1 R DS083 (v4.7) November 5, 2007 Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Complete Data Sheet Product Specification 0 Module 1: Introduction and Overview Module 3: DC and Switching Characteristics 10 pages 57 pages • • • • • • • • • • • • • Summary of Features General Description Architecture IP Core and Reference Support Device/Package Combinations and Maximum I/O Ordering Information Module 2: Functional Description Electrical Characteristics Performance Characteristics Switching Characteristics Pin-to-Pin Output Parameter Guidelines Pin-to-Pin Input Parameter Guidelines DCM Timing Parameters Source-Synchronous Switching Characteristics 60 pages Module 4: Pinout Information • 302 pages • • • • Functional Description: RocketIO™ X Multi-Gigabit Transceiver Functional Description: RocketIO Multi-Gigabit Transceiver Functional Description: Processor Block Functional Description: PowerPC™ 405 Core Functional Description: FPGA - • • Input/Output Blocks (IOBs) Digitally Controlled Impedance (DCI) On-Chip Differential Termination Configurable Logic Blocks (CLBs) 3-State Buffers CLB/Slice Configurations 18-Kb Block SelectRAM™ Resources 18-Bit x 18-Bit Multipliers Global Clock Multiplexer Buffers Digital Clock Manager (DCM) • • Pin Definitions Pinout Tables - FG256/FGG256 Wire-Bond Fine-Pitch BGA Package FG456/FGG456 Wire-Bond Fine-Pitch BGA Package FG676/FGG676 Wire-Bond Fine-Pitch BGA Package FF672 Flip-Chip Fine-Pitch BGA Package FF896 Flip-Chip Fine-Pitch BGA Package FF1148 Flip-Chip Fine-Pitch BGA Package FF1152 Flip-Chip Fine-Pitch BGA Package FF1517 Flip-Chip Fine-Pitch BGA Package FF1696 Flip-Chip Fine-Pitch BGA Package FF1704 Flip-Chip Fine-Pitch BGA Package Routing Configuration IMPORTANT NOTE: Page, figure, and table numbers begin at 1 for each module, and each module has its own Revision History at the end. Use the PDF "Bookmarks" pane for easy navigation in this volume. © 2002–2007 Xilinx, Inc. All rights reserved. XILINX, the Xilinx logo, the Brand Window, and other designated brands included herein are trademarks of Xilinx, Inc. PowerPC is a trademark of IBM Corp. and is used under license. All other trademarks are the property of their respective owners. DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com 1 1 0 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Introduction and Overview DS083 (v4.7) November 5, 2007 Product Specification Summary of Virtex-II Pro™ / Virtex-II Pro X Features • High-Performance Platform FPGA Solution, Including - Up to twenty RocketIO™ or RocketIO X embedded Multi-Gigabit Transceivers (MGTs) - Up to two IBM PowerPC™ RISC processor blocks Based on Virtex-II™ Platform FPGA Technology - Flexible logic resources - SRAM-based in-system configuration - Active Interconnect technology • - SelectRAM™+ memory hierarchy Dedicated 18-bit x 18-bit multiplier blocks High-performance clock management circuitry SelectI/O™-Ultra technology XCITE Digitally Controlled Impedance (DCI) I/O Virtex-II Pro / Virtex-II Pro X family members and resources are shown in Table 1. Table 1: Virtex-II Pro / Virtex-II Pro X FPGA Family Members CLB (1 = 4 slices = max 128 bits) Block SelectRAM+ DCMs Maximum User I/O Pads 216 4 204 28 504 4 348 44 44 792 4 396 290 88 88 1,584 8 564 9,792 306 88 88 1,584 8 552 30,816 13,696 428 136 136 2,448 8 644 2 43,632 19,392 606 192 192 3,456 8 804 0(3) or 16 2 53,136 23,616 738 232 232 4,176 8 852 16 or 20 2 74,448 33,088 1,034 328 328 5,904 8 996 20(4) 2 74,448 33,088 1,034 308 308 5,544 8 992 2 99,216 44,096 1,378 444 444 7,992 12 1,164 Slices Max Distr RAM (Kb) 18 X 18 Bit Multiplier Blocks 3,168 1,408 44 12 12 1 6,768 3,008 94 28 8 1 11,088 4,928 154 XC2VP20 8 2 20,880 9,280 XC2VPX20 8(4) 1 22,032 XC2VP30 8 2 XC2VP40 0(3), 8, or 12 XC2VP50 XC2VP70 RocketIO Transceiver Blocks PowerPC Processor Blocks XC2VP2 4 XC2VP4 Logic Cells(2) 0 4 XC2VP7 Device (1) XC2VPX70 XC2VP100 0(3) or 20 18 Kb Max Block Blocks RAM (Kb) Notes: 1. 2. 3. 4. -7 speed grade devices are not available in Industrial grade. Logic Cell ≈ (1) 4-input LUT + (1)FF + Carry Logic These devices can be ordered in a configuration without RocketIO transceivers. See Table 3 for package configurations. Virtex-II Pro X devices equipped with RocketIO X transceiver cores. RocketIO X Transceiver Features (XC2VPX20 and XC2VPX70 Only) • • • • Variable-Speed Full-Duplex Transceiver (XC2VPX20) Allowing 2.488 Gb/s to 6.25 Gb/s Baud Transfer Rates. - Includes specific baud rates used by various standards, as listed in Table 4, Module 2. Fixed-Speed Full-Duplex Tranceiver (XC2VPX70) Operating at 4.25 Gb/s Baud Transfer Rate. Eight or Twenty Transceiver Modules on an FPGA, Depending upon Device Monolithic Clock Synthesis and Clock Recovery - Eliminates the need for external components • • • • Automatic Lock-to-Reference Function Programmable Serial Output Differential Swing - 200 mV to 1600 mV, peak-peak - Allows compatibility with other serial system voltage levels Programmable Pre-emphasis Levels 0 to 500% Telecom/Datacom Support Modes - "x8" and "x10" clocking/data paths - 64B/66B clocking support © 2002–2007 Xilinx, Inc. All rights reserved. XILINX, the Xilinx logo, the Brand Window, and other designated brands included herein are trademarks of Xilinx, Inc. PowerPC is a trademark of IBM Corp. and is used under license. All other trademarks are the property of their respective owners. DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 1 of 4 1 R • • • • Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Introduction and Overview Programmable Receiver Equalization Internal AC Coupling On-Chip 50Ω Termination - Eliminates the need for external termination resistors Pre- and Post-Driver Serial and Parallel TX-to-RX • • Internal Loopback Modes for Testing Operability Programmable Comma Detection - Allows for any protocol - Allows for detection of any 10-bit character 8B/10B and 64B/66B Encoding Blocks RocketIO Transceiver Features (All Except XC2VPX20 and XC2VPX70) • • • • • • Full-Duplex Serial Transceiver (SERDES) Capable of Baud Rates from 600 Mb/s to 3.125 Gb/s 100 Gb/s Duplex Data Rate (20 Channels) Monolithic Clock Synthesis and Clock Recovery (CDR) Fibre Channel, 10G Fibre Channel, Gigabit Ethernet, 10 Gb Attachment Unit Interface (XAUI), and Infiniband-Compliant Transceivers 8-, 16-, or 32-bit Selectable Internal FPGA Interface 8B /10B Encoder and Decoder (optional) • • • • • • • • 50Ω /75Ω on-chip Selectable Transmit and Receive Terminations Programmable Comma Detection Channel Bonding Support (from 2 to 20 Channels) Rate Matching via Insertion/Deletion Characters Four Levels of Selectable Pre-Emphasis Five Levels of Output Differential Voltage Per-Channel Internal Loopback Modes 2.5V Transceiver Supply Voltage PowerPC RISC Processor Block Features (All Except XC2VP2) • • • • • • • Embedded 300+ MHz Harvard Architecture Block Low Power Consumption: 0.9 mW/MHz Five-Stage Data Path Pipeline Hardware Multiply/Divide Unit Thirty-Two 32-bit General Purpose Registers 16 KB Two-Way Set-Associative Instruction Cache 16 KB Two-Way Set-Associative Data Cache • • • • • Memory Management Unit (MMU) - 64-entry unified Translation Look-aside Buffers (TLB) - Variable page sizes (1 KB to 16 MB) Dedicated On-Chip Memory (OCM) Interface Supports IBM CoreConnect™ Bus Architecture Debug and Trace Support Timer Facilities Virtex-II Pro Platform FPGA Technology (All Devices) • • • • SelectRAM+ Memory Hierarchy - Up to 8 Mb of True Dual-Port RAM in 18 Kb block SelectRAM+ resources - Up to 1,378 Kb of distributed SelectRAM+ resources - High-performance interfaces to external memory Arithmetic Functions - Dedicated 18-bit x 18-bit multiplier blocks - Fast look-ahead carry logic chains Flexible Logic Resources - Up to 88,192 internal registers/latches with Clock Enable - Up to 88,192 look-up tables (LUTs) or cascadable variable (1 to 16 bits) shift registers - Wide multiplexers and wide-input function support - Horizontal cascade chain and Sum-of-Products support - Internal 3-state busing High-Performance Clock Management Circuitry - Up to twelve Digital Clock Manager (DCM) modules · Precise clock de-skew · · • • Flexible frequency synthesis High-resolution phase shifting - 16 global clock multiplexer buffers in all parts Active Interconnect Technology - Fourth-generation segmented routing structure - Fast, predictable routing delay, independent of fanout - Deep sub-micron noise immunity benefits SelectIO™-Ultra Technology - Up to 1,164 user I/Os - Twenty-two single-ended standards and ten differential standards - Programmable LVCMOS sink/source current (2 mA to 24 mA) per I/O - XCITE Digitally Controlled Impedance (DCI) I/O - PCI/ PCI-X support (1) - Differential signaling · 840 Mb/s Low-Voltage Differential Signaling I/O (LVDS) with current mode drivers · On-chip differential termination · Bus LVDS I/O 1. Refer to XAPP653 for more information. DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 1 of 4 2 R · · Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Introduction and Overview HyperTransport (LDT) I/O with current driver buffers Built-in DDR input and output registers - • Proprietary high-performance SelectLink technology for communications between Xilinx devices · High-bandwidth data path · Double Data Rate (DDR) link · Web-based HDL generation methodology SRAM-Based In-System Configuration - Fast SelectMAP™ configuration - Triple Data Encryption Standard (DES) security option (bitstream encryption) - IEEE 1532 support - Partial reconfiguration - Unlimited reprogrammability • General Description Architecture Array Overview Virtex-II Pro and Virtex-II Pro X devices are user-programmable gate arrays with various configurable elements and embedded blocks optimized for high-density and high-performance system designs. Virtex-II Pro devices implement the following functionality: • • • Embedded high-speed serial transceivers enable data bit rate up to 3.125 Gb/s per channel (RocketIO) or 6.25 Gb/s (RocketIO X). Embedded IBM PowerPC 405 RISC processor blocks provide performance up to 400 MHz. SelectIO-Ultra blocks provide the interface between package pins and the internal configurable logic. Most popular and leading-edge I/O standards are supported by the programmable IOBs. Configurable Logic Blocks (CLBs) provide functional elements for combinatorial and synchronous logic, including basic storage elements. BUFTs (3-state buffers) associated with each CLB element drive dedicated segmentable horizontal routing resources. DS083 (v4.7) November 5, 2007 Product Specification • • • • • • The Virtex-II Pro and Virtex-II Pro X families contain platform FPGAs for designs that are based on IP cores and customized modules. The family incorporates multi-gigabit transceivers and PowerPC CPU blocks in Virtex-II Pro Series FPGA architecture. It empowers complete solutions for telecommunication, wireless, networking, video, and DSP applications. The leading-edge 0.13 µm CMOS nine-layer copper process and Virtex-II Pro architecture are optimized for high performance designs in a wide range of densities. Combining a wide variety of flexible features and IP cores, the Virtex-II Pro family enhances programmable logic design capabilities and is a powerful alternative to mask-programmed gate arrays. • • • • - Readback capability Supported by Xilinx Foundation™ and Alliance Series™ Development Systems - Integrated VHDL and Verilog design flows - ChipScope™ Integrated Logic Analyzer 0.13 µm Nine-Layer Copper Process with 90 nm High-Speed Transistors 1.5V (VCCINT) core power supply, dedicated 2.5V VCCAUX auxiliary and VCCO I/O power supplies IEEE 1149.1 Compatible Boundary-Scan Logic Support Flip-Chip and Wire-Bond Ball Grid Array (BGA) Packages in Standard 1.00 mm Pitch. Wire-Bond BGA Devices Available in Pb-Free Packaging (www.xilinx.com/pbfree) Each Device 100% Factory Tested Block SelectRAM+ memory modules provide large 18 Kb storage elements of True Dual-Port RAM. Embedded multiplier blocks are 18-bit x 18-bit dedicated multipliers. Digital Clock Manager (DCM) blocks provide self-calibrating, fully digital solutions for clock distribution delay compensation, clock multiplication and division, and coarse- and fine-grained clock phase shifting. A new generation of programmable routing resources called Active Interconnect Technology interconnects all these elements. The general routing matrix (GRM) is an array of routing switches. Each programmable element is tied to a switch matrix, allowing multiple connections to the general routing matrix. The overall programmable interconnection is hierarchical and supports high-speed designs. All programmable elements, including the routing resources, are controlled by values stored in static memory cells. These values are loaded in the memory cells during configuration and can be reloaded to change the functions of the programmable elements. Features This section briefly describes Virtex-II Pro / Virtex-II Pro X features. For more details, refer to Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Functional Description. RocketIO / RocketIO X MGT Cores The RocketIO and RocketIO X Multi-Gigabit Transceivers are flexible parallel-to-serial and serial-to-parallel embedded transceiver cores used for high-bandwidth interconnection between buses, backplanes, or other subsystems. Multiple user instantiations in an FPGA are possible, providing up to 100 Gb/s (RocketIO) or 170 Gb/s (RocketIO X) of full-duplex raw data transfer. Each channel can be operated at a maximum data transfer rate of 3.125 Gb/s (RocketIO) or 6.25 Gb/s (RocketIO X). www.xilinx.com Module 1 of 4 3 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Introduction and Overview Each RocketIO or RocketIO X core implements the following technology: • • • • • • • • • • • • • • • Serializer and deserializer (SERDES) Monolithic clock synthesis and clock recovery (CDR) 10 Gigabit Attachment Unit Interface (XAUI) Fibre Channel (3.1875 Gb/s XAUI), Infiniband, PCI Express, Aurora, SXI-5 (SFI-5,/SPI-5), and OC-48 compatibility(1) 8/16/32-bit (RocketIO) or 8/16/32/64-bit (RocketIO X) selectable FPGA interface 8B/10B (RocketIO) or 8B/10B and 64B/66B (RocketIO X) encoder and decoder with bypassing option on each channel Channel bonding support (two to twenty channels) - Elastic buffers for inter-chip deskewing and channel-to-channel alignment Receiver clock recovery tolerance of up to 75 non-transitioning bits 50Ω (RocketIO X) or 50Ω /75Ω selectable (RocketIO) on-chip transmit and receive terminations Programmable comma detection and word alignment Rate matching via insertion/deletion characters Automatic lock-to-reference function Programmable pre-emphasis support Per-channel serial and parallel transmitter-to-receiver internal loopback modes Optional transmit and receive data inversion Cyclic Redundancy Check support (RocketIO only) - • • • • PowerPC 405 Processor Block The PPC405 RISC CPU can execute instructions at a sustained rate of one instruction per cycle. On-chip instruction and data cache reduce design complexity and improve system throughput. The PPC405 features include: • • PowerPC RISC CPU - Implements the PowerPC User Instruction Set Architecture (UISA) and extensions for embedded applications - Thirty-two 32-bit general purpose registers (GPRs) - Static branch prediction - Five-stage pipeline with single-cycle execution of most instructions, including loads/stores - Unaligned and aligned load/store support to cache, main memory, and on-chip memory - Hardware multiply/divide for faster integer arithmetic (4-cycle multiply, 35-cycle divide) - Enhanced string and multiple-word handling - Big/little endian operation support Storage Control • • Separate instruction and data cache units, both two-way set-associative and non-blocking - Eight words (32 bytes) per cache line - 16 KB array Instruction Cache Unit (ICU), 16 KB array Data Cache Unit (DCU) - Operand forwarding during instruction cache line fill - Copy-back or write-through DCU strategy - Doubleword instruction fetch from cache improves branch latency Virtual mode memory management unit (MMU) - Translation of the 4 GB logical address space into physical addresses - Software control of page replacement strategy - Supports multiple simultaneous page sizes ranging from 1 KB to 16 MB OCM controllers provide dedicated interfaces between Block SelectRAM+ memory and processor block instruction and data paths for high-speed access PowerPC timer facilities - 64-bit time base - Programmable interval timer (PIT) - Fixed interval timer (FIT) - Watchdog timer (WDT) Debug Support - Internal debug mode - External debug mode - Debug Wait mode - Real Time Trace debug mode - Enhanced debug support with logical operators - Instruction trace and trace-back support - Forward or backward trace Two hardware interrupt levels support Advanced power management support Input/Output Blocks (IOBs) IOBs are programmable and can be categorized as follows: • • • Input block with an optional single data rate (SDR) or double data rate (DDR) register Output block with an optional SDR or DDR register and an optional 3-state buffer to be driven directly or through an SDR or DDR register Bidirectional block (any combination of input and output configurations) These registers are either edge-triggered D-type flip-flops or level-sensitive latches. IOBs support the following single-ended I/O standards: • • • • LVTTL, LVCMOS (3.3V,(2) 2.5V, 1.8V, and 1.5V) PCI-X compatible (133 MHz and 66 MHz) at 3.3V (3) PCI compliant (66 MHz and 33 MHz) at 3.3V (3) GTL and GTLP 1. Refer to Table 4, Module 2 for detailed information about RocketIO and RocketIO X transceiver compatible protocols. 2. Refer to XAPP659 for more information. 3. Refer to XAPP653 for more information. DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 1 of 4 4 R • • Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Introduction and Overview HSTL (1.5V and 1.8V, Class I, II, III, and IV) SSTL (1.8V and 2.5V, Class I and II) The DCI I/O feature automatically provides on-chip termination for each single-ended I/O standard. The IOB elements also support the following differential signaling I/O standards: • • • • • LVDS and Extended LVDS (2.5V) BLVDS (Bus LVDS) ULVDS LDT LVPECL (2.5V) Both the SelectRAM+ memory and the multiplier resource are connected to four switch matrices to access the general routing resources. Global Clocking The DCM and global clock multiplexer buffers provide a complete solution for designing high-speed clock schemes. Two adjacent pads are used for each differential pair. Two or four IOBs connect to one switch matrix to access the routing resources. On-chip differential termination is available for LVDS, LVDS Extended, ULVDS, and LDT standards. Configurable Logic Blocks (CLBs) CLB resources include four slices and two 3-state buffers. Each slice is equivalent and contains: • • • • • • • mized for operations based on the block SelectRAM+ content on one port. The 18 x 18 multiplier can be used independently of the block SelectRAM+ resource. Read/multiply/accumulate operations and DSP filter structures are extremely efficient. Two function generators (F & G) Two storage elements Arithmetic logic gates Large multiplexers Wide function capability Fast carry look-ahead chain Horizontal cascade chain (OR gate) The function generators F & G are configurable as 4-input look-up tables (LUTs), as 16-bit shift registers, or as 16-bit distributed SelectRAM+ memory. In addition, the two storage elements are either edge-triggered D-type flip-flops or level-sensitive latches. Each CLB has internal fast interconnect and connects to a switch matrix to access general routing resources. Block SelectRAM+ Memory The block SelectRAM+ memory resources are 18 Kb of True Dual-Port RAM, programmable from 16K x 1 bit to 512 x 36 bit, in various depth and width configurations. Each port is totally synchronous and independent, offering three "read-during-write" modes. Block SelectRAM+ memory is cascadable to implement large embedded storage blocks. Supported memory configurations for dual-port and single-port modes are shown in Table 2. Table 2: Dual-Port and Single-Port Configurations 16K x 1 bit 4K x 4 bits 1K x 18 bits 8K x 2 bits 2K x 9 bits 512 x 36 bits Up to twelve DCM blocks are available. To generate deskewed internal or external clocks, each DCM can be used to eliminate clock distribution delay. The DCM also provides 90-, 180-, and 270-degree phase-shifted versions of its output clocks. Fine-grained phase shifting offers high-resolution phase adjustments in increments of 1/256 of the clock period. Very flexible frequency synthesis provides a clock output frequency equal to a fractional or integer multiple of the input clock frequency. For exact timing parameters, see Virtex-II Pro and Virtex-II Pro X Platform FPGAs: DC and Switching Characteristics. Virtex-II Pro devices have 16 global clock MUX buffers, with up to eight clock nets per quadrant. Each clock MUX buffer can select one of the two clock inputs and switch glitch-free from one clock to the other. Each DCM can send up to four of its clock outputs to global clock buffers on the same edge. Any global clock pin can drive any DCM on the same edge. Routing Resources The IOB, CLB, block SelectRAM+, multiplier, and DCM elements all use the same interconnect scheme and the same access to the global routing matrix. Timing models are shared, greatly improving the predictability of the performance of high-speed designs. There are a total of 16 global clock lines, with eight available per quadrant. In addition, 24 vertical and horizontal long lines per row or column, as well as massive secondary and local routing resources, provide fast interconnect. Virtex-II Pro buffered interconnects are relatively unaffected by net fanout, and the interconnect layout is designed to minimize crosstalk. Horizontal and vertical routing resources for each row or column include: • • • • 24 long lines 120 hex lines 40 double lines 16 direct connect lines (total in all four directions) Boundary Scan 18 X 18 Bit Multipliers A multiplier block is associated with each SelectRAM+ memory block. The multiplier block is a dedicated 18 x 18-bit 2s complement signed multiplier, and is opti- DS083 (v4.7) November 5, 2007 Product Specification Boundary-scan instructions and associated data registers support a standard methodology for accessing and configuring Virtex-II Pro devices, complying with IEEE standards 1149.1 and 1532. A system mode and a test mode are www.xilinx.com Module 1 of 4 5 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Introduction and Overview implemented. In system mode, a Virtex-II Pro device will continue to function while executing non-test Boundary-Scan instructions. In test mode, Boundary-Scan test instructions control the I/O pins for testing purposes. The Virtex-II Pro Test Access Port (TAP) supports BYPASS, PRELOAD, SAMPLE, IDCODE, and USERCODE non-test instructions. The EXTEST, INTEST, and HIGHZ test instructions are also supported. Configuration Virtex-II Pro / Virtex-II Pro devices are configured by loading the bitstream into internal configuration memory using one of the following modes: • • • • • Slave-serial mode Master-serial mode Slave SelectMAP mode Master SelectMAP mode Boundary-Scan mode (IEEE 1532) IP Core and Reference Support Intellectual Property is part of the Platform FPGA solution. In addition to the existing FPGA fabric cores, the list below shows some of the currently available hardware and software intellectual properties specially developed for Virtex-II Pro / Virtex-II Pro X by Xilinx. Each IP core is modular, portable, Real-Time Operating System (RTOS) independent, and CoreConnect compatible for ease of design migration. Refer to www.xilinx.com/ipcenter for the latest and most complete list of cores. Hardware Cores A Data Encryption Standard (DES) decryptor is available on-chip to secure the bitstreams. One or two triple-DES key sets can be used to optionally encrypt the configuration data. The Xilinx System Advanced Configuration Enviornment (System ACE) family offers high-capacity and flexible solution for FPGA configuration as well as program/data storage for the processor. See DS080, System ACE CompactFlash Solution for more information. Readback and Integrated Logic Analyzer Configuration data stored in Virtex-II Pro / Virtex-II Pro configuration memory can be read back for verification. Along with the configuration data, the contents of all flip-flops and latches, distributed SelectRAM+, and block SelectRAM+ memory resources can be read back. This capability is useful for real-time debugging. DS083 (v4.7) November 5, 2007 Product Specification The Xilinx ChipScope Integrated Logic Analyzer (ILA) cores and Integrated Bus Analyzer (IBA) cores, along with the ChipScope Pro Analyzer software, provide a complete solution for accessing and verifying user designs within Virtex-II Pro devices. • • • • Bus Infrastructure cores (arbiters, bridges, and more) Memory cores (DDR, Flash, and more) Peripheral cores (UART, IIC, and more) Networking cores (ATM, Ethernet, and more) Software Cores • • • • • • Boot code Test code Device drivers Protocol stacks RTOS integration Customized board support package www.xilinx.com Module 1 of 4 6 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Introduction and Overview Virtex-II Pro / Virtex-II Pro X Device/Package Combinations and Maximum I/Os Offerings include ball grid array (BGA) packages with 1.0 mm pitch. In addition to traditional wire-bond interconnect (FG/FGG packages), flip-chip interconnect (FF packages) is used in some of the BGA offerings. Flip-chip interconnect construction supports more I/Os than are possible in wire-bond versions of similar packages, providing a high pin count and excellent power dissipation. The device/package combination table (Table 3) details the maximum number of user I/Os and RocketIO / RocketIO X MGTs for each device and package using wire-bond or flip-chip technology. The FF1148 and FF1696 packages have no RocketIO transceivers bonded out. Extra SelectIO-Ultra resources occupy available pins in these packages, resulting in a higher user I/O count. These packages are available for the XC2VP40, XC2VP50, and XC2VP100 devices only. The I/Os per package count includes all user I/Os except the 15 control pins (CCLK, DONE, M0, M1, M2, PROG_B, PWRDWN_B, TCK, TDI, TDO, TMS, HSWAP_EN, DXN, DXP, and RSVD), VBATT, and the RocketIO / RocketIO X transceiver pins. Table 3: Virtex-II Pro Device/Package Combinations and Maximum Number of Available I/Os Package (1) FG256/ FGG256 FG456/ FGG456 FG676 FF672 FF896 FF1152 FF1148 FF1517 FF1704 FF1696 Pitch (mm) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Size (mm) 17 x 17 23 x 23 26 x 26 27 x 27 31 x 31 35 x 35 35 x 35 40 x 40 42.5 x 42.5 42.5 x 42.5 XC2VP2 140 / 4 156 / 4 204 / 4 XC2VP4 140 / 4 248 / 4 348 / 4 248 / 8 396 / 8 XC2VP7 XC2VP20 396 / 8 404 / 8 556 / 8 564 / 8 552 / 8 (2) XC2VPX20 XC2VP30 416 / 8 XC2VP40 416 / 8 556 / 8 XC2VP50 644 / 8 692 / 12 804 / 0 (3) 692 / 16 812 / 0 (3) XC2VP70 852 / 16 964 / 16 996 / 20 992 / 20 (2) XC2VPX70 XC2VP100 1,040 / 20 1,164 / 0 (3) Notes: 1. 2. 3. Wirebond packages FG256, FG456, and FG676 are also available in Pb-free versions FGG256, FGG456, and FGG676. See Virtex-II Pro Ordering Examples for details on how to order. Virtex-II Pro X device is equipped with RocketIO X transceiver cores. The RocketIO transceivers in devices in the FF1148 and FF1696 packages are not bonded out to the package pins. Maximum Performance Maximum performance of the RocketIO / RocketIO X transceiver and the PowerPC processor block varies, depending on package style and speed grade. See Table 4 for details. Virtex-II Pro and Virtex-II Pro X Platform FPGAs: DC and Switching Characteristics contains the rest of the FPGA fabric performance parameters. Table 4: Maximum RocketIO / RocketIO X Transceiver and Processor Block Performance Speed Grade Device RocketIO X Transceiver FlipChip (FF) RocketIO Transceiver FlipChip (FF) -7 (1) N/A 3.125 -6 6.25 (3) 3.125 -5 Units 4.25 (3) Gb/s 2.0 Gb/s RocketIO Transceiver Wirebond (FG) 2.5 2.5 2.0 Gb/s PowerPC Processor Block 400 (2) 350 (2) 300 MHz Notes: 1. 2. 3. -7 speed grade devices are not available in Industrial grade. IMPORTANT! When CPMC405CLOCK runs at speeds greater than 350 MHz in -7 Commercial grade dual-processor devices, or greater than 300 MHz in -6 Industrial grade dual-processor devices, users must implement the technology presented in XAPP755, “PowerPC 405 Clock Macro for -7(C) and -6(I) Speed Grade Dual-Processor Devices.” Refer to Table 1 to identify dual-processor devices. XC2VPX70 is only available at fixed 4.25 Gb/s baud rate. DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 1 of 4 7 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Introduction and Overview Virtex-II Pro Ordering Examples Virtex-II Pro ordering examples are shown in Figure 1 (flip-chip package) and Figure 2 (Pb-free wire-bond package). Example: XC2VP40 -7 FF 1152 C Device Type Speed Grade (-5, -6, -7*) Temperature Range: C = Commercial (Tj = 0˚C to +85˚C) I = Industrial* (Tj = –40˚C to +100˚C) Number of Pins Package Type *NOTE: -7 devices not available in Industrial grade. DS083_02_062104 Figure 1: Virtex-II Pro Ordering Example, Flip-Chip Package Example: XC2VP40 -6 FG G 676 I Device Type Speed Grade (-5, -6, -7*) Temperature Range: C = Commercial (Tj = 0˚C to +85˚C) I = Industrial* (Tj = –40˚C to +100˚C) Number of Pins Pb-Free Package Type *NOTE: -7 devices not available in Industrial grade. DS083-1_02b_062104 Figure 2: Virtex-II Pro Ordering Example, Pb-Free Wire-Bond Package Virtex-II Pro X Ordering Example A Virtex-II Pro X ordering example is shown in Figure 3. Example: XC2VPX20 -6 FF 896 C Device Type Speed Grade (-5, -6) Temperature Range: C = Commercial (Tj = 0°C to +85°C) I = Industrial* (Tj = –40°C to +100°C) Number of Pins Package Type DS083_02a_092705 Figure 3: Virtex-II Pro X Ordering Example, Flip-Chip Package DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 1 of 4 8 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Introduction and Overview Revision History This section records the change history for this module of the data sheet. Date Version Revision 01/31/02 1.0 Initial Xilinx release. 06/13/02 2.0 New Virtex-II Pro family members. New timing parameters per speedsfile v1.62. 09/03/02 2.1 Updates to Table 1 and Table 3. Processor Block information added to Table 4. 09/27/02 2.2 In Table 1, correct max number of XC2VP30 I/Os to 644. 11/20/02 2.3 Add bullet items for 3.3V I/O features. 01/20/03 2.4 • • In Table 3, add FG676 package option for XC2VP20, XC2VP30, and XC2VP40. Remove FF1517 package option for XC2VP40. 03/24/03 2.4.1 • • Correct number of single-ended I/O standards from 19 to 22. Correct minimum RocketIO serial speed from 622 Mbps to 600 Mbps. 08/25/03 2.4.2 • Add footnote referring to XAPP659 to callout for 3.3V I/O standards on page 4. 12/10/03 3.0 • XC2VP2 through XC2VP70 speed grades -5, -6, and -7, and XC2VP100 speed grades -5 and -6, are released to Production status. 02/19/04 3.1 • • Table 1: Corrected number of RocketIO transceiver blocks for XC2VP40. Section Virtex-II Pro Platform FPGA Technology (All Devices): Updated number of differential standards supported from six to ten. Section Input/Output Blocks (IOBs): Added text stating that differential termination is available for LVDS, LVDS Extended, ULVDS, and LDT standards. Figure 1: Added note stating that -7 devices are not available in Industrial grade. • • 03/09/04 3.1.1 • 06/30/04 4.0 Merged in DS110-1 (Module 1 of Virtex-II Pro X data sheet). Added information on available Pb-free packages. 11/17/04 4.1 No changes in Module 1 for this revision. 03/01/05 4.2 Table 3: Corrected number of RocketIO transceivers for XC2VP7-FG456. 06/20/05 4.3 No changes in Module 1 for this revision. 09/15/05 4.4 • • 10/10/05 4.5 • • Recompiled for backward compatibility with Acrobat 4 and above. No content changes. Changed all instances of 10.3125 Gb/s (RocketIO transceiver maximum bit rate) to 6.25 Gb/s. Changed all instances of 412.5 Gb/s (RocketIO X transceiver maximum multi-channel raw data transfer rate) to 250 Gb/s. Changed XC2VPX70 variable baud rate specification to fixed-rate operation at 4.25 Gb/s. Changed maximum performance for -7 Virtex-II Pro X MGT (Table 4) to N/A. 03/05/07 4.6 No changes in Module 1 for this revision. 11/05/07 4.7 Updated copyright notice and legal disclaimer. DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 1 of 4 9 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Introduction and Overview Notice of Disclaimer THE XILINX HARDWARE FPGA AND CPLD DEVICES REFERRED TO HEREIN (“PRODUCTS”) ARE SUBJECT TO THE TERMS AND CONDITIONS OF THE XILINX LIMITED WARRANTY WHICH CAN BE VIEWED AT http://www.xilinx.com/warranty.htm. THIS LIMITED WARRANTY DOES NOT EXTEND TO ANY USE OF PRODUCTS IN AN APPLICATION OR ENVIRONMENT THAT IS NOT WITHIN THE SPECIFICATIONS STATED IN THE XILINX DATA SHEET. ALL SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE. PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS LIFE-SUPPORT OR SAFETY DEVICES OR SYSTEMS, OR ANY OTHER APPLICATION THAT INVOKES THE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). USE OF PRODUCTS IN CRITICAL APPLICATIONS IS AT THE SOLE RISK OF CUSTOMER, SUBJECT TO APPLICABLE LAWS AND REGULATIONS. Virtex-II Pro Data Sheet The Virtex-II Pro Data Sheet contains the following modules: • • Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Introduction and Overview (Module 1) Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Functional Description (Module 2) DS083 (v4.7) November 5, 2007 Product Specification • • Virtex-II Pro and Virtex-II Pro X Platform FPGAs: DC and Switching Characteristics (Module 3) Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information (Module 4) www.xilinx.com Module 1 of 4 10 R 6 0 Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Functional Description DS083 (v4.7) November 5, 2007 Product Specification Virtex-II Pro(1) Array Functional Description These User Guides are available: DCM RocketIO or RocketIO X Multi-Gigabit Transceiver • • Multipliers and Block SelectRAM CLB Processor Block • CLB CLB CLB • Configurable Logic • DS083-1_01_050304 Figure 1: Virtex-II Pro Generic Architecture Overview This module describes the following Virtex™-II Pro functional components, as shown in Figure 1: • • All of the documents above, as well as a complete listing and description of Xilinx-developed Intellectual Property cores for Virtex-II Pro, are available on the Xilinx website. Contents of This Module SelectIO-Ultra • • For detailed descriptions of PPC405 embedded core programming models and internal core operations, see PowerPC Processor Reference Guide and PowerPC 405 Processor Block Reference Guide. For detailed RocketIO transceiver digital/analog design considerations, see RocketIO Transceiver User Guide. For detailed RocketIO X transceiver digital/analog design considerations, see RocketIO X Transceiver User Guide, For detailed descriptions of the FPGA fabric (CLB, IOB, DCM, etc.), see Virtex-II Pro Platform FPGA User Guide. Embedded RocketIO™ (up to 3.125 Gb/s) or RocketIO X (up to 6.25 Gb/s) Multi-Gigabit Transceivers (MGTs) Processor blocks with embedded IBM PowerPC™ 405 RISC CPU core (PPC405) and integration circuitry. FPGA fabric based on Virtex-II architecture. • • • • Virtex-II Pro Compared to Virtex-II Devices Virtex-II Pro devices are built on the Virtex-II FPGA architecture. Most FPGA features are identical to Virtex-II devices. Major differences are described below: • • Virtex-II Pro User Guides Virtex-II Pro User Guides cover theory of operation in more detail, and include implementation details, primitives and attributes, command/instruction sets, and many HDL code examples where appropriate. All parameter specifications are given only in Module 3 of this Data Sheet. Functional Description: RocketIO X Multi-Gigabit Transceiver (MGT) Functional Description: RocketIO Multi-Gigabit Transceiver (MGT) Functional Description: Processor Block Functional Description: Embedded PowerPC 405 Core Functional Description: FPGA Revision History • • • • The Virtex-II Pro FPGA family is the first to incorporate embedded PPC405 and RocketIO/RocketIO X cores. VCCAUX, the auxiliary supply voltage, is 2.5V instead of 3.3V as for Virtex-II devices. Advanced processing at 0.13 μm has resulted in a smaller die, faster speed, and lower power consumption. Virtex-II Pro devices are neither bitstream-compatible nor pin-compatible with Virtex-II devices. However, Virtex-II designs can be compiled into Virtex-II Pro devices. On-chip input LVDS differential termination is available. SSTL3, AGP-2X/AGP, LVPECL_33, LVDS_33, and LVDSEXT_33 standards are not supported. The open-drain output pin TDO does not have an internal pull-up resistor. 1. Unless otherwise noted, "Virtex-II Pro" refers to members of the Virtex-II Pro and/or Virtex-II Pro X families. © 2002–2007 Xilinx, Inc. All rights reserved. XILINX, the Xilinx logo, the Brand Window, and other designated brands included herein are trademarks of Xilinx, Inc. PowerPC is a trademark of IBM Corp. and is used under license. All other trademarks are the property of their respective owners. DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 2 of 4 1 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Functional Description Functional Description: RocketIO X Multi-Gigabit Transceiver (MGT) This section summarizes the features of the RocketIO X multi-gigabit transceiver. For an in-depth discussion of the RocketIO X MGT, including digital and analog design considerations, refer to the RocketIO X Transceiver User Guide. See Table 7, page 17, for a summary of the differences between the RocketIO X PMA/PCS and the RocketIO PMA/PCS. RocketIO X Overview Table 1: Communications Standards Supported by RocketIO X Transceiver (2) Either eight or twenty RocketIO X MGTs are available on the XC2VPX20 and XC2VPX70 devices, respectively. The XC2VPX20 MGT is designed to operate at any baud rate in the range of 2.488 Gb/s to 6.25 Gb/s per channel. This includes specific baud rates used by various standards as listed in Table 1. The XC2VPX70 MGT operates at a fixed 4.25 Gb/s per channel. The RocketIO X MGT consists of the Physical Media Attachment (PMA) and Physical Coding Sublayer (PCS). The PMA contains the 6.25 Gb/s serializer/deserializer (SERDES), TX/RX buffers, clock generator, and clock recovery circuitry. The RocketIO X PCS has been significantly updated relative to the RocketIO PCS. In addition to the existing RocketIO PCS features, the RocketIO X PCS features 64B/66B encoder/decoder/scrambler/descrambler and SONET compatibility. Figure 4, page 3 shows a high-level block diagram of the RocketIO X transceiver and its FPGA interface signals. Channels (Lanes) (1) I/O Bit Rate (Gb/s) 1 2.488 1, 2, 4, 8, 16 2.5 1, 4, 12 2.5 XAUI (10-Gb Ethernet) 4 3.125 XAUI (10-Gb Fibre Channel) 4 3.1875 Aurora (Xilinx protocol) 1, 2, 3, 4,... 2.488 to 6.25 Custom Mode 1, 2, 3, 4,... 2.488 to 6.25 Mode SONET OC-48 PCI Express Infiniband Notes: 1. One channel is considered to be one transceiver. 2. XC2VPX70 operates at a fixed 4.25 Gb/s baud rate. PMA Transmitter Output Transmitter Termination The RocketIO X transceiver is implemented in Current Mode Logic (CML). A CML transmitter output consists of transistors configured as shown in Figure 2. CML uses a positive supply and offers easy interface requirements. In this configuration, both legs of the driver, VP and VN, sink current, with one leg always sinking more current than its complement. The CML output consists of a differential pair with 50Ω source resistors. The signal swing is created by switching the current in a common-source differential pair. On-chip termination is provided at the transmitter, eliminating the need for external termination. The output driver and termination are powered by VTTX at 1.5V. This configuration uses a CML approach with 50Ω termination to TXP and TXN as shown in Figure 3. VTTX (1.5V) 50Ω VP VN VP - VN = 50Ω TXP V DATA TXN CML Output Driver ug083_34_050704 Figure 3: RocketIO X Transmit Termination DS083-2_66_052104 Figure 2: CML Output Configuration DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 2 of 4 2 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Functional Description PACKAGE PINS VTRX 2.5V Power Down RXRECCLK RXPOLARITY RXREALIGN RXCOMMADET ENPCOMMAALIGN ENMCOMMAALIGN Termination Supply RX 64B/66B Descrambler RXP Comma Detect Realign RXN VTTX Parallel Loopback Path Clock Manager 8B/10B Decoder 64B/66B Block Sync Serializer RXDATA[63:0] RX Elastic Buffer Channel Bonding and Clock Correction RXNOTINTABLE[7:0] RXDISPERR[7:0] RXCHARISK[7:0] RXCHARISCOMMA[7:0] RXRUNDISP[7:0] RXBUFSTATUS[1:0] ENCHANSYNC CHBONDDONE CHBONDI[4:0] CHBONDO[4:0] RXLOSSOFSYNC[1:0] RXCLKCORCNT[2:0] TXBUFERR Gear Box Scrambler TXDATA[63:0] 64B/66B Encoder TX FIFO TXP TXN AVCCAUXRX Pre-Driver Loopback Path Post Driver Serial Loopback Path Deserializer GNDA POWERDOWN 64B/66B Decoder AVCCAUXTX FPGA FABRIC MULTI-GIGABIT TRANSCEIVER CORE TXBYPASS8B10B[7:0] TXCHARISK[7:0] TXCHARDISPMODE[7:0] TXCHARDISPVAL[7:0] 8B/10B Encoder Output Polarity TXKERR[7:0] TXRUNDISP[7:0] Clock / Reset TX/RX GND 1.5V Termination Supply TX PMA Attribute Load TXPOLARITY TXINHIBIT LOOPBACK[1:0] TXRESET RXRESET REFCLK REFCLK2 REFCLKSEL BREFCLKP BREFCLKN RXUSRCLK RXUSRCLK2 TXUSRCLK TXUSRCLK2 PMAINIT PMAREGADDR[5:0] PMAREGDATAIN[7:0] PMAREGRW PMAREGSTROBE PMARXLOCKSEL[1:0] PMARXLOCK REFCLKBSEL RXBLCOKSYNC64B66BUSE RXCOMMADETUSE RXDATAWIDTH[1:0] RXDECC64B66BUSE RXDEC8B10BUSE RXDESCRAM64B66BUSE RXIGNOREBTF RXINTDATAWIDTH[1:0] RXSLIDE TXDATAWIDTH[1:0] TXENC64B66BUSE TXENC8B10BUSE TXFORCECRCERR TXGEARBOX64B66BUSE TXINTDATAWIDTH[1:0] TXSCRAM64B66BUSE TXOUTCLK DS083-2_37_050704 Figure 4: RocketIO X Transceiver Block Diagram DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 2 of 4 3 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Functional Description Output Swing and Emphasis The output swing and emphasis levels are fully programmable. Each is controlled via attributes at configuration, and can be modified via the PMA attribute programming bus. The programmable output swing control can adjust the differential peak-to-peak output level between 200 mV and 1600 mV. With emphasis, the differential voltage swing is boosted to create a stronger rising or falling waveform. This method compensates for high frequency loss in the transmission media that would otherwise limit the magnitude of this waveform. Lossy transmission lines cause the dissipation of electrical energy. This emphasis technique extends the distance that signals can be driven down lossy line media and increases the signal-to-noise ratio at the receiver. Emphasis can be described from two perspectives, additive to the smaller voltage (VSM) (pre-emphasis) or subtractive from the larger voltage (VLG) (de-emphasis). The resulting benefits in compensating for channel loss are identical. It is simply a relative way of specifying the effect at the transmitter. The equations for calculating pre-emphasis as a percentage and dB are as follows: Pre-Emphasis% = ((VLG-VSM) / VSM) x 100 Pre-EmphasisdB = 20 log(VLG/VSM) The equations for calculating de-emphasis as a percentage and dB are as follows: De-Emphasis% = (VLG - VSM) / VLG) x 100 De-EmphasisdB = 20 log(VSM/VLG) The pre-emphasis amount can be programmed in discrete steps between 0% and 500%. The de-emphasis amount can be programmed in discrete steps between 0% and 83%. Serializer The serializer multiplies the reference frequency provided on REFCLK by 10, 16, 20, 32, or 40, depending on the operation mode. The multiplication of the clock is achieved by using an embedded PLL. Data is converted from parallel to serial format and transmitted on the TXP and TXN differential outputs. The electrical connection of TXP and TXN can be interchanged through configuration. This option can be controlled by an input (TXPOLARITY) at the FPGA transmitter interface. Deserializer Synchronous serial data reception is facilitated by a clock and data recovery (CDR) circuit. This circuit uses a fully monolithic Phase Lock Loop (PLL), which does not require any external components. The CDR circuit extracts both phase and frequency from the incoming data stream. The derived clock, RXRECCLK, is generated and locked to as long as it remains within the specified component range. DS083 (v4.7) November 5, 2007 Product Specification This clock is presented to the FPGA fabric at 1/10, 1/16, 1/20, 1/32, or 1/40 the incoming data rate depending on the operating mode. A sufficient number of transitions must be present in the data stream for CDR to work properly. The CDR circuit is guaranteed to work with 8B/10B and 64B/66B encoding. Further, CDR requires approximately 5,000 transitions upon power-up to guarantee locking to the incoming data rate. Once lock is achieved, up to 75 missing transitions can be tolerated before lock to the incoming data stream is lost. Another feature of CDR is its ability to accept an external precision reference clock, REFCLK, which either acts to clock incoming data or to assist in synchronizing the derived RXRECCLK. For further clarity, the TXUSRCLK is used to clock data from the FPGA fabric to the TX FIFO. The FIFO depth accounts for the slight phase difference between these two clocks. If the clocks are locked in frequency, then the FIFO acts much like a pass-through buffer. The receiver can be configured to reverse the RXP and RXN inputs. This can be useful in the event that printed circuit board traces have been reversed. Receiver Lock Control The CDR circuits will lock to the reference clock automatically if the data is not present. For proper operation, the frequency of the reference clock must be within ±100 ppm of the nominal frequency. During normal operation, the receiver PLL automatically locks to incoming data (when present) or to the local reference clock (when data is not present). This is the default configuration for all primitives. This function can be overridden via the PMARXLOCKSEL port When receive PLL lock is forced to the local reference, phase information from the incoming data stream is ignored. Data continues to be sampled, but synchronous to the local reference rather than relative to edges in the data stream. Receive Equalization In addition to transmit emphasis, the RocketIO X MGT provides a programmable active receive equalization feature to further compensate the effects of channel attenuation at high frequencies. By adjusting RXFER, the right amount of equalization can be added to reverse the signal degradation caused by a printed circuit board, a backplane, or a line/switch card. RXFER can be set through software configuration or the PMA Attribute Bus. Receiver Termination On-chip termination is provided at the receiver, eliminating the need for external termination. The receiver termination supply (VTRX) is the center tap of differential termination to www.xilinx.com Module 2 of 4 4 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Functional Description RXP and RXN as shown in Figure 5. This supports multiple termination styles, including high-side, low-side, and differential (floating or active). This configuration supports receiver termination compatible to Virtex-II Pro devices, using a CML (high-side) termination to an active supply of 1.8V – 2.5V. For DC coupling of two Virtex-II Pro X devices, a 1.5V CML termination for VTRX is recommended. VTRX 50Ω 50Ω RXP RXN ds083-2_35_050704 Figure 5: RocketIO X Receive Termination PCS Fabric Data Interface Internally, the PCS operates in either 2-byte mode (16/20 bits) or 4-byte mode (32/40 bits). When in 2-byte mode, the FPGA fabric interface can either be 1, 2, or 4 bytes wide. When in 4-byte mode, the FPGA fabric interface can either be 4 or 8 bytes wide. When accompanied by the predefined modes of the PMA, the user thus has a large combination of protocols and data rates from which to choose. USRCLK2 clocks data on the fabric side, while USRCLK clocks data on the PCS side. This creates distinct USRCLK/USRCLK2 frequency ratios for different combinations of fabric and internal data widths. Table 2 summarizes the USRCLK2-to-USRCLK ratios for the different possible combinations of data widths. Table 2: Clock Ratios for Various Data Widths Frequency Ratio of USRCLK:USRCLK2 Fabric Data Width 2-Byte Internal Data Width 4-Byte Internal Data Width 1 byte 1:2 (1) N/A 2 byte 1:1 N/A 4 byte 2:1 (1) 1:1 8 byte N/A 2:1 (1) FPGA Transmit Interface The FPGA can send either one, two, or four characters of data to the transmitter. Each character can be either 8 bits or 10 bits wide. If 8-bit data is applied, the additional inputs become control signals for the 8B/10B encoder. When the 8B/10B encoder is bypassed, the 10-bit character order is generated as follows: TXCHARDISPMODE[0] (first bit transmitted) TXCHARDISPVAL[0] TXDATA[7:0] (last bit transmitted is TXDATA[0]) 64B/66B Encoder/Decoder The RocketIO X PCS features a 64B/66B encoder/decoder, scrambler/descrambler, and gearbox functions that can be bypassed as needed. The encoder is compliant with IEEE 802.3ae specifications. Scrambler/Gearbox Notes: 1. Each edge of slower clock must align with falling edge of faster clock. As a general guide, use 2-byte internal data width mode when the serial speed is below 5 Gb/s, and 4-byte internal data width mode when the serial speed is greater than 5 Gb/s. In 2-byte mode, the PCS processes 4-byte data every other byte. DS083 (v4.7) November 5, 2007 Product Specification No fixed phase relationship is assumed between REFCLK, RXRECCLK, and/or any other clock that is not tied to either of these clocks. When RXUSRCLK and RXUSRCLK2 have different frequencies, each edge of the slower clock is aligned to a falling edge of the faster clock. The same relationships apply to TXUSRCLK and TXUSRCLK2. The bypassable scrambler operates on the read side of the transmit FIFO. The scrambler uses the following generator polynomial to scramble 64B/66B payload data: G(x) = 1 + x39 + x58 The scrambler works in conjunction with the gearbox, which frames 64B/66B data for the PMA. The gearbox should always be enabled when using the 64B/66B protocal. www.xilinx.com Module 2 of 4 5 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Functional Description Disparity Control The 8B/10B encoder is initialized with a negative running disparity. Unique control allows forcing the current running disparity state. TXRUNDISP signals its current running disparity. This may be useful in those cases where there is a need to manipulate the initial running disparity value. Bits TXCHARDISPMODE and TXCHARDISPVAL control the generation of running disparity before each byte. For example, the transceiver can generate the sequence K28.5+ K28.5+ K28.5– K28.5– or K28.5– K28.5– K28.5+ K28.5+ by specifying inverted running disparity for the second and fourth bytes. Transmit FIFO Proper operation of the circuit is only possible if the FPGA clock (TXUSRCLK) is frequency-locked to the reference clock (REFCLK). Phase variations up to one clock cycle are allowable. The FIFO has a depth of four. Overflow or underflow conditions are detected and signaled at the interface. Bypassing of this FIFO is programmable. 