January 2007 HYB18L128160BF-7.5 HYE18L128160BF-7.5 HYB18L128160 B C- 7 . 5 HYE18L128160 B C- 7 . 5 DRAMs for Mobile Applications 128-Mbit Mobile-RAM Data S heet Rev. 1.71 Data Sheet, HY[B/E]18L128160B[C/F]-7.5 128-Mbit Mobile-RAM HYB18L128160BF-7.5; HYE18L128160BF-7.5; HYB18L128160BC-7.5; HYE18L128160BC-7.5 Revision History: All Rev. 1.71 New Qimonda Template Previous Revision: 1.70 all new template (logo) all VDD, VDDQ changed to 1.70V-1.95V Previous Revision: 2 2007-01 1.61 added disclaimer 49 Figure 47: Updated 28 Figure 25: Updated 12 Chapter 2.1: added to note 6: Programming of the Extended Mode Register... 14 Extended Mode Register table: Editorial changes Chapter 2.2.1.6: Editorial change 39 Chapter 2.4.9.2: changed last paragraph by: If during normal operation... 15, 28, 46, 46 Table 8, Table 12 and Table 21: tIH changed Table 21: note 7 changed: If tT > 1ns, a value of [0.5 x (tT -1)] ns... Table 20: editorial changes We Listen to Your Comments Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: [email protected] Rev. 1.71, 2007-01 05282004-NZNK-8T0D 2 2005-03-07 HY[B/E]18L128160B[C/F]-7.5 128-Mbit Mobile-RAM OverviewFeatures 1 Overview This chapter gives an overview of the DRAMs for Mobile Applications product family and describes its main characteristics. 1.1 Features The DRAMs for Mobile Applications offers the following key features: General Features • • • • • • • • • • • • 4 banks × 2 Mbit × 16 organization Fully synchronous to positive clock edge Four internal banks for concurrent operation Programmable CAS latency: 2, 3 Programmable burst length: 1, 2, 4, 8 or full page Programmable wrap sequence: sequential or interleaved Programmable drive strength Auto refresh and self refresh modes 4096 refresh cycles / 64 ms Auto precharge Commercial (0 °C to +70 °C) and extended (-25 °C to +85 °C) operating temperature range 54-ball P-VFBGA package (12.0 × 8.0 × 1.0 mm) Power Saving Features • • • • • Low supply voltages: VDD = 1.70V to 1.95V, VDDQ = 1.70V to 1.95V Optimized self refresh (IDD6) and standby currents (IDD2/IDD3) Programmable Partial Array Self Refresh (PASR) Temperature Compensated Self-Refresh (TCSR), controlled by on-chip temperature sensor Power-Down and Deep Power Down modes Table 1 Performance Part Number Speed Code - 7.5 Speed Grade Access Time (tAC.max) Clock Cycle Time (tCK.min) Table 2 133 MHz CL = 3 5.4 ns CL = 2 6.0 ns CL = 3 7.5 ns CL = 2 9.5 ns Memory Addressing Scheme Item Addresses Banks BA0, BA1 Rows A0 - A11 Columns A0 - A8 Data Sheet Unit 3 Rev. 1.71, 2007-01 05282004-NZNK-8T0D HY[B/E]18L128160B[C/F]-7.5 128-Mbit Mobile-RAM OverviewPin Configuration Table 3 Ordering Information Type Package Description Commercial Temperature Range P-VFBGA-54-2 133 MHz 4 Banks × 2 Mbit × 16 LP-SDRAM HYB18L128160BC-7.5 Extended Temperature Range P-VFBGA-54-2 133 MHz 4 Banks × 2 Mbit × 16 LP-SDRAM HYE18L128160BC-7.5 Table 4 Type Ordering Information for Green Products 1) Package Description Commercial Temperature Range P-VFBGA-54-2 133 MHz 4 Banks × 2 Mbit × 16 LP-SDRAM HYB18L128160BF-7.5 Extended Temperature Range HYE18L128160BF-7.5 P-VFBGA-54-2 133 MHz 4 Banks × 2 Mbit × 16 LP-SDRAM 1) HYB / HYE: Designator for memory products (HYB: standard temp. range; HYE: extended temp. range) 18L: 1.8V Mobile-RAM 128: 128 MBit density 160: 16 bit interface width B: die revision C / F: lead-containing product (C) / green product (F) -7.5: speed grade(s): min. clock cycle time 1.2 Pin Configuration $ 9''4 '4 9'' 9''4 % 9664 '4 '4 '4 9664 & 9''4 '4 '4 '4 '4 9''4 ' 9664 '4 '4 '4 1& 966 ( 9'' /'40 '4 8'40 &/. &.( ) &$6 5$6 :( 1& $ $ * %$ %$ &6 $ $ $ + $ $ $$3 966 $ $ - $ $ 9'' 966 '4 9664 '4 '4 '4 QRIXQFWLRQ99''49 Figure 1 Data Sheet Standard Ballout 128-Mbit Mobile-RAM 4 Rev. 1.71, 2007-01 05282004-NZNK-8T0D HY[B/E]18L128160B[C/F]-7.5 128-Mbit Mobile-RAM OverviewDescription 1.3 Description The HY[B/E]18L128160B[C/F] is a high-speed CMOS, dynamic random-access memory containing 134,217,728 bits. It is internally configured as a quad-bank DRAM. The HY[B/E]18L128160B[C/F] achieves high speed data transfer rates by employing a chip architecture that prefetches multiple bits and then synchronizes the output data to the system clock. Read and write accesses are burst-oriented; accesses start at a selected location and continue for a programmed number of locations (1, 2, 4, 8 or full page) in a programmed sequence. The device operation is fully synchronous: all inputs are registered at the positive edge of CLK. The HY[B/E]18L128160B[C/F] is especially designed for mobile applications. It operates from a 1.8V power supply. Power consumption in self refresh mode is drastically reduced by an On-Chip Temperature Sensor (OCTS); it can further be reduced by using the programmable Partial Array Self Refresh (PASR). A conventional data-retaining Power-Down (PD) mode is available as well as a non-data-retaining Deep PowerDown (DPD) mode. The HY[B/E]18L128160B[C/F] is housed in a 54-ball P-VFBGA package. It is available in Commercial (0 °C to 70 °C) and Extended (-25 °C to +85 °C) temperature range. Data Sheet 5 Rev. 1.71, 2007-01 05282004-NZNK-8T0D HY[B/E]18L128160B[C/F]-7.5 128-Mbit Mobile-RAM OverviewDescription C om m and D ec ode CS RAS CAS WE Co ntro l L ogi c CKE CLK 9 Data Sheet 4096 (4096 x 512 x 16) 2 Sense Amplifier 2 Column Address Counter / Latch 2 Data Output Reg. 16 B a nk Co lu m n Log ic 2 Figure 2 12 Bank 0 Memory Array 12 14 R efre sh C oun ter A0-A11 BA0,BA1 A dd res s R e gis ter 12 B ank 0 R ow A ddres s L atc h & Deco de r 12 Mode Registers R ow A ddres s M u x Bank 3 Bank 2 Bank 1 IO Gating DQM Mask Logic 9 16 Data Input Reg. LDQM UDQM DQ0DQ15 Column Decoder Functional Block Diagram 6 Rev. 1.71, 2007-01 05282004-NZNK-8T0D HY[B/E]18L128160B[C/F]-7.5 128-Mbit Mobile-RAM OverviewPin Definition and Description 1.4 Pin Definition and Description Table 5 Pin Description Ball Type Detailed Function CLK Input Clock: all inputs are sampled on the positive edge of CLK. CKE Input Clock Enable: CKE HIGH activates and CKE LOW deactivates internal clock signals, device input buffers and output drivers. Taking CKE LOW provides PRECHARGE POWER-DOWN and SELF REFRESH operation (all banks idle), ACTIVE POWERDOWN (row active in any bank) or SUSPEND (access in progress). Input buffers, excluding CLK and CKE are disabled during power-down. Input buffers, excluding CKE are disabled during SELF REFRESH. CS Input Chip Select: All commands are masked when CS is registered HIGH. CS provides for external bank selection on systems with multiple memory banks. CS is considered part of the command code. RAS, CAS, WE Input Command Inputs: RAS, CAS and WE (along with CS) define the command being entered. DQ0 - DQ15 I/O Data Inputs/Output: Bi-directional data bus (16 bit) LDQM, UDQM Input Input/Output Mask: input mask signal for WRITE cycles and output enable for READ cycles. For WRITEs, DQM acts as a data mask when HIGH. For READs, DQM acts as an output enable and places the output buffers in High-Z state when HIGH (two clocks latency). LDQM corresponds to the data on DQ0 - DQ7; UDQM to the data on DQ8 - DQ15. BA0, BA1 Input Bank Address Inputs: BA0 and BA1 define to which bank an ACTIVATE, READ, WRITE or PRECHARGE command is being applied. BA0, BA1 also determine which mode register is to be loaded during a MODE REGISTER SET command (MRS or EMRS). A0 - A11 Input Address Inputs: A0 - A11 define the row address during an ACTIVE command cycle. A0 - A8 define the column address during a READ or WRITE command cycle. In addition, A10 (= AP) controls Auto Precharge operation at the end of the burst read or write cycle. During a PRECHARGE command, A10 (= AP) in conjunction with BA0, BA1 controls which bank(s) are to be precharged: if A10 is HIGH, all four banks will be precharged regardless of the state of BA0 and BA1; if A10 is LOW, BA0, BA1 define the bank to be precharged. During MODE REGISTER SET commands, the address inputs hold the op-code to be loaded. VDDQ Supply I/O Power Supply: Isolated power for DQ output buffers for improved noise immunity: VDDQ = 1.70V to 1.95V VSSQ Supply I/O Ground VDD Supply Power Supply: Power for the core logic and input buffers, VDD = 1.70V to 1.95V VSS Supply Ground N.C. – Data Sheet No Connect 7 Rev. 1.71, 2007-01 05282004-NZNK-8T0D HY[B/E]18L128160B[C/F]-7.5 128-Mbit Mobile-RAM Functional DescriptionPower On and Initialization 2 Functional Description The 128-Mbit Mobile-RAM is a high-speed CMOS, dynamic random-access memory containing 134,217,728 bits. It is internally configured as a quad-bank DRAM. READ and WRITE accesses to the Mobile-RAM are burst oriented; accesses start at a selected location and continue for a programmed number of locations in a programmed sequence. Accesses begin with the registration of an ACTIVE command, followed by a READ or WRITE command. The address bits registered coincident with the ACTIVE command are used to select the bank and row to be accessed (BA0, BA1 select the banks, A0 - A11 select the row). The address bits registered coincident with the READ or WRITE command are used to select the starting column location for the burst access. Prior to normal operation, the Mobile-RAM must be initialized. The following sections provide detailed information covering device initialization, register definition, command description and device operation. 2.1 Power On and Initialization The Mobile-RAM must be powered up and initialized in a predefined manner (see Figure 3). Operational procedures other than those specified may result in undefined operation. 6$$ 6$$ 1 S T#+ T20 T2&# T2&# T-2$ T-2$ #,+ #+% #OM MA ND ./0 02% !2& !DDRE SS !LL "ANKS ! !2& -23 -23 . !/ #4 0 #/$ % #/$ % . 2 /!0 #/$ % #/$ % . 2 /!0 "! , "! , "! , "!( ,OAD -ODE 2EGISTE R ,OAD %XT -ODE 2EGISTE R "!"! . " /!0 $1 (,E VEL $1 (IG H: 0OWE R UP 6$$ AN D#+ STA BLE $O NgT#A RE Figure 3 Data Sheet Power-Up Sequence and Mode Register Sets 8 Rev. 1.71, 2007-01 05282004-NZNK-8T0D HY[B/E]18L128160B[C/F]-7.5 128-Mbit Mobile-RAM Functional DescriptionRegister Definition 1. At first, device core power (VDD) and device IO power (VDDQ) must be brought up simultaneously. Typically VDD and VDDQ are driven from a single power converter output. Assert and hold CKE and DQM to a HIGH level. 2. After VDD and VDDQ are stable and CKE is HIGH, apply stable clocks. 3. Wait for 200µs while issuing NOP or DESELECT commands. 4. Issue a PRECHARGE ALL command, followed by NOP or DESELECT commands for at least tRP period. 5. Issue two AUTO REFRESH commands, each followed by NOP or DESELECT commands for at least tRFC period. 6. Issue two MODE REGISTER SET commands for programming the Mode Register and Extended Mode Register, each followed by NOP or DESELECT commands for at least tMRD period; the order in which both registers are programmed is not important. Programming of the Extended Mode Register may be omitted when default values (half drive strength, 4 bank refresh) will be used. Following these steps, the Mobile-RAM is ready for normal operation. 