EIA/JEDEC. (114.3x76.2x1.6mm: 2Layers, FR-4) (Ta=25°C) RECOMMENDED OPERATIONAL CONDITIONS PARAMETER Logic Supply Voltage -4- SYMBOL VCC TEST CONDITION MIN. 9.0 TYP. 24.0 MAX. 35.0 UNIT V NJW4303 ELECTRICAL CHARACTERISTICS VCC=24V, VIH1+= VIH3+=3.0V, VIH1-= VIH2-= VIH3-=2.0V, VIH2+=1.0V, VIN= VLIM= VCT=0V, VVERR=4.5V, VOSC=4.5V→0.5V, CVREF=1uF, Ta=25°C PARAMETER SYMBOL TEST CONDITION MIN. GENERAL Supply current 1 ICC1 VCC=12V Supply current 2 ICC2 THERMAL SHUTDOWN BLOCK Thermal shutdown operating TTSD1 Thermal shutdown recovery TTSD2 Thermal shutdown hysteresis ∆TTSD UNDER VOLTAGE LOCK OUT BLOCK VCC Decreasing UVLO operating voltage VUVLO1 6.3 VCC Increasing UVLO recovery voltage VUVLO2 6.8 UVLO hysteresis voltage ∆VUVLO LOCK PROTECTION BLOCK (Ct PIN) High level voltage VHCt 3.30 Low level voltage VLCt 0.90 Lock charge current ICHGCt 2.5 Lock discharge current IDCHGCt 0.25 ICHGCt/IDCHGCt Lock charge/discharge current REFERENCE VOLTAGE BLOCK (VREF PIN) Reference voltage supply VREF IVREF=1mA 4.5 IVREF=1 to 10 mA Load regulation ∆VLOVREF VCC=9 to 35V, IVREF=1 mA Line regulation ∆VLIVREF HALL AMP BLOCK (H1+, H1-, H2+, H2-, H3+, H3- PIN) 10 Hysteresis Voltage range ∆VHYSIH Input bias current IBIH Per each input HI-SIDE BLOCK (UH, VH, WH PIN) Hi-side output voltage VOLH IOH=30 mA Hi-side leak current IOLEAKH VOH=35V LOW-SIDE BLOCK (UL, VL, WL PIN) Low-side output H voltage1 VOHL1 IOLSOURCE=30 mA ,VCC=12V 8.0 Low-side output H voltage2 VOHL2 IOLSOURCE=30 mA 8.0 Low-side output L voltage VOLL IOLSINK=30 mA Low-side clamp voltage VCLL IOLSOURCE=0.1 mA ,VCC=35V FG OUTPUT (FG PIN) Output voltage VFGL IFG=10 mA Leak current ILEAKFG VFG=5V - TYP. MAX. UNIT 5.3 6.4 8.3 9.4 mA mA 170 135 35 - °C °C °C 6.8 7.3 0.5 7.3 7.8 - V V V 3.55 1.00 5.5 0.55 10 3.80 1.30 9.0 0.90 - uA uA - 5.0 15 50 5.5 60 100 V mV mV 30 - 50 1.5 mV uA 0.5 - 1.0 1 V uA 10.0 10.0 0.5 - 1.0 18 V V V V 0.3 - 0.7 1 V uA -5- NJW4303 ELECTRICAL CHARACTERISTICS VCC=24V, VIH1+= VIH3+=3.0V, VIH1-= VIH2-= VIH3-=2.0V, VIH2+=1.0V, VIN= VLIM= VCT=0V, VVERR=4.5V, VOSC=4.5V→0.5V, CVREF=1uF, Ta=25°C PARAMETER SYMBOL TEST CONDITION MIN. OVER CURRENT SENSOR BLOCK (ILIMIT PIN) Sense voltage VDETLIM 0.225 Input bias current IBILM ERROR AMP BLOCK (VERR PIN) PWM0% sense voltage VPWM1VERR PWMDUTY=0% PWM100% sense voltage VPWM2VERR PWMDUTY=100% 3.6 Input bias current IBVERR OSCILLATOR BLOCK (OSC PIN) Saw wave peak voltage VPOSC 2.7 Saw wave bottom voltage VBOSC 1.00 OSC charge current ICHGOSC 30 OSC discharge current IDCHGOSC 1 Oscillation frequency fOSC COSC=1000pF FR DEAD TIME BLOC (FRC PIN) High level voltage VHFRC 3.15 Low level voltage VLFRC 0.9 FRC charge current ICHGFRC 16 FRC discharge current IDCHGFRC 8 FRC dead band time1 tDFRC1 CFRC=1uF FRC dead band time2 tDFRC2 CFRC=1uF CONTOROL