OPLINK TRPA48E2IXLMX

Extended Reach Multi-rate OC-48/STM-16LR-2/L-16.2
SFP CWDM Transceivers with Digital Diagnostics
TRPA48E2IxLMx CWDM
Product Description
The TRPA48E2IxLMx CWDM SFP series of multi-rate fiber optic transceivers
with digital diagnostics monitoring functionality provide a quick and reliable
interface for extended reach LR-2 applications. Diagnostics monitoring
functionality (alarm and warning features) is integrated into the design via an
I2C serial interface per the Multi-Source Agreement (MSA) SFF-8472, Rev. 9.3.
Products under this series are compatible with SONET/SDH standards for OC48/STM-16 (2.488Gb/s) LR-2/L-16.2 extended reach applications, OC-3/STM-1
(156Mb/s) and OC-12/STM-4 (622Mb/s) SR/I-1 and I-4 short reach applications;
Gigabit Ethernet LX (1.25Gb/s) applications per IEEE 802.3; and Fibre Channel
200-SM-LC-L (2.125Gb/s) and 100-SM-LC-L (1.062Gb/s) applications per FC-PI
standards. The transceivers support data rates ranging from 2.67Gb/s down
to 125Mb/s and are available in eight (8) wavelengths: 1471nm, 1491nm,
1511nm, 1531nm, 1551nm, 1571nm, 1591nm and 1611nm. The higher optical
link power budget of 30dB is to accommodate the wavelength multiplexing
and de-multiplexing insertion losses. All transceivers are Class I Laser products
per U.S. FDA/CDRH and international IEC-60825 standards.
The TRPA48E2IxLMx CWDM transceivers connect to standard 20-pad SFP
connectors for hot plug capability. This allows the system designer to make
configuration changes or maintenance by simply plugging in different types
of transceivers without removing the power supply from the host system.
The transceivers have colored bail-type latches, which offer an easy and
convenient way to release the modules. The latch is compliant with the SFP
MSA.
The transmitter and receiver DATA interfaces are AC-coupled internally. LV-TTL
Transmitter Disable control input and Loss of Signal (LOS) output interfaces are
also provided.
The transceivers operate from a single +3.3V power supply over an operating
case temperature range of -5°C to +70°C (“B” option) or -5°C to +85°C (“E”
option). The housing is made of metal for EMI immunity.
Features











Distance up to 100km with Single Mode Fiber
Eight (8) Wavelength CWDM Transceivers
Compatible with SFP MSA
Compatible with SONET/SDH OC-48/STM-16
(2.488Gb/s) LR-2/L-16.2 Applications
Compatible with Gigabit Ethernet LX
Compatible with Fibre Channel 200-SM-LC-L
and 100-SM-LC-L
Digital Diagnostics through Serial Interface
Internal Calibration for Digital Diagnostics
APD Receiver
Optical Link Power Budget of 30dB Minimum
Excellent EMI & ESD Protection
 Eye Safe (Class I Laser Safety)
 Hot-pluggable
 TX Fault & Loss of Signal Outputs
 TX Disable Input
Absolute Maximum Ratings
Parameter
Storage Temperature
Operating Case Temperature1
“B” Option
“E” Option
Supply Voltage
Maximum Input Optical Power (30 seconds max.)
Input Voltage
1
Symbol
Minimum
Maximum
Units
TST
- 40
+ 85
°C
-5
+ 70
-5
+ 85
VCC
0
+ 4.5
V
Pin, max
-
+ 3.0
dBm
0
VCC
V
TOP
VIN
°C
Measured on top side of SFP module at the front center vent hole of the cage.
An Oplink Company
RevC-NP.2008.09.09
TRPA48E2IxLMx
Transmitter Performance Characteristics
(Over Operating Case Temperature. VCC = 3.13 to 3.47V)
All parameters guaranteed only at typical data rate
Parameter
Symbol
Minimum
Typical
Maximum
Units
Operating Data Rate
B
0.125
-
2.67
Gb/s
Average Optical Output Power (coupled into single mode
fiber), 50% duty cycle
PO
0
-
+ 5.0
dBm
Phi /Plo
8.2
-
-
dB
1471
1464.5
1471
1477.5
1491
1484.5
1491
1497.5
1511
1504.5
1511
1517.5
1531
1524.5
1531
1537.5
1544.5
1551
1557.5
1571
1564.5
1571
1577.5
1591
1584.5
1591
1597.5
1611
1604.5
1611
1617.5
Extinction Ratio
Center Wavelength
λC
1551
nm
Δλ20
-
-
1.0
nm
SMSR
30
-
-
dB
Optical Rise/Fall Time (20% to 80%)
tr, tf
-
-
0.16
ns
Relative Intensity Noise
RIN
-
-
-117
dB/Hz
JG
-
-
0.07
Ulp-p
-
-
-
2.0
dB
Spectral Width (-20dB)
Side Mode Suppression Ratio
Jitter Generation
OC-48
Dispersion Penalty 1
Optical Output Eye
1
Compliant with Telcordia GR-253-CORE and ITU-T Recommendation G.957
Specified at 2000ps/nm dispersion over G.652/G.654 fiber with center wavelength range of 1464.5-1617.5nm.
