ROHM BA10358FV-E2

Operational Amplifiers / Comparators
Ground Sense
Operational Amplifiers
BA10358F/FV,BA10324AF/FV,BA2904S F/FV/FVM,BA2904F/FV/FVM
BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM
No.11049EBT15
●Description
General-purpose BA10358/BA10324A family and high-reliability BA2904 /BA2902 family integrate two or four independent
Op-Amps and phase compensation capacitors on a single chip and have some features of high-gain, low power
consumption, and operating voltage range of 3[V] to 32[V] (single power supply ). BA3404 family is realized high speed
operation and reduces the crossover distortions that compare with BA10358 family.
General purpose
High-reliability
Dual
BA10358F/FV
Quad
BA10324A F/FV
Dual
BA2904S F/FV/FVM:105℃ guaranteed
BA2904F/FV/FVM:125℃ guaranteed
Quad
Dual
BA2902S F/FV/KN:105℃ guaranteed
BA2902F/FV/KN:125℃ guaranteed
BA3404F/FVM
●Characteristics
1) Operable with a single power supply
2) Wide operating supply voltage
+3.0[V]~+32.0[V]( single supply) (BA10358/BA10324A/BA2904/BA2902 family)
+4.0[V]~+36.0[V]( single supply) (BA3404 family)
3) Standard Op-Amp Pin-assignments
4) Input and output are operable GND sense
5) Internal phase compensation type
6) Low supply current
7) High open loop voltage gain
8) Internal ESD protection
Human body model (HBM) ±5000[V](Typ.)(BA2904/BA2902/BA3404 family)
9) Gold PAD (BA2904/BA2902/BA3404 family)
10) Wide temperature range
-40[℃]~+85[℃] (BA10358/BA10324/BA3404 family)
-40[℃]~+105[℃] (BA2904S/BA2902S family)
-40[℃]~+125[℃] (BA2904/BA2902 family)
●Pin Assignment
OUT1 1
8
VCC
CH1
-IN1 2
+IN1 3
- +
7
CH2
+ -
VEE 4
6
OUT2
-IN2
5 +IN2
SOP8
SSOP-B8
BA10358F
BA2904SF
BA2904F
BA3404F
BA10358FV
BA2904SFV
BA2904FV
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
OUT1
1
-IN1
2
+IN1
14
BA2904SFVM
BA2904FVM
BA3404FVM
13
-IN4
3
12
+IN4
VCC
4
11
VEE
+IN2
5
10
+IN3
-IN2
6
9
-IN3
OUT2
7
8
OUT3
CH1
- +
CH4
+ -
+IN1 1
14
CH1
+
VCC 2
NC
15
3
-
+
BA10324AF
BA2902SF
BA2902F
+ CH3
13
+
5
-IN2
11 VEE
10 NC
+
CH3
-
+IN2 4
12 +IN4
CH4
+
CH2
SOP14
1/25
OUT1 OUT4 -IN4
16
CH2
MSOP8
-IN1
OUT4
-
6
7
9
+IN3
8
OUT2 OUT3 -IN3
SSOP-B14
VQFN16
BA10324AFV
BA2902SFV
BA2902FV
BA2902SKN
BA2902KN
2011.08 - Rev.B
BA10358F/FV, BA10324AF/FV, BA2904SF/FV/FVM, BA2904F/FV/FVM
BA2902SF/FV/KN, BA2902F/FV/KN, BA3404F/FVM
Technical Note
●Absolute Maximum Ratings (Ta=25[℃])
○BA10358 family,BA10324A family
Ratings
Symbol
Parameter
Supply Voltage
BA10358 family
BA10324A family
Unit
VCC-VEE
+32
V
Vid
VCC-VEE
V
Input Common-mode Voltage Range
Vicm
(VEE-0.3)~VCC
V
Operating Temperature Range
Topr
-40~+85
℃
Tstg
-55~+125
℃
Tjmax
+125
℃
Differential Input Voltage
(*1)
Storage Temperature Range
Maximum Junction Temperature
Note: Absolute maximum rating item indicates the condition which must not be exceeded. Application if voltage in excess of absolute maximum rating
or use out of absolute maximum rated temperature environment may cause deterioration of characteristics.
(*1) The voltage difference between inverting input and non-inverting input is the differential input voltage.
Then input terminal voltage is set to more than VEE.
●Electric Characteristics
○BA10358 family (Unless otherwise specified VCC=+5[V], VEE=0[V], Ta=25[℃])
Limits
Temperature
BA10358F/FV
Parameter
Symbol
Range
Min.
Typ.
Max.
Unit
Condition
Input Offset Voltage (*2)
Vio
25℃
-
2
7
mV
VOUT=1.4[V]
Input Offset Current (*2)
Iio
25℃
-
5
50
nA
VOUT=1.4[V]
Input Bias Current (*3)
Ib
25℃
-
45
250
nA
VOUT=1.4[V]
Supply Current
ICC
25℃
-
0.7
1.2
mA
RL=∞ All Op-Amps
Large Signal Voltage Gain
AV
25℃
25
100
-
V/mV
Vicm
25℃
0
-
VCC-1.5
V
Common-mode Rejection Ratio
CMRR
25℃
65
80
-
dB
VOUT=1.4[V]
Power Supply Rejection Ratio
PSRR
25℃
65
100
-
dB
VCC=5~30[V]
Output Source Current
IOH
25℃
10
20
-
mA
Output Sink Current
IOL
25℃
10
20
-
mA
Output Voltage Range
Vo
25℃
0
-
VCC-1.5
V
RL=2[kΩ]
Channel Separation
CS
25℃
-
120
-
dB
f=1[kHz], input referred
Input Common-mode Voltage Range
(*2)
(*3)
RL≧2[kΩ],VCC=15[V],
VOUT=1.4~11.4[V]
(VCC-VEE)=5[V],
VOUT=VEE+1.4[V]
VIN+=1[V],VIN-=0[V],
VOUT=0[V],
1CH is short circuit
VIN+=0[V],VIN-=1[V],
VOUT=5[V],
1CH is short circuit
Absolute value
Current direction: Since first input stage is composed with PNP transistor, input bias current flows out of IC.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
2/25
2011.08 - Rev.B
BA10358F/FV, BA10324AF/FV, BA2904SF/FV/FVM, BA2904F/FV/FVM
BA2902SF/FV/KN, BA2902F/FV/KN, BA3404F/FVM
Technical Note
○BA10324A family (Unless otherwise specified VCC=+5[V], VEE=0[V], Ta=25[℃])
Limits
Temperature
Parameter
Symbol
BA10324A F/FV
Range
Min.
Typ.
Max.
Unit
Condition
Input Offset Voltage (*4)
Vio
25℃
-
2
7
mV
VOUT=1.4[V]
Input Offset Current (*4)
Iio
25℃
-
5
50
nA
VOUT=1.4[V]
Input Bias Current (*5)
Ib
25℃
-
20
250
nA
VOUT=1.4[V]
Supply Current
ICC
25℃
-
0.6
2
mA
RL=∞ All Op-Amps
High Level Output Voltage
VOH
25℃
3.5
-
-
V
Low Level Output Voltage
VOL
25℃
-
-
250
mV
Large Signal Voltage Gain
AV
25℃
25
100
-
V/mV
Vicm
25℃
0
-
VCC-1.5
V
Common-mode Rejection Ratio
CMRR
25℃
65
75
-
dB
VOUT=1.4[V]
Power Supply Rejection Ratio
PSRR
25℃
65
100
-
dB
VCC=5~30[V]
Output Source Current
IOH
25℃
20
35
-
mA
Output Sink Current
IOL
25℃
10
20
-
mA
Channel Separation
CS
25℃
-
120
-
dB
Input Common-mode Voltage range
(*4)
(*5)
RL=2[kΩ]
RL=∞ All Op-Amps
RL≧2[kΩ],VCC=15[V],
VOUT=1.4~11.4[V]
(VCC-VEE)=5[V],
VOUT=VEE+1.4[V]
VIN+=1[V],VIN-=0[V],
VOUT=0[V],
1CH is short circuit
VIN+=0[V],VIN-=1[V],
VOUT=5[V]
1CH is short circuit
f=1[kHz], input referred
bsolute value
Current direction: Since first input stage is composed with PNP transistor, input bias current flows out of IC.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
3/25
2011.08 - Rev.B
BA10358F/FV, BA10324AF/FV, BA2904SF/FV/FVM, BA2904F/FV/FVM
BA2902SF/FV/KN, BA2902F/FV/KN, BA3404F/FVM
Technical Note
●Absolute Maximum Ratings (Ta=25[℃])
○BA2904/BA2902 family
Parameter
Ratings
BA2904S F/FV/FVM
BA2904F/FV/FVM
BA2902S F/FV/KN
BA2902F/FV/KN
+32
Symbol
Supply Voltage
VCC-VEE
Differential Input Voltage
(*6)
Unit
V
Vid
32
V
Input Common-mode Voltage Range
Vicm
(VEE-0.3)~(VEE+32)
V
Operating Temperature Range
Topr
Storage Temperature Range
Tstg
-55~+150
℃
Tjmax
+150
℃
Maximum Junction Temperature
-40~+105
-40~+125
℃
Note:Absolute maximum rating item indicates the condition which must not be exceeded.
Application if voltage in excess of absolute maximum rating or use out of absolute maximum rated temperature environment may cause deterioration of characteristics.
(*6) The voltage difference between inverting input and non-inverting input is the differential input voltage. Then input terminal voltage is set to more than VEE.
●Electric Characteristics
○BA2904 family (Unless otherwise specified VCC=+5[V], VEE=0[V])
Limits
BA2904S F/FV/FVM
BA2904F/FV/FVM
Min.
Typ.
Max.