INPUT BLOCK (FR, BR, DEC, N1, N2, S/S PIN) Input High level current IHIN VIN=4.5V,per each input 25 Input low level current ILIN VIN=0V,per each input Pull-down resistance RIN PIN OPERATIONAL CONDITIONS PARAMETER SYMBOL TEST CONDITION HALLAMP INPUT (H1+, H1-, H2+, H2-, H3+, H3- PIN) Peak to peak Hall Input Sensitivity ∆VMIH Hall Input voltage range VICMIH CONTOROL INPUT (FR, BR, DEC, N1, N2, S/S PIN) High level voltage VHIN Low level voltage VLIN VERR INPUT (VERR PIN) Input voltage range VICMVERR -6- TYP. MAX. UNIT 0.250 1.6 0.275 5.0 V uA 1.6 0.5 5.0 V V uA 3.0 1.35 50 2 28 3.3 1.60 70 3 - V V uA mA kHz 3.5 1.0 26 18 140 100 3.85 1.2 36 28 - V V uA uA ms ms 40 110 60 1 - uA uA kΩ MIN. TYP. MAX. UNIT 0.1 0 - 3.5 V V 2 0 - 5 0.8 V V 0 - 4.5 V NJW4303 PIN / CIRCUIT OPERATIONAL DEFINITION ¡ Hall Input Pin Input Common-Mode Voltage Definition ¡ Hall Input Hysteresis Voltage Definition (Hall Amp Block) (Hall Amp Block) VICMIH VIH 3.5V 3.5V LOGIC INVERSION LOGIC INVERSION ∆V HYSIH 0V 0V ¡ Input pins thresh operational Definition (FR, BR, N1, N2, DEC, S/S PIN) ¡ FR Dead Time Definition (FR Dead Time Block) V IN ROTATING DIRECTION RVS STOP 5V FWD RVS STOP (FORWARD) (REVERSE) (REVERSE) VFR 2V HIGH Level Voltage 0.8V 2.0V VFRC VVREF Undefined TIME t 0.8V LOW Level Voltage TIME t 0V tDFRC1 tDFRC2 ¡Oscillation Frequency Definition(Oscillation Bloc) VOSC tCHGOSC Time t tDCHGOSC ¡ PWM 100% Sensory Voltage / PWM 100% Sensory Voltage Definition (Error Amplifier Block) VVERR V V POSC Full speed ( = PWM 100%) variable speed control VVERR VOSC BOSC stop ( = PWM 0%) -7- NJW4303 ¡ Sensing Voltage/ Reset Voltage Definition (Over Current Sensing Block) V OSC V DET LIM V ILIMIT time V OL (V UL,V VL,V WL) Active L Active time Motor Action Rotation STOP Rotation time ¡ Lock Protection Detection/ Reset Time Definition (Lock Protection Block) VCt V HCt V LCt time tDCt tRCt ¡ THERMAL SHUTDOWN OPERATIONSL DEFINITION (Thermal shutdown block) TSD RESET TEMP (NORMAL OPERATION) 0°C HYSTERESIS TEMP 85°C TSD OPERATING TEMP (OUTPUT STOP) 120°C 150°C 170°C TEMP ¡ UNDER VOLTAGE PROTECTION OPERATIONAL DEFENITION (UNDER VOLTAGE PROTECTION BLOCK) VCC 35.0V UVLO RESET VOLTAGE (NORMAL OPERATION) 9.0V VUVLO2 HYSTERESIS VOLTAGE VUVLO1 UVLO OPERATING VOLTAGE (OUTPUT STOP) 0V -8- NJW4303 TRUTH TABLE ¡ INPUT VS OUTPUT TRUTH TABLE1 (DEC=L, H1+>H1-, H2+>H2-, H3+>H3-="H", Don't Care="X") H1 H2 H3 H H L L L L H H H L L L L H H H L H H H L L L H H H L L L L H H H L L L H H H L L L L H H H L L L H H H L H H H L L L L H H H L L L L H H H L H H H L L L L H H H L L L L H H H L H H H L L L L H H H L L L L H H H L H H H L L L L H H H L L L L H H H L H Hi-Z H H L L L L H H H L L L L H H L Hi-Z L Hi-Z L H L H Hi-Z H H L L L L H H H L L L L H H L Hi-Z L Hi-Z L H L H Hi-Z H H L L L H L