8B/10B Encoder Note: In the RocketIO transceiver, the most-significant byte is sent first; in the RocketIO X transceiver, the least-significant byte is sent first. A bypassable 8B/10B encoder is included. The encoder uses the same 256 data characters and 12 control characters used by Gigabit Ethernet, Fibre Channel, and InfiniBand. The encoder accepts 8 bits of data along with a K-character signal for a total of 9 bits per character applied, and generates a 10 bit character for transmission. If the K-character signal is High, the data is encoded into one of the twelve possible K-characters available in the 8B/10B code. If the K-character input is Low, the 8 bits are encoded as standard data. If the K-character input is High, and a user applies other than one of the twelve possible combinations, TXKERR indicates the error. 8B/10B Decoder Note: In the RocketIO transceiver, the most-significant byte is sent first; in the RocketIO X transceiver, the least-significant byte is sent first. An optional 8B/10B decoder is included. A programmable option allows the decoder to be bypassed. When the 8B/10B decoder is bypassed, the 10-bit character order is, for example, RXCHARISK[0] RXRUNDISP[0] RXDATA[7:0] (first bit received) (last bit received is RXDATA[0]) The decoder uses the same table that is used for Gigabit Ethernet, Fibre Channel, and InfiniBand. In addition to DS083 (v4.7) November 5, 2007 Product Specification decoding all data and K-characters, the decoder has several extra features. The decoder separately detects both “disparity errors” and “out-of-band” errors. A disparity error is the reception of 10-bit character that exists within the 8B/10B table but has an incorrect disparity. An out-of-band error is the reception of a 10-bit character that does not exist within the 8B/10B table. It is possible to obtain an out-of-band error without having a disparity error. The proper disparity is always computed for both legal and illegal characters. The current running disparity is available at the RXRUNDISP signal. The 8B/10B decoder performs a unique operation if out-of-band data is detected. If out-of-band data is detected, the decoder signals the error and passes the illegal 10-bits through and places them on the outputs. This can be used for debugging purposes if desired. The decoder also signals the reception of one of the 12 valid K-characters. In addition, a programmable comma detect is included. The comma detect signal registers a comma on the receipt of any comma+, comma–, or both. Since the comma is defined as a 7-bit character, this includes several out-of-band characters. Another option allows the decoder to detect only the three defined commas (K28.1, K28.5, and K28.7) as comma+, comma–, or both. In total, there are six possible options, three for valid commas and three for "any comma." Note that all bytes (1, 2, 4, or 8) at the RX FPGA interface each have their own individual 8B/10B indicators (K-character, disparity error, out-of-band error, current running disparity, and comma detect). Power Sequencing Receiver Buffer The receiver includes buffers (FIFOs) in the datapath. This section gives the reasons for including the buffers and outlines their operation. The receiver buffer is required for two reasons: • • Clock correction to accommodate the slight difference in frequency between the recovered clock RXRECCLK and the internal FPGA user clock RXUSRCLK Channel bonding to allow realignment of the input stream to ensure proper alignment of data being read through multiple transceivers The receiver uses an elastic buffer, where "elastic" refers to the ability to modify the read pointer for clock correction and channel bonding. Comma Detection Word alignment is dependent on the state of comma detect bits. If comma detect is enabled, the transceiver recognizes up to two 10-bit preprogrammed characters. Upon detection of the character or characters, the comma detect output is driven high and the data is synchronously aligned. If a comma is detected and the data is aligned, no further alignment alteration takes place. If a comma is received and realignment is necessary, the data is realigned and an indi- www.xilinx.com Module 2 of 4 6 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Functional Description cation is given at the receiver interface. The realignment indicator is a distinct output. The transceiver continuously monitors the data for the presence of the 10-bit character(s). Upon each occurrence of a 10-bit character, the data is checked for word alignment. If comma detect is disabled, the data is not aligned to any particular pattern. The programmable option allows a user to align data on comma+, comma–, both, or a unique user-defined and programmed sequence. Comma detection has been expanded beyond 10-bit symbol detection and alignment to include 8-bit symbol detection and alignment for 16-, 20-, 32-, and 40-bit paths. The ability to detect symbols, and then either align to 1-word, 2-word, or 4-word boundaries is included. The RXSLIDE input allows the user to “slide” or “slip” the alignment by one bit in each 16-, 20-, 32- and 40-bit mode at any time for SONET applications. Comma detection can be bypassed when needed. Clock Correction RXRECCLK (the recovered clock) reflects the data rate of the incoming data. RXUSRCLK defines the rate at which the FPGA fabric consumes the data. Ideally, these rates are identical. However, since the clocks typically have different sources, one of the clocks will be faster than the other. The receiver buffer accommodates this difference between the clock rates. See Figure 6. Read RXUSRCLK Write RXRECCLK "Nominal" condition: buffer half-full Read If RXUSRCLK is faster than RXRECCLK, the buffer becomes more empty over time. The clock correction logic corrects for this by decrementing the read pointer to reread a repeatable byte sequence. This is shown in the middle buffer, Figure 6, where the solid read pointer decrements to the value represented by the dashed pointer. By decrementing the read pointer instead of incrementing it in the usual fashion, the buffer is partially refilled. The transceiver design will repeat a single repeatable byte sequence when necessary to refill a buffer. If the byte sequence length is greater than one, and if attribute CLK_COR_REPEAT_WAIT is 0, then the transceiver may repeat the same sequence multiple times until the buffer is refilled to the desired extent. Similarly, if RXUSRCLK is slower than RXRECCLK, the buffer will fill up over time. The clock correction logic corrects for this by incrementing the read pointer to skip over a removable byte sequence that need not appear in the final FPGA fabric byte stream. This is shown in the bottom buffer, Figure 6, where the solid read pointer increments to the value represented by the dashed pointer. This accelerates the emptying of the buffer, preventing its overflow. The transceiver design will skip a single byte sequence when necessary to partially empty a buffer. If attribute CLK_COR_REPEAT_WAIT is 0, the transceiver may also skip two consecutive removable byte sequences in one step to further empty the buffer when necessary. These operations require the clock correction logic to recognize a byte sequence that can be freely repeated or omitted in the incoming data stream. This sequence is generally an IDLE sequence, or other sequence comprised of special values that occur in the gaps separating packets of meaningful data. These gaps are required to occur sufficiently often to facilitate the timely execution of clock correction. Write Channel Bonding Read Buffer less than half -full (emptying) Repeatable sequence Write Buffer more than half-full (filling up) Removable sequence DS083-2_15_100901 Figure 6: Clock Correction in Receiver Nominally, the buffer is always half full. This is shown in the top buffer, Figure 6, where the shaded area represents buffered data not yet read. Received data is inserted via the write pointer under control of RXRECCLK. The FPGA fabric reads data via the read pointer under control of RXUSRCLK. The half full/half empty condition of the buffer gives a cushion for the differing clock rates. This operation continues indefinitely, regardless of whether or not "meaningful" data is being received. When there is no meaningful data to be received, the incoming data will consist of IDLE characters or other padding. DS083 (v4.7) November 5, 2007 Product Specification Some gigabit I/O standards such as Infiniband specify the use of multiple transceivers in parallel for even higher data rates. Words of data are split into bytes, with each byte sent over a separate channel (transceiver). See Figure 7. The top half of the figure shows the transmission of words split across four transceivers (channels or lanes). PPPP, QQQQ, RRRR, SSSS, and TTTT represent words sent over the four channels. The bottom-left portion of Figure 7 shows the initial situation in the FPGA’s receivers at the other end of the four channels. Due to variations in transmission delay—especially if the channels are routed through repeaters—the FPGA fabric might not correctly assemble the bytes into complete words. The bottom-left illustration shows the incorrect assembly of data words PQPP, QRQQ, RSRR, and so forth. To support correction of this misalignment, the data stream includes special byte sequences that define corresponding points in the several channels. In the bottom half of Figure 7, the shaded "P" bytes represent these special characters. Each receiver recognizes the "P" channel bond- www.xilinx.com Module 2 of 4 7 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Functional Description ing character, and remembers its location in the buffer. At some point, one transceiver designated as the master instructs all the transceivers to align to the channel bonding character "P" (or to some location relative to the channel bonding character). After this operation, words transmitted to the FPGA fabric are properly aligned: RRRR, SSSS, TTTT, and so forth, as shown in the bottom-right portion of Figure 7. To ensure that the channels remain properly aligned following the channel bonding operation, the master transceiver must also control the clock correction operations described in the previous section for all channel-bonded transceivers. In Transmitters: Full word SSSS sent over four channels, one byte per channel Channel (lane) 0 PQRS T Channel (lane) 1 PQRS T Channel (lane) 2 PQRS T Channel (lane) 3 Read RXUSRCLK Transmitter Buffer The transmitter's buffer write pointer (TXUSRCLK) is frequency-locked to its read pointer (REFCLK). Therefore, clock correction and channel bonding are not required. The purpose of the transmitter's buffer is to accommodate a phase difference between TXUSRCLK and REFCLK. A simple FIFO suffices for this purpose. A FIFO depth of four will permit reliable operation with simple detection of overflow or underflow, which could occur if the clocks are not frequency-locked. PQRS T In Receivers: PQRS T Read RXUSRCLK PQRS T PQRS T PQRS T PQRS T PQRS T PQRS T PQRS T Before channel bonding After channel bonding DS083-2_16_010202 Figure 7: Channel Bonding (Alignment) RocketIO X Configuration This section outlines functions that can be selected or controlled by configuration. Xilinx implementation software supports the transceiver primitives shown in Table 3. Table 3: Supported RocketIO X Transceiver Primitives Primitive DS083 (v4.7) November 5, 2007 Product Specification Description GT10_CUSTOM Fully customizable by user GT10_OC48_1 SONET OC-48, 1-byte data path GT10_OC48_2 SONET OC-48, 2-byte data path GT10_OC48_4 SONET OC-48, 4-byte data path GT10_PCI_EXPRESS_1 PCI Express, 1-byte data path GT10_PCI_EXPRESS_2 PCI Express, 2-byte data path GT10_PCI_EXPRESS_4 PCI Express, 4-byte data path GT10_INFINIBAND_1 Infiniband, 1-byte data path GT10_INFINIBAND_2 Infiniband, 2-byte data path GT10_INFINIBAND_4 Infiniband, 4-byte data path www.xilinx.com Module 2 of 4 8 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Functional Description Other RocketIO X Features and Notes Loopback In order to facilitate testing without having the need to either apply patterns or measure data at GHz rates, four programmable loop-back features are available. The first option, serial loopback, is available in two modes: pre-driver and post-driver. • • The pre-driver mode loops back to the receiver without going through the output driver. In this mode, TXP and TXN are not driven and therefore need not be terminated. The post-driver mode is the same as the RocketIO loopback. In this mode, TXP and TXN are driven and must be properly terminated. The third option, parallel loopback, checks the digital circuitry. When parallel loopback is enabled, the serial loopback path is disabled. However, the transmitter outputs remain active, and data can be transmitted. If TXINHIBIT is asserted, TXP is forced to 0 until TXINHIBIT is de-asserted. The fourth option, repeater loopback, allows received data to be transmitted without going through the FPGA fabric. Reset The receiver and transmitter have their own synchronous reset inputs. The transmitter reset, TXRESET, recenters the transmission FIFO and resets all transmitter registers and the encoder. The receiver reset, RXRESET, recenters the DS083 (v4.7) November 5, 2007 Product Specification receiver elastic buffer and resets all receiver registers and the decoder. When the signals TXRESET or RXRESET are asserted High, the PCS is in reset. After TXRESET or RXRESET are deasserted, the PCS takes five clocks to come out of reset for each clock domain. The PMA configuration vector is not affected during this reset, so the PMA speed, filter settings, and so on, all remain the same. Also, the PMA internal pipeline is not affected and continues to operate in normal fashion. Power The transceiver voltage regulator circuits must not be shared with any other supplies (including FPGA supplies VCCINT, VCCO, VCCAUX, and VREF). Voltage regulators can be shared among transceiver power supplies of the same voltage, but each supply pin must still have its own separate passive filtering network. All RocketIO transceivers in the FPGA, whether instantiated in the design or not, must be connected to power and ground. Unused transceivers can be powered by any 1.5V or 2.5V source, and passive filtering is not required. The Power Down feature is controlled by the transceiver’s POWERDOWN input pin. Any given transceiver that is not instantiated in the design is automatically set to the POWERDOWN state by the Xilinx ISE development software. The Power Down pin on the FPGA package has no effect on the MGT. www.xilinx.com Module 2 of 4 9 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Functional Description Functional Description: RocketIO Multi-Gigabit Transceiver (MGT) This section summarizes the features of the RocketIO multi-gigabit transceiver. For an in-depth discussion of the RocketIO MGT, including digital and analog design considerations, refer to the RocketIO Transceiver User Guide. Figure 10, page 11 shows a high-level block diagram of the RocketIO transceiver and its FPGA interface signals. Table 4: Protocols Supported by RocketIO Transceiver RocketIO Overview Channels (Lanes) (1) Mode Up to twenty RocketIO MGTs are available. The MGT is designed to operate at any baud rate in the range of 622 Mb/s to 3.125 Gb/s per channel. This includes specific baud rates used by various standards as listed in Table 4. The RocketIO MGT consists of the Physical Media Attachment (PMA) and Physical Coding Sublayer (PCS). The PMA contains the 3.125 Gb/s serializer/deserializer (SERDES), TX/RX buffers, clock generator, and clock recovery circuitry. The PCS contains the bypassable 8B/10B encoder/ decoder, elastic buffers, and Cyclic Redundancy Check (CRC) units. The encoder and decoder handle the 8B/10B coding scheme. The elastic buffers support the clock correction (rate matching) and channel bonding features. The CRC units perform CRC generation and checking. I/O Bit Rate (Gb/s) 1.06 Fibre Channel 1 2.12 3.1875 (2) Gigabit Ethernet 1 1.25 10Gbit Ethernet 4 3.125 1, 4, 12 2.5 Aurora 1, 2, 3, 4, ... 0.622 – 3.125 Custom Protocol 1, 2, 3, 4, ... up to 3.125 Infiniband Notes: 1. One channel is considered to be one transceiver. 2. Virtex-II Pro MGT can support the 10G Fibre Channel data rates of 3.1875 Gb/s across 6" of standard FR-4 PCB and one connector (Molex 74441 or equivalent) with a bit error rate of 10-12 or better. See Table 7, page 17, for a summary of the differences between the RocketIO X PMA/PCS and the RocketIO PMA/PCS. PMA Transmitter Output Transmitter Termination The RocketIO transceiver is implemented in Current Mode Logic (CML). A CML transmitter output consists of transistors configured as shown in Figure 8. CML uses a positive supply and offers easy interface requirements. In this configuration, both legs of the driver, VP and VN, sink current, with one leg always sinking more current than its complement. The CML output consists of a differential pair with 50Ω (or, optionally, 75Ω) source resistors. The signal swing is created by switching the current in a common-source differential pair. On-chip termination is provided at the transmitter, eliminating the need for external termination. The output driver and termination are powered by VTTX. This configuration uses a CML approach with selectable 50Ω or 75Ω termination to TXP and TXN as shown in Figure 9. VTTX 50/75Ω VP VN 50/75Ω TXP VP - VN = V DATA TXN ug083_33_061504 CML Output Driver Figure 9: RocketIO Transmit Termination DS083-2_66_052104 Figure 8: CML Output Configuration DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 2 of 4 10 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Functional Description PACKAGE PINS AVCCAUXRX VTRX MULTI-GIGABIT TRANSCEIVER CORE FPGA FABRIC Power Down 2.5V RX POWERDOWN RXRECCLK RXPOLARITY RXREALIGN RXCOMMADET ENPCOMMAALIGN ENMCOMMAALIGN Termination Supply RX CRC Check RXCHECKINGCRC RXCRCERR RXDATA[15:0] RXDATA[31:16] RXP Comma Detect Realign RXN Clock Manager 8B/10B Decoder RXNOTINTABLE[3:0] RXDISPERR[3:0] RXCHARISK[3:0] RXCHARISCOMMA[3:0] RXRUNDISP[3:0] RXBUFSTATUS[1:0] ENCHANSYNC CHBONDDONE CHBONDI[3:0] CHBONDO[3:0] Channel Bonding and Clock Correction Parallel Loopback Path Serial Loopback Path Deserializer RX Elastic Buffer RXLOSSOFSYNC RXCLKCORCNT TXBUFERR TXFORCECRCERR TXDATA[15:0] TXDATA[31:16] TX FIFO TXP TXN Serializer 8B/10B Encoder CRC Output Polarity TXBYPASS8B10B[3:0] TXCHARISK[3:0] TXCHARDISPMODE[3:0] TXCHARDISPVAL[3:0] TXKERR[3:0] TXRUNDISP[3:0] TXPOLARITY TXINHIBIT GNDA AVCCAUXTX VTTX LOOPBACK[1:0] TXRESET RXRESET REFCLK REFCLK2 REFCLKSEL BREFCLK BREFCLK2 RXUSRCLK RXUSRCLK2 TXUSRCLK TXUSRCLK2 TX/RX GND 2.5V TX Termination Supply TX DS083-2_04_090402 Figure 10: RocketIO Transceiver Block Diagram Output Swing and Pre-emphasis The output swing and pre-emphasis levels of the RocketIO MGTs are fully programmable. Each is controlled via attributes at configuration, but can be modified via partial reconfiguration. The programmable output swing control can adjust the differential output level between 400 mV and 800 mV in four increments of 100 mV. DS083 (v4.7) November 5, 2007 Product Specification With pre-emphasis, the differential voltage swing is boosted to create a stronger rising waveform. This method compensates for high-frequency loss in the transmission media that would otherwise limit the magnitude of this waveform. Lossy transmission lines cause the dissipation of electrical energy. This pre-emphasis technique extends the distance that signals can be driven down lossy line media and increases the signal-to-noise ratio at the receiver. www.xilinx.com Module 2 of 4 11 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Functional Description Serializer The serializer multiplies the reference frequency provided on REFCLK by 20. The multiplication of the clock is achieved by using an embedded PLL. Data is converted from parallel to serial format and transmitted on the TXP and TXN differential outputs. The electrical connection of TXP and TXN can be interchanged through configuration. This option can be controlled by an input (TXPOLARITY) at the FPGA transmitter interface. Deserializer The serial transceiver input is locked to the input data stream through Clock and Data Recovery (CDR), a built-in feature of the RocketIO transceiver. CDR keys off the rising and falling edges of incoming data and derives a clock that is representative of the incoming data rate. The derived clock, RXRECCLK, is generated and locked to as long as it remains within the specified component range. This clock is presented to the FPGA fabric at 1/20 the incoming data rate. A sufficient number of transitions must be present in the data stream for CDR to work properly. CDR requires approximately 5,000 transitions upon power-up to guaran- tee locking to the incoming data rate. Once lock is achieved, up to 75 missing transitions can be tolerated before lock to the incoming data stream is lost. The CDR circuit is guaranteed to work with 8B/10B encoding. Another feature of CDR is its ability to accept an external precision reference clock, REFCLK, which either acts to clock incoming data or to assist in synchronizing the derived RXRECCLK. For further clarity, the TXUSRCLK is used to clock data from the FPGA fabric to the TX FIFO. The FIFO depth accounts for the slight phase difference between these two clocks. If the clocks are locked in frequency, then the FIFO acts much like a pass-through buffer. The receiver can be configured to reverse the RXP and RXN inputs. This can be useful in the event that printed circuit board traces have been reversed. Receiver Termination On-chip termination is provided at the receiver, eliminating the need for external termination. The receiver includes programmable on-chip termination circuitry for 50Ω (default) or 75Ω impedance, as shown in Figure 11. VTRX 50/75Ω 50/75Ω RXP RXN ds083-2_36_111704 Figure 11: RocketIO Receive Termination PCS Fabric Data Interface Internally, the PCS operates in 2-byte mode (16/20 bits). The FPGA fabric interface can either be 1, 2, or 4 bytes wide. When accompanied by the predefined modes of the PMA, the user thus has a large combination of protocols and data rates from which to choose. USRCLK2 clocks data on the fabric side, while USRCLK clocks data on the PCS side. This creates distinct USRCLK/USRCLK2 frequency ratios for different combinations DS083 (v4.7) November 5, 2007 Product Specification of fabric and internal data widths. Table 5 summarizes the USRCLK2 to USRCLK ratios for the three fabric data widths. No fixed phase relationship is assumed between REFCLK, RXRECCLK, and/or any other clock that is not tied to either of these clocks. When RXUSRCLK and RXUSRCLK2 have different frequencies, each edge of the slower clock is aligned to a falling edge of the faster clock. The same relationships apply to TXUSRCLK and TXUSRCLK2. www.xilinx.com Module 2 of 4 12 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Functional Description The encoder accepts 8 bits of data along with a K-character signal for a total of 9 bits per character applied, and generates a 10 bit character for transmission. If the K-character signal is High, the data is encoded into one of the twelve possible K-characters available in the 8B/10B code. If the K-character input is Low, the 8 bits are encoded as standard data. If the K-character input is High, and a user applies other than one of the twelve possible combinations, TXKERR indicates the error. Table 5: Clock Ratios for Various Data Widths Fabric Data Width Frequency Ratio of USRCLK:USRCLK2 1-byte 1:2 (1) 2-byte 1:1 4-byte 2:1 (1) Notes: 1. Each edge of slower clock must align with falling edge of faster clock. 8B/10B Decoder FPGA Transmit Interface The FPGA can send either one, two, or four characters of data to the transmitter. Each character can be either 8 bits or 10 bits wide. If 8-bit data is applied, the additional inputs become control signals for the 8B/10B encoder. When the 8B/10B encoder is bypassed, the 10-bit character order is generated as follows: TXCHARDISPMODE[0] (first bit transmitted) TXCHARDISPVAL[0] TXDATA[7:0] (last bit transmitted is TXDATA[0]) Disparity Control The 8B/10B encoder is initialized with a negative running disparity. Unique control allows forcing the current running disparity state. TXRUNDISP signals its current running disparity. This may be useful in those cases where there is a need to manipulate the initial running disparity value. Bits TXCHARDISPMODE and TXCHARDISPVAL control the generation of running disparity before each byte. For example, the transceiver can generate the sequence K28.5+ K28.5+ K28.5– K28.5– or K28.5– K28.5– K28.5+ K28.5+ by specifying inverted running disparity for the second and fourth bytes. Transmit FIFO Proper operation of the circuit is only possible if the FPGA clock (TXUSRCLK) is frequency-locked to the reference clock (REFCLK). Phase variations up to one clock cycle are allowable. The FIFO has a depth of four. Overflow or underflow conditions are detected and signaled at the interface. Bypassing of this FIFO is programmable. 8B/10B Encoder Note: In the RocketIO transceiver, the most-significant byte is sent first; in the RocketIO X transceiver, the least-significant byte is sent first. A bypassable 8B/10B encoder is included. The encoder uses the same 256 data characters and 12 control characters used by Gigabit Ethernet, Fibre Channel, and InfiniBand. DS083 (v4.7) November 5, 2007 Product Specification Note: In the RocketIO transceiver, the most-significant byte is sent first; in the RocketIO X transceiver, the least-significant byte is sent first. An optional 8B/10B decoder is included. A programmable option allows the decoder to be bypassed. When the 8B/10B decoder is bypassed, the 10-bit character order is, for example, RXCHARISK[0] RXRUNDISP[0] RXDATA[7:0] (first bit received) (last bit received is RXDATA[0]) The decoder uses the same table that is used for Gigabit Ethernet, Fibre Channel, and InfiniBand. In addition to decoding all data and K-characters, the decoder has several extra features. The decoder separately detects both “disparity errors” and “out-of-band” errors. A disparity error is the reception of 10-bit character that exists within the 8B/10B table but has an incorrect disparity. An out-of-band error is the reception of a 10-bit character that does not exist within the 8B/10B table. It is possible to obtain an out-of-band error without having a disparity error. The proper disparity is always computed for both legal and illegal characters. The current running disparity is available at the RXRUNDISP signal. The 8B/10B decoder performs a unique operation if out-of-band data is detected. If out-of-band data is detected, the decoder signals the error and passes the illegal 10-bits through and places them on the outputs. This can be used for debugging purposes if desired. The decoder also signals the reception of one of the 12 valid K-characters. In addition, a programmable comma detect is included. The comma detect signal registers a comma on the receipt of any comma+, comma–, or both. Since the comma is defined as a 7-bit character, this includes several out-of-band characters. Another option allows the decoder to detect only the three defined commas (K28.1, K28.5, and K28.7) as comma+, comma–, or both. In total, there are six possible options, three for valid commas and three for "any comma." Note that all bytes (1, 2, or 4) at the RX FPGA interface each have their own individual 8B/10B indicators (K-character, disparity error, out-of-band error, current running disparity, and comma detect). Power Sequencing www.xilinx.com Module 2 of 4 13 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Functional Description Receiver Buffer The receiver includes buffers (FIFOs) in the datapath. This section gives the reasons for including the buffers and outlines their operation. corrects for this by decrementing the read pointer to reread a repeatable byte sequence. This is shown in the middle buffer, Figure 12, where the solid read pointer decrements to the value represented by the dashed pointer. The receiver buffer is required for two reasons: • • Read RXUSRCLK Clock correction to accommodate the slight difference in frequency between the recovered clock RXRECCLK and the internal FPGA user clock RXUSRCLK Channel bonding to allow realignment of the input stream to ensure proper alignment of data being read through multiple transceivers The receiver uses an elastic buffer, where "elastic" refers to the ability to modify the read pointer for clock correction and channel bonding. Write RXRECCLK "Nominal" condition: buffer half-full Read Read Write Buffer less than half -full (emptying) Repeatable sequence Write Comma Detection Word alignment is dependent on the state of comma detect bits. If comma detect is enabled, the transceiver recognizes up to two 10-bit preprogrammed characters. Upon detection of the character or characters, the comma detect output is driven high and the data is synchronously aligned. If a comma is detected and the data is aligned, no further alignment alteration takes place. If a comma is received and realignment is necessary, the data is realigned and an indication is given at the receiver interface. The realignment indicator is a distinct output. The transceiver continuously monitors the data for the presence of the 10-bit character(s). Upon each occurrence of a 10-bit character, the data is checked for word alignment. If comma detect is disabled, the data is not aligned to any particular pattern. The programmable option allows a user to align data on comma+, comma–, both, or a unique user-defined and programmed sequence. Clock Correction RXRECCLK (the recovered clock) reflects the data rate of the incoming data. RXUSRCLK defines the rate at which the FPGA fabric consumes the data. Ideally, these rates are identical. However, since the clocks typically have different sources, one of the clocks will be faster than the other. The receiver buffer accommodates this difference between the clock rates. See Figure 12. Nominally, the buffer is always half full. This is shown in the top buffer, Figure 12, where the shaded area represents buffered data not yet read. Received data is inserted via the write pointer under control of RXRECCLK. The FPGA fabric reads data via the read pointer under control of RXUSRCLK. The half full/half empty condition of the buffer gives a cushion for the differing clock rates. This operation continues indefinitely, regardless of whether or not "meaningful" data is being received. When there is no meaningful data to be received, the incoming data will consist of IDLE characters or other padding. Buffer more than half-full (filling up) Removable sequence DS083-2_15_100901 Figure 12: Clock Correction in Receiver By decrementing the read pointer instead of incrementing it in the usual fashion, the buffer is partially refilled. The transceiver design will repeat a single repeatable byte sequence when necessary to refill a buffer. If the byte sequence length is greater than one, and if attribute CLK_COR_REPEAT_WAIT is 0, then the transceiver may repeat the same sequence multiple times until the buffer is refilled to the desired extent. Similarly, if RXUSRCLK is slower than RXRECCLK, the buffer will fill up over time. The clock correction logic corrects for this by incrementing the read pointer to skip over a removable byte sequence that need not appear in the final FPGA fabric byte stream. This is shown in the bottom buffer, Figure 12, where the solid read pointer increments to the value represented by the dashed pointer. This accelerates the emptying of the buffer, preventing its overflow. The transceiver design will skip a single byte sequence when necessary to partially empty a buffer. If attribute CLK_COR_REPEAT_WAIT is 0, the transceiver may also skip two consecutive removable byte sequences in one step to further empty the buffer when necessary. These operations require the clock correction logic to recognize a byte sequence that can be freely repeated or omitted in the incoming data stream. This sequence is generally an IDLE sequence, or other sequence comprised of special values that occur in the gaps separating packets of meaningful data. These gaps are required to occur sufficiently often to facilitate the timely execution of clock correction. Channel Bonding Some gigabit I/O standards such as Infiniband specify the use of multiple transceivers in parallel for even higher data rates. Words of data are split into bytes, with each byte sent over a separate channel (transceiver). See Figure 13. If RXUSRCLK is faster than RXRECCLK, the buffer becomes more empty over time. The clock correction logic DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 2 of 4 14 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Functional Description The top half of the figure shows the transmission of words split across four transceivers (channels or lanes). PPPP, QQQQ, RRRR, SSSS, and TTTT represent words sent over the four channels. The bottom-left portion of Figure 13 shows the initial situation in the FPGA’s receivers at the other end of the four channels. Due to variations in transmission delay—especially if the channels are routed through repeaters—the FPGA fabric might not correctly assemble the bytes into complete words. The bottom-left illustration shows the incorrect assembly of data words PQPP, QRQQ, RSRR, and so forth. Full word SSSS sent over four channels, one byte per channel Channel (lane) 0 PQRS T Channel (lane) 1 PQRS T Channel (lane) 2 PQRS T Channel (lane) 3 The transmitter's buffer write pointer (TXUSRCLK) is frequency-locked to its read pointer (REFCLK). Therefore, clock correction and channel bonding are not required. The purpose of the transmitter's buffer is to accommodate a phase difference between TXUSRCLK and REFCLK. A simple FIFO suffices for this purpose. A FIFO depth of four will permit reliable operation with simple detection of overflow or underflow, which could occur if the clocks are not frequency-locked. RocketIO Configuration This section outlines functions that can be selected or controlled by configuration. Xilinx implementation software supports 16 transceiver primitives, as shown in Table 6. In Transmitters: PQRS T Transmitter Buffer Each of the primitives in Table 6 defines default values for the configuration attributes, allowing some number of them to be modified by the user. Refer to the RocketIO Transceiver User Guide for more details. Table 6: Supported RocketIO MGT Protocol Primitives GT_CUSTOM Fully customizable by user GT_FIBRE_CHAN_1 Fibre Channel, 1-byte data path GT_FIBRE_CHAN_2 Fibre Channel, 2-byte data path GT_FIBRE_CHAN_4 Fibre Channel, 4-byte data path GT_ETHERNET_1 Gigabit Ethernet, 1-byte data path GT_ETHERNET_2 Gigabit Ethernet, 2-byte data path GT_ETHERNET_4 Gigabit Ethernet, 4-byte data path GT_XAUI_1 10-gigabit Ethernet, 1-byte data path GT_XAUI_2 10-gigabit Ethernet, 2-byte data path GT_XAUI_4 10-gigabit Ethernet, 4-byte data path Figure 13: Channel Bonding (Alignment) GT_INFINIBAND_1 Infiniband, 1-byte data path To support correction of this misalignment, the data stream includes special byte sequences that define corresponding points in the several channels. In the bottom half of Figure 13, the shaded "P" bytes represent these special characters. Each receiver recognizes the "P" channel bonding character, and remembers its location in the buffer. At some point, one transceiver designated as the master instructs all the transceivers to align to the channel bonding character "P" (or to some location relative to the channel bonding character). GT_INFINIBAND_2 Infiniband, 2-byte data path GT_INFINIBAND_4 Infiniband, 4-byte data path GT_AURORA_1 (1) 1-byte data path GT_AURORA_2 (1) 2-byte data path GT_AURORA_4 (1) 4-byte data path Read RXUSRCLK In Receivers: PQRS T PQRS T Read RXUSRCLK PQRS T PQRS T PQRS T PQRS T PQRS T PQRS T Before channel bonding After channel bonding DS083-2_16_010202 After this operation, words transmitted to the FPGA fabric are properly aligned: RRRR, SSSS, TTTT, and so forth, as shown in the bottom-right portion of Figure 13. To ensure that the channels remain properly aligned following the channel bonding operation, the master transceiver must also control the clock correction operations described in the previous section for all channel-bonded transceivers. DS083 (v4.7) November 5, 2007 Product Specification Notes: 1. For more information on the Aurora protocol, visit http://www.xilinx.com. Other RocketIO Features and Notes CRC The RocketIO transceiver CRC logic supports the 32-bit invariant CRC calculation used by Infiniband, FibreChannel, and Gigabit Ethernet. On the transmitter side, the CRC logic recognizes where the CRC bytes should be inserted and replaces four placeholder bytes at the tail of a data packet with the computed CRC. For Gigabit Ethernet and FibreChannel, transmitter www.xilinx.com Module 2 of 4 15 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Functional Description CRC may adjust certain trailing bytes to generate the required running disparity at the end of the packet. remain active, and data can be transmitted. If TXINHIBIT is asserted, TXP is forced to 0 until TXINHIBIT is de-asserted. On the receiver side, the CRC logic verifies the received CRC value, supporting the same standards as above. Reset The CRC logic also supports a user mode, with a simple data packet stucture beginning and ending with user-defined SOP and EOP characters. Loopback In order to facilitate testing without having the need to either apply patterns or measure data at GHz rates, two programmable loop-back features are available. One option, serial loopback, places the gigabit transceiver into a state where transmit data is directly fed back to the receiver. An important point to note is that the feedback path is at the output pads of the transmitter. This tests the entirety of the transmitter and receiver. The second option, parallel loopback, checks the digital circuitry. When parallel loopback is enabled, the serial loopback path is disabled. However, the transmitter outputs DS083 (v4.7) November 5, 2007 Product Specification The receiver and transmitter have their own synchronous reset inputs. The transmitter reset recenters the transmission FIFO, and resets all transmitter registers and the 8B/10B decoder. The receiver reset recenters the receiver elastic buffer, and resets all receiver registers and the 8B/10B encoder. Neither reset has any effect on the PLLs. Power All RocketIO transceivers in the FPGA, whether instantiated in the design or not, must be connected to power and ground. Unused transceivers can be powered by any 2.5V source, and passive filtering is not required. Power Down The Power Down module is controlled by the transceiver’s POWERDOWN input pin. The Power Down pin on the FPGA package has no effect on the transceiver. www.xilinx.com Module 2 of 4 16 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Functional Description RocketIO and RocketIO X Feature Comparison Table 7 summarizes the major differences between the RocketIO and RocketIO X MGTs. The RocketIO X Transceiver User Guide has more details, including a design migration guide in the Appendix. Table 7: RocketIO PMA versus RocketIO X PMA RocketIO X Transceiver RocketIO Transceiver FPGA interface 1, 2, 4, and 8 byte width 1, 2, and 4 byte width Coding support 8B/10B and 64B/66B bypassable 8B/10B bypassable Gearbox/scrambler support Yes N/A CRC Support No Yes Half rate No Yes 2.488 Gb/s - 6.25 Gb/s (2) 622 Mb/s - 3.125 Gb/s 350 PPM 100 PPM x16, x20, x32, x40 x20 75 75 Receive equalization Built-in analog linear, programmable None Output swing (differential p-p) 200 mV to 1600 mV, programmable 800 mV to 1600 mV, programmable 0% to 500%, programmable 4 selectable levels from 10% to 33% 2 selectable levels None On-chip internal, 50Ω On-chip internal, 50Ω/75Ω selectable On-chip internal. Can be AC- or DC-coupled externally None 2.5V 2.5V PCS Features: PMA Features: Baud rate Reference clock frequency tolerance Reference clock multiplier Max run length Pre-emphasis Slew rate control Termination AC coupling capacitor Transmit supply voltage (AVCCAUXTX) Receive supply voltage (AVCCAUXRX) 1.5V, 1.8V (1) 2.5V Direct, dynamic, and partial configuration Partial configuration Input only None Process technology 0.13 µm 0.25 µm Available packages Flip-chip only Flip-chip and wire-bond PMA configuration support Others: JTAG support Notes: 1. AVCCAUXRX for RocketIO X MGT is 1.5V (nominal) for 8B/10B-encoded data. For all other encoding protocols, AVCCAUXRX is 1.8V (nominal). 2. The XC2VPX70 operates at a fixed 4.25 Gb/s baud rate. DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 2 of 4 17 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Functional Description Functional Description: Processor Block This section briefly describes the interfaces and components of the Processor Block. The subsequent section, Functional Description: Embedded PowerPC 405 Core beginning on page 20, offers a summary of major PPC405 core features. For an in-depth discussion on both the Processor Block and PPC405, see tthe PowerPC Processor Reference Guide and the PowerPC 405 Processor Block Reference Guide available on the Xilinx website at http://www.xilinx.com. Processor Block Overview Figure 14 shows the internal architecture of the Processor Block. CPU-FPGA Interfaces BRAM BRAM core to operate at 300+ MHz while maintaining low power consumption. Specially designed interface logic integrates the core with the surrounding CLBs, block RAMs, and general routing resources. Up to four Processor Blocks can be available in a single Virtex-II Pro device. The embedded PPC405 core implements the PowerPC User Instruction Set Architecture (UISA), user-level registers, programming model, data types, and addressing modes for 32-bit fixed-point operations. 64-bit operations, auxiliary processor operations, and floating-point operations are trapped and can be emulated in software. Most of the PPC405 core features are compatible with the specifications for the PowerPC Virtual Environment Architecture (VEA) and Operating Environment Architecture (OEA). They also provide a number of optimizations and extensions to the lower layers of the PowerPC Architecture. The full architecture of the PPC405 is defined by the PowerPC Embedded Environment and PowerPC UISA documentation, available from IBM. On-Chip Memory (OCM) Controllers BRAM The OCM controllers serve as dedicated interfaces between the block RAMs in the FPGA fabric (see 18 Kb Block SelectRAM+ Resources, page 44) and OCM signals available on the embedded PPC405 core. The OCM signals on the PPC405 core are designed to provide very quick access to a fixed amount of instruction and data memory space. The OCM controller provides an interface to both the 64-bit Instruction-Side Block RAM (ISBRAM) and the 32-bit Data-Side Block RAM (DSBRAM). The designer can choose to implement: FPGA CLB Array PPC 405 Core Introduction OCM Controller OCM Controller Control • • • • BRAM Interface Logic Processor Block = CPU Core + Interface Logic + CPU-FPGA Interface DS083-2_03a_060701 Figure 14: Processor Block Architecture Within the Virtex-II Pro Processor Block, there are four components: • • • • Embedded IBM PowerPC 405-D5 RISC CPU core On-Chip Memory (OCM) controllers and interfaces Clock/control interface logic CPU-FPGA Interfaces One of OCM’s primary advantages is that it guarantees a fixed latency of execution for a higher level of determinism. Additionally, it reduces cache pollution and thrashing, since the cache remains available for caching code from other memory resources. Typical applications for DSOCM include scratch-pad memory, as well as use of the dual-port feature of block RAM to enable bidirectional data transfer between processor and FPGA. Typical applications for ISOCM include storage of interrupt service routines. Functional Features Common Features Embedded PowerPC 405 RISC Core The PowerPC 405D5 core is a 0.13 µm implementation of the IBM PowerPC 405D4 core. The advanced process technology enables the embedded PowerPC 405 (PPC405) DS083 (v4.7) November 5, 2007 Product Specification ISBRAM only DSBRAM only Both ISBRAM and DSBRAM No ISBRAM and no DSBRAM • • Separate Instruction and Data memory interface between processor core and BRAMs in FPGA Dedicated interface to Device Control Register (DCR) bus for ISOCM and DSOCM www.xilinx.com Module 2 of 4 18 R • • • • • Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Functional Description Single-cycle and multi-cycle mode option for I-side and D-side interfaces Single cycle = one CPU clock cycle; multi-cycle = minimum of two and maximum of eight CPU clock cycles FPGA configurable DCR addresses within DSOCM and ISOCM. Independent 16 MB logical memory space available within PPC405 memory map for each of the DSOCM and ISOCM. The number of block RAMs in the device might limit the maximum amount of OCM supported. Maximum of 64K and 128K bytes addressable from DSOCM and ISOCM interfaces, respectively, using address outputs from OCM directly without additional decoding logic. • • • 32-bit Data Read bus and 32-bit Data Write bus Byte write access to DSBRAM support Second port of dual port DSBRAM is available to read/write from an FPGA interface 22-bit address to DSBRAM port 8-bit DCR Registers: DSCNTL, DSARC Three alternatives to write into DSBRAM: BRAM initialization, CPU, FPGA H/W using second port The ISOCM interface contains a 64-bit read only port, for instruction fetches, and a 32-bit write only port, to initialize or test the ISBRAM. When implementing the read only port, the user must deassert the write port inputs. The preferred method of initializing the ISBRAM is through the configuration bitstream. 