2
7
10
Symbol
Temperature
Range
Input Offset Voltage (*7) (*8)
Vio
25℃
Full range
Input Offset Voltage Drift
△Vio/△T
-
-
±7
-
Input Offset Current (*7) (*8)
Iio
25℃
Full range
-
2
-
50
200
Input Offset Current Drift
△lio/△T
-
-
±10
-
Input Bias Current (*7) (*8)
Ib
25℃
Full range
25℃
Full range
25℃
Full range
3.5
27
20
0.7
28
250
250
1.2
2
-
nA
VOUT=1.4[V]
mA
RL=∞All Op-Amps
Parameter
Unit
Condition
mV
VOUT=1.4[V]
VCC=5~30[V],VOUT=1.4[V]
μV/℃ VOUT=1.4[V]
nA
VOUT=1.4[V]
pA/℃ VOUT=1.4[V]
Supply Current (*8)
ICC
High Level Output Voltage (*8)
VOH
Low Level Output Voltage (*8)
VOL
Full range
-
5
20
mV
AV
25℃
25
100
-
V/mV
Vicm
25℃
0
-
VCC-1.5
V
Common-mode Rejection Ratio
CMRR
25℃
50
80
-
dB
VOUT=1.4[V]
Power Supply Rejection Ratio
PSRR
25℃
65
100
-
dB
VCC=5~30[V]
25℃
Full range
25℃
Full range
20
10
10
2
30
20
-
-
Isink
25℃
12
40
-
μA
Channel Separation
CS
25℃
-
120
-
dB
Slew rate
SR
25℃
-
0.2
-
V/μs
ft
25℃
-
0.5
-
MHz
Vn
25℃
-
40
-
nV/ Hz
Large Signal Voltage Gain
Input Common-mode
Voltage Range
Output Source Current
(*8) (*9)
IOH
IOL
Output Sink Current (*8) (*9)
Maximum frequency
Input referred noise voltage
(*7)
(*8)
(*9)
V
mA
mA
RL=2[kΩ]
VCC=30[V],RL=10[kΩ]
RL=∞ All Op-Amps
RL≧2[kΩ],VCC=15[V]
VOUT=1.4~11.4[V]
(VCC-VEE)=5[V],
VOUT=VEE+1.4[V]
VIN+=1[V],VIN-=0[V]
VOUT=0[V] 1CH is short circuit
VIN+=0[V],VIN-=1[V]
VOUT=5[V] 1CH is short circuit
VIN+=0[V],VIN-=1[V]
VOUT=200[mV]
f=1[kHz], input referred
VCC=15[V],AV=0[dB],
RL=2[kΩ],CL=100[pF]
VCC=30[V],RL=2[kΩ],
CL=100[pF]
VCC=15[V],VEE=-15[V],
RS=100[Ω],Vi=0[V],f=1[kHz]
Absolute value
BA2904S family:Full range -40~+105℃ BA2904 family:Full range -40~+125℃
Under high temperatures, please consider the power dissipation when selecting the output current.
When the output terminal is continuously shorted the output current reduces the internal temperature by flushing.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
4/25
2011.08 - Rev.B
BA10358F/FV, BA10324AF/FV, BA2904SF/FV/FVM, BA2904F/FV/FVM
BA2902SF/FV/KN, BA2902F/FV/KN, BA3404F/FVM
Technical Note
○BA2902 family (Unless otherwise specified VCC=+5[V], VEE=0[V])
Parameter
Input Offset Voltage ( *10) (*11)
Input Offset Voltage Drift
Input Offset Current (*10) (*11)
Symbol
Temperature
Range
25℃
Full range
△Vio/△T
25℃
Iio
Full range
Vio
Input Offset Current Drift
△lio/△T
Input Bias Current (*10) (*11)
Ib
Limits
BA2902S F/FV/KN
BA2902F/FV/KN
Min.
Typ.
Max.
2
7
10
±7
2
50
200
Unit
Condition
VOUT=1.4[V]
VCC=5~30[V],VOUT=1.4[V]
μV/℃ VOUT=1.4[V]
mV
nA
VOUT=1.4[V]
-
-
±10
-
pA/℃ VOUT=1.4[V]
25℃
Full range
25℃
Full range
25℃
Full range
3.5
27
20
0.7
28
250
250
2
3
-
nA
VOUT=1.4[V]
mA
RL=∞ All Op-Amps
Supply Current (*10)
ICC
High Level Output Voltage (*11)
VOH
Low Level Output Voltage (*11)
VOL
Full range
-
5
20
mV
AV
25℃
25
100
-
V/mV
Vicm
25℃
0
-
VCC-1.
5
V
Common-mode Rejection Ratio
CMRR
25℃
50
80
-
dB
VOUT=1.4[V]
Power Supply Rejection Ratio
PSRR
25℃
65
100
-
dB
VCC=5~30[V]
Output SourceCurrent (*11) (*12)
25℃
20
30
-
IOH
Large Signal Voltage Gain
Input Common-mode Voltage Range
V
mA
Full range
10
-
-
IOL
25℃
Full range
10
2
20
-
-
mA
Isink
25℃
12
40
-
μA
Channel Separation
CS
25℃
-
120
-
dB
Slew rate
SR
25℃
-
0.2
-
V/μs
ft
25℃
-
0.5
-
MHz
Vn
25℃
-
40
-
nV/ Hz
Output Sink Current
(*11) (*12)
Maximum frequency
Input referred noise voltage
RL=2[kΩ]
VCC=30[V],RL=10[kΩ]
RL=∞All Op-Amps
RL≧2[kΩ],VCC=15[V]
VOUT=1.4~11.4[V]
(VCC-VEE)=5[V],
VOUT=VEE+1.4[V]
VIN+=1[V],VIN-=0[V]
VOUT=0[V] 1CH is short
circuit
VIN+=0[V],VIN-=1[V]
VOUT=5[V] 1CH is short circuit
VIN+=0[V],VIN-=1[V]
VOUT=200[mV]
f=1[kHz], input referred
VCC=15[V],AV=0[dB],
RL=2[kΩ],CL=100[pF]
VCC=30[V],RL=2[kΩ],
CL=100[pF]
VCC=15[V],VEE=-15[V],
RS=100[Ω],Vi=0[V],f=1[kHz]
(*10) Absolute value
(*11) BA2902S family:Full range -40~+105℃ ,BA2902 family:Full range -40~+125℃
(*12) Under high temperatures, please consider the power dissipation when selecting the output current.
When the output terminal is continuously shorted the output current reduces the internal temperature by flushing.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
5/25
2011.08 - Rev.B
BA10358F/FV, BA10324AF/FV, BA2904SF/FV/FVM, BA2904F/FV/FVM
BA2902SF/FV/KN, BA2902F/FV/KN, BA3404F/FVM
Technical Note
●Absolute Maximum Ratings (Ta=25[℃])
○BA3404 family
Parameter
Symbol
Ratings
VCC-VEE
+36
V
Vid
36
V
Input Common-mode Voltage Range
Vicm
(VEE-0.3)~(VEE+36)
V
Operating Temperature Range
Topr
-40~+85
℃
Storage Temperature Range
Tstg
-55~+150
℃
Tjmax
+150
℃
Supply Voltage
Differential Input Voltage (*13)
Maximum Junction Temperature
Unit
Note:Absolute maximum rating item indicates the condition which must not be exceeded.
Application if voltage in excess of absolute maximum rating or use out of absolute maximum rated temperature environment may cause
deterioration of characteristics.
(*13) The voltage difference between inverting input and non-inverting input is the differential input voltage.
Then input terminal voltage is set to more than VEE.
●Electric Characteristics
○BA3404 family (Unless otherwise specified VCC=+15[V], VEE=-15[V], Ta=25[℃])
Limits
Temperature
Parameter
Symbol
BA3404 family
Range
Min.
Typ.
Max.
Unit
Condition
Input Offset Voltage (*14)
Vio
25℃
-
2
5
mV
VOUT=0[V], Vicm=0[V]
Input Offset Current (*14)
Iio
25℃
-
5
50
nA
VOUT=0[V], Vicm=0[V]
Input Bias Current (*14)
Ib
25℃
-
70
200
nA
VOUT=0[V], Vicm=0[V]
Large Signal Voltage Gain
AV
25℃
88
100
-
dB
RL≧2[kΩ],
VOUT=±10[V],Vicm=0[V]
Maximum Output Voltage
VOM
25℃
±13
±14
-
V
RL≧2[kΩ]
Input Common-mode Voltage Range
Vicm
25℃
-15
-
13
V
VOUT=0[V]
Common-mode Rejection Ratio
CMRR
25℃
70
90
-
dB
Power Supply Rejection Ratio
PSRR
25℃
80
94
-
dB
ICC
25℃
-
2.0
3.5
mA
Isource
25℃
20
30
-
mA
Isink
25℃
10
20
-
mA
SR
25℃
-
1.2
-
V/μs
ft
25℃
-
1.2
-
MHz
THD
25℃
-
0.1
-
%
Supply Current
Output Source Current
Output Sink Current
Slew rate
Unity Gain Frequency
Total Harmonic Distortion
VOUT=0[V],
Vicm=-15[V]~+13[V]
Ri≦10[kΩ],
VCC=+4[V]~+30[V]
RL=∞ All Op-Amps,
VIN+=0[V]
VIN+=1[V],VIN-=0[V],
VOUT=+12[V],
Output of one channel only
VIN+=0[V], VIN-=1[V],
VOUT= -12[V],
Output of one channel only
AV=0[dB],
RL=2[kΩ],CL=100[pF]
RL=2[kΩ]
VOUT=10[Vp-p],f=20[kHz],
AV=0[dB],RL=2[kΩ]
(*14) Absolute value
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
6/25
2011.08 - Rev.B
BA10358F/FV, BA10324AF/FV, BA2904SF/FV/FVM, BA2904F/FV/FVM
BA2902SF/FV/KN, BA2902F/FV/KN, BA3404F/FVM
Technical Note
●Reference Data (The data is ability value of sample, it is not guaranteed. )
○BA10358 family
SUPPLY CURRENT [mA] .
POWER DISSIPATION [mW] .
800
BA10358F
600
400
BA10358FV
200
BA10358 family
1.0
BA10358 family
1
SUPPLY CURRENT [mA]
BA10358 family
1000
0.8
25℃
0.6
0.4
-40℃
85℃
0.2
0.8
32V
0.6
0.4
5V
0.2
3V
0
0
25
50
75
0.0
85
100
0
125
5
10
15
20
25
Fig. 1
Derating Curve
Fig. 2
Supply Current - Supply Voltage
BA10358 family
40
OUTPUT SOURCE CURRENT [mA]
4
OUTPUT VOLTAGE [V]
20
15
25℃
10
-40℃
5
0
0
5
10
15
20
25
SUPPLY VOLTAGE [V]
30
3
2
1
0
-50
35
100
BA10358 family
BA10358 family
85℃
25
-25
0
25
50
75
AMBIENT TEMPERATURE [℃]
Fig. 3
Supply Current - Ambient Temperature
5
30
OUTPUT VOLTAGE [V]
0
-50
35
SUPPLY VOLTAGE [V]
AMBIENT TEMPERTURE [℃] .
35
30
-40℃
30
20
25℃
10
85℃
0
-25
0
25
50
75
AMBIENT TEMPERATURE[℃]
100
0
1
2
3
4
OUTPUT VOLTAGE [V]
5
Fig. 4
Maximum Output Voltage - Supply Voltage
Fig. 5
Maximum Output Voltage - Ambient Temperature
Fig. 6
Output Source Current - Output Voltage
((RL=10[kΩ]))
(VCC=5[V],RL=2[kΩ])
(VCC=5[V])
100
15V
20
5V
3V
10
40
10
85℃
1
0.1
25℃
0.01
-40℃
25
50
75
100
0
0.4
0.8
15V
5V
20
3V
10
25℃
30
-40℃
85℃
0
10
15
20
25
30
35
SUPPLY VOLTAGE [V]
.