2.2 Register Definition 2.2.1 Mode Register The Mode Register is used to define the specific mode of operation of the Mobile-RAM. This definition includes the selection of a burst length (bits A0-A2), a burst type (bit A3), a CAS latency (bits A4-A6), and a write burst mode (bit A9). The Mode Register is programmed via the MODE REGISTER SET command (with BA0 = 0 and BA1 = 0) and will retain the stored information until it is programmed again or the device loses power. The Mode Register must be loaded when all banks are idle, and the controller must wait the specified time before initiating any subsequent operation. Violating either of these requirements results in unspecified operation. Reserved states should not be used, as unknown operation or incompatibility with future versions may result. "! "! ! ! ! ! ! 7" ! ! #, ! ! "4 ! ! ! ", -0", Field Bits Type Description WB 9 w Write Burst Mode 0B Burst Write 1B Single Write CL [6:4] w CAS Latency 010B 2 011B 3 Note: All other bit combinations are RESERVED. BT 3 Data Sheet w Burst Type 0B Sequential 1B Interleaved 9 Rev. 1.71, 2007-01 05282004-NZNK-8T0D HY[B/E]18L128160B[C/F]-7.5 128-Mbit Mobile-RAM Functional DescriptionRegister Definition Field Bits Type Description BL [2:0] w Burst Length 000B 1 001B 2 010B 4 011B 8 111B full page (Sequential burst type only) Note: All other bit combinations are RESERVED. 2.2.1.1 Burst Length READ and WRITE accesses to the Mobile-RAM are burst oriented, with the burst length being programmable. The burst length determines the maximum number of column locations that can be accessed for a given READ or WRITE command. Burst lengths of 1, 2, 4, 8 locations are available for both the sequential and interleaved burst types, and a full-page burst mode is available for the sequential burst type. When a READ or WRITE command is issued, a block of columns equal to the burst length is effectively selected. All accesses for that burst take place within this block, meaning that the burst wraps within the block if a boundary is reached. The block is uniquely selected by A1-A8 when the burst length is set to two, by A2-A8 when the burst length is set to four and by A3-A8 when the burst length is set to eight. The remaining (least significant) address bit(s) is (are) used to select the starting location within the block. Full page bursts wrap within the page if the boundary is reached. Please note that full page bursts do not selfterminate; this implies that full-page read or write bursts with Auto Precharge are not legal commands. Table 6 Burst Definition Burst Length Starting Column Address A2 A1 A0 Sequential Interleaved 0 0-1 0-1 1 1-0 1-0 0 0 0-1-2-3 0-1-2-3 0 1 1-2-3-0 1-0-3-2 1 0 2-3-0-1 2-3-0-1 2 4 8 Full Page Order of Accesses Within a Burst 1 1 3-0-1-2 3-2-1-0 0 0 0 0-1-2-3-4-5-6-7 0-1-2-3-4-5-6-7 0 0 1 1-2-3-4-5-6-7-0 1-0-3-2-5-4-7-6 0 1 0 2-3-4-5-6-7-0-1 2-3-0-1-6-7-4-5 0 1 1 3-4-5-6-7-0-1-2 3-2-1-0-7-6-5-4 1 0 0 4-5-6-7-0-1-2-3 4-5-6-7-0-1-2-3 1 0 1 5-6-7-0-1-2-3-4 5-4-7-6-1-0-3-2 1 1 0 6-7-0-1-2-3-4-5 6-7-4-5-2-3-0-1 1 1 1 7-0-1-2-3-4-5-6 7-6-5-4-3-2-1-0 n n n Cn, Cn+1, Cn+2, … not supported NotesNotes 1. 2. 3. 4. For a burst length of 2, A1-Ai select the two-data-element block; A0 selects the first access within the block. For a burst length of 4, A2-Ai select the four-data-element block; A0-A1 select the first access within the block. For a burst length of 8, A3-Ai select the eight-data-element block; A0-A2 select the first access within the block. For a full page burst, A0-Ai select the starting data element. Data Sheet 10 Rev. 1.71, 2007-01 05282004-NZNK-8T0D HY[B/E]18L128160B[C/F]-7.5 128-Mbit Mobile-RAM Functional DescriptionRegister Definition 5. Whenever a boundary of the block is reached within a given sequence, the following access wraps within the block. 2.2.1.2 Burst Type Accesses within a given burst may be programmed to be either sequential or interleaved; this is referred to as the burst type and is selected via bit A3. The ordering of accesses within a burst is determined by the burst length, the burst type and the starting column address, as shown in Table 6. 2.2.1.3 Read Latency The Read latency, or CAS latency, is the delay, in clock cycles, between the registration of a READ command and the availability of the first piece of output data. The latency can be programmed to 2 or 3 clocks. If a READ command is registered at clock edge n, and the latency is m clocks, the data will be available with clock edge n + m (for details please refer to the READ command description). 2.2.1.4 Write Burst Mode When A9 = 0, the burst length programmed via A0-A2 applies to both read and write bursts; when A9 = 1, write accesses consist of single data elements only. 2.2.1.5 Extended Mode Register The Extended Mode Register controls additional low power features of the device. These include the Partial Array Self Refresh (PASR, bits A0-A2)), the Temperature Compensated Self Refresh (TCSR, bits A3-A4)) and the drive strength selection for the DQs (bits A5-A6). The Extended Mode Register is programmed via the MODE REGISTER SET command (with BA0 = 0 and BA1 = 1) and will retain the stored information until it is programmed again or the device loses power. The Extended Mode Register must be loaded when all banks are idle, and the controller must wait the specified time before initiating any subsequent operation. Violating either of these requirements result in unspecified operation. Reserved states should not be used, as unknown operation or incompatibility with future versions may result. "! "! ! ! ! ! ! 7" ! ! $3 ! ! 4# 32 ! ! ! 0!3 2 -0", Field Bits Type Description DS [6:5] w Selectable Drive Strength 00B Full Drive Strength 01B Half Drive Strength (default) Note: All other bit combinations are RESERVED. TCSR [4:3] Data Sheet w Temperature Compensated Self Refresh XXB Superseded by on-chip temperature sensor (see text) 11 Rev. 1.71, 2007-01 05282004-NZNK-8T0D HY[B/E]18L128160B[C/F]-7.5 128-Mbit Mobile-RAM Functional DescriptionState Diagram Field Bits Type Description PAS R [2:0] w Partial Array Self Refresh 000B all banks (default) 001B 1/2 array (BA1 = 0) 010B 1/4 array (BA1 = BA0 = 0) 101B 1/8 array (BA1 = BA0 = RA11 = 0) 110B 1/16 array (BA1 = BA0 = RA11 = RA10 = 0) Note: All other bit combinations are RESERVED. 2.2.1.6 Partial Array Self Refresh (PASR) Partial Array Self Refresh is a power-saving feature specific to Mobile RAMs. With PASR, self refresh may be restricted to variable portions of the total array. The selection comprises all four banks, two banks, one bank, half of one bank, and a quarter of one bank. Data written to the non activated memory sections will get lost after a period defined by tREF (cf. Table 14). 2.2.1.7 Temperature Compensated Self Refresh (TCSR) with On-Chip Temperature Sensor DRAM devices store data as electrical charge in tiny capacitors that require a periodic refresh in order to retain the stored information. This refresh requirement heavily depends on the die temperature: high temperatures correspond to short refresh periods, and low temperatures correspond to long refresh periods. The Mobile-RAM is equipped with an on-chip temperature sensor which continuously senses the actual die temperature and adjusts the refresh period in Self Refresh mode accordingly. This makes any programming of the TCSR bits in the Extended Mode Register obsolete. It also is the superior solution in terms of compatibility and power-saving, because • • • it is fully compatible to all processors that do not support the Extended Mode Register it is fully compatible to all applications that only write a default (worst case) TCSR value, e.g. because of the lack of an external temperature sensor it does not require any processor interaction for regular TCSR updates 2.2.1.8 Selectable Drive Strength The drive strength of the DQ output buffers is selectable via bits A5 and A6 and shall be set load dependent. The half drive strength is suitable for typical Mobile-RAM applications. The full drive strength is intended for heavier loaded systems. I-V curves for full drive strength and half drive strength can be found in Table 24. 2.3 Data Sheet State Diagram 12 Rev. 1.71, 2007-01 05282004-NZNK-8T0D HY[B/E]18L128160B[C/F]-7.5 128-Mbit Mobile-RAM Functional DescriptionState Diagram 0OW E R APPLIE D 0OWE R /N $EEP 0OWE R $OW N $0$ 3 8 0RECHAR GE !LL 02% ! ,, 3ELF 2EFRESH $0$ 3 2%&3 8 2%& 3 -ODE 2EGIS TER 3ET -23 !UTO 2EFRE SH 2%& ! )DLE #+% , #+%( !CTIVE 0OW ER $OWN 0REC HARG E 0OWE R $OWN !#4 #+% ( #+%, 2OW !CTIV E "34 "34 2%! $ 72)4 % 72 )4 % ! #LO CK #+%, 3US PEND 72)4% #+%( 2% ! $! 72)4 % 72)4% 2%!$ 72)4% ! 72 )4% ! #LO CK #+%, 72)4% ! 3US PEND 72)4% ! #+%( 02% 2%! $ 2%!$ ! 2%! $ ! 02% 02% 02% #LO CK 3USPEN D #+%( 2%!$ #+% , 2%! $ ! #LO CK 3USPEN D #+%( 2%! $ ! #+% , 0RECHARGE !UTOMA TIC 3E QUENC E #OMM A ND3E QUEN CE 02% !, ,0R ECH AR GE!LL"A NKS 2%&3 % NTE R3 ELF2E FRESH 2%&3 8%X IT3E LF2 EFRES H 2%&! ! UTO 2EFRES H TER$E EP0O WE R$ OW N $0$ 3%N $0$ 3 8%XIT$E E P0O WE R$O WN Figure 4 Data Sheet #+% ,% NTER 0O WE R$O WN #+% (%XIT0OW ER $O WN 2%!$ 2EAD WO!U TO0RE CHAR GE 2%!$ ! 2E ADWITH!U TO0 RE CHA RGE 72)4%7RITEWO!U TO0REC HARG E 72)4%!7R ITE WITH!U TO0R ECHA RGE !#4 !C TIV E 02% 0R ECHARG E "34 "URST4ER MIN A TE -23 -ODE2E GIS TER 3E T State Diagram 13 Rev. 1.71, 2007-01 05282004-NZNK-8T0D HY[B/E]18L128160B[C/F]-7.5 128-Mbit Mobile-RAM Functional DescriptionCommands 2.4 Commands Table 7 Command Overview Command CS RAS CAS WE DQM NOP DESELECT Address Notes 1) H X X X X X L H H H X X ACT ACTIVE (Select bank and row) L L H H X Bank / Row 2) RD READ (Select bank and column and start read burst) L H L H L/H Bank / Col 3) WR WRITE (Select bank and column and start write burst) L H L L L/H Bank / Col BST BURST TERMINATE or DEEP POWER DOWN L H H L X X 4) PRE PRECHARGE (Deactivate row in bank or banks) L L H L X Code 5) ARF AUTO REFRESH or SELF REFRESH (enter self refresh mode) L L L H X X 6)7) MRS MODE REGISTER SET L L L L X Op-Code 8) – Data Write / Output Enable – – – – L – 9) – Write Mask / Output Disable (High-Z) – – – – H – NO OPERATION 1) DESELECT and NOP are functionally interchangeable. 2) BA0, BA1 provide bank address, and A0 - A11 provide row address. 3) BA0, BA1 provide bank address, A0 - A8 provide column address; A10 HIGH enables the Auto Precharge feature (non persistent), A10 LOW disables the Auto Precharge feature. 4) This command is BURST TERMINATE if CKE is HIGH, DEEP POWER DOWN if CKE is LOW. The BURST TERMINATE command is defined for READ or WRITE bursts with Auto Precharge disabled only. 5) A10 LOW: BA0, BA1 determine which bank is precharged. A10 HIGH: all banks are precharged and BA0, BA1 are “Don’t Care”. 