H H H L L L L L H H H L Hi-Z L Hi-Z L Hi-Z BR L TSD UVLO OFF OFF S/S L VERR H FR L DEC L N1 L N2 L L OFF OFF L H H L L L L OFF OFF L H X L L L L L L L L L H OFF OFF OFF X X ON X OFF OFF OFF X ON X X L L L H X X X X X L X X X X X X X X X X X L L L L L L L L L L L L L L L L L L L L L UH VH WH UL VL WL FG Hi-Z Hi-Z L L Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z L L L Hi-Z Hi-Z Hi-Z H L L L L L H H L L L L L H H L Hi-Z L Hi-Z L Hi-Z L Hi-Z H L L Hi-Z L Hi-Z Hi-Z Hi-Z Hi-Z L Hi-Z Hi-Z L L Hi-Z Hi-Z L L Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z L Hi-Z Hi-Z Hi-Z L L Hi-Z L L Hi-Z Hi-Z Hi-Z L L H H L L H L L L L L L L L H H L H H L L H H L L L L L L L H H L Hi-Z L Hi-Z L Hi-Z L Hi-Z L Hi-Z L Hi-Z L Hi-Z H L L Hi-Z Hi-Z Hi-Z L L Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z L L L Hi-Z Hi-Z Hi-Z Hi-Z L Hi-Z Hi-Z Hi-Z Hi-Z L L Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z L L L Hi-Z Hi-Z Hi-Z L Hi-Z L Hi-Z L Hi-Z L Hi-Z Hi-Z Hi-Z Hi-Z L L Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z L L L Hi-Z Hi-Z Hi-Z L Hi-Z L Hi-Z L Hi-Z L Hi-Z Hi-Z Hi-Z Hi-Z L Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z L L L L L L L L L L L Hi-Z L Hi-Z L VREF COMMENT ON FR="L" FWD Rotation ON FR="H" REV Rotation ON FRC="L" FWD Rotation ON LOCK PROTECTION Operation ON OVER CURRENT Operation ON VERR="L" PWM Operation ON S/S="H" STOP Operation ON UVLO=ON UVLO Operation ON TSD=ON TSD Operation ON BR="H" BRAKE Operation Hi-Z L L L L L L L L L L L L L L Hi-Z L Hi-Z L ¡ INPUT VS OUTPUT TRUTH TABLE2 (DEC=L, Invalid Code Pattern) (H1+>H1-, H2+>H2-, H3+>H3-="H", Don't Care="X") H1 H H2 H H3 H L L L H H H L L L BR L H TSD UVLO X X X X S/S VERR FR DEC N1 N2 UH VH WH UL VL WL X X X L L L Hi-Z Hi-Z Hi-Z L L L X X X L L L L L L L L L FG L Hi-Z L Hi-Z VREF COMMENT ON Invalid Code Pattern ON Invalid Code Pattern BR="H" BARKE Operation -9- NJW4303 ¡ INPUT VS OUTPUT TRUTH TABLE3 (DEC=H, H1+>H1-, H2+>H2-, H3+>H3-="H", Don't Care="X") H1 H2 H3 H H H L L L H H H L L L H H H BR L TSD UVLO OFF OFF S/S L VERR H FR L DEC H N1 L N2 L UH VH WH UL VL WL FG Hi-Z Hi-Z L L Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z L L L Hi-Z Hi-Z Hi-Z H L L L L L H H L L L L L H H Hi-Z L Hi-Z L Hi-Z L L L Hi-Z L Hi-Z H L L L H H H L L L H H H L L L H H H L Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z L L Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z L L L L H H L L L L L H H H L L L Hi-Z L Hi-Z L Hi-Z L H L L OFF OFF L H H H L L L L L L Hi-Z Hi-Z H H H L L L H H H L L L H H H Hi-Z Hi-Z L L Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z L L L Hi-Z Hi-Z Hi-Z L OFF OFF L X X H L L L L L L L L Hi-Z L Hi-Z L L H H H L L L H H H Hi-Z Hi-Z L L Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z L L L Hi-Z Hi-Z Hi-Z Hi-Z L Hi-Z