(Over Operating Case Temperature. VCC = 3.13 to 3.47V)
Receiver Performance Characteristics
All parameters guaranteed only at typical data rate
Parameter
Operating Data Rate
Symbol
Minimum
Typical
Maximum
Units
B
0.125
-
2.67
Gb/s
Receiver Sensitivity
(10-10 BER) 1
OC-3/12/48, 2.67Gb/s
Pmin
- 30.0
-
-
dBm
Receiver Sensitivity
(10-12 BER) 2
2.125Gb/s, 1.25Gb/s,
1.062Gb/s, 0.125Gb/s
Pmin
- 28.0
-
-
dBm
Pmax
- 8.0
-
-
dBm
Increasing Light Input
Plos+
-
-
- 30.0
Decreasing Light Input
Plos-
- 44.0
-
-
Increasing Light Input
t_loss_off
-
-
100
Decreasing Light Input
t_loss_on
2.3
-
100
Maximum Input Optical Power (10 -12 BER)
LOS Thresholds
LOS Timing Delay
dBm
μs
LOS Hysteresis
-
0.5
1.5
-
dB
Wavelength of Operation
λ
1260
-
1620
nm
Receiver Reflectance
-
-
-
- 27.0
dB
1
2
Measured with 2 -1 PRBS.
Measured with 27-1 PRBS.
23
Oplink Communications, Inc.
2
RevC-NP.2008.09.09
TRPA48E2IxLMx
Transmitter Performance Characteristics
Parameter
Input Voltage Swing (TD+ & TD-) 1
Input HIGH Voltage (TX Disable)
(Over Operating Case Temperature. VCC = 3.13 to 3.47V)
Symbol
Minimum
Typical
Maximum
Units
VPP-DIF
0.35
-
1.75
V
VIH
VCC
V
2.0
-
2
VIL
0
-
0.8
V
Output HIGH Voltage (TX Fault) 3
VOH
2.0
-
VCC + 0.3
V
Output LOW Voltage (TX Fault)
VOL
0
-
0.8
V
Input LOW Voltage (TX Disable)
1
2
3
2
3
Differential peak-to-peak voltage.
There is an internal 4.7 to 10kΩ pull-up resistor to VccT.
Open collector compatible, 4.7 to 10kΩ pull-up resistor to Vcc (Host Supply Voltage).
(Over Operating Case Temperature. VCC = 3.13 to 3.47V))
Receiver Electrical Interface
Parameter
Symbol
Minimum
Typical
Maximum
Units
VPP-DIF
0.4
-
1.75
V
Output HIGH Voltage (LOS)
2
VOH
VCC - 1.3
-
VCC + 0.3
V
Output LOW Voltage (LOS))
2
VOL
0
-
0.5
V
Output Voltage Swing (RD+ & RD-)
1
2
1
Differential peak-to-peak voltage across external 100Ω load.
Open collector compatible, 4.7 to 10kΩ pull-up resistor to Vcc (Host Supply Voltage).
Electrical Power Supply Characteristics
Parameter
(Over Operating Case Temperature. VCC = 3.13 to 3.47V))
Symbol
Minimum
Typical
Maximum
Units
Supply Voltage
VCC
3.13
3.3
3.47
V
Supply Current
ICC
-
210
350
mA
Module Definition
MOD_DEF(0)
pin 6
MOD_DEF(1)
pin 5
MOD_DEF(2)
pin 4
Interpretation by Host
TTL LOW
SCL
SDA
Serial module definition protocol
Electrical Pad Layout
Host Board Connector Pad Layout
20
TX GND
1
TX GND
19
TD- (TX DATA IN-)
2
TX Fault
1
18
TD+ (TX DATA IN+)
3
TX Disable
2
17
TX GND
4
MOD_DEF(2)
3
16
VccTX
5
MOD_DEF(1)
15
VccRX
6
MOD_DEF(0)
14
RX GND
7
NO CONNECTION
6
13
RD+ (RX DATA OUT+)
8
LOS
7
12
RD- (RX DATA OUT-)
9
RX GND
8
11
RX GND
10
RX GND
9
Top of Board
Oplink Communications, Inc.
