SHARP PQ7DV10_01

Low Power-Loss Voltage Regulators
PQ7DV10
PQ7DV10
Variable Output,(1.5 to 7V)10A Output Low Power-loss Voltage Regulator
■
Features
●
10A output type
●
Low power-loss
(Dropout voltage : MAX.0.5V at Io=10A)
●
Variable output type(1.5 to 7V)
Low operating voltage(Minimum input voltage: 3.0V)
●
4.5±0.2
➅
17.0MAX
5±0.2
2.0±0.2
High-precision reference voltage type
(Reference voltage precision: ±2.0%)
PQ7DV10
19±0.5
●
(Unit : mm)
Outline Dimensions
TO-3P package
Built-in ON/OFF control function
● Built-in overcurrent protection, overheat protection
●
39.0MAX
■
(1.4)
3.7MAX
function
■
●
(0.6)
4–(2.54)
Applications
17.0MIN
●
5–0.8±0.2
➀ ➁ ➂ ➃ ➄
Power supplies for various electronic equipment such as
personal computers
PNP Tr chip
➀
IC
chip
Controller
Reference Comparator
voltage
➀ DC input(VIN)
DC output(VO)
➁ ➅ ➁➅GND
➂
➃ ON/OFF control
terminal(VC)
➃
➄ Output voltage minute
adjustment terminal(VADJ)
➄
➂
■
Absolute Maximum Ratings
Parameter
❇1
❇1
❇1
❇2
❇1
❇2
Input voltage
ON/OFF control terminal voltage
Output adjustment terminal voltage
Output current
Power dissipation(No heat sink)
Power dissipation(With infinite heat sink)
Junction temperature
Operating temperature
Storage temperature
Soldering temperature
(Ta=25˚C)
Symbol
VIN
VC
VADJ
IO
PD1
PD2
Tj
Topr
Tstg
Tsol
Rating
10
10
5
10
2.2
60
150
–20 to +80
–40 to +150
260(For 10s)
Unit
V
V
V
A
W
W
˚C
˚C
˚C
˚C
All are open except GND and applicable terminals.
Overheat protection may operate at 125<=Tj<=150˚C.
•Please refer to the chapter " Handling Precautions ".
Notice
In the absence of confirmation by device specification sheets,SHARP takes no responsibility for any defects that may occur in equipment using any SHARP
devices shown in catalogs,data books,etc.Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device.
Internet Internet address for Electronic Components Group http://sharp-world.com/ecg/
Low Power-Loss Voltage Regulators
Electrical Characteristics
Parameter
Input voltage
Reference voltage
Reference voltage
Load regulation
Line regulation
Temperature coefficient of output voltage
Ripple rejection
Dropout voltage
❇3 ON-state voltage for control
ON-state current for control
OFF-state voltage for control
OFF-state current for control
Quiescent current
Symbol
VIN
VO
Vref
RegL
RegI
TCVO
RR
Vi-o
VC(ON)
IC(ON)
VC(OFF)
IC(OFF)
Iq
Conditions
−
−
−
IO=5mA to 10A
VIN=4 to 10V
Tj=0 to 125˚C
Refer to Fig. 2
VIN=3V, Io=10A
−
VC=2.7V
−
VC=0.4V
IO=0A
NIN.
3
1.5
1.225
−
−
−
45
−
2
−
−
−
−
TYP.
−
−
1.25
0.5
0.5
±0.01
55
−
−
−
−
−
−
MAX.
10
7
1.275
2
2.5
−
−
0.5
−
20
0.8
–40
17
Unit
V
V
V
%
%
%/˚C
dB
V
V
µA
V
mA
mA
In case of opening control terminal ➃,output voltage turns on.
Fig. 1 Test Circuit
VIN
0.33µF
1
VC 4
A
Fig. 2 Test Circuit for Ripple Rejection
47µF
2
3
A
5
Iq 2kΩ
R2
Vref
VO
A
IO
+
R1 V
0.33µF
ei
4
VIN
VC
3
2.7V
40
20
Vref
IO
+
R1
2kΩ
V eo
RL
Fig. 4 Overcurrent Protection
Characteristics(Typical Value)
100
PD2
50
30
5
+
f=120Hz(sine wave)
ei(rms)=0.5V
VIN=5V
VO=3V(R1=2kΩ)
IO=0.5A
RR=20 log(ei(rms)/eo(rms))
Fig. 3 Power Dissipation vs. Ambient
Temperature
60
47µF
2
R2
V
RL
1
Vo=Vref✕(1+R2/R1)
[R1=2kΩ,Vref Nearly=1.25V]
Power dissipation PD (W)
❇3
(Unless otherwise specified, conditions shall be VIN=5V, Io=5A, Vo=3V(R1=2kΩ) Ta=25˚C)
Relative output voltage (%)
■
PQ7DV10
PD1 : No heat sink
PD2 : With infinite heat sink
10
80
60
40
20
PD1
0
–20
Note)
0
20
40
60
Ambient temperature Ta (˚C)
80
Oblique line portion : Overheat protection may operate in this area.