40
5
-25
60
50
40
5V
20
0
-50
50
75
100
(VOUT=VCC)
32V
3V
10
25
Fig. 9
Output Sink Current - Ambient Temperature
BA10358 family
30
0
AMBIENT TEMPERAURE [℃]
(VCC=5[V])
LOW LEVEL SINK CURRENT [μA]
50
10
0
-50
2
Fig. 8
Output Sink Current - Output Voltage
BA10358 family
20
1.6
OUTPUT VOLTAGE [V]
(VOUT=0[V])
60
1.2
BA10358 family
8
INPUT OFFSET VOLTAGE [mV]
0
Fig. 7
Output Source Current - Ambient Temperature
LOW LEVEL SINK CURRENT [μA]
30
0.001
-25
AMBIENT TEMPERATURE [℃]
0
OUTPUT SINK CURRENT [mA]
OUTPUT SINK CURRENT [mA]
OUTPUT SOURCE CURRENT [mA]
30
0
-50
BA10358 family
BA10358 family
BA10358 family
40
6
4
2
-40℃
0
-2
-4
25℃
-6
85℃
-8
-25
0
25
50
75
100
AMBIENT TEMPERATURE [℃]
0
5
10
15
20
25
30
35
SUPPLY VOLTAGE [V]
Fig. 10
Low Level Sink Current - Supply Voltage
Fig. 11
Low Level Sink Current - Ambient Temperature
Fig. 12
Input Offset Voltage - Supply Voltage
(VOUT=0.2[V])
(VOUT=0.2[V])
(Vicm=0[V], VOUT=1.4[V])
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
7/25
2011.08 - Rev.B
BA10358F/FV, BA10324AF/FV, BA2904SF/FV/FVM, BA2904F/FV/FVM
BA2902SF/FV/KN, BA2902F/FV/KN, BA3404F/FVM
Technical Note
○BA10358 family
.
BA10358 family
BA10358 family
50
8
4
2
0
3V
-2
-4
32V
5V
40
85℃
30
25℃
20
-40℃
10
5V
20
10
3V
-25
0
25
50
75
0
0
100
5
10
15
20
25
SUPPLY VOLTAGE [V]
30
35
-50
-25
0
25
50
75
100
AMBIENT TEMPERATURE [℃]
Fig. 13
Input Offset Voltage - Ambient Temperature
Fig. 14
Input Bias Current - Supply Voltage
Fig. 15
Input Bias Current - Ambient Temperature
(Vicm=0[V], VOUT=1.4[V])
(Vicm=0[V], VOUT=1.4[V])
(Vicm=0[V],VOUT=1.4[V])
30
20
10
8
10
INPUT OFFSET CURRENT [nA] .
.
INPUT OFFSET VOLTAGE [mV]
40
6
4
2
-40℃
0
25℃
-2
-4
85℃
-6
-8
0
-50
-25
0
25
50
75
AMBIENT TEMPERATURE [°C]
BA10358 family
0
25
50
75
130
-40℃
25℃
120
110
100
90
85℃
80
70
BA10358 family
130
120
5V
110
100
15V
90
80
70
60
2
100
4
6
8
10
12
14
16
18
-50
SUPPLY VOLTAGE[V]
AMBIENT TEMPERATURE [°C]
Fig. 19
Input Offset Current - Ambient Temperature
-25
0
25
50
75
100
AMBIENT TEMPERATURE [℃]
Fig. 20
Large Signal Voltage Gain - Supply Voltage
Fig. 21
Large Signal Voltage Gain - Ambient Temperature
(RL=2[kΩ])
(RL=2[kΩ])
.
(Vicm=0[V],VOUT=1.4[V])
35
140
60
-25
30
(Vicm=0[V],VOUT=1.4[V])
-10
-50
10
15
20
25
SUPPLY VOLTAGE [V]
(VCC=5[V])
LARGE SIGNAL VOLTAGE GAIN [dB]
32V
5V
-5
5
LARGE SIGNAL VOLTAGE GAIN [dB]
0
85℃
0
140
3V
-5
Fig. 18
Input Offset Current - Supply Voltage
10
5
25℃
Fig. 17
Input Offset Voltage - Common Mode Input Voltage
.
BA10358 family
-40℃
0
0
1
2
3
4
5
COMMON MODE INPUT VOLTAGE [V]
(VCC=30[V],Vicm=28[V],VOUT=1.4[V])
5
-10
-1
100
Fig. 16
Input Bias Current - Ambient Temperature
INPUT OFFSET CURRENT [nA]
BA10358 family
BA10358 family
BA10358 family
50
INPUT BIAS CURRENT [nA]
32V
30
0
AMBIENT TEMPERATURE [℃]
.
40
-6
-50
INPUT BIAS CURRENT [nA]
INPUT BIAS CURRENT [nA]
INPUT OFFSET VOLTAGE [mV]
6
-8
BA10358 family
50
COMMON MODE REJECTION RATIO [dB]
120
100
-40℃
25℃
80
85℃
60
40
0
5
10
15
20
25
SUPPLY VOLTAGE [V]
30
35
Fig. 22
Common Mode Rejection Ratio
- Supply Voltage
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
BA10358 family
BA10358 family
140
140
POWER SUPPLY REJECTION RATIO [dB]
.
COMMON MODE REJECTION RATIO [dB]
. ..
BA10358 family
140
130
120
120
110
32V
100
5V
100
80
60
3V
40
-50
-25
0
25
50
75
AMBIENT TEMPERATURE [℃]
Fig. 23
Common Mode Rejection Ratio
- Ambient Temperature
8/25
100
90
80
70
60
-50
-25
0
25
50
75
100
AMBIENT TEMPERATURE [℃]
Fig. 24
Power Supply Rejection Ratio
- Ambient Temperature
2011.08 - Rev.B
BA10358F/FV, BA10324AF/FV, BA2904SF/FV/FVM, BA2904F/FV/FVM
BA2902SF/FV/KN, BA2902F/FV/KN, BA3404F/FVM
Technical Note
○BA10324A family
BA10324A family
BA10324AFV
600
400
BA10324AF
200
1.6
.
SUPPLY CURRENT [mA]
800
BA10324A family
BA10324A family
2.0
25℃
1.2
0.8
-40℃
0.4
2
1.6
SUPPLY CURRENT [mA]
POWER DISSIPATION [mW] .
1000
32V
1.2
0.8
5V
0.4
85℃
0
0
25
50
75
85
100
125
0
5
10
15
20
25
30
35
SUPPLY VOLTAGE [V]
Fig. 25
Derating Curve
Fig. 26
Supply Current - Supply Voltage
OUTPUT VOLTAGE [V]
4
85℃
20
15
25℃
10
-40℃
3
2
1
5
0
-50
0
10
15
20
25
SUPPLY VOLTAGE [V]
35
100
BA10324A family
-40℃
40
30
25℃
20
85℃
10
0
-25
0
25
50
75
AMBIENT TEMPERATURE[℃]
100
0
1
2
3
4
OUTPUT VOLTAGE [V]
5
Fig. 29
Maximum Output Voltage - Ambient Temperature
Fig. 30
Output Source Current - Output Voltage
(RL=10[kΩ])
(VCC=5[V],RL=2[kΩ])
(VCC=5[V])
OUTPUT SINK CURRENT [mA]
15V
30
3V
5V
20
10
-25
0
25
50
75
10
1
85℃
0.1
25℃
0.01
-40℃
0.001
0.0
100
0.4
AMBIENT TEMPERATURE [℃]
0.8
LOW LEVEL SINK CURRENT [μA]
60
50
25℃
40
30
85℃
20
10
0
10
15
20
25
30
3V
0
-50
2.0
35
SUPPLY VOLTAGE [V]
5V
10
-25
0
25
50
75
100
AMBIENT TEMPERAURE [℃]
Fig. 33
Output Sink Current - Ambient Temperature
(VCC=5[V])
(VOUT=VCC)
.
BA10324A family
5
20
Fig. 32
Output Sink Current - Output Voltage
(VOUT=0[V])
0
1.6
15V
30
OUTPUT VOLTAGE [V]
Fig. 31
Output Source Current - Ambient Temperature
-40℃
1.2
BA10324A family
40
BA10324A family
BA10324A family
60
8
50
INPUT OFFSET VOLTAGE [mV]
40
BA10324A family
100
OUTPUT SINK CURRENT [mA]
BA10324A family
0
-50
LOW LEVEL SINK CURRENT [μA]
75
Fig. 28
Maximum Output Voltage - Supply Voltage
50
OUTPUT SOURCE CURRENT [mA]
30
50
50
OUTPUT SOURCE CURRENT [mA]
30
5
25
Fig. 27
Supply Current - Ambient Temperature
5
0
0
BA10324A family
BA10324A family
25
-25
AMBIENT TEMPERATURE [℃]
AMBIENT TEMPERTURE [℃] .
35
OUTPUT VOLTAGE [V]
3V
0
-50
0.0
32V
40
5V
30
20
3V
10
0
-50
6
85℃
4
2
0
25℃
-2
-40℃
-4
-6
-8
-25
0
25
50
75
100
AMBIENT TEMPERATURE [℃]
0
5
10
15
20
25
30
35
SUPPLY VOLTAGE [V]
Fig. 34
Low Level Sink Current - Supply Voltage
Fig. 35
Low Level Sink Current - Ambient Temperature
Fig. 36
Input Offset Voltage - Supply Voltage
(VOUT=0.2[V])
(VOUT=0.2[V])
(Vicm=0[V], VOUT=1.4[V])
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
9/25
2011.08 - Rev.B
BA10358F/FV, BA10324AF/FV, BA2904SF/FV/FVM, BA2904F/FV/FVM
BA2902SF/FV/KN, BA2902F/FV/KN, BA3404F/FVM
Technical Note
○BA10324A family
.
BA10324A family
8
BA10324A family
BA10324A family
50
50
32V
2
0
3V
-2
5V
-4
INPUT BIAS CURRENT [nA]
4
INPUT BIAS CURRENT [nA]
6
INPUT OFFSET VOLTAGE [mV]
40
30
85℃
25℃
20
10
-6
30
32V
20
5V
10
-40℃
-8
3V
0
-50
-25
0
25
50
75
AMBIENT TEMPERATURE [℃]
0
100
0
5
10
15
20
25
30
SUPPLY VOLTAGE [V]
35
Fig. 37
Input Offset Voltage - Ambient Temperature
Fig. 38
Input Bias Current - Supply Voltage
(Vicm=0[V], VOUT=1.4[V])
(Vicm=0[V], VOUT=1.4[V])
30
20
10
BA10324A family
-40℃
4
25℃
2
85℃
0
-2
-4
-6
-8
0
-50
-25
0
25
50
75
AMBIENT TEMPERATURE [°C]
100
Fig. 39
10
.