6) This command is AUTO REFRESH if CKE is HIGH, SELF REFRESH if CKE is LOW. 7) Internal refresh counter controls row and bank addressing; all inputs and I/Os are “Don’t Care” except for CKE. 8) BA0, BA1 select either the Mode Register (BA0 = 0, BA1 = 0) or the Extended Mode Register (BA0 = 0, BA1 = 1); other combinations of BA0, BA1 are reserved; A0 - A11 provide the op-code to be written to the selected mode register. 9) DQM LOW: data present on DQs is written to memory during write cycles; DQ output buffers are enabled during read cycles; DQM HIGH: data present on DQs are masked and thus not written to memory during write cycles; DQ output buffers are placed in High-Z state (two clocks latency) during read cycles. Address (A0 - A11, BA0, BA1), write data (DQ0 - DQ15) and command inputs (CKE, CS, RAS, CAS, WE, DQM) are all registered on the positive edge of CLK. Figure 5 shows the basic timing parameters, which apply to all commands and operations. Data Sheet 14 Rev. 1.71, 2007-01 05282004-NZNK-8T0D HY[B/E]18L128160B[C/F]-7.5 128-Mbit Mobile-RAM Functional DescriptionCommands T#+ T#( T#, #,+ T)3 T)( )NPUT 6ALID 6ALID 6ALID $O NgT#A RE ! ! " !"! #3 # + %2 ! 3# ! 37 % Figure 5 Address / Command Inputs Timing Parameters Table 8 Inputs Timing Parameters Parameter Symbol - 7.5 min. Clock cycle time CL = 3 tCK CL = 2 Clock frequency CL = 3 fCK CL = 2 Unit Notes max. 7.5 –– ns 9.5 –– ns –– 133 MHz –– 105 MHz –– –– Clock high-level width tCH 2.5 –– ns –– Clock low-level width tCL 2.5 –– ns –– Address and command input setup time tIS 1.5 –– ns –– Address and command input hold time tIH 0.5 –– ns –– 2.4.1 NO OPERATION (NOP) #,+ #+% (IG H #3 2!3 #!3 7% !! "! " ! $O NgT#A R E Figure 6 No Operation Command The NO OPERATION (NOP) command is used to perform a NOP to a Mobile-RAM which is selected (CS = LOW). This prevents unwanted commands from being registered during idle states. Operations already in progress are not affected. Data Sheet 15 Rev. 1.71, 2007-01 05282004-NZNK-8T0D HY[B/E]18L128160B[C/F]-7.5 128-Mbit Mobile-RAM Functional DescriptionCommands 2.4.2 DESELECT The DESELECT function (CS = HIGH) prevents new commands from being executed by the Mobile-RAM. The Mobile-RAM is effectively deselected. Operations already in progress are not affected. 2.4.3 MODE REGISTER SET #,+ #+% (IG H #3 2!3 #!3 7% !! #ODE "! " ! #ODE $O NgT#A R E Figure 7 Mode Register Set Command The Mode Register and Extended Mode Register are loaded via inputs A0 - A11 (see mode register descriptions in Chapter 2.2). The MODE REGISTER SET command can only be issued when all banks are idle and no bursts are in progress. A subsequent executable command cannot be issued until tMRD is met. #,+ #OM MA ND -23 ./0 6ALID T-2$ !DDRE SS #ODE 6ALID $O NgT#A RE #ODE -OD E2E GIS TER%X TEN DED-OD E2E GIS TERSE LE CTIO N "! "! ANDOPCO DE! ! Figure 8 Mode Register Definition Table 9 Timing Parameters for Mode Register Set Command Parameter Symbol - 7.5 min. MODE REGISTER SET command period Data Sheet tMRD 16 2 Units Notes max. — tCK — Rev. 1.71, 2007-01 05282004-NZNK-8T0D HY[B/E]18L128160B[C/F]-7.5 128-Mbit Mobile-RAM Functional DescriptionCommands 2.4.4 ACTIVE #,+ #+% (IG H #3 2!3 #!3 7% !! 2! "! " ! "! $O NgT#A R E "! " ANK! DD RES S 2!2O W! DDR ESS Figure 9 ACTIVE Command Before any READ or WRITE commands can be issued to a bank within the Mobile-RAM, a row in that bank must be “opened” (activated). This is accomplished via the ACTIVE command and addresses A0 - A11, BA0 and BA1 (see Figure 9), which decode and select both the bank and the row to be activated. After opening a row (issuing an ACTIVE command), a READ or WRITE command may be issued to that row, subject to the tRCD specification. A subsequent ACTIVE command to a different row in the same bank can only be issued after the previous active row has been “closed” (precharged). The minimum time interval between successive ACTIVE commands to the same bank is defined by tRC. A subsequent ACTIVE command to another bank can be issued while the first bank is being accessed, which results in a reduction of total row-access overhead. The minimum time interval between successive ACTIVE commands to different banks is defined by tRRD. #,+ #OM MA ND !#4 !! 2/7 2/7 #/, "!"! "!X "!Y "!Y ./0 !#4 ./0 T22$ ./0 2$7 2 ./0 T2#$ $O NgT#A R E Figure 10 Data Sheet Bank Activate Timings 17 Rev. 1.71, 2007-01 05282004-NZNK-8T0D HY[B/E]18L128160B[C/F]-7.5 128-Mbit Mobile-RAM Functional DescriptionCommands Table 10 Timing Parameters for ACTIVE Command Parameter Symbol - 7.5 min. Units Notes max. ACTIVE to ACTIVE command period tRC 67 — ns ACTIVE to READ or WRITE delay tRCD 19 — ns ACTIVE bank A to ACTIVE bank B delay tRRD 15 — ns 1) 1) These parameters account for the number of clock cycles and depend on the operating frequency as follows: no. of clock cycles = specified delay / clock period; round up to next integer. 2.4.5 READ #,+ #+% (IG H #3 2!3 #!3 7% ! ! #! %NAB LE! 0 ! "! " ! Figure 11 $ISA BLE!0 "!" AN K!D DRES S #! # O LUMN ! DD RES S !0! UTO0 RE CH AR GE "! $O NgT# AR E !0 READ Command Subsequent to programming the mode register with CAS latency and burst length, READ bursts are initiated with a READ command, as shown in Figure 11. Basic timings for the DQs are shown in Figure 12; they apply to all read operations and therefore are omitted from all subsequent timing diagrams. The starting column and bank addresses are provided with the READ command and Auto Precharge is either enabled or disabled for that burst access. If Auto Precharge is enabled, the row being accessed starts precharge at the completion of the burst, provided tRAS has been satisfied. For the generic READ commands used in the following illustrations, Auto Precharge is disabled. Data Sheet 18 Rev. 1.71, 2007-01 05282004-NZNK-8T0D HY[B/E]18L128160B[C/F]-7.5 128-Mbit Mobile-RAM Functional DescriptionCommands #,+ T$1: $1 T!# T!# T,: T/( $1 $/N T(: T/( $/N $O NgT#A RE Figure 12 Data Sheet Basic READ Timing Parameters for DQs 19 Rev. 1.71, 2007-01 05282004-NZNK-8T0D HY[B/E]18L128160B[C/F]-7.5 128-Mbit Mobile-RAM Functional DescriptionCommands Table 11 Timing Parameters for READ Parameter Symbol - 7.5 Units min. Access time from CLK Notes max. CL = 3 tAC — 5.4 ns CL = 2 tAC — 6.0 ns tLZ 1.0 — ns DQ high-impedance time from CLK tHZ 3.0 7.0 ns Data out hold time tOH 2.5 – ns — DQM to DQ High-Z delay (READ Commands) tDQZ — 2 tCK — ACTIVE to ACTIVE command period tRC 67 — ns 1) ACTIVE to READ or WRITE delay tRCD 19 — ns ACTIVE to PRECHARGE command period tRAS 45 100k ns PRECHARGE command period tRP 19 — ns DQ low-impedance time from CLK — — 1) These parameters account for the number of clock cycles and depend on the operating frequency as follows: no. of clock cycles = specified delay / clock period; round up to next integer. During READ bursts, the valid data-out element from the starting column address is available following the CAS latency after the READ command. Each subsequent data-out element is valid nominally at the next positive clock edge. Upon completion of a READ burst, assuming no other READ command has been initiated, the DQs go to High-Z state. Figure 13 and Figure 14 show single READ bursts for each supported CAS latency setting. #,+ T2#$ T2!3 #OMM AND !#4 ./0 2%!$ !DD RESS "A! 2OWX "A! #OLN !!0 2OWX $IS! 0 T20 T2# ./0 ./0 ./0 02% ./0 !#4 "A! 2OWB 0RE !LL !0 2OWB 0RE" ANK! #, $1 $/N $/N $/N "A!#O LNBANK !C OLU MNN !0!UTO0R EC HA RG E $/N$A TA/UTFROM COLU M NN $IS !0 $ISA BLE !U TO0REC HAR GE "URST,ENG THIN THECAS ESHOW N TELE ME NTS OF$A TA/ UTAREP ROVID ED IN THEPROGR AMME DORDER FOLLO WING $/ N SU BSE QUEN Figure 13 Data Sheet $/N $O NgT#A RE Single READ Burst (CAS Latency = 2) 20 Rev. 1.71, 2007-01 05282004-NZNK-8T0D HY[B/E]18L128160B[C/F]-7.5 128-Mbit Mobile-RAM Functional DescriptionCommands #,+ T2#$ T2!3 #OMM AND !#4 ./0 ./0 2%! $ !DD RESS "A! 2OW X "A! #OLN !!0 2OW X $IS ! 0 T20 T2# ./0 ./0 ./0 02% ./0 ./0 !#4 "A! 2OW B 0RE!LL !0 2OW B 0RE" ANK! #, $1 $/N $/N $/N $/N $O NgT#A RE "A!#O LNBANK !C OLU MNN !0!UTO0R ECHA RGE $/N$A TA/UTFROM COLU M NN $IS !0$IS ABLE !UTO0REC HARGE "URST,ENG THIN THECAS ESHOW N TELE ME NTS OF$A TA/ UTAREP ROVID ED IN THEPROGR AMME DORDER FOLLO WING $/ N SU BSE QUEN Figure 14 Single READ Burst (CAS Latency = 3) Data from any READ burst may be concatenated with data from a subsequent READ command. In either case, a continuous flow of data can be maintained. A READ command can be initiated on any clock cycle following a previous READ command, and may be performed to the same or a different (active) bank. The first data element from the new burst follows either the last element of a completed burst (Figure 15) or the last desired data element of a longer burst which is being truncated (Figure 16). The new READ command should be issued x cycles after the first READ command, where x equals the number of desired data elements. #,+ #OM MA ND 2%!$ !DDRE SS "A! #OLN ./0 ./0 ./0 2%!$ ./0 ./0 ./0 ./0 "A! #OLB #, $1 $/N $/N $/N $/N $/B $/B $/B $/N $/N $/N $/N $/B $/B #, $1 "A!# OLNB"AN K!#OLU MNNB $/N B$A TA/UTFROMCOLU MN NB "URST,ENGTHIN TH ECA SESHO WN SUBSEQ UENTELE M ENTSO F$A TA/U TAREPROVID E DIN THE PROG RAMM EDORDE RFOLLOW IN G$/ N B Figure 15 Data Sheet $O NgT#A RE Consecutive READ Bursts 21 Rev. 1.71, 2007-01 05282004-NZNK-8T0D HY[B/E]18L128160B[C/F]-7.5 128-Mbit Mobile-RAM Functional DescriptionCommands #,+ #OM MA ND 2%!$ 2%!$ 2%!$ 2%!$ !DDRE SS "A! #OLN "A! #OLA "A! #OLX "A! #OLM ./0 ./0 ./0 ./0 ./0 #, $1 $/N $/A $/X $/M $/M $/M $/M $/N $/A $/X $/M $/M $/M #, $1 $O NgT#A RE "A!#O LNETC "AN K!#O LU MNNETC $/N ETC $A TA/U TFRO MCOLU MNNE TC "URST,ENGTHIN TH ECASESHO WN BURS TSARE TERM IN ATED BYCON SE CUTIV E2% ! $CO M MA NDS VID EDIN THEPR OGRA MMED ORDE RFOLLO W IN G$/ M SUBSEQ UENTELE MENTSO F$A TA/U TAR EPRO Figure 16 Random READ Bursts Non-consecutive READ bursts are shown in Figure 17. #,+ #OM MA ND 2%!$ !DDRE SS "A! #OLN ./0 ./0 ./0 ./0 2%!$ ./0 ./0 ./0 "A! #OLB #, $1 $/N $/N $/N $/N $/N $/N $/N $/B $/B #, $1 $/N $/B "A!# OLNB"AN K!#OLU MNNB $/N B$A TA/UTFROMCOLU MN NB "URST,ENGTHIN TH ECA SESHO WN SUBSEQ UENTELE MEN TSO F$A TA/U TAREPR OVID ED IN THE PROG RAMMED ORDE RFOLLOW IN G$/ N B Figure 17 Data Sheet $O NgT#A RE Non-Consecutive READ Bursts 22 Rev. 1.71, 2007-01 05282004-NZNK-8T0D HY[B/E]18L128160B[C/F]-7.5 128-Mbit Mobile-RAM Functional DescriptionCommands 2.4.5.1 READ Burst Termination Data from any READ burst may be truncated using the BURST TERMINATE command (see Page 34), provided that Auto Precharge was not activated. The BURST TERMINATE latency is equal to the CAS latency, i.e. the BURST TERMINATE command must be issued x clock cycles before the clock edge at which the last desired data element is valid, where x equals the CAS latency for READ bursts minus 1. This is shown in Figure 18. The BURST TERMINATE command may be used to terminate a full-page READ which does not self-terminate. #,+ #OM MA ND 2%!