64-bit Data Read Only bus (two instructions per cycle) 32-bit Data Write Only bus (through DCR) Separate 21-bit address to ISBRAM 8-bit DCR Registers: ISCNTL, ISARC 32-bit DCR Registers: ISINIT, ISFILL Two alternatives to write into ISBRAM: BRAM initialization, DCR and write instruction Clock/Control Interface Logic The clock/control interface logic provides proper initialization and connections for PPC405 clock/power management, resets, PLB cycle control, and OCM interfaces. It also couples user signals between the FPGA fabric and the embedded PPC405 CPU core. The processor clock connectivity is similar to CLB clock pins. It can connect either to global clock nets or general routing resources. Therefore the processor clock source can come from DCM, CLB, or user package pin. CPU-FPGA Interfaces All Processor Block user pins link up with the general FPGA routing resources through the CPU-FPGA interface. Therefore processor signals have the same routability as other DS083 (v4.7) November 5, 2007 Product Specification The PPC405 core accesses high-speed system resources through PLB interfaces on the instruction and data cache controllers. The PLB interfaces provide separate 32-bit address/64-bit data buses for the instruction and data sides. The cache controllers are both PLB masters. PLB arbiters are implemented in the FPGA fabric and are available as soft IP cores. Device Control Register (DCR) Bus Interface External Interrupt Controller (EIC) Interface Instruction-Side OCM (ISOCM) • • • • • • Processor Local Bus (PLB) Interfaces The device control register (DCR) bus has 10 bits of address space for components external to the PPC405 core. Using the DCR bus to manage status and configuration registers reduces PLB traffic and improves system integrity. System resources on the DCR bus are protected or isolated from wayward code since the DCR bus is not part of the system memory map. Data-Side OCM (DSOCM) • • • non-Processor Block user signals. Longlines and hex lines travel across the Processor Block both vertically and horizontally, allowing signals to route through the Processor Block. Two level-sensitive user interrupt pins (critical and non-critical) are available. They can be either driven by user defined logic or Xilinx soft interrupt controller IP core outside the Processor Block. Clock/Power Management (CPM) Interface The CPM interface supports several methods of clock distribution and power management. Three modes of operation that reduce power consumption below the normal operational level are available. Reset Interface There are three user reset input pins (core, chip, and system) and three user reset output pins for different levels of reset, if required. Debug Interface Debugging interfaces on the embedded PPC405 core, consisting of the JTAG and Trace ports, offer access to resources internal to the core and assist in software development. The JTAG port provides basic JTAG chip testing functionality as well as the ability for external debug tools to gain control of the processor for debug purposes. The Trace port furnishes programmers with a mechanism for acquiring instruction execution traces. The JTAG port is compatible with IEEE Std 1149.1, which defines a test access port (TAP) and Boundary-Scan architecture. Extensions to the JTAG interface provide debuggers with processor control that includes stopping, starting, and stepping the PPC405 core. These extensions are compliant with the IEEE 1149.1 specifications for vendor-specific extensions. www.xilinx.com Module 2 of 4 19 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Functional Description The Processor Block is compatible with the CoreConnect™ bus architecture. Any CoreConnect compliant cores including Xilinx soft IP can integrate with the Processor Block through this high-performance bus architecture implemented on FPGA fabric. The CoreConnect architecture provides three buses for interconnecting Processor Blocks, Xilinx soft IP, third party IP, and custom logic, as shown in Figure 15: Arbiter DCR Bus System Core Peripheral Core Bus Bridge Processor Local Bus Peripheral Core On-Chip Peripheral Bus CoreConnect Bus Architecture Instruction Data Processor Block For detailed information on the PPC405 JTAG interface, please refer to the "JTAG Interface" section of the PowerPC 405 Processor Block Reference Guide CoreConnect™ Bus Architecture System Core Arbiter The processor JTAG port and the FPGA JTAG port can be accessed independently, or the two can be programmatically linked together and accessed via the dedicated FPGA JTAG pins. System Core DCR Bus The Trace port provides instruction execution trace information to an external trace tool. The PPC405 core is capable of back trace and forward trace. Back trace is the tracing of instructions prior to a debug event while forward trace is the tracing of instructions after a debug event. DCR Bus DS083-2_02a_010202 Figure 15: CoreConnect Block Diagram • • • Processor Local Bus (PLB) On-Chip Peripheral Bus (OPB) Device Control Register (DCR) bus High-performance peripherals connect to the high-bandwidth, low-latency PLB. Slower peripheral cores connect to the OPB, which reduces traffic on the PLB, resulting in greater overall system performance. For more information, refer to: http://www-3.ibm.com/chips/techlib/techlib.nfs/productfa milies/CoreConnect_Bus_Architecture/ Functional Description: Embedded PowerPC 405 Core This section offers a brief overview of the various functional blocks shown in Figure 16. PLB Master Interface Instruction OCM MMU I-Cache Array I-Cache Controller Instruction Cache Unit Cache Units Data Cache Unit D-Cache Array D-Cache Controller Fetch & Decode 3-Element Fetch Fetch and Queue Decode (PFB1, Logic PFB0, DCD) Instruction Shadow TLB (4 Entry) Timers (FIT, PIT, Watchdog) Timers & Debug Unified TLB (64 Entry) Data Shadow TLB (8 Entry) Execution Unit (EXU) 32 x 32 GPR ALU Debug Logic MAC Execution Unit PLB Master Interface Data OCM JTAG Instruction Trace DS083-2_01_062001 Figure 16: Embedded PPC405 Core Block Diagram Embedded PPC405 Core The embedded PPC405 core is a 32-bit Harvard architecture processor. Figure 16 illustrates its functional blocks: DS083 (v4.7) November 5, 2007 Product Specification • • • Cache units Memory Management unit Fetch Decode unit www.xilinx.com Module 2 of 4 20 R • • • Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Functional Description Execution unit Timers Debug logic unit It operates on instructions in a five stage pipeline consisting of a fetch, decode, execute, write-back, and load write-back stage. Most instructions execute in a single cycle, including loads and stores. as controlled by the Data Cache Write-through Register (DCWR) or the Translation Look-aside Buffer (TLB); the cache controller can be tuned for a balance of performance and memory coherency. Write-on-allocate, controlled by the store word on allocate (SWOA) field of the Core Configuration Register 0 (CCR0), can inhibit line fills caused by store misses, to further reduce potential pipeline stalls and unwanted external bus traffic. Instruction and Data Cache Fetch and Decode Logic The embedded PPC405 core provides an instruction cache unit (ICU) and a data cache unit (DCU) that allow concurrent accesses and minimize pipeline stalls. The instruction and data cache array are 16 KB each. Both cache units are two-way set associative. Each way is organized into 256 lines of 32 bytes (eight words). The instruction set provides a rich assortment of cache control instructions, including instructions to read tag information and data arrays. The fetch/decode logic maintains a steady flow of instructions to the execution unit by placing up to two instructions in the fetch queue. The fetch queue consists of three buffers: pre-fetch buffer 1 (PFB1), pre-fetch buffer 0 (PFB0), and decode (DCD). The fetch logic ensures that instructions proceed directly to decode when the queue is empty. The PPC405 core accesses external memory through the instruction (ICU) and data cache units (DCU). The cache units each include a 64-bit PLB master interface, cache arrays, and a cache controller. The ICU and DCU handle cache misses as requests over the PLB to another PLB device such as an external bus interface unit. Cache hits are handled as single cycle memory accesses to the instruction and data caches. Instruction Cache Unit (ICU) The ICU provides one or two instructions per cycle to the instruction queue over a 64-bit bus. A line buffer (built into the output of the array for manufacturing test) enables the ICU to be accessed only once for every four instructions, to reduce power consumption by the array. The ICU can forward any or all of the four or eight words of a line fill to the EXU to minimize pipeline stalls caused by cache misses. The ICU aborts speculative fetches abandoned by the EXU, eliminating unnecessary line fills and enabling the ICU to handle the next EXU fetch. Aborting abandoned requests also eliminates unnecessary external bus activity, thereby increasing external bus utilization. Data Cache Unit (DCU) The DCU transfers one, two, three, four, or eight bytes per cycle, depending on the number of byte enables presented by the CPU. The DCU contains a single-element command and store data queue to reduce pipeline stalls; this queue enables the DCU to independently process load/store and cache control instructions. Dynamic PLB request prioritization reduces pipeline stalls even further. When the DCU is busy with a low-priority request while a subsequent storage operation requested by the CPU is stalled; the DCU automatically increases the priority of the current request to the PLB. The DCU provides additional features that allow the programmer to tailor its performance for a given application. The DCU can function in write-back or write-through mode, DS083 (v4.7) November 5, 2007 Product Specification Static branch prediction as implemented on the PPC405 core takes advantage of some standard statistical properties of code. Branches with negative address displacement are by default assumed taken. Branches that do not test the condition or count registers are also predicted as taken. The PPC405 core bases branch prediction upon these default conditions when a branch is not resolved and speculatively fetches along the predicted path. The default prediction can be overridden by software at assembly or compile time. Branches are examined in the decode and pre-fetch buffer 0 fetch queue stages. Two branch instructions can be handled simultaneously. If the branch in decode is not taken, the fetch logic fetches along the predicted path of the branch instruction in pre-fetch buffer 0. If the branch in decode is taken, the fetch logic ignores the branch instruction in pre-fetch buffer 0. Execution Unit The embedded PPC405 core has a single issue execution unit (EXU) containing the register file, arithmetic logic unit (ALU), and the multiply-accumulate (MAC) unit. The execution unit performs all 32-bit PowerPC integer instructions in hardware. The register file is comprised of thirty-two 32-bit general purpose registers (GPR), which are accessed with three read ports and two write ports. During the decode stage, data is read out of the GPRs and fed to the execution unit. Likewise, during the write-back stage, results are written to the GPR. The use of the five ports on the register file enables either a load or a store operation to execute in parallel with an ALU operation. Memory Management Unit (MMU) The embedded PPC405 core has a 4 GB address space, which is presented as a flat address space. The MMU provides address translation, protection functions, and storage attribute control for embedded applications. The MMU supports demand-paged virtual memory and other management schemes that require precise control of logical-to-physical address mapping and flexible www.xilinx.com Module 2 of 4 21 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Functional Description memory protection. Working with appropriate system-level software, the MMU provides the following functions: • • • • • • Translation of the 4 GB effective address space into physical addresses Independent enabling of instruction and data translation/protection Page-level access control using the translation mechanism Software control of page replacement strategy Additional control over protection using zones Storage attributes for cache policy and speculative memory access control The MMU can be disabled under software control. If the MMU is not used, the PPC405 core provides other storage control mechanisms. Translation Look-Aside Buffer (TLB) The Translation Look-Aside Buffer (TLB) is the hardware resource that controls translation and protection. It consists of 64 entries, each specifying a page to be translated. The TLB is fully associative; a given page entry can be placed anywhere in the TLB. The translation function of the MMU occurs pre-cache. Cache tags and indexing use physical addresses. Software manages the establishment and replacement of TLB entries. This gives system software significant flexibility in implementing a custom page replacement strategy. For example, to reduce TLB thrashing or translation delays, software can reserve several TLB entries in the TLB for globally accessible static mappings. The instruction set provides several instructions used to manage TLB entries. These instructions are privileged and require the software to be executing in supervisor state. Additional TLB instructions are provided to move TLB entry fields to and from GPRs. The MMU divides logical storage into pages. Eight page sizes (1 KB, 4 KB, 16 KB, 64 KB, 256 KB, 1 MB, 4 MB, and 16 MB) are simultaneously supported, such that, at any given time, the TLB can contain entries for any combination of page sizes. In order for a logical to physical translation to exist, a valid entry for the page containing the logical address must be in the TLB. Addresses for which no TLB entry exists cause TLB-Miss exceptions. To improve performance, four instruction-side and eight data-side TLB entries are kept in shadow arrays. The shadow arrays allow single-cycle address translation and also help to avoid TLB contention between load/store and instruction fetch operations. Hardware manages the replacement and invalidation of shadow-TLB entries; no system software action is required. Memory Protection When address translation is enabled, the translation mechanism provides a basic level of protection. DS083 (v4.7) November 5, 2007 Product Specification The Zone Protection Register (ZPR) enables the system software to override the TLB access controls. For example, the ZPR provides a way to deny read access to application programs. The ZPR can be used to classify storage by type; access by type can be changed without manipulating individual TLB entries. The PowerPC Architecture provides WIU0GE (write-back / write-through, cacheability, user-defined 0, guarded, endian) storage attributes that control memory accesses, using bits in the TLB or, when address translation is disabled, storage attribute control registers. When address translation is enabled, storage attribute control bits in the TLB control the storage attributes associated with the current page. When address translation is disabled, bits in each storage attribute control register control the storage attributes associated with storage regions. Each storage attribute control register contains 32 fields. Each field sets the associated storage attribute for a 128 MB memory region. Timers The embedded PPC405 core contains a 64-bit time base and three timers, as shown in Figure 17: • • • Programmable Interval Timer (PIT) Fixed Interval Timer (FIT) Watchdog Timer (WDT) The time base counter increments either by an internal signal equal to the CPU clock rate or by a separate external timer clock signal. No interrupts are generated when the time base rolls over. The three timers are synchronous with the time base. The PIT is a 32-bit register that decrements at the same rate as the time base is incremented. The user loads the PIT register with a value to create the desired delay. When the register reaches zero, the timer stops decrementing and generates a PIT interrupt. Optionally, the PIT can be programmed to auto-reload the last value written to the PIT register, after which the PIT continues to decrement. The FIT generates periodic interrupts based on one of four selectable bits in the time base. When the selected bit changes from 0 to 1, the PPC405 core generates a FIT interrupt. The WDT provides a periodic critical-class interrupt based on a selected bit in the time base. This interrupt can be used for system error recovery in the event of software or system lockups. Users may select one of four time periods for the interval and the type of reset generated if the WDT expires twice without an intervening clear from software. If enabled, the watchdog timer generates a reset unless an exception handler updates the WDT status bit before the timer has completed two of the selected timer intervals. www.xilinx.com Module 2 of 4 22 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Functional Description over the CPU core and communicate with a debug tool. The debug tool has read-write access to all registers and can set hardware or software breakpoints. ROM monitors typically use the internal debug mode. Time Base (Incrementer) TBL (32 bits) External Clock Source 0 TBU (32 bits) 31 31 0 Bit 3 (229 clocks) Bit 7 (225 clocks) Bit 11 (221 clocks) WDT Events Bit 15 (217 clocks) Bit 11 (221 clocks) Bit 15 (217 clocks) Bit 19 (213 clocks) FIT Events Bit 23 (2 9 clocks) PIT (Decrementer) (32 bits) 0 31 Zero Detect PIT Events DS083-2_06_062001 Figure 17: Relationship of Timer Facilities to Base Clock Interrupts The PPC405 provides an interface to an interrupt controller that is logically outside the PPC405 core. This controller combines the asynchronous interrupt inputs and presents them to the embedded core as a single interrupt signal. The sources of asynchronous interrupts are external signals, the JTAG/debug unit, and any implemented peripherals. Debug Logic All architected resources on the embedded PPC405 core can be accessed through the debug logic. Upon a debug event, the PPC405 core provides debug information to an external debug tool. Three different types of tools are supported depending on the debug mode: ROM monitors, JTAG debuggers, and instruction trace tools. In internal debug mode, a debug event enables exception-handling software at a dedicated interrupt vector to take DS083 (v4.7) November 5, 2007 Product Specification In external debug mode, the CPU core enters stop state (stops instruction execution) when a debug event occurs. This mode offers a debug tool read-write access to all registers in the PPC405 core. Once the CPU core is in stop state, the debug tool can start the CPU core, step an instruction, freeze the timers, or set hardware or software break points. In addition to CPU core control, the debug logic is capable of writing instructions into the instruction cache, eliminating the need for external memory during initial board bring-up. Communication to a debug tool using external debug mode is through the JTAG port. Debug wait mode offers the same functionality as external debug mode with one exception. In debug wait mode, the CPU core goes into wait state instead of stop state after a debug event. Wait state is identical to stop state until an interrupt occurs. In wait state, the PPC405 core can vector to an exception handler, service an interrupt and return to wait state. This mode is particularly useful when debugging real time control systems. Real-time trace debug mode is always enabled. The debug logic continuously broadcasts instruction trace information to the trace port. When a debug event occurs, the debug logic signals an external debug tool to save instruction trace information before and after the event. The number of instructions traced depends on the trace tool. Debug events signal the debug logic to stop the CPU core, put the CPU core in debug wait state, cause a debug exception or save instruction trace information. Big Endian and Little Endian Support The embedded PPC405 core supports big endian or little endian byte ordering for instructions stored in external memory. Since the PowerPC architecture is big endian internally, the ICU rearranges the instructions stored as little endian into the big endian format. Therefore, the instruction cache always contains instructions in big endian format so that the byte ordering is correct for the execution unit. This feature allows the 405 core to be used in systems designed to function in a little endian environment. www.xilinx.com Module 2 of 4 23 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Functional Description Functional Description: FPGA Input/Output Blocks (IOBs) Virtex-II Pro I/O blocks (IOBs) are provided in groups of two or four on the perimeter of each device. Each IOB can be used as input and/or output for single-ended I/Os. Two IOBs can be used as a differential pair. A differential pair is always connected to the same switch matrix, as shown in Figure 18. Table 10 lists supported I/O standards with Digitally Controlled Impedance. See Digitally Controlled Impedance (DCI), page 31. Table 8: Supported Single-Ended I/O Standards Output VCCO Input VCCO Input VREF Board Termination Voltage (VTT) LVTTL (1) 3.3 3.3 N/R N/R LVCMOS33 (1) 3.3 3.3 N/R N/R LVCMOS25 2.5 2.5 N/R N/R LVCMOS18 1.8 1.8 N/R N/R LVCMOS15 1.5 1.5 N/R N/R PCI33_3 Note (2) Note (2) N/R N/R PCI66_3 Note (2) Note (2) N/R N/R PCIX Note (2) Note (2) N/R N/R GTL Note (3) Note (3) 0.8 1.2 GTLP Note (3) Note (3) 1.0 1.5 HSTL_I 1.5 N/R 0.75 0.75 HSTL_II 1.5 N/R 0.75 0.75 Note: Differential I/Os must use the same clock. HSTL_III 1.5 N/R 0.9 1.5 Supported I/O Standards HSTL_IV 1.5 N/R 0.9 1.5 Virtex-II Pro IOB blocks feature SelectIO-Ultra inputs and outputs that support a wide variety of I/O signaling standards. In addition to the internal supply voltage (VCCINT = 1.5V), output driver supply voltage (VCCO) is dependent on the I/O standard (see Table 8 and Table 9). An auxiliary supply voltage (VCCAUX = 2.5V) is required, regardless of the I/O standard used. For exact supply voltage absolute maximum ratings, see Virtex-II Pro and Virtex-II Pro X Platform FPGAs: DC and Switching Characteristics. HSTL_I_18 1.8 N/R 0.9 0.9 HSTL_II_18 1.8 N/R 0.9 0.9 HSTL_III _18 1.8 N/R 1.1 1.8 HSTL_IV_18 1.8 N/R 1.1 1.8 SSTL2_I 2.5 N/R 1.25 1.25 SSTL2_II 2.5 N/R 1.25 1.25 SSTL18_I (4) 1.8 N/R 0.9 0.9 SSTL18_II 1.8 N/R 0.9 0.9 IOB blocks are designed for high-performance I/O, supporting 22 single-ended standards, as well as differential signaling with LVDS, LDT, bus LVDS, and LVPECL. IOB PAD4 Differential Pair IOB PAD3 Switch Matrix IOB PAD2 Differential Pair IOB PAD1 DS083-2_30_010202 Figure 18: Virtex-II Pro Input/Output Tile All of the user IOBs have fixed-clamp diodes to VCCO and to ground. The IOBs are not compatible or compliant with 5V I/O standards (not 5V-tolerant). DS083 (v4.7) November 5, 2007 Product Specification IOSTANDARD Attribute Notes: 1. Refer to XAPP659 for more details on interfacing to these 3.3V standards. 2. For PCI and PCI-X standards, refer to XAPP653. 3. VCCO of GTL or GTLP should not be lower than the termination voltage or the voltage seen at the I/O pad. Example: If the pin High level is 1.5V, connect VCCO to 1.5V. 4. SSTL18_I is not a JEDEC-supported standard. 5. N/R = no requirement. www.xilinx.com Module 2 of 4 24 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Functional Description Table 9: Supported Differential Signal I/O Standards Output VCCO Input VCCO Input VREF Output VOD LDT_25 2.5 N/R N/R 0.500 – 0.740 LVDS_25 2.5 N/R N/R 0.247 – 0.454 I/O Standard Table 10: Supported DCI I/O Standards (Continued) Output VCCO Input VCCO Input VREF Termination Type LVDS_25_DCI 2.5 2.5 N/R Split LVDSEXT_25_DCI 2.5 2.5 N/R Split I/O Standard LVDSEXT_25 2.5 N/R N/R 0.440 – 0.820 BLVDS_25 2.5 N/R N/R 0.250 – 0.450 ULVDS_25 2.5 N/R N/R 0.500 – 0.740 LVPECL_25 2.5 N/R N/R 0.345 – 1.185 Notes: 1. LVDCI_XX is LVCMOS output controlled impedance buffers, matching all or half of the reference resistors. 2. These are SSTL compatible. 3. SSTL18_I is not a JEDEC-supported standard. 4. N/R = no requirement. LDT_25_DT (1) 2.5 2.5 N/R 0.500 – 0.740 Logic Resources LVDS_25_DT (1) 2.5 2.5 N/R 0.247 – 0.454 LVDSEXT_25_DT (1) 2.5 2.5 N/R 0.330 – 0.700 IOB blocks include six storage elements, as shown in Figure 19. ULVDS_25_DT (1) 2.5 2.5 N/R 0.500 – 0.740 Notes: 1. These standards support on-chip 100Ω termination. 2. N/R = no requirement. IOB DDR mux Input Reg Table 10: Supported DCI I/O Standards OCK1 Output VCCO Input VCCO Input VREF Termination Type LVDCI_33 (1) 3.3 3.3 N/R Series LVDCI_25 2.5 2.5 N/R Series I/O Standard Reg OCK2 2.5 2.5 N/R Series LVDCI_18 1.8 1.8 N/R Series LVDCI_DV2_18 1.8 1.8 N/R Series LVDCI_15 1.5 1.5 N/R Series LVDCI_DV2_15 1.5 1.5 N/R Series GTL_DCI 1.2 1.2 0.8 Single Reg OCK2 1.5 1.5 1.0 Single HSTL_I_DCI 1.5 1.5 0.75 Split HSTL_II_DCI 1.5 1.5 0.75 Split HSTL_III_DCI 1.5 1.5 0.9 Single HSTL_IV_DCI 1.5 1.5 0.9 Single HSTL_I_DCI_18 1.8 1.8 0.9 Split HSTL_II_DCI_18 1.8 1.8 0.9 Split HSTL_III_DCI_18 1.8 1.8 1.1 Single HSTL_IV_DCI_18 1.8 1.8 1.1 Single SSTL2_I_DCI (2) 2.5 2.5 1.25 Split SSTL2_II_DCI (2) 2.5 2.5 1.25 Split SSTL18_I_DCI (3) 1.8 1.8 0.9 Split SSTL18_II_DCI 1.8 1.8 0.9 Split DS083 (v4.7) November 5, 2007 Product Specification 3-State Reg ICK2 LVDCI_DV2_25 GTLP_DCI Reg ICK1 DDR mux Reg OCK1 PAD Output DS031_29_100900 Figure 19: Virtex-II Pro IOB Block Each storage element can be configured either as an edge-triggered D-type flip-flop or as a level-sensitive latch. On the input, output, and 3-state path, one or two DDR registers can be used. Double data rate is directly accomplished by the two registers on each path, clocked by the rising edges (or falling edges) from two different clock nets. The two clock signals are generated by the DCM and must be 180 degrees out of phase, as shown in Figure 20. There are two input, output, and 3-state data signals, each being alternately clocked out. www.xilinx.com Module 2 of 4 25 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Functional Description DCM DCM 0° 180° 0° FDDR FDDR D1 D1 Q1 Q1 CLK1 CLK1 DDR MUX Q DDR MUX D2 Q D2 Q2 Q2 CLK2 CLK2 DS083-2_26_122001 Figure 20: Double Data Rate Registers This DDR mechanism can be used to mirror a copy of the clock on the output. This is useful for propagating a clock along the data that has an identical delay. It is also useful for multiple clock generation, where there is a unique clock driver for every clock load. Virtex-II Pro devices can produce many copies of a clock with very little skew. (REV) forces the storage element into the opposite state. The reset condition predominates over the set condition. The initial state after configuration or global initialization state is defined by a separate INIT0 and INIT1 attribute. By default, the SRLOW attribute forces INIT0, and the SRHIGH attribute forces INIT1. Each group of two registers has a clock enable signal (ICE for the input registers, OCE for the output registers, and TCE for the 3-state registers). The clock enable signals are active High by default. If left unconnected, the clock enable for that storage element defaults to the active state. For each storage element, the SRHIGH, SRLOW, INIT0, and INIT1 attributes are independent. Synchronous or asynchronous set / reset is consistent in an IOB block. Each IOB block has common synchronous or asynchronous set and reset (SR and REV signals). Two neighboring IOBs have a shared routing resource connecting the ICLK and OTCLK pins on pairs of IOBs. If two adjacent IOBs using DDR registers do not share the same clock signals on their clock pins (ICLK1, ICLK2, OTCLK1, and OTCLK2), one of the clock signals will be unroutable. Each register or latch, independent of all other registers or latches, can be configured as follows: The IOB pairing is identical to the LVDS IOB pairs. Hence, the package pin-out table can also be used for pin assignment to avoid conflict. SR forces the storage element into the state specified by the SRHIGH or SRLOW attribute. SRHIGH forces a logic 1. SRLOW forces a logic “0”. When SR is used, a second input DS083 (v4.7) November 5, 2007 Product Specification All the control signals have independent polarity. Any inverter placed on a control input is automatically absorbed. • • • • • • • No set or reset Synchronous set Synchronous reset Synchronous set and reset Asynchronous set (preset) Asynchronous reset (clear) Asynchronous set and reset (preset and clear) The synchronous reset overrides a set, and an asynchronous clear overrides a preset. Refer to Figure 21. www.xilinx.com Module 2 of 4 26 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Functional Description (O/T) 1 FF LATCH Q1 D1 (O/T) CE Attribute INIT1 INIT0 SRHIGH SRLOW CE CK1 SR REV (O/T) CLK1 SR Shared by all registers REV FF1 DDR MUX FF2 (OQ or TQ) FF LATCH D2 Q2 CE CK2 SR REV (O/T) CLK2 Attribute INIT1 INIT0 SRHIGH SRLOW (O/T) 2 Reset Type SYNC ASYNC DS031_25_110300 Figure 21: Register / Latch Configuration in an IOB Block Input/Output Individual Options VCCO Each device pad has optional pull-up/pull-down resistors and weak-keeper circuit in the LVTTL, LVCMOS, and PCI SelectIO-Ultra configurations, as illustrated in Figure 22. Values of the optional pull-up and pull-down resistors fall within a range of 40 KΩ to 120 KΩ when VCCO = 2.5V (from 2.38V to 2.63V only). The clamp diodes are always present, even when power is not. Clamp Diode OBUF VCCO Program Current Weak Keeper 40KΩ – 120KΩ PAD VCCO 40KΩ – 120KΩ VCCAUX = 2.5V VCCINT = 1.5V Program Delay IBUF DS083-2_07_101801 Figure 22: LVTTL, LVCMOS, or PCI SelectIO-Ultra Standard DS083 (v4.7) November 5, 2007 Product Specification The optional weak-keeper circuit is connected to each user I/O pad. When selected, the circuit monitors the voltage on the pad and weakly drives the pin High or Low. If the pin is connected to a multiple-source signal, the weak-keeper holds the signal in its last state if all drivers are disabled. Maintaining a valid logic level in this way eliminates bus chatter. An enabled pull-up or pull-down overrides the weak-keeper circuit. LVCMOS25 sinks and sources current up to 24 mA. The current is programmable (see Table 11). Drive strength and slew rate controls for each output driver minimize bus transients. For LVDCI and LVDCI_DV2 standards, drive strength and slew rate controls are not available. www.xilinx.com Module 2 of 4 27 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Functional Description Table 11: LVCMOS Programmable Currents (Sink and Source) SelectIO-Ultra Programmable Current (Worst-Case Guaranteed Minimum) LVTTL 2 mA 4 mA 6 mA 8 mA 12 mA 16 mA 24 mA LVCMOS33 2 mA 4 mA 6 mA 8 mA 12 mA 16 mA 24 mA LVCMOS25 2 mA 4 mA 6 mA 8 mA 12 mA 16 mA 24 mA LVCMOS18 2 mA 4 mA 6 mA 8 mA 12 mA 16 mA n/a LVCMOS15 2 mA 4 mA 6 mA 8 mA 12 mA 16 mA n/a Figure 23 shows the SSTL2, SSTL18, and HSTL configurations. HSTL can sink current up to 48 mA. (HSTL IV) VCCO Clamp Diode OBUF Input Path The Virtex-II Pro IOB input path routes input signals directly to internal logic and / or through an optional input flip-flop or latch, or through the DDR input registers. An optional delay element at the D-input of the storage element eliminates pad-to-pad hold time. The delay is matched to the internal clock-distribution delay of the Virtex-II Pro device, and when used, assures that the pad-to-pad hold time is zero. Each input buffer can be configured to conform to any of the low-voltage signaling standards supported. In some of these standards the input buffer utilizes a user-supplied threshold voltage, VREF. The need to supply VREF imposes constraints on which standards can be used in the same bank. See I/O banking description. PAD Output Path VREF VCCAUX = 2.5V VCCINT = 1.5V DS031_24_100900 Figure 23: SSTL or HSTL SelectIO-Ultra Standards All pads are protected against damage from electrostatic discharge (ESD) and from over-voltage transients. Virtex-II Pro uses two memory cells to control the configuration of an I/O as an input. This is to reduce the probability of an I/O configured as an input from flipping to an output when subjected to a single event upset (SEU) in space applications. Prior to configuration, all outputs not involved in configuration are forced into their high-impedance state. The pull-down resistors and the weak-keeper circuits are inactive. The dedicated pin HSWAP_EN controls the pull-up resistors prior to configuration. By default, HSWAP_EN is set High, which disables the pull-up resistors on user I/O pins. When HSWAP_EN is set Low, the pull-up resistors are activated on user I/O pins. All Virtex-II Pro IOBs (except RocketIO transceiver pins) support IEEE 1149.1 and IEEE 1532 compatible Boundary-Scan testing. DS083 (v4.7) November 5, 2007 Product Specification The output path includes a 3-state output buffer that drives the output signal onto the pad. The output and / or the 3-state signal can be routed to the buffer directly from the internal logic or through an output / 3-state flip-flop or latch, or through the DDR output / 3-state registers. Each output driver can be individually programmed for a wide range of low-voltage signaling standards. In most signaling standards, the output High voltage depends on an externally supplied VCCO voltage. The need to supply VCCO imposes constraints on which standards can be used in the same bank. See I/O banking description. I/O Banking Some of the I/O standards described above require VCCO and VREF voltages. These voltages are externally supplied and connected to device pins that serve groups of IOB blocks, called banks. Consequently, restrictions exist about which I/O standards can be combined within a given bank. Eight I/O banks result from dividing each edge of the FPGA into two banks, as shown in Figure 24 and Figure 25. Each bank has multiple VCCO pins, all of which must be connected to the same voltage. This voltage is determined by the output standards in use. www.xilinx.com Module 2 of 4 28 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Functional Description nect within the package. These unconnected pins can be left unconnected externally, or, if necessary, they can be connected to VCCO to permit migration to a larger device. Bank 1 Rules for Combining I/O Standards in the Same Bank The following rules must be obeyed to combine different input, output, and bi-directional standards in the same bank: 1. Combining output standards only. Output standards with the same output VCCO requirement can be combined in the same bank. Bank 3 Bank 6 Bank 2 Bank 7 Bank 0 Bank 5 Compatible example: SSTL2_I and LVDS_25 outputs Incompatible example: SSTL2_I (output VCCO = 2.5V) and LVCMOS33 (output VCCO = 3.3V) outputs Bank 4 ug002_c2_014_041403 Figure 24: I/O Banks: Wire-Bond Packages (FG) Top View Bank 2 Bank 7 Bank 6 Bank 4 Compatible example: LVCMOS15 and HSTL_IV inputs Incompatible example: LVCMOS15 (input VCCO = 1.5V) and LVCMOS18 (input VCCO = 1.8V) inputs Incompatible example: HSTL_I_DCI_18 (VREF = 0.9V) and HSTL_IV_DCI_18 (VREF = 1.1V) inputs Bank 0 Bank 3 Bank 1 3. Combining input standards and output standards. Input standards and output standards with the same input VCCO and output VCCO requirement can be combined in the same bank. Bank 5 ds031_66_041403 Figure 25: I/O Banks: Flip-Chip Packages (FF) Top View Some input standards require a user-supplied threshold voltage (VREF), and certain user-I/O pins are automatically configured as VREF inputs. Approximately one in six of the I/O pins in the bank assume this role. VREF pins within a bank are interconnected internally, thus only one VREF voltage can be used within each bank. However, for correct operation, all VREF pins in the bank must be connected to the external reference voltage source. The VCCO and the VREF pins for each bank appear in the device pinout tables. Within a given package, the number of VREF and VCCO pins can vary depending on the size of device. In larger devices, more I/O pins convert to VREF pins. Since these are always a superset of the VREF pins used for smaller devices, it is possible to design a PCB that permits migration to a larger device if necessary. All VREF pins for the largest device anticipated must be connected to the VREF voltage and not used for I/O. In smaller devices, some VCCO pins used in larger devices do not conDS083 (v4.7) November 5, 2007 Product Specification 2. Combining input standards only. Input standards with the same input VCCO and input VREF requirements can be combined in the same bank. Compatible example: LVDS_25 output and HSTL_I input Incompatible example: LVDS_25 output (output VCCO = 2.5V) and HSTL_I_DCI_18 input (input VCCO = 1.8V) 4. Combining bi-directional standards with input or output standards. When combining bi-directional I/O with other standards, make sure the bi-directional standard can meet rules 1 through 3 above. 5. Additional rules for combining DCI I/O standards. a. No more than one Single Termination type (input or output) is allowed in the same bank. Incompatible example: HSTL_IV_DCI input and HSTL_III_DCI input b. No more than one Split Termination type (input or output) is allowed in the same bank. Incompatible example: HSTL_I_DCI input and HSTL_II_DCI input The implementation tools will enforce the above design rules. Table 12, page 30, summarizes all standards and voltage supplies. www.xilinx.com Module 2 of 4 29 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Functional Description Table 12: Summary of Voltage Supply Requirements for All Input and Output Standards VCCO Table 12: Summary of Voltage Supply Requirements for All Input and Output Standards (Continued) VREF Termination Type Input Output Input HSTL_III_18 1.1 N/R N/R N/R HSTL_IV_18 1.1 N/R N/R 0.9 N/R N/R VCCO VREF Termination Type Input Output Input I/O Standard LVTTL (1) N/R N/R N/R LVCMOS33 (1) N/R N/R I/O Standard Output Input Output Input N/R Series N/R HSTL_I_18 N/R N/R N/R HSTL_II_18 0.9 N/R N/R PCI33_3 (2) N/R N/R N/R SSTL18_I 0.9 N/R N/R PCI66_3 (2) N/R N/R N/R SSTL18_II 0.9 N/R N/R LVDS_25 N/R N/R N/R LVCMOS18 N/R N/R N/R LVDSEXT_25 N/R N/R N/R LVDCI_18 N/R Series N/R LDT_25 N/R N/R N/R LVDCI_DV2_18 N/R Series N/R 1.1 N/R Single 1.1 Single Single LVDCI_33 (1) PCIX (2) 3.3 3.3 Note (3) 1.8 N/R N/R N/R HSTL_III_DCI_18 BLVDS_25 N/R N/R N/R HSTL_IV_DCI_18 LVPECL_25 N/R N/R N/R HSTL_I_DCI_18 0.9 N/R Split SSTL2_I 1.25 N/R N/R HSTL_II_DCI_18 0.9 Split Split SSTL2_II 1.25 N/R N/R SSTL18_I_DCI 0.9 N/R Split LVCMOS25 N/R N/R N/R SSTL18_II_DCI 0.9 Split Split 0.9 N/R N/R 0.9 N/R N/R ULVDS_25 Note (3) 1.8 N/R Series N/R HSTL_III LVDCI_DV2_25 N/R Series N/R HSTL_IV LVDS_25_DCI N/R N/R Split HSTL_I 0.75 N/R N/R LVDSEXT_25_DCI N/R N/R Split HSTL_II 0.75 N/R N/R 1.25 N/R Split LVCMOS15 N/R N/R N/R SSTL2_II_DCI 1.25 Split Split LVDCI_15 N/R Series N/R LVDS_25_DT N/R N/R N/R LVDCI_DV2_15 N/R Series N/R 1 Single Single LVDCI_25 SSTL2_I_DCI 2.5 2.5 Note (3) 1.5 LVDSEXT_25_DT N/R N/R N/R GTLP_DCI LDT_25_DT N/R N/R N/R HSTL_III_DCI 0.9 N/R Single ULVDS_25_DT N/R N/R N/R HSTL_IV_DCI 0.9 Single Single HSTL_I_DCI 0.75 N/R Split HSTL_II_DCI 0.75 Split Split 0.8 Single Single 1 N/R N/R 0.8 N/R N/R 1.5 GTL_DCI 1.2 1.2 N/R Note (3) GTLP GTL Notes: 1. See application note XAPP659 for more detailed information. 2. See application note XAPP653 for more detailed information. 3. Pin voltage must not exceed VCCO. 4. N/R = no requirement. DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 2 of 4 30 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Functional Description Digitally Controlled Impedance (DCI) Controlled Impedance Drivers (Series Termination) Today’s chip output signals with fast edge rates require termination to prevent reflections and maintain signal integrity. High pin count packages (especially ball grid arrays) can not accommodate external termination resistors. DCI can be used to provide a buffer with a controlled output impedance. It is desirable for this output impedance to match the transmission line impedance (Z0). Virtex-II Pro input buffers also support LVDCI and LVDCI_DV2. Virtex-II Pro XCITE DCI provides controlled impedance drivers and on-chip termination for single-ended and differential I/Os. This eliminates the need for external resistors and improves signal integrity. The DCI feature can be used on any IOB by selecting one of the DCI I/O standards. When applied to inputs, DCI provides input parallel termination. When applied to outputs, DCI provides controlled impedance drivers (series termination) or output parallel termination. DCI operates independently on each I/O bank. When a DCI I/O standard is used in a particular I/O bank, external reference resistors must be connected to two dual-function pins on the bank. These resistors, voltage reference of N transistor (VRN) and the voltage reference of P transistor (VRP) are shown in Figure 26. IOB Z Z0 Virtex-II Pro DCI VCCO = 3.3V, 2.5 V, 1.8 V, or 1.5 V DS083-2_09_082902 Figure 27: Internal Series Termination Table 13: SelectIO-Ultra Controlled Impedance Buffers VCCO DCI DCI Half Impedance 3.3V LVDCI_33 N/A 2.5V LVDCI_25 LVDCI_DV2_25 1.8V LVDCI_18 LVDCI_DV2_18 1.5V LVDCI_15 LVDCI_DV2_15 Controlled Impedance Terminations (Parallel) 1 Bank DCI also provides on-chip termination for SSTL2, SSTL18, HSTL (Class I, II, III, or IV), LVDS_25, LVDSEXT_25, and GTL/GTLP receivers or transmitters on bidirectional lines. Table 14 and Table 15 list the on-chip parallel terminations available in Virtex-II Pro devices. VCCO must be set according to Table 10. There is a VCCO requirement for GTL_DCI and GTLP_DCI, due to the on-chip termination resistor. DCI DCI DCI DCI VCCO Table 14: SelectIO-Ultra Buffers With On-Chip Parallel Termination RREF (1%) IOSTANDARD Attribute VRN I/O Standard Description VRP RREF (1%) GND DS031_50_101200 Figure 26: DCI in a Virtex-II Pro Bank External Termination On-Chip Termination SSTL Class I, 2.5V SSTL2_I SSTL2_I_DCI (1) SSTL Class II, 2.5V SSTL2_II SSTL2_II_DCI (1) SSTL Class I, 1.8V SSTL18_I SSTL18_I_DCI SSTL Class II, 1.8V SSTL18_II SSTL18_II_DCI HSTL_I HSTL_I_DCI HSTL_I_18 HSTL_I_DCI_18 HSTL_II HSTL_II_DCI HSTL_II_18 HSTL_II_DCI_18 HSTL_III HSTL_III_DCI HSTL_III_18 HSTL_III_DCI_18 HSTL Class I When used with a terminated I/O standard, the value of the resistors are specified by the standard (typically 50Ω). When used with a controlled impedance driver, the resistors set the output impedance of the driver within the specified range (20Ω to 100Ω). For all series and parallel terminations listed in Table 13 and Table 14, the reference resistors must have the same value for any given bank. One percent resistors are recommended. HSTL Class I, 1.8V The DCI system adjusts the I/O impedance to match the two external reference resistors, or half of the reference resistors, and compensates for impedance changes due to voltage and/or temperature fluctuations. The adjustment is done by turning parallel transistors in the IOB on or off. GTL DS083 (v4.7) November 5, 2007 Product Specification HSTL Class II HSTL Class II, 1.8V HSTL Class III HSTL Class III, 1.8V HSTL Class IV HSTL Class IV, 1.8V GTL Plus HSTL_IV HSTL_IV_DCI HSTL_IV_18 HSTL_IV_DCI_18 GTL GTL_DCI GTLP GTLP_DCI Notes: 1. SSTL compatible. www.xilinx.com Module 2 of 4 31 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Functional Description Table 15: SelectIO-Ultra Differential Buffers With On-Chip Termination IOSTANDARD Attribute I/O Standard Description External Termination On-Chip Termination LVDS_25 LVDS_25_DCI LVDSEXT_25 LVDSEXT_25_DCI LVDS 2.5V LVDS Extended 2.5V Figure 28 provides examples illustrating the use of the HSTL_I_DCI, HSTL_II_DCI, HSTL_III_DCI, and HSTL_IV_DCI I/O standards. For a complete list, see the Virtex-II Pro Platform FPGA User Guide. HSTL_I HSTL_II VCCO/2 VCCO/2 R Conventional R VCCO/2 Z0 2R 2R 2R DCI Transmit DCI Receive VCCO 2R VCCO VCCO R R 2R Virtex-II Pro DCI VCCO Virtex-II Pro DCI VCCO R Z0 Virtex-II Pro DCI VCCO Virtex-II Pro DCI Virtex-II Pro DCI Reference Resistor Recommended Z0 VCCO R R Z0 2R Virtex-II Pro DCI VCCO 2R 2R VCCO R Z0 Virtex-II Pro DCI 2R N/A R Z0 R 2R VCCO Bidirectional VCCO Virtex-II Pro DCI 2R Z0 Virtex-II Pro DCI R VCCO 2R Z0 VCCO Z0 Z0 Virtex-II Pro DCI Virtex-II Pro DCI 2R R Virtex-II Pro DCI Z0 VCCO VCCO R VCCO R Z0 VCCO Virtex-II Pro DCI VCCO/2 2R R Z0 Z0 Virtex-II Pro DCI VCCO R Z0 2R VCCO VCCO R R Z0 Virtex-II Pro DCI Conventional Transmit DCI Receive VCCO 2R HSTL_IV VCCO R Z0 VCCO/2 DCI Transmit Conventional Receive VCCO/2 R Z0 HSTL_III Z0 N/A Virtex-II Pro DCI Virtex-II Pro DCI Virtex-II Pro DCI VRN = VRP = R = Z0 VRN = VRP = R = Z0 VRN = VRP = R = Z0 VRN = VRP = R = Z0 50Ω 50Ω 50Ω 50Ω DS083-2_65a_082102 Figure 28: HSTL DCI Usage Examples DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 2 of 4 32 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Functional Description Figure 29 provides examples illustrating the use of the SSTL2_I_DCI, SSTL2_II_DCI, SSTL18_I_DCI, and SSTL18_II_DCI I/O standards. For a complete list, see the Virtex-II Pro Platform FPGA User Guide. SSTL2_I or SSTL18_I SSTL2_II or SSTL18_II VCCO/2 VCCO/2 R VCCO/2 R Conventional R/2 Z0 R/2 VCCO/2 DCI Transmit Conventional Receive 25Ω(1) R Z0 VCCO 25Ω(1) R VCCO/2 R 2R Z0 Z0 2R Virtex-II Pro DCI Virtex-II Pro DCI Z0 Z0 R/2 2R R 2R Conventional Transmit DCI Receive VCCO VCCO/2 VCCO R/2 2R 2R Virtex-II Pro DCI VCCO 25Ω(1) DCI Transmit DCI Receive Virtex-II Pro DCI 2R 2R 2R Z0 Z0 2R 2R Virtex-II Pro DCI VCCO VCCO 25Ω(1) Virtex-II Pro DCI 2R Virtex-II Pro DCI Virtex-II Pro DCI VCCO VCCO 25Ω(1) 2R 2R Z0 Bidirectional N/A 2R 2R 25Ω Virtex-II Pro DCI Virtex-II Pro DCI Reference Resistor Recommended Z0(2) VRN = VRP = R = Z0 VRN = VRP = R = Z0 50Ω 50Ω DS083-2_65b_011603 Notes: 1. The SSTL-compatible 25Ω series resistor is accounted for in the DCI buffer, and it is not DCI controlled. 2. Z0 is the recommended PCB trace impedance. Figure 29: SSTL DCI Usage Examples DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 2 of 4 33 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Functional Description Figure 30 provides examples illustrating the use of the LVDS_25_DCI and LVDSEXT_25_DCI I/O standards. For a complete list, see the Virtex-II Pro Platform FPGA User Guide. LVDS_25_DCI and LVDSEXT_25_DCI Receiver • • • • Eliminates the stub at the receiver completely and therefore greatly improve signal integrity Consumes less power than DCI termination Supports LDT (not supported by DCI termination) Frees up VRP/VRN pins Figure 31 provides examples illustrating the use of the LVDS_25_DT, LVDSEXT_25_DT, LDT_25_DT, and ULVDS_25_DT I/O standards. For further details, refer to Solution Record 17244. Also see the Virtex-II Pro Platform FPGA User Guide for more design information. Z0 2R Conventional The on-chip input differential termination in Virtex-II Pro provides major advantages over the external resistor or the DCI termination solution: LVDS_25_DT, LVDSEXT_25_DT, LDT_25_DT, and ULVDS_25_DT Receiver Z0 Virtex-II Pro LVDS Z0 VCCO 2R 2R Conventional Z0 2R Conventional Transmit DCI Receive Z0 VCCO Virtex-II Pro LVDS 2R Z0 2R Virtex-II Pro LVDS DCI Reference Resistor Z0 VRN = VRP = R = Z0 Recommended Z0 50 Ω NOTE: Only LVDS25_DCI is supported (VCCO = 2.5V only) DS083-2_65c_022103 Conventional Transmit, On-Chip Differential Termination Receive Figure 30: LVDS DCI Usage Examples 100Ω Z0 Virtex-II Pro LVDS On-Chip Differential Termination On-Chip Differential Termination Virtex-II Pro provides a true 100Ω differential termination (DT) across the input differential receiver terminals. The LVDS_25_DT, LVDSEXT_25_DT, LDT_25_DT, and ULVDS_25_DT standards support on-chip differential termination. Recommended Z0 50 Ω NOTE: Only 2.5V LVDS standards are supported (VCCO = 2.5V only) DS083-2_65e_052703 Figure 31: LVDS Differential Termination Usage Examples DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 2 of 4 34 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Functional Description Configurable Logic Blocks (CLBs) Configurations The Virtex-II Pro configurable logic blocks (CLB) are organized in an array and are used to build combinatorial and synchronous logic designs. Each CLB element is tied to a switch matrix to access the general routing matrix, as shown in Figure 32. A CLB element comprises 4 similar slices, with fast local feedback within the CLB. The four slices are split in two columns of two slices with two independent carry logic chains and one common shift chain. Look-Up Table COUT TBUF TBUF Slice X1Y1 Slice X1Y0 COUT Switch Matrix SHIFT CIN Slice X0Y1 Fast Connects to neighbors Slice X0Y0 CIN DS083-2_32_122001 Figure 32: Virtex-II Pro CLB Element Each slice includes two 4-input function generators, carry logic, arithmetic logic gates, wide function multiplexers and two storage elements. As shown in Figure 33, each 4-input function generator is programmable as a 4-input LUT, 16 bits of distributed SelectRAM+ memory, or a 16-bit variable-tap shift register element. The output from the function generator in each slice drives both the slice output and the D input of the storage element. Figure 34 shows a more detailed view of a single slice. ORCY MUXFx SRL16 LUT G CY Register/ Latch RAM16 MUXF5 SRL16 LUT F CY Register/ Latch Arithmetic Logic DS083-2_31_122001 In addition to the basic LUTs, the Virtex-II Pro slice contains logic (MUXF5 and MUXFX multiplexers) that combines function generators to provide any function of five, six, seven, or eight inputs. The MUXFX is either MUXF6, MUXF7, or MUXF8 according to the slice considered in the CLB. Selected functions up to nine inputs (MUXF5 multiplexer) can be implemented in one slice. The MUXFX can also be a MUXF6, MUXF7, or MUXF8 multiplexer to map any function of six, seven, or eight inputs and selected wide logic functions. Register/Latch Slice Description RAM16 Virtex-II Pro function generators are implemented as 4-input look-up tables (LUTs). Four independent inputs are provided to each of the two function generators in a slice (F and G). These function generators are each capable of implementing any arbitrarily defined boolean function of four inputs. The propagation delay is therefore independent of the function implemented. Signals from the function generators can exit the slice (X or Y output), can input the XOR dedicated gate (see arithmetic logic), or input the carry-logic multiplexer (see fast look-ahead carry logic), or feed the D input of the storage element, or go to the MUXF5 (not shown in Figure 34). The storage elements in a Virtex-II Pro slice can be configured either as edge-triggered D-type flip-flops or as level-sensitive latches. The D input can be directly driven by the X or Y output via the DX or DY input, or by the slice inputs bypassing the function generators via the BX or BY input. The clock enable signal (CE) is active High by default. If left unconnected, the clock enable for that storage element defaults to the active state. In addition to clock (CK) and clock enable (CE) signals, each slice has set and reset signals (SR and BY slice inputs). SR forces the storage element into the state specified by the attribute SRHIGH or SRLOW. SRHIGH forces a logic 1 when SR is asserted. SRLOW forces a logic 0. When SR is used, an optional second input (BY) forces the storage element into the opposite state via the REV pin. The reset condition is predominant over the set condition. (See Figure 35.) The initial state after configuration or global initial state is defined by a separate INIT0 and INIT1 attribute. By default, setting the SRLOW attribute sets INIT0, and setting the SRHIGH attribute sets INIT1. For each slice, set and reset can be set to be synchronous or asynchronous. Virtex-II Pro devices also have the ability to set INIT0 and INIT1 independent of SRHIGH and SRLOW. The control signals clock (CLK), clock enable (CE) and set/reset (SR) are common to both storage elements in one slice. All of the control signals have independent polarity. Any inverter placed on a control input is automatically absorbed. Figure 33: Virtex-II Pro Slice Configuration DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 2 of 4 35 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Functional Description COUT SHIFTIN ORCY SOPIN SOPOUT 0 Dual-Port Shift-Reg G4 G3 G2 G1 WG4 WG3 WG2 WG1 A4 LUT A3 RAM A2 ROM A1 D WG4 G WG3 WG2 MC15 WG1 DI WS YBMUX YB MUXCY 1 0 1 GYMUX Y DY XORG FF LATCH ALTDIG MULTAND 1 0 DYMUX G2 PROD G1 CYOG BY CE CLK D Q Q Y CE CK SR REV BY SLICEWE[2:0] WSG WE[2:0] WE CLK WSF SR SHIFTOUT DIG MUXCY 1 0 CE CLK Shared between x & y Registers SR CIN DS031_01_112502 Figure 34: Virtex-II Pro Slice (Top Half) DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 2 of 4 36 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Functional Description • • • • FFY FF LATCH DY D Q CE CK SR REV BY YQ Attribute INIT1 INIT0 SRHIGH SRLOW FFX FF LATCH DX CE CLK D Q CE CK SR REV SR BX XQ Attribute INIT1 INIT0 SRHIGH SRLOW Single-Port 128 x 1-bit RAM Dual-Port 16 x 4-bit RAM Dual-Port 32 x 2-bit RAM Dual-Port 64 x 1-bit RAM Distributed SelectRAM+ memory modules are synchronous (write) resources. The combinatorial read access time is extremely fast, while the synchronous write simplifies high-speed designs. A synchronous read can be implemented with a storage element in the same slice. The distributed SelectRAM+ memory and the storage element share the same clock input. A Write Enable (WE) input is active High, and is driven by the SR input. Table 16 shows the number of LUTs (2 per slice) occupied by each distributed SelectRAM+ configuration. Table 16: Distributed SelectRAM+ Configurations RAM Number of LUTs 16 x 1S 1 Reset Type SYNC ASYNC 16 x 1D 2 32 x 1S 2 DS083-2_22_122001 32 x 1D 4 Figure 35: Register / Latch Configuration in a Slice 64 x 1S 4 The set and reset functionality of a register or a latch can be configured as follows: 64 x 1D 8 128 x 1S 8 • • • • • • • No set or reset Synchronous set Synchronous reset Synchronous set and reset Asynchronous set (preset) Asynchronous reset (clear) Asynchronous set and reset (preset and clear) Notes: 1. S = single-port configuration; D = dual-port configuration For single-port configurations, distributed SelectRAM+ memory has one address port for synchronous writes and asynchronous reads. The synchronous reset has precedence over a set, and an asynchronous clear has precedence over a preset. Distributed SelectRAM+ Memory Each function generator (LUT) can implement a 16 x 1-bit synchronous RAM resource called a distributed SelectRAM+ element. SelectRAM+ elements are configurable within a CLB to implement the following: • • • Single-Port 16 x 8-bit RAM Single-Port 32 x 4-bit RAM Single-Port 64 x 2-bit RAM DS083 (v4.7) November 5, 2007 Product Specification For dual-port configurations, distributed SelectRAM+ memory has one port for synchronous writes and asynchronous reads and another port for asynchronous reads. The function generator (LUT) has separated read address inputs (A1, A2, A3, A4) and write address inputs (WG1/WF1, WG2/WF2, WG3/WF3, WG4/WF4). In single-port mode, read and write addresses share the same address bus. In dual-port mode, one function generator (R/W port) is connected with shared read and write addresses. The second function generator has the A inputs (read) connected to the second read-only port address and the W inputs (write) shared with the first read/write port www.xilinx.com Module 2 of 4 37 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Functional Description Figure 36, Figure 37, and Figure 38 illustrate various example configurations. RAM 16x1D RAM 16x1S 4 DPRA[3:0] A[3:0] RAM A[4:1] 4 4 D WE WCLK Output D WG[4:1] WS 4 A[3:0] D DI DPO WG[4:1] WS Registered Output Q dual_port RAM G[4:1] D DI (BY) D (BY) WSG (optional) WSG (SR) WE CK WE CK DS031_02_100900 4 A[3:0] Figure 36: Distributed SelectRAM+ (RAM16x1S) dual_port RAM G[4:1] D SPO WG[4:1] WS DI RAM 32x1S A[4] (BX) 4 A[3:0] WSG RAM G[4:1] D WE WCLK WG[4:1] WS D WE WCLK (SR) WE CK DI (BY) WSG WE0 WE CK WSF (SR) 4 WS DI RAM D DS031_04_110100 Output F5MUX D Registered Output Q (optional) F[4:1] WF[4:1] DS083-2_10_050901 Figure 37: Single-Port Distributed SelectRAM+ (RAM32x1S) DS083 (v4.7) November 5, 2007 Product Specification Figure 38: Dual-Port Distributed SelectRAM+ (RAM16x1D) Similar to the RAM configuration, each function generator (LUT) can implement a 16 x 1-bit ROM. Five configurations are available: ROM16x1, ROM32x1, ROM64x1, ROM128x1, and ROM256x1. The ROM elements are cascadable to implement wider or/and deeper ROM. ROM contents are loaded at configuration. Table 17 shows the number of LUTs occupied by each configuration. Table 17: ROM Configuration www.xilinx.com ROM Number of LUTs 16 x 1 1 32 x 1 2 64 x 1 4 128 x 1 8 (1 CLB) 256 x 1 16 (2 CLBs) Module 2 of 4 38 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Functional Description Shift Registers Each function generator can also be configured as a 16-bit shift register. The write operation is synchronous with a clock input (CLK) and an optional clock enable, as shown in Figure 39. A dynamic read access is performed through the 4-bit address bus, A[3:0]. The configurable 16-bit shift register cannot be set or reset. The read is asynchronous; however, the storage element or flip-flop is available to implement a synchronous read. Any of the 16 bits can be read out asynchronously by varying the address. The storage element should always be used with a constant address. For example, when building an 8-bit shift register and configuring the addresses to point to the 7th bit, the 8th bit can be the flip-flop. The overall system performance is improved by using the superior clock-to-out of the flip-flops. 