6
-25
0
25
50
75
AMBIENT TEMPERATURE [℃]
Input Bias Current - Ambient Temperature
INPUT OFFSET CURRENT [nA]
40
8
-50
(Vicm=0[V],VOUT=1.4[V])
BA10324A family
.
INPUT OFFSET VOLTAGE [mV]
BA10324A family
50
INPUT BIAS CURRENT [nA]
40
5
85℃
0
25℃
-40℃
-5
-10
-1
100
0
1
2
3
4
5
COMMON MODE INPUT VOLTAGE [V]
Fig. 40
Input Bias Current - Ambient Temperature
0
Fig. 41
Input Offset Voltage
- Common Mode Input Voltage
(VCC=30[V],Vicm=28[V],VOUT=1.4[V])
5
10
15
20
25
SUPPLY VOLTAGE [V]
30
35
Fig. 42
Input Offset Current - Supply Voltage
(Vicm=0[V],VOUT=1.4[V])
(VCC=5[V])
BA10324A family
LARGE SIGNAL VOLTAGE GAIN [dB]
INPUT OFFSET CURRENT [nA]
140
5
32V
5V
0
3V
-5
-10
140
130
-40℃
120
110
100
90
25℃
85℃
80
70
130
120
-25
0
25
50
75
100
100
90
5V
80
70
60
4
6
AMBIENT TEMPERATURE [°C]
Fig. 43
Input Offset Current - Ambient Temperature
8
10
12
14
SUPPLY VOLTAGE [V]
16
-50
0
.
.
100
-40℃
25℃
80
85℃
60
40
0
5
10
15
20
25
SUPPLY VOLTAGE [V]
30
35
Fig. 46
Common Mode Rejection Ratio
Supply Voltage
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
BA10324A family
140
100
130
120
120
110
32V
100
5V
100
80
60
3V
40
-50
-25
0
25
50
75
100
AMBIENT TEMPERATURE [℃]
-
75
BA10324A family
140
POWER SUPPLY REJECTION RATIO [dB]
.
COMMON MODE REJECTION RATIO [dB]
COMMON MODE REJECTION RATIO [dB]
..
120
50
(RL=2[kΩ])
BA10324A family
140
25
Fig. 45
Large Signal Voltage Gain
- Ambient Temperature
(RL=2[kΩ])
-25
AMBIENT TEMPERATURE [℃]
Fig. 44
Large Signal Voltage Gain - Supply Voltage
(Vicm=0[V],VOUT=1.4[V])
15V
110
60
-50
BA10324A family
BA10324A family
10
LARGE SIGNAL VOLTAGE GAIN [dB]
.
Fig. 47
Common Mode Rejection Ratio
- Ambient Temperature
10/25
90
80
70
60
-50
-25
0
25
50
75
100
AMBIENT TEMPERATURE [℃]
Fig. 48
Power Supply Rejection Ratio
- Ambient Temperature
2011.08 - Rev.B
BA10358F/FV, BA10324AF/FV, BA2904SF/FV/FVM, BA2904F/FV/FVM
BA2902SF/FV/KN, BA2902F/FV/KN, BA3404F/FVM
Technical Note
○BA2904 family
BA2904FV
BA2904FVM
600
0.8
SUPPLY CURRENT [mA]
POWER DISSIPATION [mA]
POWER DISSIPATION [mA]
BA2904F
800
BA2904 family
1.0
400
BA2904SF
200
25℃
0.6
-40℃
0.4
105℃
0.2
125℃
BA2904 family
1.0
SUPPLY CURRENT [mA]
BA2904 family
1000
0.8
32V
0.6
0.4
5V
0.2
BA2904SFV
3V
BA2904SFVM
0
0
25
50
105
100 125
75
0.0
0.0
150
0
10
AMBIENT TEMPERATURE [℃]
Fig. 49
Derating Curve
20
30
SUPPLY VOLTAGE [V]
Fig. 50
Supply Current - Supply Voltage
BA2904 family
BA2904 family
125℃
20
25℃
105℃
10
0
OUTPUT SOURCE CURRENT [mA]
MAXIMUM OUTPUT VOLTAGE [V]
-40℃
4
3
2
1
-40℃
40
25℃
30
105℃
20
10
20
30
40
0
-50 -25 0
25 50 75 100 125 150
AMBIENT TEMPERATURE [℃]
SUPPLY VOLTAGE [V]
125℃
10
0
0
0
25 50 75 100 125 150
AMBIENT TEMPERATURE [℃]
50
5
30
-25
Fig. 51
Supply Current - Ambient Temperature
BA2904 family
40
MAXIMUM OUTPUT VOLTAGE [V]
-50
40
0
1
2
3
4
OUTPUT VOLTAGE [V]
5
Fig. 52
Maximum Output Voltage - Supply Voltage
Fig. 53
Maximum Output Voltage - Ambient Temperature
Fig. 54
Output Source Current - Output Voltage
(RL=10[kΩ])
(VCC=5[V],RL=2[kΩ])
(VCC=5[V])
BA2904 family
BA2904 family
100
5V
30
15V
20
10
0
OUTPUT SINK CURRENT [mA]
3V
10
125℃
1
-40℃
0.1
25℃
0.01
-25
0
25
50
75
100 125 150
20
5V
3V
10
0
0.001
-50
BA2904 family
30
15V
105℃
40
OUTPUT SINK CURRENT [mA]
OUTPUT SOURCE CURRENT [mA]
50
0
0.4
AMBIENT TEMPERATURE [℃]
0.8
1.2
1.6
OUTPUT VOLTAGE [V]
-50
2
-25
0
25
50
75
100 125 150
AMBIENT TEMPERATURE [℃]
Fig. 55
Output Source Current - Ambient Temperature
Fig. 56
Output Sink Current - Output Voltage
Fig. 57
Output Sink Current - Ambient Temperature
(VOUT=0[V])
(VCC=5[V])
(VOUT=VCC)
80
BA2904 family
80
70
LOW LEVEL SINK CURRENT [μA]
LOW LEVEL SINK CURRENT [μA]
-40℃
25℃
60
50
40
105℃
125℃
30
20
10
70
60
5V
50
40
3V
30
20
10
0
0
0
5
10
15
20
25
SUPPLY VOLTAGE [V]
30
35
Fig. 58
Low Level Sink Current - Supply Voltage
(VOUT=0.2[V])
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
BA2904 family
8
32V
INPUT OFFSET VOLTAGE [mV]
BA2904 family
6
-40℃
4
25℃
2
0
-2
105℃
125℃
-4
-6
-8
-50
-25
0
25 50 75 100 125 150
AMBIENT TEMPERATURE [℃]
0
5
10
15
20
25
SUPPLY VOLTAGE [V]
30
35
Fig. 59
Fig. 60
Low Level Sink Current - Ambient Temperature Input Offset Voltage - Supply Voltage
(VOUT=0.2[V])
11/25
(Vicm=0[V], VOUT=1.4[V])
2011.08 - Rev.B
BA10358F/FV, BA10324AF/FV, BA2904SF/FV/FVM, BA2904F/FV/FVM
BA2902SF/FV/KN, BA2902F/FV/KN, BA3404F/FVM
Technical Note
○BA2904 family
BA2904 family
8
BA2904 family
50
BA2904 family
50
4
3V
2
0
5V
32V
-2
-4
INPUT BIAS CURRENT [nA]
INPUT BIAS CURRENT [nA]
INPUT OFFSET VOLTAGE [mV]
6
40
25℃
-40℃
30
20
10
105℃
-6
40
32V
30
20
3V
10
5V
125℃
0
0
-8
Fig. 62
Input Bias Current - Supply Voltage
Fig. 63
Input Bias Current - Ambient Temperature
(Vicm=0[V], VOUT=1.4[V])
(Vicm=0[V], VOUT=1.4[V])
(Vicm=0[V],VOUT=1.4[V])
25
50
75
100 125 150
BA2904 family
INPUT BIAS CURRENT[nA]
40
30
20
10
0
-10
35
BA2904 family
8
INPUT OFFSET VOLTAGE [mV]
50
30
6
-40℃
105℃
4
25℃
125℃
2
0
-2
-4
-6
-25
0
25
50
75
100 125 150
5
25℃
-40℃
0
105℃
125℃
-5
-10
-8
-50
BA2904 family
10
INPUT OFFSET CURRENT [nA]
0
5
-25
0
25 50 75 100 125 150
AMBIENT TEMPERATURE [℃]
Fig. 61
Input Offset Voltage - Ambient Temperature
-25
0
-50
AMBIENT TEMPERATURE [℃]
10
15
20
25
SUPPLY VOLTAGE [V]
-50
-1
0
AMBIENT TEMPERATURE [℃]
1
2
3
[V]
INPUT VOLTAGE [Vin]
4
0
5
5
10
15
20
25
30
35
SUPPLY VOLTAGE [V]
Fig. 64
Input Bias Current - Ambient Temperature
Fig. 65
Input Offset Voltage - Common Mode Input Voltage
Fig. 66
Input Offset Current - Supply Voltage
(VCC=30[V],Vicm=28[V],VOUT=1.4[V])
(VCC=5[V])
(Vicm=0[V],VOUT=1.4[V])
BA2904 family
BA2904 family
3V
0
5V
32V
-5
-10
140
LARGE SIGNAL VOLTAGE GAIN [dB]
LARGE SIGNAL VOLTAGE GAIN [dB]
INPUT OFFSET CURRENT [nA]
5
BA2904 family
140
10
130
-40℃
25℃
120
110
100
90
105℃
125℃
80
70
-25
0
25
50
75
100 125 150
15V
120
110
100
5V
90
80
70
60
60
-50
130
4
6
AMBIENT TEMPERATURE [℃]
8
10
12
SUPPLY VOLTAGE [V]
14
-50
16
Fig. 67
Input Offset Current - Ambient Temperature
Fig. 68
Large Signal Voltage Gain - Supply Voltage
(Vicm=0[V],VOUT=1.4[V])
(RL=2[kΩ])
-25
0
25 50 75 100 125 150
AMBIENT TEMPERATURE [℃]
Fig. 69
Large Signal Voltage Gain
- Ambient Temperature
120
-40℃
25℃
100
125℃
80
105℃
60
40
0
10
20
30
SUPPLY VOLTAGE [V]
Fig. 70
Common Mode Rejection Ratio
- Supply Voltage
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
40
BA2904 family
140
36V 32V
120
100
80
5V
3V
60
40
-50
-25
0
25 50 75 100 125 150
AMBIENT TEMPERATURE [℃]
Fig. 71
Common Mode Rejection Ratio
- Ambient Temperature
12/25
BA2904 family
140
POWER SUPPLY REJECTION RATIO [dB]