$ !DDRE SS "A! #OLN ./0 ./0 "34 ./0 ./0 ./0 ./0 ./0 #, $1 $/N $/N $/N $/N $/N #, $1 $/N "A!# OLN"ANK !#O LU MNN $/N $A TA/U TFRO MCOLU MNN "URST,ENGTHIN TH ECASESHO WN SUBSE Q UENTELE MEN TSO F$A TA/U TAREPR OVID ED IN THE PROGRA MMED ORDE RFOLLOW IN G$/ N 4HE BURSTIS TER MIN ATEDAFTERTHE RDDATA ELE ME NT Figure 18 Terminating a READ Burst 2.4.5.2 Clock Suspend Mode for READ Cycles $O NgT#A RE Clock suspend mode allows to extend any read burst in progress by a variable number of clock cycles. As long as CKE is registered LOW, the following internal clock pulse(s) will be ignored and data on DQ will remain driven, as shown in Figure 19. Data Sheet 23 Rev. 1.71, 2007-01 05282004-NZNK-8T0D HY[B/E]18L128160B[C/F]-7.5 128-Mbit Mobile-RAM Functional DescriptionCommands #,+ #+% INTER NAL CLO CK #OM MA ND 2%!$ !DDRE SS "A! #OLN ./0 ./0 ./0 T#3, $1 ./0 T#3, $/N ./0 T#3, $/N $/N $/N $O NgT#A RE "A!#O LNETC "AN K!#O LU MNNETC $/N ETC $A TA/U TFRO MCOLU MNNE TC #, IN THECASESH OWN #LOCK SU SPEND LATENCYT#3,IS CLO CK CYCLE Figure 19 Clock Suspend Mode for READ Bursts 2.4.5.3 READ - DQM Operation DQM may be used to suppress read data and place the output buffers into High-Z state. The generic timing parameters as listed in Table 11 also apply to this DQM operation. The read burst in progress is not affected and will continue as programmed. #,+ #OM MA ND 2%!$ !DDRE SS "A! #OLN ./0 ./0 ./0 ./0 ./0 ./0 ./0 T$1: $1 $1 $/N $/N $O NgT#A RE "A!#O LNBA NK! COLU MN N $/N $A TA/U TFRO MCOLU MNN #, IN THECASESH OWN $1-READ LA TENCYT$1:IS CLO CKCYCLE S Figure 20 READ Burst - DQM Operation 2.4.5.4 READ to WRITE $/N A READ burst may be followed by or truncated with a WRITE command. The WRITE command can be performed to the same or a different (active) bank. Care must be taken to avoid bus contention on the DQs; therefore it is recommended that the DQs are held in High-Z state for a minimum of 1 clock cycle. This can be achieved by either delaying the WRITE command, or suppressing the data-out from the READ by pulling DQM HIGH two clock cycles Data Sheet 24 Rev. 1.71, 2007-01 05282004-NZNK-8T0D HY[B/E]18L128160B[C/F]-7.5 128-Mbit Mobile-RAM Functional DescriptionCommands prior to the WRITE command, as shown in Figure 21. With the registration of the WRITE command, DQM acts as a write mask: when asserted HIGH, input data will be masked and no write will be performed. #,+ #OM MA ND 2%!$ !DDRE SS "A! #OLN ./0 ./0 ./0 ./0 72)4% ./0 ./0 "A! #OLB $1 #, $1 $/N $/N (IG H: $)B $)B $)B $/N (IG H: $)B $)B $)B #, $1 $O NgT#A RE "A!#O LNBB ANK!COLU MN NB $/N $ATA /UTFR OMC OLU MNN $ )B$ ATA)NTOCOLU MNB $1-IS ASSER TED( )' (TOSET$1 STO(IG H: STA TEFORC LO CKCYC LE PRIO RTOTHE72)4% COMM AND Figure 21 READ to WRITE Timing 2.4.5.5 READ to PRECHARGE A READ burst may be followed by, or truncated with a PRECHARGE command to the same bank, provided that Auto Precharge was not activated. This is shown in Figure 22. The PRECHARGE command should be issued x clock cycles before the clock edge at which the last desired data element is valid, where x equals the CAS latency for READ bursts minus 1. Following the PRECHARGE command, a subsequent ACTIVE command to the same bank cannot be issued until tRP is met. Please note that part of the row precharge time is hidden during the access of the last data elements. In the case of a READ being executed to completion, a PRECHARGE command issued at the optimum time (as described above) provides the same operation that would result from the same READ burst with Auto Precharge enabled. The disadvantage of the PRECHARGE command is that it requires that the command and address busses be available at the appropriate time to issue the command. The advantage of the PRECHARGE command is that it can be used to truncate bursts. Data Sheet 25 Rev. 1.71, 2007-01 05282004-NZNK-8T0D HY[B/E]18L128160B[C/F]-7.5 128-Mbit Mobile-RAM Functional DescriptionCommands #,+ T20 #OM MA ND 2%!$ !DDRE SS "A! #OLN ! !0 $IS!0 ./0 ./0 ./0 02% ./0 ./0 !#4 "A! 2OWA "A! 0RE! LL !0 0RE" ANK ! #, $1 $/N $/N $/N $/N $O NgT#A RE "A!# OLNBAN K! COLU MNN "! !M 2O WBAN K!ROWX $/N $A TA/U TFRO MCOLU MNN "URST,ENGTHIN TH ECASESHO WN #!3LA TENCY IN THECAS ESHOW N SUBSEQ UENTELE MEN TSO F$A TA/U TAREPR OVID ED IN THE PROGRA MMED ORDE RFOLLOW IN G$/ N Figure 22 READ to PRECHARGE Timing 2.4.6 WRITE #,+ #+% (IG H #3 2!3 #!3 7% ! ! #! %NAB LE! 0 ! !0 $ISA BLE!0 "! " ! Figure 23 "! "!" AN K! DD RES S #! #O LUM N ! DD RESS !0! UTO0 RE CHA RGE $O NgT# AR E WRITE Command WRITE bursts are initiated with a WRITE command, as shown in Figure 23. Basic timings for the DQs are shown in Figure 24; they apply to all write operations. The starting column and bank addresses are provided with the WRITE command, and Auto Precharge is either enabled or disabled for that access. If Auto Precharge is enabled, the row being accessed is precharged at the Data Sheet 26 Rev. 1.71, 2007-01 05282004-NZNK-8T0D HY[B/E]18L128160B[C/F]-7.5 128-Mbit Mobile-RAM Functional DescriptionCommands completion of the write burst. For the generic WRITE commands used in the following illustrations, Auto Precharge is disabled. #,+ T)( T)3 $1 T)( T)3 $1 $)N $)N $O NgT#A RE Figure 24 Basic WRITE Timing Parameters for DQs During WRITE bursts, the first valid data-in element is registered coincident with the WRITE command, and subsequent data elements are registered on each successive positive edge of CLK. Upon completion of a burst, assuming no other commands have been initiated, the DQs remain in High-Z state, and any additional input data is ignored. Figure 25 and Figure 26 show a single WRITE burst for each supported CAS latency setting. Data Sheet 27 Rev. 1.71, 2007-01 05282004-NZNK-8T0D HY[B/E]18L128160B[C/F]-7.5 128-Mbit Mobile-RAM Functional DescriptionCommands Table 12 Timing Parameters for WRITE Parameter Symbol - 7.5 min. Units Notes max. DQ and DQM input setup time tIS 1.5 — ns — DQ input hold time tIH 0.8 — ns — 0.5 — ns — DQM input hold time DQM write mask latency tDQW 0 — tCK — ACTIVE to ACTIVE command period tRC 67 — ns 1) ACTIVE to READ or WRITE delay tRCD 19 — ns ACTIVE to PRECHARGE command period tRAS 45 100k ns WRITE recovery time tWR 14 — ns PRECHARGE command period tRP 19 — ns 1) These parameters account for the number of clock cycles and depend on the operating frequency as follows: no. of clock cycles = specified delay / clock period; round up to next integer. #,+ T2#$ #OM MAND !#4 ./0 T72 T2!3 72)4% "A! !DDRES S 2 OWX "A! #OLN !!0 2OWX $IS !0 T20 T2# ./0 ./0 ./0 ./0 02% ./0 !#4 "A! 2OWB 0RE! LL !0 2OWB 0RE "A NK! $1 $)N $)N $)N $)N "A!#O LNBANK !C OLU MNN $)N$ ATA)NTOC OLU MNN "URST,ENG THIN THECAS ESHOW N SU BSEQUEN TELEME NTS OF$A TA)NAREPROV ID E DIN THE PROG RAMM EDORDE RFOLLOW IN G$)N Figure 25 Data Sheet $O NgT#A RE WRITE Burst (CAS Latency = 2) 28 Rev. 1.71, 2007-01 05282004-NZNK-8T0D HY[B/E]18L128160B[C/F]-7.5 128-Mbit Mobile-RAM Functional DescriptionCommands #,+ T2#$ #OM MAND !#4 ./0 T72 T2!3 ./0 "A! !DDRES S 2 OWN 72)4 % T20 T2# ./0 ./0 ./0 ./0 02% ./0 ./0 "A! #OLN !#4 "A! 2OWB 0RE! LL !!0 2OXW $IS !0 $1 $)N 2OW B !0 0RE"A NK ! $)N $)N $)N "A!#O LNBANK !C OLU MNN $)N$ ATA)NTOC O LU MNN "URST,ENG THIN THECAS ESHOW N SU BSEQUEN TELEME NTS OF$A TA)NAREPROV ID E DIN THE PROG RAMM EDORDE RFOLLOW IN G$)N Figure 26 $O NgT#A RE WRITE Burst (CAS Latency = 3) Data for any WRITE burst may be concatenated with or truncated with a subsequent WRITE command. In either case, a continuous flow of input data can be maintained. A WRITE command can be issued on any positive edge of clock following the previous WRITE command. The first data element from the new burst is applied after either the last element of a completed burst (Figure 27) or the last desired data element of a longer burst which is being truncated (Figure 28). The new WRITE command should be issued x cycles after the first WRITE command, where x equals the number of desired data elements. #,+ #OM MA ND !DDRE SS $1 ./0 72)4% ./0 ./0 ./0 "A! #OLN $)N 72)4% ./0 ./0 ./0 $)B $)B $)B "A! #OLB $)N $)N $)N $)B "A!# OLNB"AN K!#OLU MNNB $)NB $A TA )NTOCOLU M NNB WN "URST,ENGTHIN TH ECA SESHO SUBSEQU ENTELE MENTSOF$A TA)NAR EPR OVID EDIN THEPR OG RAMME DOR DERFO LLO WIN G$)NB Figure 27 Data Sheet $O NgT#A RE Consecutive WRITE Bursts 29 Rev. 1.71, 2007-01 05282004-NZNK-8T0D HY[B/E]18L128160B[C/F]-7.5 128-Mbit Mobile-RAM Functional DescriptionCommands #,+ #OM MA ND ./0 !DDRE SS $1 72)4% 72)4% 72)4% 72)4% "A! #OLN "A! #OLA "A! #OLX "A! #OLM $)N $)A $)X $)M ./0 ./0 ./0 $)M $)M $)M "A!#O LNETC "AN K!#O LU MNNETC $)NETC $A TA)NTOCO LU MNNETC WN BU RSTSAR ETERM IN ATED BYCON SECUTIVE 72)4%C OMM AN DS "URST,ENGTHIN TH ECASESHO EDIN THEPR OGRA MME DOR DERFO LLO WIN G$)M SUBSEQUE NTELE MENTSOF$A TA)NAR EPR OVID Figure 28 ./0 $O NgT#A RE Random WRITE Bursts Non-consecutive WRITE bursts are shown in Figure 29. #,+ #OM MA ND !DDRE SS $1 ./0 72)4% ./0 ./0 ./0 "A! #OLN $)N ./0 72)4% ./0 ./0 $)B $)B "A! #OLB $)N $)N $)N $)B "A!# OLNB"AN K!#OLU MNNB $)NB $A TA )NTOCOLU M NNB "URST,ENGTHIN TH ECA SESHO WN SUBSEQU ENTELE MENTSOF$A TA)NAR EPR OVID EDIN THEPR OG RAMME DOR DERFO LLO WIN G$)NB Figure 29 Non-Consecutive WRITE Bursts 2.4.6.1 WRITE Burst Termination $O NgT#A RE Data from any WRITE burst may be truncated using the BURST TERMINATE command (see Page 34), provided that Auto Precharge was not activated. The input data provided coincident with the BURST TERMINATE command will be ignored. This is shown in Figure 30. The BURST TERMINATE command may be used to terminate a full-page WRITE which does not self-terminate. Data Sheet 30 Rev. 1.71, 2007-01 05282004-NZNK-8T0D HY[B/E]18L128160B[C/F]-7.5 128-Mbit Mobile-RAM Functional DescriptionCommands #,+ #OM MA ND ./0 72)4% ./0 ./0 $)N $)N "34 ./0 ./0 "A! #OLN !DDRE SS $1 $)N $O NgT#A RE "A!# OLN"ANK !#O LU MNN $)N$A TA)NTOCO LU MN N "URST,ENGTHIN TH ECA SE SHO WN MENTSOF$A TA)NAR EWR ITTENIN THE PRO GRAMM EDORD ERFOLLO WIN G$ )N SUBSEQUE NTELE RTHE RDDATA ELE MEN T 4HEBURSTIS TER MIN ATEDAFTE Figure 30 Terminating a WRITE Burst 2.4.6.2 Clock Suspend Mode for WRITE Cycles Clock suspend mode allows to extend any WRITE burst in progress by a variable number of clock cycles. As long as CKE is registered LOW, the following internal clock pulse(s) will be ignored and no data will be captured, as shown in Figure 31. #,+ #+% INTER NAL CLO CK #OM MA ND !DDRE SS ./0 72)4% ./0 $)N T#3, $)N Data Sheet T#3, $)N $O NgT#A RE "A!#O LNETC "AN K!