L Hi-Z OFF OFF L X X H L L L L L L L L Hi-Z L Hi-Z L H H H L L L H H H L L L H H H Hi-Z Hi-Z L L Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z L L L Hi-Z Hi-Z Hi-Z Hi-Z L Hi-Z L Hi-Z Hi-Z L Hi-Z L L L H H H L L L H H H L L L H H H L L OFF X OFF X L H L X X X H H L L L L Hi-Z Hi-Z Hi-Z L L L L L L L L L L L H H H L L L H H H Hi-Z L Hi-Z L Hi-Z X ON X X X H L L Hi-Z Hi-Z Hi-Z L L L L L L L H H H L L L H H H L L L H H H Hi-Z L Hi-Z L Hi-Z L L L L H H H L L L L H H H L L L L H H H L Hi-Z L Hi-Z L Hi-Z L L H ON X X X X X X X X X H H L L L L Hi-Z L Hi-Z Hi-Z L ON FR="L" FWD Rotation ON FR="H" REV Rotation ON LOCK PROTECTION Operation ON OVER CURRENT Operation ON VERR="L" PWM Operation ON S/S="H" STOP Operation ON UVLO=ON UVLO Operation ON TSD=ON TSD Operation ON BR="H" BRAKE Operation L Hi-Z L Hi-Z L Hi-Z H H H L L L COMMENT L Hi-Z L Hi-Z L Hi-Z H H H L L L VREF L L L L L L L ¡ INPUT VS OUTPUT TRUTH TABLE4 (DEC=H, Invalid Code Pattern) (H1+>H1-, H2+>H2-,H3+>H3-="H", Don't Care="X") H1 H H2 L H3 H L H L H L H L H L - 10 - BR S/S VERR FR DEC N1 N2 UH VH WH UL VL WL L TSD UVLO X X X X X H L L Hi-Z Hi-Z Hi-Z L L L H X X X X X H L L L L L L L L FG L Hi-Z L Hi-Z VREF COMMENT ON Invalid Code Pattern ON Invalid Code Pattern BR="H" BARKE Operation NJW4303 TIMING CHART Ú Codes used in Hall input: Logics of H1, H2, H3 are expressed with each 3-colum starting from the top. High Logic = 1, Low Logic = 0 1. Normal Function→PWM Function ELECTRIC DEGREE POSITION (deg) 0 60 120 180 240 300 360 420 480 540 600 660 720 H1 H2 HALL INPUT H3 code 100 110 010 011 001 101 100 110 010 011 001 101 DEC(=L) FR(=L) N1(=L) N2(=L) FG UH Hi-SIDE VH WH UL LOW-SIDE VL WL TORQUE CONTROL INPUT VERR OSC Fullspeed (PWMDUTY=100%) Reduced Speed (PWMDUTY=70%) - 11 - NJW4303 2. NORMAL FUNCTION→FORWARD/REVERSE SWITCHING while rotating ELECTRIC DEGREE POSITION (deg) 0 60 120 180 240 300 360 420 480 540 600 660 720 H1 H2 HALL INPUT H3 code 100 110 010 010 110 100 101 001 011 011 001 DEC(=L) N1(=L) N2(=L) FG FR FORWARD/REVERS INPUT FRC UH Hi-SIDE VH WH UL LOW-SIDE VL WL FR=L - 12 - Deadtime FR=H Deadtime FR=L 101 NJW4303 3. NORMAL FUNCTION→BRAKE CONTROL→BRAKE RESET ELECTRIC DEGREE POSITION (deg) 0 60 120 180 240 300 360 420 480 540 600 660 720 H1 HALL INPUT H2 H3 code 100 110 010 011 001 101 100 110 010 011 001 101 DEC(=L) FR(=L) N1(=L) N2(=L) FG BRAKE INPUT BR UH Hi-SIDE VH WH UL LOW-SIDE VL WL motor rotate function BR=L Deadtime Brake function BR=H Deadtime motor rotate function BR=L - 13 - NJW4303 4. NORMAL FUNCTION→LOCK PROTECTION→LOCK RESET ELECTRIC DEGREE POSITION (deg) 0 60 120 180 240 300 360 420 480 540 600 660 720 H1 HALL INPUT H2 H3 code 100 110 010 011 011 011 011 001 101 100 110 DEC(=L) FR(=L) N1(=L) N2(=L) FG CT PIN OUTPUT CT UH HI-SIDE VH WH UL LOW-SIDE