COMMON MODE REJECTION RATIO [dB]
COMMON MODE REJECTION RATIO [dB]
(RL=2[kΩ])
BA2904 family
140
130
120
110
100
90
80
70
60
-50
-25
0
25
50
75
100 125 150
AMBIENT TEMPERATURE [℃]
Fig. 72
Power Supply Rejection Ratio
- Ambient Temperature
2011.08 - Rev.B
BA10358F/FV, BA10324AF/FV, BA2904SF/FV/FVM, BA2904F/FV/FVM
BA2902SF/FV/KN, BA2902F/FV/KN, BA3404F/FVM
Technical Note
○BA2902 family
BA2902 family
BA2902 family
BA2902 family
1000
1.0
2.0
1.0
2.0
0.8
1.6
0.8
1.6
SUPPLY CURRENT [mA]
POWER DISSIPATION [mW]
BA2902KN
BA2902F
600
400
BA2902SFV
BA2902SKN
200
SUPPLY CURRENT [mA]
BA2902FV
800
25℃
0.6
1.2
-40℃
0.4
0.8
125℃
105℃
0.2
0.4
32V
0.6
1.2
0.8
0.4
5V
0.4
0.2
3V
BA2902SF
0
0
25
50
105
100
125
75
0.0
0.0
0.0
0.0
150
0
10
AMBIENT TEMPERTURE [℃]
Fig. 73
BA2902 family
20
25℃
105℃
10
0
3
2
1
10
20
30
40
Fig. 76
Maximum Output Voltage - Supply Voltage
5V
15V
20
10
0
BA2902 family
15V
10
125℃
1
-40℃
0.1
25℃
0.01
75
100 125 150
20
5V
3V
10
0
0.001
50
5
30
OUTPUT SINK CURRENT [mA]
3V
25
2
3
4
OUTPUT VOLTAGE [V]
(VCC=5[V])
105℃
0
1
BA2902 family
OUTPUT SINK CURRENT [mA]
OUTPUT SOURCE CURRENT [mA]
0
100
-25
125℃
10
(VCC=5[V],RL=2[kΩ])
50
-50
105℃
20
Fig. 77
Fig. 78
Maximum Output Voltage - Ambient Temperature Output Source Current - Output Voltage
BA2902 family
30
25℃
30
0
(RL=10[kΩ])
40
-40℃
40
-50 -25 0
25 50 75 100 125 150
AMBIENT TEMPERATURE [℃]
SUPPLY VOLTAGE [V]
BA2902 family
50
0
0
0
25 50 75 100 125 150
AMBIENT TEMPERATURE [℃]
Fig. 75
OUTPUT SOURCE CURRENT [mA]
MAXIMUM OUTPUT VOLTAGE [V]
MAXIMUM OUTPUT VOLTAGE [V]
100℃
4
-25
Supply Current - Ambient Temperature
BA2902 family
5
-40℃
30
-50
40
Fig. 74
Supply Current - Supply Voltage
Derating Curve
40
20
30
SUPPLY VOLTAGE [V]
0
0.4
AMBIENT TEMPERATURE [℃]
0.8
1.2
1.6
OUTPUT VOLTAGE [V]
-50
2
-25
0
25
50
75
100 125 150
AMBIENT TEMPERATURE [℃]
Fig. 79
Output Source Current - Ambient Temperature
Fig. 80
Output Sink Current - Output Voltage
Fig. 81
Output Sink Current - Ambient Temperature
(VOUT=0[V])
(VCC=5[V])
(VOUT=VCC)
BA2902 family
BA2902 family
8
25℃
60
50
40
105℃
125℃
30
20
10
32V
70
60
5V
50
40
3V
30
20
10
INPUT OFFSET VOLTAGE [mV]
LOW LEVEL SINK CURRENT [μA]
LOW LEVEL SINK CURRENT [μA]
-40℃
70
BA2902 family
80
80
0
0
0
5
10
15
20
25
SUPPLY VOLTAGE [V]
30
35
6
-40℃
4
25℃
2
0
-2
105℃
125℃
-4
-6
-8
-50
-25
0
25 50 75 100 125 150
AMBIENT TEMPERATURE [℃]
0
5
10
15
20
25
SUPPLY VOLTAGE [V]
30
35
Fig. 82
Low Level Sink Current - Supply Voltage
Fig. 83
Low Level Sink Current - Ambient Temperature
Fig. 84
Input Offset Voltage - Supply Voltage
(VOUT=0.2[V])
(VOUT=0.2[V])
(Vicm=0[V], VOUT=1.4[V])
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
13/25
2011.08 - Rev.B
BA10358F/FV, BA10324AF/FV, BA2904SF/FV/FVM, BA2904F/FV/FVM
BA2902SF/FV/KN, BA2902F/FV/KN, BA3404F/FVM
Technical Note
○BA2902 family
BA2902 family
BA2902 family
BA2902 family
8
50
50
4
3V
2
0
5V
-2
32V
-4
INPUT BIAS CURRENT [nA]
INPUT BIAS CURRENT [nA]
INPUT OFFSET VOLTAGE [mV]
6
40
25℃
-40℃
30
20
10
105℃
-6
40
32V
30
20
3V
10
5V
125℃
0
0
-8
-50
-25
0
25
50
75
0
100 125 150
5
10
15
20
25
SUPPLY VOLTAGE [V]
AMBIENT TEMPERATURE [℃]
Fig. 85
30
-50
35
-25
0
25 50 75 100 125 150
AMBIENT TEMPERATURE [℃]
Fig. 86
Fig. 87
Input Offset Voltage - Ambient Temperature
Input Bias Current - Supply Voltage
Input Bias Current - Ambient Temperature
(Vicm=0[V], VOUT=1.4[V])
(Vicm=0[V], VOUT=1.4[V])
(Vicm=0[V],VOUT=1.4[V])
10
INPUT OFFSET VOLTAGE [mV]
30
20
10
0
-10
6
-40℃
INPUT OFFSET CURRENT [nA]
8
40
INPUT BIAS CURRENT[nA]
BA2902 family
BA2902 family
BA2902 family
50
105℃
4
25℃
125℃
2
0
-2
-4
-6
-25
0
25
50
75
100 125 150
-1
0
AMBIENT TEMPERATURE [℃]
0
105℃
1
2
3
[V]
INPUT VOLTAGE [Vin]
(VCC=30[V],Vicm=28[V],VOUT=1.4[V])
4
0
5
-5
-10
-25
0
25
50
75
25
130
-40℃
25℃
120
110
100
90
105℃
125℃
80
70
100 125 150
30
35
Fig. 90
Input Offset Current - Supply Voltage
BA2902 family
130
15V
120
110
100
5V
90
80
70
60
60
-50
20
140
LARGE SIGNAL VOLTAGE GAIN [dB]
LARGE SIGNAL VOLTAGE GAIN [dB]
INPUT OFFSET CURRENT [nA]
32V
15
(Vicm=0[V],VOUT=1.4[V])
140
0
10
SUPPLY VOLTAGE [V]
BA2902 family
BA2902 family
10
5V
5
(VCC=5[V])
3V
125℃
-5
Fig. 88
Fig. 89
Input Bias Current - Ambient Temperature Input Offset Voltage - Common Mode Input Voltage
5
25℃
-40℃
-10
-8
-50
5
4
6
AMBIENT TEMPERATURE [℃]
8
10
12
SUPPLY VOLTAGE [V]
14
-50
16
-25
0
25 50 75 100 125 150
AMBIENT TEMPERATURE [℃]
Fig. 91
Input Offset Current - Ambient Temperature
Fig. 92
Large Signal Voltage Gain - Supply Voltage
Fig. 93
Large Signal Voltage Gain - Ambient Temperature
(Vicm=0[V],VOUT=1.4[V])
(RL=2[kΩ])
(RL=2[kΩ])
-40℃
25℃
100
125℃
80
105℃
60
40
0
10
20
30
SUPPLY VOLTAGE [V]
40
Fig. 94
Common Mode Rejection Ratio
- Supply Voltage
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
140
140
36V
32V
120
100
80
5V
3V
60
40
-50
-25
0
25 50 75 100 125 150
AMBIENT TEMPERATURE [℃]
Fig. 95
Common Mode Rejection Ratio
- Ambient Temperature
14/25
POWER SUPPLY REJECTION RATIO [dB]
120
BA2902 family
BA2902 family
COMMON MODE REJECTION RATIO [dB]
COMMON MODE REJECTION RATIO [dB]
BA2902 family
140
130
120
110
100
90
80
70
60
-50
-25
0
25
50
75
100 125 150
AMBIENT TEMPERATURE [℃]
Fig. 96
Power Supply Rejection Ratio
- Ambient Temperature
2011.08 - Rev.B
BA10358F/FV, BA10324AF/FV, BA2904SF/FV/FVM, BA2904F/FV/FVM
BA2902SF/FV/KN, BA2902F/FV/KN, BA3404F/FVM
Technical Note
○BA3404 family
BA3404 family
BA3404 family
BA3404F
600
400
BA3404FVM
200
0
0
25
3
25℃
2
85℃
-40℃
1
0
75 85
50
4
100
0
8
16
AMBIENT TEMPERTURE [℃] .
24
32
BA3404 family
±2.0V
-5
10
VOH
5
0
-5
-10
VOL
Fig. 100
Maximum Output Voltage - Load Resistance
±4
0
-5
VOL
-15
0.001
-20
±0
VOH
5
-10
VOL
-15
100000
±8
±12
±16
SUPPLY VOLTAGE [V]
±20
Fig. 101
Maximum Output Voltage - Supply Voltage
BA3404 family
85℃
0
25℃
-4
.
4
200
±18.0V
2
±15.0V
0
±2.0V
-2
-4
-6
-6
±15
150
-40℃
25℃
100
50
85℃
0
-50
±20
-25
0
25
50
75
100
±0
±5
AMBIENT TEMPERATURE [°C]
SUPPLY VOLTAGE [V]
±10
±15
±20
SUPPLY VOLTAGE [V]
Fig. 103
Input Offset Voltage - Supply voltage
Fig. 104
Input Offset Voltage - Ambient Temperature
Fig. 105
Input Bias Current - Supply Voltage
(Vicm=0[V], VOUT=0[V])
(Vicm=0[V], VOUT=0[V])
(Vicm=0[V], VOUT=0[V])
150
±2.0V
100
±15.0V
50
±18.0V
0
40
30
30
20
-40℃
25℃
10
0
-10
85℃
-20
-30
-40
-50
-25
0
25
50
75
100
AMBIENT TEMPERATURE [°C]
Fig. 106
Input Bias Current - Ambient Temperature
(Vicm=0[V], VOUT=0[V])
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
BA3404 family
40
INPUT OFFSET CURRENT [nA]
INPUT OFFSET CURRENT [nA]
200
BA3404 family
.