#O LU MNNETC $/N ETC $A TA/U TFRO MCOLU MNNE TC #, IN THECASESH OWN #LOCK SU SPEND LATENCYT#3,IS CLO CKCYCLE Figure 31 ./0 "A! #OLN T#3, $1 ./0 Clock Suspend Mode for WRITE Bursts 31 Rev. 1.71, 2007-01 05282004-NZNK-8T0D HY[B/E]18L128160B[C/F]-7.5 128-Mbit Mobile-RAM Functional DescriptionCommands 2.4.6.3 WRITE - DQM Operation DQM may be used to mask write data: when asserted HIGH, input data will be masked and no write will be performed. The generic timing parameters as listed in Table 12 also apply to this DQM operation. The write burst in progress is not affected and will continue as programmed. #,+ #OM MA ND ./0 72)4% ./0 ./0 ./0 $)N $)N ./0 "A! #OLN !DDRE SS $1 $1 $)N $O NgT#A RE "A!# OLN"ANK !#O LU MNN $)N$A TA)NTOCOLU MN N "URST,ENGTHIN TH ECASESHO WN SU BSE QUE NTELE MENTSOF$A TA)NAR EPR OVID EDIN THEPR OGRAM ME DOR DERFO LLO WIN G BEIN GMA SKED $)NWITHTH EFIR STELEM ENT$)N $1-WR ITELATE NCY IS CLO CKCYCLE S Figure 32 WRITE Burst - DQM Operation 2.4.6.4 WRITE to READ A WRITE burst may be followed by, or truncated with a READ command. The READ command can be performed to the same or a different (active) bank. With the registration of the READ command, data inputs will be ignored and no WRITE will be performed, as shown in Figure 33. #,+ #OM MA ND !DDRE SS 72)4% ./0 ./0 "A! #OLN 2%!$ ./0 ./0 ./0 ./0 "A! #OLB #, $1 $)N $)N (IG H : $)N 7RITEDATA AREIGNO RED $1 $)N $)N $/B $/B $/B $/B $)B #, (IGH : $)N "A!#O LNBB ANK!COLU MN NB $O NgT#A RE $)N$A TA)NTOCOLUMN N $/ B$ATA /UTFRO MCOLU MN B TH ECASESHO WN "URST,ENGTHIN G $)N$ / B SUBSEQU ENTELE MENTSOF$A TA)N/ UTAREPR OVID ED INTHEPROGRA MME DORDER FOLLOWIN $)N IS IG N OREDDUE TO2 %! $COMM AND .O $1 -MAS KING REQUIR EDATTHIS POIN T Figure 33 Data Sheet WRITE to READ Timing 32 Rev. 1.71, 2007-01 05282004-NZNK-8T0D HY[B/E]18L128160B[C/F]-7.5 128-Mbit Mobile-RAM Functional DescriptionCommands 2.4.6.5 WRITE to PRECHARGE A WRITE burst may be followed by, or truncated with a PRECHARGE command to the same bank, provided that Auto Precharge was not activated. This is shown in Figure 34. The PRECHARGE command should be issued tWR after the clock edge at which the last desired data element of the WRITE burst was registered. Additionally, when truncating a WRITE burst, DQM must be pulled to mask input data presented during tWR prior to the PRECHARGE command. Following the PRE-CHARGE command, a subsequent ACTIVE command to the same bank cannot be issued until tRP is met. In the case of a WRITE being executed to completion, a PRECHARGE command issued at the optimum time (as described above) provides the same operation that would result from the same WRITE burst with Auto Precharge enabled. The disadvantage of the PRECHARGE command is that it requires that the command and address busses be available at the appropriate time to issue the command. The advantage of the PRECHARGE command is that it can be used to truncate bursts. #,+ T72 #OMM AND ./0 72)4% !DDR ESS "A! #OLN ! !0 $IS!0 ./0 ./0 ./0 T20 02% "A! ./0 !#4 "A! 2OWA 0RE! LL !0 0RE" ANK ! $1- $1 $)N $)N $)N "A!#O LNBA NK! COLU MN N !0!UTO 0R ECHA RGE $O NgT#A RE $)N$A TA)NTOCOLU MN N $IS !0 $ IS ABLE!U TO0R EC HA RGE "URST,ENGTHIN TH ECASESHO WN MENTSOF$A TA)NAR EPR OVID EDIN THEPR OGRAM ME DOR DERFO LLO WIN G$)N SUBSEQUE NTELE $)N IS MAS KEDD UETO$1 -PULLE D()'( DURIN GT72 DPR IO RTO 02% # ( ! 2 '%COMMA ND PERIO Figure 34 Data Sheet WRITE to PRECHARGE Timing 33 Rev. 1.71, 2007-01 05282004-NZNK-8T0D HY[B/E]18L128160B[C/F]-7.5 128-Mbit Mobile-RAM Functional DescriptionCommands 2.4.7 BURST TERMINATE #,+ #+% (IG H #3 2!3 #!3 7% !! "! " ! $O NgT#A R E Figure 35 BURST TERMINATE Command The BURST TERMINATE command is used to truncate READ or WRITE bursts (with Auto Precharge disabled). The most recently registered READ or WRITE command prior to the BURST TERMINATE command will be truncated, as shown in Figure 18 and Figure 30, respectively. The BURST TERMINATE command is not allowed for truncation of READ or WRITE bursts with Auto Precharge enabled. 2.4.8 PRECHARGE #,+ #+% (IG H #3 2!3 #!3 7% ! ! ! !LL" ANK S ! /NE "A NK "! " ! "! $O NgT#A R E "! " ANK! DD RES S IF! , O THE RW ISE $ O NgT# A RE Figure 36 Data Sheet PRECHARGE command 34 Rev. 1.71, 2007-01 05282004-NZNK-8T0D HY[B/E]18L128160B[C/F]-7.5 128-Mbit Mobile-RAM Functional DescriptionCommands The PRECHARGE command is used to deactivate (close) the open row in a particular bank or the open row in all banks. The bank(s) will be available for a subsequent row access a specified time (tRP) after the PRECHARGE command is issued. Input A10 determines whether one or all banks are to be precharged, and in the case where only one bank is to be precharged, inputs BA0, BA1 select the bank. Otherwise BA0, BA1 are treated as “Don’t Care”. Once a bank has been precharged, it is in the idle state and must be activated prior to any READ or WRITE commands being issued to that bank. A PRECHARGE command will be treated as a NOP if there is no open row in that bank, or if the previously open row is already in the process of precharging. 2.4.8.1 AUTO PRECHARGE Auto Precharge is a feature which performs the same individual-bank precharge functions described above, but without requiring an explicit command. This is accomplished by using A10 to enable Auto Precharge in conjunction with a specific READ or WRITE command. A precharge of the bank/row that is addressed with the READ or WRITE command is automatically performed upon completion of the READ or WRITE burst. Auto Precharge is non persistent in that it is either enabled or disabled for each individual READ or WRITE command. Auto Precharge ensures that the precharge is initiated at the earliest valid stage within a burst. The user must not issue another command to the same bank until the precharge (tRP) is completed. This is determined as if an explicit PRECHARGE command was issued at the earliest possible time, as described for each burst type. Table 13 Timing Parameters for PRECHARGE Parameter Symbol - 7.5 min. Units Notes max. ACTIVE to PRECHARGE command period tRAS 45 100k ns WRITE recovery time tWR 14 – ns PRECHARGE command period tRP 19 – ns 1) 1) These parameters account for the number of clock cycles and depend on the operating frequency as follows: no. of clock cycles = specified delay / clock period; round up to next integer. 2.4.8.2 CONCURRENT AUTO PRECHARGE A READ or WRITE burst with Auto Precharge enabled can be interrupted by a subsequent READ or WRITE command issued to a different bank. Figure 37 shows a READ with Auto Precharge to bank n, interrupted by a READ (with or without Auto Precharge) to bank m. The READ to bank m will interrupt the READ to bank n, CAS latency later. The precharge to bank n will begin when the READ to bank m is registered. Figure 38 shows a READ with Auto Precharge to bank n, interrupted by a WRITE (with or without Auto Precharge) to bank m. The precharge to bank n will begin when the WRITE to bank m is registered. DQM should be pulled HIGH two clock cycles prior to the WRITE to prevent bus contention. Figure 39 shows a WRITE with Auto Precharge to bank n, interrupted by a READ (with or without Auto Precharge) to bank m. The precharge to bank n will begin tWR after the new command to bank m is registered. The last valid data-in to bank n is one clock cycle prior to the READ to bank m. Figure 40 shows a WRITE with Auto Precharge to bank n, interrupted by a WRITE (with or without Auto Precharge) to bank m. The precharge to bank n will begin tWR after the WRITE to bank m is registered. The last valid data-in to bank n is one clock cycle prior to the WRITE to bank m. Data Sheet 35 Rev. 1.71, 2007-01 05282004-NZNK-8T0D HY[B/E]18L128160B[C/F]-7.5 128-Mbit Mobile-RAM Functional DescriptionCommands #,+ #OM MA ND ./0 2$ !0 ./0 "ANKN #OLB !DDRE SS 2%!$ ./0 ./0 ./0 ./0 "ANKM #OLX #, $1 T20 BA NKN $/B $/B $/X $/X $O NgT#A RE 2$! 02EA DWITH!UTO0R ECHA RGE 2%! $ 2EA DWITHORWITHO UT!UTO0R ECHA RGE #, AND "URS T,EN GTHINTH ECASE SHOWN 2EADWITH! UTO0R EC HAR GETOBAN KNIS IN TER RUP TEDBYSUB SEQ UENT2E ADTOB ANKM Figure 37 $/X READ with Auto Precharge Interrupted by READ #,+ #OM MA ND ./0 2$ !0 ./0 ./0 "ANKN #OLB !DDRE SS 72)4% ./0 ./0 ./0 "ANKM #OLX $1 #, $1 T20 BA NKN $/B $)X $)X $)X $O NgT#A RE 2$ !0 2E ADWITH!UTO0R ECHA RGE 72)4% 7R ITE WITHORWITH OUT!UTO0 R ECHARG E #, AND "URS T,EN GTHINTH ECASE SHOWN 2EADWITH! UTO0R EC HAR GETOBAN KNIS IN TERRUP TEDBYSUBSEQ UENT7R ITETOBANK M Figure 38 $)X READ with Auto Precharge Interrupted by WRITE #,+ #OM MA ND 72 !0 !DDRE SS "ANKN #OLB ./0 2%!$ ./0 ./0 $/B ./0 $/B T20 BA NKN $/X $/X $/X 72 ! 07R ITEW ITH!U TO0REC HAR GE 2 %! $2E A DWITHOR WITHOU T!UTO0RE CHAR GE #, AND "URS T,EN GTHINTH ECASE SHOWN 7RITE WITH!U TO0R ECH ARGETOBANKNIS IN TER RUPTED BYSU BSE QUEN T2E AD TOBANK M Figure 39 Data Sheet ./0 "ANKM #OLX T72 BA NKN #, $1 ./0 $/X $O NgT#A RE WRITE with Auto Precharge Interrupted by READ 36 Rev. 1.71, 2007-01 05282004-NZNK-8T0D HY[B/E]18L128160B[C/F]-7.5 128-Mbit Mobile-RAM Functional DescriptionCommands #,+ #OM MA ND 72 !0 !DDRE SS "ANKN #OLB ./0 72)4% ./0 ./0 $)B ./0 $)B $)X $)X T20 BA NKN $)X $)X 72 !0 7R ITEWITH!U TO0REC HARG E 7 2)4%7R ITEW ITHORWITHO UT!U TO0R EC HARG E SHO WN "URST,ENGTHIN TH ECASE 7RITE WITH!U TO0R ECH ARGETOBANKNIS IN TER RUPTED BYSU BSEQUEN T7R ITETOBAN KM Figure 40 Data Sheet ./0 "ANKM #OLX T72 BA NKN $1 ./0 $O NgT#A RE WRITE with Auto Precharge Interrupted by WRITE 37 Rev. 1.71, 2007-01 05282004-NZNK-8T0D HY[B/E]18L128160B[C/F]-7.5 128-Mbit Mobile-RAM Functional DescriptionCommands 2.4.9 AUTO REFRESH and SELF REFRESH The Mobile-RAM requires a refresh of all rows in a rolling interval. Each refresh is generated in one of two ways: by an explicit AUTO REFRESH command, or by an internally timed event in SELF REFRESH mode. 2.4.9.1 AUTO REFRESH #,+ #+% (IG H #3 2!3 #!3 7% !! "! " ! $O NgT#A R E Figure 41 AUTO REFRESH Command Auto Refresh is used during normal operation of the Mobile-RAM. The command is non persistent, so it must be issued each time a refresh is required. A minimum row cycle time (tRC) is required between two AUTO REFRESH commands. The same rule applies to any access command after the auto refresh operation. All banks must be precharged prior to the AUTO REFRESH command. The refresh addressing is generated by the internal refresh controller. This makes the address bits “Don’t Care” during an AUTO REFRESH command. The Mobile-RAM requires AUTO REFRESH cycles at an average periodic interval of 7.8 µs (max.). Partial array mode has no influence on auto refresh mode. #,+ T20 #OMM AND 02% ./0 T2# !2& T2# ./0 ./0 $1 Data Sheet ./0 !