1 Shift Chain in CLB DI D SRLC16 MC15 IN DI D SRLC16 MC15 SHIFTOUT SHIFTIN SHIFT-REG A[3:0] 4 A[4:1] D MC15 WS DI Output D Q Registered Output SLICE S2 DI D SRLC16 MC15 FF DI D SRLC16 MC15 FF SHIFTOUT D(BY) WSG CE (SR) CLK FF SLICE S3 SRLC16 SHIFTIN FF (optional) SHIFTIN WE CK DI D SRLC16 MC15 FF DI D SRLC16 MC15 FF SHIFTOUT DS031_05_110600 Figure 39: Shift Register Configurations An additional dedicated connection between shift registers allows connecting the last bit of one shift register to the first bit of the next, without using the ordinary LUT output. (See Figure 40.) Longer shift registers can be built with dynamic access to any bit in the chain. The shift register chaining and the MUXF5, MUXF6, and MUXF7 multiplexers allow up to a 128-bit shift register with addressable access to be implemented in one CLB. SLICE S1 SHIFTOUT SHIFTIN DI D SRLC16 MC15 FF DI D SRLC16 MC15 FF SLICE S0 OUT CLB CASCADABLE OUT DS031_06_110200 Figure 40: Cascadable Shift Register DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 2 of 4 39 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Functional Description Multiplexers Virtex-II Pro function generators and associated multiplexers can implement the following: 4:1 multiplexer in one slice 8:1 multiplexer in two slices 16:1 multiplexer in one CLB element (4 slices) 32:1 multiplexer in two CLB elements (8 slices) F8 • • • • Each Virtex-II Pro slice has one MUXF5 multiplexer and one MUXFX multiplexer. The MUXFX multiplexer implements the MUXF6, MUXF7, or MUXF8, as shown in Figure 41. Each CLB element has two MUXF6 multiplexers, one MUXF7 multiplexer and one MUXF8 multiplexer. Examples of multiplexers are shown in the Virtex-II Pro Platform FPGA User Guide. Any LUT can implement a 2:1 multiplexer. G F5 Slice S3 MUXF8 combines the two MUXF7 outputs (Two CLBs) F6 F G F5 Slice S2 MUXF6 combines the two MUXF5 outputs from slices S2 and S3 F7 F F5 G Slice S1 MUXF7 combines the two MUXF6 outputs from slices S0 and S2 Slice S0 MUXF6 combines the two MUXF6 outputs from slices S0 and S1 F6 F F5 G F CLB DS031_08_110200 Figure 41: MUXF5 and MUXFX multiplexers Fast Lookahead Carry Logic Dedicated carry logic provides fast arithmetic addition and subtraction. The Virtex-II Pro CLB has two separate carry chains, as shown in the Figure 42. The height of the carry chains is two bits per slice. The carry chain in the Virtex-II Pro device is running upward. The dedicated carry path and carry multiplexer (MUXCY) can also DS083 (v4.7) November 5, 2007 Product Specification be used to cascade function generators for implementing wide logic functions. Arithmetic Logic The arithmetic logic includes an XOR gate that allows a 2-bit full adder to be implemented within a slice. In addition, a dedicated AND (MULT_AND) gate (shown in Figure 34) improves the efficiency of multiplier implementation. www.xilinx.com Module 2 of 4 40 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Functional Description COUT to S0 of the next CLB COUT to CIN of S2 of the next CLB O I MUXCY FF LUT (First Carry Chain) SLICE S3 O I MUXCY FF LUT CIN COUT O I MUXCY FF LUT SLICE S2 O I O I MUXCY MUXCY FF LUT FF LUT O I SLICE S1 MUXCY FF LUT CIN COUT O I (Second Carry Chain) MUXCY FF LUT O I SLICE S0 MUXCY FF LUT CIN CIN CLB DS031_07_110200 Figure 42: Fast Carry Logic Path DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 2 of 4 41 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Functional Description Sum of Products implementing large, flexible SOP chains. One input of each ORCY is connected through the fast SOP chain to the output of the previous ORCY in the same slice row. The second input is connected to the output of the top MUXCY in the same slice, as shown in Figure 43. Each Virtex-II Pro slice has a dedicated OR gate named ORCY, ORing together outputs from the slices carryout and the ORCY from an adjacent slice. The ORCY gate with the dedicated Sum of Products (SOP) chain are designed for ORCY ORCY ORCY ORCY SOP 4 LUT MUXCY 4 LUT Slice 1 4 LUT MUXCY 4 LUT MUXCY LUT MUXCY MUXCY LUT Slice 3 4 LUT MUXCY 4 LUT MUXCY Slice 0 4 4 LUT VCC LUT MUXCY Slice 1 4 LUT MUXCY 4 LUT MUXCY Slice 2 4 MUXCY 4 Slice 3 4 LUT MUXCY 4 LUT MUXCY Slice 0 4 MUXCY LUT VCC MUXCY Slice 2 4 LUT MUXCY VCC VCC CLB CLB ds031_64_110300 Figure 43: Horizontal Cascade Chain LUTs and MUXCYs can implement large AND gates or other combinatorial logic functions. Figure 44 illustrates LUT and MUXCY resources configured as a 16-input AND gate. OUT 4 MUXCY 0 1 LUT “0” 4 Slice MUXCY LUT 0 1 “0” 16 4 AND OUT MUXCY 0 1 LUT “0” 4 Slice MUXCY LUT 0 1 VCC DS031_41_110600 Figure 44: Wide-Input AND Gate (16 Inputs) DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 2 of 4 42 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Functional Description 3-State Buffers Locations / Organization Introduction Four horizontal routing resources per CLB are provided for on-chip 3-state buses. Each 3-state buffer has access alternately to two horizontal lines, which can be partitioned as shown in Figure 46. The switch matrices corresponding to SelectRAM+ memory and multiplier or I/O blocks are skipped. Each Virtex-II Pro CLB contains two 3-state drivers (TBUFs) that can drive on-chip buses. Each 3-state buffer has its own 3-state control pin and its own input pin. Each of the four slices have access to the two 3-state buffers through the switch matrix, as shown in Figure 45. TBUFs in neighboring CLBs can access slice outputs by direct connects. The outputs of the 3-state buffers drive horizontal routing resources used to implement 3-state buses. Number of 3-State Buffers Table 18 shows the number of 3-state buffers available in each Virtex-II Pro device. The number of 3-state buffers is twice the number of CLB elements. Table 18: Virtex-II Pro 3-State Buffers TBUF TBUF Slice S3 Switch Matrix 3-State Buffers per Row Total Number of 3-State Buffers XC2VP2 44 704 XC2VP4 44 1,504 XC2VP7 68 2,464 XC2VP20 92 4,640 XC2VPX20 92 4,896 XC2VP30 92 6,848 XC2VP40 116 9,696 XC2VP50 140 11,808 XC2VP70 164 16,544 XC2VPX70 164 16,544 XC2VP100 188 22,048 Device Slice S2 Slice S1 Slice S0 DS031_37_060700 Figure 45: Virtex-II Pro 3-State Buffers The 3-state buffer logic is implemented using AND-OR logic rather than 3-state drivers, so that timing is more predictable and less load dependant especially with larger devices. 3 - state lines Switch matrix CLB-II Programmable connection Switch matrix CLB-II DS031_09_032700 Figure 46: 3-State Buffer Connection to Horizontal Lines DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 2 of 4 43 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Functional Description CLB/Slice Configurations Table 19 summarizes the logic resources in one CLB. All of the CLBs are identical and each CLB or slice can be implemented in one of the configurations listed. Table 20 shows the available resources in all CLBs. Table 19: Logic Resources in One CLB Slices LUTs Flip-Flops MULT_ANDs Arithmetic & Carry-Chains SOP Chains Distributed SelectRAM+ Shift Registers TBUF 4 8 8 8 2 2 128 bits 128 bits 2 Table 20: Virtex-II Pro Logic Resources Available in All CLBs CLB Array: Row x Column Number of Slices Number of LUTs Max Distributed SelectRAM or Shift Register (bits) Number of Flip-Flops Number of Carry-Chains (1) Number of SOP Chains (1) XC2VP2 16 x 22 1,408 2,816 45,056 2,816 44 32 XC2VP4 40 x 22 3,008 6,016 96,256 6,016 44 80 XC2VP7 40 x 34 4,928 9,856 157,696 9,856 68 80 XC2VP20 56 x 46 9,280 18,560 296,960 18,560 92 112 XC2VPX20 56 x 46 9,792 19,584 313,334 18,560 92 112 XC2VP30 80 x 46 13,696 27,392 438,272 27,392 92 160 XC2VP40 88 x 58 19,392 38,784 620,544 38,784 116 176 XC2VP50 88 x 70 23,616 47,232 755,712 47,232 140 176 XC2VP70 104 x 82 33,088 66,176 1,058,816 66,176 164 208 XC2VPX70 104 x 82 33,088 66,176 1,058,816 66,176 164 208 XC2VP100 120 x 94 44,096 88,192 1,411,072 88,192 188 240 Device Notes: 1. The carry-chains and SOP chains can be split or cascaded. 18 Kb Block SelectRAM+ Resources Configuration Introduction Virtex-II Pro block SelectRAM+ supports various configurations, including single- and dual-port RAM and various data/address aspect ratios. Supported memory configurations for single- and dual-port modes are shown in Table 21. Virtex-II Pro devices incorporate large amounts of 18 Kb block SelectRAM+ resources. These complement the distributed SelectRAM+ resources that provide shallow RAM structures implemented in CLBs. Each Virtex-II Pro block SelectRAM+ resource is an 18 Kb true dual-port RAM with two independently clocked and independently controlled synchronous ports that access a common storage area. Both ports are functionally identical. CLK, EN, WE, and SSR polarities are defined through configuration. Each port has the following types of inputs: Clock and Clock Enable, Write Enable, Set/Reset, and Address, as well as separate Data/parity data inputs (for write) and Data/parity data outputs (for read). Operation is synchronous; the block SelectRAM+ behaves like a register. Control, address and data inputs must (and need only) be valid during the set-up time window prior to a rising (or falling, a configuration option) clock edge. Data outputs change as a result of the same clock edge. DS083 (v4.7) November 5, 2007 Product Specification Table 21: Dual- and Single-Port Configurations 16K x 1 bit 2K x 9 bits 8K x 2 bits 1K x 18 bits 4K x 4 bits 512 x 36 bits Single-Port Configuration As a single-port RAM, the block SelectRAM+ has access to the 18 Kb memory locations in any of the 2K x 9-bit, 1K x 18-bit, or 512 x 36-bit configurations and to 16 Kb memory locations in any of the 16K x 1-bit, 8K x 2-bit, or 4K x 4-bit configurations. The advantage of the 9-bit, 18-bit and 36-bit widths is the ability to store a parity bit for each eight bits. Parity bits must be generated or checked exter- www.xilinx.com Module 2 of 4 44 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Functional Description nally in user logic. In such cases, the width is viewed as 8 + 1, 16 + 2, or 32 + 4. These extra parity bits are stored and behave exactly as the other bits, including the timing parameters. Video applications can use the 9-bit ratio of Virtex-II Pro block SelectRAM+ memory to advantage. Each block SelectRAM+ cell is a fully synchronous memory as illustrated in Figure 47. Input data bus and output data bus widths are identical. DI DIP ADDR CLK As a dual-port RAM, each port of block SelectRAM+ has access to a common 18 Kb memory resource. These are fully synchronous ports with independent control signals for each port. The data widths of the two ports can be configured independently, providing built-in bus-width conversion. Table 22 illustrates the different configurations available on ports A and B. If both ports are configured in either 2K x 9-bit, 1K x 18-bit, or 512 x 36-bit configurations, the 18 Kb block is accessible from port A or B. If both ports are configured in either 16K x 1-bit, 8K x 2-bit. or 4K x 4-bit configurations, the 16 K-bit block is accessible from Port A or Port B. All other configurations result in one port having access to an 18 Kb memory block and the other port having access to a 16 K-bit subset of the memory block equal to 16 Kbs. 18-Kbit Block SelectRAM WE EN SSR Dual-Port Configuration DO DOP DS031_10_102000 Figure 47: 18 Kb Block SelectRAM+ Memory in Single-Port Mode Table 22: Dual-Port Mode Configurations Port A 16K x 1 16K x 1 16K x 1 16K x 1 16K x 1 16K x 1 Port B 16K x 1 8K x 2 4K x 4 2K x 9 1K x 18 512 x 36 Port A 8K x 2 8K x 2 8K x 2 8K x 2 8K x 2 Port B 8K x 2 4K x 4 2K x 9 1K x 18 512 x 36 Port A 4K x 4 4K x 4 4K x 4 4K x 4 Port B 4K x 4 2K x 9 1K x 18 512 x 36 Port A 2K x 9 2K x 9 2K x 9 Port B 2K x 9 1K x 18 512 x 36 Port A 1K x 18 1K x 18 Port B 1K x 18 512 x 36 Port A 512 x 36 Port B 512 x 36 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 2 of 4 45 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Functional Description Each block SelectRAM+ cell is a fully synchronous memory, as illustrated in Figure 48. The two ports have independent inputs and outputs and are independently clocked. 18-Kbit Block SelectRAM DIA DIPA ADDRA WEA ENA SSRA CLKA CLKB A write operation performs a simultaneous read operation. Three different options are available, selected by configuration: 1. WRITE_FIRST The WRITE_FIRST option is a transparent mode. The same clock edge that writes the data input (DI) into the memory also transfers DI into the output registers DO, as shown in Figure 49. DOA DOPA DIB DIPB ADDRB WEB ENB SSRB ing or falling clock edge causes the data to be loaded into the memory cell addressed. Data_in DI Internal Memory DO Data_out = Data_in CLK WE DOB DOPB Data_in New Address aa RAM Contents Old DS031_11_102000 Figure 48: 18 Kb Block SelectRAM+ in Dual-Port Mode New Port Aspect Ratios New Data_out Table 23 shows the depth and the width aspect ratios for the 18 Kb block SelectRAM+ resource. Virtex-II Pro block SelectRAM+ also includes dedicated routing resources to provide an efficient interface with CLBs, block SelectRAM+, and multipliers. 2. READ_FIRST Table 23: 18 Kb Block SelectRAM+ Port Aspect Ratio The READ_FIRST option is a read-before-write mode. Width Depth Address Bus Data Bus Parity Bus 1 16,384 ADDR[13:0] DATA[0] N/A 2 8,192 ADDR[12:0] DATA[1:0] N/A 4 4,096 ADDR[11:0] DATA[3:0] N/A 9 2,048 ADDR[10:0] DATA[7:0] Parity[0] 18 1,024 ADDR[9:0] DATA[15:0] Parity[1:0] 36 512 ADDR[8:0] DATA[31:0] Parity[3:0] DS083-2_14_050901 Figure 49: WRITE_FIRST Mode The same clock edge that writes data input (DI) into the memory also transfers the prior content of the memory cell addressed into the data output registers DO, as shown in Figure 50. Data_in DI Internal Memory DO Prior stored data CLK Read/Write Operations WE The Virtex-II Pro block SelectRAM+ read operation is fully synchronous. An address is presented, and the read operation is enabled by control signal ENA or ENB. Then, depending on clock polarity, a rising or falling clock edge causes the stored data to be loaded into output registers. The write operation is also fully synchronous. Data and address are presented, and the write operation is enabled by control signals WEA and WEB in addition to ENA or ENB. Then, again depending on the clock input mode, a ris- DS083 (v4.7) November 5, 2007 Product Specification Data_in New Address aa RAM Contents Old Data_out www.xilinx.com New Old DS083-2_13_050901 Figure 50: READ_FIRST Mode Module 2 of 4 46 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Functional Description 3. NO_CHANGE The NO_CHANGE option maintains the content of the output registers, regardless of the write operation. The clock edge during the write mode has no effect on the content of the data output register DO. When the port is configured as NO_CHANGE, only a read operation loads a new value in the output register DO, as shown in Figure 51. Table 25 shows the number of columns as well as the total amount of block SelectRAM+ memory available for each Virtex-II Pro device. The 18 Kb SelectRAM+ blocks are cascadable to implement deeper or wider single- or dual-port memory resources. Table 25: Virtex-II Pro SelectRAM+ Memory Available Total SelectRAM+ Memory Device Data_in DI Internal Memory DO No change during write CLK WE Data_in New Address aa RAM Contents Old Data_out New Last Read Cycle Content (no change) DS083-2_12_050901 Figure 51: NO_CHANGE Mode Control Pins and Attributes Virtex-II Pro SelectRAM+ memory has two independent ports with the control signals described in Table 24. All control inputs including the clock have an optional inversion. Columns Blocks in Kb in Bits XC2VP2 4 12 216 221,184 XC2VP4 4 28 504 516,096 XC2VP7 6 44 792 811,008 XC2VP20 8 88 1,584 1,622,016 XC2VP30 8 136 2,448 2,506,752 XC2VPX20 8 88 1,584 1,622,016 XC2VP40 10 192 3,456 3,538,944 XC2VP50 12 232 4,176 4,276,224 XC2VP70 14 328 5,904 6,045,696 XC2VPX70 14 308 5,544 5,677,056 XC2VP100 16 444 7,992 8,183,808 Figure 52 shows the layout of the block RAM columns in the XC2VP4 device. Table 24: Control Functions Control Signal DCM Function Read and Write Clock EN Enable affects Read, Write, Set, Reset WE Write Enable SSR Set DO register to SRVAL (attribute) BRAM Multiplier Blocks CLBs CLBs Initial memory content is determined by the INIT_xx attributes. Separate attributes determine the output register value after device configuration (INIT) and SSR is asserted (SRVAL). Both attributes (INIT_B and SRVAL) are available for each port when a block SelectRAM+ resource is configured as dual-port RAM. DCM CLBs CLBs CLBs CLK RocketIO TM Serial Transceivers PPC405 CPU Total Amount of SelectRAM+ Memory Virtex-II Pro SelectRAM+ memory blocks are organized in multiple columns. The number of blocks per column depends on the row size, the number of Processor Blocks, and the number of RocketIO transceivers. DCM RocketIO TM Serial Transceivers DCM DS083-2_11_010802 Figure 52: XC2VP4 Block RAM Column Layout DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 2 of 4 47 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Functional Description 18-Bit x 18-Bit Multipliers Multiplier Block Introduction A Virtex-II Pro multiplier block is an 18-bit by 18-bit 2’s complement signed multiplier. Virtex-II Pro devices incorporate many embedded multiplier blocks. These multipliers can be associated with an 18 Kb block SelectRAM+ resource or can be used independently. They are optimized for high-speed operations and have a lower power consumption compared to an 18-bit x 18-bit multiplier in slices. A[17:0] MULT 18 x 18 P[35:0] B[17:0] DS031_40_100400 Each SelectRAM+ memory and multiplier block is tied to four switch matrices, as shown in Figure 53. Figure 54: Multiplier Block Locations / Organization Multiplier organization is identical to the 18 Kb SelectRAM+ organization, because each multiplier is associated with an 18 Kb block SelectRAM+ resource. Switch Matrix 18-Kbit block SelectRAM Switch Matrix Table 26: Multiplier Resources 18 x 18 Multiplier Switch Matrix Device Switch Matrix DS031_33_101000 Figure 53: SelectRAM+ and Multiplier Blocks Association With Block SelectRAM+ Memory The interconnect is designed to allow SelectRAM+ memory and multiplier blocks to be used at the same time, but some interconnect is shared between the SelectRAM+ and the multiplier. Thus, SelectRAM+ memory can be used only up to 18 bits wide when the multiplier is used, because the multiplier shares inputs with the upper data bits of the SelectRAM+ memory. This sharing of the interconnect is optimized for an 18-bit-wide block SelectRAM+ resource feeding the multiplier. The use of SelectRAM+ memory and the multiplier with an accumulator in LUTs allows for implementation of a digital signal processor (DSP) multiplier-accumulator (MAC) function, which is commonly used in finite and infinite impulse response (FIR and IIR) digital filters. Configuration The multiplier block is an 18-bit by 18-bit signed multiplier (2's complement). Both A and B are 18-bit-wide inputs, and the output is 36 bits. Figure 54 shows a multiplier block. DS083 (v4.7) November 5, 2007 Product Specification Columns Total Multipliers XC2VP2 4 12 XC2VP4 4 28 XC2VP7 6 44 XC2VP20 8 88 XC2VP30 8 136 XC2VPX20 8 88 XC2VP40 10 192 XC2VP50 12 232 XC2VP70 14 328 XC2VPX70 14 308 XC2VP100 16 444 In addition to the built-in multiplier blocks, the CLB elements have dedicated logic to implement efficient multipliers in logic. (Refer to Configurable Logic Blocks (CLBs), page 35). Global Clock Multiplexer Buffers Virtex-II Pro devices have 16 clock input pins that can also be used as regular user I/Os. Eight clock pads center on both the top edge and the bottom edge of the device, as illustrated in Figure 55. The global clock multiplexer buffer represents the input to dedicated low-skew clock tree distribution in Virtex-II Pro devices. Like the clock pads, eight global clock multiplexer buffers are on the top edge of the device and eight are on the bottom edge. www.xilinx.com Module 2 of 4 48 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Functional Description Each global clock multiplexer buffer can be driven either by the clock pad to distribute a clock directly to the device, or by the Digital Clock Manager (DCM), discussed in Digital Clock Manager (DCM), page 51. Each global clock multiplexer buffer can also be driven by local interconnects. The DCM has clock output(s) that can be connected to global clock multiplexer buffer inputs, as shown in Figure 56. 8 clock pads Virtex-II Pro Device Global clock buffers are used to distribute the clock to some or all synchronous logic elements (such as registers in CLBs and IOBs, and SelectRAM+ blocks. 8 clock pads Eight global clocks can be used in each quadrant of the Virtex-II Pro device. Designers should consider the clock distribution detail of the device prior to pin-locking and floorplanning. (See the Virtex-II Pro Platform FPGA User Guide.) DS083-2_42_052902 Figure 55: Virtex-II Pro Clock Pads Clock Pad Clock Pad CLKIN DCM Local Interconnect CLKOUT Clock Multiplexer I Clock Buffer O Clock Distribution DS083-2_43_122001 Figure 56: Virtex-II Pro Clock Multiplexer Buffer Configuration DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 2 of 4 49 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Functional Description Figure 57 shows clock distribution in Virtex-II Pro devices. In each quadrant, up to eight clocks are organized in clock rows. A clock row supports up to 16 CLB rows (eight up and eight down). To reduce power consumption, any unused clock branches remain static. 8 BUFGMUX NE NW NW 8 BUFGMUX NE 8 8 8 max 16 Clocks 16 Clocks 8 SW 8 BUFGMUX SE 8 SE SW 8 BUFGMUX DS083-2_45_122001 Figure 57: Virtex-II Pro Clock Distribution Global clocks are driven by dedicated clock buffers (BUFG), which can also be used to gate the clock (BUFGCE) or to multiplex between two independent clock inputs (BUFGMUX). The most common configuration option of this element is as a buffer. A BUFG function in this (global buffer) mode, is shown in Figure 58. BUFGCE If the CE input is active (High) prior to the incoming rising clock edge, this Low-to-High-to-Low clock pulse passes through the clock buffer. Any level change of CE during the incoming clock High time has no effect. BUFGCE BUFG I I O CE DS031_62_101200 Figure 59: Virtex-II Pro BUFGCE Function DS031_61_101200 Figure 58: Virtex-II Pro BUFG Function The Virtex-II Pro global clock buffer BUFG can also be configured as a clock enable/disable circuit (Figure 59), as well as a two-input clock multiplexer (Figure 60). A functional description of these two options is provided below. Each of them can be used in either of two modes, selected by configuration: rising clock edge or falling clock edge. This section describes the rising clock edge option. For the opposite option, falling clock edge, just change all "rising" references to "falling" and all "High" references to "Low", except for the description of the CE and S levels. The rising clock edge option uses the BUFGCE and BUFGMUX primitives. The falling clock edge option uses the BUFGCE_1 and BUFGMUX_1 primitives. DS083 (v4.7) November 5, 2007 Product Specification O If the CE input is inactive (Low) prior to the incoming rising clock edge, the following clock pulse does not pass through the clock buffer, and the output stays Low. Any level change of CE during the incoming clock High time has no effect. CE must not change during a short setup window just prior to the rising clock edge on the BUFGCE input I. Violating this setup time requirement can result in an undefined runt pulse output. BUFGMUX BUFGMUX can switch between two unrelated, even asynchronous clocks. Basically, a Low on S selects the I0 input, a High on S selects the I1 input. Switching from one clock to the other is done in such a way that the output High and Low time is never shorter than the shortest High or Low time of either input clock. As long as the presently selected clock is High, any level change of S has no effect. www.xilinx.com Module 2 of 4 50 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Functional Description left and right I/O banks, Virtex-II Pro FPGAs can support up to 50 local clocks for DDR SDRAM. These interfaces can operate beyond 200 MHz on Virtex-II Pro devices. BUFGMUX I0 I1 Digital Clock Manager (DCM) O The Virtex-II Pro DCM offers a wide range of powerful clock management features. S DS083-2_63_121701 • Clock De-skew: The DCM generates new system clocks (either internally or externally to the FPGA), which are phase-aligned to the input clock, thus eliminating clock distribution delays. • Frequency Synthesis: The DCM generates a wide range of output clock frequencies, performing very flexible clock multiplication and division. • Phase Shifting: The DCM provides both coarse phase shifting and fine-grained phase shifting with dynamic phase shift control. Figure 60: Virtex-II Pro BUFGMUX Function If the presently selected clock is Low while S changes, or if it goes Low after S has changed, the output is kept Low until the other ("to-be-selected") clock has made a transition from High to Low. At that instant, the new clock starts driving the output. The two clock inputs can be asynchronous with regard to each other, and the S input can change at any time, except for a short setup time prior to the rising edge of the presently selected clock (I0 or I1). Violating this setup time requirement can result in an undefined runt pulse output. All Virtex-II Pro devices have 16 global clock multiplexer buffers. The DCM utilizes fully digital delay lines allowing robust high-precision control of clock phase and frequency. It also utilizes fully digital feedback systems, operating dynamically to compensate for temperature and voltage variations during operation. Up to four of the nine DCM clock outputs can drive inputs to global clock buffers or global clock multiplexer buffers simultaneously (see Figure 62). All DCM clock outputs can simultaneously drive general routing resources, including routes to output buffers. Figure 61 shows a switchover from I0 to I1. Wait for Low S DCM I0 Switch I1 CLKIN CLKFB Out RST DS083-2_46_020604 • • • • • • CLK0 CLK90 CLK180 CLK270 CLK2X CLK2X180 CLKDV Figure 61: Clock Multiplexer Waveform Diagram DSSEN The current clock is CLK0. S is activated High. If CLK0 is currently High, the multiplexer waits for CLK0 to go Low. Once CLK0 is Low, the multiplexer output stays Low until CLK1 transitions High to Low. When CLK1 transitions from High to Low, the output switches to CLK1. No glitches or short pulses can appear on the output. PSINCDEC CLKFX PSEN CLKFX180 PSCLK LOCKED Local Clocking In addition to global clocks, there are local clock resources in the Virtex-II Pro devices. There are more than 72 local clocks in the Virtex-II Pro family. These resources can be used for many different applications, including but not limited to memory interfaces. For example, even using only the DS083 (v4.7) November 5, 2007 Product Specification STATUS[7:0] clock signal control signal PSDONE DS031_67_112900 Figure 62: Digital Clock Manager The DCM can be configured to delay the completion of the Virtex-II Pro configuration process until after the DCM has achieved lock. This guarantees that the chip does not begin operating until after the system clocks generated by the DCM have stabilized. www.xilinx.com Module 2 of 4 51 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Functional Description The DCM has the following general control signals: which results in a clock output frequency four times faster than the clock input frequency (CLKIN). • RST input pin: resets the entire DCM • LOCKED output pin: asserted High when all enabled DCM circuits have locked. • STATUS output pins (active High): shown in Table 27. Table 27: DCM Status Pins CLK2X180 is phase shifted 180 degrees relative to CLK2X. CLKFX180 is phase shifted 180 degrees relative to CLKFX. All frequency synthesis outputs automatically have 50/50 duty cycles, with the exception of the CLKDV output when performing a non-integer divide in high-frequency mode. See Table 28 for more details. Status Pin Function 0 Phase Shift Overflow 1 CLKIN Stopped 2 CLKFX Stopped CLKDV_DIVIDE Duty Cycle 3 N/A 1.5 1/ 3 4 N/A 2.5 2/5 5 N/A 3.5 3/ 7 6 N/A 4.5 4/9 7 N/A 5.5 5 / 11 6.5 6 / 13 7.5 7 / 15 Note that CLK2X and CLK2X180 are not available in high-frequency mode. Table 28: CLKDV Duty Cycle for Non-integer Divides Clock De-skew The DCM de-skews the output clocks relative to the input clock by automatically adjusting a digital delay line. Additional delay is introduced so that clock edges arrive at internal registers and block RAMs simultaneously with the clock edges arriving at the input clock pad. Alternatively, external clocks, which are also de-skewed relative to the input clock, can be generated for board-level routing. All DCM output clocks are phase-aligned to CLK0 and, therefore, are also phase-aligned to the input clock. Phase Shifting The DCM provides additional control over clock skew through either coarse or fine-grained phase shifting. The CLK0, CLK90, CLK180, and CLK270 outputs are each phase shifted by ¼ of the input clock period relative to each other, providing coarse phase control. Note that CLK90 and CLK270 are not available in high-frequency mode. To achieve clock de-skew, connect the CLKFB input to CLK0. Note that CLKFB must always be connected, unless only the CLKFX or CLKFX180 outputs are used and de-skew is not required. Fine-phase adjustment affects all nine DCM output clocks. When activated, the phase shift between the rising edges of CLKIN and CLKFB is a specified fraction of the input clock period. Frequency Synthesis In variable mode, the PHASE_SHIFT value can also be dynamically incremented or decremented as determined by PSINCDEC synchronously to PSCLK, when the PSEN input is active. Figure 63 illustrates the effects of fine-phase shifting. For more information on DCM features, see the Virtex-II Pro Platform FPGA User Guide. The DCM provides flexible methods for generating new clock frequencies. Each method has a different operating frequency range and different AC characteristics. The CLK2X and CLK2X180 outputs double the clock frequency. The CLKDV output creates divided output clocks with division options of 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 9, 10, 11, 12, 13, 14, 15, and 16. The CLKFX and CLKFX180 outputs can be used to produce clocks at the following frequency: Table 29: Fine Phase Shifting Control Pins Control Pin FREQ CLKFX = ( M ⁄ D ) • FREQ CLKIN where M and D are two integers. Specifications for M and D are provided under DCM Timing Parameters in Virtex-II Pro and Virtex-II Pro X Platform FPGAs: DC and Switching Characteristics. By default, M = 4 and D = 1, DS083 (v4.7) November 5, 2007 Product Specification Table 29 lists fine-phase shifting control pins, when used in variable mode. Direction Function PSINCDEC In Increment or decrement PSEN In Enable ± phase shift PSCLK In Clock for phase shift PSDONE www.xilinx.com Out Active when completed Module 2 of 4 52 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Functional Description CLKIN CLKOUT_PHASE_SHIFT CLKFB = NONE CLKIN CLKOUT_PHASE_SHIFT CLKFB = FIXED (PS/256) x PERIODCLKIN (PS/256) x PERIODCLKIN (PS negative) (PS positive) CLKIN CLKOUT_PHASE_SHIFT = VARIABLE CLKFB (PS/256) x PERIODCLKIN (PS/256) x PERIODCLKIN (PS positive) (PS negative) DS031_48_110300 Figure 63: Fine-Phase Shifting Effects Two separate components of the phase shift range must be understood: PHASE_SHIFT attribute range FINE_SHIFT_RANGE DCM timing parameter range since the PHASE_SHIFT value never changes after configuration, the entire delay line is available for insertion into either the CLKIN or CLKFB path (to create either positive or negative skew). The PHASE_SHIFT attribute is the numerator in the following equation: Taking both of these components into consideration, the following are some usage examples: • • Phase Shift (ns) = (PHASE_SHIFT/256) * PERIODCLKIN The full range of this attribute is always -255 to +255, but its practical range varies with CLKIN frequency, as constrained by the FINE_SHIFT_RANGE component, which represents the total delay achievable by the phase shift delay line. Total delay is a function of the number of delay taps used in the circuit. Across process, voltage, and temperature, this absolute range is guaranteed to be as specified under DCM Timing Parameters in Virtex-II Pro and Virtex-II Pro X Platform FPGAs: DC and Switching Characteristics. Absolute range (fixed mode) = ± FINE_SHIFT_RANGE Absolute range (variable mode) = ± FINE_SHIFT_RANGE/2 The reason for the difference between fixed and variable modes is as follows. For variable mode to allow symmetric, dynamic sweeps from -255/256 to +255/256, the DCM sets the "zero phase skew" point as the middle of the delay line, thus dividing the total delay line range in half. In fixed mode, • If PERIODCLKIN = 2 * FINE_SHIFT_RANGE, then PHASE_SHIFT in fixed mode is limited to ± 128, and in variable mode it is limited to ± 64. • If PERIODCLKIN = FINE_SHIFT_RANGE, then PHASE_SHIFT in fixed mode is limited to ± 255, and in variable mode it is limited to ± 128. • If PERIODCLKIN ≤ 0.5 * FINE_SHIFT_RANGE, then PHASE_SHIFT is limited to ± 255 in either mode. Operating Modes The frequency ranges of DCM input and output clocks depend on the operating mode specified, either low-frequency mode or high-frequency mode, according to Table 30. For actual values, see Virtex-II Pro and Virtex-II Pro X Platform FPGAs: DC and Switching Characteristics. The CLK2X, CLK2X180, CLK90, and CLK270 outputs are not available in high-frequency mode. High or low-frequency mode is selected by an attribute. Table 30: DCM Frequency Ranges Low-Frequency Mode Output Clock High-Frequency Mode CLKIN Input CLK Output CLKIN Input CLK Output CLK0, CLK180 CLKIN_FREQ_DLL_LF CLKOUT_FREQ_1X_LF CLKIN_FREQ_DLL_HF CLKOUT_FREQ_1X_HF CLK90, CLK270 CLKIN_FREQ_DLL_LF CLKOUT_FREQ_1X_LF NA NA CLK2X, CLK2X180 CLKIN_FREQ_DLL_LF CLKOUT_FREQ_2X_LF NA NA CLKDV CLKIN_FREQ_DLL_LF CLKOUT_FREQ_DV_LF CLKIN_FREQ_DLL_HF CLKOUT_FREQ_DV_HF CLKFX, CLKFX180 CLKIN_FREQ_FX_LF CLKOUT_FREQ_FX_LF CLKIN_FREQ_FX_HF CLKOUT_FREQ_FX_HF DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 2 of 4 53 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Functional Description Routing DCM and MGT Locations/Organization Virtex-II Pro DCMs and serial transceivers (MGTs) are placed on the top and bottom of each block RAM and multiplier column in some combination, as shown in Table 31. The number of DCMs and RocketIO transceivers total twice the number of block RAM columns in the device. Refer to Figure 52, page 47 for an illustration of this in the XC2VP4 device. Table 31: DCM and MGT Organization Block RAM Columns DCMs MGTs XC2VP2 4 4 4 XC2VP4 4 4 4 XC2VP7 6 4 8 XC2VP20 8 8 8 XC2VPX20 8 8 8 XC2VP30 8 8 8 XC2VP40 10 8 12 XC2VP50 12 8 16 XC2VP70 14 8 20 XC2VPX70 14 8 20 XC2VP100 16 12 20 Device Place-and-route software takes advantage of this regular array to deliver optimum system performance and fast compile times. The segmented routing resources are essential to guarantee IP cores portability and to efficiently handle an incremental design flow that is based on modular implementations. Total design time is reduced due to fewer and shorter design iterations. Hierarchical Routing Resources Most Virtex-II Pro signals are routed using the global routing resources, which are located in horizontal and vertical routing channels between each switch matrix. As shown in Figure 64, page 54, Virtex-II Pro has fully buffered programmable interconnections, with a number of resources counted between any two adjacent switch matrix rows or columns. Fanout has minimal impact on the performance of each net. • • The long lines are bidirectional wires that distribute signals across the device. Vertical and horizontal long lines span the full height and width of the device. The hex lines route signals to every third or sixth block away in all four directions. Organized in a staggered pattern, hex lines can only be driven from one end. Hex-line signals can be accessed either at the endpoints or at the midpoint (three blocks from the source). 24 Horizontal Long Lines 24 Vertical Long Lines 120 Horizontal Hex Lines 120 Vertical Hex Lines 40 Horizontal Double Lines 40 Vertical Double Lines 16 Direct Connections (total in all four directions) 8 Fast Connects DS031_60_110200 Figure 64: Hierarchical Routing Resources DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 2 of 4 54 R • • • Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Functional Description The double lines route signals to every first or second block away in all four directions. Organized in a staggered pattern, double lines can be driven only at their endpoints. Double-line signals can be accessed either at the endpoints or at the midpoint (one block from the source). The direct connect lines route signals to neighboring blocks: vertically, horizontally, and diagonally. The fast connect lines are the internal CLB local interconnections from LUT outputs to LUT inputs. Dedicated Routing There are eight global clock nets per quadrant. (See Global Clock Multiplexer Buffers, page 48.) DS083 (v4.7) November 5, 2007 Product Specification • • • In addition to the global and local routing resources, dedicated signals are available. • • Horizontal routing resources are provided for on-chip 3-state buses. Four partitionable bus lines are provided per CLB row, permitting multiple buses within a row. (See 3-State Buffers, page 43.) Two dedicated carry-chain resources per slice column (two per CLB column) propagate carry-chain MUXCY output signals vertically to the adjacent slice. (See CLB/Slice Configurations, page 44.) One dedicated SOP chain per slice row (two per CLB row) propagate ORCY output logic signals horizontally to the adjacent slice. (See Sum of Products, page 42.) One dedicated shift-chain per CLB connects the output of LUTs in shift-register mode to the input of the next LUT in shift-register mode (vertically) inside the CLB. (See Shift Registers, page 39.) www.xilinx.com Module 2 of 4 55 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Functional Description Configuration Virtex-II Pro devices are configured by loading application specific configuration data into the internal configuration memory. Configuration is carried out using a subset of the device pins, some of which are dedicated, while others can be re-used as general purpose inputs and outputs once configuration is complete. Depending on the system design, several configuration modes are supported, selectable via mode pins. The mode pins M2, M1, and M0 are dedicated pins. The M2, M1, and M0 mode pins should be set at a constant DC voltage level, either through pull-up or pull-down resistors, or tied directly to ground or VCCAUX. The mode pins should not be toggled during and after configuration. An additional pin, HSWAP_EN is used in conjunction with the mode pins to select whether user I/O pins have pull-ups during configuration. By default, HSWAP_EN is tied High (internal pull-up) which shuts off the pull-ups on the user I/O pins during configuration. When HSWAP_EN is tied Low, user I/Os have pull-ups during configuration. Other dedicated pins are CCLK (the configuration clock pin), DONE, PROG_B, and the Boundary-Scan pins: TDI, TDO, TMS, and TCK. (The TDO pin is open-drain and does not have an internal pull-up resistor.) Depending on the configuration mode chosen, CCLK can be an output generated by the FPGA, or an input accepting an externally generated clock. The configuration pins and Boundary-Scan pins are independent of the VCCO. The auxiliary power supply (VCCAUX) of 2.5V is used for these pins. All configuration pins are LVCMOS25 12mA. See Virtex-II Pro and Virtex-II Pro X Platform FPGAs: DC and Switching Characteristics. A "persist" option is available which can be used to force the configuration pins to retain their configuration function even after device configuration is complete. If the persist option is not selected then the configuration pins with the exception of CCLK, PROG_B, and DONE can be used as user I/O in normal operation. The persist option does not apply to the Boundary-Scan related pins. The persist feature is valuable in applications which employ partial reconfiguration or reconfiguration on the fly. Configuration Modes Virtex-II Pro supports the following five configuration modes: • • • • • Slave-Serial Mode Master-Serial Mode Slave SelectMAP Mode Master SelectMAP Mode Boundary-Scan (JTAG, IEEE 1532) Mode Refer to Table 32, page 57. A detailed description of configuration modes is provided in the Virtex-II Pro Platform FPGA User Guide. DS083 (v4.7) November 5, 2007 Product Specification Slave-Serial Mode In slave-serial mode, the FPGA receives configuration data in bit-serial form from a serial PROM or other serial source of configuration data. The CCLK pin on the FPGA is an input in this mode. The serial bitstream must be setup at the DIN input pin a short time before each rising edge of the externally generated CCLK. Multiple FPGAs can be daisy-chained for configuration from a single source. After a particular FPGA has been configured, the data for the next device is routed internally to the DOUT pin. The data on the DOUT pin changes on the falling edge of CCLK. Slave-serial mode is selected by applying [111] to the mode pins (M2, M1, M0). A weak pull-up on the mode pins makes slave serial the default mode if the pins are left unconnected. Master-Serial Mode In master-serial mode, the CCLK pin is an output pin. It is the Virtex-II Pro FPGA device that drives the configuration clock on the CCLK pin to a Xilinx Serial PROM which in turn feeds bit-serial data to the DIN input. The FPGA accepts this data on each rising CCLK edge. After the FPGA has been loaded, the data for the next device in a daisy-chain is presented on the DOUT pin after the falling CCLK edge. The interface is identical to slave serial except that an internal oscillator is used to generate the configuration clock (CCLK). A wide range of frequencies can be selected for CCLK which always starts at a slow default frequency. Configuration bits then switch CCLK to a higher frequency for the remainder of the configuration. Slave SelectMAP Mode The SelectMAP mode is the fastest configuration option. Byte-wide data is written into the Virtex-II Pro FPGA device with a BUSY flag controlling the flow of data. An external data source provides a byte stream, CCLK, an active Low Chip Select (CS_B) signal and a Write signal (RDWR_B). If BUSY is asserted (High) by the FPGA, the data must be held until BUSY goes Low. Data can also be read using the SelectMAP mode. If RDWR_B is asserted, configuration data is read out of the FPGA as part of a readback operation. After configuration, the pins of the SelectMAP port can be used as additional user I/O. Alternatively, the port can be retained to permit high-speed 8-bit readback using the persist option. Multiple Virtex-II Pro FPGAs can be configured using the SelectMAP mode, and be made to start-up simultaneously. To configure multiple devices in this way, wire the individual CCLK, Data, RDWR_B, and BUSY pins of all the devices in parallel. The individual devices are loaded separately by deasserting the CS_B pin of each device in turn and writing the appropriate data. www.xilinx.com Module 2 of 4 56 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Functional Description Master SelectMAP Mode Virtex-II Pro device configuration using Boundary-Scan is compatible with with IEEE 1149.1-1993 standard and the new IEEE 1532 standard for In-System Configurable (ISC) devices. The IEEE 1532 standard is backward compliant with the IEEE 1149.1-1993 TAP and state machine. The IEEE Standard 1532 for In-System Configurable (ISC) devices is intended to be programmed, reprogrammed, or tested on the board via a physical and logical protocol. Configuration through the Boundary-Scan port is always available, independent of the mode selection. Selecting the Boundary-Scan mode simply turns off the other modes. This mode is a master version of the SelectMAP mode. The device is configured byte-wide on a CCLK supplied by the Virtex-II Pro FPGA device. Timing is similar to the Slave SerialMAP mode except that CCLK is supplied by the Virtex-II Pro FPGA. Boundary-Scan (JTAG, IEEE 1532) Mode In Boundary-Scan mode, dedicated pins are used for configuring the Virtex-II Pro device. The configuration is done entirely through the IEEE 1149.1 Test Access Port (TAP). Table 32: Virtex-II Pro Configuration Mode Pin Settings M2 M1 M0 CCLK Direction Data Width Serial DOUT (2) Master Serial 0 0 0 Out 1 Yes Slave Serial 1 1 1 In 1 Yes Master SelectMAP 0 1 1 Out 8 No Slave SelectMAP 1 1 0 In 8 No Boundary-Scan 1 0 1 N/A 1 No Configuration Mode (1) Notes: 1. The HSWAP_EN pin controls the pull-ups. Setting M2, M1, and M0 selects the configuration mode, while the HSWAP_EN pin controls whether or not the pull-ups are used. 2. Daisy chaining is possible only in modes where Serial DOUT is used. For example, in SelectMAP modes, the first device does NOT support daisy chaining of downstream devices. Table 33 lists the default total number of bits required to configure each device. Table 33: Virtex-II Pro Default Bitstream Lengths Device Number of Configuration Bits XC2VP2 1,305,376 XC2VP4 3,006,496 XC2VP7 4,485,408 XC2VP20 8,214,560 XC2VPX20 8,214,560 XC2VP30 11,589,920 XC2VP40 15,868,192 XC2VP50 19,021,344 XC2VP70 26,098,976 XC2VPX70 26,098,976 XC2VP100 34,292,768 Configuration is automatically initiated on power-up unless it is delayed by the user. The INIT_B pin can be held Low using an open-drain driver. An open-drain is required since INIT_B is a bidirectional open-drain pin that is held Low by a Virtex-II Pro FPGA device while the configuration memory is being cleared. Extending the time that the pin is Low causes the configuration sequencer to wait. Thus, configuration is delayed by preventing entry into the phase where data is loaded. The configuration process can also be initiated by asserting the PROG_B pin. The end of the memory-clearing phase is signaled by the INIT_B pin going High, and the completion of the entire process is signaled by the DONE pin going High. The Global Set/Reset (GSR) signal is pulsed after the last frame of configuration data is written but before the start-up sequence. The GSR signal resets all flip-flops on the device. Configuration Sequence The default start-up sequence is that one CCLK cycle after DONE goes High, the global 3-state signal (GTS) is released. This permits device outputs to turn on as necessary. One CCLK cycle later, the Global Write Enable (GWE) signal is released. This permits the internal storage elements to begin changing state in response to the logic and the user clock. The configuration of Virtex-II Pro devices is a three-phase process. First, the configuration memory is cleared. Next, configuration data is loaded into the memory, and finally, the logic is activated by a start-up process. The relative timing of these events can be changed via configuration options in software. In addition, the GTS and GWE events can be made dependent on the DONE pins of multiple devices all going High, forcing the devices to start DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 2 of 4 57 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Functional Description synchronously. The sequence can also be paused at any stage, until lock has been achieved on any or all DCMs, as well as DCI. Readback In this mode, configuration data from the Virtex-II Pro FPGA device can be read back. Readback is supported only in the SelectMAP (master and slave) and Boundary-Scan mode. Along with the configuration data, it is possible to read back the contents of all registers, distributed SelectRAM+, and block RAM resources. This capability is used for real-time debugging. For more detailed configuration information, see the Virtex-II Pro Platform FPGA User Guide. Bitstream Encryption Virtex-II Pro devices have an on-chip decryptor using one or two sets of three keys for triple-key Data Encryption Standard (DES) operation. Xilinx software tools offer an optional encryption of the configuration data (bitstream) with a triple-key DES determined by the designer. The keys are stored in the FPGA by JTAG instruction and retained by a battery connected to the VBATT pin, when the device is not powered. Virtex-II Pro devices can be config- ured with the corresponding encrypted bitstream, using any of the configuration modes described previously. A detailed description of how to use bitstream encryption is provided in the Virtex-II Pro Platform FPGA User Guide. Your local FAE can also provide specific information on this feature. Partial Reconfiguration Partial reconfiguration of Virtex-II Pro devices can be accomplished in either Slave SelectMAP mode or Boundary-Scan mode. Instead of resetting the chip and doing a full configuration, new data is loaded into a specified area of the chip, while the rest of the chip remains in operation. Data is loaded on a column basis, with the smallest load unit being a configuration “frame” of the bitstream (device size dependent). Partial reconfiguration is useful for applications that require different designs to be loaded into the same area of a chip, or that require the ability to change portions of a design without having to reset or reconfigure the entire chip. For more information on Partial Reconfiguration in Virtex-II Pro devices, please refer to Xilinx Application Note XAPP290, Two Flows for Partial Reconfiguration. Revision History This section records the change history for this module of the data sheet. Date Version Revision 01/31/02 1.0 Initial Xilinx release. 06/13/02 2.0 New Virtex-II Pro family members. New timing parameters per speedsfile v1.62. 09/03/02 2.1 • • • Revised Reset and Power sections. Updated Table 8, which lists compatible input standards. [Table deleted in v2.6.] Added Figure 28, Figure 29, and Figure 30, which provide examples illustrating the use of I/O standards. 09/27/02 2.2 • • In section RocketIO Overview, corrected max number of MGTs from 16 to 24. In section Input/Output Blocks (IOBs), added references to XAPP653 regarding implementation of 3.3V I/O standards. 