0
0
5
10
15
Output current IO (A)
20
Low Power-Loss Voltage Regulators
Fig. 5 Output Voltage Adjustment
Characteristics
Fig. 6 Output Voltage Deviation vs. Junction
Temperature
8
10
Output voltage deviation ∆VO (mV)
R1=2kΩ
6
5
4
3
2
1
103
R2 (Ω)
Fig. 7 Output Voltage vs. Input Voltage
RL=0.6Ω
RL=∞
RL=0.3Ω
2
1
0
0
1
2
3
4
Input voltage VIN (V)
Dropout voltage Vi–O (V)
0.4
VO=3V(R1=2kΩ,R2=2.8kΩ)
VIN : Input voltage when output voltage
is 95% in comparison with the initial value
0.2
0.1
0
25
50
75
100
Junction temperature Tj (˚C)
–2
–4
–6
–8
0
25
50
75
100
Junction temperature Tj (˚C)
125
Tj =25˚C
VO=3V(R1=2kΩ,R2=2.8kΩ)
120
80
RL=0.3Ω
RL=0.6Ω
40
RL=∞
0
1
2
3
4
Input voltage VIN (V)
5
Fig.10 Ripple Rejection vs. Junction
Temperature
0.3
0
–25
0
0
5
Fig. 9 Dropout Voltage vs. Junction
Temperature
0.5
2
160
Tj =25˚C
VO=3V(R1=2kΩ,R2=2.8kΩ)
3
4
Fig. 8 Circuit Operating Current vs. Input
Voltage
Circuit operating current IBIAS (mA)
Output voltage VO (V)
4
VIN=5V
8 VO=3V(R1=2kΩ,R2=2.8kΩ)
6 IO=2.5A
–10
–25
104
125
100
Ripple rejection RR (dB)
Output voltage VO (V)
7
0
102
PQ7DV10
80
60
40
20
VIN=7V
VO=3V(R1=2kΩ,R2=2.8kΩ)
IO =0.5A,ei(rms)=0.5V
f=120Hz
0
–25
0
25
50
75
100
Junction temperature Tj (˚C)
125
Low Power-Loss Voltage Regulators
PQ7DV10
Fig.12 Ripple Rejection vs. Input Ripple
Frequency
Fig.11 Quiescent Current vs. Junction
Temperature
15
10
5
0
–25
0
25
50
75
100
Junction temperature Tj (˚C)
125
Typical Applications
VIN
1
VO
2
R2
4
CIN
ON/OFF
Signal
5
+
3
R1
2kΩ
High or Open
Low
CO
: Output ON
: Output OFF
Load
■
100
VIN =5V
VO=3V(R1=2kΩ,R2=2.8kΩ)
IO =0A
Ripple rejection RR (dB)
Quiescent current Iq (mA)
20
80
60
40
VIN=5V
20 VO=3V(R1=2kΩ,R2=2.8kΩ)
Io=0.5A, ei(rms)=0.5V,
Tj =25˚C
0
0.1
1
10
Input ripple frequency f (kHz)
100
NOTICE
●
The circuit application examples in this publication are provided to explain representative applications of SHARP
devices and are not intended to guarantee any circuit design or license any intellectual property rights. SHARP takes
no responsibility for any problems related to any intellectual property right of a third party resulting from the use of
SHARP's devices.
●
Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device. SHARP
reserves the right to make changes in the specifications, characteristics, data, materials, structure, and other contents
described herein at any time without notice in order to improve design or reliability. Manufacturing locations are
also subject to change without notice.
●
Observe the following points when using any devices in this publication. SHARP takes no responsibility for damage
caused by improper use of the devices which does not meet the conditions and absolute maximum ratings to be used
specified in the relevant specification sheet nor meet the following conditions:
(i) The devices in this publication are designed for use in general electronic equipment designs such as:
- - - Personal computers
- -- Office automation equipment
- -- Telecommunication equipment [terminal]
- - - Test and measurement equipment
- - - Industrial control
- -- Audio visual equipment
- -- Consumer electronics
(ii) Measures such as fail-safe function and redundant design should be taken to ensure reliability and safety when
SHARP devices are used for or in connection with equipment that requires higher reliability such as:
- -- Transportation control and safety equipment (i.e., aircraft, trains, automobiles, etc.)
- - - Traffic signals
- - - Gas leakage sensor breakers
- - - Alarm equipment
- -- Various safety devices, etc.
(iii)SHARP devices shall not be used for or in connection with equipment that requires an extremely high level of
reliability and safety such as:
- - - Space applications
- -- Telecommunication equipment [trunk lines]
- -- Nuclear power control equipment
- -- Medical and other life support equipment (e.g., scuba).
●
Contact a SHARP representative in advance when intending to use SHARP devices for any "specific" applications
other than those recommended by SHARP or when it is unclear which category mentioned above controls the
intended use.
●
If the SHARP devices listed in this publication fall within the scope of strategic products described in the Foreign
Exchange and Foreign Trade Control Law of Japan, it is necessary to obtain approval to export such SHARP devices.
●
This publication is the proprietary product of SHARP and is copyrighted, with all rights reserved. Under the copyright
laws, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or
mechanical, for any purpose, in whole or in part, without the express written permission of SHARP. Express written
permission is also required before any use of this publication may be made by a third party.
●
Contact and consult with a SHARP representative if there are any questions about the contents of this publication.