#4 2OWN 0RE! LL (IG H : $O NgT#A RE "A!2O WNBA NK!ROWN Figure 42 ./0 "A! 2OWN !DD RESS !!0 !2& Auto Refresh 38 Rev. 1.71, 2007-01 05282004-NZNK-8T0D HY[B/E]18L128160B[C/F]-7.5 128-Mbit Mobile-RAM Functional DescriptionCommands 2.4.9.2 SELF REFRESH #,+ #+% #3 2!3 #!3 7% !! "! " ! $O NgT#A R E Figure 43 SELF REFRESH Entry Command The SELF REFRESH command can be used to retain data in the Mobile-RAM, even if the rest of the system is powered down. When in the self refresh mode, the Mobile-RAM retains data without external clocking. The SELF REFRESH command is initiated like an AUTO REFRESH command except CKE is LOW. Input signals except CKE are “Don’t Care” during SELF REFRESH. The procedure for exiting SELF REFRESH requires a stable clock prior to CKE returning HIGH. Once CKE is HIGH, NOP commands must be issued for tRC because time is required for a completion of any internal refresh in progress. If during normal operation burst auto refresh or user controlled refresh is used, add 4096 auto refresh cycles just before self refresh entry and just after self refresh exit. #,+ T20 T2# T32% 8 T2# #+% #OMM AND 02% ./0 !2& ./0 ./0 ./0 !2& ./0 "A! 2OWN !DD RESS !!0 $1 !#4 2OWN 0RE!LL (IGH : $ ON gT#A RE 3ELF2E FRE SH %NTRY #O MMAN D Figure 44 Data Sheet 3ELF2E FRES H %XIT#O MM AND %XITFROM 3ELF2E FRESH !NY#O MM AND !UTO2E FRESH 2ECOMM ENDED Self Refresh Entry and Exit 39 Rev. 1.71, 2007-01 05282004-NZNK-8T0D HY[B/E]18L128160B[C/F]-7.5 128-Mbit Mobile-RAM Functional DescriptionCommands Table 14 Timing Parameters for AUTO REFRESH and SELF REFRESH Parameter Symbol - 7.5 min. Units Notes max. ACTIVE to ACTIVE command period tRC 67 – ns PRECHARGE command period tRP 19 – ns Refresh period (4096 rows) tREF – 64 ms Self refresh exit time tSREX 1 – tCK 1) 1) These parameters account for the number of clock cycles and depend on the operating frequency as follows: no. of clock cycles = specified delay / clock period; round up to next integer. 2.4.10 POWER DOWN #,+ #+% #3 2!3 #!3 7% !! "! " ! $O NgT#A R E Figure 45 Power Down Entry Command Power-down is entered when CKE is registered LOW (no accesses can be in progress). If power-down occurs when all banks are idle, this mode is referred to as precharge power-down; if power-down occurs when there is a row active in any bank, this mode is referred to as active power-down. Entering power-down deactivates the input and output buffers, excluding CLK and CKE. CKE LOW must be maintained during power-down. Power-down duration is limited by the refresh requirements of the device (tREF). The power-down state is synchronously exited when CKE is registered HIGH (along with a NOP or DESELECT command). One clock delay is required for power down entry and exit. Data Sheet 40 Rev. 1.71, 2007-01 05282004-NZNK-8T0D HY[B/E]18L128160B[C/F]-7.5 128-Mbit Mobile-RAM Functional DescriptionFunction Truth Tables #,+ T20 #+% #OMM AND 02% ./0 ./0 ./0 !DD RESS !!0 6ALID 6ALID 0RE! LL 6ALID (IG H : $1 0OW ER $O WN %NTR Y %XITFRO M 0OWE R$O WN !NY #OMMAN D 0RECHA RGE0OWE R$O WN MOD ESH OWN ALLBAN KSARE ID LE AND T20 MET WHE N0OW E R$O WN % NTRY#O MMA NDISISS UED Figure 46 Power Down Entry and Exit 2.4.10.1 DEEP POWER DOWN $O NgT#A RE The deep power down mode is an unique function on Low Power SDRAM devices with extremely low current consumption. Deep power down mode is entered using the BURST TERMINATE command (cf. Figure 18) except that CKE is LOW. All internal voltage generators inside the device are stopped and all memory data is lost in this mode. To enter the deep power down mode all banks must be precharged. The deep power down mode is asynchronously exited by asserting CKE HIGH. After the exit, the same command sequence as for power-up initialization, including the 200µs initial pause, has to be applied before any other command may be issued (cf. Figure 3 and Figure 4). 2.5 Function Truth Tables Table 15 Current State Bank n - Command to Bank n Current State Any Idle Row Active Data Sheet CS RAS CAS WE Command / Action Notes H X X X DESELECT (NOP / continue previous operation) 1)2)3)4)5)6) L H H H NO OPERATION (NOP / continue previous operation) to L L H H ACTIVE (select and activate row) to L L L H AUTO REFRESH to 7) L L L L MODE REGISTER SET to L L H L PRECHARGE to , 8) L H L H READ (select column and start READ burst) to , 9) L H L L WRITE (select column and start WRITE burst) to , L L H L PRECHARGE (deactivate row in bank or banks) to , 10) 41 Rev. 1.71, 2007-01 05282004-NZNK-8T0D HY[B/E]18L128160B[C/F]-7.5 128-Mbit Mobile-RAM Functional DescriptionFunction Truth Tables Table 15 Current State Bank n - Command to Bank n (cont’d) Current State Read (AutoPrecharge Disabled) Write (AutoPrecharge Disabled) CS RAS CAS WE Command / Action Notes L H L H READ (select column and start new READ burst) to , L H L L WRITE (select column and start new WRITE burst) to , L L H L PRECHARGE (truncate READ burst, start precharge) to , L H H L BURST TERMINATE to 11) L H L H READ (select column and start READ burst) to , L H L L WRITE (select column and start WRITE burst) to , L L H L PRECHARGE (truncate WRITE burst, start precharge) to , L H H L BURST TERMINATE to , 1) This table applies when CKEn-1 was HIGH and CKEn is HIGH and after tRC has been met (if the previous state was self refresh). 2) This table is bank-specific, except where noted, i.e., the current state is for a specific bank and the commands shown are those allowed to be issued to that bank when in that state. Exceptions are covered in the notes below. 3) Current state definitions: Idle:The bank has been precharged, and tRP has been met. Row Active:A row in the bank has been activated, and tRCD has been met. No data bursts/accesses and no register accesses are in progress. Read:A READ burst has been initiated, with Auto Precharge disabled, and has not yet terminated or been terminated. Write:A WRITE burst has been initiated, with Auto Precharge disabled, and has not yet terminated or been terminated. 4) The following states must not be interrupted by a command issued to the same bank. DESELECT or NOP commands, or allowable commands to the other bank should be issued on any clock edge occurring during these states. Allowable commands to the other bank are determined by its current state and according to Table 16. Precharging:Starts with registration of a PRECHARGE command and ends when tRP is met. Once tRP is met, the bank is in the “idle” state. Row Activating:Starts with registration of an ACTIVE command and ends when tRCD is met. Once tRCD is met, the bank is in the “row active” state. Read with AP Enabled:Starts with registration of a READ command with Auto Precharge enabled and ends when tRP has been met. Once tRP is met, the bank is in the idle state. Write with AP Enabled:Starts with registration of a WRITE command with Auto Precharge enabled and ends when tRP has been met. Once tRP is met, the bank is in the idle state. 5) The following states must not be interrupted by any executable command; DESELECT or NOP commands must be applied on each positive clock edge during these states. Refreshing:Starts with registration of an AUTO REFRESH command and ends when tRC is met. Once tRC is met, the SDRAM is in the “all banks idle” state. Accessing Mode Register:Starts with registration of a MODE REGISTER SET command and ends when tMRD has been met. Once tMRD is met, the SDRAM is in the “all banks idle” state. Precharging All:Starts with registration of a PRECHARGE ALL command and ends when tRP is met. Once tRP is met, all banks are in the idle state. 6) All states and sequences not shown are illegal or reserved. 7) Not bank-specific; requires that all banks are idle and no bursts are in progress. 8) Same as NOP command in that state. 9) READs or WRITEs listed in the Command/Action column include READs or WRITEs with Auto Precharge enabled and READs or WRITEs with Auto Precharge disabled. 10) May or may not be bank-specific; if multiple banks are to be precharged, each must be in a valid state for precharging. 11) Not bank-specific; BURST TERMINATE affects the most recent READ or WRITE burst, regardless of bank. Data Sheet 42 Rev. 1.71, 2007-01 05282004-NZNK-8T0D HY[B/E]18L128160B[C/F]-7.5 128-Mbit Mobile-RAM Functional DescriptionFunction Truth Tables Table 16 Current State Bank n - Command to Bank m (different bank) Current State CS RAS CAS WE Command / Action Notes H X X X DESELECT (NOP / continue previous operation) 1)2)3)4)5)6) L H H H NO OPERATION (NOP / continue previous operation) to Idle X X X X Any command otherwise allowed to bank n to Row Activating, Active, or Precharging L L H H ACTIVE (select and activate row) to L H L H READ (select column and start READ burst) to 7) L H L L WRITE (select column and start WRITE burst) to L L H L PRECHARGE (deactivate row in bank or banks) to L L H H ACTIVE (select and activate row) to L H L H READ (select column and start READ burst) to L H L L WRITE (select column and start WRITE burst) to 8) L L H L PRECHARGE (deactivate row in bank or banks) to L L H H ACTIVE (select and activate row) to L H L H READ (select column and start READ burst) to L H L L WRITE (select column and start WRITE burst) to L L H L PRECHARGE (deactivate row in bank or banks) to L L H H ACTIVE (select and activate row) to L H L H READ (select column and start READ burst) to , 9) L H L L WRITE (select column and start WRITE burst) to L L H L PRECHARGE (deactivate row in bank or banks) to L L H H ACTIVE (select and activate row) to L H L H READ (select column and start READ burst) to , L H L L WRITE (select column and start WRITE burst) to , L L H L PRECHARGE (deactivate row in bank or banks) to Any Read (AutoPrecharge Disabled) Write (AutoPrecharge Disabled) Read (with AutoPrecharge) Write (with AutoPrecharge) 1) This table applies when CKEn-1 was HIGH and CKEn is HIGH and after tRC has been met (if the previous state was Self Refresh). 2) This table describes alternate bank operation, except where noted, i.e., the current state is for bank n and the commands shown are those allowed to be issued to bank m (assuming that bank m is in such a state that the given command is allowable). Exceptions are covered in the notes below. 3) Current state definitions: Idle:The bank has been precharged, and tRP has been met. Row Active:A row in the bank has been activated, and tRCD has been met. No data bursts/accesses and no register accesses are in progress. Read:A READ burst has been initiated, with Auto Precharge disabled, and has not yet terminated or been terminated. Write:A WRITE burst has been initiated, with Auto Precharge disabled, and has not yet terminated or been terminated. Read with AP Enabled:Starts with registration of a READ command with Auto Precharge enabled and ends when tRP has been met. Once tRP is met, the bank is in the idle state. Write with AP Enabled:Starts with registration of a WRITE command with Auto Precharge enabled and ends when tRP has been met. Once tRP is met, the bank is in the idle state. 4) AUTO REFRESH, SELF REFRESH and MODE REGISTER SET commands may only be issued when all banks are idle. 5) A BURST TERMINATE command cannot be issued to another bank; it applies to the bank represented by the current state only. 6) All states and sequences not shown are illegal or reserved. Data Sheet 43 Rev. 1.71, 2007-01 05282004-NZNK-8T0D HY[B/E]18L128160B[C/F]-7.5 128-Mbit Mobile-RAM Functional DescriptionFunction Truth Tables 7) READs or WRITEs listed in the Command/Action column include READs or WRITEs with Auto Precharge enabled and READs or WRITEs with Auto Precharge disabled. 