Toward
Bezel
4
5
10
Bottom of Board
(as viewed thru top of board)
3
20
19
18
17
16
15
Toward
ASIC
14
13
12
11
RevC-NP.2008.09.09
TRPA48E2IxLMx
Example of SFP host board schematic
Vcc
3.3V
1μH coil or ferrite bead
(<0.2Ω series resistance)
Vcc
3.3V
+
0.1
10
0.1
+
10
0.1
R R
16
15
TRPA48E2
R
R
2
TX Fault
8
LOS
4
5
MOD_DEF(2)
MOD_DEF(1)
MOD_DEF(0)
(Internally Grounded)
TX Disable
3
TX DATA IN+
18
13
RX DATA OUT+
to 50Ω load
TX DATA IN-
19
12
RX DATA OUTto 50Ω load
100
6
1, 9, 10, 11, 14, 17, 20
R: 4.7 to 10kΩ
Application Notes
Electrical interface: All signal interfaces are compliant with
the SFP MSA specification. The high speed DATA interface
is differential AC-coupled internally with 0.1μF and can be
directly connected to a 3.3V SERDES IC. All low speed control
and sense output signals are open collector TTL compatible
and should be pulled up with a 4.7 - 10kΩ resistor on the
host board
Upon power up, MOD_DEF(1:2) appear as NC (no connection),
and MOD_DEF(0) is TTL LOW. When the host system detects
this condition, it activates the serial protocol (standard
two-wire I2C serial interface) and generates the serial clock
signal (SCL). The positive edge clocks data into the EEPROM
segments of the SFP that are not write protected, and the
negative edge clocks data from the SFP.
Loss of Signal (LOS): The Loss of Signal circuit monitors the
level of the incoming optical signal and generates a logic HIGH
when an insufficient photocurrent is produced.
The serial data signal (SDA) is for serial data transfer. The
host uses SDA in conjunction with SCL to mark the start and
end of serial protocol activation. The supported monitoring
functions are temperature, voltage, bias current, transmitter
power, average receiver signal, all alarms and warnings, and
software monitoring of TX Fault/LOS. The device is internally
calibrated.
TX_Fault: The output indicates LOW when the transmitter
is operating normally, and HIGH with a laser fault including
laser end-of-life. TX Fault is an open collector/drain output
that should be pulled up with a 4.7 - 10kΩ resistor on the
host board. TX Fault in non-latching (automatically deasserts
when fault goes away).
TX_Disable: When the TX Disable pin is at logic HIGH, the
transmitter optical output is disabled (less than -45dBm).
Serial Identification and Monitoring: The module
definition of SFP is indicated by the three module definition
pins, MOD_DEF(0), MOD_DEF(1) and MOD_DEF(2).
The data transfer protocol and the details of the mandatory
and vendor specific data structures are defined in the SFP
MSA, and SFF-8472, Rev. 9.3.
Power Supply and Grounding: The power supply line
should be well-filtered. All 0.1μF power supply bypass
capacitors should be as close to the transceiver module
as possible.
Laser Safety
Laser Safety: All transceivers are Class I Laser
products per FDA/CDRH and IEC-60825 standards. They must be operated under specified
operating conditions.
Oplink Communications, Inc.
Oplink Communications, Inc.
DATE OF MANUFACTURE:
This product complies with
21 CFR 1040.10 and 1040.11
Meets Class I Laser Safety Requirements
4
RevC-NP.2008.09.09
TRPA48E2IxLMx
46335 Landing Pkwy Fremont, CA 94538 Tel: (510) 933-7200 Fax: (510) 933-7300 Email: [email protected] • www.oplink.com
Mechanical Package
Dimensions in inches [mm]
Default tolerances:
.xxx = + .005”, .xx = + .01”
Ordering Information
Oplink can provide a remarkable range of customized optical solutions. For detail, please contact Oplink’s Sales
and Marketing for your requirements and ordering information (510) 933-7200 or [email protected].
Oplink Communications, Inc. reserves the right to make changes in equipment design or specifications without notice. Information supplied by Oplink Communications, Inc. is believed to be accurate and reliable. However, no responsibility is assumed by Oplink Communications, Inc. for its use nor for any infringements
of third parties, which may result from its use. No license is granted by implication or otherwise under any patent right of Oplink Communications, Inc.
RevC-NP.2008.09.09
© 2006, Oplink Communications, Inc.
5