11/20/02 2.3 • • Table 8: Added rows for LVTTL, LVCMOS33, and PCI-X. Table 8: Added LVTTL and LVCMOS33 to compatible 3.3V cells. [Table deleted in v2.6.] Table 33: Correct bitstream lengths. • 12/03/02 2.4 • Added mention of LVTTL and PCI with respect to SelectIO-Ultra configurations. See section Input/Output Individual Options and Figure 22. 01/20/03 2.5 • Added qualification to features vs. Virtex-II (open-drain output pin TDO does not have internal pull-up resistor) Table 7: Added HSTL18 (I, II, III, & IV) and HSTL18_DCI (I,II, III & IV) to 1.8V VCCO row. [Table deleted in v2.6.] Table 8: Numerous revisions. [Table deleted in v2.6.] • • DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 2 of 4 58 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Functional Description Date Version 03/24/03 2.5.1 Revision • • 05/27/03 2.6 • • Table 10: Corrected I/O standard names SSTL18_I and SSTL18_II to SSTL18_I_DCI and SSTL18_II_DCI respectively. Figure 61, text below: Corrected wording of criteria for clock switching. • Removed Compatible Output Standards and Compatible Input Standards tables. Added new Table 12, Summary of Voltage Supply Requirements for All Input and Output Standards. This table replaces deleted I/O standards tables. Corrected sentence in section Input/Output Individual Options, page 27, to read “The optional weak-keeper circuit is connected to each user I/O pad.” Added section Rules for Combining I/O Standards in the Same Bank, page 29. • 06/02/03 2.7 • • Added four Differential Termination I/O standards to Table 9 and Table 12. Added section On-Chip Differential Termination and Figure 31, page 34. 08/25/03 2.7.1 • Added footnote referring to XAPP659 to 3.3V I/O callouts in Table 8 and Table 12. 09/10/03 2.8 • Section Configuration, page 56: Added text indicating that the mode pins M0-M2 must be held to a constant DC level during and after configuration. 10/14/03 2.9 • Deleted section Functional Description: RocketIO Multi-Gigabit Transceiver (MGT), page 10. Added section Local Clocking, page 51. Sections Slave-Serial Mode and Master-Serial Mode, page 56: Changed "rising" to "falling" edge with respect to DOUT. Table 8, page 24 and Table 10, page 25: Corrected Input VREF for HSTL_III-IV_18 from 1.08V to 1.1V. • • 12/10/03 3.0 • XC2VP2 through XC2VP70 speed grades -5, -6, and -7, and XC2VP100 speed grades -5 and -6, are released to Production status. 02/19/04 3.1 • Section BUFGMUX, page 50: Corrected the definition of the "presently selected clock" to be I0 or I1. Corrected signal names in Figure 61 and associated text from CLK0 and CLK1 to I0 and I1. 03/09/04 3.1.1 • Recompiled for backward compatibility with Acrobat 4 and above. No content changes. 04/22/04 3.2 • Section Clock De-skew, page 52: Removed reference to CLK2X as an option for DCM clock feedback. 06/30/04 4.0 Merged in DS110-2 (Module 2 of Virtex-II Pro X data sheet). Separate RocketIO and RocketIO X sections created. 11/17/04 4.1 • • Figure 11, page 12: Corrected figure by removing coupling capacitors from input. Section Rules for Combining I/O Standards in the Same Bank, page 29: Corrected I/O standard in the first example from LVDS_25_DCI to LVDS_25. 03/01/05 4.2 • • Reassigned heading hierarchies for better agreement with content. Table 7: Corrected VCCAUXTX and VCCAUXRX to AVCCAUXTX and AVCCAUXRX respectively. Table 9: Corrected VOD (output voltage) range for LVDSEXT_25. Table 25: Corrected SelectRAM+ memory available for XC2VPX70 device. Table 33: Updated configuration default bitstream lengths. • • • 06/20/05 4.3 No changes in Module 2 for this revision. 09/15/05 4.4 • • • • DS083 (v4.7) November 5, 2007 Product Specification Table 1: Deleted SONET OC-192 protocol. Table 3: Deleted RocketIO X primitives for SONET OC-192, 10 Gbit Ethernet, and Xilinx 10G (Aurora) protocols. Changed all instances of 10.3125 Gb/s to 6.25 Gb/s. Table 7: Changed RocketIO X VCCAUXRX from 1.5V globally to 1.5V for 8B/10B encoding, 1.8V for all other encoding protocols. www.xilinx.com Module 2 of 4 59 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Functional Description Date Version Revision 10/10/05 4.5 • 03/05/07 4.6 No changes in Module 2 for this revision. 11/05/07 4.7 • • Changed XC2VPX70 variable baud rate specification to fixed-rate operation at 4.25 Gb/s. Updated copyright notice and legal disclaimer. Debug Interface, page 19, and Boundary-Scan (JTAG, IEEE 1532) Mode, page 57: Updated IEEE 1149.1 compliance statement. Notice of Disclaimer THE XILINX HARDWARE FPGA AND CPLD DEVICES REFERRED TO HEREIN (“PRODUCTS”) ARE SUBJECT TO THE TERMS AND CONDITIONS OF THE XILINX LIMITED WARRANTY WHICH CAN BE VIEWED AT http://www.xilinx.com/warranty.htm. THIS LIMITED WARRANTY DOES NOT EXTEND TO ANY USE OF PRODUCTS IN AN APPLICATION OR ENVIRONMENT THAT IS NOT WITHIN THE SPECIFICATIONS STATED IN THE XILINX DATA SHEET. ALL SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE. PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS LIFE-SUPPORT OR SAFETY DEVICES OR SYSTEMS, OR ANY OTHER APPLICATION THAT INVOKES THE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). USE OF PRODUCTS IN CRITICAL APPLICATIONS IS AT THE SOLE RISK OF CUSTOMER, SUBJECT TO APPLICABLE LAWS AND REGULATIONS. Virtex-II Pro Data Sheet The Virtex-II Pro Data Sheet contains the following modules: • • Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Introduction and Overview (Module 1) Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Functional Description (Module 2) DS083 (v4.7) November 5, 2007 Product Specification • • Virtex-II Pro and Virtex-II Pro X Platform FPGAs: DC and Switching Characteristics (Module 3) Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information (Module 4) www.xilinx.com Module 2 of 4 60 R 5 7 Virtex-II Pro and Virtex-II Pro X Platform FPGAs: DC and Switching Characteristics DS083 (v4.7) November 5, 2007 Product Specification Virtex-II Pro(1) Electrical Characteristics Virtex™-II Pro devices are provided in -7, -6, and -5 speed grades, with -7 having the highest performance. commercial device). However, only selected speed grades and/or devices might be available in the industrial range. Virtex-II Pro DC and AC characteristics are specified for both commercial and industrial grades. Except the operating temperature range or unless otherwise noted, all the DC and AC electrical parameters are the same for a particular speed grade (that is, the timing characteristics of a -6 speed grade industrial device are the same as for a -6 speed grade All supply voltage and junction temperature specifications are representative of worst-case conditions. The parameters included are common to popular designs and typical applications. Contact Xilinx for design considerations requiring more detailed information. All specifications are subject to change without notice. Virtex-II Pro DC Characteristics Table 1: Absolute Maximum Ratings Description(1) Symbol Virtex-II Pro X Virtex-II Pro Units VCCINT Internal supply voltage relative to GND –0.5 to 1.6 V VCCAUX Auxiliary supply voltage relative to GND –0.5 to 3.0 V VCCO Output drivers supply voltage relative to GND –0.5 to 3.75 V VBATT Key memory battery backup supply –0.5 to 4.05 V VREF Input reference voltage VIN VTS –0.3 to 3.75 V –0.3 to 4.05 (3) V –0.5 to VCCO + 0.5 V –0.3 to 4.05 (3) V –0.5 to VCCO + 0.5 V 3.3V I/O input voltage relative to GND (user and dedicated I/Os) 2.5V or below I/O input voltage relative to GND (user and dedicated I/Os) Voltage applied to 3-state 3.3V output (user and dedicated I/Os) Voltage applied to 3-state 2.5V or below output (user and dedicated I/Os) AVCCAUXRX Receive auxilliary supply voltage relative to GNDA (analog ground) –0.5 to 2.0 –0.5 to 3.0 V AVCCAUXTX Transmit auxilliary supply voltage relative to GNDA (analog ground) –0.5 to 3.0 –0.5 to 3.0 V VTRX Terminal receive supply voltage relative to GND –0.5 to 3.0 –0.5 to 3.0 V VTTX Terminal transmit supply voltage relative to GND –0.5 to 1.6 –0.5 to 3.0 TSTG Storage temperature (ambient) All regular FG/FF flip-chip packages TSOL TJ Maximum soldering temperature (2) V –65 to +150 °C +220 °C Pb-free FGG256 wire-bond package N/A +260 °C Pb-free FGG456 and FGG676 wire-bond packages N/A +250 °C Maximum junction temperature (2) +125 °C Notes: 1. Stresses beyond those listed under Absolute Maximum Ratings might cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those listed under Operating Conditions is not implied. Exposure to Absolute Maximum Ratings conditions for extended periods of time might affect device reliability. 2. For soldering guidelines and thermal considerations, see the Device Packaging and Thermal Characteristics Guide information on the Xilinx website. 3. 3.3V I/O Absolute Maximum limit applied to DC and AC signals. Refer to XAPP659 for more details. 1. Unless otherwise noted, "Virtex-II Pro" refers to members of the Virtex-II Pro and/or Virtex-II Pro X families. © 2002–2007 Xilinx, Inc. All rights reserved. XILINX, the Xilinx logo, the Brand Window, and other designated brands included herein are trademarks of Xilinx, Inc. PowerPC is a trademark of IBM Corp. and is used under license. All other trademarks are the property of their respective owners. DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 3 of 4 1 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: DC and Switching Characteristics Table 2: Recommended Operating Conditions Virtex-II Pro X Symbol VCCINT VCCAUX(1) VCCO(2,3) VIN VBATT(4) AVCCAUXRX(6) Description Grade Min Max Min Max Units Internal supply voltage relative to GND, TJ = 0 °C to +85°C Comm. 1.425 1.575 1.425 1.575 V Internal supply voltage relative to GND, TJ = –40°C to +100°C Indus. 1.425 1.575 1.425 1.575 V Auxiliary supply voltage relative to GND, TJ = 0 °C to +85°C Comm. 2.375 2.625 2.375 2.625 V Auxiliary supply voltage relative to GND, TJ = –40°C to +100°C Indus. 2.375 2.625 2.375 2.625 V Supply voltage relative to GND, TJ = 0 °C to +85°C Comm. 1.2 3.45 (5) 1.2 3.45 (5) V Supply voltage relative to GND, TJ = –40°C to +100°C Indus. 1.2 3.45 (5) 1.2 3.45 (5) V 3.3V supply voltage relative to GND, TJ = 0 °C to +85°C Comm. GND – 0.2 3.45 (5) GND – 0.2 3.45 (5) V 3.3V supply voltage relative to GND, TJ = –40°C to +100°C Indus. GND – 0.2 3.45 (5) GND – 0.2 3.45 (5) V 2.5V and below supply voltage relative to GND, TJ = 0 °C to +85°C Comm. GND – 0.2 VCCO + 0.2 GND – 0.2 VCCO + 0.2 V 2.5V and below supply voltage relative to GND, TJ = –40°C to +100°C Indus. GND – 0.2 VCCO + 0.2 GND – 0.2 VCCO + 0.2 V Battery voltage relative to GND, TJ = 0 °C to +85°C Comm. 1.0 3.6 1.0 3.6 V Battery voltage relative to GND, TJ = –40°C to +100°C Indus. 1.0 3.6 1.0 3.6 V Comm. 1.425 (7) 1.575 (7) 2.375 2.625 V 1.425 (7) 1.575 (7) 2.375 2.625 V Auxilliary receive supply voltage relative to GNDA Indus. AVCCAUXTX(6) Virtex-II Pro Comm. 2.375 2.625 2.375 2.625 V Indus. 2.375 2.625 2.375 2.625 V Comm. 0 2.625 1.6 2.625 V Indus. 0 2.625 1.6 2.625 V Comm. 1.425 1.575 1.6 2.625 V Indus. 1.425 1.575 1.6 2.625 V Auxilliary transmit supply voltage relative to GNDA VTRX Terminal receive supply voltage relative to GND VTTX Terminal transmit supply voltage relative to GND Notes: 1. Recommended maximum voltage droop for VCCAUX is 10 mV/ms. 2. Configuration data is retained even if VCCO drops to 0V. 3. For 3.3V I/O operation, refer to XAPP659, available on the Xilinx website at www.xilinx.com. 4. If battery is not used, connect VBATT to GND or VCCAUX. 5. For PCI and PCI-X, refer to XAPP653, available on the Xilinx website at www.xilinx.com. 6. IMPORTANT! The RocketIO transceivers have certain power guidelines that must be met, even if unused in the design. Please refer to the section entitled “Powering the RocketIO Transceivers” in the RocketIO Transceiver User Guide or RocketIO X Transceiver User Guide for more details. 7. For non-8B/10B-encoded data, the specification for AVCCAUXRX is 1.8V ±5% (1.71 – 1.89V). DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 3 of 4 2 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: DC and Switching Characteristics Table 3: DC Characteristics Over Recommended Operating Conditions Virtex-II Pro X Symbol Description Min Typ Max Virtex-II Pro Min Typ Max Units VDRINT Data retention VCCINT voltage (below which configuration data might be lost) 1.25 1.25 V VDRI Data retention VCCAUX voltage (below which configuration data might be lost) 2.0 2.0 V IREF VREF current per pin 10 10 μA Input or output leakage current per pin (sample-tested) 10 10 μA CIN Input capacitance (sample-tested) 10 10 pF IRPU Pad pull-up (when selected) @ Vin = 0V, VCCO = 2.5V (sample tested) 150 150 μA IRPD Pad pull-down (when selected) @ Vin = 2.5V (sample-tested) 150 150 μA IBATT (1) Battery supply current Note (2) I CCAUXTX Operating AVCCAUXTX supply current 115 60 105 mA I CCAUXRX Operating AVCCAUXRX supply current 85 35 75 mA Operating ITTX supply current when transmitter is AC-coupled 55 30 mA 15 mA IL ITTX ITRX PCPU Operating ITTX supply current when transmitter is DC-coupled Operating ITRX supply current when receiver is AC-coupled Operating ITRX supply current when receiver is DC-coupled N/A N/A 15 N/A Power dissipation of PowerPC ™ 405 processor block Power dissipation of MGT @ 1.25 Gb/s per channel PRXTX (3) N/A nA Note (2) N/A mA N/A 15 0.9 N/A N/A N/A 0.9 mW/ MHz 230 mW Power dissipation of MGT @ 2.5 Gb/s per channel 290 310 mW Power dissipation of MGT @ 3.125 Gb/s per channel 310 350 mW Power dissipation of MGT @ 4.25 Gb/s per channel 450 N/A N/A N/A mW Power dissipation of MGT @ 6.25 Gb/s per channel 525 N/A N/A N/A mW Notes: 1. Characterized, not tested. 2. Battery supply current (IBATT): Device Unpowered Device Powered Units 25°C: < 50 < 10 nA 85°C: N/A < 10 nA 3. Total dissipation of fully operational PMA and PCS combined. This power is the average power supply dissipation per MGT. The averaging was done by simultaneously turning on all eight transceivers and dividing the total power supply dissipation by eight. DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 3 of 4 3 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: DC and Switching Characteristics Table 4: Quiescent Supply Current Symbol ICCINTQ ICCOQ ICCAUXQ Description Quiescent VCCINT supply current Quiescent VCCO supply current Quiescent VCCAUX supply current Device Typ (1) Max Units XC2VP2 20 300 mA XC2VP4 30 400 mA XC2VP7 35 500 mA XC2VP20 40 600 mA XC2VPX20 40 600 mA XC2VP30 50 800 mA XC2VP40 60 1050 mA XC2VP50 70 1250 mA XC2VP70 85 1700 mA XC2VPX70 85 1700 mA XC2VP100 100 2200 mA XC2VP2 1.0 8.0 mA XC2VP4 1.0 8.0 mA XC2VP7 1.0 8.0 mA XC2VP20 1.25 10 mA XC2VPX20 1.25 10 mA XC2VP30 1.25 10 mA XC2VP40 1.25 10 mA XC2VP50 1.5 12 mA XC2VP70 1.5 12 mA XC2VPX70 1.5 12 mA XC2VP100 1.75 15 mA XC2VP2 5 50 mA XC2VP4 5 50 mA XC2VP7 5 50 mA XC2VP20 10 75 mA XC2VPX20 10 75 mA XC2VP30 10 75 mA XC2VP40 10 75 mA XC2VP50 20 100 mA XC2VP70 20 100 mA XC2VPX70 20 100 mA XC2VP100 20 125 mA Notes: 1. Typical values are specified at nominal voltage, 25° C. 2. Quiescent current parameter values are specified for Commercial Grade. For Industrial Grade values, multiply Commercial Grade values by 1.5. 3. With no output current loads, no active input pull-up resistors, all I/O pins are 3-state and floating. 4. If DCI or differential signaling is used, more accurate quiescent current estimates can be obtained by using the Power Estimator or XPOWER™. DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 3 of 4 4 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: DC and Switching Characteristics Power-On Power Supply Requirements Xilinx FPGAs require a certain amount of supply current during power-on to insure proper device initialization. The actual current consumed depends on the power-on ramp rate of the power supply. The VCCINT power supply must ramp on, monotonically, no faster than 200 μs and no slower than 50 ms. Ramp-on is defined as: 0 VDC to minimum supply voltages (see Table 2). VCCAUX and VCCO can power on at any ramp rate. Power supplies can be turned on in any sequence. Table 5 shows the minimum current required by Virtex-II Pro devices for proper power-on and configuration. If the current minimums shown in Table 5 are met, the device powers on properly after all three supplies have passed through their power-on reset threshold voltages. Once initialized and configured, use the power calculator to estimate current drain on these supplies. For more information on VCCAUX, VCCO, and configuration mode, refer to Chapter 3 in the Virtex-II Pro Platform FPGA User Guide. Table 5: Power-On Current for Virtex-II Pro Devices Device Symbol XC2VP2 XC2VP4 XC2VP7 XC2VP20 XC2VPX20 XC2VP30 XC2VP40 XC2VP50 XC2VP70 XC2VPX70 XC2VP100 Units ICCINTMIN 500 500 500 600 600 800 1050 1250 1700 1700 2200 mA ICCAUXMIN 250 250 250 250 250 250 250 250 250 250 250 mA ICCOMIN 100 100 100 100 100 100 100 100 100 100 100 mA Notes: 1. Power-on current parameter values are specified for Commercial Grade. For Industrial Grade values, multiply Commercial Grade values by 1.5. 2. ICCOMIN values listed here apply to the entire device (all banks). General Power Supply Requirements Proper decoupling of all FPGA power supplies is essential. Consult Xilinx Application Note XAPP623 for detailed information on power distribution system design. XAPP689, “Managing Ground Bounce in Large FPGAs,” to determine the number of simultaneously switching outputs allowed per bank at the package level. VCCAUX powers critical resources in the FPGA. Therefore, this supply voltage is especially susceptible to power supply noise. VCCAUX can share a power plane with VCCO , but only if VCCO does not have excessive noise. Staying within simultaneously switching output (SSO) limits is essential for keeping power supply noise to a minimum. Refer to Changes in VCCAUX voltage beyond 200 mV peak-to-peak should take place at a rate no faster than 10 mV per millisecond. Recommended practices that can help reduce jitter and period distortion are described in Xilinx Answer Record 13756. DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 3 of 4 5 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: DC and Switching Characteristics SelectIO-Ultra DC Input and Output Levels Values for VIL and VIH are recommended input voltages. Values for IOL and IOH are guaranteed over the recommended operating conditions at the VOL and VOH test points. Only selected standards are tested. These are cho- sen to ensure that all standards meet their specifications. The selected standards are tested at minimum VCCO with the respective VOL and VOH voltage levels shown. Other standards are sample tested. Table 6: DC Input and Output Levels VIL VIH VOL VOH IOL IOH V, max V, max V, min mA mA 2.0 3.45 0.4 2.4 24 –24 0.8 2.0 3.45 0.4 VCCO – 0.4 24 –24 –0.2 0.7 1.7 VCCO + 0.4 0.4 VCCO – 0.4 24 –24 LVCMOS18 –0.2 30% VCCO 70% VCCO VCCO + 0.4 0.4 VCCO – 0.45 16 –16 LVCMOS15 –0.2 30% VCCO 70% VCCO VCCO + 0.4 0.4 VCCO – 0.45 16 –16 PCI33_3 –0.2 30% VCCO 50% VCCO 3.6 10% VCCO 90% VCCO PCI66_3 –0.2 30% VCCO 50% VCCO 3.6 10% VCCO 90% VCCO PCIX –0.2 Note (1) Note (1) Note (1) Note (1) Note (1) Note (1) Note (1) GTLP –0.2 VREF – 0.1 VREF + 0.1 VCCO + 0.4 0.6 n/a 36 n/a GTL –0.2 VREF – 0.05 VREF + 0.05 VCCO + 0.4 0.4 n/a 40 n/a VCCO – 0.4 8(2) –8(2) IOSTANDARD Attribute V, min V, max V, min LVTTL –0.2 0.8 LVCMOS33 –0.2 LVCMOS25 HSTL_I –0.2 VREF – 0.1 VREF + 0.1 VCCO + 0.4 0.4(2) HSTL_II –0.2 VREF – 0.1 VREF + 0.1 VCCO + 0.4 0.4(2) VCCO – 0.4 16(2) –16(2) HSTL_III –0.2 VREF – 0.1 VREF + 0.1 VCCO + 0.4 0.4(2) VCCO – 0.4 24(2) –8(2) HSTL_IV –0.2 VREF – 0.1 VREF + 0.1 VCCO + 0.4 0.4(2) VCCO – 0.4 48(2) –8(2) SSTL2_I –0.2 VREF – 0.15 VREF + 0.15 VCCO + 0.3 VTT – 0.61 VTT + 0.61 8.1 –8.1 SSTL2_II –0.2 VREF – 0.15 VREF + 0.15 VCCO + 0.3 VTT – 0.81 VTT + 0.81 16.2 –16.2 SSTL18_I –0.2 VREF – 0.125 VREF + 0.125 VCCO + 0.3 VTT – 0.61 VTT + 0.61 6.7 –6.7 SSTL18_II –0.2 VREF – 0.125 VREF + 0.125 VCCO + 0.3 VTT – 0.61 VTT + 0.61 13.4 –13.4 Notes: 1. Tested according to relevant specifications. 2. This applies to 1.5V and 1.8V HSTL. LDT DC Specifications (LDT_25) Table 7: LDT DC Specifications DC Parameter Symbol Supply Voltage VCCO Differential Output Voltage VOD Change in VOD Magnitude Δ VOD Output Common Mode Voltage VOCM Conditions RT = 100 ohm across Q and Q signals Min Typ Max Units 2.38 2.5 2.63 V 495 600 715 mV 15 mV 715 mV 15 mV 1000 mV 15 mV 780 mV 15 mV –15 RT = 100 ohm across Q and Q signals 495 Δ VOCM –15 Input Differential Voltage VID 200 Change in VID Magnitude Δ VID –15 Input Common Mode Voltage VICM 440 Δ VICM –15 Change in VOS Magnitude Change in VICM Magnitude DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com 600 600 600 Module 3 of 4 6 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: DC and Switching Characteristics LVDS DC Specifications (LVDS_25) Table 8: LVDS DC Specifications DC Parameter Symbol Supply Voltage Conditions VCCO Min Typ Max Units 2.38 2.5 2.63 V 1.602 V Output High Voltage for Q and Q VOH RT = 100 Ω across Q and Q signals Output Low Voltage for Q and Q VOL RT = 100 Ω across Q and Q signals 0.898 Differential Output Voltage (Q – Q), Q = High (Q – Q), Q = High VODIFF RT = 100 Ω across Q and Q signals 247 350 454 mV Output Common-Mode Voltage VOCM RT = 100 Ω across Q and Q signals 1.125 1.250 1.375 V Differential Input Voltage (Q – Q), Q = High (Q – Q), Q = High VIDIFF Common-mode input voltage = 1.25V 100 350 600 mV Input Common-Mode Voltage VICM Differential input voltage = ±350 mV 0.3 1.2 2.2 V Min Typ Max Units 2.38 2.5 2.63 V 1.785 V V Extended LVDS DC Specifications (LVDSEXT_25) Table 9: Extended LVDS DC Specifications DC Parameter Symbol Supply Voltage Conditions VCCO Output High Voltage for Q and Q VOH RT = 100 Ω across Q and Q signals Output Low Voltage for Q and Q VOL RT = 100 Ω across Q and Q signals 0.715 Differential Output Voltage (Q – Q), Q = High (Q – Q), Q = High VODIFF RT = 100 Ω across Q and Q signals 440 Output Common-Mode Voltage VOCM RT = 100 Ω across Q and Q signals 1.125 Differential Input Voltage (Q – Q), Q = High (Q – Q), Q = High VIDIFF Common-mode input voltage = 1.25V 100 Input Common-Mode Voltage VICM Differential input voltage = ±350 mV 0.3 V 1.250 1.2 820 mV 1.375 V 1000 mV 2.2 V LVPECL DC Specifications (LVPECL_25) These values are valid when driving a 100 Ω differential load only, i.e., a 100 Ω resistor between the two receiver pins. The VOH levels are 200 mV below standard LVPECL levels and are compatible with devices tolerant of lower common-mode ranges. Table 10 summarizes the DC output specifications of LVPECL. For more information on using LVPECL, see the Virtex-II Pro Platform FPGA User Guide. Table 10: LVPECL DC Specifications VCCO = 2.375V VCCO = 2.5V VCCO = 2.625V Min Max Min Max Min Max Units VOH 1.35 1.495 1.475 1.62 1.6 1.745 V VOL 0.565 0.755 0.69 0.88 0.815 1.005 V VIH 0.8 2.0 0.8 2.0 0.8 2.0 V VIL 0.5 1.7 0.5 1.7 0.5 1.7 V 0.100 1.5 0.100 1.5 0.100 1.5 V DC Parameter Differential Input Voltage DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 3 of 4 7 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: DC and Switching Characteristics RocketIO DC Input and Output Levels Table 11: RocketIO X Input/Output Voltage Specifications Parameter Symbol Peak-to-Peak Differential Input Voltage (1) Single-Ended Output Voltage Swing (2,3) Peak-to-Peak Differential Output Voltage (2,3) Conditions Min Typ Max Units 2000 mV DVIN 250 DVOUT 0 400 900 mV DVPPOUT 0 800 1800 mV Notes: 1. See Table 24, page 15, for minimum eye sensitivity. 2. Output swing levels are selectable using TXDOWNLEVEL attribute. Refer to the RocketIO X Transceiver User Guide for details. 3. Output preemphasis levels are selectable using the TXEMPHLEVEL attribute. Refer to the RocketIO X Transceiver User Guide for details. Table 12: RocketIO Input/Output Voltage Specifications Parameter Symbol Peak-to-Peak Differential Input Voltage Max Units 175 2000 mV TERMINATION_IMP = 50 90 125 Ω TERMINATION_IMP = 75 135 187.5 Ω DVOUT 400 800 mV DVPPOUT 800 1600 mV DVIN Differential Input Impedance Single-Ended Output Voltage Conditions DIMPIN Swing (1,2) Peak-to-Peak Differential Output Voltage (1,2) Min Typ 800 Notes: 1. Output swing levels are selectable using TX_DIFF_CTRL attribute. Refer to the RocketIO Transceiver User Guide for details. 2. Output preemphasis levels are selectable at 10% (default), 20%, 25%, and 33% using the TX_PREEMPHASIS attribute. Refer to the RocketIO Transceiver User Guide for details. +V TXP DVOUT TXN 0 DS083-3_04_120302 Figure 1: Single-Ended Output Voltage Swing +V DVPPOUT 0 –V TXP–TXN DS083-3_05_120302 Figure 2: Peak-to-Peak Differential Output Voltage DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 3 of 4 8 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: DC and Switching Characteristics Virtex-II Pro Performance Characteristics This section provides the performance characteristics of some common functions and designs implemented in Virtex-II Pro devices. The numbers reported here are fully characterized worst-case values. Note that these values are subject to the same guidelines as Virtex-II Pro Switching Characteristics (speed files). Table 13 provides pin-to-pin values (in nanoseconds) including IOB delays; that is, delay through the device from input pin to output pin. In the case of multiple inputs and outputs, the worst delay is reported. Table 13: Pin-to-Pin Performance Device Used & Speed Grade Pin-to-Pin Performance (with I/O Delays) Units 16-bit Address Decoder XC2VP20FF1152-6 7.20 ns 32-bit Address Decoder XC2VP20FF1152-6 8.08 ns 64-bit Address Decoder XC2VP20FF1152-6 8.15 ns 4:1 MUX XC2VP20FF1152-6 3.85 ns 8:1 MUX XC2VP20FF1152-6 7.24 ns 16:1 MUX XC2VP20FF1152-6 7.30 ns 32:1 MUX XC2VP20FF1152-6 7.64 ns Combinatorial (pad to LUT to pad) XC2VP20FF1152-6 3.26 ns Pad to setup XC2VP20FF1152-6 1.72 ns Clock to Pad XC2VP20FF1152-6 6.63 ns Pad to setup XC2VP20FF1152-6 1.78 ns Clock to Pad XC2VP20FF1152-6 4.12 ns Description Basic Functions: Memory: Block RAM Distributed RAM DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 3 of 4 9 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: DC and Switching Characteristics Table 14 shows internal (register-to-register) performance. Values are reported in MHz. Table 14: Register-to-Register Performance Device Used & Speed Grade Register-to-Register Performance Units 16-bit Address Decoder XC2VP20FF1152-6 547 MHz 32-bit Address Decoder XC2VP20FF1152-6 392 MHz 64-bit Address Decoder XC2VP20FF1152-6 310 MHz 4:1 MUX XC2VP20FF1152-6 710 MHz 8:1 MUX XC2VP20FF1152-6 609 MHz 16:1 MUX XC2VP20FF1152-6 472 MHz 32:1 MUX XC2VP20FF1152-6 400 MHz Register to LUT to Register XC2VP20FF1152-6 1046 MHz 8-bit Adder XC2VP20FF1152-6 337 MHz 16-bit Adder XC2VP20FF1152-6 334 MHz 32-bit Adder XC2VP20FF1152-6 252 MHz 64-bit Adder XC2VP20FF1152-6 202 MHz 128-bit Adder XC2VP20FF1152-6 131 MHz 24-bit Counter XC2VP20FF1152-6 309 MHz 64-bit Counter XC2VP20FF1152-6 207 MHz 64-bit Accumulator XC2VP20FF1152-6 150 MHz Multiplier 18x18 (with Block RAM inputs) XC2VP20FF1152-6 135 MHz Multiplier 18x18 (with Register inputs) XC2VP20FF1152-6 147 MHz XC2VP20FF1152-6 355 MHz Single-Port 16 x 8-bit XC2VP20FF1152-6 555 MHz Single-Port 32 x 8-bit XC2VP20FF1152-6 557 MHz Single-Port 64 x 8-bit XC2VP20FF1152-6 408 MHz Single-Port 128 x 8-bit XC2VP20FF1152-6 336 MHz Dual-Port 16 x 8-bit XC2VP20FF1152-6 549 MHz Dual-Port 32 x 8-bit XC2VP20FF1152-6 460 MHz Dual-Port 64 x 8-bit XC2VP20FF1152-6 407 MHz Description Basic Functions: Memory: Block RAM Single-Port 4096 x 4 bits Distributed RAM DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 3 of 4 10 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: DC and Switching Characteristics Virtex-II Pro Switching Characteristics Switching characteristics are specified on a per-speed-grade basis and can be designated as Advance, Preliminary, or Production. Note that Virtex-II Pro Performance Characteristics are subject to these guidelines, as well. Each designation is defined as follows: All specifications are always representative of worst-case supply voltage and junction temperature conditions. Table 15: Virtex-II Pro Device Speed Grade Designations Speed Grade Designations Device Advance: These speed files are based on simulations only and are typically available soon after device design specifications are frozen. Although speed grades with this designation are considered relatively stable and conservative, some under-reporting might still occur. Advance Preliminary Production XC2VP2 -7, -6, -5 XC2VP4 -7, -6, -5 XC2VP7 -7, -6, -5 Preliminary: These speed files are based on complete ES (engineering sample) silicon characterization. Devices and speed grades with this designation are intended to give a better indication of the expected performance of production silicon. The probability of under-reporting delays is greatly reduced as compared to Advance data. XC2VP20 -7, -6, -5 Production: These speed files are released once enough production silicon of a particular device family member has been characterized to provide full correlation between speed files and devices over numerous production lots. There is no under-reporting of delays, and customers receive formal notification of any subsequent changes. Typically, the slowest speed grades transition to Production before faster speed grades. Since individual family members are produced at different times, the migration from one category to another depends completely on the status of the fabrication process for each device. Table 15 correlates the current status of each Virtex-II Pro device with a corresponding speed file designation. XC2VPX20 -6, -5 XC2VP30 -7, -6, -5 XC2VP40 -7, -6, -5 XC2VP50 -7, -6, -5 XC2VP70 -7, -6, -5 XC2VPX70 -6, -5 XC2VP100 -6, -5 Testing of Switching Characteristics All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotate to the simulation net list. Unless otherwise noted, values apply to all Virtex-II Pro devices. PowerPC Switching Characteristics Table 16: Processor Clocks Absolute AC Characteristics Speed Grade -7 Description Min -6 Max Min -5 Max Min Max Units CPMC405CLOCK frequency 0 400 (1) 0 350 (1) 0 300 MHz frequency (2) 0 200 0 175 0 150 MHz PLBCLK (3) 0 400 0 350 0 300 MHz BRAMDSOCMCLK (3) 0 400 0 350 0 300 MHz BRAMISOCMCLK (3) 0 400 0 350 0 300 MHz JTAGC405TCK Notes: 1. IMPORTANT! When CPMC405CLOCK runs at speeds greater than 350 MHz in -7 Commercial grade dual-processor devices, or greater than 300 MHz in -6 Industrial grade dual-processor devices, users must implement the technology presented in XAPP755, “PowerPC 405 Clock Macro for -7(C) and -6(I) Speed Grade Dual-Processor Devices.” Refer to Table 1, Module 1 to identify dual-processor devices. 2. The theoretical maximum frequency of this clock is one-half the CPMC405CLOCK. However, the achievable maximum is dependent on the system, and will be much less. 3. The theoretical maximum frequency of these clocks is equal to the CPMC405CLOCK. However, the achievable maximum is dependent on the system. Please see PowerPC 405 Processor Block Reference Guide and XAPP640 for more information. DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 3 of 4 11 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: DC and Switching Characteristics Table 17: Processor Block Switching Characteristics Speed Grade Description Symbol -7 -6 -5 Units Device Control Register Bus control inputs TPCCK_DCR/TPCKC_DCR 0.38/–0.18 0.44/–0.20 0.48/–0.23 ns, min Device Control Register Bus data inputs TPDCK_DCR/TPCKD_DCR 0.65/–0.01 0.75/–0.01 0.82/–0.02 ns, min Clock and Power Management control inputs TPCCK_CPM/TPCKC_CPM 0.16/ 0.03 0.19/ 0.03 0.20/ 0.03 ns, min Reset control inputs TPCCK_RST/TPCKC_RST 0.16/ 0.03 0.19/ 0.03 0.20/ 0.03 ns, min Debug control inputs TPCCK_DBG/TPCKC_DBG 0.27/ 0.30 0.31/ 0.35 0.34/ 0.38 ns, min Trace control inputs TPCCK_TRC/TPCKC_TRC 1.37/–0.41 1.57/–0.48 1.73/–0.52 ns, min TPCCK_EIC/TPCKC_EIC 0.57/–0.22 0.66/–0.25 0.72/–0.27 ns, min Device Control Register Bus control outputs TPCKCO_DCR 1.32 1.52 1.67 ns, max Device Control Register Bus address outputs TPCKAO_DCR 1.72 1.98 2.17 ns, max Device Control Register Bus data outputs TPCKDO_DCR 1.76 2.02 2.22 ns, max Clock and Power Management control outputs TPCKCO_CPM 1.26 1.45 1.59 ns, max Reset control outputs TPCKCO_RST 1.32 1.51 1.66 ns, max Debug control outputs TPCKCO_DBG 1.94 2.22 2.44 ns, max Trace control outputs TPCKCO_TRC 1.35 1.56 1.71 ns, max CPMC405CLOCK minimum pulse width, high TCPWH 1.25 1.42 1.66 ns, min CPMC405CLOCK minimum pulse width, low TCPWL 1.25 1.42 1.66 ns, min Setup and Hold Relative to Clock (CPMC405CLOCK) External Interrupt Controller control inputs Clock to Out Clock Table 18: Processor Block PLB Switching Characteristics Speed Grade Description Symbol -7 -6 -5 Units Processor Local Bus(ICU/DCU) control inputs TPCCK_PLB/TPCKC_PLB 0.98/ 0.18 1.12/ 0.21 1.23/ 0.23 ns, min Processor Local Bus (ICU/DCU) data inputs TPDCK_PLB/TPCKD_PLB 0.62/ 0.16 0.71/ 0.18 0.78/ 0.20 ns, min Processor Local Bus(ICU/DCU) control outputs TPCKCO_PLB 1.34 1.54 1.69 ns, max Processor Local Bus(ICU/DCU) address bus outputs TPCKAO_PLB 1.16 1.34 1.47 ns, max Processor Local Bus(ICU/DCU) data bus outputs TPCKDO_PLB 1.44 1.65 1.81 ns, max Setup and Hold Relative to Clock (PLBCLK) Clock to Out DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 3 of 4 12 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: DC and Switching Characteristics Table 19: Processor Block JTAG Switching Characteristics Speed Grade Description Symbol -7 -6 -5 Units TPCCK_JTAG/ TPCKC_JTAG 0.80/ 0.70 0.80/ 0.70 0.88/ 0.77 ns, min TPCCK_JTAGRST/ TPCKC_JTAGRST 0.80/ 0.70 0.80/ 0.70 0.88/ 0.77 ns, min TPCKCO_JTAG 1.34 1.54 1.69 ns, max Setup and Hold Relative to Clock (JTAGC405TCK) JTAG control inputs JTAG reset input Clock to Out JTAG control outputs Table 20: PowerPC 405 Data-Side On-Chip Memory Switching Characteristics Speed Grade Description Symbol -7 -6 -5 Units TPDCK_DSOCM/ TPCKD_DSOCM 0.73/ 0.83 0.84/ 0.95 0.92/ 1.05 ns, min Data-Side On-Chip Memory control outputs TPCKCO_DSOCM 1.58 1.82 1.99 ns, max Data-Side On-Chip Memory address bus outputs TPCKAO_DSOCM 1.46 1.68 1.84 ns, max Data-Side On-Chip Memory data bus outputs TPCKDO_DSOCM 0.90 1.03 1.13 ns, max Setup and Hold Relative to Clock (BRAMDSOCMCLK) Data-Side On-Chip Memory data bus inputs Clock to Out Table 21: PowerPC 405 Instruction-Side On-Chip Memory Switching Characteristics Speed Grade Description Symbol -7 -6 -5 Units TPDCK_ISOCM/ TPCKD_ISOCM 0.81/ 0.68 0.93/ 0.78 1.02/ 0.86 ns, min Instruction-Side On-Chip Memory control outputs TPCKCO_ISOCM 1.33 1.53 1.68 ns, max Instruction-Side On-Chip Memory address bus outputs TPCKAO_ISOCM 1.52 1.75 1.92 ns, max Instruction-Side On-Chip Memory data bus outputs TPCKDO_ISOCM 1.35 1.55 1.70 ns, max Setup and Hold Relative to Clock (BRAMISOCMCLK) Instruction-Side On-Chip Memory data bus inputs Clock to Out DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 3 of 4 13 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: DC and Switching Characteristics RocketIO Switching Characteristics Table 22: RocketIO X Reference Clock Switching Characteristics All Speed Grades Description Reference Clock frequency Symbol range(1) Conditions FGCLK FGTOL Reference Clock rise time TRCLK 20% – 80% TFCLK 20% – 80% Reference Clock duty cycle Typ 62.5 Reference Clock frequency tolerance Reference Clock fall time Min TDCREF Max Units 425 MHz ±350 ppm 75 ps 75 45 ps 50 55 % 3.125 Gb/s – 6.25 Gb/s 30 ps 2.488 Gb/s – 3.125 Gb/s 40 ps Reference Clock total jitter, peak-peak TGJTT Clock recovery frequency acquisition time, from Power-up to High state of PMARXLOCK TLOCK 100 Clock recovery phase acquisition time, from Data to High state of PMARXLOCK TPHASE 40 µs 60 µs Notes: 1. BREFCLK should be used for all serial bit rates up to the maximum shown. Table 23: RocketIO Reference Clock Switching Characteristics All Speed Grades Description Symbol Conditions Min Full rate operation Typ Max Units 50 156.25 MHz 60 100 MHz ±100 ppm Reference Clock frequency range(1) FGCLK Reference Clock frequency tolerance FGTOL Reference Clock rise time TRCLK 20% – 80% 600 1000 ps Reference Clock fall time TFCLK 20% – 80% 600 1000 ps 50 55 % 2.501 Gb/s – 3.125 Gb/s 40 ps 1.061 Gb/s – 2.5 Gb/s 50 ps < 1.06 Gb/s 120 ps 10 µs Reference Clock duty cycle operation(2) Half rate (2X oversampling) TDCREF Reference Clock total jitter, peak-peak (3) TGJTT Clock recovery frequency acquisition time TLOCK Clock recovery phase acquisition time TPHASE 45 960 bits (4) Notes: 1. 2. 3. 4. BREFCLK/BREFCLK2 can be used for all serial bit rates up to the maximum shown. REFCLK/REFCLK2 can be used for serial bit rates up to 2.5 Gb/s (REFCLK = 125 MHz). All other parameters apply equally to REFCLK, REFCLK2, BREFCLK, and BREFCLK2 except as noted. For serial rates under 1 Gb/s, the 3X (or greater) oversampling techniques described in XAPP572 are required to meet the transmit jitter and receive jitter tolerance specifications defined in this data sheet. Measured at the package pin. For reference clock frequencies equal to or above 125 MHz, BREFCLK/BREFCLK2 must be used. 8B/10B-type bitstream. TRCLK 80% 20% TFCLK DS083-3_01_120302 Figure 3: Reference Clock Timing Parameters DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 3 of 4 14 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: DC and Switching Characteristics Table 24: RocketIO X Receiver Switching Characteristics (1) Description Symbol Conditions Min 2.488 Gb/s Receive total jitter tolerance using default equalization and PRBS-15 pattern Receive random jitter tolerance Receive sinusoidal jitter tolerance measured at 70 MHz Receive deterministic jitter tolerance Receive latency (3) TJTOL TRJTOL TSJTOL TDJTOL Typ Max Units 0.80 0.65 UI (2) 3.125 Gb/s 0.80 0.65 UI 4.25 Gb/s 0.80 0.65 UI 6.25 Gb/s 0.80 0.65 UI 2.488 Gb/s 0.30 UI 3.125 Gb/s 0.30 UI 4.25 Gb/s 0.30 UI 6.25 Gb/s 0.30 UI 2.488 Gb/s 0.30 0.15 UI 3.125 Gb/s 0.30 0.15 UI 4.25 Gb/s 0.30 0.15 UI 6.25 Gb/s 0.30 0.15 UI 2.488 Gb/s 0.55 0.45 UI 3.125 Gb/s 0.55 0.45 UI 4.25 Gb/s 0.55 0.45 UI 6.25 Gb/s 0.50 0.45 UI TRXLAT 25 34 (4) RXUSRCLK cycles RXUSRCLK duty cycle TRXDC 45 50 55 % RXUSRCLK2 duty cycle TRX2DC 45 50 55 % 120 250 mV Differential receive input sensitivity VEYE Notes: 1. The XC2VPX70 operates at a fixed 4.25 Gb/s baud rate. 2. UI = Unit Interval 3. 4. Receive latency delay RXP/RXN to RXDATA. Refer to RocketIO X Transceiver User Guide for more information on calculating latency. This maximum may occur when certain conditions are present and clock correction and channel bonding are enabled. If these functions are both disabled, the maximum will be near the typical values. DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 3 of 4 15 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: DC and Switching Characteristics Table 25: RocketIO Receiver Switching Characteristics Description Symbol Receive total jitter tolerance Conditions TJTOL Max Units 2.126 Gb/s – 3.125 Gb/s Min Typ 0.65 UI (1) 1.0626 Gb/s – 2.125 Gb/s 0.65 UI 1.0 Gb/s – 1.0625 Gb/s 0.68 UI 0.68(2) UI 2.126 Gb/s – 3.125 Gb/s 0.41 UI 1.0626 Gb/s – 2.125 Gb/s 0.43 UI 1.0 Gb/s – 1.0625 Gb/s 0.47 UI 600 Mb/s – 999 Mb/s Receive deterministic jitter tolerance TDJTOL 0.47(2) 600 Mb/s – 999 Mb/s Receive latency (3) TRXLAT RXUSRCLK duty cycle TRXDC RXUSRCLK2 duty cycle TRX2DC 25 42 (4) 45 50 55 % 45 50 55 % RXUSRCLK cycles Notes: 1. 2. 3. 4. UI = Unit Interval The oversampling techniques described in XAPP572 are required to meet these specifications for serial rates less than 1 Gb/s. Receive latency delay RXP/RXN to RXDATA. Refer to RocketIO Transceiver User Guide for more information on calculating latency. This maximum may occur when certain conditions are present and clock correction and channel bonding are enabled. If these functions are both disabled, the maximum will be near the typical values. DATA ORIGINATES . . . . . 1 2 20 21 22 . . . . . 820 821 822 . . . . . 840 841 842 . . . . RXP/RXN TRXLAT DATA ARRIVES RXDATA[16:0] 0 1 41 42 RXUSRCLK2 DS083-3_02_082301 Figure 4: RocketIO Receive Latency (Maximum) DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 3 of 4 16 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: DC and Switching Characteristics Table 26: RocketIO X Transmitter Switching Characteristics (1) Description Serial data rate Serial data output total jitter (p-p) (3) Serial data output deterministic jitter (p-p) (3) Serial data output random jitter (p-p) (3,4) Symbol Conditions BREFCLK Frequency FGTX TDJ TRJ TRTX TX fall time TFTX Typ 2.488 TTJ TX rise time Min TTXLAT TXUSRCLK duty cycle TTXDC TXUSRCLK2 duty cycle TTX2DC Units 6.25 Gb/s 2.488 Gb/s 0.15 0.20 UI (2) 3.125 Gb/s 0.14 0.19 UI 4.25 Gb/s 0.39 0.48 UI 6.25 Gb/s 0.42 0.54 UI 2.488 Gb/s 155.52 MHz 0.03 0.17 UI 3.125 Gb/s 156.25 MHz 0.03 0.17 UI 4.25 Gb/s 212.5 MHz 0.14 0.26 UI 6.25 Gb/s 312.5 MHz 0.17 0.35 UI 2.488 Gb/s 155.52 MHz 0.12 0.18 UI 3.125 Gb/s 156.25 MHz 0.12 0.20 UI 4.25 Gb/s 212.5 MHz 0.25 0.39 UI 6.25 Gb/s 312.5 MHz 0.25 0.39 UI 20% – 80% @ 2.500 Gb/s Transmit latency (5) Max 60 ps 60 ps 14 19 TXUSR CLK cycles 45 50 55 % 45 50 55 % Notes: 1. 2. 3. 4. 5. The XC2VPX70 operates at a fixed 4.25 Gb/s baud rate. UI = Unit Interval Total Jitter TTJ = TDJ + TRJ TRJ specifications are wideband and include low-frequency jitter components (also referred to as wander).TRJ specified is peak-to-peak, estimated at BER=10–12 using the Bathtub Method. Transmit latency delay TXDATA to TXP/TXN. Refer to RocketIO X Transceiver User Guide for more information on calculating latency. DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 3 of 4 17 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: DC and Switching Characteristics Table 27: RocketIO Transmitter Switching Characteristics Description Symbol Conditions Max Units 1.0 3.125 (1) Gb/s Wirebond packages 1.0 2.5 (1) Gb/s Flipchip packages 0.600 1.0 Gb/s Wirebond packages 0.600 1.0 Gb/s Flipchip packages Serial data rate, full-speed clock FGTX Serial data rate, half-speed clock(3) (2X oversampling) Serial data output deterministic jitter TDJ Min Typ 2.126 Gb/s – 3.125 Gb/s 0.17 UI(2) 1.0626 Gb/s – 2.125 Gb/s 0.08 UI 1.0 Gb/s – 1.0625 Gb/s 0.05 UI 0.08(4) UI 2.126 Gb/s – 3.125 Gb/s 0.18 UI 1.0626 Gb/s – 2.125 Gb/s 0.19 UI 1.0 Gb/s – 1.0625 Gb/s 0.18 UI 0.18(4) UI 600 Mb/s – 999 Mb/s Serial data output random jitter TRJ 600 Mb/s – 999 Mb/s TX rise time TRTX TX fall time TFTX Transmit latency (5) 20% – 80% TTXLAT 120 ps 120 ps Including CRC 14 17 Excluding CRC 8 11 TXUSR CLK cycles TXUSRCLK duty cycle TTXDC 45 50 55 % TXUSRCLK2 duty cycle TTX2DC 45 50 55 % Notes: 1. 2. 3. 4. 5. Serial data rate in the -5 speed grade is limited to 2.0 Gb/s in both wirebond and flipchip packages. UI = Unit Interval For serial rates under 1 Gb/s, the 3X (or greater) oversampling techniques described in XAPP572 are required to meet the transmit jitter and receive jitter tolerance specifications defined in this data sheet. The oversampling techniques described in XAPP572 are required to meet these specifications for serial rates less than 1 Gb/s. Transmit latency delay TXDATA to TXP/TXN. Refer to RocketIO Transceiver User Guide for more information on calculating latency. 1 2 . . . . . 20 21 22 . . . . . 320 321 322 . . . . . 340 341 342 . . . . TXP/TXN TTXLAT DATA ARRIVES DATA ORIGINATES TXDATA[16:0] 0 1 16 17 TXUSRCLK2 DS083-3_03_082301 Figure 5: RocketIO Transmit Latency (Maximum, Including CRC) DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 3 of 4 18 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: DC and Switching Characteristics Table 28: RocketIO X Fabric Interface Characteristics All Speed Grades Description Symbol Min TX/RXUSRCLK frequency FTXRXUCLK TX/RXUSRCLK2 frequency FTXRXUCLK2 Typ Max Units 125.00 212.50 MHz 62.50 250.00 MHz Table 29: RocketIO RXUSRCLK Switching Characteristics Speed Grade Description Symbol -7 -6 -5 Units TGCCK_CHBI/TGCKC_CHBI 0.00/ 0.12 0.00/ 0.12 0.00/ 0.14 ns, min TGCKCO_CHBO 0.50 0.50 0.55 ns, max RXUSRCLK minimum pulse width, High TGPWH_RX 2.83 2.83 4.50 ns, min RXUSRCLK minimum pulse width, Low TGPWL_RX 2.83 2.83 4.50 ns, min Setup and Hold Relative to Clock (RXUSRCLK) CHBONDI control inputs Clock to Out CHBONDO control outputs Clock Table 30: RocketIO RXUSRCLK2 Switching Characteristics Speed Grade Description Symbol -7 -6 -5 Units RXRESET control input TGCCK_RRST/TGCKC_RRST 0.02/ 0.00 0.02/ 0.00 0.02/ 0.00 ns, min RXPOLARITY control input TGCCK_RPOL/TGCKC_RPOL 0.02/ 0.00 0.02/ 0.00 0.02/ 0.00 ns, min ENCHANSYNC control input TGCCK_ECSY/TGCKC_ECSY 0.02/ 0.00 0.02/ 0.00 0.02/ 0.00 ns, min TGCKST_RNIT 0.50 0.50 0.55 ns, max RXDISPERR status outputs TGCKST_RDERR 0.50 0.50 0.55 ns, max RXCHARISCOMMA status outputs TGCKST_RCMCH 0.50 0.50 0.55 ns, max RXREALIGN status output TGCKST_ALIGN 0.41 0.41 0.46 ns, max RXCOMMADET status output TGCKST_CMDT 0.41 0.41 0.46 ns, max RXLOSSOFSYNC status outputs TGCKST_RLOS 0.50 0.50 0.55 ns, max RXCLKCORCNT status outputs TGCKST_RCCCNT 0.41 0.41 0.46 ns, max RXBUFSTATUS status outputs TGCKST_RBSTA 0.45 0.45 0.50 ns, max RXCHECKINGCRC status output TGCKST_RCCRC 0.36 0.40 0.44 ns, max RXCRCERR status output TGCKST_RCRCE 0.36 0.40 0.44 ns, max CHBONDDONE status output TGCKST_CHBD 0.50 0.50 0.55 ns, max RXCHARISK status outputs TGCKST_RKCH 0.50 0.50 0.55 ns, max RXRUNDISP status outputs TGCKST_RRDIS 0.50 0.50 0.55 ns, max RXDATA data outputs TGCKDO_RDAT 0.50 0.50 0.55 ns, max Setup and Hold Relative to Clock (RXUSRCLK2) Clock to Out RXNOTINTABLE status outputs DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 3 of 4 19 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: DC and Switching Characteristics Table 30: RocketIO RXUSRCLK2 Switching Characteristics (Continued) Speed Grade Description Symbol -7 -6 -5 Units RXUSRCLK2 minimum pulse width, High TGPWH_RX2 1.42 1.42 2.25 ns, min RXUSRCLK2 minimum pulse width, Low TGPWL_RX2 1.42 1.42 2.25 ns, min Clock Table 31: RocketIO TXUSRCLK2 Switching Characteristics Speed Grade Description Symbol -7 -6 -5 Units TGCCK_CFGEN/TGCKC_CFGEN 0.35/ 0.10 0.35/ 0.10 0.39/ 0.11 ns, min TXBYPASS8B10B control inputs TGCCK_TBYP/TGCKC_TBYP 0.02/ 0.00 0.02/ 0.00 0.02/ 0.00 ns, min TXFORCECRCERR control input TGCCK_TCRCE/TGCKC_TCRCE 0.39/ 0.12 0.44/ 0.14 0.49/ 0.15 ns, min TXPOLARITY control input TGCCK_TPOL/TGCKC_TPOL 0.02/ 0.00 0.02/ 0.00 0.02/ 0.00 ns, min TXINHIBIT control inputs TGCCK_TINH/TGCKC_TINH 0.02/ 0.00 0.02/ 0.00 0.02/ 0.00 ns, min TGCCK_LBK/TGCKC_LBK 0.02/ 0.00 0.02/ 0.00 0.02/ 0.00 ns, min TXRESET control input TGCCK_TRST/TGCKC_TRST 0.02/ 0.10 0.02/ 0.10 0.02/ 0.11 ns, min TXCHARISK control inputs TGCCK_TKCH/TGCKC_TKCH 0.02/ 0.00 0.02/ 0.00 0.02/ 0.00 ns, min TXCHARDISPMODE control inputs TGCCK_TCDM/TGCKC_TCDM 0.02/ 0.00 0.02/ 0.00 0.02/ 0.00 ns, min TXCHARDISPVAL control inputs TGCCK_TCDV/TGCKC_TCDV 0.02/ 0.00 0.02/ 0.00 0.02/ 0.00 ns, min TGDCK_CFGIN/TGCKD_CFGIN 0.35/ 0.10 0.35/ 0.10 0.39/ 0.11 ns, min TGDCK_TDAT/TGCKD_TDAT 0.02/ 0.00 0.02/ 0.00 0.02/ 0.00 ns, min TXBUFERR status output TGCKST_TBERR 0.54 0.54 0.60 ns, max TXKERR status outputs TGCKST_TKERR 0.41 0.41 0.46 ns, max TXRUNDISP status outputs TGCKST_TRDIS 0.41 0.41 0.46 ns, max TGCKDO_CFGOUT 0.25 0.25 0.28 ns, max TXUSRCLK2 minimum pulse width, High TGPWH_TX2 1.42 1.42 2.25 ns, min TXUSRCLK2 minimum pulse width, Low TGPWL_TX2 1.42 1.42 2.25 ns, min Setup and Hold Relative to Clock (TXUSRCLK2) CONFIGENABLE control input LOOPBACK control inputs CONFIGIN data input TXDATA data inputs Clock to Out CONFIGOUT data output Clock DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 3 of 4 20 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: DC and Switching Characteristics IOB Input Switching Characteristics Input delays associated with the pad are specified for LVCMOS 2.5V levels. For other standards, adjust the delays with the values shown in IOB Input Switching Characteristics Standard Adjustments. Table 32: IOB Input Switching Characteristics Speed Grade Description Symbol Device -7 -6 -5 Units Pad to I output, no delay TIOPI All 0.84 0.87 0.91 ns, max Pad to I output, with delay TIOPID XC2VP2 1.84 1.94 2.06 ns, max XC2VP4 1.84 1.94 2.06 ns, max XC2VP7 1.84 1.94 2.06 ns, max XC2VP20 2.14 2.23 2.37 ns, max XC2VPX20 2.14 2.23 2.37 ns, max XC2VP30 2.14 2.26 2.46 ns, max XC2VP40 2.54 2.67 2.81 ns, max XC2VP50 2.54 2.68 2.87 ns, max XC2VP70 2.54 2.72 2.91 ns, max XC2VPX70 2.54 2.72 2.91 ns, max XC2VP100 N/A 4.71 4.80 ns, max TIOPLI All 0.86 0.89 0.93 TIOPLID XC2VP2 2.30 2.62 2.97 ns, max XC2VP4 2.57 2.89 3.23 ns, max XC2VP7 2.50 2.84 3.17 ns, max XC2VP20 2.65 3.04 3.42 ns, max XC2VPX20 2.65 3.04 3.42 ns, max XC2VP30 2.69 3.12 3.51 ns, max XC2VP40 3.30 3.63 4.03 ns, max XC2VP50 3.86 4.10 4.45 ns, max XC2VP70 4.00 4.25 4.57 ns, max XC2VPX70 4.00 4.25 4.57 ns, max XC2VP100 N/A 6.50 7.06 ns, max All 0.60 0.60 0.67 ns, max Propagation Delays Propagation Delays Pad to output IQ via transparent latch, no delay Pad to output IQ via transparent latch, with delay Clock CLK to output IQ DS083 (v4.7) November 5, 2007 Product Specification TIOCKIQ www.xilinx.com ns, max Module 3 of 4 21 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: DC and Switching Characteristics Table 32: IOB Input Switching Characteristics (Continued) Speed Grade Description Symbol Device -7 -6 -5 Units TIOPICK/TIOICKP All 0.84/–0.61 0.86/–0.63 0.90/–0.67 ns, min TIOPICKD/TIOICKPD XC2VP2 2.28/–1.89 2.60/–2.15 2.95/–2.43 ns, max XC2VP4 2.55/–2.10 2.87/–2.36 3.21/–2.65 ns, max XC2VP7 2.48/–2.05 2.82/–2.32 3.15/–2.60 ns, max XC2VP20 2.63/–2.05 3.02/–2.35 3.40/–2.66 ns, max XC2VPX20 2.63/–2.05 3.02/–2.35 3.40/–2.66 ns, max XC2VP30 2.67/–2.07 3.09/–2.42 3.49/–2.73 ns, max XC2VP40 3.28/–2.56 3.61/–2.83 4.01/–3.15 ns, max XC2VP50 3.84/–3.02 4.08/–3.21 4.42/–3.48 ns, max XC2VP70 3.98/–3.13 4.23/–3.33 4.55/–3.58 ns, max XC2VPX70 3.98/–3.13 4.23/–3.33 4.55/–3.58 ns, max XC2VP100 N/A 6.48/–5.13 7.04/–5.57 ns, max TIOICECK/TIOCKICE All 0.39/ 0.01 0.44/ 0.01 0.49/ 0.01 ns, min TIOSRCKI All 0.52 0.57 0.75 ns, min SR input to IQ (asynchronous) TIOSRIQ All 1.13 1.27 1.42 ns, max GSR to output IQ TGSRQ All 5.87 6.75 7.43 ns, max Setup and Hold Times With Respect to Clock at IOB Input Register Pad, no delay Pad, with delay ICE input SR input (IFF, synchronous) Set/Reset Delays Notes: 1. Input timing for LVCMOS25 is measured at 1.25V. For other I/O standards, see Table 36. DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 3 of 4 22 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: DC and Switching Characteristics IOB Input Switching Characteristics Standard Adjustments Table 33 gives all standard-specific data input delay adjustments. Table 33: IOB Input Switching Characteristics Standard Adjustments Speed Grade IOSTANDARD Attribute Timing Parameter -7 -6 -5 Units LVTTL TILVTTL 0.07 0.08 0.09 ns LVCMOS (Low-Voltage CMOS ), 3.3V LVCMOS33 TILVCMOS33 0.04 0.05 0.05 ns LVCMOS, 2.5V LVCMOS25 TILVCMOS25 0.00 0.00 0.00 ns LVCMOS, 1.8V LVCMOS18 TILVCMOS18 0.29 0.33 0.36 ns LVCMOS, 1.5V LVCMOS15 TILVCMOS15 0.36 0.41 0.45 ns LVDS_25 TILVDS_25 0.31 0.36 0.40 ns LVDSEXT_25 TILVDSEXT_25 0.33 0.37 0.41 ns ULVDS (Ultra LVDS), 2.5V ULVDS_25 TIULVDS_25 0.31 0.36 0.40 ns BLVDS (Bus LVDS), 2.5V BLVDS_25 TIBLVDS_25 0.00 0.00 0.00 ns LDT_25 TILDT_25 0.31 0.36 0.40 ns LVPECL_25 TILVPECL_25 0.69 0.80 0.88 ns PCI (Peripheral Component Interface), 33 MHz, 3.3V PCI33_3 TIPCI33_3 0.14 0.16 0.18 ns PCI, 66 MHz, 3.3V