BA3404 family
250
INPUT BIAS CURRENT [nA]
100
250
INPUT BIAS CURRENT [nA]
2
±10
10
BA3404 family
BA3404 family
INPUT OFFSET VOLTAGE [mV]
INPUT OFFSET VOLTGE [mV]
4
±5
1
Fig. 102
Output Voltage - Output Current
6
±0
0.1
(VCC/VEE=+15[V]/-15[V],Ta=25[℃])
6
-2
0.01
OUTPUT CURRENT [mA]
(VCC/VEE=+15[V]/-15[V],Ta=25[℃])
-40℃
100
BA3404 family
OUTPUT VOLTAGE [V]
0
-25
0
25
50
75
AMBIENT TEMPERATURE [℃]
15
10
OUTPUT VOLTAGE [V]
5
±15.0V
1
Fig. 99
Supply Current - Ambient Temperature
15
VOH
10
1000
LOAD RESISTANCE [kΩ]
2
BA3404 family
20
-15
0.1
±18.0V
0
-50
40
Fig. 98
Supply Current - Supply Voltage
15
-10
3
SUPPLY VOLTAGE [V]
Fig. 97
Derating Curve
10
SUPPLY CURRENT [mA]
800
OUTPUT VOLTAGE [V]
BA3404 family
4
SUPPLY CURRENT [mA] .
POWER DISSIPATION [mW] .
1000
20
±18.0V
10
0
±2.0V
-10
±15.0V
-20
-30
-40
±0
±5
±10
±15
SUPPLY VOLTAGE [V]
±20
-50
-25
0
25
50
75
AMBIENT TEMPERATURE [°C]
100
Fig. 107
Input Offset Current - Supply Voltage
Fig. 108
Input Offset Current - Ambient Temperature
(Vicm=0[V], VOUT=0[V])
(Vicm=0[V], VOUT=0[V])
15/25
2011.08 - Rev.B
BA10358F/FV, BA10324AF/FV, BA2904SF/FV/FVM, BA2904F/FV/FVM
BA2902SF/FV/KN, BA2902F/FV/KN, BA3404F/FVM
Technical Note
○BA3404 family
BA3404 family
15
150
150
125
125
100
100
0
25℃
-5
-40℃
PSRR [dB]
85℃
5
.
.
10
CMRR [dB]
75
50
75
50
-10
25
25
-20
0
0
-3
-2
-1
0
1
2
3
-50
COMMON MODE INPUT VOLTAGE [V]
Fig. 111
Power Supply Rejection Ratio
- Ambient Temperature
(VCC/VEE=+2.5[V]/-2.5[V])
(VCC/VEE=+15[V]/-15[V])
(VCC/VEE=+15[V]/-15[V])
.
200
50
150
Phase
25℃
100
85℃
80
60
40
±2
±4
±6
125
100
±2.0V
60
25
-25
0
25
50
75
AMBIENT TEMPERATURE [°C]
0
0
1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07
100
FREQUENCY [Hz]
Fig. 114
Voltage Gain - Frequency
(VCC=±15V)
BA3404 family
0.6
0.4
0.2
.
85℃
1.2
SLEW RATE H-L [V/us]
1.0
BA3404 family
1
1.0
±18.0V
0.8
±2.5V
±15.0V
0.6
0.4
0.2
0.0
0.0
±4
40
20
0
1.4
±0
80
10
25℃
-40℃
100
20
50
BA3404 family
1.4
0.8
120
30
Fig. 113
Large Signal Voltage Gain
- Ambient Temperature (RL=2[kΩ])
1.2
±8
±12
±16
SUPPLY VOLTAGE[V]
±20
Fig. 115
Slew Rate L-H - Supply Voltage
140
Gain
75
SUPPLY VOLTAGE [V]
Fig. 112
Large Signal Voltage Gain
- Supply Voltage (RL=2[kΩ])
160
±15.0V
-50
±8 ±10 ±12 ±14 ±16 ±18 ±20
180
40
GAIN [dB]
LARGE SIGNAL VOLTAGE GAIN [dB]
±18.0V
-40℃
100
BA3404 family
BA3404 family
BA3404 family
120
.
-25
0
25
50
75
AMBIENT TEMPERATURE [°C]
Fig. 110
Common Mode Rejection Ratio
- Ambient Temperature
140
SLEW RATE L-H [V/us]
-50
100
Fig. 109
Input Offset Voltage
- Common Mode Input Voltage
160
LARGE SIGNAL VOLTAGE GAIN [dB]
.
-25
0
25
50
75
AMBIENT TEMPERATURE [°C]
-50
-25
0
25
50
75
AMBIENT TEMPERATURE [℃]
100
Fig. 116
Slew Rate H-L - Ambient Temperature
0.1
20kHz
0.01
20Hz
1kHz
0.001
0.01
0.1
1
OUTPUT VOLTAGE [Vrms]
10
Fig. 117
Total Harmonic Distoration - Output Voltage
(VCC/VEE=+4[V]/-4[V],Av=0[dB],
RL=2[kΩ],80[kHz]-LPF,Ta=25[℃])
BA3404 family
EQUIVALENT INPUT NOISE VOLTAGE
[nV/√Hz]
.
80
60
40
20
0
10
100
1000
FREQUENCY [Hz]
10000
Fig. 118
Equivalent Input Noise Voltage - Frequency
(VCC/VEE=+15[V]/-15[V],Rs=100[Ω],Ta=25[℃])
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
16/25
2011.08 - Rev.B
PHASE [deg]
-15
TOTAL HARMONIC DISTORTION [%]
INPUT OFFSET VOLTAGE [mV]
BA3404 family
BA3404 family
20
BA10358F/FV, BA10324AF/FV, BA2904SF/FV/FVM, BA2904F/FV/FVM
BA2902SF/FV/KN, BA2902F/FV/KN, BA3404F/FVM
Technical Note
●Circuit Diagram
VCC
VCC
-IN
VOUT
-IN
VOUT
+IN
+IN
VEE
VEE
Fig. 120 Schematic Diagram
(BA3404)
Fig. 119 Schematic Diagram
(BA10358/BA10324A/BA2904S/
BA2904/BA2902S/BA2902)
●Test circuit1 NULL method
VCC,VEE,EK,Vicm Unit:[V]
Parameter
VF
S1
S2
S3
BA10358 family
BA10324A family
BA2904 family
BA2902 family
BA3404 family
calculation
VCC VEE EK Vicm VCC VEE EK Vicm VCC VEE EK Vicm
Input Offset Voltage
VF1
OFF
5
0
-1.4
0
5~30
0
-1.4
0
15
-15
0
0
1
Input Offset Current
VF2 OFF OFF OFF
5
0
-1.4
0
5
0
-1.4
0
15
-15
0
0
2
5
0
-1.4
0
5
0
-1.4
0
15
-15
0
0
3
15
0
-1.4
0
15
0
-1.4
0
15
-15
10
0
15
0
-11.4
0
15
0
-11.4
0
15
-15
-10
0
5
0
-1.4
0
5
0
-1.4
0
15
-15
0
-15
5
0
-1.4 3.5
5
0
-1.4 3.5
15
-15
0
13
5
0
-1.4
0
5
0
-1.4
0
2
-2
0
0
30
0
-1.4
0
30
0
-1.4
0
15
-15
0
0
Input Bias Current
ON
VF4
ON
OFF
ON
ON
ON
ON
ON
OFF
ON
ON
OFF
VF6
Common-mode Rejection
Ratio (Input common-mode
Voltage Range)
Power Supply
Rejection Ratio
ON
VF3 OFF
VF5
Large Signal Voltage Gain
ON
VF7
VF8
VF9
VF10
OFF
-Calculation1. Input Offset Voltage (Vio)
VF1
Vio 
[V]
1 + Rf / Rs
5
6
C2
0.1[μF]
Rf
50[kΩ]
2. Input Offset Current (Iio)
VF2 - VF1
Iio 
[A]
Ri × (1 + Rf / Rs)
RK
S1
VCC
EK
Rs
3. Input Bias Current (Ib)
VF4 - VF3
Ib 
2 × Ri × (1 + Rf / Rs)
4
[A]
4. Large Signal Voltage Gain (Av)
ΔEK × (1+ Rf/Rs)
Av  20 × Log
VF5 - VF6
Vicm
0.1[μF]
Ri
+15[V]
50[Ω]
10[kΩ]
50[Ω]
10[kΩ]
Rs
500[kΩ]
C1
RK 500[kΩ]
DUT
NULL
S3
Ri
S2
VEE
RL
C3
1000[pF]
-15[V]
V VF
[dB]
Fig. 121 Test circuit1 (one channel only)
5. Common-mode Rejection Ration (CMRR)
ΔVicm × (1+ Rf/Rs)
CMRR  20 × Log
[dB]
VF8 - VF7
6. Power supply rejection ratio (PSRR)
ΔVcc × (1+ Rf/Rs)
PSRR  20 × Log
[dB]
VF10 - VF9
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
17/25
2011.08 - Rev.B
BA10358F/FV, BA10324AF/FV, BA2904SF/FV/FVM, BA2904F/FV/FVM
BA2902SF/FV/KN, BA2902F/FV/KN, BA3404F/FVM
Technical Note
●Test Circuit 2 Switch Condition
SW
1
SW No.
Supply Current
SW
2
SW
3
SW
4
SW
5
SW
6
SW
7
SW
8
SW
9
SW
10
SW
11
SW
12
SW
13
SW
14
OFF OFF OFF ON OFF ON OFF OFF OFF OFF OFF OFF OFF OFF
High Level Output Voltage
OFF OFF ON OFF OFF ON OFF OFF ON OFF OFF OFF ON OFF
Low Level Output Voltage
OFF OFF ON OFF OFF ON OFF OFF OFF OFF OFF OFF ON OFF
Output Source Current
OFF OFF ON OFF OFF ON OFF OFF OFF OFF OFF OFF OFF ON
Output Sink Current
OFF OFF ON OFF OFF ON OFF OFF OFF OFF OFF OFF OFF ON
Slew Rate
OFF OFF OFF ON OFF OFF OFF ON
ON
ON OFF OFF OFF OFF
Gain Bandwidth Product
OFF ON OFF OFF ON
ON OFF OFF ON
ON OFF OFF OFF OFF
Equivalent Input Noise Voltage
ON OFF OFF OFF ON
ON OFF OFF OFF OFF ON OFF OFF OFF
Input voltage
SW4
VH
R2
SW5
VCC
A
VL
-
t
Input wave
SW1
SW2
RS
R1
+
SW3
SW6
SW7
Output voltage
SW8
SW9
SW10
SW11
SW12
SW13
SW14
SR=ΔV/Δt
VH
VEE
A
~
VIN-
VIN+
~
RL
CL
V
~
ΔV
V
VOUT
VL
Δt
t
Output wave
Fig.122 Test Circuit 2 (each Op-Amp)
Fig. 123 Slew Rate Input Waveform
●Measurement Circuit 3 Amplifier To Amplifier Coupling
VCC
VCC
R1//R2
R1//R2
OTHER
CH
VEE
R1
VIN
R2
VEE
V VOUT1
R1
R2
V
=0.5[Vrms]
CS=20×log
VOUT2
100×VOUT1
VOUT2
Fig. 124 Test Circuit 3
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
18/25
2011.08 - Rev.B
BA10358F/FV, BA10324AF/FV, BA2904SF/FV/FVM, BA2904F/FV/FVM
BA2902SF/FV/KN, BA2902F/FV/KN, BA3404F/FVM
Technical Note
●Examples of circuit
○Voltage follower
Voltage gain is 0 [dB].