8) Requires appropriate DQM masking. 9) Concurrent Auto Precharge: bank n will start precharging when its burst has been interrupted by a READ or WRITE command to bank m. Table 17 Truth Table - CKE CKEn-1 CKEn Current State Command Action Notes L Power Down X Maintain Power Down 1)2)3)4) Self Refresh X Maintain Self Refresh to Clock Suspend X Maintain Clock Suspend to Deep Power Down X Maintain Deep Power Down to Power Down DESELECT or NOP Exit Power Down to Self Refresh DESELECT or NOP Exit Self Refresh to 5) Clock Suspend X Exit Clock Suspend to Deep Power Down X Exit Deep Power Down to , 6) All Banks Idle DESELECT or NOP Enter Precharge Power Down to Bank(s) Active DESELECT or NOP Enter Active Power Down to All Banks Idle AUTO REFRESH Enter Self Refresh to Read / Write burst (valid) Enter Clock Suspend to L H H 1) 2) 3) 4) 5) 6) L H L H to see Table 15 and Table 16 CKEn is the logic state of CKE at clock edge n; CKEn-1 was the state of CKE at the previous clock edge. Current state is the state immediately prior to clock edge n. COMMAND n is the command registered at clock edge n; ACTION n is a result of COMMAND n. All states and sequences not shown are illegal or reserved. DESELECT or NOP commands should be issued on any clock edges occurring during tRC period. Exit from DEEP POWER DOWN requires the same command sequence as for power-up initialization. Data Sheet 44 Rev. 1.71, 2007-01 05282004-NZNK-8T0D HY[B/E]18L128160B[C/F]-7.5 128-Mbit Mobile-RAM Electrical CharacteristicsOperating Conditions 3 Electrical Characteristics 3.1 Operating Conditions Table 18 Absolute Maximum Ratings Parameter Symbol Values min. Unit max. Power Supply Voltage VDD -0.3 2.7 V Power Supply Voltage for Output Buffer VDDQ -0.3 2.7 V Input Voltage VIN -0.3 VDDQ + 0.3 V Output Voltage VOUT -0.3 vDDQ + 0.3 V Commercial TC 0 +70 °C Extended TC -25 +85 °C Storage Temperature TSTG -55 +150 °C Power Dissipation PD – 0.7 W Short Circuit Output Current IOUT – 50 mA Operation Case Temperature Attention: Stresses above those listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit. Table 19 Pin Capacitances1)2) Parameter Symbol Values min. Unit max. Input capacitance: CLK CI1 1.5 3.0 pF Input capacitance: all other input pins CI2 1.5 3.0 pF Input/Output capacitance: DQ CIO 3.0 5.0 pF 1) These values are not subject to production test but verified by device characterization. 2) Input capacitance is measured according to JEP147 with VDD, VDDQ applied and all other pins (except the pin under test) floating. DQ’s should be in high impedance state. This may be achieved by pulling CKE to low level. Data Sheet 45 Rev. 1.71, 2007-01 05282004-NZNK-8T0D HY[B/E]18L128160B[C/F]-7.5 128-Mbit Mobile-RAM Electrical CharacteristicsAC Characteristics Table 20 Electrical Characteristics1) Parameter Symbol Values Unit min. Notes max. Power Supply Voltage VDD 1.70 1.95 V — Power Supply Voltage for DQ Output Buffer VDDQ 1.70 1.95 V — Input high voltage VIH 0.8 × VDDQ VDDQ + 0.3 V 2) Input low voltage VIL -0.3 0.3 V Output high voltage (IOH = -0.1 mA) VOH VDDQ - 0.2 — V — Output low voltage (IOL = 0.1 mA) VOL – 0.2 V — Input leakage current IIL -1.0 1.0 µΑ — Output leakage current IOL -1.5 1.5 µA — 1) 0 °C ≤ TC ≤ 70 °C (comm.); -25 °C ≤ TC ≤ 85 °C (ext.); all voltages referenced to VSS. VSS and VSSQ must be at same potential. 2) VIH may overshoot to VDD + 0.8 V for pulse width < 4 ns; VIL may undershoot to -0.8 V for pulse width < 4 ns. Pulse width measured at 50% with amplitude measured between peak voltage and DC reference level. 3.2 AC Characteristics Table 21 AC Characteristics1)2)3)4) Parameter Symbol - 7.5 min. Clock cycle time CL = 3 tCK CL = 2 Clock frequency CL = 3 fCK CL = 2 Access time from CLK CL = 3 tAC CL = 2 Unit Notes max. 7.5 — ns 9.5 — ns — 133 MHz — 105 MHz — 5.4 ns — 6.0 ns — — 5)6) Clock high-level width tCH 2.5 — ns — Clock low-level width tCL 2.5 — ns — Address, data and command input setup time tIS 1.5 — ns 7) Address and command input hold time tIH 0.5 — ns 0.8 — ns Data (DQ) input hold time MODE REGISTER SET command period tMRD 2 — tCK — DQ low-impedance time from CLK tLZ 1.0 — ns — DQ high-impedance time from CLK tHZ 3.0 7.0 ns — Data out hold time tOH 2.5 — ns DQM to DQ High-Z delay (READ Commands) tDQZ — 2 tCK — DQM write mask latency tDQW 0 — tCK — ACTIVE to ACTIVE command period tRC 67 — ns 8) ACTIVE to READ or WRITE delay tRCD 19 — ns ACTIVE bank A to ACTIVE bank B delay tRRD 15 — ns ACTIVE to PRECHARGE command period tRAS 45 100k ns Data Sheet 46 Rev. 1.71, 2007-01 05282004-NZNK-8T0D HY[B/E]18L128160B[C/F]-7.5 128-Mbit Mobile-RAM Electrical CharacteristicsAC Characteristics Table 21 AC Characteristics1)2)3)4) (cont’d) Parameter Symbol - 7.5 min. Unit Notes max. 9) WRITE recovery time tWR 14 — ns PRECHARGE command period tRP 19 — ns Refresh period (4096 rows) tREF — 64 ms — Self refresh exit time tSREX 1 — tCK — 0 °C ≤ TC ≤ 70 °C (comm.); -25 °C ≤ TC ≤ 85 °C (ext.); VDD = VDDQ = 1.70V to 1.95V; All parameters assumes proper device initialization. AC timing tests measured at 0.9 V. The transition time is measured between VIH and VIL; all AC characteristics assume tT = 1 ns. Specified tAC and tOH parameters are measured with a 30 pF capacitive load only as shown in Figure 47. If tT(CLK) > 1 ns, a value of (tT/2 - 0.5) ns has to be added to this parameter. If tT > 1 ns, a value of [0.5 x (tT - 1)] ns has to be added to this parameter. These parameter account for the number of clock cycles and depend on the operating frequency, as follows: no. of clock cycles = specified delay / clock period; round up to next integer. 9) The write recovery time of tWR = 14 ns allows the use of one clock cycle for the write recovery time when fCK ≤ 72 MHz. With fCK > 72 MHz two clock cycles for tWR are mandatory. Qimonda recommends to use two clock cycles for the write recovery time in all applications. 1) 2) 3) 4) 5) 6) 7) 8) )/ P& Figure 47 Data Sheet Test Load for DQ Pins 47 Rev. 1.71, 2007-01 05282004-NZNK-8T0D HY[B/E]18L128160B[C/F]-7.5 128-Mbit Mobile-RAM Electrical CharacteristicsOperating Currents 3.3 Operating Currents Table 22 Maximum Operating Currents1) Parameter & Test Conditions Symbol Values Unit Notes Operating current: one bank: active / read / precharge, BL = 1, tRC = tRCmin IDD1 60 mA Precharge power-down standby current: all banks idle, CS ≥ VIHmin, CKE ≤ VILmax, inputs changing once every two clock cycles IDD2P 0.6 mA Precharge power-down standby current with clock stop: all banks idle, CS ≥ VIHmin, CKE ≤ VILmax, all inputs stable IDD2PS 0.5 mA Precharge non power-down standby current: all banks idle, CS ≥ VIHmin, CKE ≥ VIHmin, inputs changing once every two clock cycles IDD2N 13 mA Precharge non power-down standby current with clock stop: all banks idle, CS ≥ VIHmin, CKE ≥ VIHmin, all inputs stable IDD2NS 1.0 mA Active power-down standby current: one bank active, CS ≥ VIHmin, CKE ≤ VILmax, inputs changing once every two clock cycles IDD3P 1.0 mA Active power-down standby current with clock stop: one bank active, CS ≥ VIHmin, CKE ≤ VILmax, all inputs stable IDD3PS 0.75 mA Active non power-down standby current: one bank active, CS ≥ VIHmin, CKE ≥ VIHmin, inputs changing once every two clock cycles IDD3N 15 mA Active non power-down standby current with clock stop: one bank active, CS ≥ VIHmin, CKE ≥ VIHmin, all inputs stable IDD3NS 1.5 mA Operating burst read current: all banks active; continuous burst read, inputs changing once every two clock cycles IDD4 45 mA Auto-Refresh current: tRC = tRCmin, “burst refresh”, inputs changing once every two clock cycles IDD5 90 mA Self Refresh current: self refresh mode, CS ≥ VIHmin, CKE ≤ VILmax, all inputs stable IDD6 see Table 23 Deep Power Down current IDD7 20 - 7.5 2)3) — — — — — µA — 1) 0 °C ≤ TC ≤ 70 °C (comm.); -25 °C ≤ TC ≤ 85 °C (ext.); VDD = VDDQ = 1.70V to 1.95V; Recommended Operating Conditions unless otherwise noted 2) These values are measured with tCK = 7.5 ns 3) All parameters are measured with no output loads. Data Sheet 48 Rev. 1.71, 2007-01 05282004-NZNK-8T0D HY[B/E]18L128160B[C/F]-7.5 128-Mbit Mobile-RAM Electrical CharacteristicsPull-up and Pull-down Characteristics Self Refresh Currents1)2) Table 23 Parameter & Test Conditions Max. Symbol Temperature Self Refresh Current: Self refresh mode, full array activation (PASR = 000) 85 °C IDD6 Values typ. Unit max. 400 470 70 °C 285 — 45 °C 200 — 25 °C 180 — Self Refresh Current: Self refresh mode, half array activation (PASR = 001) 85 °C 340 400 70 °C 250 — 45 °C 185 — 25 °C 170 — Self Refresh Current: Self refresh mode, quarter array activation (PASR = 010) 85 °C 310 360 70 °C 240 — 45 °C 175 — 25 °C 165 — µA 1) 0 °C ≤ TC ≤ 70 °C (comm.); -25 °C ≤ TC ≤ 85 °C (ext.); VDD = VDDQ = 1.70V to 1.95V 2) The On-Chip Temperature Sensor (OCTS) adjusts the refresh rate in self refresh mode to the component’s actual temperature with a much finer resolution than supported by the 4 distinct temperature levels as defined by JEDEC for TCSR. At production test the sensor is calibrated, and IDD6 max. current is measured at 85°C. Typ. values are obtained from device characterization. 