VL WL motor rotate function - 14 - Lock function motor rotate function 010 NJW4303 5. NORMAL FUNCTION→LOW VOLTAGE PROTECTION→NORMAL FUNCTION ELECTRIC DEGREE POSITION (deg) 0 60 120 180 240 300 360 420 480 540 600 660 720 VCC H1 H2 HALL INPUT H3 code 100 110 010 011 001 101 100 110 010 011 001 101 DEC(=L) FR(=L) N1(=L) N2(=L) FG HI-SIDE UH Hi-Z VH Hi-Z WH Hi-Z UL LOW-SIDE VL WL TORQUE CONTROL INPUT VERR OSC Fullspeed motor stop (UVLO ON) Fullspeed - 15 - NJW4303 6. NORMAL FUNCTION→STOP FUNCTION (S/S=H)→NORMAL FUNCTION ELECTRIC DEGREE POSITION (deg) 0 60 120 180 240 300 360 420 480 540 600 660 720 VCC S/S H1 H2 HALL INPUT H3 code 100 110 010 011 001 101 100 110 010 011 001 DEC(=L) FR(=L) N1(=L) N2(=L) FG HI-SIDE UH Hi-Z VH Hi-Z WH Hi-Z UL LOW-SIDE VL WL TORQUE CONTROL INPUT VERR OSC Fullspeed - 16 - motor stop (STOP ON) Fullspeed 101 NJW4303 7. SOFT START FUNCTION ELECTRIC DEGREE POSITION (deg) 0 60 120 180 240 300 360 420 480 540 600 660 720 VCC VREF H1 H2 HALL INPUT H3 code 110 110 010 011 001 101 100 110 010 011 001 101 DEC (=L) FR(=L) N1(=L) N2(=L) FG UH Hi-SIDE VH WH UL LOW-SIDE VL WL VERR TORQUE CONTROL INPUT VERR OSC OFF Soft Start (PWM) Full speed (no PWM) - 17 - NJW4303 8. FG OUTPUT TIMING CHART OUTPUT TIMING CHART 1 (120 deg Input Mode) ELECTRIC DEGREE POSITION (deg) 0 60 120 180 240 300 360 420 480 540 600 660 720 H1 HALL INPUT DEC=L or open (120 deg input mode) H2 H3 code 101 100 110 010 011 001 101 100 110 010 011 001 N1=H, N2=H N1=H, N2=L FG OUTPUT N1=L, N2=H N1=L, N2=L OUTPUT TIMING CHART 2 (60 deg Input Mode) ELECTRIC DEGREE POSITION (deg) 0 60 120 180 240 300 360 420 480 540 600 660 720 H1 HALL INPUT DEC=H (60 deg input mode) H2 H3 code 100 110 111 011 001 000 100 110 111 011 001 000 N1=H, N2=H N1=H, N2=L FG OUTPUT N1=L, N2=H N1=L, N2=L * When the status of N1/N2 is H/H or L/H, FG output is not synchronized with Hall input, because FG output is produced by using a frequency divider. - 18 - NJW4303 FUNCTION DESCRIPTION ¡ Lock Protection Block – Detect/Reset Time Lock Protection can be done by charging/discharging to the capacitor CCt. Lock Protection Detect time (tDCt) and Reset time (tRCt) are determined by the value of either Ct charging current (ICHGCt) or Ct discharging current (IDCHGCt) and the value of the external capacitor CCt. To adjust Detect/Reset Time, change the value of CCt. The calculation formula for Detect/Reset Time can be described in equation below: adjustment range for CCt is 0.1µF to 10µF. Symbol Formula Detect Time tDCt tDCt ≅ 4.6 106 CCt Reset Time tRCt 6 tRCt ≅ 0.46 10 CCt Comments Figure1: Lock Protection Detect/ Reset Time Calculating Formula When the motor is rotating, electric charge of CCt capacitor discharging is produced repeatedly by input from hall signal. However, when we set