This circuit controls output voltage (Vout) equal input
voltage (Vin), and keeps Vout with stable because of
high input impedance and low output impedance.
Vout is shown next formula.
Vout=Vin
VCC
Vout
Vin
VEE
○Inverting amplifier
R2
VCC
R1
Vin
Vout
R1//R2
For inverting amplifier, Vin is amplified by voltage gain
decided R1 and R2, and phase reversed voltage is
outputed.
Vout is shown next formula.
Vout=-(R2/R1)・Vin
Input impedance is R1.
VEE
○Non-inverting amplifier
R1
R2
VCC
Vout
For non-inverting amplifier, Vin is amplified by voltage
gain decided R1 and R2, and phase is same with Vin.
Vout is shown next formula.
Vout=(1+R2/R1)・Vin
This circuit realizes high input impedance because
Input impedance is operational amplifier’s input
Impedance.
Vin
VEE
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
19/25
2011.08 - Rev.B
BA10358F/FV, BA10324AF/FV, BA2904SF/FV/FVM, BA2904F/FV/FVM
BA2902SF/FV/KN, BA2902F/FV/KN, BA3404F/FVM
Technical Note
●Description of Electrical Characteristics
Described below are descriptions of the relevant electrical terms
Please note that item names, symbols and their meanings may differ from those on another manufacturer’s documents.
1. Absolute maximum ratings
The absolute maximum ratings are values that should never be exceeded, since doing so may result in deterioration of
electrical characteristics or damage to the part itself as well as peripheral components.
1.1 Power supply voltage (VCC-VEE)
Expresses the maximum voltage that can be supplied between the positive and negative supply terminals without
causing deterioration of the electrical characteristics or destruction of the internal circuitry.
1.2 Differential input voltage (Vid)
Indicates the maximum voltage that can be supplied between the non-inverting and inverting terminals without
damaging the IC.
1.3 Input common-mode voltage range (Vicm)
Signifies the maximum voltage that can be supplied to non-inverting and inverting terminals without causing
deterioration of the characteristics or damage to the IC itself. Normal operation is not guaranteed within the
common-mode voltage range of the maximum ratings - use within the input common-mode voltage range of the
electric characteristics instead.
1.4 Operating and storage temperature ranges (Topr,Tstg)
The operating temperature range indicates the temperature range within which the IC can operate. The higher the
ambient temperature, the lower the power consumption of the IC. The storage temperature range denotes the range
of temperatures the IC can be stored under without causing excessive deterioration of the electrical characteristics.
1.5 Power dissipation (Pd)
Indicates the power that can be consumed by a particular mounted board at ambient temperature (25℃). For
packaged products, Pd is determined by the maximum junction temperature and the thermal resistance.
2. Electrical characteristics
2.1 Input offset voltage (Vio)
Signifies the voltage difference between the non-inverting and inverting terminals. It can be thought of as the input
voltage difference required for setting the output voltage to 0 V.
2.2 Input offset voltage drift (△Vio/△T)
Denotes the ratio of the input offset voltage fluctuation to the ambient temperature fluctuation.
2.3 Input offset current (Iio)
Indicates the difference of input bias current between the non-inverting and inverting terminals.
2.4 Input offset current drift (△Iio/△T)
Signifies the ratio of the input offset current fluctuation to the ambient temperature fluctuation.
2.5 Input bias current (Ib)
Denotes the current that flows into or out of the input terminal, it is defined by the average of the input bias current at
the non-inverting terminal and the input bias current at the inverting terminal.
2.6 Circuit current (ICC)
Indicates the current of the IC itself that flows under specified conditions and during no-load steady state.
2.7 High level output voltage/low level output voltage (VOH/VOL)
Signifying the voltage range that can be output under specified load conditions, it is in general divided into high level
output voltage and low level output voltage. High level output voltage indicates the upper limit of the output voltage,
while low level output voltage the lower limit.
2.8 Large signal voltage gain (AV)
The amplifying rate (gain) of the output voltage against the voltage difference between non-inverting and inverting
terminals, it is (normally) the amplifying rate (gain) with respect to DC voltage.
AV = (output voltage fluctuation) / (input offset fluctuation)
2.9 Input common-mode voltage range (Vicm)
Indicates the input voltage range under which the IC operates normally.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
20/25
2011.08 - Rev.B
BA10358F/FV, BA10324AF/FV, BA2904SF/FV/FVM, BA2904F/FV/FVM
BA2902SF/FV/KN, BA2902F/FV/KN, BA3404F/FVM
Technical Note
2.10 Common-mode rejection ratio (CMRR)
Signifies the ratio of fluctuation of the input offset voltage when the in-phase input voltage is changed (DC fluctuation).
CMRR = (change in input common-mode voltage) / (input offset fluctuation)
2.11 Power supply rejection ratio (PSRR)
Denotes the ratio of fluctuation of the input offset voltage when supply voltage is changed (DC fluctuation).
SVR = (change in power supply voltage) / (input offset fluctuation)
2.12 Output source current/ output sink current (IOH/IOL)
The maximum current that can be output under specific output conditions, it is divided into output source current and
output sink current. The output source current indicates the current flowing out of the IC, and the output sink current
the current flowing into the IC.
2.13 Channel separation (CS)
Expresses the amount of fluctuation of the input offset voltage or output voltage with respect to the change in the
output voltage of a driven channel.
2.14 Slew rate (SR)
Indicates the time fluctuation ratio of the output voltage when an input step signal is supplied.
2.15 Gain bandwidth product (GBW)
The product of the specified signal frequency and the gain of the op-amp at such frequency, it gives the approximate
value of the frequency where the gain of the op-amp is 1 (maximum frequency, and unity gain frequency).
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
21/25
2011.08 - Rev.B
BA10358F/FV, BA10324AF/FV, BA2904SF/FV/FVM, BA2904F/FV/FVM
BA2902SF/FV/KN, BA2902F/FV/KN, BA3404F/FVM
Technical Note
●Derating curves
Power dissipation(total loss) indicates the power that can be consumed by IC at Ta=25℃(normal temperature). IC is heated
when it consumed power, and the temperature of IC chip becomes higher than ambient temperature. The temperature that
can be accepted by IC chip depends on circuit configuration, manufacturing process, and consumable power is limited.
Power dissipation is determined by the temperature allowed in IC chip(maximum junction temperature) and thermal
resistance of package(heat dissipation capability). The maximum junction temperature is typically equal to the maximum
value in the storage temperature range. Heat generated by consumed power of IC radiates from the mold resin or lead
frame of the package. The parameter which indicatesthis heat dissipation capability(hardness of heat release)is called
thermal resistance, represented by the symbol θja[℃/W].The temperature of IC inside the package can be estimated by this
thermal resistance. Fig.125(a) shows the model of thermal resistance of the package. Thermal resistance θja, ambient
temperature Ta, junction temperature Tj, and power dissipation Pd can be calculated by the equation below:
θja = (Tj-Ta) / Pd
[℃/W]
・・・・・ (Ⅰ)
Derating curve in Fig.125(b) indicates power that can be consumed by IC with reference to ambient temperature.Power that
can be consumed by IC begins to attenuate at certain ambient temperature. This gradient iis determined by thermal
resistance θja. Thermal resistance θja depends on chip size, power consumption, package,ambient temperature, package
condition, wind velocity, etc even when the same of package is used.
Thermal reduction curve indicates a reference value measured at a specified condition. Fig.126(c)~(f) show a derating
curve for an example of BA10358, BA10324A, BA2904S, BA2904, BA2902S, BA2902, BA3404.
LSIの 消 費
力 [W]
Power dissipation
of 電
LSI
Pd (max)
θja = ( Tj ー Ta ) / Pd [℃/W]
θja2 < θja1
P2
Ambient temperature
周囲温度 Ta [℃]
θ' ja2
P1
θ ja2
Tj ' (max) Tj (max)
θ' ja1
θ ja1
Chip surface temperature
チップ 表面温度 Tj [℃]
Power dissipation Pd[W]
0
消費電力 P [W]
25
50
75
100
125
150
周 囲 温 度 Ta [℃ ]
Ambient temperature
(a)Thermal resistance
(b) Derating curve
Fig. 125 Thermal resistance and derating
1000
1000
800
POWER許容損失 Pd DISSIPATION[mW]
Pd [mW]
POWER許容損失 Pd DISSIPATION [mW]
Pd [mW]
800
BA10358F
620mW(*15)
620mW
(*1)
600
BA10358FV
550mW(*16)
550mW
(*2)
400
200
0
BA10324AFV
700mW
(*3)
700mW(*17)
600
BA10324AF
490mW(*18)
490mW
(*4)
400
200
0
0
25
50
75
100
125
0
25
Ambient temperature
周囲温度 Ta [:Ta
℃] [℃]
(c) BA10358 family
75
100
125
(d) BA10324 family
(a) BA10358 ファミリ
(a) BA10324A ファミリ
(b)
1000
1000
BA2904F
BA3404F
870mW(*22)
870mW(
*8)
780mW(*19)
780mW(
*5)
800
BA2904FV
690mW(
*6)
690mW(*20)
BA2904FVM
BA2904FVM
BA3404FVM
600
590mW (*7)
590mW(*21)
BA3404F
400
BA3404FVM
200
BA2902FV
800
POWER許容損失 Pd DISSIPATION[mW]
Pd [mW]
許容損失 Pd POWER
DISSIPATION[mW]
Pd [mW]
50
Ambient
temperature
Ta [℃]:Ta [℃]
周囲温度 BA2904SF
BA2904SFV
BA2902KN
660mW(*23)
660mW(
*9)
600
BA2902F
610mW(*24)
610mW (*10)
400
BA2902SFV
BA2902SKN
200
BA2902SF
BA2904SFVM
0
0
25
50
75
85
100
105
0
125
150
0
25
Ambient temperature
Ta [ :Ta
] [℃]
周囲温度 50
75
105
100
125
150
Ambient temperature
Ta [ :Ta
] [℃]
℃
周囲温度 ℃
(e) BA2904/BA3404 family
(f) BA2902 family
(a) BA2904 ファミリ
(a) BA2902 ファミリ
(*15)
(*16)
(*17)
(*18)
(*19)
(*20)
(*21)
(*22)
(*23)
(*24)
Unit
6.2
5.5
7.0
4.9
6.2
5.5
4.8
7.0
5.3
4.9
[mW/℃]
When using the unit above Ta=25[℃], subtract the value above per degree [℃].