3.4 Pull-up and Pull-down Characteristics Table 24 Half Drive Strength and Full Drive Strength Voltage (V) Half Drive Strength Pull-Down Current (mA) Nominal Low Nominal High Full Drive Strength Pull-Up Current (mA) Nominal Low Nominal High Pull-Down Current (mA) Nominal Low Nominal High Pull-Up Current (mA) Nominal Low Nominal High 0.00 0.0 0.0 -19.7 -33.4 0.0 0.0 -39.3 -66.7 0.40 15.1 20.5 -18.8 -32.0 30.2 41.0 -37.6 -63.9 0.65 20.3 28.5 -18.2 -31.0 40.5 57.0 -36.4 -61.9 0.85 22.0 32.0 -17.6 -29.9 43.9 64.0 -35.1 -59.8 1.00 22.6 33.5 -16.7 -28.7 45.2 67.0 -33.3 -57.3 1.40 23.5 35.0 -9.4 -20.4 46.9 70.0 -18.8 -40.7 1.50 23.6 35.3 -6.6 -17.1 47.2 70.5 -13.2 -34.1 1.65 23.8 35.5 -1.8 -11.4 47.5 71.0 -3.5 -22.7 1.80 23.9 35.7 3.8 -4.8 47.7 71.4 7.5 -9.6 1.95 24.0 35.9 9.8 2.5 48.0 71.8 19.6 5.0 The above characteristics are specified under nominal process variation / condition Temperature (Tj): Nominal = 50 °C, VDDQ: Nominal = 1.80 V Data Sheet 49 Rev. 1.71, 2007-01 05282004-NZNK-8T0D HY[B/E]18L128160B[C/F]-7.5 128-Mbit Mobile-RAM Package Outlines 4 Package Outlines Figure 48 P-VFBGA-54-2 (Plastic Very Thin Fine Ball Grid Array Package) You can find all of our packages, sorts of packing and others in our Qimonda Internet Page “Products”: http://www.Qimonda.com/products. Dimensions in mm SMD = Surface Mounted Device Data Sheet 50 Rev. 1.71, 2007-01 05282004-NZNK-8T0D HY[B/E]18L128160B[C/F]-7.5 128-Mbit Mobile-RAM List of Figures Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 Figure 16 Figure 17 Figure 18 Figure 19 Figure 20 Figure 21 Figure 22 Figure 23 Figure 24 Figure 25 Figure 26 Figure 27 Figure 28 Figure 29 Figure 30 Figure 31 Figure 32 Figure 33 Figure 34 Figure 35 Figure 36 Figure 37 Figure 38 Figure 39 Figure 40 Figure 41 Figure 42 Figure 43 Figure 44 Figure 45 Figure 46 Figure 47 Figure 48 Data Sheet Standard Ballout 128-Mbit Mobile-RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Functional Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Power-Up Sequence and Mode Register Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 State Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Address / Command Inputs Timing Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 No Operation Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Mode Register Set Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Mode Register Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 ACTIVE Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Bank Activate Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 READ Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Basic READ Timing Parameters for DQs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Single READ Burst (CAS Latency = 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Single READ Burst (CAS Latency = 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Consecutive READ Bursts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Random READ Bursts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Non-Consecutive READ Bursts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Terminating a READ Burst . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Clock Suspend Mode for READ Bursts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 READ Burst - DQM Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 READ to WRITE Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 READ to PRECHARGE Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 WRITE Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Basic WRITE Timing Parameters for DQs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 WRITE Burst (CAS Latency = 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 WRITE Burst (CAS Latency = 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Consecutive WRITE Bursts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Random WRITE Bursts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Non-Consecutive WRITE Bursts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Terminating a WRITE Burst . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Clock Suspend Mode for WRITE Bursts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 WRITE Burst - DQM Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 WRITE to READ Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 WRITE to PRECHARGE Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 BURST TERMINATE Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 PRECHARGE command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 READ with Auto Precharge Interrupted by READ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 READ with Auto Precharge Interrupted by WRITE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 WRITE with Auto Precharge Interrupted by READ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 WRITE with Auto Precharge Interrupted by WRITE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 AUTO REFRESH Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Auto Refresh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 SELF REFRESH Entry Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Self Refresh Entry and Exit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Power Down Entry Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Power Down Entry and Exit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Test Load for DQ Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 P-VFBGA-54-2 (Plastic Very Thin Fine Ball Grid Array Package) . . . . . . . . . . . . . . . . . . . . . . . . . 50 51 Rev. 1.71, 2007-01 05282004-NZNK-8T0D HY[B/E]18L128160B[C/F]-7.5 128-Mbit Mobile-RAM List of Tables Table 1 Table 2 Table 4 Table 3 Table 5 Table 6 Table 7 Table 8 Table 9 Table 10 Table 11 Table 12 Table 13 Table 14 Table 15 Table 16 Table 17 Table 18 Table 19 Table 20 Table 21 Table 22 Table 23 Table 24 Data Sheet Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Memory Addressing Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Ordering Information for Green Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Burst Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Command Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Inputs Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Timing Parameters for Mode Register Set Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Timing Parameters for ACTIVE Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Timing Parameters for READ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Timing Parameters for WRITE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Timing Parameters for PRECHARGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Timing Parameters for AUTO REFRESH and SELF REFRESH . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Current State Bank n - Command to Bank n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Current State Bank n - Command to Bank m (different bank) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Truth Table - CKE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Pin Capacitances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Maximum Operating Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Self Refresh Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Half Drive Strength and Full Drive Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 52 Rev. 1.71, 2007-01 05282004-NZNK-8T0D HY[B/E]18L128160B[C/F]-7.5 128-Mbit Mobile-RAM Table of Contents 1 1.1 1.2 1.3 1.4 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin Definition and Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3 4 5 7 2 2.1 2.2 2.2.1 2.2.1.1 2.2.1.2 2.2.1.3 2.2.1.4 2.2.1.5 2.2.1.6 2.2.1.7 2.2.1.8 2.3 2.4 2.4.1 2.4.2 2.4.3 2.4.4 2.4.5 2.4.5.1 2.4.5.2 2.4.5.3 2.4.5.4 2.4.5.5 2.4.6 2.4.6.1 2.4.6.2 2.4.6.3 2.4.6.4 2.4.6.5 2.4.7 2.4.8 2.4.8.1 2.4.8.2 2.4.9 2.4.9.1 2.4.9.2 2.4.10 2.4.10.1 2.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Power On and Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Register Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Mode Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Burst Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Burst Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Read Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Write Burst Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Extended Mode Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Partial Array Self Refresh (PASR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Temperature Compensated Self Refresh (TCSR) with On-Chip Temperature Sensor . . . . . . . . 12 Selectable Drive Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 NO OPERATION (NOP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 DESELECT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 MODE REGISTER SET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 ACTIVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 READ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 READ Burst Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Clock Suspend Mode for READ Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 READ - DQM Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 READ to WRITE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 READ to PRECHARGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 WRITE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 WRITE Burst Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Clock Suspend Mode for WRITE Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 WRITE - DQM Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 WRITE to READ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 WRITE to PRECHARGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 BURST TERMINATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 PRECHARGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 AUTO PRECHARGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 CONCURRENT AUTO PRECHARGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 AUTO REFRESH and SELF REFRESH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 AUTO REFRESH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 SELF REFRESH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 POWER DOWN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 DEEP POWER DOWN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Function Truth Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3 3.1 3.2 3.3 3.4 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pull-up and Pull-down Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 45 45 46 48 49 List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Data Sheet 53 Rev. 1.71, 2007-01 05282004-NZNK-8T0D HY[B/E]18L128160B[C/F]-7.5 128-Mbit Mobile-RAM Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Data Sheet 54 Rev. 1.71, 2007-01 05282004-NZNK-8T0D Data Sheet, Edition 2007-01 Published by Qimonda AG Gustav-Heinemann-Ring 212 D-81739 München, Germany © Qimonda AG 2007. All Rights Reserved. Legal Disclaimer The information given in this Data Sheet shall in no event be regarded as a guarantee of conditions or characteristics (“Beschaffenheitsgarantie”). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Qimonda hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Qimonda Office. Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Qimonda Office. Under no circumstances may the Qimonda product as referred to in this Data Sheet be used in 1. Any applications that are intended for military usage (including but not limited to weaponry), or 2. Any applications, devices or systems which are safety critical or serve the purpose of supporting, maintaining, sustaining or protecting human life (such applications, devices and systems collectively referred to as "Critical Systems"), if a) A failure of the Qimonda product can reasonable be expected to - directly or indirectly (i) Have a detrimental effect on such Critical Systems in terms of reliability, effectiveness or safety; or (ii) Cause the failure of such Critical Systems; or b) A failure or malfunction of such Critical Systems can reasonably be expected to - directly or indirectly (i) Endanger the health or the life of the user of such Critical Systems or any other person; or (ii) Otherwise cause material damages (including but not limited to death, bodily injury or significant damages to property, whether tangible or intangible). www.qimonda.com