the motor to low speed using the speed control application, input time from hall signal is longer, with this, Ct voltage level will increase and malfunction can be expected. When this occurs, it is recommended to add Ct discharge circuit by using FG signal output. Please refer to typical application circuit 2. VREF ¡ Reference Voltage Block – How to use VREF When using VREF pin, make sure that it is not oscillating. Use the recommended VCC operational condition. 10k 10k ¡ Hall Amp Block - Capacitor H1+/H2+/H3 Input from hall signal requires more than that of the Hall Input Sensitivity (∆VMIH=100mV). H1- to H3Hall Amp pin connecting Taking measures in keeping noise immunity, when using FG output, Block FG jitter can be expected. When this occurs, it is recommended to add capacitors more than 0.01µF between Hall input pins. 20k 10k ¡ Hall Amp Block – How to use Hall IC Hall IC Hall input pins H1-, H2- and H3- are biased to VREF/2. To keep Hall IC Output voltage within the Hall Input voltage range (VICMIH), it needs to add 2 pieces of biased resistor for every H1+, H2+ and H3+ pins. Figure2: Hall IC application ¡ Oscillation Block - Oscillation Frequency OSC pin produce Oscillating wave by charging/discharging to the capacitor COSC. Oscillating frequency (fOSC) is modulated by COSC, and determined by charging time (tCHGOSC) and discharging time (tDCHGOSC). The oscillation frequency depends on tCHGOSC in great deal compare to tDCHGOSC, so that the calculation formula for oscillation frequency can be described in equation below: adjustment range for COSC is 330pF to 2200pF. Symbol Oscillation Frequency fOSC Formula Comments FOSC ≅ 28 10-6 / COSC Figure3: Oscillation Frequency Calculating Formula ¡ FR Dead Time Block – Dead Band Time FR Dead band time is divided in two types depending on giving conditions. The two dead band time are determined by the value of either FRC charged current or FRC discharge current IDCHGFRC, and the value of an external capacitor. To adjust the dead band time, change the value of CFRC. FR dead band time can be expressed as following: adjustment range for CFRC is more than 1pF. Symbol FR Dead Band Time1 FR Dead Band Time2 tDFRC1 tDFRC2 Formula 3 tDFRC1 ≅ 140 10 CFRC 3 tDFRC2 ≅ 140 10 CFRC Comments FR : H → L (open) FR : L (open) → H Figure4: Dead Band Time Calculating Formula - 19 - NJW4303 TYPICAL APPLICATION CIRCUIT 1 VM + RFG FG-OUT CVREF CVCC GND VCC VREF FG + + VREF UVLO UH TSD S/S 3Phase Motor DEC N VH N1 S N2 H1+ H H1H2+ H H2H3+ H H3- Rotor Position Decode + - WH + UL + - FRC VL FR CFRC Dead Time BR OSC COSC VERR CVERR Saw Oscillator WL PWM Logic + - + - GND ILIMIT Lock Detect Lowpass Filter Cct - 20 - S N NJW4303 TYPICAL APPLICATION CIRCUIT 2 VM + CVREF CVCC VREF + + GND VCC VREF UVLO UH TSD S/S 