Permissible dissipation is the value when FR4 glass epoxy board 70[mm] ×70[mm] ×1.6[mm] (cooper foil area below 3[%]) is mounted.
Fig. 126 Derating curve
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
22/25
2011.08 - Rev.B
BA10358F/FV, BA10324AF/FV, BA2904SF/FV/FVM, BA2904F/FV/FVM
BA2902SF/FV/KN, BA2902F/FV/KN, BA3404F/FVM
Technical Note
●Notes for use
1) Unused circuits
When there are unused circuits, it is recommended that they be connected as in
Fig.127, setting the non-inverting input terminal to a potential within the in-phase
input voltage range (Vicm).
VCC
Please
keep this
同相入力電圧
potencial
in Vicm
範囲内の電位
2) Input voltage
Applying VEE+32[V] (BA2904S / BA2904 /BA2902S / BA2902 family,
BA2904HFVM-C) and VEE+36[V](BA3404 family) to the input terminal is possible
without causing deterioration of the electrical characteristics or destruction,
VEE
irrespective of the supply voltage. However, this does not ensure normal circuit
operation. Please note that the circuit operates normally only when the input
voltage is within the common mode input voltage range of the electric
characteristics.
Fig. 127 Example of processing
unused circuit
3) Power supply (single / dual)
The op-amp operates when the voltage supplied is between VCC and VEE Therefore, the single supply op-mp can be
used as a dual supply op-amp as well.
4) Power dissipation (Pd)
Using the unit in excess of the rated power dissipation may cause deterioration in electrical characteristics due to the rise
in chip temperature, including reduced current capability. Therefore, please take into consideration the power dissipation
(Pd) under actual operating conditions and apply a sufficient margin in thermal design. Refer to the thermal derating
curves for more information.
5) Short-circuit between pins and erroneous mounting
Incorrect mounting may damage the IC. In addition, the presence of foreign substances between the outputs, the output
and the power supply, or the output and GND may result in IC destruction.
6) Operation in a strong electromagnetic field
Operation in a strong electromagnetic field may cause malfunctions.
7) Radiation
This IC is not designed to withstand radiation.
8) IC handing
Applying mechanical stress to the IC by deflecting or bending the board may cause fluctuation of the electrical
characteristics due to piezoelectric (piezo) effects.
9) IC operation
The output stage of the IC is configured using Class C push-pull circuits. Therefore, when the load resistor is connected to
the middle potential of VCC and VEE, crossover distortion occurs at the changeover between discharging and charging of
the output current. Connecting a resistor between the output terminal and GND, and increasing the bias current for Class
A operation will suppress crossover distortion.
10) Board inspection
Connecting a capacitor to a pin with low impedance may stress the IC. Therefore, discharging the capacitor after every
process is recommended. In addition, when attaching and detaching the jig during the inspection phase, ensure that the
power is turned OFF before inspection and removal. Furthermore, please take measures against ESD in the assembly
process as well as during transportation and storage.
11) Output capacitor
Discharge of the external output capacitor to VCC is possible via internal parasitic elements when VCC is shorted to VEE,
causing damage to the internal circuitry due to thermal stress. Therefore, when using this IC in circuits where oscillation
due to output capacitive load does not occur, such as in voltage comparators, use an output capacitor with a capacitance
less than 0.1μF.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
23/25
2011.08 - Rev.B
BA10358F/FV, BA10324AF/FV, BA2904SF/FV/FVM, BA2904F/FV/FVM
BA2902SF/FV/KN, BA2902F/FV/KN, BA3404F/FVM
Technical Note
●Ordering part number
B
A
2
Part No.
9
0
4
F
Part No.
10358,10324A
2904S,2904
2902S, 2902
3404
V
-
E
Package
F
: SOP8
SOP14
FV : SSOP-B8
SSOP-B14
FVM : MSOP8
KN : VQFN16
2
Packaging and forming specification
E2: Embossed tape and reel
(SOP8/SOP14/SSOP-B8/ SSOP-B14/VQFN16)
TR: Embossed tape and reel
(MSOP8)
SOP8
<Tape and Reel information>
7
5
6
+6°
4° −4°
6.2±0.3
4.4±0.2
0.3MIN
8
1 2
3
0.9±0.15
5.0±0.2
(MAX 5.35 include BURR)
Tape
Embossed carrier tape
Quantity
2500pcs
Direction
of feed
E2
The direction is the 1pin of product is at the upper left when you hold
( reel on the left hand and you pull out the tape on the right hand
)
4
0.595
1.5±0.1
+0.1
0.17 -0.05
0.11
S
1.27
0.42±0.1
1pin
Reel
(Unit : mm)
Direction of feed
∗ Order quantity needs to be multiple of the minimum quantity.
SOP14
<Tape and Reel information>
8.7 ± 0.2
(MAX 9.05 include BURR)
8
Tape
Embossed carrier tape
Quantity
2500pcs
Direction
of feed
0.3MIN
4.4±0.2
6.2±0.3
14
1
E2
The direction is the 1pin of product is at the upper left when you hold
( reel on the left hand and you pull out the tape on the right hand
)
7
1.5±0.1
0.15 ± 0.1
0.11
1.27
0.4 ± 0.1
0.1
1pin
Reel
(Unit : mm)
Direction of feed
∗ Order quantity needs to be multiple of the minimum quantity.
SSOP-B8
<Tape and Reel information>
3.0 ± 0.2
(MAX 3.35 include BURR)
0.3MIN
4.4±0.2
6.4±0.3
8 76 5
Tape
Embossed carrier tape
Quantity
2500pcs
Direction
of feed
E2
The direction is the 1pin of product is at the upper left when you hold
( reel on the left hand and you pull out the tape on the right hand
)
1.15±0.1
1 23 4
0.15 ± 0.1
0.1
S
0.1
+0.06
0.22 -0.04
(0.52)
0.08
M
0.65
1pin
Reel
(Unit : mm)
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
24/25
Direction of feed
∗ Order quantity needs to be multiple of the minimum quantity.
2011.08 - Rev.B
BA10358F/FV, BA10324AF/FV, BA2904SF/FV/FVM, BA2904F/FV/FVM
BA2902SF/FV/KN, BA2902F/FV/KN, BA3404F/FVM
Technical Note
SSOP-B14
<Tape and Reel information>
5.0 ± 0.2
8
1
Tape
Embossed carrier tape
Quantity
2500pcs
Direction
of feed
0.3Min.
4.4 ± 0.2
6.4 ± 0.3
14
E2
The direction is the 1pin of product is at the upper left when you hold
( reel on the left hand and you pull out the tape on the right hand
)
7
0.10
1.15 ± 0.1
0.15 ± 0.1
0.1
0.65
0.22 ± 0.1
Direction of feed
1pin
Reel
(Unit : mm)
∗ Order quantity needs to be multiple of the minimum quantity.
MSOP8
<Tape and Reel information>
2.8±0.1
4.0±0.2
8 7 6 5
0.6±0.2
+6°
4° −4°
0.29±0.15
2.9±0.1
(MAX 3.25 include BURR)
Tape
Embossed carrier tape
Quantity
3000pcs
Direction
of feed
TR
The direction is the 1pin of product is at the upper right when you hold
( reel on the left hand and you pull out the tape on the right hand
)
1 2 3 4
1PIN MARK
1pin
+0.05
0.145 –0.03
0.475
+0.05
0.22 –0.04
0.08±0.05
0.75±0.05
0.9MAX
S
0.08 S
Direction of feed
0.65
Reel
(Unit : mm)
∗ Order quantity needs to be multiple of the minimum quantity.
VQFN16
<Tape and Reel information>
4.2±0.1
4.0±0.1
(1.35)
4.0±0.1
9
1
4
0.05
M
+0.03
0.02 −0.02
0.22±0.05
2500pcs
Direction
of feed
5
16
E2
The direction is the 1pin of product is at the upper left when you hold
( reel on the left hand and you pull out the tape on the right hand
)
0.05
(0
.2
2
)
0.5
Embossed carrier tape (with dry pack)
Quantity
8
13
0.22±0.05
Tape
0.95MAX
4.2±0.1
12
)
.5
(0
Notice :
Do not use the dotted line area
for soldering
5)
.3
(0
3-
+0.1
0.6 −0.3
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
(Unit : mm)
1pin
Reel
25/25
Direction of feed
∗ Order quantity needs to be multiple of the minimum quantity.
2011.08 - Rev.B
Notice
Notes
No copying or reproduction of this document, in part or in whole, is permitted without the
consent of ROHM Co.,Ltd.
The content specified herein is subject to change for improvement without notice.
The content specified herein is for the purpose of introducing ROHM's products (hereinafter
"Products"). If you wish to use any such Product, please be sure to refer to the specifications,
which can be obtained from ROHM upon request.
Examples of application circuits, circuit constants and any other information contained herein
illustrate the standard usage and operations of the Products. The peripheral conditions must
be taken into account when designing circuits for mass production.
Great care was taken in ensuring the accuracy of the information specified in this document.
However, should you incur any damage arising from any inaccuracy or misprint of such
information, ROHM shall bear no responsibility for such damage.
The technical information specified herein is intended only to show the typical functions of and
examples of application circuits for the Products. ROHM does not grant you, explicitly or
implicitly, any license to use or exercise intellectual property or other rights held by ROHM and
other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the
use of such technical information.
The Products specified in this document are intended to be used with general-use electronic
equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices).
The Products specified in this document are not designed to be radiation tolerant.
While ROHM always makes efforts to enhance the quality and reliability of its Products, a
Product may fail or malfunction for a variety of reasons.
Please be sure to implement in your equipment using the Products safety measures to guard
against the possibility of physical injury, fire or any other damage caused in the event of the
failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM
shall bear no responsibility whatsoever for your use of any Product outside of the prescribed
scope or not in accordance with the instruction manual.
The Products are not designed or manufactured to be used with any equipment, device or
system which requires an extremely high level of reliability the failure or malfunction of which
may result in a direct threat to human life or create a risk of human injury (such as a medical
instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuelcontroller or other safety device). ROHM shall bear no responsibility in any way for use of any
of the Products for the above special purposes. If a Product is intended to be used for any
such special purpose, please contact a ROHM sales representative before purchasing.
If you intend to export or ship overseas any Product or technology specified herein that may
be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to
obtain a license or permit under the Law.
Thank you for your accessing to ROHM product informations.
More detail product informations and catalogs are available, please contact us.
ROHM Customer Support System
http://www.rohm.com/contact/
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
R1120A