PCI66_3 TIPCI66_3 0.15 0.17 0.19 ns PCI-X, 133 MHz, 3.3V PCIX TIPCIX 0.12 0.13 0.15 ns GTL (Gunning Transceiver Logic) GTL TIGTL 0.59 0.68 0.74 ns GTLP TIGTLP 0.63 0.72 0.79 ns HSTL (High-Speed Transceiver Logic), Class I HSTL_I TIHSTL_I 0.59 0.68 0.75 ns HSTL, Class II HSTL_II TIHSTL_II 0.59 0.68 0.75 ns HSTL, Class III HSTL_III TIHSTL_III 0.57 0.66 0.72 ns HSTL, Class IV HSTL_IV TIHSTL_IV 0.58 0.67 0.74 ns HSTL, Class I, 1.8V HSTL_I_18 TIHSTL_I_18 0.57 0.65 0.72 ns HSTL, Class II, 1.8V HSTL_II_18 TIHSTL_II_18 0.55 0.63 0.69 ns HSTL, Class III, 1.8V HSTL_III_18 TIHSTL_III_18 0.56 0.64 0.70 ns HSTL, Class IV, 1.8V HSTL_IV_18 TIHSTL_IV_18 0.57 0.65 0.71 ns SSTL (Stub Series Terminated Logic), Class I, 1.8V SSTL18_I TISSTL18_I 0.62 0.72 0.79 ns SSTL, Class II, 1.8V SSTL18_II TISSTL18_II 0.64 0.73 0.81 ns SSTL, Class I, 2.5V SSTL2_I TISSTL2_I 0.62 0.72 0.79 ns SSTL, Class II, 2.5V SSTL2_II TISSTL2_II 0.64 0.73 0.81 ns LVDCI (Low-Voltage Digitally Controlled Impedance), 3.3V LVDCI_33 TILVDCI_33 –0.05 –0.05 –0.06 ns LVDCI, 2.5V LVDCI_25 TILVDCI_25 0.00 0.00 0.00 ns LVDCI, 1.8V LVDCI_18 TILVDCI_18 0.07 0.09 0.09 ns LVDCI, 1.5V LVDCI_15 TILVDCI_15 0.13 0.15 0.17 ns LVDCI, 2.5V, Half-Impedance LVDCI_DV2_25 TILVDCI_DV2_25 0.00 0.00 0.00 ns LVDCI, 1.8V, Half-Impedance LVDCI_DV2_18 TILVDCI_DV2_18 0.07 0.09 0.09 ns LVDCI, 1.5V, Half-Impedance LVDCI_DV2_15 TILVDCI_DV2_15 0.13 0.15 0.17 ns HSLVDCI_15 TIHSLVDCI_15 0.59 0.68 0.75 ns Description LVTTL (Low-Voltage Transistor-Transistor Logic) LVDS (Low-Voltage Differential Signaling), 2.5V LVDSEXT (LVDS Extended Mode), 2.5V LDT (HyperTransport), 2.5V LVPECL (Low-Voltage Positive Electron-Coupled Logic), 2.5V GTL Plus HSLVDCI (High-Speed Low-Voltage DCI), 1.5V DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 3 of 4 23 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: DC and Switching Characteristics Table 33: IOB Input Switching Characteristics Standard Adjustments (Continued) Speed Grade IOSTANDARD Attribute Timing Parameter -7 -6 -5 Units HSLVDCI, 1.8V HSLVDCI_18 TIHSLVDCI_18 0.59 0.68 0.75 ns HSLVDCI, 2.5V HSLVDCI_25 TIHSLVDCI_25 0.59 0.68 0.75 ns HSLVDCI, 3.3V HSLVDCI_33 TIHSLVDCI_33 0.59 0.68 0.75 ns GTL_DCI TIGTL_DCI 0.49 0.57 0.62 ns GTLP_DCI TIGTLP_DCI 0.27 0.31 0.35 ns HSTL (High-Speed Transceiver Logic), Class I, with DCI HSTL_I_DCI TIHSTL_I_DCI 0.27 0.31 0.35 ns HSTL, Class II, with DCI HSTL_II_DCI TIHSTL_II_DCI 0.27 0.31 0.35 ns HSTL, Class III, with DCI HSTL_III_DCI TIHSTL_III_DCI 0.27 0.31 0.35 ns HSTL, Class IV, with DCI HSTL_IV_DCI TIHSTL_IV_DCI 0.27 0.31 0.35 ns HSTL, Class I, 1.8V, with DCI HSTL_I_DCI_18 TIHSTL_I_DCI_18 0.27 0.31 0.35 ns HSTL, Class II, 1.8V, with DCI HSTL_II_DCI_18 TIHSTL_II_DCI_18 0.27 0.31 0.35 ns HSTL, Class III, 1.8V, with DCI HSTL_III_DCI_18 TIHSTL_III_DCI_18 0.27 0.31 0.35 ns HSTL, Class IV, 1.8V, with DCI HSTL_IV_DCI_18 TIHSTL_IV_DCI_18 0.27 0.31 0.35 ns SSTL (Stub Series Terminated Logic), Class I, 1.8V, with DCI SSTL18_I_DCI TISSTL18_I_DCI 0.62 0.72 0.79 ns SSTL, Class II, 1.8V, with DCI SSTL18_II_DCI TISSTL18_II_DCI 0.64 0.73 0.81 ns SSTL, Class I, 2.5V, with DCI SSTL2_I_DCI TISSTL2_I_DCI 0.17 0.20 0.22 ns SSTL, Class II, 2.5V, with DCI SSTL2_II_DCI TISSTL2_II_DCI 0.17 0.20 0.22 ns LVDS, 2.5V, with DCI LVDS_25_DCI TILVDS_25_DCI 0.31 0.36 0.40 ns LVDSEXT_25_DCI TILVDSEXT_25_DCI 0.33 0.37 0.41 ns LVDS_25_DT TILVDS_25_DT 0.31 0.36 0.40 ns LVDSEXT_25_DT TILVDSEXT_25_DT 0.33 0.37 0.41 ns ULVDS_25_DT TIULVDS_25_DT 0.31 0.36 0.40 ns LDT_25_DT TILDT_25_DT 0.31 0.36 0.40 ns Description GTL (Gunning Transceiver Logic) with DCI GTL Plus with DCI LVDSEXT, 2.5V, with DCI LVDS, 2.5V, with Differential Termination (DT) LVDSEXT, 2.5V, with DT ULVDS, 2.5V, with DT LDT, 2.5V, with DT DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 3 of 4 24 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: DC and Switching Characteristics IOB Output Switching Characteristics Output delays terminating at a pad are specified for LVCMOS25 with 12 mA drive and fast slew rate. For other standards, adjust the delays with the values shown in IOB Output Switching Characteristics Standard Adjustments. Table 34: IOB Output Switching Characteristics Speed Grade Description Symbol -7 -6 -5 Units O input to Pad TIOOP 1.58 1.68 1.85 ns, max O input to Pad via transparent latch TIOOLP 1.65 1.82 1.99 ns, max T input to Pad high-impedance (2) TIOTHZ 1.23 1.35 1.51 ns, max T input to valid data on Pad TIOTP 1.51 1.63 1.78 ns, max 1.08 1.22 1.36 Propagation Delays 3-State Delays T input to Pad high-impedance via transparent latch (2) TIOTLPHZ T input to valid data on Pad via transparent latch TIOTLPON 1.56 1.69 1.85 ns, max TGTS 4.11 4.73 5.20 ns, max Clock CLK to Pad TIOCKP 1.59 1.76 1.93 ns, max Clock CLK to Pad high-impedance (synchronous) (2) TIOCKHZ 1.39 1.55 1.73 ns, max Clock CLK to valid data on Pad (synchronous) TIOCKON 1.67 1.82 2.00 ns, max TIOOCK/TIOCKO 0.23/ 0.12 0.26/ 0.14 0.29/ 0.15 ns, min OCE input TIOOCECK/TIOCKOCE 0.39/ 0.01 0.44/ 0.01 0.49/ 0.01 ns, min SR input (OFF) TIOSRCKO/TIOCKOSR 0.52/ 0.00 0.57/ 0.00 0.75/ 0.00 ns, min TIOTCK/TIOCKT 0.23/ 0.12 0.26/ 0.14 0.29/ 0.15 ns, min 3-State Setup Times, TCE input TIOTCECK/TIOCKTCE 0.39/ 0.01 0.44/ 0.01 0.49/ 0.01 ns, min 3-State Setup Times, SR input (TFF) TIOSRCKT/TIOCKTSR 0.52/ 0.00 0.57/ 0.00 0.75/ 0.00 ns, min Minimum Pulse Width, SR inputs (asynchronous) TRPW 0.37 0.40 0.45 ns, min SR input to Pad (asynchronous) TIOSRP 2.33 2.56 2.83 ns, max SR input to Pad high-impedance (asynchronous) (2) TIOSRHZ 1.97 2.16 2.41 ns, max SR input to valid data on Pad (asynchronous) TIOSRON 2.24 2.44 2.69 ns, max GSR to Pad TIOGSRQ 5.87 6.75 7.43 ns, max GTS to Pad high-impedance (2) ns, max Sequential Delays Setup and Hold Times Before/After Clock CLK O input 3–State Setup Times, T input Set/Reset Delays Notes: 1. A Zero “0” Hold Time listing indicates no hold time or a negative hold time. Negative values can not be guaranteed “best-case”, but if a “0” is listed, there is no positive hold time. 2. The 3-state turn-off delays should not be adjusted. DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 3 of 4 25 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: DC and Switching Characteristics IOB Output Switching Characteristics Standard Adjustments Table 35 gives all standard-specific adjustments for output delays terminating at pads, based on standard capacitive load, CREF. Output delays terminating at a pad are specified for LVCMOS25 with 12 mA drive and fast slew rate. For other standards, adjust the delays by the values shown. Table 35: IOB Output Switching Characteristics Standard Adjustments Speed Grade Description IOSTANDARD Attribute Timing Parameter -7 -6 -5 Units LVTTL (Low-Voltage Transistor-Transistor Logic), Slow, 2 mA LVTTL_S2 TOLVTTL_S2 5.42 6.24 6.86 ns LVTTL, Slow, 4 mA LVTTL_S4 TOLVTTL_S4 3.09 3.55 3.91 ns LVTTL, Slow, 6 mA LVTTL_S6 TOLVTTL_S6 2.26 2.60 2.86 ns LVTTL, Slow, 8 mA LVTTL_S8 TOLVTTL_S8 1.47 1.69 1.86 ns LVTTL, Slow, 12 mA LVTTL_S12 TOLVTTL_S12 1.02 1.18 1.29 ns LVTTL, Slow, 16 mA LVTTL_S16 TOLVTTL_S16 0.46 0.53 0.58 ns LVTTL, Slow, 24 mA LVTTL_S24 TOLVTTL_S24 0.37 0.42 0.47 ns LVTTL, Fast, 2 mA LVTTL_F2 TOLVTTL_F2 4.42 5.09 5.59 ns LVTTL, Fast, 4 mA LVTTL_F4 TOLVTTL_F4 1.95 2.24 2.46 ns LVTTL, Fast, 6 mA LVTTL_F6 TOLVTTL_F6 1.10 1.26 1.39 ns LVTTL, Fast, 8 mA LVTTL_F8 TOLVTTL_F8 0.40 0.46 0.51 ns LVTTL, Fast, 12 mA LVTTL_F12 TOLVTTL_F12 0.24 0.27 0.30 ns LVTTL, Fast, 16 mA LVTTL_F16 TOLVTTL_F16 0.05 0.06 0.07 ns LVTTL, Fast, 24 mA LVTTL_F24 TOLVTTL_F24 –0.01 –0.01 –0.01 ns LVCMOS (Low-Voltage CMOS), 3.3V, Slow, 2 mA LVCMOS33_S2 TOLVCMOS33_S2 5.42 6.23 6.86 ns LVCMOS, 3.3V, Slow, 4 mA LVCMOS33_S4 TOLVCMOS33_S4 3.14 3.61 3.97 ns LVCMOS, 3.3V, Slow, 6 mA LVCMOS33_S6 TOLVCMOS33_S6 2.26 2.60 2.86 ns LVCMOS, 3.3V, Slow, 8 mA LVCMOS33_S8 TOLVCMOS33_S8 1.47 1.69 1.86 ns LVCMOS, 3.3V, Slow, 12 mA LVCMOS33_S12 TOLVCMOS33_S12 1.03 1.18 1.30 ns LVCMOS, 3.3V, Slow, 16 mA LVCMOS33_S16 TOLVCMOS33_S16 0.45 0.52 0.57 ns LVCMOS, 3.3V, Slow, 24 mA LVCMOS33_S24 TOLVCMOS33_S24 0.39 0.44 0.49 ns LVCMOS, 3.3V, Fast, 2 mA LVCMOS33_F2 TOLVCMOS33_F2 4.46 5.13 5.64 ns LVCMOS, 3.3V, Fast, 4 mA LVCMOS33_F4 TOLVCMOS33_F4 1.96 2.25 2.48 ns LVCMOS, 3.3V, Fast, 6 mA LVCMOS33_F6 TOLVCMOS33_F6 1.11 1.28 1.40 ns LVCMOS, 3.3V, Fast, 8 mA LVCMOS33_F8 TOLVCMOS33_F8 0.41 0.47 0.52 ns LVCMOS, 3.3V, Fast, 12 mA LVCMOS33_F12 TOLVCMOS33_F12 0.23 0.26 0.28 ns LVCMOS, 3.3V, Fast, 16 mA LVCMOS33_F16 TOLVCMOS33_F16 0.02 0.02 0.03 ns LVCMOS, 3.3V, Fast, 24 mA LVCMOS33_F24 TOLVCMOS33_F24 –0.07 –0.08 –0.09 ns LVCMOS, 2.5V, Slow, 2 mA LVCMOS25_S2 TOLVCMOS25_S2 4.12 4.74 5.21 ns LVCMOS, 2.5V, Slow, 4 mA LVCMOS25_S4 TOLVCMOS25_S4 2.43 2.80 3.07 ns LVCMOS, 2.5V, Slow, 6 mA LVCMOS25_S6 TOLVCMOS25_S6 1.76 2.02 2.22 ns LVCMOS, 2.5V, Slow, 8 mA LVCMOS25_S8 TOLVCMOS25_S8 1.04 1.19 1.31 ns LVCMOS, 2.5V, Slow, 12 mA LVCMOS25_S12 TOLVCMOS25_S12 0.76 0.87 0.96 ns 0.47 0.52 ns LVCMOS, 2.5V, Slow, 16 mA LVCMOS25_S16 TOLVCMOS25_S16 0.41 LVCMOS, 2.5V, Slow, 24 mA LVCMOS25_S24 TOLVCMOS25_S24 0.23 0.26 0.28 ns LVCMOS, 2.5V, Fast, 2 mA LVCMOS25_F2 TOLVCMOS25_F2 3.29 3.78 4.16 ns LVCMOS, 2.5V, Fast, 4 mA LVCMOS25_F4 TOLVCMOS25_F4 1.31 1.50 1.65 ns DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 3 of 4 26 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: DC and Switching Characteristics Table 35: IOB Output Switching Characteristics Standard Adjustments (Continued) Speed Grade IOSTANDARD Attribute Timing Parameter -7 -6 -5 Units LVCMOS, 2.5V, Fast, 6 mA LVCMOS25_F6 TOLVCMOS25_F6 0.62 0.71 0.78 ns LVCMOS, 2.5V, Fast, 8 mA LVCMOS25_F8 TOLVCMOS25_F8 0.20 0.23 0.25 ns LVCMOS, 2.5V, Fast, 12 mA LVCMOS25_F12 TOLVCMOS25_F12 0.00 0.00 0.00 ns LVCMOS, 2.5V, Fast, 16 mA LVCMOS25_F16 TOLVCMOS25_F16 –0.03 –0.03 –0.04 ns LVCMOS, 2.5V, Fast, 24 mA LVCMOS25_F24 TOLVCMOS25_F24 –0.15 –0.15 –0.15 ns LVCMOS, 1.8V, Slow, 2 mA LVCMOS18_S2 TOLVCMOS18_S2 4.20 4.83 5.31 ns LVCMOS, 1.8V, Slow, 4 mA LVCMOS18_S4 TOLVCMOS18_S4 2.76 3.18 3.49 ns LVCMOS, 1.8V, Slow, 6 mA LVCMOS18_S6 TOLVCMOS18_S6 1.91 2.20 2.41 ns LVCMOS, 1.8V, Slow, 8 mA LVCMOS18_S8 TOLVCMOS18_S8 1.92 2.20 2.42 ns LVCMOS, 1.8V, Slow, 12 mA LVCMOS18_S12 TOLVCMOS18_S12 1.58 1.81 1.99 ns LVCMOS, 1.8V, Slow, 16 mA LVCMOS18_S16 TOLVCMOS18_S16 0.76 0.87 0.96 ns LVCMOS, 1.8V, Fast, 2 mA LVCMOS18_F2 TOLVCMOS18_F2 2.34 2.69 2.95 ns LVCMOS, 1.8V, Fast, 4 mA LVCMOS18_F4 TOLVCMOS18_F4 0.71 0.81 0.89 ns LVCMOS, 1.8V, Fast, 6 mA LVCMOS18_F6 TOLVCMOS18_F6 0.50 0.57 0.63 ns LVCMOS, 1.8V, Fast, 8 mA LVCMOS18_F8 TOLVCMOS18_F8 0.48 0.55 0.61 ns LVCMOS, 1.8V, Fast, 12 mA LVCMOS18_F12 TOLVCMOS18_F12 0.30 0.34 0.38 ns LVCMOS, 1.8V, Fast, 16 mA LVCMOS18_F16 TOLVCMOS18_F16 0.11 0.12 0.13 ns LVCMOS, 1.5V, Slow, 2 mA LVCMOS15_S2 TOLVCMOS15_S2 6.19 7.12 7.83 ns LVCMOS, 1.5V, Slow, 4 mA LVCMOS15_S4 TOLVCMOS15_S4 4.28 4.93 5.42 ns LVCMOS, 1.5V, Slow, 6 mA LVCMOS15_S6 TOLVCMOS15_S6 2.81 3.24 3.56 ns Description LVCMOS, 1.5V, Slow, 8 mA LVCMOS15_S8 TOLVCMOS15_S8 2.55 2.93 3.23 ns LVCMOS, 1.5V, Slow, 12 mA LVCMOS15_S12 TOLVCMOS15_S12 1.31 1.51 1.66 ns LVCMOS, 1.5V, Slow, 16 mA LVCMOS15_S16 TOLVCMOS15_S16 1.28 1.47 1.62 ns LVCMOS, 1.5V, Fast, 2 mA LVCMOS15_F2 TOLVCMOS15_F2 2.26 2.60 2.86 ns LVCMOS, 1.5V, Fast, 4 mA LVCMOS15_F4 TOLVCMOS15_F4 1.66 1.90 2.09 ns LVCMOS, 1.5V, Fast, 6 mA LVCMOS15_F6 TOLVCMOS15_F6 0.65 0.75 0.82 ns LVCMOS, 1.5V, Fast, 8 mA LVCMOS15_F8 TOLVCMOS15_F8 0.94 1.08 1.19 ns LVCMOS, 1.5V, Fast, 12 mA LVCMOS15_F12 TOLVCMOS15_F12 0.25 0.29 0.32 ns LVCMOS, 1.5V, Fast, 16 mA LVCMOS15_F16 TOLVCMOS15_F16 0.28 0.32 0.35 ns LVDS_25 TOLVDS_25 0.01 0.01 0.01 ns LVDSEXT_25 TOLVDSEXT_25 0.13 0.15 0.16 ns ULVDS (Ultra LVDS), 2.5V ULVDS_25 TOULVDS_25 0.13 0.14 0.16 ns BLVDS (Bus LVDS), 2.5V BLVDS_25 TOBLVDS_25 0.00 0.00 0.00 ns LDT_25 TOLDT_25 0.13 0.14 0.16 ns LVDS (Low-Voltage Differential Signaling), 2.5V LVDSEXT (LVDS Extended Mode), 2.5V LDT (HyperTransport), 2.5V LVPECL_25 TOLVPECL_25 0.17 0.19 0.21 ns PCI (Peripheral Component Interface), 33 MHz, 3.3V PCI33_3 TOPCI33_3 0.83 0.93 1.01 ns PCI, 66 MHz, 3.3V PCI66_3 TOPCI66_3 0.89 0.97 1.05 ns PCI-X, 133 MHz, 3.3V PCIX TOPCIX 0.92 1.02 1.10 ns GTL (Gunning Transceiver Logic) GTL TOGTL 0.08 0.10 0.11 ns GTLP TOGTLP 0.04 0.05 0.06 ns HSTL_I TOHSTL_I 0.56 0.64 0.70 ns LVPECL (Low-Voltage Positive Electron-Coupled Logic), 2.5V GTL Plus HSTL (High-Speed Transceiver Logic), Class I DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 3 of 4 27 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: DC and Switching Characteristics Table 35: IOB Output Switching Characteristics Standard Adjustments (Continued) Speed Grade IOSTANDARD Attribute Timing Parameter -7 -6 -5 Units HSTL, Class II HSTL_II TOHSTL_II 0.30 0.35 0.38 ns HSTL, Class III HSTL_III TOHSTL_IIII 0.31 0.35 0.39 ns HSTL, Class IV HSTL_IV TOHSTL_IV 0.15 0.17 0.19 ns HSTL, Class I, 1.8V HSTL_I_18 TOHSTL_I_18 0.56 0.64 0.70 ns HSTL, Class II, 1.8V HSTL_II_18 TOHSTL_II_18 0.30 0.35 0.38 ns HSTL, Class III, 1.8V HSTL_III_18 TOHSTL_IIII_18 0.36 0.41 0.45 ns HSTL, Class IV, 1.8V HSTL_IV_18 TOHSTL_IV_18 0.19 0.22 0.24 ns SSTL (Stub Series Terminated Logic), Class I, 1.8V SSTL18_I TOSSTL18_I 0.80 0.92 1.01 ns SSTL, Class II, 1.8V SSTL18_II TOSSTL18_II 0.45 0.51 0.56 ns SSTL, Class I, 2.5V SSTL2_I TOSSTL2_I 0.63 0.72 0.79 ns SSTL, Class II, 2.5V SSTL2_II TOSSTL2_II 0.22 0.25 0.27 ns LVDCI (Low-Voltage Digitally Controlled Impedance), 3.3V LVDCI_33 TOLVDCI_33 0.72 0.83 0.91 ns LVDCI, 2.5V LVDCI_25 TOLVDCI_25 0.56 0.64 0.71 ns LVDCI, 1.8V LVDCI_18 TOLVDCI_18 0.65 0.75 0.82 ns LVDCI, 1.5V LVDCI_15 TOLVDCI_15 1.00 1.15 1.26 ns LVDCI, 2.5V, Half-Impedance LVDCI_DV2_25 TOLVDCI_DV2_25 0.06 0.07 0.08 ns LVDCI, 1.8V, Half-Impedance LVDCI_DV2_18 TOLVDCI_DV2_18 0.30 0.34 0.38 ns LVDCI, 1.5V, Half-Impedance LVDCI_DV2_15 TOLVDCI_DV2_15 0.60 0.69 0.76 ns HSLVDCI (High-Speed Low-Voltage DCI), 1.5V HSLVDCI_15 TOHSLVDCI_15 1.00 1.15 1.26 ns HSLVDCI, 1.8V HSLVDCI_18 TOHSLVDCI_18 0.65 0.75 0.82 ns HSLVDCI, 2.5V HSLVDCI_25 TOHSLVDCI_25 0.56 0.64 0.71 ns HSLVDCI, 3.3V HSLVDCI_33 TOHSLVDCI_33 0.72 0.83 0.91 ns GTL_DCI TOGTL_DCI 1.21 1.39 1.53 ns GTLP_DCI TOGTLP_DCI 0.05 0.06 0.07 ns HSTL (High-Speed Transceiver Logic), Class I, with DCI HSTL_I_DCI TOHSTL_I_DCI 0.55 0.63 0.69 ns HSTL, Class II, with DCI HSTL_II_DCI TOHSTL_II_DCI 0.47 0.54 0.60 ns HSTL, Class III, with DCI HSTL_III_DCI TOHSTL_III_DCI 0.31 0.36 0.40 ns Description GTL (Gunning Transceiver Logic) with DCI GTL Plus with DCI HSTL_IV_DCI TOHSTL_IV_DCI 1.81 2.08 2.29 ns HSTL, Class I, 1.8V, with DCI HSTL_I_DCI_18 TOHSTL_I_DCI_18 0.55 0.63 0.70 ns HSTL, Class II, 1.8V, with DCI HSTL_II_DCI_18 TOHSTL_II_DCI_18 0.24 0.28 0.31 ns HSTL, Class III, 1.8V, with DCI HSTL_III_DCI_18 TOHSTL_III_DCI_18 0.35 0.40 0.44 ns HSTL, Class IV, 1.8V, with DCI HSTL_IV_DCI_18 TOHSTL_IV_DCI_18 1.48 1.70 1.87 ns SSTL (Stub Series Terminated Logic), Class I, 1.8V, with DCI SSTL18_I_DCI TOSSTL18_I_DCI 0.54 0.62 0.68 ns SSTL, Class II, 1.8V, with DCI SSTL18_II_DCI TOSSTL18_II_DCI 0.24 0.28 0.31 ns HSTL, Class IV, with DCI SSTL, Class I, 2.5V, with DCI SSTL2_I_DCI TOSSTL2_I_DCI 0.48 0.56 0.61 ns SSTL, Class II, 2.5V, with DCI SSTL2_II_DCI TOSSTL2_II_DCI 0.48 0.56 0.61 ns DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 3 of 4 28 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: DC and Switching Characteristics I/O Standard Adjustment Measurement Methodology Input Delay Measurements Table 36 shows the test setup parameters used for measuring Input standard adjustments (see Table 33, page 23). Table 36: Input Delay Measurement Methodology IOSTANDARD Attribute Description LVTTL (Low-Voltage Transistor-Transistor Logic) VL (1,2) VH (1,2) VMEAS VREF (1,4,5) (1,3,5) LVTTL 0 3.3 1.65 – LVCMOS (Low-Voltage CMOS), 3.3V LVCMOS33 0 3.3 1.65 – LVCMOS, 2.5V LVCMOS25 0 2.5 1.25 – LVCMOS, 1.8V LVCMOS18 0 1.8 0.9 – LVCMOS, 1.5V LVCMOS15 0 1.5 0.75 – PCI (Peripheral Component Interface), 33 MHz, 3.3V PCI33_3 Per PCI Specification – PCI, 66 MHz, 3.3V PCI66_3 Per PCI Specification – PCIX Per PCI-X Specification – PCI-X, 133 MHz, 3.3V GTL (Gunning Transceiver Logic) GTL Plus HSTL (High-Speed Transceiver Logic), Class I & II HSTL, Class III & IV HSTL, Class I & II, 1.8V HSTL, Class III & IV, 1.8V SSTL (Stub Terminated Tnscvr Logic), Class I & II, 2.5V SSTL, Class I & II, 1.8V LVDS (Low-Voltage Differential Signaling), 2.5V LVDSEXT (LVDS Extended Mode), 2.5V ULVDS (Ultra LVDS), 2.5V LDT (HyperTransport), 2.5V LVPECL (Low-Voltage Positive Electron-Coupled Logic), 2.5V GTL VREF – 0.2 VREF + 0.2 VREF 0.80 GTLP VREF – 0.2 VREF + 0.2 VREF 1.0 HSTL_I, HSTL_II VREF – 0.5 VREF + 0.5 VREF 0.75 HSTL_III, HSTL_IV VREF – 0.5 VREF + 0.5 VREF 0.90 HSTL_I_18, HSTL_II_18 VREF – 0.5 VREF + 0.5 VREF 0.90 HSTL_III_18, HSTL_IV_18 VREF – 0.5 VREF + 0.5 VREF 1.08 SSTL2_I, SSTL2_II VREF – 0.75 VREF + 0.75 VREF 1.25 SSTL18_I, SSTL18_II VREF – 0.5 VREF + 0.5 VREF 0.9 LVDS_25 1.2 – 0.125 1.2 + 0.125 1.2 LVDSEXT_25 1.2 – 0.125 1.2 + 0.125 1.2 ULVDS_25 0.6 – 0.125 0.6 + 0.125 0.6 LDT_25 0.6 – 0.125 0.6 + 0.125 0.6 LVPECL_25 1.15 – 0.3 1.15 + 0.3 1.15 Notes: 1. 2. 3. 4. 5. Input delay measurement methodology parameters for LVDCI and HSLVDCI are the same as for LVCMOS standards of the same voltage. Parameters for all other DCI standards are the same as for the corresponding non-DCI standards. Input waveform switches between VLand VH. Measurements are made at typical, minimum, and maximum VREF values. Reported delays reflect worst case of these measurements. VREF values listed are typical. See Virtex-II Pro Platform FPGA User Guide for min/max specifications. Input voltage level from which measurement starts. Note that this is an input voltage reference that bears no relation to the VREF / VMEAS parameters found in IBIS models and/or noted in Figure 6. DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 3 of 4 29 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: DC and Switching Characteristics Output Delay Measurements 4. Record the time to VMEAS . Output delays are measured using a Tektronix P6245 TDS500/600 probe (< 1 pF) across approximately 4" of FR4 microstrip trace. Standard termination was used for all testing. (See Virtex-II Pro Platform FPGA User Guide for details.) The propagation delay of the 4" trace is characterized separately and subtracted from the final measurement, and is therefore not included in the generalized test setup shown in Figure 6. 5. Compare the results of steps 2 and 4. The increase or decrease in delay should be added to or subtracted from the I/O Output Standard Adjustment value (Table 35) to yield the actual worst-case propagation delay (clock-to-input) of the PCB trace. VREF Measurements and test conditions are reflected in the IBIS models except where the IBIS format precludes it. (IBIS models can be found on the web at http://support.xilinx.com/support/sw_ibis.htm.) Parameters VREF, RREF, CREF, and VMEAS fully describe the test conditions for each I/O standard. The most accurate prediction of propagation delay in any given application can be obtained through IBIS simulation, using the following method: FPGA Output RREF VMEAS (voltage level at which delay measurement is taken) CREF (probe capacitance) 1. Simulate the output driver of choice into the generalized test setup, using values from Table 37. ds083-3_06a_092503 2. Record the time to VMEAS . Figure 6: Generalized Test Setup 3. Simulate the output driver of choice into the actual PCB trace and load, using the appropriate IBIS model or capacitance value to represent the load. Table 37: Output Delay Measurement Methodology IOSTANDARD Attribute RREF (Ω) CREF(1) (pF) VMEAS (V) VREF (V) LVTTL (Low-Voltage Transistor-Transistor Logic) LVTTL (all) 1M 0 1.65 0 LVCMOS (Low-Voltage CMOS ), 3.3V LVCMOS33 1M 0 1.65 0 LVCMOS, 2.5V LVCMOS25 1M 0 1.25 0 LVCMOS, 1.8V LVCMOS18 1M 0 0.9 0 LVCMOS, 1.5V LVCMOS15 1M 0 Description 0.75 0 25 10 (2) 0.94 0 25 10 (2) 2.03 3.3 25 10 (2) 0.94 0 25 10 (2) 2.03 3.3 25 10 (3) 0.94 0 PCIX (falling edge 25 10 (3) 2.03 3.3 GTL 25 0 0.8 1.2 GTLP 25 0 1.0 1.5 HSTL (High-Speed Transceiver Logic), Class I HSTL_I 50 0 VREF 0.75 HSTL, Class II HSTL_II 25 0 VREF 0.75 HSTL, Class III HSTL_III 50 0 0.9 1.5 HSTL, Class IV HSTL_IV 25 0 0.9 1.5 HSTL, Class I, 1.8V HSTL_I_18 50 0 VREF 0.9 HSTL, Class II, 1.8V HSTL_II_18 25 0 VREF 0.9 HSTL, Class III, 1.8V HSTL_III_18 50 0 1.1 1.8 HSTL, Class IV, 1.8V HSTL_IV_18 25 0 1.1 1.8 PCI (Peripheral Component Interface), 33 MHz, 3.3V PCI, 66 MHz, 3.3V PCI-X, 133 MHz, 3.3V PCI33_3 (rising edge) PCI33_3 (falling edge) PCI66_3 (rising edge) PCI66_3 (falling edge) PCIX (rising edge) GTL (Gunning Transceiver Logic) GTL Plus DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 3 of 4 30 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: DC and Switching Characteristics Table 37: Output Delay Measurement Methodology IOSTANDARD Attribute RREF (Ω) CREF(1) (pF) VMEAS (V) VREF (V) SSTL (Stub Series Terminated Logic), Class I, 1.8V SSTL18_I 50 0 VREF 0.9 SSTL, Class II, 1.8V SSTL18_II 25 0 VREF 0.9 SSTL, Class I, 2.5V SSTL2_I 50 0 VREF 1.25 SSTL, Class II, 2.5V SSTL2_II 25 0 VREF 1.25 LVDS (Low-Voltage Differential Signaling), 2.5V LVDS_25 50 0 VREF 1.2 LVDSEXT_25 50 0 VREF 1.2 BLVDS_25 1M 0 1.2 0 LDT_25 50 0 VREF 0.6 LVPECL_25 1M 0 1.23 0 LVDCI/HSLVDCI (Low-Voltage Digitally Controlled Impedance), 3.3V LVDCI_33 1M 0 1.65 0 LVDCI/HSLVDCI, 2.5V LVDCI_25 1M 0 1.25 0 LVDCI/HSLVDCI, 1.8V LVDCI_18 1M 0 0.9 0 LVDCI/HSLVDCI, 1.5V LVDCI_15 1M 0 0.75 0 HSTL_I_DCI, HSTL_II_DCI 50 0 VREF 0.75 HSTL_III_DCI, HSTL_IV_DCI 50 0 0.9 1.5 HSTL_I_DCI_18, HSTL_II_DCI_18 50 0 VREF 0.9 HSTL_III_DCI_18, HSTL_IV_DCI_18 50 0 1.1 1.8 SSTL18_I_DCI, SSTL18_II_DCI 50 0 VREF 0.9 SSTL2_I_DCI, SSTL2_II_DCI 50 0 VREF 1.25 GTL_DCI 50 0 0.8 1.2 GTLP_DCI 50 0 1.0 1.5 Description LVDSEXT (LVDS Extended Mode), 2.5V BLVDS (Bus LVDS), 2.5V LDT (HyperTransport), 2.5V LVPECL (Low-Voltage Positive Electron-Coupled Logic), 2.5V HSTL (High-Speed Transceiver Logic), Class I & II, with DCI HSTL, Class III & IV, with DCI HSTL, Class I & II, 1.8V, with DCI HSTL, Class III & IV, 1.8V, with DCI SSTL (Stub Series Termi.Logic), Class I & II, 1.8V, with DCI SSTL, Class I & II, 2.5V, with DCI GTL (Gunning Transceiver Logic) with DCI GTL Plus with DCI Notes: 1. 2. 3. CREF is the capacitance of the probe, nominally 0 pF. Measured as per PCI specification. Measured as per PCI-X specification. DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 3 of 4 31 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: DC and Switching Characteristics Clock Distribution Switching Characteristics Table 38: Clock Distribution Switching Characteristics Speed Grade Description Symbol -7 -6 -5 Units Global Clock Buffer I input to O output TGIO 0.05 0.057 0.064 ns, max Global Clock Buffer S input Setup/Hold to I1 an I2 inputs TGSI/TGIS 0.49/–0.10 0.54/–0.12 0.60/–0.13 ns, max CLB Switching Characteristics Delays originating at F/G inputs vary slightly according to the input used (see Figure 34 in Module 2). The values listed below are worst-case. Precise values are provided by the timing analyzer. Table 39: CLB Switching Characteristics Speed Grade Symbol -7 -6 -5 Units TILO 0.28 0.32 0.36 ns, max 5-input function: F/G inputs to F5 output TIF5 0.59 0.65 0.73 ns, max 5-input function: F/G inputs to X output TIF5X 0.63 0.70 0.79 ns, max FXINA or FXINB inputs to Y output via MUXFX TIFXY 0.29 0.32 0.36 ns, max TINAFX 0.29 0.32 0.36 ns, max Description Combinatorial Delays 4-input function: F/G inputs to X/Y outputs FXINA input to FX output via MUXFX FXINB input to FX output via MUXFX TINBFX 0.29 0.32 0.36 ns, max SOPIN input to SOPOUT output via ORCY TSOPSOP 0.11 0.13 0.14 ns, max Incremental delay routing through transparent latch to XQ/YQ outputs TIFNCTL 0.23 0.24 0.27 ns, max FF Clock CLK to XQ/YQ outputs TCKO 0.37 0.38 0.42 ns, max Latch Clock CLK to XQ/YQ outputs TCKLO 0.54 0.57 0.64 ns, max BX/BY inputs TDICK/TCKDI 0.21/–0.04 0.24/–0.05 0.27/–0.06 ns, min DY inputs TDYCK/TCKDY 0.00/ 0.12 0.00/ 0.14 0.00/ 0.15 ns, min DX inputs TDXCK/TCKDX 0.00/ 0.12 0.00/ 0.14 0.00/ 0.15 ns, min CE input TCECK/TCKCE 0.27/ 0.01 0.34/ 0.01 0.47/ 0.01 ns, min TRCK/TCKR 0.55/–0.01 0.60/–0.01 0.78/–0.01 ns, min Minimum Pulse Width, High TCH 0.37 0.40 0.45 ns, min Minimum Pulse Width, Low TCL 0.37 0.40 0.45 ns, min TRPW 0.37 0.40 0.45 ns, min Delay from SR/BY inputs to XQ/YQ outputs (asynchronous) TRQ 1.09 1.25 1.40 ns, max Toggle Frequency (for export control) FTOG 1350 1200 1050 MHz Sequential Delays Setup and Hold Times Before/After Clock CLK SR/BY inputs (synchronous) Clock CLK Set/Reset Minimum Pulse Width, SR/BY inputs (asynchronous) Notes: 1. A Zero “0” Hold Time listing indicates no hold time or a negative hold time. Negative values can not be guaranteed “best-case”, but if a “0” is listed, there is no positive hold time. DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 3 of 4 32 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: DC and Switching Characteristics CLB Distributed RAM Switching Characteristics Table 40: CLB Distributed RAM Switching Characteristics Speed Grade Description Symbol -7 -6 -5 Units Clock CLK to X/Y outputs (WE active) in 16 x 1 mode TSHCKO16 1.25 1.38 1.54 ns, max Clock CLK to X/Y outputs (WE active) in 32 x 1 mode TSHCKO32 1.57 1.75 1.95 ns, max Clock CLK to F5 output TSHCKOF5 1.52 1.68 1.88 ns, max BX/BY data inputs (DIN) TDS/TDH 0.38/–0.07 0.41/–0.07 0.46/–0.08 ns, min F/G address inputs TAS/TAH 0.42/ 0.00 0.47/ 0.00 0.52/ 0.00 ns, min TWES/TWEH 0.22/ 0.04 0.24/ 0.05 0.26/ 0.05 ns, min Minimum Pulse Width, High TWPH 0.63 0.72 0.79 ns, min Minimum Pulse Width, Low TWPL 0.63 0.72 0.79 ns, min Minimum clock period to meet address write cycle time TWC 1.25 1.44 1.58 ns, min Sequential Delays Setup and Hold Times Before/After Clock CLK SR input Clock CLK Notes: 1. A Zero “0” Hold Time listing indicates no hold time or a negative hold time. Negative values cannot be guaranteed “best-case”, but if a “0” is listed, there is no positive hold time. CLB Shift Register Switching Characteristics Table 41: CLB Shift Register Switching Characteristics Speed Grade Description Symbol -7 -6 -5 Units Clock CLK to X/Y outputs TREG 2.78 3.12 3.49 ns, max Clock CLK to X/Y outputs TREG32 3.10 3.49 3.90 ns, max Clock CLK to XB output via MC15 LUT output TREGXB 2.84 3.18 3.55 ns, max Clock CLK to YB output via MC15 LUT output TREGYB 2.55 2.88 3.21 ns, max Clock CLK to Shiftout TCKSH 2.50 2.83 3.15 ns, max Clock CLK to F5 output TREGF5 3.05 3.42 3.83 ns, max TSRLDS/TSRLDH 0.70/–0.16 0.77/–0.18 0.98/–0.21 ns, min TWSS/TWSH 0.27/ 0.01 0.34/ 0.01 0.47/ 0.01 ns, min Minimum Pulse Width, High TSRPH 0.63 0.72 0.79 ns, min Minimum Pulse Width, Low TSRPL 0.63 0.72 0.79 ns, min Sequential Delays Setup and Hold Times Before/After Clock CLK BX/BY data inputs (DIN) SR input Clock CLK Notes: 1. A Zero “0” Hold Time listing indicates no hold time or a negative hold time. Negative values cannot be guaranteed “best-case”, but if a “0” is listed, there is no positive hold time. DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 3 of 4 33 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: DC and Switching Characteristics Multiplier Switching Characteristics Table 42: Multiplier Switching Characteristics Speed Grade Symbol -7 -6 -5 Units Input to Pin35 TMULT_P35 4.08 4.64 5.19 ns, max Input to Pin34 TMULT_P34 3.99 4.55 5.09 ns, max Input to Pin33 TMULT_P33 3.90 4.45 4.99 ns, max Input to Pin32 TMULT_P32 3.80 4.36 4.88 ns, max Input to Pin31 TMULT_P31 3.71 4.27 4.78 ns, max Input to Pin30 TMULT_P30 3.62 4.17 4.67 ns, max Input to Pin29 TMULT_P29 3.53 4.08 4.57 ns, max Input to Pin28 TMULT_P28 3.43 3.99 4.46 ns, max Input to Pin27 TMULT_P27 3.34 3.89 4.36 ns, max Input to Pin26 TMULT_P26 3.25 3.80 4.26 ns, max Input to Pin25 TMULT_P25 3.16 3.71 4.15 ns, max Input to Pin24 TMULT_P24 3.06 3.61 4.05 ns, max Input to Pin23 TMULT_P23 2.97 3.52 3.94 ns, max Input to Pin22 TMULT_P22 2.88 3.43 3.84 ns, max Input to Pin21 TMULT_P21 2.79 3.34 3.73 ns, max Input to Pin20 TMULT_P20 2.70 3.24 3.63 ns, max Input to Pin19 TMULT_P19 2.60 3.15 3.53 ns, max Input to Pin18 TMULT_P18 2.51 3.06 3.42 ns, max Input to Pin17 TMULT_P17 2.42 2.96 3.32 ns, max Input to Pin16 TMULT_P16 2.34 2.86 3.21 ns, max Input to Pin15 TMULT_P15 2.27 2.76 3.09 ns, max Input to Pin14 TMULT_P14 2.19 2.67 2.98 ns, max Input to Pin13 TMULT_P13 2.12 2.57 2.87 ns, max Input to Pin12 TMULT_P12 2.04 2.47 2.76 ns, max Input to Pin11 TMULT_P11 1.96 2.37 2.65 ns, max Input to Pin10 TMULT_P10 1.89 2.27 2.54 ns, max Input to Pin9 TMULT_P9 1.81 2.17 2.43 ns, max Input to Pin8 TMULT_P8 1.74 2.07 2.32 ns, max Input to Pin7 TMULT_P7 1.66 1.97 2.21 ns, max Input to Pin6 TMULT_P6 1.59 1.87 2.09 ns, max Input to Pin5 TMULT_P5 1.51 1.77 1.98 ns, max Input to Pin4 TMULT_P4 1.44 1.67 1.87 ns, max Input to Pin3 TMULT_P3 1.36 1.57 1.76 ns, max Input to Pin2 TMULT_P2 1.28 1.47 1.65 ns, max Input to Pin1 TMULT_P1 1.21 1.37 1.54 ns, max Input to Pin0 TMULT_P0 1.13 1.27 1.43 ns, max Description Propagation Delay to Output Pin DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 3 of 4 34 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: DC and Switching Characteristics Table 43: Pipelined Multiplier Switching Characteristics Speed Grade Description Symbol -7 -6 -5 Units TMULIDCK/TMULCKID 1.86/ 0.00 2.06/ 0.00 2.31/ 0.00 ns, max TMULIDCK_CE/TMULCKID_CE 0.23/ 0.00 0.25/ 0.00 0.28/ 0.00 ns, max TMULIDCK_RST/TMULCKID_RST 0.21/–0.09 0.24/–0.09 0.26/–0.10 ns, max Setup and Hold Times Before/After Clock Data Inputs Clock Enable Reset Clock to Output Pin Clock to Pin35 TMULTCK_P35 2.45 2.92 3.27 ns, max Clock to Pin34 TMULTCK_P34 2.36 2.82 3.16 ns, max Clock to Pin33 TMULTCK_P33 2.28 2.72 3.05 ns, max Clock to Pin32 TMULTCK_P32 2.20 2.62 2.93 ns, max Clock to Pin31 TMULTCK_P31 2.12 2.52 2.82 ns, max Clock to Pin30 TMULTCK_P30 2.03 2.42 2.71 ns, max Clock to Pin29 TMULTCK_P29 1.95 2.32 2.60 ns, max Clock to Pin28 TMULTCK_P28 1.87 2.22 2.48 ns, max Clock to Pin27 TMULTCK_P27 1.79 2.12 2.37 ns, max Clock to Pin26 TMULTCK_P26 1.70 2.02 2.26 ns, max Clock to Pin25 TMULTCK_P25 1.62 1.92 2.15 ns, max Clock to Pin24 TMULTCK_P24 1.54 1.82 2.03 ns, max Clock to Pin23 TMULTCK_P23 1.46 1.71 1.92 ns, max Clock to Pin22 TMULTCK_P22 1.37 1.61 1.81 ns, max Clock to Pin21 TMULTCK_P21 1.29 1.51 1.69 ns, max Clock to Pin20 TMULTCK_P20 1.21 1.41 1.58 ns, max Clock to Pin19 TMULTCK_P19 1.13 1.31 1.47 ns, max Clock to Pin18 TMULTCK_P18 1.04 1.21 1.36 ns, max Clock to Pin17 TMULTCK_P17 0.96 1.11 1.24 ns, max Clock to Pin16 TMULTCK_P16 0.88 1.01 1.13 ns, max Clock to Pin15 TMULTCK_P15 0.80 0.91 1.02 ns, max Clock to Pin14 TMULTCK_P14 0.71 0.81 0.91 ns, max Clock to Pin13 TMULTCK_P13 0.63 0.71 0.79 ns, max Clock to Pin12 TMULTCK_P12 0.63 0.71 0.79 ns, max Clock to Pin11 TMULTCK_P11 0.63 0.71 0.79 ns, max Clock to Pin10 TMULTCK_P10 0.63 0.71 0.79 ns, max Clock to Pin9 TMULTCK_P9 0.63 0.71 0.79 ns, max Clock to Pin8 TMULTCK_P8 0.63 0.71 0.79 ns, max Clock to Pin7 TMULTCK_P7 0.63 0.71 0.79 ns, max Clock to Pin6 TMULTCK_P6 0.63 0.71 0.79 ns, max Clock to Pin5 TMULTCK_P5 0.63 0.71 0.79 ns, max Clock to Pin4 TMULTCK_P4 0.63 0.71 0.79 ns, max Clock to Pin3 TMULTCK_P3 0.63 0.71 0.79 ns, max Clock to Pin2 TMULTCK_P2 0.63 0.71 0.79 ns, max Clock to Pin1 TMULTCK_P1 0.63 0.71 0.79 ns, max Clock to Pin0 TMULTCK_P0 0.63 0.71 0.79 ns, max DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 3 of 4 35 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: DC and Switching Characteristics Block SelectRAM+ Switching Characteristics Table 44: Block SelectRAM+ Switching Characteristics Speed Grade Description Symbol -7 -6 -5 Units TBCKO 1.41 1.50 1.68 ns, max ADDR inputs TBACK/TBCKA 0.27/ 0.22 0.31/ 0.25 0.35/ 0.28 ns, min DIN inputs TBDCK/TBCKD 0.20/ 0.22 0.23/ 0.25 0.26/ 0.28 ns, min EN input TBECK/TBCKE 0.28/ 0.00 0.32/ 0.00 0.35/ 0.00 ns, min RST input TBRCK/TBCKR 0.28/ 0.00 0.32/ 0.00 0.35/ 0.00 ns, min WEN input TBWCK/TBCKW 0.33/ 0.00 0.35/ 0.00 0.39/ 0.00 ns, min CLKA to CLKB setup time for different ports TBCCS 1.0 1.0 1.0 ns, min Minimum Pulse Width, High TBPWH 1.17 1.30 1.50 ns, min Minimum Pulse Width, Low TBPWL 1.17 1.30 1.50 ns, min Sequential Delays Clock CLK to DOUT output Setup and Hold Times Before Clock CLK Clock CLK Notes: 1. A Zero “0” Hold Time listing indicates no hold time or a negative hold time. Negative values can not be guaranteed “best-case”, but if a “0” is listed, there is no positive hold time. TBUF Switching Characteristics Table 45: TBUF Switching Characteristics Speed Grade Description Symbol -7 -6 -5 Units TIO 0.88 1.01 1.12 ns, max TRI input to OUT output high-impedance TOFF 0.48 0.55 0.61 ns, max TRI input to valid data on OUT output TON 0.48 0.55 0.61 ns, max Combinatorial Delays IN input to OUT output DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 3 of 4 36 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: DC and Switching Characteristics Configuration Timing Configuration Memory Clearing Parameters Power-up timing of configuration signals is shown in Figure 7; corresponding timing characteristics are listed in Table 46. VCC 1 TPOR PROG_B 2 TPL INIT_B 3 TICCK CCLK (Output or Input) M0, M1, M2* (Required) *Can be either 0 or 1, but must not toggle during and after configuration. ds083-3_07_012004 Figure 7: Configuration Power-Up Timing Table 46: Power-Up Timing Characteristics Figure References Symbol Value Units Power-on reset 1 TPOR TPL + 2 ms, max Program latency 2 TPL 4 μs per frame, max CCLK (output) delay 3 TICCK 0.25 μs, min 4.00 μs, max 300 ns, min Description Program pulse width TPROGRAM Notes: 1. The M2, M1, and M0 mode pins should be set at a constant DC voltage level, either through pull-up or pull-down resistors, or tied directly to ground or VCCAUX. The mode pins should not be toggled during and after configuration. DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 3 of 4 37 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: DC and Switching Characteristics Master/Slave Serial Mode Parameters Clock timing for Slave Serial configuration programming is shown in Figure 8, with Master Serial clock timing shown in Figure 9. Programming parameters for both Slave and Master modes are given in Table 47. Serial DIN 1 TDCC 2 TCCD 5 TCCL CCLK 4 TCCH 3 TCCO Serial DOUT ds083-3_08_111104 Figure 8: Slave Serial Mode Timing Sequence CCLK (Output) 2 TCKDS 1 TDSCK Serial DIN Serial DOUT ds083-3_09_111104 Figure 9: Master Serial Mode Timing Sequence . Table 47: Master/Slave Serial Mode Timing Characteristics Figure References Symbol Value Units DIN setup/hold, slave mode (Figure 8) 1/2 TDCC/TCCD 5.0/0.0 ns, min DIN setup/hold, master mode (Figure 9) 1/2 TDSCK/TCKDS 5.0/0.0 ns, min DOUT 3 TCCO 12.0 ns, max High time 4 TCCH 5.0 ns, min Low time 5 TCCL 5.0 ns, min FCC_STARTUP 50 MHz, max 66 (1) MHz, max Description CCLK Maximum start-up frequency Maximum frequency FCC_SERIAL Frequency tolerance, master mode with respect to nominal +45% –30% Notes: 1. If no provision is made in the design to adjust the frequency of CCLK, FCC_SERIAL should not exceed FCC_STARTUP. DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 3 of 4 38 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: DC and Switching Characteristics Master/Slave SelectMAP Parameters Figure 10 is a generic timing diagram for data loading using SelectMAP. For other data loading diagrams, refer to the Virtex-II Pro Platform FPGA User Guide. CCLK 3 TSMCSCC CS_B 4 5 TSMCCW RDWR_B TSMCCCS 6 2 1 TSMDCC TSMWCC TSMCCD DATA[0:7] TSMCKBY 7 BUSY No Write Write No Write Write ds083-3_10_012004 Figure 10: SelectMAP Mode Data Loading Sequence (Generic) Table 48: SelectMAP Mode Write Timing Characteristics Description DATA[0:7] setup/hold CCLK Figure References Device Value Units XC2VP2 5.0/0.0 ns, min XC2VP4 5.0/0.0 ns, min XC2VP7 5.0/0.0 ns, min XC2VP20 5.0/0.0 ns, min XC2VPX20 5.0/0.0 ns, min 5.0/0.0 ns, min XC2VP40 5.0/0.0 ns, min XC2VP50 5.0/0.0 ns, min XC2VP70 6.0/0.0 ns, min XC2VPX70 6.0/0.0 ns, min XC2VP100 7.5/0.0 ns, min 1/2 XC2VP30 Symbol TSMDCC/TSMCCD CS_B setup/hold 3/4 TSMCSCC/TSMCCCS 7.0/0.0 ns, min RDWR_B setup/hold 5/6 TSMCCW/TSMWCC 7.0/0.0 ns, min 7 TSMCKBY 12.0 ns, max FCC_STARTUP 50 MHz, max FCC_SELECTMAP 50 MHz, max FCCNH 50 MHz, max BUSY propagation delay Maximum start-up frequency Maximum frequency Maximum frequency with no handshake DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 3 of 4 39 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: DC and Switching Characteristics JTAG Test Access Port Switching Characteristics Characterization data for some of the most commonly requested timing parameters shown in Figure 11 is listed in Table 49. FI TMS TDI 1 TTAPTCK 2 TTCKTAP TCK 3 TTCKTDO TDO Data Valid Data to be captured Data Valid Data to be driven out ds083-3_11_012104 Figure 11: Virtex-II Pro Boundary Scan Port Timing Waveforms Table 49: Boundary-Scan Port Timing Specifications Figure References Symbol Value Units TMS and TDI setup time 1 TTAPTCK 5.5 ns, min TMS and TDI hold times 2 TTCKTAP 2.0 ns, min Falling edge to TDO output valid 3 TTCKTDO 11.0 ns, max FTCK 33.0 MHz, max Description TCK Maximum frequency DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 3 of 4 40 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: DC and Switching Characteristics Virtex-II Pro Pin-to-Pin Output Parameter Guidelines All devices are 100% functionally tested. Listed below are representative values for typical pin locations and normal clock loading. Values are expressed in nanoseconds unless otherwise noted. Global Clock Input to Output Delay for LVCMOS25, 12 mA, Fast Slew Rate, With DCM Table 50: Global Clock Input to Output Delay for LVCMOS25, 12 mA, Fast Slew Rate, With DCM Speed Grade Description Symbol Device -7 -6 -5 Units TICKOFDCM XC2VP2 1.55 1.59 1.62 ns XC2VP4 1.58 1.61 1.65 ns XC2VP7 1.63 1.68 1.72 ns XC2VP20 1.68 1.74 1.79 ns XC2VPX20 1.68 1.74 1.79 ns XC2VP30 1.68 1.75 1.80 ns XC2VP40 1.71 1.86 1.92 ns XC2VP50 1.80 2.00 2.07 ns XC2VP70 1.87 2.07 2.24 ns XC2VPX70 1.87 2.07 2.24 ns XC2VP100 N/A 2.38 2.45 ns LVCMOS25 Global Clock Input to Output Delay using Output Flip-flop, 12 mA, Fast Slew Rate, with DCM. For data output with different standards, adjust the delays with the values shown in IOB Output Switching Characteristics Standard Adjustments, page 26. Global Clock and OFF with DCM Notes: 1. Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net. 2. Output timing is measured at 50% VCC threshold with test setup shown in Figure 6. For other I/O standards, see Table 37. 3. DCM output jitter is already included in the timing calculation. DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 3 of 4 41 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: DC and Switching Characteristics Global Clock Input to Output Delay for LVCMOS25, 12 mA, Fast Slew Rate, Without DCM Table 51: Global Clock Input to Output Delay for LVCMOS25, 12 mA, Fast Slew Rate, Without DCM Speed Grade Description Symbol Device -7 -6 -5 Units TICKOF XC2VP2 3.19 3.52 3.82 ns XC2VP4 3.39 3.91 4.27 ns XC2VP7 3.59 4.00 4.36 ns XC2VP20 3.62 4.08 4.46 ns XC2VPX20 3.62 4.08 4.46 ns XC2VP30 3.73 4.12 4.50 ns XC2VP40 3.89 4.28 4.67 ns XC2VP50 4.00 4.43 4.84 ns XC2VP70 4.38 4.87 5.33 ns XC2VPX70 4.38 4.87 5.33 ns XC2VP100 N/A 5.32 5.82 ns LVCMOS25 Global Clock Input to Output Delay using Output Flip-flop, 12 mA, Fast Slew Rate, without DCM. For data output with different standards, adjust the delays with the values shown in IOB Output Switching Characteristics Standard Adjustments, page 26. Global Clock and OFF without DCM Notes: 1. Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net. 2. Output timing is measured at 50% VCC threshold with test setup shown in Figure 6. For other I/O standards, see Table 37. 3. DCM output jitter is already included in the timing calculation. DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 3 of 4 42 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: DC and Switching Characteristics Virtex-II Pro Pin-to-Pin Input Parameter Guidelines All devices are 100% functionally tested. Listed below are representative values for typical pin locations and normal clock loading. Values are expressed in nanoseconds unless otherwise noted Global Clock Set-Up and Hold for LVCMOS25 Standard, With DCM Table 52: Global Clock Set-Up and Hold for LVCMOS25 Standard, With DCM Speed Grade Description Symbol Device -7 -6 -5 Units TPSDCM/TPHDCM XC2VP2 1.54/–0.58 1.54/–0.57 1.54/–0.56 ns XC2VP4 1.59/–0.59 1.59/–0.58 1.59/–0.57 ns XC2VP7 1.66/–0.61 1.66/–0.59 1.66/–0.57 ns XC2VP20 1.68/–0.53 1.68/–0.53 1.68/–0.50 ns XC2VPX20 1.68/–0.53 1.68/–0.53 1.68/–0.50 ns XC2VP30 1.81/–0.74 1.81/–0.74 1.81/–0.71 ns XC2VP40 1.85/–0.65 1.85/–0.64 1.85/–0.60 ns XC2VP50 1.85/–0.57 1.85/–0.54 1.85/–0.50 ns XC2VP70 1.86/–0.45 1.86/–0.39 1.86/–0.30 ns XC2VPX70 1.86/–0.45 1.86/–0.39 1.86/–0.30 ns XC2VP100 N/A 1.86/–0.35 1.87/–0.28 ns Input Setup and Hold Time Relative to Global Clock Input Signal for LVCMOS25 Standard.(1) For data input with different standards, adjust the setup time delay by the values shown in IOB Input Switching Characteristics Standard Adjustments, page 23. No Delay Global Clock and IFF (2) with DCM Notes: 1. Setup time is measured relative to the Global Clock input signal with the fastest route and the lightest load. Hold time is measured relative to the Global Clock input signal with the slowest route and heaviest load. 2. These measurements include: - CLK0 and CLK180 DCM jitter Worst-case duty-cycle distortion using CLK0 and CLK180, TDCD_CLK180 . 3. IFF = Input Flip-Flop or Latch DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 3 of 4 43 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: DC and Switching Characteristics Global Clock Set-Up and Hold for LVCMOS25 Standard, Without DCM , Table 53: Global Clock Set-Up and Hold for LVCMOS25 Standard, Without DCM Speed Grade Description Symbol Device -7 -6 -5 Units TPSFD/TPHFD XC2VP2 1.80/–0.44 1.85/–0.41 1.96/–0.43 XC2VP4 1.82/–0.53 1.83/–0.31 1.90/–0.29 ns XC2VP7 1.80/–0.34 1.81/–0.24 1.88/–0.19 ns XC2VP20 1.76/–0.24 1.83/–0.17 1.92/–0.15 ns XC2VPX20 1.76/–0.24 1.83/–0.17 1.92/–0.15 ns XC2VP30 1.75/–0.22 1.92/–0.26 1.99/–0.23 ns XC2VP40 2.25/–0.54 2.40/–0.56 2.49/–0.54 ns XC2VP50 2.93/–1.02 2.98/–0.93 3.00/–0.83 ns XC2VP70 2.79/–0.72 2.79/–0.55 2.78/–0.41 ns XC2VPX70 2.79/–0.72 2.79/–0.55 2.78/–0.41 ns XC2VP100 N/A 5.58/–2.35 5.60/–2.35 ns Input Setup and Hold Time Relative to Global Clock Input Signal for LVCMOS25 Standard. For data input with different standards, adjust the setup time delay by the values shown in IOB Input Switching Characteristics Standard Adjustments, page 23. Full Delay Global Clock and IFF without DCM ns Notes: 1. IFF = Input Flip-Flop or Latch 2. Setup time is measured relative to the Global Clock input signal with the fastest route and the lightest load. Hold time is measured relative to the Global Clock input signal with the slowest route and heaviest load. 3. A Zero “0” Hold Time listing indicates no hold time or a negative hold time. Negative values can not be guaranteed “best-case”, but if a “0” is listed, there is no positive hold time. DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 3 of 4 44 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: DC and Switching Characteristics DCM Timing Parameters All devices are 100% functionally tested. Because of the difficulty in directly measuring many internal timing parameters, those parameters are derived from benchmark timing patterns. The following guidelines reflect worst-case values across the recommended operating conditions. All output jitter and phase specifications are determined through statistical measurement at the package pins. Operating Frequency Ranges e Table 54: Operating Frequency Ranges Speed Grade Description Symbol Constraints -7 -6 -5 Units Output Clocks (Low Frequency Mode) CLK0, CLK90, CLK180, CLK270 CLK2X, CLK2X180 (5,6) CLKDV CLKFX, CLKFX180 CLKOUT_FREQ_1X_LF_MIN 24.00 24.00 24.00 MHz CLKOUT_FREQ_1X_LF_MAX 270.00 210.00 180.00 MHz CLKOUT_FREQ_2X_LF_MIN 48.00 48.00 48.00 MHz CLKOUT_FREQ_2X_LF_MAX 450.00 420.00 360.00 MHz CLKOUT_FREQ_DV_LF_MIN 1.50 1.50 1.50 MHz CLKOUT_FREQ_DV_LF_MAX 140.00 140.00 120.00 MHz CLKOUT_FREQ_FX_LF_MIN 24.00 24.00 24.00 MHz CLKOUT_FREQ_FX_LF_MAX 240.00 240.00 210.00 MHz Input Clocks (Low Frequency Mode) CLKIN (using DLL outputs) (1,3,4) CLKIN (using CLKFX outputs) (2,3,4) CLKIN_FREQ_DLL_LF_MIN 24.00 24.00 24.00 MHz CLKIN_FREQ_DLL_LF_MAX 270.00 210.00 180.00 MHz 1.00 1.00 1.00 MHz 240.00 240.00 210.00 MHz 0.01 0.01 0.01 MHz 450.00 420.00 360.00 MHz CLKIN_FREQ_FX_LF_MIN CLKIN_FREQ_FX_LF_MAX PSCLK PSCLK_FREQ_LF_MIN PSCLK_FREQ_LF_MAX Output Clocks (High Frequency Mode) CLK0, CLK180 (6) CLKDV CLKOUT_FREQ_1X_HF_MIN 48.00 48.00 48.00 MHz CLKOUT_FREQ_1X_HF_MAX 450.00 420.00 360.00 MHz 3.00 3.00 3.00 MHz CLKOUT_FREQ_DV_HF_MAX 280.00 280.00 240.00 MHz CLKOUT_FREQ_FX_HF_MIN 210.00 210.00 210.00 MHz CLKOUT_FREQ_FX_HF_MAX 320.00 320.00 270.00 MHz CLKIN_FREQ_DLL_HF_MIN 48.00 48.00 48.00 MHz CLKIN_FREQ_DLL_HF_MAX 450.00 420.00 360.00 MHz CLKOUT_FREQ_DV_HF_MIN CLKFX, CLKFX180 Input Clocks (High Frequency Mode) CLKIN (using DLL outputs) (1,3,4,6) CLKIN (using CLKFX outputs) (2,3,4) PSCLK CLKIN_FREQ_FX_HF_MIN 50.00 50.00 50.00 MHz CLKIN_FREQ_FX_HF_MAX 320.00 320.00 270.00 MHz 0.01 0.01 0.01 MHz 450.00 420.00 360.00 MHz PSCLK_FREQ_HF_MIN PSCLK_FREQ_HF_MAX Notes: 1. “DLL outputs” is used here to describe the outputs: CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, and CLKDV. 2. If both DLL and CLKFX outputs are used, follow the more restrictive specification. 3. If the CLKIN_DIVIDE_BY_2 attribute of the DCM is used, then double these values. 4. If the CLKIN_DIVIDE_BY_2 attribute of the DCM is used and CLKIN frequency > 400 MHz, CLKIN duty cycle must be within ±5% (45/55 to 55/45). 5. CLK2X and CLK2X180 may not be used as the input to the CLKFB pin. See the Virtex-II Pro Platform FPGA User Guide for more information. 6. For the XC2VP100 -6 device only, clock macros for corner DCMS (X0Y0, X5Y0, X0Y1, X5Y1) are required to operate at maximum clock frequency. See XAPP685 for implementation examples. DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 3 of 4 45 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: DC and Switching Characteristics Input Clock Tolerances Table 55: Input Clock Tolerances Speed Grade –7 Constraints Description Symbol FCLKIN Min –6 Max Min –5 Max Min Max Units Input Clock Low/High Pulse Width PSCLK PSCLK and CLKIN(3) PSCLK_PULSE PSCLK_PULSE and CLKIN_PULSE < 1MHz 25.00 25.00 25.00 ns 1 – 10 MHz 25.00 25.00 25.00 ns 10 – 25 MHz 10.00 10.00 10.00 ns 25 – 50 MHz 5.00 5.00 5.00 ns 50 – 100 MHz 3.00 3.00 3.00 ns 100 – 150 MHz 2.40 2.40 2.40 ns 150 – 200 MHz 2.00 2.00 2.00 ns 200 – 250 MHz 1.80 1.80 1.80 ns 250 – 300 MHz 1.50 1.50 1.50 ns 300 – 350 MHz 1.30 1.30 1.30 ns 350 – 400 MHz 1.15 1.15 1.15 ns > 400 MHz 1.05 1.05 1.05 ns Input Clock Cycle-Cycle Jitter (Low Frequency Mode) CLKIN (using DLL outputs)(1) CLKIN_CYC_JITT_DLL_LF ±300 ±300 ±300 ps CLKIN (using CLKFX outputs)(2) CLKIN_CYC_JITT_FX_LF ±300 ±300 ±300 ps Input Clock Cycle-Cycle Jitter (High Frequency Mode) CLKIN (using DLL outputs)(1) CLKIN_CYC_JITT_DLL_HF ±150 ±150 ±150 ps CLKIN (using CLKFX outputs)(2) CLKIN_CYC_JITT_FX_HF ±150 ±150 ±150 ps Input Clock Period Jitter (Low Frequency Mode) CLKIN (using DLL outputs)(1) CLKIN_PER_JITT_DLL_LF ±1 ±1 ±1 ns CLKIN (using CLKFX outputs)(2) CLKIN_PER_JITT_FX_LF ±1 ±1 ±1 ns Input Clock Period Jitter (High Frequency Mode) CLKIN (using DLL outputs)(1) CLKIN_PER_JITT_DLL_HF ±1 ±1 ±1 ns CLKIN (using CLKFX outputs)(2) CLKIN_PER_JITT_FX_HF ±1 ±1 ±1 ns ±1 ±1 ±1 ns Feedback Clock Path Delay Variation CLKFB off-chip feedback CLKFB_DELAY_VAR_EXT Notes: 1. 2. 3. “DLL outputs” is used here to describe the outputs: CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, and CLKDV. If both DLL and CLKFX outputs are used, follow the more restrictive specification. If DCM phase shift feature is used and CLKIN frequency > 200 Mhz, CLKIN duty cycle must be within ±5% (45/55 to 55/45). DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 3 of 4 46 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: DC and Switching Characteristics Output Clock Jitter Table 56: Output Clock Jitter Speed Grade Description Symbol Constraints –7 –6 –5 Units Clock Synthesis Period Jitter CLK0 CLKOUT_PER_JITT_0 ±100 ±100 ±100 ps CLK90 CLKOUT_PER_JITT_90 ±150 ±150 ±150 ps CLK180 CLKOUT_PER_JITT_180 ±150 ±150 ±150 ps CLK270 CLKOUT_PER_JITT_270 ±150 ±150 ±150 ps CLK2X, CLK2X180 CLKOUT_PER_JITT_2X ±200 ±200 ±200 ps CLKDV (integer division) CLKOUT_PER_JITT_DV1 ±150 ±150 ±150 ps CLKDV (non-integer division) CLKOUT_PER_JITT_DV2 ±300 ±300 ±300 ps CLKFX, CLKFX180 CLKOUT_PER_JITT_FX Note (1) Note (1) Note (1) ps Notes: 1. Use the Jitter Calculator on the Xilinx website (http://www.xilinx.com/applications/web_ds_v2/jitter_calc.htm) for CLKFX and CLKFX180 output jitter. Output Clock Phase Alignment Table 57: Output Clock Phase Alignment Speed Grade Description Symbol Constraints –7 –6 –5 Units ±50 ±50 ±50 ps CLKOUT_PHASE ±140 ±140 ±140 ps DLL outputs(1) CLKOUT_DUTY_CYCLE_DLL(2) ±150 ±150 ±150 ps CLKFX outputs CLKOUT_DUTY_CYCLE_FX ±100 ±100 ±100 ps Phase Offset Between CLKIN and CLKFB CLKIN/CLKFB CLKIN_CLKFB_PHASE Phase Offset Between Any DCM Outputs All CLK* outputs Duty Cycle Precision Notes: 1. “DLL outputs” is used here to describe the outputs: CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, and CLKDV. 