3Phase Motor DEC N VH N1 S N2 H1+ H + - H1H2+ H WH UL H3+ + - H3- FRC VL FR CFRC Dead Time BR OSC Saw Oscillator COSC CVERR WL PWM Logic + - VERR RFG S N + - H2- H Rotor Position Decode ILIMIT + - GND Lock Detect Lowpass Filter FG V-IN Ct Cct V-FG COMP1 R2 C1 Comparator FG-IN + R1 + D1 R3 FG-OUT <Reference Value> C1=22nF R1=10kΩ R2=40kΩ R3=10kΩ D1:1S2076 COMP1:NJM2903 - 21 - NJW4303 TYPICAL CHARACTERISTICS VCC vs VREF VCC vs ICC 6.0 10 5.5 8 5.0 7 4.5 6 4.0 VREF[V] ICC [mA] Tj=25[oC] 9 5 3.5 4 3.0 3 2.5 2 2.0 1 1.5 0 Tj=25[ oC] IVREF =1[mA] 1.0 0 5 10 15 20 25 30 35 40 0 5 10 15 20 VCC [V] IREF vs VREF Tj=25[oC] VCC =24[V] 40 Tj=25[oC] VCC =24[V] 0.9 5.30 0.8 5.20 0.7 5.10 0.6 VOLH [V] VREF [V] 35 1.0 5.40 5.00 0.5 4.90 0.4 4.80 0.3 4.70 0.2 4.60 0.1 4.50 0.0 0 5 10 15 20 25 30 0 5 10 15 20 IREF [mA] 25 30 35 40 45 IOH [mA] IOLSINK vs VOLL IOLSOURCE vs VOHL 1.0 11.0 Tj=25[ oC] VCC =24[V] 0.9 Tj=25[oC] VCC =24[V] 10.8 0.8 10.6 0.7 10.4 0.6 10.2 VOHL[V] VOLL[V] 30 IOH vs VOLH 5.50 0.5 10.0 0.4 9.8 0.3 9.6 0.2 9.4 0.1 9.2 9.0 0.0 0 5 10 15 20 25 IOLSINK[mA] - 22 - 25 VCC [V] 30 35 40 45 0 5 10 15 20 25 IOLSOURCE[mA] 30 35 40 45 NJW4303 TYPICAL CHARACTERISTICS IFG vs VFGL VCC vs VOHL 1.0 15 Tj=25[ oC] IOLSOURCE=0.1[mA] Tj=25[ oC] VCC =24[V] 0.9 13 0.8 12 0.7 11 0.6 VFGL[V] VOHL [V] 14 10 0.5 9 0.4 8 0.3 7 0.2 0.1 6 0.0 5 5 10 15 20 25 30 35 0 40 2 4 6 8 VCt vs ICHGCt 12 14 16 VCt vs IDCHGCt 9.00 0.90 o Tj=25[ C] VCC =24[V] 8.50 Tj=25[oC] VCC =24[V] 0.85 8.00 0.80 7.50 0.75 7.00 0.70 6.50 0.65 IDCHGCt [uA] ICHGCt [uA] 10 IFG[mA] VCC [V] 6.00 5.50 0.60 0.55 5.00 0.50 4.50 0.45 4.00 0.40 3.50 0.35 3.00 0.30 0.25 2.50 0.50 1.00 1.50 2.00 2.50 3.00 3.50 0.50 4.00 1.00 1.50 2.00 2.50 3.00 3.50 4.00 VCt [V] VCt [V] VOSC vs IDCHGOSC VOSC vs ICHGOSC 2.5 52.0 Tj=25[ oC] VCC =24[V] Tj=25[oC] VCC =24[V] 51.5 2.0 51.0 IDCHGOSC [mA] ICHGOSC [uA] 1.5 50.5 50.0 1.0 49.5 0.5 49.0 0.0 48.5 1.00 1.50 2.00 2.50 VOSC [V] 3.00 3.50 1.00 1.50 2.00 2.50 3.00 3.50 VOSC [V] - 23 - NJW4303 TYPICAL CHARACTERISTICS VFRC vs IDCHGFRC VFRC vs ICHGFRC 36 28 Tj=25[ oC] VCC =24[V] Tj=25[oC] VCC =24[V] 26 32 24 30 22 28 20 IDCHGFRC [uA] ICHGFRC [uA] 34 26 24 18 16 22 14 20 12 18 10 8 16 0.0 1.0 2.0 3.0 4.0 0.0 5.0 1.0 2.0 4.0 5.0 Ct vs tDCHGCt Ct vs tCHGCt 50 5.0 o o Tj=25[ C] VCC =24[V] 4.5 Tj=25[ C] VCC =24[V] 45 4.0 40 3.5 35 3.0 30 tDCHGCt[ms] tCHGCt[ms] 3.0 VFRC [V] VFRC [V] 2.5 2.0 25 20 1.5 15 1.0 10 0.5 5 0.0 0 0.1 1.0 C t [uF] 10.0 0.1 1.0 C t [uF] C OSC vs fOSC 1000 10.0 VCC vs fOSC 30.0 o Tj=25[ C] VCC =24[V] Tj=25[ oC] COSC =1000[pF] 29.5 100 fOSC [kHz] fOSC[kHz] 29.0 10 28.5 28.0 27.5 27.0 1 100 1000 C OSC[pF] - 24 - 10000 5 10 15 20 25 VCC [V] 30 35 40 NJW4303 TYPICAL CHARACTERISTICS CFRC vs fDFRC1 CFRC vs fDFRC2 2000 2000 o Tj=25[ C] VCC =24[V] Tj=25[ C] VCC =24[V] 1800 1600 1600 1400 1400 1200 1200 fDRC2[ms] fDFRC1[ms] 1800 o 1000 1000 800 800 600 600 400 400 200 200 0 0 0 2 4 6 8 10 12 0 2 4 6 C FRC[uF] Tj vs ICC1 12 12 VCC =24[V] 10 10 8 8 ICC2 [mA] ICC1 [mA] 10 Tj vs ICC2 12 VCC =12[V] 6 6 4 4 2 2 0 0 -50 -25 0 25 50 75 100 125 150 -50 -25 0 25 o Tj [ C] Tj vs VUVLO1 50 Tj [ oC] 75 100 125 150 Tj vs VUVLO2 9.0 9.0 VCC Decreasing VCC Increasing 8.5 8.5 8.0 8.0 7.5 7.5 VUVLO2 [V] VUVLO1 [V] 8 C FRC[uF] 7.0 7.0 6.5 6.5 6.0 6.0 5.5 5.5 5.0 5.0 -50 -25 0 25 50 Tj [oC] 75 100 125 150 -50 -25 0 25 50 Tj [ oC] 75 100 125 150 - 25 - NJW4303 TYPICAL CHARACTERISTICS Tj vs VREF Tj vs ∆VHY SIH 50 5.5 VCC =24[V] VCC =24[V] 5.4 45 IVREF =1[mA] 5.3 40 5.2 35 ∆VHYSIH [mV] VREF [V] 5.1 5.0 4.9 30 25 4.8 20 4.7 15 4.6 4.5 -50 -25 0 25 50 75 100 125 10 150 -50 -25 0 25 50 Tj [ oC] 75 100 125 150 Tj [ oC] Tj vs IBIH Tj vs VOLH 1.5 1.0 VCC =24[V] 1.4 VCC =24[V] 0.9 1.3 1.2 IOH =30[mA] 0.8 1.1 0.7 1.0 0.6 VOLH [V] IBIH [nA] 0.9 0.8 0.7 0.6 0.5 0.4 0.5 0.3 0.4 0.3 0.2 0.2 0.1 0.1 0.0 0.0 -50 -25 0 25 50 75 100 125 -50 150 -25 0 25 Tj [oC] 50 75 100 125 150 Tj [oC] Tj vs VOLL Tj vs VOHL 1.0 11.0 VCC =24[V] VCC =24[V] 0.9 IOLSINK=30[mA] IOLSOURCE=30[mA] 10.5 0.8 0.7 10.0 VOLL [V] VOHL2 [V] 0.6 9.5 0.5 0.4 9.0 0.3 0.2 8.5 0.1 8.0 -50 -25 0 25 50 o Tj [ C] - 26 - 75 100 125 150 0.0 -50 -25 0 25 50 Tj [oC] 75 100 125 150 NJW4303 TYPICAL CHARACTERISTICS Tj vs VFGL Tj vs VDETLIM 1.00 0.275 VCC =24[V] 0.90 VCC =24[V] IFG=10[mA] 0.80 0.265 0.70 0.255 VDETLIM [V] VFGL [V] 0.60 0.50 0.40 0.245 0.30 0.235 0.20 0.10 0.225 0.00 -50 -25 0 25 50 75 100 125 -50 150 -25 0 25 50 75 100 125 150 Tj [oC] Tj [oC] Tj vs IDCHGOSC Tj vs ICHGOSC 70 3.0 VCC =24[V] VCC =24[V] 2.8 VOSC =2.5[V] 65 VOSC =2.5[V] 2.6 60 2.4 IDCHGOSC [mA] ICHGOSC [uA] 55 50 45 2.2 2.0 1.8 1.6 40 1.4 35 1.2 30 1.0 -50 -25 0 25 50 75 100 125 150 -50 -25 0 25 50 75 100 75 100 125 150 Tj [oC] Tj [oC] Tj vs fOSC Tj vs RIN 34 250 VCC =24[V] VCC =24[V] COSC =1000[pF] 32 200 150 28 RIN [kohm] fOSC [kHz] 30 26 100 24 50 22 0 20 -50 -25 0 25 50 Tj [ oC] 75 100 125 150 -50 -25 0 25 50 Tj [ oC] 125 150 - 27 - NJW4303 TYPICAL CHARACTERISTICS Tj vs VHCt Tj vs VLCt 3.80 1.30 VCC =24[V] 3.75 VCC =24[V] 1.25 3.70 1.20 3.65 1.15 VLCt [V] VHCt [V] 3.60 3.55 3.50 1.10 1.05 3.45 1.00 3.40 0.95 3.35 3.30 0.90 -50 -25 0 25 50 75 100 125 150 -50 -25 0 25 o Tj [ C] Tj vs ICHGCt 75 100 125 150 75 100 125 150 Tj vs IDCHGCt 9.0 0.90 VCC =24[V] 8.5 VCC =24[V] 0.85 VCt =2.5[V] 8.0 VCt =2.5[V] 0.80 7.5 0.75 7.0 0.70 6.5 0.65 IDCHGCt [uA] ICHGCt [uA] 50 Tj [ oC] 6.0 5.5 5.0 0.60 0.55 0.50 4.5 0.45 4.0 0.40 3.5 0.35 3.0 0.30 0.25 2.5 -50 -25 0 25 50 Tj [oC] 75 100 125 150 -50 -25 0 25 50 Tj [oC] [CAUTION] The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights. - 28 -