2. CLKOUT_DUTY_CYCLE_DLL applies to the 1X clock outputs (CLK0, CLK90, CLK180, and CLK270) only if DUTY_CYCLE_CORRECTION = TRUE. 3. Specification also applies to PSCLK. DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 3 of 4 47 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: DC and Switching Characteristics Miscellaneous Timing Parameters Table 58: Miscellaneous Timing Parameters Speed Grade Description Constraints FCLKIN Symbol -7 -6 -5 Units Time Required to Achieve LOCK Using DLL outputs (1) LOCK_DLL: LOCK_DLL_60 > 60MHz 20.00 20.00 20.00 us LOCK_DLL_50_60 50 - 60 MHz 25.00 25.00 25.00 us LOCK_DLL_40_50 40 - 50 MHz 50.00 50.00 50.00 us LOCK_DLL_30_40 30 - 40 MHz 90.00 90.00 90.00 us LOCK_DLL_24_30 24 - 30 MHz 120.00 120.00 120.00 us LOCK_FX_MIN 10.00 10.00 10.00 ms LOCK_FX_MAX 10.00 10.00 10.00 ms LOCK_DLL_FINE_SHIFT 50.00 50.00 50.00 us FINE_SHIFT_RANGE 10.00 10.00 10.00 ns DCM_TAP_MIN 30.00 30.00 30.00 ps DCM_TAP_MAX 50.00 50.00 50.00 ps Using CLKFX outputs Additional lock time with fine phase shifting Fine Phase Shifting Absolute shifting range Delay Lines Tap delay resolution Notes: 1. “DLL outputs” is used here to describe the outputs: CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, and CLKDV. Frequency Synthesis Table 59: Frequency Synthesis Attribute Min Max CLKFX_MULTIPLY 2 32 CLKFX_DIVIDE 1 32 Parameter Cross-Reference Table 60: Parameter Cross-Reference Libraries Guide Data Sheet DLL_CLKOUT_{MIN|MAX}_LF CLKOUT_FREQ_{1X|2X|DV}_LF DFS_CLKOUT_{MIN|MAX}_LF CLKOUT_FREQ_FX_LF DLL_CLKIN_{MIN|MAX}_LF CLKIN_FREQ_DLL_LF DFS_CLKIN_{MIN|MAX}_LF CLKIN_FREQ_FX_LF DLL_CLKOUT_{MIN|MAX}_HF CLKOUT_FREQ_{1X|DV}_HF DFS_CLKOUT_{MIN|MAX}_HF CLKOUT_FREQ_FX_HF DLL_CLKIN_{MIN|MAX}_HF CLKIN_FREQ_DLL_HF DFS_CLKIN_{MIN|MAX}_HF CLKIN_FREQ_FX_HF DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 3 of 4 48 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: DC and Switching Characteristics Source-Synchronous Switching Characteristics The parameters in this section provide the necessary values for calculating timing budgets for Virtex-II Pro source-synchronous transmitter and receiver data-valid windows. Table 61: Duty Cycle Distortion and Clock-Tree Skew Speed Grade Description Duty Cycle Distortion (1) Symbol Device TDCD_LOCAL –7 –6 –5 Units 0.10 0.10 0.20 ns 0.10 0.11 0.13 ns XC2VP2 0.13 0.13 0.13 ns XC2VP4 0.13 0.13 0.13 ns XC2VP7 0.13 0.13 0.13 ns XC2VP20 0.20 0.21 0.22 ns XC2VPX20 0.20 0.21 0.22 ns XC2VP30 0.20 0.22 0.24 ns XC2VP40 0.33 0.34 0.35 ns XC2VP50 0.40 0.41 0.42 ns XC2VP70 0.54 0.59 0.64 ns XC2VPX70 0.54 0.59 0.64 ns XC2VP100 N/A 0.79 0.87 ns All TDCD_CLK180 Clock Tree Skew (2) TCKSKEW Notes: 1. These parameters represent the worst-case duty cycle distortion observable at the pins of the device using LVDS output buffers. For cases where other I/O standards are used, IBIS can be used to calculate any additional duty cycle distortion that might be caused by asymmetrical rise/fall times. TDCD_LOCAL applies to cases where the dedicated path from the DCM to the BUFG is bypassed and where local (IOB) inversion is used to provide the negative-edge clock to the DDR element in the I/O. Users must follow the implementation guidelines contained in XAPP685 for these specifications to apply. TDCD_CLK180 applies to cases where the CLK180 output of the DCM is used to provide the negative-edge clock to the DDR element in the I/O. 2. This value represents the worst-case clock-tree skew observable between sequential I/O elements. Significantly less clock-tree skew exists for I/O registers that are close to each other and fed by the same or adjacent clock-tree branches. Use the Xilinx FPGA_Editor and Timing Analyzer tools to evaluate clock skew specific to your application. DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 3 of 4 49 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: DC and Switching Characteristics Table 62: Package Skew Description Symbol Package Skew(1) Device/Package TPKGSKEW Value Units XC2VP2FF672 104 ps XC2VP4FF672 102 ps XC2VP7FF672 92 ps XC2VP7FF896 101 ps XC2VP20FF896 93 ps XC2VPX20FF896 93 ps XC2VP20FF1152 106 ps XC2VP30FF896 86 ps XC2VP30FF1152 112 ps XC2VP40FF1152 92 ps XC2VP40FF1148 100 ps XC2VP50FF1152 88 ps XC2VP50FF1148 101 ps XC2VP50FF1517 97 ps XC2VP70FF1517 95 ps XC2VP70FF1704 101 ps XC2VPX70FF1704 101 ps XC2VP100FF1704 86 ps XC2VP100FF1696 100 ps Notes: 1. These values represent the worst-case skew between any two balls of the package: shortest flight time to longest flight time from Pad to Ball (7.1ps per mm). 2. Package trace length information is available for these device/package combinations. This information can be used to deskew the package. Table 63: Sample Window Speed Grade Description Sampling Error at Receiver Pins(1) Symbol Device –7 –6 –5 Units TSAMP All 0.50 0.50 0.50 ns Notes: 1. This parameter indicates the total sampling error of Virtex-II Pro DDR input registers across voltage, temperature, and process. The characterization methodology uses the DCM to capture the DDR input registers’ edges of operation. 2. These measurements include: - CLK0 and CLK180 DCM jitter - Worst-case duty-cycle distortion, TDCD_CLK180 - DCM accuracy (phase offset) - DCM phase shift resolution These measurements do not include package or clock tree skew. DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 3 of 4 50 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: DC and Switching Characteristics Table 64: Example Pin-to-Pin Setup/Hold: Source-Synchronous Configuration Speed Grade Description Symbol Device –7 –6 –5 Units TPSDCM_0/TPHDCM_0 XC2VP2 0.23/0.39 0.21/0.42 0.21/0.42 ns XC2VP4 0.26/0.37 0.24/0.40 0.24/0.41 ns XC2VP7 0.18/ 0.36 0.18/ 0.40 0.18/ 0.41 ns XC2VP20 0.14/ 0.41 0.13/ 0.42 0.12/ 0.44 ns XC2VPX20 0.14/ 0.41 0.13/ 0.42 0.12/ 0.44 ns XC2VP30 0.29/ 0.25 0.31/ 0.24 0.31/ 0.24 ns XC2VP40 0.25/ 0.30 0.26/ 0.29 0.27/ 0.29 ns XC2VP50 0.18/ 0.36 0.18/ 0.38 0.17/ 0.39 ns XC2VP70 0.18/ 0.37 0.18/ 0.38 0.18/ 0.38 ns XC2VPX70 0.18/ 0.37 0.18/ 0.38 0.18/ 0.38 ns XC2VP100 N/A 0.18/ 0.33 0.19/ 0.37 ns Example Data Input Set-Up and Hold Times Relative to a Forwarded Clock Input Pin,(1) Using DCM and Global Clock Buffer. Values represent an 18-bit bus located in Banks 2, 3, 6, or 7 and grouped to one Horizontal Global Clock Line. TRACE must be used to determine the actual values for any given design. For situations where clock and data inputs conform to different standards, adjust the setup and hold values accordingly using the values shown in IOB Input Switching Characteristics Standard Adjustments, page 23. No Delay Global Clock and IFF (2) with DCM Notes: 1. The timing values were measured using the fine-phase adjustment feature of the DCM. These measurements include: - CLK0 and CLK180 DCM jitter Worst-case duty-cycle distortion using CLK0 and CLK180, TDCD_CLK180 Package skew is not included in these measurements. 2. IFF = Input Flip-Flop Source Synchronous Timing Budgets This section describes how to use the parameters provided in the Source-Synchronous Switching Characteristics section to develop system-specific timing budgets. The following analysis provides information necessary for determining Virtex-II Pro contributions to an overall system timing analysis; no assumptions are made about the effects of Inter-Symbol Interference or PCB skew. Virtex-II Pro Transmitter Data-Valid Window (TX) TX is the minimum aggregate valid data period for a source-synchronous data bus at the pins of the device and is calculated as follows: TX = Data Period - [Jitter(1) + Duty Cycle Distortion(2) + TCKSKEW(3) + TPKGSKEW(4)] DS083 (v4.7) November 5, 2007 Product Specification Notes: 1. Jitter values and accumulation methodology to be provided in a future release of this document. The absolute period jitter values found in the DCM Timing Parameters section of the particular DCM output clock used to clock the IOB FF can be used for a best case analysis. 2. This value depends on the clocking methodology used. See Note1 for Table 61. 3. This value represents the worst-case clock-tree skew observable between sequential I/O elements. Significantly less clock-tree skew exists for I/O registers that are close to each other and fed by the same or adjacent clock-tree branches. Use the Xilinx FPGA_Editor and Timing Analyzer tools to evaluate clock skew specific to your application. 4. These values represent the worst-case skew between any two balls of the package: shortest flight time to longest flight time from Pad to Ball. www.xilinx.com Module 3 of 4 51 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: DC and Switching Characteristics Virtex-II Pro Receiver Data-Valid Window (RX) RX is the required minimum aggregate valid data period for a source-synchronous data bus at the pins of the device and is calculated as follows: RX = [TSAMP(1) + TCKSKEW(2) + TPKGSKEW(3) ] Notes: 1. This parameter indicates the total sampling error of Virtex-II Pro DDR input registers across voltage, temperature, and process. The characterization methodology uses the DCM to capture the DDR input registers’ edges of operation. These measurements include: CLK0 and CLK180 DCM jitter in a quiet system Worst-case duty-cycle distortion DCM accuracy (phase offset) DCM phase shift resolution. These measurements do not include package or clock tree skew. 2. This value represents the worst-case clock-tree skew observable between sequential I/O elements. Significantly less clock-tree skew exists for I/O registers that are close to each other and fed by the same or adjacent clock-tree branches. Use the Xilinx FPGA_Editor and Timing Analyzer tools to evaluate clock skew specific to your application. 3. These values represent the worst-case skew between any two balls of the package: shortest flight time to longest flight time from Pad to Ball. Revision History This section records the change history for this module of the data sheet. Date Version Revision 01/31/02 1.0 Initial Xilinx release. 06/17/02 2.0 • • • • Added new Virtex-II Pro family members. Added timing parameters from speedsfile v1.62. Added Table 43, Pipelined Multiplier Switching Characteristics. Added 3.3V-vs-2.5V table entries for some parameters. 09/03/02 2.1 • • • • Added Source-Synchronous Switching Characteristics section. Added absolute max ratings for 3.3V-vs-2.5V parameters in Table 1. Added recommended operating conditions for VIN and RocketIO footnote to Table 2. Updated SSTL2 values in Table 6. Added SSTL18 values: Table 6, Table 36, Table 32. [Table 32 removed in v2.8.] Added Table 10, which contains LVPECL DC specifications. • 09/27/02 2.2 Added section General Power Supply Requirements. 11/20/02 2.3 Updated parametric information in: • Table 1: Increase Absolute Max Rating for VCCO , VREF, VIN, and VTS from 3.6V to 3.75V. Delete cautionary footnotes related to voltage overshoot/undershoot. • Table 2: Delete VCCO specifications for 2.5V and below operation. Delete footnote referencing special information for 3.3V operation. Add footnote for PCI/PCI-X. • Table 3: Add IBATT. Delete IL specifications for 2.5V and below operation. • Table 4: Add Typical Quiescent Supply Currents for XC2VP4 and XC2VP7 only • Table 6: Correct IOL and IOH for SSTL2 I. Add rows for LVTTL, LVCMOS33, and PCI-X. Correct max VIH from VCCO to 3.6V. • Table 7: Correct Min/Max VOD, VOCM, and VICM • Table 10: Reformat LVPECL DC Specifications to match Virtex-II data sheet format • Table 12: Correct parameter name from Differential Output Voltage to Single-Ended Output Voltage Swing. • Table 16: Add CPMC405CLOCK max frequencies • Table 27: Add footnote regarding serial data rate limitation in -5 part. • Table 36: Add rows for LVTTL, LVCMOS33, and PCI-X. • Table 32: Add LVTTL, LVCMOS33, and PCI-X. Correct all capacitive load values (except PCI/PCI-X) to 0 pF. [Table 32 removed in v2.8.] • Table 48: Correct CCLK max frequencies 11/25/02 2.4 Table 1: Correct lower limit of voltage range of VIN and VTS from –0.3V to –0.5V for 3.3V. DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 3 of 4 52 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: DC and Switching Characteristics Date Version Revision 12/03/02 2.5 Updated parametric information in: • Table 1: Correct lower limit of voltage range of VIN and VTS from –0.5V to –0.3V for 3.3V. • Table 2: Add footnote (2) regarding VCCAUX voltage droop. Renumbered other notes. • Table 12: Add waveform diagrams (Figure 1 and Figure 2) illustrating DVOUT (single-ended) and DVPPOUT (differential). • Table 23: Indicate REFCLK upper frequency limitation; relate REFCLK parameters to REFCLK2, BREFCLK, and BREFCLK2; correct TRCLK and TFCLK values and unit of measurement. • Table 57: Add qualifying footnote to CLKOUT_DUTY_CYCLE_DLL. 01/20/03 2.6 Updated parametric information in: • Table 12: Correct DVIN Min (200 mV to 175 mV) and DVIN Max (1000 mV to 2000 mV). • Table 23: Correct TRCLK /TFCLK Typ (400 ps to 600 ps) and Max (600 ps to 1000 ps). Add footnote (2) to qualify Max TGJTT parameter. • Table 56: Correct hyperlink in footnote (1) to point directly to Answer Record 13645. • Move clock parameters from Table 18, Table 19, Table 20, and Table 21 to Table 16. 03/24/03 2.7 • • • • • • • • • • Added/updated timing parameters from speedsfile v1.76. Table 2: Delete first table footnote and renumber all others. Table 3: Add "sample-tested" to IL. Remove "Device" column, unnecessary. Table 8: Update VOCM (Typ) to 1.250V. Table 10: Update LVPECL_25 DC parameters. Table 23: Update FGCLK frequency ranges. Break out TGJTT by operating speed. Table 27: Update FGTX frequency ranges. Correct TDJ to 0.17 UI, TRJ to o.18 UI. Table 36: Update VREF (Typ) for HSTL Class I/II from 1.08V to 0.90V. Table 40, Table 41: Correct parameter name "CE input (WS)" to "SR input". Table 61: Break out TDCD_CLK0 by device type. 05/27/03 2.8 • • • • Updated time and frequency parameters as per speedsfile v1.78. Table 3: Added values for IREF, IL, IRPU, IRPD Corrected ICCINTQ (Table 4) and ICCINTMIN (Table 5) for XC2VP20 to 600 mA. Table 4: Updated/Added Typ and Max quiescent current values for XC2VP7 and XC2VP20. Added footnote specifying parameters are for Commercial Grade parts. Table 5: Added footnote specifying parameters are for Commercial Grade parts. Table 6: Corrected VIH (Max) for LVTTL and LVCMOS33 standards from 3.6V to 3.45V. Changed VIL (Min) for all standards to –0.2V. Corrected VIL (Max) for LVCMOS15 and LVCMOS18 from 20% VCCO to 30% VCCO . Table 10: Corrected LVPECL_25 Min and Max values for VIH and VIL. Added explanatory text above table. Table 13 and Table 14 (pin-pin and reg-reg performance): Changed device specified from XC2VP7FF672-6 to XC2VP20FF1152-6. Table 15: Updated to show devices XC2VP7 and XC2VP20 as Preliminary for the -6 speed grade and Production for the -5 speed grade. Removed former Table 32, Standard Capacitive Loads. Table 49: Updated TTAPTCK from 4.0 ns to 5.5 ns. Table 56: Modified footnote referenced at CLKFX/CLKFX180 to point to the online Jitter Calculator. Added Figure 6 and accompanying procedure for measuring standard adjustments. • • • • • • • • • 05/27/03 (cont’d) 2.8 (cont’d) DS083 (v4.7) November 5, 2007 Product Specification • • Table 1: Footnote (2) rewritten to specify “one or more banks.” Table 54: Some DCM parameters were erroneously missing from v2.8 (single-module version) due to a document compilation error. The concatenated full data sheet version was not affected. These parameters have been restored. www.xilinx.com Module 3 of 4 53 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: DC and Switching Characteristics Date Version 08/25/03 2.9 Revision • • • • • • • • 09/10/03 2.10 • • 10/14/03 2.11 • • • • • 11/10/03 2.12 • • 12/05/03 3.0 DS083 (v4.7) November 5, 2007 Product Specification • Updated time and frequency parameters as per speedsfile v1.81. Table 1: Footnote (2) rewritten to specify “one or more banks.” Table 2: Added footnote referring to XAPP659 for 3.3V I/O operation. Table 50 and Table 51: Revised test setup footnote to refer to Figure 6. Previously specified a capacitive load parameter. Table 54: Due to a document compilation error in v2.8, some DCM parameters were erroneously omitted from the full data sheet file (all four modules concatenated), though not from the stand-alone Module 3 file. The omitted parameters have been restored. Table 61 and Table 63: Corrected parameters to expression in picoseconds, as labeled. Previously expressed in nanoseconds, but labeled picoseconds. Figure 6: Added note to figure regarding termination resistors. Table 5: Added ICCINTMIN for XC2VP30 device. Figure 7: Changed representation of mode pins M0, M1, and M2 indicating that they must be held to a constant DC level during and after configuration. Table 46: Added footnote indicating that mode pins M0, M1, and M2 must be held to a constant DC level during and after configuration. Table 1: Deleted Footnote (2), which had derated the absolute maximum TJ when one or more banks operated at 3.3V. Changed TJ description from “Operating junction temperature” to “Maximum junction temperature”. Added new Footnote (2) linking to website for package thermal data. Table 4 and Table 5: Filled in power-on and quiescent current parameters for all devices through XC2VP70. Added Industrial Grade multiplier specification to Footnote (1) in both tables. In section General Power Supply Requirements, replaced reference to Answer Record 11713 with reference to XAPP689 regarding handling of simultaneously switching outputs (SSO). In section I/O Standard Adjustment Measurement Methodology: - Table 36 renamed Input Delay Measurement Methodology. Added footnotes. - Added new Table 37, Output Delay Measurement Methodology. - Replaced Figure 6, Generalized Test Setup, with new drawing. - Revised and extended text describing output delay measurement procedure. Table 55: For Input Clock Low/High Pulse Width, PSCLK and CLKIN, changed existing Footnote (2) to new Footnote (3). Table 1: Changed 3.3V absolute max VIN and VTS from 3.75V to 4.05V. Added footnote referring to XAPP659. Table 4: Removed MIN column from table. XC2VP2 through XC2VP70 speed grades -5, -6, and -7, and XC2VP100 speed grades -5 and -6, updated and released to Production status as per speedsfile v1.83. Featured changes: - Speedsfile parameter values for -7 speed grade added for devices XC2VP2-XC2VP70. - Table 13 and Table 14: Pin-to-pin and register-to_register performance parameter values added. - Table 61: New parameter TDCD_LOCAL (and footnote) replaces TDCD_CLK0. - All remaining source-synchronous parameter values added (Table 61 & following). www.xilinx.com Module 3 of 4 54 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: DC and Switching Characteristics Date Version Revision 12/05/03 (cont’d) 3.0 (cont’d) • • • • • • • Non-speedsfile parameter values added or updated: Table 3: IBATT . Table 4: For XC2VP100, ICCINTQ, ICCOQ, and ICCAUXQ . Table 5: For XC2VP100, ICCINTMIN . Table 17: TCPWL and TCPWH . Table 25: Added explanatory footnote to TRXLAT (MGT receiver latency) max value. Table 54: Added Footnote (3) regarding use of CLKIN_DIVIDE_BY_2 attribute. 02/19/04 3.1 • • • Updated time and frequency parameters as per speedsfile v1.85. Table 2, Recommended Operating Conditions: Revised Footnotes (4) and (6). Table 4, Quiescent Supply Current: Added Footnote (1) and updated Typical parameters. Table 10, LVPECL DC Specifications: Added parameter values for Maximum Differential Input Voltage (LVPECL). Table 14, Register-to-Register Performance: Removed reference to a number of designs for which test data is no longer provided. Table 16, Processor Clocks Absolute AC Characteristics: Added Footnote (1) referring to XAPP755. Added Table 38, Clock Distribution Switching Characteristics. Revised section Configuration Timing, page 37 through page 39, and JTAG Test Access Port Switching Characteristics, page 40, with improved timing diagrams, parameter tables, and organization. Table 47, Master/Slave Serial Mode Timing Characteristics, and Table 48, SelectMAP Mode Write Timing Characteristics: Added parameter FCC_STARTUP. Table 48, SelectMAP Mode Write Timing Characteristics: Broke out TSMDCC/TSMCCD , DATA[0:7] setup/hold time, by device, and added new parameter specifications for XC2VP70 and XC2VP100 devices. Table 54, Operating Frequency Ranges: Added callouts for existing Footnote (3) to the four CLKIN parameters. Added new Footnote (4) to the four CLKIN parameters. Added new Footnote (5) to CLK2X, CLK2X180. Added new Footnote (6) to CLK2X, CLK2X180; CLK0, CLK180; and CLKIN (using DLL outputs). • • • • • • • • 03/09/04 3.1.1 • Recompiled for backward compatibility with Acrobat 4 and above. No content changes. 04/22/04 3.2 • Table 2, Recommended Operating Conditions: Corrected VTTX/VTRX lower voltage limit from 1.8V to 1.6V. Table 5, Power-On Current for Virtex-II Pro Devices: Added Footnote (2) stating that listed ICCOMIN values apply to the entire device (all banks). Table 37, Output Delay Measurement Methodology: Corrected VMEAS for LVTTL from 1.4V to 1.65V. Table 54, Operating Frequency Ranges: Corrected CLKOUT_FREQ_1X_LF_MAX and CLKIN_FREQ_DLL_LF_MAX for -7 devices from 210 MHz to 270 MHz. Table 62, Package Skew: Removed XC2VP40FF1517. • • • • 06/30/04 4.0 DS083 (v4.7) November 5, 2007 Product Specification Merged in DS110-3 (Module 3 of Virtex-II Pro X data sheet). This merge added numerous previously unpublished RocketIO X MGT parameters. Specifications in this revision are from speedsfile v1.86. www.xilinx.com Module 3 of 4 55 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: DC and Switching Characteristics Date Version 11/17/04 4.1 Revision • • • • • • • 03/01/05 4.2 • • Updated values in Virtex-II Pro Performance Characteristics and Virtex-II Pro Switching Characteristics tables, based on values extracted from speedsfile version 1.90. Table 1 and Table 2: Corrected VCCAUXTX and VCCAUXRX to AVCCAUXTX and AVCCAUXRX respectively. Table 3: Further clarified PRXTX (MGT power dissipation) by explaining measurement method in Footnote (3). Table 5: Added power-on current specifications for XC2VPX70 device. Table 22: Changed FGTOL from ±100 ppm to ±350 ppm. Table 22 and Table 23: Changed TGJTT bit rate qualifiers from fixed bit rates to bit rate ranges. Table 33, Table 35, Table 36, and Table 37: Restructured these I/O-related tables to include descriptions, as well as the actual IOSTANDARD attributes (used in the Xilinx ICE™ software) for all I/O standards. Table 33: Rearranged I/O standards in a more logical order. Table 34: Added parameter TRPW (Minimum Pulse Width, SR Input). Table 35: Changed “Csl” to “CREF” to agree with Figure 6 and Table 37. Rearranged I/O standards in a more logical order. Table 36: Added footnote defining equivalents for DCI standards. Table 37: Added Footnotes (2) and (3) to PCI/PCI-X capacitive load (CREF) values. Table 44: Added parameter TBCCS, CLKA to CLKB Setup Time. Table 47: Added Footnote (1) indicating that FCC_SERIAL should not exceed FCC_STARTUP if CCLK frequency is not adjustable. Table 49: TTCKTDO corrected from a “Min” to a “Max” specification. • Table 12: Added specifications for Differential Input Impedance. • • • • • • • • • • • • • 06/20/05 4.3 DS083 (v4.7) November 5, 2007 Product Specification Figure 8, Figure 9: Corrected TCCO / DOUT to refer to the falling edge of CCLK. Table 23: Added Footnote (4) to TPHASE indicating an 8B/10B-type bitstream. Corrected TLOCK from Typ to Max specification. Additional description of “2X oversampling” added to half-rate operation condition for FGCLK, and added Footnote (2) requiring use of oversampling techniques in XAPP572 for serial bit rates under 1 Gb/s. Table 25: Converted bit rate conditions for jitter parameters into four ranges. Added Footnote (2) requiring use of oversampling techniques in XAPP572 for serial bit rates under 1 Gb/s. Table 27: Additional description of “2X oversampling” added to half-speed clock description for FGGTX. Converted bit rate conditions for jitter parameters into four ranges. Added Footnotes (3) and (4) requiring use of oversampling techniques in XAPP572 for serial bit rates under 1 Gb/s. Table 37: Changed capacitance CREF for all PCI/PCI-X standards from 0 pF to 10 pF. Table 46: Added Min/Max specifications for TICCK. Section Power-On Power Supply Requirements, page 5: Added word “monotonically” to description of VCCINT ramp-on requirements. Removed requirement that VCCAUX must be powered on before or with VCCO . www.xilinx.com Module 3 of 4 56 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: DC and Switching Characteristics Date Version 09/15/05 4.4 Revision • • • • • • • 10/10/05 4.5 • • Table 2: Added Footnote (7) to AVCCAUXRX for RocketIO X (1.8V for all non-8B/10B-encoded data). Table 3: - Power dissipation for 10.3125 Gb/s deleted. - Max ICCAUXTX and ICCAUXRX specifications added for Virtex-II Pro. Table 11: Added specification for minimum p-p differential input voltage. Table 22: - FGCLK: Changed high end of range to 425 MHz. - TGJTT: Changed measurement units to picoseconds and added maximum specifications for two bit rate ranges. - TLOCK: Changed measurement units to microseconds and adderd typical specification. - TPHASE: Changed measurement units to microseconds and adderd typical and maximum specifications. Table 24: - All parameters: Deleted specifications for 10.3125 Gb/s. - TRJTOL: Added typical specifications. - TJTOL, TSJTOL, and TDDJTOL: Added typical and maximum specifications. Table 26: Restructured table. Total Jitter parameter added. All jitter parameters respecified. Table 28: Restructured table and added new specifications. Changed XC2VPX70 variable baud rate specification to fixed-rate operation at 4.25 Gb/s. Table 15: Removed -7 designations for XC2VPX20 and XC2VPX70 devices. 03/05/07 4.6 No changes in Module 3 for this revision. 11/05/07 4.7 Updated copyright notice and legal disclaimer. Notice of Disclaimer THE XILINX HARDWARE FPGA AND CPLD DEVICES REFERRED TO HEREIN (“PRODUCTS”) ARE SUBJECT TO THE TERMS AND CONDITIONS OF THE XILINX LIMITED WARRANTY WHICH CAN BE VIEWED AT http://www.xilinx.com/warranty.htm. THIS LIMITED WARRANTY DOES NOT EXTEND TO ANY USE OF PRODUCTS IN AN APPLICATION OR ENVIRONMENT THAT IS NOT WITHIN THE SPECIFICATIONS STATED IN THE XILINX DATA SHEET. ALL SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE. PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS LIFE-SUPPORT OR SAFETY DEVICES OR SYSTEMS, OR ANY OTHER APPLICATION THAT INVOKES THE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). USE OF PRODUCTS IN CRITICAL APPLICATIONS IS AT THE SOLE RISK OF CUSTOMER, SUBJECT TO APPLICABLE LAWS AND REGULATIONS. Virtex-II Pro Data Sheet The Virtex-II Pro Data Sheet contains the following modules: • • Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Introduction and Overview (Module 1) Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Functional Description (Module 2) DS083 (v4.7) November 5, 2007 Product Specification • • Virtex-II Pro and Virtex-II Pro X Platform FPGAs: DC and Switching Characteristics (Module 3) Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information (Module 4) www.xilinx.com Module 3 of 4 57 R 3 0 2 Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information DS083 (v4.7) November 5, 2007 Product Specification This document provides Virtex™-II Pro Device/Package Combinations, Maximum I/Os, and Virtex-II Pro Pin Definitions, followed by pinout tables, for these packages: • • • • • FG256/FGG256 Fine-Pitch BGA Package FG456/FGG456 Fine-Pitch BGA Package FG676/FGG676 Fine-Pitch BGA Package FF672 Flip-Chip Fine-Pitch BGA Package FF896 Flip-Chip Fine-Pitch BGA Package • • • • • FF1152 Flip-Chip Fine-Pitch BGA Package FF1148 Flip-Chip Fine-Pitch BGA Package FF1517 Flip-Chip Fine-Pitch BGA Package FF1704 Flip-Chip Fine-Pitch BGA Package FF1696 Flip-Chip Fine-Pitch BGA Package For device pinout diagrams and layout guidelines, refer to the Virtex-II Pro Platform FPGA User Guide. ASCII package pinout files are also available for download from the Xilinx website (www.xilinx.com). Virtex-II Pro Device/Package Combinations and Maximum I/Os(1) Wire-bond and flip-chip packages are available. Table 1 and Table 2 show the maximum number of user I/Os possible in wire-bond and flip-chip packages, respectively. • FG denotes wire-bond fine-pitch BGA (1.00 mm pitch). • FGG denotes Pb-free wire-bond fine-pitch BGA (1.00 mm pitch). • FF denotes flip-chip fine-pitch BGA (1.00 mm pitch) . Table 1: Wire-Bond Packages Information FG256/ FGG256 FG456/ FGG456 FG676/ FGG676 Pitch (mm) 1.00 1.00 1.00 Size (mm) 17 x 17 23 x 23 26 x 26 140 248 412 Package (1) Maximum I/Os Notes: 1. Wire-bond packages include FGGnnn Pb-free versions. See Virtex-II Pro Ordering Examples (Module 1). Table 2: Flip-Chip Packages Information Package FF672 FF896 FF1152 FF1148 FF1517 FF1704 FF1696 Pitch (mm) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Size (mm) 27 x 27 31 x 31 35 x 35 35 x 35 40 x 40 42.5 x 42.5 42.5 x 42.5 396 556 644 812 964 1040 1200 Maximum I/Os Table 3 shows the number of available I/Os, the number of RocketIO™ (or RocketIO X) multi-gigabit transceiver (MGT) pins, and the number of differential I/O pairs for each Virtex-II Pro device/package combination. The number of I/Os per package includes all user I/Os except the fifteen control pins (CCLK, DONE, M0, M1, M2, PROG_B, PWRDWN_B, TCK, TDI, TDO, TMS, HSWAP_EN, DXN, DXP, and RSVD), the nine (per transceiver) RocketIO MGT pins (TXP, TXN, RXP, RXN, AVCCAUXTX, AVCCAUXRX, VTTX, VTRX, and GNDA), and for Virtex-II Pro X devices only, the two BREFCLKN/ BREFCLKP differential clock input pairs (four pins). The Virtex-II Pro X devices are highlighted in bold type. 1. Unless otherwise noted, "Virtex-II Pro" refers to members of the Virtex-II Pro and/or Virtex-II Pro X families. © 2002–2007 Xilinx, Inc. All rights reserved. XILINX, the Xilinx logo, the Brand Window, and other designated brands included herein are trademarks of Xilinx, Inc. PowerPC is a trademark of IBM Corp. and is used under license. All other trademarks are the property of their respective owners. DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 4 of 4 1 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 3: Virtex-II Pro Available I/Os and RocketIO MGT Pins per Device/Package Combination Virtex-II Pro Device XC2VP2 XC2VP4 XC2VP7 XC2VP20 XC2VPX20 XC2VP30 XC2VP40 XC2VP50 User I/Os & RocketIO MGT Pins Virtex-II Pro Package (1) FG256/ FGG256 FG456/ FGG456 FG676/ FGG456 FF672 FF896 FF1152 FF1148 FF1517 FF1704 FF1696 Available User I/Os 140 156 - 204 - - - - - - RocketIO MGT Pins 36 36 - 36 - - - - - - Differential I/O Pairs 68 76 - 100 - - - - - - Available User I/Os 140 248 - 348 - - - - - - RocketIO MGT Pins 36 36 - 36 - - - - - - Differential I/O Pairs 68 122 - 172 - - - - - - Available User I/Os - 248 - 396 396 - - - - - RocketIO MGT Pins - 72 - 72 72 - - - - - Differential I/O Pairs - 122 - 196 196 - - - - - Available User I/Os - - 404 - 556 564 - - - - RocketIO MGT Pins - - 72 - 72 72 - - - - Differential I/O Pairs - - 196 - 272 276 - - - - Available User I/Os - - - - 552 - - - - - RocketIO X MGT Pins - - - - 72 - - - - - Differential I/O Pairs - - - - 270 - - - - - Available User I/Os - - 416 - 556 644 - - - - RocketIO MGT Pins - - 72 - 72 72 - - - - Differential I/O Pairs - - 202 - 272 316 - - - - Available User I/Os - - 416 - - 692 804 - - - RocketIO MGT Pins - - 72 - - 108 0 - - - Differential I/O Pairs - - 202 - - 340 396 - - - Available User I/Os - - - - 692 812 852 - - RocketIO MGT Pins - - - - 144 0 144 - - Differential I/O Pairs - - - - 340 400 420 - - DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 4 of 4 2 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 3: Virtex-II Pro Available I/Os and RocketIO MGT Pins per Device/Package Combination (Continued) Virtex-II Pro Device XC2VP70 XC2VPX70 XC2VP100 User I/Os & RocketIO MGT Pins Virtex-II Pro Package (1) FG256/ FGG256 FG456/ FGG456 Available User I/Os - RocketIO MGT Pins FG676/ FGG456 FF672 FF896 FF1152 FF1148 FF1517 FF1704 FF1696 - - - - - 964 996 - - - - - - - 144 180 - Differential I/O Pairs - - - - - - 476 492 - Available User I/Os - - - - - - - 992 - RocketIO X MGT Pins - - - - - - - 180 - Differential I/O Pairs - - - - - - - 490 - Available User I/Os - - - - - - - 1040 1164 RocketIO MGT Pins - - - - - - - 180 0 Differential I/O Pairs - - - - - - - 512 572 Notes: 1. Wire-bond packages include FGGnnn Pb-free versions. See Virtex-II Pro Ordering Examples (Module 1) DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 4 of 4 3 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Virtex-II Pro Pin Definitions This section describes the pinouts for Virtex-II Pro devices in the following packages: table per package). Pins that are not available for smaller devices are listed in right-hand columns. • FG256/FGG256, FG456/FGG456, and FG676/FGG676: wire-bond fine-pitch BGA of 1.00 mm pitch • FF672, FF896, FF1148, FF1152, FF1517, FF1696, and FF1704: flip-chip fine-pitch BGA of 1.00 mm pitch Each device is split into eight I/O banks to allow for flexibility in the choice of I/O standards. Global pins, including JTAG, configuration, and power/ground pins, are listed at the end of each table. Table 4 provides definitions for all pin types. All of the devices supported in a particular package are pinout-compatible and are listed in the same table (one All Virtex-II Pro pinout tables are available on the distribution CD-ROM, or on the web (at http://www.xilinx.com). Pin Definitions Table 4 provides a description of each pin type listed in Virtex-II Pro pinout tables. Table 4: Virtex-II Pro Pin Definitions Pin Name Direction Description Input/Output/ Bidirectional All user I/O pins are capable of differential signalling and can implement LVDS, ULVDS, BLVDS, LVPECL, or LDT pairs. Each user I/O is labeled “IO_LXXY_#”, where: IO indicates a user I/O pin. LXXY indicates a differential pair, with XX a unique pair in the bank and Y = P/N for the positive and negative sides of the differential pair. # indicates the bank number (0 through 7) User I/O Pins: IO_LXXY_# Dual-Function Pins: IO_LXXY_#/ZZZ The dual-function pins are labelled “IO_LXXY_#/ ZZZ”, where "ZZZ" can be one of the following pins: Per Bank - VRP, VRN, or VREF Globally - GCLKX(S/P), BUSY/DOUT, INIT_B, D0/DIN – D7, RDWR_B, or CS_B These dual functions are defined in the following section: "ZZZ" (Dual Function) Definitions: D0/DIN, D1, D2, D3, D4, D5, D6, D7 Input/Output • • In SelectMAP mode, D0 through D7 are configuration data pins. These pins become user I/Os after configuration, unless the SelectMAP port is retained. In bit-serial modes, DIN (D0) is the single-data input. This pin becomes a user I/O after configuration. CS_B Input In SelectMAP mode, this is the active-low Chip Select signal. The pin becomes a user I/O after configuration, unless the SelectMAP port is retained. RDWR_B Input In SelectMAP mode, this is the active-low Write Enable signal. The pin becomes a user I/O after configuration, unless the SelectMAP port is retained. BUSY/DOUT Output • • INIT_B Bidirectional (open-drain) DS083 (v4.7) November 5, 2007 Product Specification In SelectMAP mode, BUSY controls the rate at which configuration data is loaded. The pin becomes a user I/O after configuration, unless the SelectMAP port is retained. In bit-serial modes, DOUT provides preamble and configuration data to downstream devices in a daisy-chain. The pin becomes a user I/O after configuration. When Low, this pin indicates that the configuration memory is being cleared. When held Low, the start of configuration is delayed. During configuration, a Low on this output indicates that a configuration data error has occurred. The pin becomes a user I/O after configuration. www.xilinx.com Module 4 of 4 4 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 4: Virtex-II Pro Pin Definitions (Continued) Pin Name Direction GCLKx (S/P) Input/Output Description These are clock input pins that connect to Global Clock Buffers. These pins become regular user I/Os when not needed for clocks. These pins can be used to clock the RocketIO transceiver. See the RocketIO Transceiver User Guide for design guidelines and BREFCLK-specific pins, by device. VRP Input This pin is for the DCI voltage reference resistor of P transistor (per bank). VRN Input This pin is for the DCI voltage reference resistor of N transistor (per bank). VREF Input These are input threshold voltage pins. They become user I/Os when an external threshold voltage is not needed (per bank). Dedicated Pins: (1) CCLK PROG_B Input/Output Configuration clock. Output in Master mode or Input in Slave mode. Input Active Low asynchronous reset to configuration logic. This pin has a permanent weak pull-up resistor. Input/Output DONE is a bidirectional signal with an optional internal pull-up resistor. As an output, this pin indicates completion of the configuration process. As an input, a Low level on DONE can be configured to delay the start-up sequence. M2, M1, M0 Input Configuration mode selection. Pin is biased by VCCAUX (must be 2.5V). These pins should not connect to 3.3V unless 100Ω series resistors are used. The mode pins are not to be toggled (changed) while in operation during and after configuration. HSWAP_EN Input Enable I/O pull-ups during configuration. TCK Input Boundary Scan Clock. This pin is 3.3V compatible. TDI Input Boundary Scan Data Input. This pin is 3.3V compatible. TDO Output (open-drain) TMS Input DONE PWRDWN_B Boundary Scan Data Output. Pin is open-drain and can be pulled up to 3.3V. It is recommended that the external pull-up be greater than 200Ω. There is no internal pull-up. Boundary Scan Mode Select. This pin is 3.3V compatible. Input Active Low power-down pin (unsupported). Driving this pin Low can adversely affect (unsupported) device operation and configuration. PWRDWN_B is internally pulled High, which is its default state. It does not require an external pull-up. Other Pins: DXN, DXP N/A Temperature-sensing diode pins (Anode: DXP, Cathode: DXN). VBATT Input Decryptor key memory backup supply. (Connect to VCCAUX or GND if battery not used.) RSVD N/A Reserved pin - do not connect. VCCO Input Power-supply pins for the output drivers (per bank). VCCAUX Input Power-supply pins for auxiliary circuits. VCCINT Input Power-supply pins for the internal core logic. GND Input Ground. AVCCAUXRX# Input Analog power supply for receive circuitry of the RocketIO MGT (2.5V). AVCCAUXTX# Input Analog power supply for transmit circuitry of the RocketIO MGT (2.5V). DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 4 of 4 5 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 4: Virtex-II Pro Pin Definitions (Continued) Pin Name Direction Description BREFCLKN, BREFCLKP (2) Input Differential clock input that clocks the RocketIO X MGTs populating the same side of the chip (top or bottom). Can also drive DCMs for RocketIO X MGT use. VTRXPAD# Input Receive termination supply for the RocketIO multi-gigabit transceiver (1.8V - 2.8V). VTTXPAD# Input Transmit termination supply for the RocketIO multi-gigabit transceiver (1.8V - 2.8V). GNDA# Input Ground for the analog circuitry of the RocketIO multi-gigabit transceiver. RXPPAD# Input Positive differential receive port of the RocketIO multi-gigabit transceiver. RXNPAD# Input Negative differential receive port of the RocketIO multi-gigabit transceiver. TXPPAD# Output Positive differential transmit port of the RocketIO multi-gigabit transceiver. TXNPAD# Output Negative differential transmit port of the RocketIO multi-gigabit transceiver. Notes: 1. All dedicated pins (JTAG and configuration) are powered by VCCAUX (independent of the bank VCCO voltage). 2. Virtex-II Pro X devices XC2VPX20 and XC2VPX70 only. Each BREFCLK(N/P) differential clock input pair takes the place of one regular Virtex-II Pro dual-function IO/GCLKx(S/P) pair on each side of the chip (top or bottom). For RocketIO BREFCLK, see section BREFCLK Pin Definitions (RocketIO Only) immediately following. BREFCLK Pin Definitions (RocketIO Only) These dedicated clocks use the same clock inputs for all packages: BREFCLK Top BREFCLK2 P GCLK4S N GCLK5P P GCLK2S N GCLK3P BREFCLK Bottom BREFCLK2 P GCLK6P N GCLK7S P GCLK0P N GCLK1S For detailed information about using BREFCLK/BREFCLK2, including routing considerations and pin numbers for all package types, refer to Chapter 2, "Digital Design Considerations," in the RocketIO Transceiver User Guide. DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 4 of 4 6 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information FG256/FGG256 Fine-Pitch BGA Package As shown in Table 5, XC2VP2 and XC2VP4 Virtex-II Pro devices are available in the FG256/FGG256 fine-pitch BGA package. The pins in each of these devices are identical. Following this table are the FG256/FGG256 Fine-Pitch BGA Package Specifications (1.00mm pitch). Table 5: FG256/FGG256 — XC2VP2 and XC2VP4 Bank Pin Description Pin Number 0 IO_L01N_0/VRP_0 C2 0 IO_L01P_0/VRN_0 C3 0 IO_L02N_0 B3 0 IO_L02P_0 C4 0 IO_L03N_0 A2 0 IO_L03P_0/VREF_0 A3 0 IO_L06N_0 D5 0 IO_L06P_0 C5 0 IO_L07P_0 D6 0 IO_L09N_0 E6 0 IO_L09P_0/VREF_0 E7 0 IO_L69N_0 D7 0 IO_L69P_0/VREF_0 C7 0 IO_L74N_0/GCLK7P D8 0 IO_L74P_0/GCLK6S C8 0 IO_L75N_0/GCLK5P B8 0 IO_L75P_0/GCLK4S A8 1 IO_L75N_1/GCLK3P A9 1 IO_L75P_1/GCLK2S B9 1 IO_L74N_1/GCLK1P C9 1 IO_L74P_1/GCLK0S D9 1 IO_L69N_1/VREF_1 C10 1 IO_L69P_1 D10 1 IO_L09N_1/VREF_1 E10 1 IO_L09P_1 E11 1 IO_L07N_1 D11 1 IO_L06N_1 C12 1 IO_L06P_1 D12 1 IO_L03N_1/VREF_1 A14 1 IO_L03P_1 A15 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 4 of 4 7 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 5: FG256/FGG256 — XC2VP2 and XC2VP4 Bank Pin Description Pin Number 1 IO_L02N_1 C13 1 IO_L02P_1 B14 1 IO_L01N_1/VRP_1 C14 1 IO_L01P_1/VRN_1 C15 2 IO_L01N_2/VRP_2 E14 2 IO_L01P_2/VRN_2 E15 2 IO_L02N_2 E13 2 IO_L02P_2 F12 2 IO_L03N_2 F13 2 IO_L03P_2 F14 2 IO_L04N_2/VREF_2 F15 2 IO_L04P_2 F16 2 IO_L06N_2 G13 2 IO_L06P_2 G14 2 IO_L85N_2 G15 2 IO_L85P_2 G16 2 IO_L86N_2 G12 2 IO_L86P_2 H13 2 IO_L88N_2/VREF_2 H14 2 IO_L88P_2 H15 2 IO_L90N_2 H16 2 IO_L90P_2 J16 3 IO_L90N_3 J15 3 IO_L90P_3 J14 3 IO_L89N_3 J13 3 IO_L89P_3 K12 3 IO_L87N_3/VREF_3 K16 3 IO_L87P_3 K15 3 IO_L85N_3 K14 3 IO_L85P_3 K13 3 IO_L06N_3 L16 3 IO_L06P_3 L15 3 IO_L05N_3 L14 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 4 of 4 8 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 5: FG256/FGG256 — XC2VP2 and XC2VP4 Bank Pin Description Pin Number 3 IO_L05P_3 L13 3 IO_L03N_3/VREF_3 L12 3 IO_L03P_3 M13 3 IO_L02N_3 M16 3 IO_L02P_3 N16 3 IO_L01N_3/VRP_3 M15 3 IO_L01P_3/VRN_3 M14 4 IO_L01N_4/BUSY/DOUT (1) P15 4 IO_L01P_4/INIT_B P14 4 IO_L02N_4/D0/DIN (1) R14 4 IO_L02P_4/D1 P13 4 IO_L03N_4/D2 T15 4 IO_L03P_4/D3 T14 4 IO_L06N_4/VRP_4 N12 4 IO_L06P_4/VRN_4 P12 4 IO_L07P_4/VREF_4 N11 4 IO_L09N_4 M11 4 IO_L09P_4/VREF_4 M10 4 IO_L69N_4 N10 4 IO_L69P_4/VREF_4 P10 4 IO_L74N_4/GCLK3S N9 4 IO_L74P_4/GCLK2P P9 4 IO_L75N_4/GCLK1S R9 4 IO_L75P_4/GCLK0P T9 5 IO_L75N_5/GCLK7S T8 5 IO_L75P_5/GCLK6P R8 5 IO_L74N_5/GCLK5S P8 5 IO_L74P_5/GCLK4P N8 5 IO_L69N_5/VREF_5 P7 5 IO_L69P_5 N7 5 IO_L09N_5/VREF_5 M7 5 IO_L09P_5 M6 5 IO_L07N_5/VREF_5 N6 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 4 of 4 9 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 5: FG256/FGG256 — XC2VP2 and XC2VP4 Bank Pin Description Pin Number 5 IO_L06N_5/VRP_5 P5 5 IO_L06P_5/VRN_5 N5 5 IO_L03N_5/D4 T3 5 IO_L03P_5/D5 T2 5 IO_L02N_5/D6 P4 5 IO_L02P_5/D7 R3 5 IO_L01N_5/RDWR_B P3 5 IO_L01P_5/CS_B P2 6 IO_L01P_6/VRN_6 M3 6 IO_L01N_6/VRP_6 M2 6 IO_L02P_6 N1 6 IO_L02N_6 M1 6 IO_L03P_6 M4 6 IO_L03N_6/VREF_6 L5 6 IO_L05P_6 L4 6 IO_L05N_6 L3 6 IO_L06P_6 L2 6 IO_L06N_6 L1 6 IO_L85P_6 K4 6 IO_L85N_6 K3 6 IO_L87P_6 K2 6 IO_L87N_6/VREF_6 K1 6 IO_L89P_6 K5 6 IO_L89N_6 J4 6 IO_L90P_6 J3 6 IO_L90N_6 J2 7 IO_L90P_7 J1 7 IO_L90N_7 H1 7 IO_L88P_7 H2 7 IO_L88N_7/VREF_7 H3 7 IO_L86P_7 H4 7 IO_L86N_7 G5 7 IO_L85P_7 G1 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 4 of 4 10 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 5: FG256/FGG256 — XC2VP2 and XC2VP4 Bank Pin Description Pin Number 7 IO_L85N_7 G2 7 IO_L06P_7 G3 7 IO_L06N_7 G4 7 IO_L04P_7 F1 7 IO_L04N_7/VREF_7 F2 7 IO_L03P_7 F3 7 IO_L03N_7 F4 7 IO_L02P_7 F5 7 IO_L02N_7 E4 7 IO_L01P_7/VRN_7 E2 7 IO_L01N_7/VRP_7 E3 0 VCCO_0 F8 0 VCCO_0 F7 0 VCCO_0 E8 1 VCCO_1 F9 1 VCCO_1 F10 1 VCCO_1 E9 2 VCCO_2 H12 2 VCCO_2 H11 2 VCCO_2 G11 3 VCCO_3 K11 3 VCCO_3 J12 3 VCCO_3 J11 4 VCCO_4 M9 4 VCCO_4 L9 4 VCCO_4 L10 5 VCCO_5 M8 5 VCCO_5 L8 5 VCCO_5 L7 6 VCCO_6 K6 6 VCCO_6 J6 6 VCCO_6 J5 7 VCCO_7 H6 7 VCCO_7 H5 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 4 of 4 11 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 5: FG256/FGG256 — XC2VP2 and XC2VP4 Bank Pin Description Pin Number 7 VCCO_7 G6 N/A CCLK N15 N/A PROG_B D1 N/A DONE P16 N/A M0 N3 N/A M1 N2 N/A M2 P1 N/A TCK D16 N/A TDI E1 N/A TDO E16 N/A TMS C16 N/A PWRDWN_B N14 N/A HSWAP_EN C1 N/A RSVD D14 N/A VBATT D15 N/A DXP D2 N/A DXN D3 N/A AVCCAUXTX6 B5 N/A VTTXPAD6 B4 N/A TXNPAD6 A4 N/A TXPPAD6 A5 N/A GNDA6 C6 N/A RXPPAD6 A6 N/A RXNPAD6 A7 N/A VTRXPAD6 B6 N/A AVCCAUXRX6 B7 N/A AVCCAUXTX7 B11 N/A VTTXPAD7 B10 N/A TXNPAD7 A10 N/A TXPPAD7 A11 N/A GNDA7 C11 N/A RXPPAD7 A12 N/A RXNPAD7 A13 N/A VTRXPAD7 B12 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 4 of 4 12 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 5: FG256/FGG256 — XC2VP2 and XC2VP4 Bank Pin Description Pin Number N/A AVCCAUXRX7 B13 N/A AVCCAUXRX18 R13 N/A VTRXPAD18 R12 N/A RXNPAD18 T13 N/A RXPPAD18 T12 N/A GNDA18 P11 N/A TXPPAD18 T11 N/A TXNPAD18 T10 N/A VTTXPAD18 R10 N/A AVCCAUXTX18 R11 N/A AVCCAUXRX19 R7 N/A VTRXPAD19 R6 N/A RXNPAD19 T7 N/A RXPPAD19 T6 N/A GNDA19 P6 N/A TXPPAD19 T5 N/A TXNPAD19 T4 N/A VTTXPAD19 R4 N/A AVCCAUXTX19 R5 N/A VCCINT N4 N/A VCCINT N13 N/A VCCINT M5 N/A VCCINT M12 N/A VCCINT E5 N/A VCCINT E12 N/A VCCINT D4 N/A VCCINT D13 N/A VCCAUX R16 N/A VCCAUX R1 N/A VCCAUX B16 N/A VCCAUX B1 N/A GND T16 N/A GND T1 N/A GND R2 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 4 of 4 13 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 5: FG256/FGG256 — XC2VP2 and XC2VP4 Bank Pin Description Pin Number N/A GND R15 N/A GND L6 N/A GND L11 N/A GND K9 N/A GND K8 N/A GND K7 N/A GND K10 N/A GND J9 N/A GND J8 N/A GND J7 N/A GND J10 N/A GND H9 N/A GND H8 N/A GND H7 N/A GND H10 N/A GND G9 N/A GND G8 N/A GND G7 N/A GND G10 N/A GND F6 N/A GND F11 N/A GND B2 N/A GND B15 N/A GND A16 N/A GND A1 Notes: 1. See Table 4 for an explanation of the signals available on this pin. DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 4 of 4 14 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information FG256/FGG256 Fine-Pitch BGA Package Specifications (1.00mm pitch) Figure 1: FG256/FGG256 Fine-Pitch BGA Package Specifications DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 4 of 4 15 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information FG456/FGG456 Fine-Pitch BGA Package As shown in Table 6, XC2VP2, XC2VP4, and XC2VP7 Virtex-II Pro devices are available in the FG456/FGG456 fine-pitch BGA package. The pins in these devices are same, except for the differences shown in the "No Connects" column. Following this table are the FG456/FGG456 Fine-Pitch BGA Package Specifications (1.00mm pitch). Table 6: FG456/FGG456 — XC2VP2, XC2VP4, and XC2VP7 No Connects Bank Pin Description Pin Number 0 IO_L01N_0/VRP_0 D5 0 IO_L01P_0/VRN_0 D6 0 IO_L02N_0 E6 0 IO_L02P_0 E7 0 IO_L03N_0 D7 0 IO_L03P_0/VREF_0 C7 0 IO_L05_0/No_Pair E8 0 IO_L06N_0 D8 0 IO_L06P_0 C8 0 IO_L07N_0 F9 0 IO_L07P_0 E9 0 IO_L09N_0 D9 0 IO_L09P_0/VREF_0 D10 0 IO_L67N_0 F10 0 IO_L67P_0 E10 0 IO_L69N_0 C10 0 IO_L69P_0/VREF_0 B11 0 IO_L74N_0/GCLK7P F11 0 IO_L74P_0/GCLK6S E11 0 IO_L75N_0/GCLK5P D11 0 IO_L75P_0/GCLK4S C11 1 IO_L75N_1/GCLK3P C12 1 IO_L75P_1/GCLK2S D12 1 IO_L74N_1/GCLK1P E12 1 IO_L74P_1/GCLK0S F12 1 IO_L69N_1/VREF_1 B12 1 IO_L69P_1 C13 1 IO_L67N_1 E13 1 IO_L67P_1 F13 1 IO_L09N_1/VREF_1 D13 1 IO_L09P_1 D14 1 IO_L07N_1 E14 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP2 XC2VP4 XC2VP7 Module 4 of 4 16 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 6: FG456/FGG456 — XC2VP2, XC2VP4, and XC2VP7 No Connects Bank Pin Description Pin Number 1 IO_L07P_1 F14 1 IO_L06N_1 C15 1 IO_L06P_1 D15 1 IO_L05_1/No_Pair E15 1 IO_L03N_1/VREF_1 C16 1 IO_L03P_1 D16 1 IO_L02N_1 E16 1 IO_L02P_1 E17 1 IO_L01N_1/VRP_1 D17 1 IO_L01P_1/VRN_1 D18 2 IO_L01N_2/VRP_2 C21 2 IO_L01P_2/VRN_2 C22 2 IO_L02N_2 D21 2 IO_L02P_2 D22 2 IO_L03N_2 E19 2 IO_L03P_2 E20 2 IO_L04N_2/VREF_2 E21 2 IO_L04P_2 E22 2 IO_L06N_2 F19 2 IO_L06P_2 F20 2 IO_L43N_2 F21 NC 2 IO_L43P_2 F22 NC 2 IO_L46N_2/VREF_2 F18 NC 2 IO_L46P_2 G18 NC 2 IO_L48N_2 G19 NC 2 IO_L48P_2 G20 NC 2 IO_L49N_2 G21 NC 2 IO_L49P_2 G22 NC 2 IO_L50N_2 H19 NC 2 IO_L50P_2 H20 NC 2 IO_L52N_2/VREF_2 H21 NC 2 IO_L52P_2 H22 NC 2 IO_L54N_2 H18 NC 2 IO_L54P_2 J17 NC 2 IO_L55N_2 J19 NC 2 IO_L55P_2 J20 NC DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP2 XC2VP4 XC2VP7 Module 4 of 4 17 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 6: FG456/FGG456 — XC2VP2, XC2VP4, and XC2VP7 No Connects Bank Pin Description Pin Number XC2VP2 2 IO_L56N_2 J21 NC 2 IO_L56P_2 J22 NC 2 IO_L58N_2/VREF_2 J18 NC 2 IO_L58P_2 K18 NC 2 IO_L60N_2 K19 NC 2 IO_L60P_2 K20 NC 2 IO_L85N_2 K21 2 IO_L85P_2 K22 2 IO_L86N_2 K17 2 IO_L86P_2 L17 2 IO_L88N_2/VREF_2 L18 2 IO_L88P_2 L19 2 IO_L90N_2 L20 2 IO_L90P_2 L21 3 IO_L90N_3 M21 3 IO_L90P_3 M20 3 IO_L89N_3 M19 3 IO_L89P_3 M18 3 IO_L87N_3/VREF_3 M17 3 IO_L87P_3 N17 3 IO_L85N_3 N22 3 IO_L85P_3 N21 3 IO_L60N_3 N20 NC 3 IO_L60P_3 N19 NC 3 IO_L59N_3 N18 NC 3 IO_L59P_3 P18 NC 3 IO_L57N_3/VREF_3 P22 NC 3 IO_L57P_3 P21 NC 3 IO_L55N_3 P20 NC 3 IO_L55P_3 P19 NC 3 IO_L54N_3 P17 NC 3 IO_L54P_3 R18 NC 3 IO_L53N_3 R22 NC 3 IO_L53P_3 R21 NC 3 IO_L51N_3/VREF_3 R20 NC 3 IO_L51P_3 R19 NC DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP4 XC2VP7 Module 4 of 4 18 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 6: FG456/FGG456 — XC2VP2, XC2VP4, and XC2VP7 No Connects Bank Pin Description Pin Number XC2VP2 3 IO_L49N_3 T22 NC 3 IO_L49P_3 T21 NC 3 IO_L48N_3 T20 NC 3 IO_L48P_3 T19 NC 3 IO_L47N_3 T18 NC 3 IO_L47P_3 U18 NC 3 IO_L45N_3/VREF_3 U22 NC 3 IO_L45P_3 U21 NC 3 IO_L43N_3 U20 NC 3 IO_L43P_3 U19 NC 3 IO_L06N_3 V22 3 IO_L06P_3 V21 3 IO_L05N_3 V20 3 IO_L05P_3 V19 3 IO_L03N_3/VREF_3 W22 3 IO_L03P_3 W21 3 IO_L02N_3 Y22 3 IO_L02P_3 Y21 3 IO_L01N_3/VRP_3 AA22 3 IO_L01P_3/VRN_3 AB21 4 IO_L01N_4/BUSY/DOUT (1) W18 4 IO_L01P_4/INIT_B W17 4 IO_L02N_4/D0/DIN (1) V17 4 IO_L02P_4/D1 V16 4 IO_L03N_4/D2 W16 4 IO_L03P_4/D3 Y16 4 IO_L05_4/No_Pair V15 4 IO_L06N_4/VRP_4 W15 4 IO_L06P_4/VRN_4 Y15 4 IO_L07N_4 U14 4 IO_L07P_4/VREF_4 V14 4 IO_L09N_4 W14 4 IO_L09P_4/VREF_4 W13 4 IO_L67N_4 U13 4 IO_L67P_4 V13 4 IO_L69N_4 Y13 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP4 XC2VP7 Module 4 of 4 19 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 6: FG456/FGG456 — XC2VP2, XC2VP4, and XC2VP7 No Connects Bank Pin Description Pin Number 4 IO_L69P_4/VREF_4 AA12 4 IO_L74N_4/GCLK3S U12 4 IO_L74P_4/GCLK2P V12 4 IO_L75N_4/GCLK1S W12 4 IO_L75P_4/GCLK0P Y12 5 IO_L75N_5/GCLK7S Y11 5 IO_L75P_5/GCLK6P W11 5 IO_L74N_5/GCLK5S V11 5 IO_L74P_5/GCLK4P U11 5 IO_L69N_5/VREF_5 AA11 5 IO_L69P_5 Y10 5 IO_L67N_5 V10 5 IO_L67P_5 U10 5 IO_L09N_5/VREF_5 W10 5 IO_L09P_5 W9 5 IO_L07N_5/VREF_5 V9 5 IO_L07P_5 U9 5 IO_L06N_5/VRP_5 Y8 5 IO_L06P_5/VRN_5 W8 5 IO_L05_5/No_Pair V8 5 IO_L03N_5/D4 Y7 5 IO_L03P_5/D5 W7 5 IO_L02N_5/D6 V7 5 IO_L02P_5/D7 V6 5 IO_L01N_5/RDWR_B W6 5 IO_L01P_5/CS_B W5 6 IO_L01P_6/VRN_6 AB2 6 IO_L01N_6/VRP_6 AA1 6 IO_L02P_6 Y2 6 IO_L02N_6 Y1 6 IO_L03P_6 W2 6 IO_L03N_6/VREF_6 W1 6 IO_L05P_6 V4 6 IO_L05N_6 V3 6 IO_L06P_6 V2 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP2 XC2VP4 XC2VP7 Module 4 of 4 20 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 6: FG456/FGG456 — XC2VP2, XC2VP4, and XC2VP7 No Connects Bank Pin Description Pin Number 6 IO_L06N_6 V1 6 IO_L43P_6 U4 NC 6 IO_L43N_6 U3 NC 6 IO_L45P_6 U2 NC 6 IO_L45N_6/VREF_6 U1 NC 6 IO_L47P_6 U5 NC 6 IO_L47N_6 T5 NC 6 IO_L48P_6 T4 NC 6 IO_L48N_6 T3 NC 6 IO_L49P_6 T2 NC 6 IO_L49N_6 T1 NC 6 IO_L51P_6 R4 NC 6 IO_L51N_6/VREF_6 R3 NC 6 IO_L53P_6 R2 NC 6 IO_L53N_6 R1 NC 6 IO_L54P_6 R5 NC 6 IO_L54N_6 P6 NC 6 IO_L55P_6 P4 NC 6 IO_L55N_6 P3 NC 6 IO_L57P_6 P2 NC 6 IO_L57N_6/VREF_6 P1 NC 6 IO_L59P_6 P5 NC 6 IO_L59N_6 N5 NC 6 IO_L60P_6 N4 NC 6 IO_L60N_6 N3 NC 6 IO_L85P_6 N2 6 IO_L85N_6 N1 6 IO_L87P_6 N6 6 IO_L87N_6/VREF_6 M6 6 IO_L89P_6 M5 6 IO_L89N_6 M4 6 IO_L90P_6 M3 6 IO_L90N_6 M2 7 IO_L90P_7 L2 7 IO_L90N_7 L3 7 IO_L88P_7 L4 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP2 XC2VP4 XC2VP7 Module 4 of 4 21 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 6: FG456/FGG456 — XC2VP2, XC2VP4, and XC2VP7 No Connects Bank Pin Description Pin Number 7 IO_L88N_7/VREF_7 L5 7 IO_L86P_7 L6 7 IO_L86N_7 K6 7 IO_L85P_7 K1 7 IO_L85N_7 K2 7 IO_L60P_7 K3 NC 7 IO_L60N_7 K4 NC 7 IO_L58P_7 K5 NC 7 IO_L58N_7/VREF_7 J5 NC 7 IO_L56P_7 J1 NC 7 IO_L56N_7 J2 NC 7 IO_L55P_7 J3 NC 7 IO_L55N_7 J4 NC 7 IO_L54P_7 J6 NC 7 IO_L54N_7 H5 NC 7 IO_L52P_7 H1 NC 7 IO_L52N_7/VREF_7 H2 NC 7 IO_L50P_7 H3 NC 7 IO_L50N_7 H4 NC 7 IO_L49P_7 G1 NC 7 IO_L49N_7 G2 NC 7 IO_L48P_7 G3 NC 7 IO_L48N_7 G4 NC 7 IO_L46P_7 G5 NC 7 IO_L46N_7/VREF_7 F5 NC 7 IO_L43P_7 F1 NC 7 IO_L43N_7 F2 NC 7 IO_L06P_7 F3 7 IO_L06N_7 F4 7 IO_L04P_7 E1 7 IO_L04N_7/VREF_7 E2 7 IO_L03P_7 E3 7 IO_L03N_7 E4 7 IO_L02P_7 D1 7 IO_L02N_7 D2 7 IO_L01P_7/VRN_7 C1 7 IO_L01N_7/VRP_7 C2 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP2 XC2VP4 XC2VP7 Module 4 of 4 22 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 6: FG456/FGG456 — XC2VP2, XC2VP4, and XC2VP7 No Connects Bank Pin Description Pin Number 0 VCCO_0 G9 0 VCCO_0 G11 0 VCCO_0 G10 0 VCCO_0 F8 0 VCCO_0 F7 1 VCCO_1 G14 1 VCCO_1 G13 1 VCCO_1 G12 1 VCCO_1 F16 1 VCCO_1 F15 2 VCCO_2 L16 2 VCCO_2 K16 2 VCCO_2 J16 2 VCCO_2 H17 2 VCCO_2 G17 3 VCCO_3 T17 3 VCCO_3 R17 3 VCCO_3 P16 3 VCCO_3 N16 3 VCCO_3 M16 4 VCCO_4 U16 4 VCCO_4 U15 4 VCCO_4 T14 4 VCCO_4 T13 4 VCCO_4 T12 5 VCCO_5 U8 5 VCCO_5 U7 5 VCCO_5 T9 5 VCCO_5 T11 5 VCCO_5 T10 6 VCCO_6 T6 6 VCCO_6 R6 6 VCCO_6 P7 6 VCCO_6 N7 6 VCCO_6 M7 7 VCCO_7 L7 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP2 XC2VP4 XC2VP7 Module 4 of 4 23 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 6: FG456/FGG456 — XC2VP2, XC2VP4, and XC2VP7 No Connects Bank Pin Description Pin Number XC2VP2 XC2VP4 7 VCCO_7 K7 7 VCCO_7 J7 7 VCCO_7 H6 7 VCCO_7 G6 N/A CCLK W20 N/A PROG_B B1 N/A DONE Y18 N/A M0 Y4 N/A M1 W3 N/A M2 Y5 N/A TCK B22 N/A TDI D3 N/A TDO D20 N/A TMS A21 N/A PWRDWN_B Y19 N/A HSWAP_EN A2 N/A RSVD C18 N/A VBATT C19 N/A DXP C4 N/A DXN C5 N/A AVCCAUXTX4 B4 NC NC N/A VTTXPAD4 B3 NC NC N/A TXNPAD4 A3 NC NC N/A TXPPAD4 A4 NC NC N/A GNDA4 C6 NC NC N/A RXPPAD4 A5 NC NC N/A RXNPAD4 A6 NC NC N/A VTRXPAD4 B5 NC NC N/A AVCCAUXRX4 B6 NC NC N/A AVCCAUXTX6 B8 N/A VTTXPAD6 B7 N/A TXNPAD6 A7 N/A TXPPAD6 A8 N/A GNDA6 C9 N/A RXPPAD6 A9 N/A RXNPAD6 A10 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP7 Module 4 of 4 24 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 6: FG456/FGG456 — XC2VP2, XC2VP4, and XC2VP7 No Connects Bank Pin Description Pin Number XC2VP2 XC2VP4 N/A VTRXPAD6 B9 N/A AVCCAUXRX6 B10 N/A AVCCAUXTX7 B14 N/A VTTXPAD7 B13 N/A TXNPAD7 A13 N/A TXPPAD7 A14 N/A GNDA7 C14 N/A RXPPAD7 A15 N/A RXNPAD7 A16 N/A VTRXPAD7 B15 N/A AVCCAUXRX7 B16 N/A AVCCAUXTX9 B18 NC NC N/A VTTXPAD9 B17 NC NC N/A TXNPAD9 A17 NC NC N/A TXPPAD9 A18 NC NC N/A GNDA9 C17 NC NC N/A RXPPAD9 A19 NC NC N/A RXNPAD9 A20 NC NC N/A VTRXPAD9 B19 NC NC N/A AVCCAUXRX9 B20 NC NC N/A AVCCAUXRX16 AA20 NC NC N/A VTRXPAD16 AA19 NC NC N/A RXNPAD16 AB20 NC NC N/A RXPPAD16 AB19 NC NC N/A GNDA16 Y17 NC NC N/A TXPPAD16 AB18 NC NC N/A TXNPAD16 AB17 NC NC N/A VTTXPAD16 AA17 NC NC N/A AVCCAUXTX16 AA18 NC NC N/A AVCCAUXRX18 AA16 N/A VTRXPAD18 AA15 N/A RXNPAD18 AB16 N/A RXPPAD18 AB15 N/A GNDA18 Y14 N/A TXPPAD18 AB14 N/A TXNPAD18 AB13 N/A VTTXPAD18 AA13 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP7 Module 4 of 4 25 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 6: FG456/FGG456 — XC2VP2, XC2VP4, and XC2VP7 No Connects Bank Pin Description Pin Number XC2VP2 XC2VP4 N/A AVCCAUXTX18 AA14 N/A AVCCAUXRX19 AA10 N/A VTRXPAD19 AA9 N/A RXNPAD19 AB10 N/A RXPPAD19 AB9 N/A GNDA19 Y9 N/A TXPPAD19 AB8 N/A TXNPAD19 AB7 N/A VTTXPAD19 AA7 N/A AVCCAUXTX19 AA8 N/A AVCCAUXRX21 AA6 NC NC N/A VTRXPAD21 AA5 NC NC N/A RXNPAD21 AB6 NC NC N/A RXPPAD21 AB5 NC NC N/A GNDA21 Y6 NC NC N/A TXPPAD21 AB4 NC NC N/A TXNPAD21 AB3 NC NC N/A VTTXPAD21 AA3 NC NC N/A AVCCAUXTX21 AA4 NC NC N/A VCCINT U6 N/A VCCINT U17 N/A VCCINT T8 N/A VCCINT T7 N/A VCCINT T16 N/A VCCINT T15 N/A VCCINT R7 N/A VCCINT R16 N/A VCCINT H7 N/A VCCINT H16 N/A VCCINT G8 N/A VCCINT G7 N/A VCCINT G16 N/A VCCINT G15 N/A VCCINT F6 N/A VCCINT F17 N/A VCCAUX M22 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP7 Module 4 of 4 26 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 6: FG456/FGG456 — XC2VP2, XC2VP4, and XC2VP7 No Connects Bank Pin Description Pin Number N/A VCCAUX L1 N/A VCCAUX B21 N/A VCCAUX B2 N/A VCCAUX AB11 N/A VCCAUX AA21 N/A VCCAUX AA2 N/A VCCAUX A12 N/A GND Y3 N/A GND Y20 N/A GND W4 N/A GND W19 N/A GND V5 N/A GND V18 N/A GND P9 N/A GND P14 N/A GND P13 N/A GND P12 N/A GND P11 N/A GND P10 N/A GND N9 N/A GND N14 N/A GND N13 N/A GND N12 N/A GND N11 N/A GND N10 N/A GND M9 N/A GND M14 N/A GND M13 N/A GND M12 N/A GND M11 N/A GND M10 N/A GND M1 N/A GND L9 N/A GND L22 N/A GND L14 N/A GND L13 N/A GND L12 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP2 XC2VP4 XC2VP7 Module 4 of 4 27 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 6: FG456/FGG456 — XC2VP2, XC2VP4, and XC2VP7 No Connects Bank Pin Description Pin Number N/A GND L11 N/A GND L10 N/A GND K9 N/A GND K14 N/A GND K13 N/A GND K12 N/A GND K11 N/A GND K10 N/A GND J9 N/A GND J14 N/A GND J13 N/A GND J12 N/A GND J11 N/A GND J10 N/A GND E5 N/A GND E18 N/A GND D4 N/A GND D19 N/A GND C3 N/A GND C20 N/A GND AB22 N/A GND AB12 N/A GND AB1 N/A GND A22 N/A GND A11 N/A GND A1 XC2VP2 XC2VP4 XC2VP7 Notes: 1. See Table 4 for an explanation of the signals available on this pin. DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 4 of 4 28 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information FG456/FGG456 Fine-Pitch BGA Package Specifications (1.00mm pitch) Figure 2: FG456/FGG456 Fine-Pitch BGA Package Specifications DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 4 of 4 29 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information FG676/FGG676 Fine-Pitch BGA Package As shown in Table 7, XC2VP20, XC2VP30, and XC2VP40 Virtex-II Pro devices are available in the FG676/FGG676 fine-pitch BGA package. The pins in these devices are the same, except for the differences shown in the "No Connects" column. Following this table are the FG676/FGG676 Fine-Pitch BGA Package Specifications (1.00mm pitch). Table 7: FG676/FGG676 — XC2VP20, XC2VP30, and XC2VP40 No Connects Bank Pin Description Pin Number 0 IO_L01N_0/VRP_0 E5 0 IO_L01P_0/VRN_0 D5 0 IO_L02N_0 E6 0 IO_L02P_0 D6 0 IO_L03N_0 G7 0 IO_L03P_0/VREF_0 F7 0 IO_L05_0/No_Pair E7 0 IO_L06N_0 D7 0 IO_L06P_0 C7 0 IO_L07N_0 H8 0 IO_L07P_0 G8 0 IO_L09N_0 F8 0 IO_L09P_0/VREF_0 E8 0 IO_L37N_0 B8 0 IO_L37P_0 A8 0 IO_L39N_0 H9 0 IO_L39P_0 G9 0 IO_L43N_0 F9 0 IO_L43P_0 E9 0 IO_L45N_0 D9 0 IO_L45P_0/VREF_0 C9 0 IO_L46N_0 H10 0 IO_L46P_0 H11 0 IO_L48N_0 E10 0 IO_L48P_0 E11 0 IO_L49N_0 D10 0 IO_L49P_0 C10 0 IO_L50_0/No_Pair G11 0 IO_L53_0/No_Pair F11 0 IO_L54N_0 J12 0 IO_L54P_0 H12 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP20 XC2VP30 XC2VP40 Module 4 of 4 30 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 7: FG676/FGG676 — XC2VP20, XC2VP30, and XC2VP40 No Connects Bank Pin Description Pin Number 0 IO_L55N_0 G12 0 IO_L55P_0 F12 0 IO_L57N_0 E12 0 IO_L57P_0/VREF_0 F13 0 IO_L67N_0 D12 0 IO_L67P_0 C12 0 IO_L69N_0 J13 0 IO_L69P_0/VREF_0 H13 0 IO_L74N_0/GCLK7P E13 0 IO_L74P_0/GCLK6S D13 0 IO_L75N_0/GCLK5P C13 0 IO_L75P_0/GCLK4S B13 1 IO_L75N_1/GCLK3P B14 1 IO_L75P_1/GCLK2S C14 1 IO_L74N_1/GCLK1P D14 1 IO_L74P_1/GCLK0S E14 1 IO_L69N_1/VREF_1 H14 1 IO_L69P_1 J14 1 IO_L67N_1 C15 1 IO_L67P_1 D15 1 IO_L57N_1/VREF_1 F14 1 IO_L57P_1 E15 1 IO_L55N_1 F15 1 IO_L55P_1 G15 1 IO_L54N_1 H15 1 IO_L54P_1 J15 1 IO_L53_1/No_Pair F16 1 IO_L50_1/No_Pair G16 1 IO_L49N_1 C17 1 IO_L49P_1 D17 1 IO_L48N_1 E16 1 IO_L48P_1 E17 1 IO_L46N_1 H16 1 IO_L46P_1 H17 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP20 XC2VP30 XC2VP40 Module 4 of 4 31 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 7: FG676/FGG676 — XC2VP20, XC2VP30, and XC2VP40 No Connects Bank Pin Description Pin Number 1 IO_L45N_1/VREF_1 C18 1 IO_L45P_1 D18 1 IO_L43N_1 E18 1 IO_L43P_1 F18 1 IO_L39N_1 G18 1 IO_L39P_1 H18 1 IO_L37N_1 A19 1 IO_L37P_1 B19 1 IO_L09N_1/VREF_1 E19 1 IO_L09P_1 F19 1 IO_L07N_1 G19 1 IO_L07P_1 H19 1 IO_L06N_1 C20 1 IO_L06P_1 D20 1 IO_L05_1/No_Pair E20 1 IO_L03N_1/VREF_1 F20 1 IO_L03P_1 G20 1 IO_L02N_1 D21 1 IO_L02P_1 E21 1 IO_L01N_1/VRP_1 D22 1 IO_L01P_1/VRN_1 E22 2 IO_L01N_2/VRP_2 C25 2 IO_L01P_2/VRN_2 C26 2 IO_L02N_2 D25 2 IO_L02P_2 D26 2 IO_L03N_2 E23 2 IO_L03P_2 F22 2 IO_L04N_2/VREF_2 E25 2 IO_L04P_2 E26 2 IO_L06N_2 F21 2 IO_L06P_2 G21 2 IO_L24N_2 F23 NC 2 IO_L24P_2 F24 NC 2 IO_L31N_2 F25 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP20 XC2VP30 XC2VP40 Module 4 of 4 32 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 7: FG676/FGG676 — XC2VP20, XC2VP30, and XC2VP40 No Connects Bank Pin Description Pin Number 2 IO_L31P_2 F26 2 IO_L32N_2 G22 2 IO_L32P_2 H22 2 IO_L34N_2/VREF_2 G23 2 IO_L34P_2 G24 2 IO_L36N_2 G25 2 IO_L36P_2 G26 2 IO_L37N_2 H20 2 IO_L37P_2 H21 2 IO_L38N_2 H25 2 IO_L38P_2 H26 2 IO_L40N_2/VREF_2 J19 2 IO_L40P_2 J20 2 IO_L42N_2 J21 2 IO_L42P_2 J22 2 IO_L43N_2 J23 2 IO_L43P_2 J24 2 IO_L44N_2 J25 2 IO_L44P_2 J26 2 IO_L46N_2/VREF_2 K19 2 IO_L46P_2 L19 2 IO_L48N_2 K22 2 IO_L48P_2 K23 2 IO_L49N_2 K24 2 IO_L49P_2 L24 2 IO_L50N_2 K25 2 IO_L50P_2 K26 2 IO_L52N_2/VREF_2 L20 2 IO_L52P_2 M20 2 IO_L54N_2 L21 2 IO_L54P_2 L22 2 IO_L55N_2 L25 2 IO_L55P_2 L26 2 IO_L56N_2 M18 2 IO_L56P_2 M19 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP20 XC2VP30 XC2VP40 Module 4 of 4 33 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 7: FG676/FGG676 — XC2VP20, XC2VP30, and XC2VP40 No Connects Bank Pin Description Pin Number 2 IO_L58N_2/VREF_2 M21 2 IO_L58P_2 N21 2 IO_L60N_2 M22 2 IO_L60P_2 M23 2 IO_L85N_2 M25 2 IO_L85P_2 M26 2 IO_L86N_2 N18 2 IO_L86P_2 N19 2 IO_L88N_2/VREF_2 N22 2 IO_L88P_2 N23 2 IO_L90N_2 N24 2 IO_L90P_2 N25 3 IO_L90N_3 P25 3 IO_L90P_3 P24 3 IO_L89N_3 P23 3 IO_L89P_3 P22 3 IO_L87N_3/VREF_3 P19 3 IO_L87P_3 P18 3 IO_L85N_3 R26 3 IO_L85P_3 R25 3 IO_L60N_3 R23 3 IO_L60P_3 R22 3 IO_L59N_3 P21 3 IO_L59P_3 R21 3 IO_L57N_3/VREF_3 R19 3 IO_L57P_3 R18 3 IO_L55N_3 T26 3 IO_L55P_3 T25 3 IO_L54N_3 T22 3 IO_L54P_3 T21 3 IO_L53N_3 R20 3 IO_L53P_3 T20 3 IO_L51N_3/VREF_3 U26 3 IO_L51P_3 U25 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP20 XC2VP30 XC2VP40 Module 4 of 4 34 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 7: FG676/FGG676 — XC2VP20, XC2VP30, and XC2VP40 No Connects Bank Pin Description Pin Number 3 IO_L49N_3 T24 3 IO_L49P_3 U24 3 IO_L48N_3 U23 3 IO_L48P_3 U22 3 IO_L47N_3 T19 3 IO_L47P_3 U19 3 IO_L45N_3/VREF_3 V26 3 IO_L45P_3 V25 3 IO_L43N_3 V24 3 IO_L43P_3 V23 3 IO_L42N_3 V22 3 IO_L42P_3 V21 3 IO_L41N_3 V20 3 IO_L41P_3 V19 3 IO_L39N_3/VREF_3 W26 3 IO_L39P_3 W25 3 IO_L37N_3 W21 3 IO_L37P_3 W20 3 IO_L36N_3 Y26 3 IO_L36P_3 Y25 3 IO_L35N_3 Y24 3 IO_L35P_3 Y23 3 IO_L33N_3/VREF_3 W22 3 IO_L33P_3 Y22 3 IO_L31N_3 AA26 3 IO_L31P_3 AA25 3 IO_L24N_3 AA24 NC 3 IO_L24P_3 AA23 NC 3 IO_L23N_3 Y21 NC 3 IO_L23P_3 AA21 NC 3 IO_L06N_3 AB26 3 IO_L06P_3 AB25 3 IO_L05N_3 AA22 3 IO_L05P_3 AB23 3 IO_L03N_3/VREF_3 AC26 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP20 XC2VP30 XC2VP40 Module 4 of 4 35 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 7: FG676/FGG676 — XC2VP20, XC2VP30, and XC2VP40 No Connects Bank Pin Description Pin Number 3 IO_L03P_3 AC25 3 IO_L02N_3 AC24 3 IO_L02P_3 AD25 3 IO_L01N_3/VRP_3 AD26 3 IO_L01P_3/VRN_3 AE26 4 IO_L01N_4/BUSY/DOUT (1) AB22 4 IO_L01P_4/INIT_B AC22 4 IO_L02N_4/D0/DIN (1) AB21 4 IO_L02P_4/D1 AC21 4 IO_L03N_4/D2 Y20 4 IO_L03P_4/D3 AA20 4 IO_L05_4/No_Pair AB20 4 IO_L06N_4/VRP_4 AC20 4 IO_L06P_4/VRN_4 AD20 4 IO_L07N_4 W19 4 IO_L07P_4/VREF_4 Y19 4 IO_L09N_4 AA19 4 IO_L09P_4/VREF_4 AB19 4 IO_L37N_4 AE19 4 IO_L37P_4 AF19 4 IO_L39N_4 W18 4 IO_L39P_4 Y18 4 IO_L43N_4 AA18 4 IO_L43P_4 AB18 4 IO_L45N_4 AC18 4 IO_L45P_4/VREF_4 AD18 4 IO_L46N_4 W17 4 IO_L46P_4 W16 4 IO_L48N_4 AB17 4 IO_L48P_4 AB16 4 IO_L49N_4 AC17 4 IO_L49P_4 AD17 4 IO_L50_4/No_Pair Y16 4 IO_L53_4/No_Pair AA16 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP20 XC2VP30 XC2VP40 Module 4 of 4 36 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 7: FG676/FGG676 — XC2VP20, XC2VP30, and XC2VP40 No Connects Bank Pin Description Pin Number 4 IO_L54N_4 V15 4 IO_L54P_4 W15 4 IO_L55N_4 Y15 4 IO_L55P_4 AA15 4 IO_L57N_4 AB15 4 IO_L57P_4/VREF_4 AA14 4 IO_L67N_4 AC15 4 IO_L67P_4 AD15 4 IO_L69N_4 V14 4 IO_L69P_4/VREF_4 W14 4 IO_L74N_4/GCLK3S AB14 4 IO_L74P_4/GCLK2P AC14 4 IO_L75N_4/GCLK1S AD14 4 IO_L75P_4/GCLK0P AE14 5 IO_L75N_5/GCLK7S AE13 5 IO_L75P_5/GCLK6P AD13 5 IO_L74N_5/GCLK5S AC13 5 IO_L74P_5/GCLK4P AB13 5 IO_L69N_5/VREF_5 W13 5 IO_L69P_5 V13 5 IO_L67N_5 AD12 5 IO_L67P_5 AC12 5 IO_L57N_5/VREF_5 AA13 5 IO_L57P_5 AB12 5 IO_L55N_5 AA12 5 IO_L55P_5 Y12 5 IO_L54N_5 W12 5 IO_L54P_5 V12 5 IO_L53_5/No_Pair AA11 5 IO_L50_5/No_Pair Y11 5 IO_L49N_5 AD10 5 IO_L49P_5 AC10 5 IO_L48N_5 AB11 5 IO_L48P_5 AB10 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP20 XC2VP30 XC2VP40 Module 4 of 4 37 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 7: FG676/FGG676 — XC2VP20, XC2VP30, and XC2VP40 No Connects Bank Pin Description Pin Number 5 IO_L46N_5 W11 5 IO_L46P_5 W10 5 IO_L45N_5/VREF_5 AD9 5 IO_L45P_5 AC9 5 IO_L43N_5 AB9 5 IO_L43P_5 AA9 5 IO_L39N_5 Y9 5 IO_L39P_5 W9 5 IO_L37N_5 AF8 5 IO_L37P_5 AE8 5 IO_L09N_5/VREF_5 AB8 5 IO_L09P_5 AA8 5 IO_L07N_5/VREF_5 Y8 5 IO_L07P_5 W8 5 IO_L06N_5/VRP_5 AD7 5 IO_L06P_5/VRN_5 AC7 5 IO_L05_5/No_Pair AB7 5 IO_L03N_5/D4 AA7 5 IO_L03P_5/D5 Y7 5 IO_L02N_5/D6 AC6 5 IO_L02P_5/D7 AB6 5 IO_L01N_5/RDWR_B AC5 5 IO_L01P_5/CS_B AB5 6 IO_L01P_6/VRN_6 AE1 6 IO_L01N_6/VRP_6 AD1 6 IO_L02P_6 AD2 6 IO_L02N_6 AC3 6 IO_L03P_6 AC2 6 IO_L03N_6/VREF_6 AC1 6 IO_L05P_6 AB4 6 IO_L05N_6 AA5 6 IO_L06P_6 AB2 6 IO_L06N_6 AB1 6 IO_L23P_6 AA6 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP20 XC2VP30 XC2VP40 NC Module 4 of 4 38 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 7: FG676/FGG676 — XC2VP20, XC2VP30, and XC2VP40 No Connects Bank Pin Description Pin Number XC2VP20 6 IO_L23N_6 Y6 NC 6 IO_L24P_6 AA4 NC 6 IO_L24N_6 AA3 NC 6 IO_L31P_6 AA2 6 IO_L31N_6 AA1 6 IO_L33P_6 Y5 6 IO_L33N_6/VREF_6 W5 6 IO_L35P_6 Y4 6 IO_L35N_6 Y3 6 IO_L36P_6 Y2 6 IO_L36N_6 Y1 6 IO_L37P_6 W7 6 IO_L37N_6 W6 6 IO_L39P_6 W2 6 IO_L39N_6/VREF_6 W1 6 IO_L41P_6 V8 6 IO_L41N_6 V7 6 IO_L42P_6 V6 6 IO_L42N_6 V5 6 IO_L43P_6 V4 6 IO_L43N_6 V3 6 IO_L45P_6 V2 6 IO_L45N_6/VREF_6 V1 6 IO_L47P_6 U8 6 IO_L47N_6 T8 6 IO_L48P_6 U5 6 IO_L48N_6 U4 6 IO_L49P_6 U3 6 IO_L49N_6 T3 6 IO_L51P_6 U2 6 IO_L51N_6/VREF_6 U1 6 IO_L53P_6 T7 6 IO_L53N_6 R7 6 IO_L54P_6 T6 6 IO_L54N_6 T5 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP30 XC2VP40 Module 4 of 4 39 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 7: FG676/FGG676 — XC2VP20, XC2VP30, and XC2VP40 No Connects Bank Pin Description Pin Number 6 IO_L55P_6 T2 6 IO_L55N_6 T1 6 IO_L57P_6 R9 6 IO_L57N_6/VREF_6 R8 6 IO_L59P_6 R6 6 IO_L59N_6 P6 6 IO_L60P_6 R5 6 IO_L60N_6 R4 6 IO_L85P_6 R2 6 IO_L85N_6 R1 6 IO_L87P_6 P9 6 IO_L87N_6/VREF_6 P8 6 IO_L89P_6 P5 6 IO_L89N_6 P4 6 IO_L90P_6 P3 6 IO_L90N_6 P2 7 IO_L90P_7 N2 7 IO_L90N_7 N3 7 IO_L88P_7 N4 7 IO_L88N_7/VREF_7 N5 7 IO_L86P_7 N8 7 IO_L86N_7 N9 7 IO_L85P_7 M1 7 IO_L85N_7 M2 7 IO_L60P_7 M4 7 IO_L60N_7 M5 7 IO_L58P_7 N6 7 IO_L58N_7/VREF_7 M6 7 IO_L56P_7 M8 7 IO_L56N_7 M9 7 IO_L55P_7 L1 7 IO_L55N_7 L2 7 IO_L54P_7 L5 7 IO_L54N_7 L6 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP20 XC2VP30 XC2VP40 Module 4 of 4 40 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 7: FG676/FGG676 — XC2VP20, XC2VP30, and XC2VP40 No Connects Bank Pin Description Pin Number 7 IO_L52P_7 M7 7 IO_L52N_7/VREF_7 L7 7 IO_L50P_7 K1 7 IO_L50N_7 K2 7 IO_L49P_7 L3 7 IO_L49N_7 K3 7 IO_L48P_7 K4 7 IO_L48N_7 K5 7 IO_L46P_7 L8 7 IO_L46N_7/VREF_7 K8 7 IO_L44P_7 J1 7 IO_L44N_7 J2 7 IO_L43P_7 J3 7 IO_L43N_7 J4 7 IO_L42P_7 J5 7 IO_L42N_7 J6 7 IO_L40P_7 J7 7 IO_L40N_7/VREF_7 J8 7 IO_L38P_7 H1 7 IO_L38N_7 H2 7 IO_L37P_7 H6 7 IO_L37N_7 H7 7 IO_L36P_7 G1 7 IO_L36N_7 G2 7 IO_L34P_7 G3 7 IO_L34N_7/VREF_7 G4 7 IO_L32P_7 H5 7 IO_L32N_7 G5 7 IO_L31P_7 F1 7 IO_L31N_7 F2 7 IO_L24P_7 F3 NC 7 IO_L24N_7 F4 NC 7 IO_L06P_7 G6 7 IO_L06N_7 F6 7 IO_L04P_7 E1 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP20 XC2VP30 XC2VP40 Module 4 of 4 41 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 7: FG676/FGG676 — XC2VP20, XC2VP30, and XC2VP40 No Connects Bank Pin Description Pin Number 7 IO_L04N_7/VREF_7 E2 7 IO_L03P_7 F5 7 IO_L03N_7 E4 7 IO_L02P_7 D1 7 IO_L02N_7 D2 7 IO_L01P_7/VRN_7 C1 7 IO_L01N_7/VRP_7 C2 0 VCCO_0 C5 0 VCCO_0 C8 0 VCCO_0 D11 0 VCCO_0 J10 0 VCCO_0 J11 0 VCCO_0 K12 0 VCCO_0 K13 1 VCCO_1 C19 1 VCCO_1 C22 1 VCCO_1 D16 1 VCCO_1 J16 1 VCCO_1 J17 1 VCCO_1 K14 1 VCCO_1 K15 2 VCCO_2 E24 2 VCCO_2 H24 2 VCCO_2 K18 2 VCCO_2 L18 2 VCCO_2 L23 2 VCCO_2 M17 2 VCCO_2 N17 3 VCCO_3 P17 3 VCCO_3 R17 3 VCCO_3 T18 3 VCCO_3 T23 3 VCCO_3 U18 3 VCCO_3 W24 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP20 XC2VP30 XC2VP40 Module 4 of 4 42 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 7: FG676/FGG676 — XC2VP20, XC2VP30, and XC2VP40 No Connects Bank Pin Description Pin Number 3 VCCO_3 AB24 4 VCCO_4 U14 4 VCCO_4 U15 4 VCCO_4 V16 4 VCCO_4 V17 4 VCCO_4 AC16 4 VCCO_4 AD19 4 VCCO_4 AD22 5 VCCO_5 U12 5 VCCO_5 U13 5 VCCO_5 V10 5 VCCO_5 V11 5 VCCO_5 AC11 5 VCCO_5 AD5 5 VCCO_5 AD8 6 VCCO_6 P10 6 VCCO_6 R10 6 VCCO_6 T4 6 VCCO_6 T9 6 VCCO_6 U9 6 VCCO_6 W3 6 VCCO_6 AB3 7 VCCO_7 E3 7 VCCO_7 H3 7 VCCO_7 K9 7 VCCO_7 L4 7 VCCO_7 L9 7 VCCO_7 M10 7 VCCO_7 N10 N/A PROG_B B1 N/A HSWAP_EN B3 N/A DXP A3 N/A DXN C4 N/A AVCCAUXTX4 B5 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP20 XC2VP30 XC2VP40 Module 4 of 4 43 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 7: FG676/FGG676 — XC2VP20, XC2VP30, and XC2VP40 No Connects Bank Pin Description Pin Number N/A VTTXPAD4 B4 N/A TXNPAD4 A4 N/A TXPPAD4 A5 N/A GNDA4 C6 N/A RXPPAD4 A6 N/A RXNPAD4 A7 N/A VTRXPAD4 B6 N/A AVCCAUXRX4 B7 N/A AVCCAUXTX6 B10 N/A VTTXPAD6 B9 N/A TXNPAD6 A9 N/A TXPPAD6 A10 N/A GNDA6 C11 N/A RXPPAD6 A11 N/A RXNPAD6 A12 N/A VTRXPAD6 B11 N/A AVCCAUXRX6 B12 N/A AVCCAUXTX7 B16 N/A VTTXPAD7 B15 N/A TXNPAD7 A15 N/A TXPPAD7 A16 N/A GNDA7 C16 N/A RXPPAD7 A17 N/A RXNPAD7 A18 N/A VTRXPAD7 B17 N/A AVCCAUXRX7 B18 N/A AVCCAUXTX9 B21 N/A VTTXPAD9 B20 N/A TXNPAD9 A20 N/A TXPPAD9 A21 N/A GNDA9 C21 N/A RXPPAD9 A22 N/A RXNPAD9 A23 N/A VTRXPAD9 B22 N/A AVCCAUXRX9 B23 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP20 XC2VP30 XC2VP40 Module 4 of 4 44 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 7: FG676/FGG676 — XC2VP20, XC2VP30, and XC2VP40 No Connects Bank Pin Description Pin Number N/A RSVD C23 N/A VBATT A24 N/A TMS B24 N/A TCK B26 N/A TDO D24 N/A CCLK AE24 N/A PWRDWN_B AF24 N/A DONE AD23 N/A AVCCAUXRX16 AE23 N/A VTRXPAD16 AE22 N/A RXNPAD16 AF23 N/A RXPPAD16 AF22 N/A GNDA16 AD21 N/A TXPPAD16 AF21 N/A TXNPAD16 AF20 N/A VTTXPAD16 AE20 N/A AVCCAUXTX16 AE21 N/A AVCCAUXRX18 AE18 N/A VTRXPAD18 AE17 N/A RXNPAD18 AF18 N/A RXPPAD18 AF17 N/A GNDA18 AD16 N/A TXPPAD18 AF16 N/A TXNPAD18 AF15 N/A VTTXPAD18 AE15 N/A AVCCAUXTX18 AE16 N/A AVCCAUXRX19 AE12 N/A VTRXPAD19 AE11 N/A RXNPAD19 AF12 N/A RXPPAD19 AF11 N/A GNDA19 AD11 N/A TXPPAD19 AF10 N/A TXNPAD19 AF9 N/A VTTXPAD19 AE9 N/A AVCCAUXTX19 AE10 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP20 XC2VP30 XC2VP40 Module 4 of 4 45 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 7: FG676/FGG676 — XC2VP20, XC2VP30, and XC2VP40 No Connects Bank Pin Description Pin Number N/A AVCCAUXRX21 AE7 N/A VTRXPAD21 AE6 N/A RXNPAD21 AF7 N/A RXPPAD21 AF6 N/A GNDA21 AD6 N/A TXPPAD21 AF5 N/A TXNPAD21 AF4 N/A VTTXPAD21 AE4 N/A AVCCAUXTX21 AE5 N/A M2 AD4 N/A M0 AF3 N/A M1 AE3 N/A TDI D3 N/A VCCINT G10 N/A VCCINT G13 N/A VCCINT G14 N/A VCCINT G17 N/A VCCINT J9 N/A VCCINT J18 N/A VCCINT K7 N/A VCCINT K10 N/A VCCINT K11 N/A VCCINT K16 N/A VCCINT K17 N/A VCCINT K20 N/A VCCINT L10 N/A VCCINT L17 N/A VCCINT N7 N/A VCCINT N20 N/A VCCINT P7 N/A VCCINT P20 N/A VCCINT T10 N/A VCCINT T17 N/A VCCINT U7 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP20 XC2VP30 XC2VP40 Module 4 of 4 46 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 7: FG676/FGG676 — XC2VP20, XC2VP30, and XC2VP40 No Connects Bank Pin Description Pin Number N/A VCCINT U10 N/A VCCINT U11 N/A VCCINT U16 N/A VCCINT U17 N/A VCCINT U20 N/A VCCINT V9 N/A VCCINT V18 N/A VCCINT Y10 N/A VCCINT Y13 N/A VCCINT Y14 N/A VCCINT Y17 N/A VCCAUX A2 N/A VCCAUX A13 N/A VCCAUX A14 N/A VCCAUX A25 N/A VCCAUX N1 N/A VCCAUX N26 N/A VCCAUX P1 N/A VCCAUX P26 N/A VCCAUX AF2 N/A VCCAUX AF13 N/A VCCAUX AF14 N/A VCCAUX AF25 N/A GND A1 N/A GND A26 N/A GND B2 N/A GND B25 N/A GND C3 N/A GND C24 N/A GND D4 N/A GND D8 N/A GND D19 N/A GND D23 N/A GND F10 N/A GND F17 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP20 XC2VP30 XC2VP40 Module 4 of 4 47 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 7: FG676/FGG676 — XC2VP20, XC2VP30, and XC2VP40 No Connects Bank Pin Description Pin Number N/A GND H4 N/A GND H23 N/A GND K6 N/A GND K21 N/A GND L11 N/A GND L12 N/A GND L13 N/A GND L14 N/A GND L15 N/A GND L16 N/A GND M3 N/A GND M11 N/A GND M12 N/A GND M13 N/A GND M14 N/A GND M15 N/A GND M16 N/A GND M24 N/A GND N11 N/A GND N12 N/A GND N13 N/A GND N14 N/A GND N15 N/A GND N16 N/A GND P11 N/A GND P12 N/A GND P13 N/A GND P14 N/A GND P15 N/A GND P16 N/A GND R3 N/A GND R11 N/A GND R12 N/A GND R13 N/A GND R14 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP20 XC2VP30 XC2VP40 Module 4 of 4 48 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 7: FG676/FGG676 — XC2VP20, XC2VP30, and XC2VP40 No Connects Bank Pin Description Pin Number N/A GND R15 N/A GND R16 N/A GND R24 N/A GND T11 N/A GND T12 N/A GND T13 N/A GND T14 N/A GND T15 N/A GND T16 N/A GND U6 N/A GND U21 N/A GND W4 N/A GND W23 N/A GND AA10 N/A GND AA17 N/A GND AC4 N/A GND AC8 N/A GND AC19 N/A GND AC23 N/A GND AD3 N/A GND AD24 N/A GND AE2 N/A GND AE25 N/A GND AF1 N/A GND AF26 XC2VP20 XC2VP30 XC2VP40 Notes: 1. See Table 4 for an explanation of the signals available on this pin. DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 4 of 4 49 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information FG676/FGG676 Fine-Pitch BGA Package Specifications (1.00mm pitch) Figure 3: FG676/FGG676 Fine-Pitch BGA Package Specifications DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 4 of 4 50 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information FF672 Flip-Chip Fine-Pitch BGA Package As shown in Table 8, XC2VP2, XC2VP4, and XC2VP7 Virtex-II Pro devices are available in the FF672 flip-chip fine-pitch BGA package. Pins in each of these devices are the same, except for differences shown in the "No Connects" column. Following this table are the FF672 Flip-Chip Fine-Pitch BGA Package Specifications (1.00mm pitch). Table 8: FF672 — XC2VP2, XC2VP4, and XC2VP7 Bank Pin Description Pin Number 0 IO_L01N_0/VRP_0 B24 0 IO_L01P_0/VRN_0 A24 0 IO_L02N_0 D21 0 IO_L02P_0 C21 0 IO_L03N_0 E20 0 IO_L03P_0/VREF_0 D20 0 IO_L05_0/No_Pair F19 0 IO_L06N_0 E19 0 IO_L06P_0 E18 0 IO_L07N_0 D19 0 IO_L07P_0 C19 0 IO_L08N_0 B19 0 IO_L08P_0 A19 0 IO_L09N_0 G18 0 IO_L09P_0/VREF_0 F18 0 IO_L37N_0 0 No Connects XC2VP2 XC2VP4 D18 NC NC IO_L37P_0 C18 NC NC 0 IO_L38N_0 G17 NC NC 0 IO_L38P_0 H16 NC NC 0 IO_L39N_0 F17 NC NC 0 IO_L39P_0 F16 NC NC 0 IO_L43N_0 E17 NC NC 0 IO_L43P_0 D17 NC NC 0 IO_L44N_0 G16 NC NC 0 IO_L44P_0 G15 NC NC 0 IO_L45N_0 E16 NC NC 0 IO_L45P_0/VREF_0 D16 NC NC 0 IO_L67N_0 F15 0 IO_L67P_0 E15 0 IO_L68N_0 D15 0 IO_L68P_0 C15 0 IO_L69N_0 H15 0 IO_L69P_0/VREF_0 H14 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP7 Module 4 of 4 51 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 8: FF672 — XC2VP2, XC2VP4, and XC2VP7 Bank Pin Description Pin Number 0 IO_L73N_0 G14 0 IO_L73P_0 F14 0 IO_L74N_0/GCLK7P E14 0 IO_L74P_0/GCLK6S D14 0 IO_L75N_0/GCLK5P C14 0 IO_L75P_0/GCLK4S B14 1 IO_L75N_1/GCLK3P B13 1 IO_L75P_1/GCLK2S C13 1 IO_L74N_1/GCLK1P D13 1 IO_L74P_1/GCLK0S E13 1 IO_L73N_1 F13 1 IO_L73P_1 G13 1 IO_L69N_1/VREF_1 H13 1 IO_L69P_1 H12 1 IO_L68N_1 C12 1 IO_L68P_1 D12 1 IO_L67N_1 E12 1 IO_L67P_1 F12 1 IO_L45N_1/VREF_1 1 No Connects XC2VP2 XC2VP4 D11 NC NC IO_L45P_1 E11 NC NC 1 IO_L44N_1 G12 NC NC 1 IO_L44P_1 G11 NC NC 1 IO_L43N_1 D10 NC NC 1 IO_L43P_1 E10 NC NC 1 IO_L39N_1 F11 NC NC 1 IO_L39P_1 F10 NC NC 1 IO_L38N_1 H11 NC NC 1 IO_L38P_1 G10 NC NC 1 IO_L37N_1 C9 NC NC 1 IO_L37P_1 D9 NC NC 1 IO_L09N_1/VREF_1 F9 1 IO_L09P_1 G9 1 IO_L08N_1 A8 1 IO_L08P_1 B8 1 IO_L07N_1 C8 1 IO_L07P_1 D8 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP7 Module 4 of 4 52 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 8: FF672 — XC2VP2, XC2VP4, and XC2VP7 Bank Pin Description Pin Number 1 IO_L06N_1 E9 1 IO_L06P_1 E8 1 IO_L05_1/No_Pair F8 1 IO_L03N_1/VREF_1 D7 1 IO_L03P_1 E7 1 IO_L02N_1 C6 1 IO_L02P_1 D6 1 IO_L01N_1/VRP_1 A3 1 IO_L01P_1/VRN_1 B3 2 IO_L01N_2/VRP_2 C4 2 IO_L01P_2/VRN_2 D3 2 IO_L02N_2 A2 2 IO_L02P_2 B1 2 IO_L03N_2 C2 2 IO_L03P_2 C1 2 IO_L04N_2/VREF_2 D2 2 IO_L04P_2 D1 2 IO_L05N_2 E4 2 IO_L05P_2 E3 2 IO_L06N_2 E2 2 IO_L06P_2 E1 2 IO_L40N_2/VREF_2 2 No Connects XC2VP2 XC2VP4 XC2VP7 F5 NC NC NC IO_L40P_2 F4 NC NC NC 2 IO_L42N_2 F3 NC NC NC 2 IO_L42P_2 F2 NC NC NC 2 IO_L43N_2 G6 NC 2 IO_L43P_2 G5 NC 2 IO_L44N_2 G4 NC 2 IO_L44P_2 G3 NC 2 IO_L45N_2 F1 NC 2 IO_L45P_2 G1 NC 2 IO_L46N_2/VREF_2 H6 NC 2 IO_L46P_2 H5 NC 2 IO_L47N_2 H4 NC 2 IO_L47P_2 H3 NC 2 IO_L48N_2 H2 NC DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 4 of 4 53 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 8: FF672 — XC2VP2, XC2VP4, and XC2VP7 No Connects Bank Pin Description Pin Number 2 IO_L48P_2 H1 NC 2 IO_L49N_2 J7 NC 2 IO_L49P_2 J6 NC 2 IO_L50N_2 J5 NC 2 IO_L50P_2 J4 NC 2 IO_L51N_2 J3 NC 2 IO_L51P_2 J2 NC 2 IO_L52N_2/VREF_2 K6 NC 2 IO_L52P_2 K5 NC 2 IO_L53N_2 K4 NC 2 IO_L53P_2 K3 NC 2 IO_L54N_2 J1 NC 2 IO_L54P_2 K1 NC 2 IO_L55N_2 K7 NC 2 IO_L55P_2 L8 NC 2 IO_L56N_2 L7 NC 2 IO_L56P_2 M7 NC 2 IO_L57N_2 L6 NC 2 IO_L57P_2 L5 NC 2 IO_L58N_2/VREF_2 L4 NC 2 IO_L58P_2 L3 NC 2 IO_L59N_2 L2 NC 2 IO_L59P_2 L1 NC 2 IO_L60N_2 M8 NC 2 IO_L60P_2 N8 NC 2 IO_L85N_2 M6 2 IO_L85P_2 M5 2 IO_L86N_2 M4 2 IO_L86P_2 M3 2 IO_L87N_2 M2 2 IO_L87P_2 M1 2 IO_L88N_2/VREF_2 N7 2 IO_L88P_2 N6 2 IO_L89N_2 N5 2 IO_L89P_2 N4 2 IO_L90N_2 N3 2 IO_L90P_2 N2 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP2 XC2VP4 XC2VP7 Module 4 of 4 54 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 8: FF672 — XC2VP2, XC2VP4, and XC2VP7 No Connects Bank Pin Description Pin Number 3 IO_L90N_3 P2 3 IO_L90P_3 P3 3 IO_L89N_3 P4 3 IO_L89P_3 P5 3 IO_L88N_3 P6 3 IO_L88P_3 P7 3 IO_L87N_3/VREF_3 R1 3 IO_L87P_3 R2 3 IO_L86N_3 R3 3 IO_L86P_3 R4 3 IO_L85N_3 R5 3 IO_L85P_3 R6 3 IO_L60N_3 P8 NC 3 IO_L60P_3 R8 NC 3 IO_L59N_3 T1 NC 3 IO_L59P_3 T2 NC 3 IO_L58N_3 T3 NC 3 IO_L58P_3 T4 NC 3 IO_L57N_3/VREF_3 T5 NC 3 IO_L57P_3 T6 NC 3 IO_L56N_3 R7 NC 3 IO_L56P_3 T7 NC 3 IO_L55N_3 T8 NC 3 IO_L55P_3 U7 NC 3 IO_L54N_3 U1 NC 3 IO_L54P_3 V1 NC 3 IO_L53N_3 U3 NC 3 IO_L53P_3 U4 NC 3 IO_L52N_3 U5 NC 3 IO_L52P_3 U6 NC 3 IO_L51N_3/VREF_3 V2 NC 3 IO_L51P_3 V3 NC 3 IO_L50N_3 V4 NC 3 IO_L50P_3 V5 NC 3 IO_L49N_3 V6 NC 3 IO_L49P_3 V7 NC DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP2 XC2VP4 XC2VP7 Module 4 of 4 55 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 8: FF672 — XC2VP2, XC2VP4, and XC2VP7 No Connects Bank Pin Description Pin Number 3 IO_L48N_3 W1 NC 3 IO_L48P_3 W2 NC 3 IO_L47N_3 W3 NC 3 IO_L47P_3 W4 NC 3 IO_L46N_3 W5 NC 3 IO_L46P_3 W6 NC 3 IO_L45N_3/VREF_3 Y1 NC 3 IO_L45P_3 AA1 NC 3 IO_L44N_3 Y3 NC 3 IO_L44P_3 Y4 NC 3 IO_L43N_3 Y5 NC 3 IO_L43P_3 Y6 NC 3 IO_L42N_3 AA2 3 IO_L42P_3 3 XC2VP4 XC2VP7 NC NC NC AA3 NC NC NC IO_L41N_3 AA4 NC NC NC 3 IO_L41P_3 AA5 NC NC NC 3 IO_L39N_3/VREF_3 AB1 NC NC NC 3 IO_L39P_3 AB2 NC NC NC 3 IO_L06N_3 AB3 3 IO_L06P_3 AB4 3 IO_L05N_3 AC1 3 IO_L05P_3 AC2 3 IO_L04N_3 AD1 3 IO_L04P_3 AD2 3 IO_L03N_3/VREF_3 AE1 3 IO_L03P_3 AF2 3 IO_L02N_3 AC3 3 IO_L02P_3 AD4 3 IO_L01N_3/VRP_3 AE3 3 IO_L01P_3/VRN_3 AF3 4 IO_L01N_4/BUSY/DOUT (1) AC6 4 IO_L01P_4/INIT_B AD6 4 IO_L02N_4/D0/DIN (1) AB7 4 IO_L02P_4/D1 AC7 4 IO_L03N_4/D2 AA7 4 IO_L03P_4/D3 AA8 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP2 Module 4 of 4 56 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 8: FF672 — XC2VP2, XC2VP4, and XC2VP7 Bank Pin Description Pin Number 4 IO_L05_4/No_Pair Y8 4 IO_L06N_4/VRP_4 AB8 4 IO_L06P_4/VRN_4 AB9 4 IO_L07N_4 AC8 4 IO_L07P_4/VREF_4 AD8 4 IO_L08N_4 AE8 4 IO_L08P_4 AF8 4 IO_L09N_4 Y9 4 IO_L09P_4/VREF_4 AA9 4 IO_L37N_4 4 No Connects XC2VP2 XC2VP4 AC9 NC NC IO_L37P_4 AD9 NC NC 4 IO_L38N_4 Y10 NC NC 4 IO_L38P_4 W11 NC NC 4 IO_L39N_4 AA10 NC NC 4 IO_L39P_4 AA11 NC NC 4 IO_L43N_4 AB10 NC NC 4 IO_L43P_4 AC10 NC NC 4 IO_L44N_4 Y11 NC NC 4 IO_L44P_4 Y12 NC NC 4 IO_L45N_4 AB11 NC NC 4 IO_L45P_4/VREF_4 AC11 NC NC 4 IO_L67N_4 AA12 4 IO_L67P_4 AB12 4 IO_L68N_4 AC12 4 IO_L68P_4 AD12 4 IO_L69N_4 W12 4 IO_L69P_4/VREF_4 W13 4 IO_L73N_4 Y13 4 IO_L73P_4 AA13 4 IO_L74N_4/GCLK3S AB13 4 IO_L74P_4/GCLK2P AC13 4 IO_L75N_4/GCLK1S AD13 4 IO_L75P_4/GCLK0P AE13 5 IO_L75N_5/GCLK7S AE14 5 IO_L75P_5/GCLK6P AD14 5 IO_L74N_5/GCLK5S AC14 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP7 Module 4 of 4 57 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 8: FF672 — XC2VP2, XC2VP4, and XC2VP7 Bank Pin Description Pin Number 5 IO_L74P_5/GCLK4P AB14 5 IO_L73N_5 AA14 5 IO_L73P_5 Y14 5 IO_L69N_5/VREF_5 W14 5 IO_L69P_5 W15 5 IO_L68N_5 AD15 5 IO_L68P_5 AC15 5 IO_L67N_5 AB15 5 IO_L67P_5 AA15 5 IO_L45N_5/VREF_5 5 No Connects XC2VP2 XC2VP4 AC16 NC NC IO_L45P_5 AB16 NC NC 5 IO_L44N_5 Y15 NC NC 5 IO_L44P_5 Y16 NC NC 5 IO_L43N_5 AC17 NC NC 5 IO_L43P_5 AB17 NC NC 5 IO_L39N_5 AA16 NC NC 5 IO_L39P_5 AA17 NC NC 5 IO_L38N_5 W16 NC NC 5 IO_L38P_5 Y17 NC NC 5 IO_L37N_5 AD18 NC NC 5 IO_L37P_5 AC18 NC NC 5 IO_L09N_5/VREF_5 AA18 5 IO_L09P_5 Y18 5 IO_L08N_5 AF19 5 IO_L08P_5 AE19 5 IO_L07N_5/VREF_5 AD19 5 IO_L07P_5 AC19 5 IO_L06N_5/VRP_5 AB18 5 IO_L06P_5/VRN_5 AB19 5 IO_L05_5/No_Pair Y19 5 IO_L03N_5/D4 AA19 5 IO_L03P_5/D5 AA20 5 IO_L02N_5/D6 AC20 5 IO_L02P_5/D7 AB20 5 IO_L01N_5/RDWR_B AD21 5 IO_L01P_5/CS_B AC21 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP7 Module 4 of 4 58 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 8: FF672 — XC2VP2, XC2VP4, and XC2VP7 Bank Pin Description Pin Number 6 IO_L01P_6/VRN_6 AF24 6 IO_L01N_6/VRP_6 AE24 6 IO_L02P_6 AD23 6 IO_L02N_6 AC24 6 IO_L03P_6 AE26 6 IO_L03N_6/VREF_6 AF25 6 IO_L04P_6 AD25 6 IO_L04N_6 AD26 6 IO_L05P_6 AC25 6 IO_L05N_6 AC26 6 IO_L06P_6 AB23 6 IO_L06N_6 AB24 6 IO_L39P_6 6 No Connects XC2VP2 XC2VP4 XC2VP7 AB25 NC NC NC IO_L39N_6/VREF_6 AB26 NC NC NC 6 IO_L41P_6 AA22 NC NC NC 6 IO_L41N_6 AA23 NC NC NC 6 IO_L42P_6 AA24 NC NC NC 6 IO_L42N_6 AA25 NC NC NC 6 IO_L43P_6 Y21 NC 6 IO_L43N_6 Y22 NC 6 IO_L44P_6 Y23 NC 6 IO_L44N_6 Y24 NC 6 IO_L45P_6 AA26 NC 6 IO_L45N_6/VREF_6 Y26 NC 6 IO_L46P_6 W21 NC 6 IO_L46N_6 W22 NC 6 IO_L47P_6 W23 NC 6 IO_L47N_6 W24 NC 6 IO_L48P_6 W25 NC 6 IO_L48N_6 W26 NC 6 IO_L49P_6 V20 NC 6 IO_L49N_6 V21 NC 6 IO_L50P_6 V22 NC 6 IO_L50N_6 V23 NC 6 IO_L51P_6 V24 NC 6 IO_L51N_6/VREF_6 V25 NC 6 IO_L52P_6 U21 NC DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 4 of 4 59 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 8: FF672 — XC2VP2, XC2VP4, and XC2VP7 No Connects Bank Pin Description Pin Number 6 IO_L52N_6 U22 NC 6 IO_L53P_6 U23 NC 6 IO_L53N_6 U24 NC 6 IO_L54P_6 V26 NC 6 IO_L54N_6 U26 NC 6 IO_L55P_6 U20 NC 6 IO_L55N_6 T19 NC 6 IO_L56P_6 T20 NC 6 IO_L56N_6 R20 NC 6 IO_L57P_6 T21 NC 6 IO_L57N_6/VREF_6 T22 NC 6 IO_L58P_6 T23 NC 6 IO_L58N_6 T24 NC 6 IO_L59P_6 T25 NC 6 IO_L59N_6 T26 NC 6 IO_L60P_6 R19 NC 6 IO_L60N_6 P19 NC 6 IO_L85P_6 R21 6 IO_L85N_6 R22 6 IO_L86P_6 R23 6 IO_L86N_6 R24 6 IO_L87P_6 R25 6 IO_L87N_6/VREF_6 R26 6 IO_L88P_6 P20 6 IO_L88N_6 P21 6 IO_L89P_6 P22 6 IO_L89N_6 P23 6 IO_L90P_6 P24 6 IO_L90N_6 P25 7 IO_L90P_7 N25 7 IO_L90N_7 N24 7 IO_L89P_7 N23 7 IO_L89N_7 N22 7 IO_L88P_7 N21 7 IO_L88N_7/VREF_7 N20 7 IO_L87P_7 M26 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP2 XC2VP4 XC2VP7 Module 4 of 4 60 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 8: FF672 — XC2VP2, XC2VP4, and XC2VP7 No Connects Bank Pin Description Pin Number 7 IO_L87N_7 M25 7 IO_L86P_7 M24 7 IO_L86N_7 M23 7 IO_L85P_7 M22 7 IO_L85N_7 M21 7 IO_L60P_7 N19 NC 7 IO_L60N_7 M19 NC 7 IO_L59P_7 L26 NC 7 IO_L59N_7 L25 NC 7 IO_L58P_7 L24 NC 7 IO_L58N_7/VREF_7 L23 NC 7 IO_L57P_7 L22 NC 7 IO_L57N_7 L21 NC 7 IO_L56P_7 M20 NC 7 IO_L56N_7 L20 NC 7 IO_L55P_7 L19 NC 7 IO_L55N_7 K20 NC 7 IO_L54P_7 K26 NC 7 IO_L54N_7 J26 NC 7 IO_L53P_7 K24 NC 7 IO_L53N_7 K23 NC 7 IO_L52P_7 K22 NC 7 IO_L52N_7/VREF_7 K21 NC 7 IO_L51P_7 J25 NC 7 IO_L51N_7 J24 NC 7 IO_L50P_7 J23 NC 7 IO_L50N_7 J22 NC 7 IO_L49P_7 J21 NC 7 IO_L49N_7 J20 NC 7 IO_L48P_7 H26 NC 7 IO_L48N_7 H25 NC 7 IO_L47P_7 H24 NC 7 IO_L47N_7 H23 NC 7 IO_L46P_7 H22 NC 7 IO_L46N_7/VREF_7 H21 NC 7 IO_L45P_7 G26 NC 7 IO_L45N_7 F26 NC DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP2 XC2VP4 XC2VP7 Module 4 of 4 61 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 8: FF672 — XC2VP2, XC2VP4, and XC2VP7 No Connects Bank Pin Description Pin Number 7 IO_L44P_7 G24 NC 7 IO_L44N_7 G23 NC 7 IO_L43P_7 G22 NC 7 IO_L43N_7 G21 NC 7 IO_L42P_7 F25 7 IO_L42N_7 7 XC2VP4 XC2VP7 NC NC NC F24 NC NC NC IO_L40P_7 F23 NC NC NC 7 IO_L40N_7/VREF_7 F22 NC NC NC 7 IO_L06P_7 E26 7 IO_L06N_7 E25 7 IO_L05P_7 E24 7 IO_L05N_7 E23 7 IO_L04P_7 D26 7 IO_L04N_7/VREF_7 D25 7 IO_L03P_7 C26 7 IO_L03N_7 C25 7 IO_L02P_7 B26 7 IO_L02N_7 A25 7 IO_L01P_7/VRN_7 D24 7 IO_L01N_7/VRP_7 C23 0 VCCO_0 C17 0 VCCO_0 C20 0 VCCO_0 H17 0 VCCO_0 H18 0 VCCO_0 J14 0 VCCO_0 J15 0 VCCO_0 J16 1 VCCO_1 C7 1 VCCO_1 H9 1 VCCO_1 C10 1 VCCO_1 H10 1 VCCO_1 J11 1 VCCO_1 J12 1 VCCO_1 J13 2 VCCO_2 G2 2 VCCO_2 J8 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP2 Module 4 of 4 62 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 8: FF672 — XC2VP2, XC2VP4, and XC2VP7 Bank Pin Description Pin Number 2 VCCO_2 K2 2 VCCO_2 K8 2 VCCO_2 L9 2 VCCO_2 M9 2 VCCO_2 N9 3 VCCO_3 P9 3 VCCO_3 R9 3 VCCO_3 T9 3 VCCO_3 U2 3 VCCO_3 U8 3 VCCO_3 V8 3 VCCO_3 Y2 4 VCCO_4 W9 4 VCCO_4 AD7 4 VCCO_4 V11 4 VCCO_4 V12 4 VCCO_4 V13 4 VCCO_4 W10 4 VCCO_4 AD10 5 VCCO_5 V14 5 VCCO_5 V15 5 VCCO_5 V16 5 VCCO_5 W17 5 VCCO_5 W18 5 VCCO_5 AD17 5 VCCO_5 AD20 6 VCCO_6 P18 6 VCCO_6 R18 6 VCCO_6 T18 6 VCCO_6 U19 6 VCCO_6 U25 6 VCCO_6 V19 6 VCCO_6 Y25 7 VCCO_7 G25 7 VCCO_7 J19 7 VCCO_7 K19 7 VCCO_7 K25 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com No Connects XC2VP2 XC2VP4 XC2VP7 Module 4 of 4 63 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 8: FF672 — XC2VP2, XC2VP4, and XC2VP7 Bank Pin Description Pin Number 7 VCCO_7 L18 7 VCCO_7 M18 7 VCCO_7 N18 N/A CCLK W7 N/A PROG_B D22 N/A DONE AB6 N/A M0 AC22 N/A M1 W20 N/A M2 AB21 N/A TCK G8 N/A TDI H20 N/A TDO H7 N/A TMS F7 N/A PWRDWN_B AC5 N/A HSWAP_EN E21 N/A RSVD D5 N/A VBATT E6 N/A DXP F20 N/A DXN G19 N/A AVCCAUXTX7 B11 N/A VTTXPAD7 B12 N/A TXNPAD7 A12 N/A TXPPAD7 A11 N/A GNDA7 C11 N/A RXPPAD7 A10 N/A RXNPAD7 A9 N/A VTRXPAD7 B10 N/A AVCCAUXRX7 B9 N/A AVCCAUXTX9 N/A No Connects XC2VP2 XC2VP4 B6 NC NC VTTXPAD9 B7 NC NC N/A TXNPAD9 A7 NC NC N/A TXPPAD9 A6 NC NC N/A GNDA9 C5 NC NC N/A RXPPAD9 A5 NC NC N/A RXNPAD9 A4 NC NC N/A VTRXPAD9 B5 NC NC DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP7 Module 4 of 4 64 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 8: FF672 — XC2VP2, XC2VP4, and XC2VP7 No Connects Bank Pin Description Pin Number N/A AVCCAUXRX9 B4 NC NC N/A AVCCAUXRX16 AE4 NC NC N/A VTRXPAD16 AE5 NC NC N/A RXNPAD16 AF4 NC NC N/A RXPPAD16 AF5 NC NC N/A GNDA16 AD5 NC NC N/A TXPPAD16 AF6 NC NC N/A TXNPAD16 AF7 NC NC N/A VTTXPAD16 AE7 NC NC N/A AVCCAUXTX16 AE6 NC NC N/A AVCCAUXRX18 AE9 N/A VTRXPAD18 AE10 N/A RXNPAD18 AF9 N/A RXPPAD18 AF10 N/A GNDA18 AD11 N/A TXPPAD18 AF11 N/A TXNPAD18 AF12 N/A VTTXPAD18 AE12 N/A AVCCAUXTX18 AE11 N/A AVCCAUXTX4 B22 NC NC N/A VTTXPAD4 B23 NC NC N/A TXNPAD4 A23 NC NC N/A TXPPAD4 A22 NC NC N/A GNDA4 C22 NC NC N/A RXPPAD4 A21 NC NC N/A RXNPAD4 A20 NC NC N/A VTRXPAD4 B21 NC NC N/A AVCCAUXRX4 B20 NC NC N/A AVCCAUXTX6 B17 N/A VTTXPAD6 B18 N/A TXNPAD6 A18 N/A TXPPAD6 A17 N/A GNDA6 C16 N/A RXPPAD6 A16 N/A RXNPAD6 A15 N/A VTRXPAD6 B16 N/A AVCCAUXRX6 B15 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP2 XC2VP4 XC2VP7 Module 4 of 4 65 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 8: FF672 — XC2VP2, XC2VP4, and XC2VP7 Bank Pin Description Pin Number N/A AVCCAUXRX19 AE15 N/A VTRXPAD19 AE16 N/A RXNPAD19 AF15 N/A RXPPAD19 AF16 N/A GNDA19 AD16 N/A TXPPAD19 AF17 N/A TXNPAD19 AF18 N/A VTTXPAD19 AE18 N/A AVCCAUXTX19 AE17 N/A AVCCAUXRX21 N/A No Connects XC2VP2 XC2VP4 AE20 NC NC VTRXPAD21 AE21 NC NC N/A RXNPAD21 AF20 NC NC N/A RXPPAD21 AF21 NC NC N/A GNDA21 AD22 NC NC N/A TXPPAD21 AF22 NC NC N/A TXNPAD21 AF23 NC NC N/A VTTXPAD21 AE23 NC NC N/A AVCCAUXTX21 AE22 NC NC N/A VCCINT H8 N/A VCCINT J9 N/A VCCINT K9 N/A VCCINT U9 N/A VCCINT V9 N/A VCCINT W8 N/A VCCINT H19 N/A VCCINT J10 N/A VCCINT J17 N/A VCCINT J18 N/A VCCINT K11 N/A VCCINT K16 N/A VCCINT K18 N/A VCCINT L10 N/A VCCINT L17 N/A VCCINT T10 N/A VCCINT T17 N/A VCCINT U11 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP7 Module 4 of 4 66 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 8: FF672 — XC2VP2, XC2VP4, and XC2VP7 Bank Pin Description Pin Number N/A VCCINT U16 N/A VCCINT U18 N/A VCCINT V10 N/A VCCINT V17 N/A VCCINT V18 N/A VCCINT W19 N/A VCCAUX B2 N/A VCCAUX N1 N/A VCCAUX P1 N/A VCCAUX A13 N/A VCCAUX A14 N/A VCCAUX AE2 N/A VCCAUX B25 N/A VCCAUX N26 N/A VCCAUX P26 N/A VCCAUX AE25 N/A VCCAUX AF13 N/A VCCAUX AF14 N/A GND C3 N/A GND D4 N/A GND E5 N/A GND F6 N/A GND G7 N/A GND Y7 N/A GND AA6 N/A GND AB5 N/A GND AC4 N/A GND AD3 N/A GND C24 N/A GND D23 N/A GND E22 N/A GND F21 N/A GND G20 N/A GND K10 N/A GND K12 N/A GND K13 N/A GND K14 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com No Connects XC2VP2 XC2VP4 XC2VP7 Module 4 of 4 67 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 8: FF672 — XC2VP2, XC2VP4, and XC2VP7 Bank Pin Description Pin Number N/A GND K15 N/A GND K17 N/A GND L11 N/A GND L12 N/A GND L13 N/A GND L14 N/A GND L15 N/A GND L16 N/A GND M10 N/A GND M11 N/A GND M12 N/A GND M13 N/A GND M14 N/A GND M15 N/A GND M16 N/A GND M17 N/A GND N10 N/A GND N11 N/A GND N12 N/A GND N13 N/A GND N14 N/A GND N15 N/A GND N16 N/A GND N17 N/A GND P10 N/A GND P11 N/A GND P12 N/A GND P13 N/A GND P14 N/A GND P15 N/A GND P16 N/A GND P17 N/A GND R10 N/A GND R11 N/A GND R12 N/A GND R13 N/A GND R14 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com No Connects XC2VP2 XC2VP4 XC2VP7 Module 4 of 4 68 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 8: FF672 — XC2VP2, XC2VP4, and XC2VP7 Bank Pin Description Pin Number N/A GND R15 N/A GND R16 N/A GND R17 N/A GND T11 N/A GND T12 N/A GND T13 N/A GND T14 N/A GND T15 N/A GND T16 N/A GND U10 N/A GND U12 N/A GND U13 N/A GND U14 N/A GND U15 N/A GND U17 N/A GND Y20 N/A GND AA21 N/A GND AB22 N/A GND AC23 N/A GND AD24 No Connects XC2VP2 XC2VP4 XC2VP7 Notes: 1. See Table 4 for an explanation of the signals available on this pin. DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 4 of 4 69 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information FF672 Flip-Chip Fine-Pitch BGA Package Specifications (1.00mm pitch) Figure 4: FF672 Flip-Chip Fine-Pitch BGA Package Specifications FF896 Flip-Chip Fine-Pitch BGA Package As shown in Table 9, XC2VP7, XC2VP20, and XC2VP30 Virtex-II Pro devices are available in the FF896 flip-chip fine-pitch BGA package. Pins in each of these devices are the same, except for differences shown in the "No Connects" column. Following this table are the FF896 Flip-Chip Fine-Pitch BGA Package Specifications (1.00mm pitch). DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 4 of 4 70 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 9: FF896 — XC2VP7, XC2VP20, XC2VPX20, and XC2VP30 Pin Description No Connects XC2VPX20 (if Different) Pin Number Bank Virtex-II Pro devices 0 IO_L01N_0/VRP_0 E25 0 IO_L01P_0/VRN_0 E24 0 IO_L02N_0 F24 0 IO_L02P_0 F23 0 IO_L03N_0 E23 0 IO_L03P_0/VREF_0 E22 0 IO_L05_0/No_Pair G23 0 IO_L06N_0 H22 0 IO_L06P_0 G22 0 IO_L07N_0 F22 0 IO_L07P_0 F21 0 IO_L08N_0 D24 0 IO_L08P_0 C24 0 IO_L09N_0 H21 0 IO_L09P_0/VREF_0 G21 0 IO_L37N_0 E21 0 IO_L37P_0 D21 0 IO_L38N_0 D23 0 IO_L38P_0 C23 0 IO_L39N_0 H20 0 IO_L39P_0 G20 0 IO_L43N_0 E20 0 IO_L43P_0 D20 0 IO_L44N_0 B23 0 IO_L44P_0 A23 0 IO_L45N_0 H19 0 IO_L45P_0/VREF_0 G19 0 IO_L46N_0 E19 NC 0 IO_L46P_0 E18 NC 0 IO_L47N_0 C22 NC 0 IO_L47P_0 B22 NC 0 IO_L48N_0 F20 NC 0 IO_L48P_0 F19 NC 0 IO_L49N_0 G17 NC 0 IO_L49P_0 F17 NC 0 IO_L50_0/No_Pair B21 NC DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP7 XC2VP20, XC2VPX20 XC2VP30 Module 4 of 4 71 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 9: FF896 — XC2VP7, XC2VP20, XC2VPX20, and XC2VP30 Pin Description No Connects Pin Number XC2VP7 IO_L53_0/No_Pair A21 NC 0 IO_L54N_0 H18 NC 0 IO_L54P_0 G18 NC 0 IO_L56N_0 C21 NC 0 IO_L56P_0 C20 NC 0 IO_L57N_0 J17 NC 0 IO_L57P_0/VREF_0 H17 NC 0 IO_L67N_0 E17 0 IO_L67P_0 D17 0 IO_L68N_0 D18 0 IO_L68P_0 C18 0 IO_L69N_0 J16 0 IO_L69P_0/VREF_0 H16 0 IO_L73N_0 E16 0 IO_L73P_0 D16 0 IO_L74N_0/GCLK7P C16 0 IO_L74P_0/GCLK6S B16 0 IO_L75N_0/GCLK5P BREFCLKN G16 0 IO_L75P_0/GCLK4S BREFCLKP F16 1 IO_L75N_1/GCLK3P F15 1 IO_L75P_1/GCLK2S G15 1 IO_L74N_1/GCLK1P B15 1 IO_L74P_1/GCLK0S C15 1 IO_L73N_1 D15 1 IO_L73P_1 E15 1 IO_L69N_1/VREF_1 H15 1 IO_L69P_1 J15 1 IO_L68N_1 C13 1 IO_L68P_1 D13 1 IO_L67N_1 D14 1 IO_L67P_1 E14 1 IO_L57N_1/VREF_1 H14 NC 1 IO_L57P_1 J14 NC 1 IO_L56N_1 C11 NC 1 IO_L56P_1 C10 NC Bank Virtex-II Pro devices 0 DS083 (v4.7) November 5, 2007 Product Specification XC2VPX20 (if Different) www.xilinx.com XC2VP20, XC2VPX20 XC2VP30 Module 4 of 4 72 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 9: FF896 — XC2VP7, XC2VP20, XC2VPX20, and XC2VP30 Pin Description No Connects Pin Number XC2VP7 IO_L54N_1 G13 NC 1 IO_L54P_1 H13 NC 1 IO_L53_1/No_Pair A10 NC 1 IO_L50_1/No_Pair B10 NC 1 IO_L49N_1 F14 NC 1 IO_L49P_1 G14 NC 1 IO_L48N_1 F12 NC 1 IO_L48P_1 F11 NC 1 IO_L47N_1 B9 NC 1 IO_L47P_1 C9 NC 1 IO_L46N_1 E13 NC 1 IO_L46P_1 E12 NC 1 IO_L45N_1/VREF_1 G12 1 IO_L45P_1 H12 1 IO_L44N_1 A8 1 IO_L44P_1 B8 1 IO_L43N_1 D11 1 IO_L43P_1 E11 1 IO_L39N_1 G11 1 IO_L39P_1 H11 1 IO_L38N_1 C8 1 IO_L38P_1 D8 1 IO_L37N_1 D10 1 IO_L37P_1 E10 1 IO_L09N_1/VREF_1 G10 1 IO_L09P_1 H10 1 IO_L08N_1 C7 1 IO_L08P_1 D7 1 IO_L07N_1 F10 1 IO_L07P_1 F9 1 IO_L06N_1 G9 1 IO_L06P_1 H9 1 IO_L05_1/No_Pair G8 1 IO_L03N_1/VREF_1 E9 1 IO_L03P_1 E8 1 IO_L02N_1 F8 Bank Virtex-II Pro devices 1 DS083 (v4.7) November 5, 2007 Product Specification XC2VPX20 (if Different) www.xilinx.com XC2VP20, XC2VPX20 XC2VP30 Module 4 of 4 73 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 9: FF896 — XC2VP7, XC2VP20, XC2VPX20, and XC2VP30 Pin Description No Connects XC2VPX20 (if Different) Pin Number Bank Virtex-II Pro devices 1 IO_L02P_1 F7 1 IO_L01N_1/VRP_1 E7 1 IO_L01P_1/VRN_1 E6 2 IO_L01N_2/VRP_2 A3 2 IO_L01P_2/VRN_2 B3 2 IO_L02N_2 G6 2 IO_L02P_2 G5 2 IO_L03N_2 C5 2 IO_L03P_2 D5 2 IO_L04N_2/VREF_2 C2 2 IO_L04P_2 C1 2 IO_L05N_2 J8 2 IO_L05P_2 J7 2 IO_L06N_2 C4 2 IO_L06P_2 D3 2 IO_L31N_2 D2 NC 2 IO_L31P_2 D1 NC 2 IO_L32N_2 H6 NC 2 IO_L32P_2 H5 NC 2 IO_L33N_2 E4 NC 2 IO_L33P_2 E3 NC 2 IO_L34N_2/VREF_2 E2 NC 2 IO_L34P_2 E1 NC 2 IO_L35N_2 K8 NC 2 IO_L35P_2 K7 NC 2 IO_L36N_2 F4 NC 2 IO_L36P_2 F3 NC 2 IO_L37N_2 F2 NC 2 IO_L37P_2 F1 NC 2 IO_L38N_2 J6 NC 2 IO_L38P_2 J5 NC 2 IO_L39N_2 G4 NC 2 IO_L39P_2 G3 NC 2 IO_L40N_2/VREF_2 G2 NC 2 IO_L40P_2 G1 NC DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP7 XC2VP20, XC2VPX20 XC2VP30 Module 4 of 4 74 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 9: FF896 — XC2VP7, XC2VP20, XC2VPX20, and XC2VP30 Pin Description No Connects Pin Number XC2VP7 IO_L41N_2 L8 NC 2 IO_L41P_2 L7 NC 2 IO_L42N_2 H4 NC 2 IO_L42P_2 H3 NC 2 IO_L43N_2 H2 2 IO_L43P_2 J2 2 IO_L44N_2 M8 2 IO_L44P_2 M7 2 IO_L45N_2 K6 2 IO_L45P_2 K5 2 IO_L46N_2/VREF_2 J1 2 IO_L46P_2 K1 2 IO_L47N_2 M6 2 IO_L47P_2 M5 2 IO_L48N_2 J4 2 IO_L48P_2 J3 2 IO_L49N_2 K2 2 IO_L49P_2 L2 2 IO_L50N_2 N8 2 IO_L50P_2 N7 2 IO_L51N_2 K4 2 IO_L51P_2 K3 2 IO_L52N_2/VREF_2 L1 2 IO_L52P_2 M1 2 IO_L53N_2 N6 2 IO_L53P_2 N5 2 IO_L54N_2 L5 2 IO_L54P_2 L4 2 IO_L55N_2 M2 2 IO_L55P_2 N2 2 IO_L56N_2 P9 2 IO_L56P_2 R9 2 IO_L57N_2 M4 2 IO_L57P_2 M3 2 IO_L58N_2/VREF_2 N1 2 IO_L58P_2 P1 Bank Virtex-II Pro devices 2 DS083 (v4.7) November 5, 2007 Product Specification XC2VPX20 (if Different) www.xilinx.com XC2VP20, XC2VPX20 XC2VP30 Module 4 of 4 75 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 9: FF896 — XC2VP7, XC2VP20, XC2VPX20, and XC2VP30 Pin Description No Connects XC2VPX20 (if Different) Pin Number Bank Virtex-II Pro devices 2 IO_L59N_2 P8 2 IO_L59P_2 P7 2 IO_L60N_2 N4 2 IO_L60P_2 N3 2 IO_L85N_2 P3 2 IO_L85P_2 P2 2 IO_L86N_2 R8 2 IO_L86P_2 R7 2 IO_L87N_2 P5 2 IO_L87P_2 P4 2 IO_L88N_2/VREF_2 R2 2 IO_L88P_2 T2 2 IO_L89N_2 R6 2 IO_L89P_2 R5 2 IO_L90N_2 R4 2 IO_L90P_2 R3 3 IO_L90N_3 U1 3 IO_L90P_3 V1 3 IO_L89N_3 T5 3 IO_L89P_3 T6 3 IO_L88N_3 T3 3 IO_L88P_3 T4 3 IO_L87N_3/VREF_3 U2 3 IO_L87P_3 U3 3 IO_L86N_3 T7 3 IO_L86P_3 T8 3 IO_L85N_3 U4 3 IO_L85P_3 U5 3 IO_L60N_3 V2 3 IO_L60P_3 W2 3 IO_L59N_3 T9 3 IO_L59P_3 U9 3 IO_L58N_3 V3 3 IO_L58P_3 V4 3 IO_L57N_3/VREF_3 W1 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP7 XC2VP20, XC2VPX20 XC2VP30 Module 4 of 4 76 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 9: FF896 — XC2VP7, XC2VP20, XC2VPX20, and XC2VP30 Pin Description No Connects XC2VPX20 (if Different) Pin Number Bank Virtex-II Pro devices 3 IO_L57P_3 Y1 3 IO_L56N_3 U7 3 IO_L56P_3 U8 3 IO_L55N_3 V5 3 IO_L55P_3 V6 3 IO_L54N_3 Y2 3 IO_L54P_3 AA2 3 IO_L53N_3 V7 3 IO_L53P_3 V8 3 IO_L52N_3 W3 3 IO_L52P_3 W4 3 IO_L51N_3/VREF_3 AA1 3 IO_L51P_3 AB1 3 IO_L50N_3 W5 3 IO_L50P_3 W6 3 IO_L49N_3 Y4 3 IO_L49P_3 Y5 3 IO_L48N_3 AA3 3 IO_L48P_3 AA4 3 IO_L47N_3 W7 3 IO_L47P_3 W8 3 IO_L46N_3 AB3 3 IO_L46P_3 AB4 3 IO_L45N_3/VREF_3 AB2 3 IO_L45P_3 AC2 3 IO_L44N_3 AA5 3 IO_L44P_3 AA6 3 IO_L43N_3 AC3 3 IO_L43P_3 AC4 3 IO_L42N_3 AD1 NC 3 IO_L42P_3 AD2 NC 3 IO_L41N_3 Y7 NC 3 IO_L41P_3 Y8 NC 3 IO_L40N_3 AB5 NC 3 IO_L40P_3 AB6 NC 3 IO_L39N_3/VREF_3 AE1 NC DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP7 XC2VP20, XC2VPX20 XC2VP30 Module 4 of 4 77 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 9: FF896 — XC2VP7, XC2VP20, XC2VPX20, and XC2VP30 Pin Description No Connects Pin Number XC2VP7 IO_L39P_3 AE2 NC 3 IO_L38N_3 AA7 NC 3 IO_L38P_3 AA8 NC 3 IO_L37N_3 AD3 NC 3 IO_L37P_3 AD4 NC 3 IO_L36N_3 AF1 NC 3 IO_L36P_3 AF2 NC 3 IO_L35N_3 AC5 NC 3 IO_L35P_3 AC6 NC 3 IO_L34N_3 AF3 NC 3 IO_L34P_3 AF4 NC 3 IO_L33N_3/VREF_3 AE3 NC 3 IO_L33P_3 AE4 NC 3 IO_L32N_3 AB7 NC 3 IO_L32P_3 AB8 NC 3 IO_L31N_3 AE5 NC 3 IO_L31P_3 AF6 NC 3 IO_L06N_3 AG1 3 IO_L06P_3 AG2 3 IO_L05N_3 AD5 3 IO_L05P_3 AD6 3 IO_L04N_3 AG3 3 IO_L04P_3 AH4 3 IO_L03N_3/VREF_3 AH1 3 IO_L03P_3 AH2 3 IO_L02N_3 AG5 3 IO_L02P_3 AH5 3 IO_L01N_3/VRP_3 AJ3 3 IO_L01P_3/VRN_3 AK3 4 IO_L01N_4/BUSY/DOUT (1) AG6 4 IO_L01P_4/INIT_B AF7 4 IO_L02N_4/D0/DIN (1) AC9 4 IO_L02P_4/D1 AD9 4 IO_L03N_4/D2 AG7 4 IO_L03P_4/D3 AH7 Bank Virtex-II Pro devices 3 DS083 (v4.7) November 5, 2007 Product Specification XC2VPX20 (if Different) www.xilinx.com XC2VP20, XC2VPX20 XC2VP30 Module 4 of 4 78 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 9: FF896 — XC2VP7, XC2VP20, XC2VPX20, and XC2VP30 Pin Description No Connects XC2VPX20 (if Different) Pin Number Bank Virtex-II Pro devices 4 IO_L05_4/No_Pair AD8 4 IO_L06N_4/VRP_4 AG8 4 IO_L06P_4/VRN_4 AH8 4 IO_L07N_4 AC10 4 IO_L07P_4/VREF_4 AD10 4 IO_L08N_4 AE7 4 IO_L08P_4 AE8 4 IO_L09N_4 AJ8 4 IO_L09P_4/VREF_4 AK8 4 IO_L37N_4 AC11 4 IO_L37P_4 AD11 4 IO_L38N_4 AF8 4 IO_L38P_4 AF9 4 IO_L39N_4 AF10 4 IO_L39P_4 AG10 4 IO_L43N_4 AC12 4 IO_L43P_4 AD12 4 IO_L44N_4 AE9 4 IO_L44P_4 AE10 4 IO_L45N_4 AH9 4 IO_L45P_4/VREF_4 AJ9 4 IO_L46N_4 AC13 NC 4 IO_L46P_4 AD13 NC 4 IO_L47N_4 AE11 NC 4 IO_L47P_4 AE12 NC 4 IO_L48N_4 AH10 NC 4 IO_L48P_4 AH11 NC 4 IO_L49N_4 AB14 NC 4 IO_L49P_4 AC14 NC 4 IO_L50_4/No_Pair AF11 NC 4 IO_L53_4/No_Pair AG11 NC 4 IO_L54N_4 AJ10 NC 4 IO_L54P_4 AK10 NC 4 IO_L56N_4 AF12 NC 4 IO_L56P_4 AF13 NC 4 IO_L57N_4 AG13 NC DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP7 XC2VP20, XC2VPX20 XC2VP30 Module 4 of 4 79 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 9: FF896 — XC2VP7, XC2VP20, XC2VPX20, and XC2VP30 Pin Description No Connects Pin Number XC2VP7 IO_L57P_4/VREF_4 AH13 NC 4 IO_L67N_4 AB15 4 IO_L67P_4 AC15 4 IO_L68N_4 AD14 4 IO_L68P_4 AE14 4 IO_L69N_4 AF14 4 IO_L69P_4/VREF_4 AG14 4 IO_L73N_4 AD15 4 IO_L73P_4 AE15 4 IO_L74N_4/GCLK3S AF15 4 IO_L74P_4/GCLK2P AG15 4 IO_L75N_4/GCLK1S AH15 4 IO_L75P_4/GCLK0P AJ15 5 IO_L75N_5/GCLK7S BREFCLKN AJ16 5 IO_L75P_5/GCLK6P BREFCLKP AH16 5 IO_L74N_5/GCLK5S AG16 5 IO_L74P_5/GCLK4P AF16 5 IO_L73N_5 AE16 5 IO_L73P_5 AD16 5 IO_L69N_5/VREF_5 AG17 5 IO_L69P_5 AF17 5 IO_L68N_5 AE17 5 IO_L68P_5 AD17 5 IO_L67N_5 AC16 5 IO_L67P_5 AB16 5 IO_L57N_5/VREF_5 AH18 NC 5 IO_L57P_5 AG18 NC 5 IO_L56N_5 AF18 NC 5 IO_L56P_5 AF19 NC 5 IO_L54N_5 AK21 NC 5 IO_L54P_5 AJ21 NC 5 IO_L53_5/No_Pair AG20 NC 5 IO_L50_5/No_Pair AF20 NC 5 IO_L49N_5 AC17 NC 5 IO_L49P_5 AB17 NC Bank Virtex-II Pro devices 4 DS083 (v4.7) November 5, 2007 Product Specification XC2VPX20 (if Different) www.xilinx.com XC2VP20, XC2VPX20 XC2VP30 Module 4 of 4 80 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 9: FF896 — XC2VP7, XC2VP20, XC2VPX20, and XC2VP30 Pin Description No Connects Pin Number XC2VP7 IO_L48N_5 AH20 NC 5 IO_L48P_5 AH21 NC 5 IO_L47N_5 AE19 NC 5 IO_L47P_5 AE20 NC 5 IO_L46N_5 AD18 NC 5 IO_L46P_5 AC18 NC 5 IO_L45N_5/VREF_5 AJ22 5 IO_L45P_5 AH22 5 IO_L44N_5 AE21 5 IO_L44P_5 AE22 5 IO_L43N_5 AD19 5 IO_L43P_5 AC19 5 IO_L39N_5 AG21 5 IO_L39P_5 AF21 5 IO_L38N_5 AF22 5 IO_L38P_5 AF23 5 IO_L37N_5 AD20 5 IO_L37P_5 AC20 5 IO_L09N_5/VREF_5 AK23 5 IO_L09P_5 AJ23 5 IO_L08N_5 AE23 5 IO_L08P_5 AE24 5 IO_L07N_5/VREF_5 AD21 5 IO_L07P_5 AC21 5 IO_L06N_5/VRP_5 AH23 5 IO_L06P_5/VRN_5 AG23 5 IO_L05_5/No_Pair AD23 5 IO_L03N_5/D4 AH24 5 IO_L03P_5/D5 AG24 5 IO_L02N_5/D6 AD22 5 IO_L02P_5/D7 AC22 5 IO_L01N_5/RDWR_B AF24 5 IO_L01P_5/CS_B AG25 6 IO_L01P_6/VRN_6 AK28 6 IO_L01N_6/VRP_6 AJ28 Bank Virtex-II Pro devices 5 DS083 (v4.7) November 5, 2007 Product Specification XC2VPX20 (if Different) www.xilinx.com XC2VP20, XC2VPX20 XC2VP30 Module 4 of 4 81 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 9: FF896 — XC2VP7, XC2VP20, XC2VPX20, and XC2VP30 Pin Description No Connects XC2VPX20 (if Different) Pin Number Bank Virtex-II Pro devices 6 IO_L02P_6 AH26 6 IO_L02N_6 AG26 6 IO_L03P_6 AH29 6 IO_L03N_6/VREF_6 AH30 6 IO_L04P_6 AH27 6 IO_L04N_6 AG28 6 IO_L05P_6 AD25 6 IO_L05N_6 AD26 6 IO_L06P_6 AG29 6 IO_L06N_6 AG30 6 IO_L31P_6 AF25 NC 6 IO_L31N_6 AE26 NC 6 IO_L32P_6 AB23 NC 6 IO_L32N_6 AB24 NC 6 IO_L33P_6 AE27 NC 6 IO_L33N_6/VREF_6 AE28 NC 6 IO_L34P_6 AF27 NC 6 IO_L34N_6 AF28 NC 6 IO_L35P_6 AC25 NC 6 IO_L35N_6 AC26 NC 6 IO_L36P_6 AF29 NC 6 IO_L36N_6 AF30 NC 6 IO_L37P_6 AD27 NC 6 IO_L37N_6 AD28 NC 6 IO_L38P_6 AA23 NC 6 IO_L38N_6 AA24 NC 6 IO_L39P_6 AE29 NC 6 IO_L39N_6/VREF_6 AE30 NC 6 IO_L40P_6 AB25 NC 6 IO_L40N_6 AB26 NC 6 IO_L41P_6 Y23 NC 6 IO_L41N_6 Y24 NC 6 IO_L42P_6 AD29 NC 6 IO_L42N_6 AD30 NC 6 IO_L43P_6 AC27 6 IO_L43N_6 AC28 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP7 XC2VP20, XC2VPX20 XC2VP30 Module 4 of 4 82 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 9: FF896 — XC2VP7, XC2VP20, XC2VPX20, and XC2VP30 Pin Description No Connects XC2VPX20 (if Different) Pin Number Bank Virtex-II Pro devices 6 IO_L44P_6 AA25 6 IO_L44N_6 AA26 6 IO_L45P_6 AC29 6 IO_L45N_6/VREF_6 AB29 6 IO_L46P_6 AB27 6 IO_L46N_6 AB28 6 IO_L47P_6 W23 6 IO_L47N_6 W24 6 IO_L48P_6 AA27 6 IO_L48N_6 AA28 6 IO_L49P_6 Y26 6 IO_L49N_6 Y27 6 IO_L50P_6 W25 6 IO_L50N_6 W26 6 IO_L51P_6 AB30 6 IO_L51N_6/VREF_6 AA30 6 IO_L52P_6 W27 6 IO_L52N_6 W28 6 IO_L53P_6 V23 6 IO_L53N_6 V24 6 IO_L54P_6 AA29 6 IO_L54N_6 Y29 6 IO_L55P_6 V25 6 IO_L55N_6 V26 6 IO_L56P_6 U23 6 IO_L56N_6 U24 6 IO_L57P_6 Y30 6 IO_L57N_6/VREF_6 W30 6 IO_L58P_6 V27 6 IO_L58N_6 V28 6 IO_L59P_6 U22 6 IO_L59N_6 T22 6 IO_L60P_6 W29 6 IO_L60N_6 V29 6 IO_L85P_6 U26 6 IO_L85N_6 U27 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP7 XC2VP20, XC2VPX20 XC2VP30 Module 4 of 4 83 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 9: FF896 — XC2VP7, XC2VP20, XC2VPX20, and XC2VP30 Pin Description No Connects XC2VPX20 (if Different) Pin Number Bank Virtex-II Pro devices 6 IO_L86P_6 T23 6 IO_L86N_6 T24 6 IO_L87P_6 U28 6 IO_L87N_6/VREF_6 U29 6 IO_L88P_6 T27 6 IO_L88N_6 T28 6 IO_L89P_6 T25 6 IO_L89N_6 T26 6 IO_L90P_6 V30 6 IO_L90N_6 U30 7 IO_L90P_7 R28 7 IO_L90N_7 R27 7 IO_L89P_7 R26 7 IO_L89N_7 R25 7 IO_L88P_7 T29 7 IO_L88N_7/VREF_7 R29 7 IO_L87P_7 P27 7 IO_L87N_7 P26 7 IO_L86P_7 R24 7 IO_L86N_7 R23 7 IO_L85P_7 P29 7 IO_L85N_7 P28 7 IO_L60P_7 N28 7 IO_L60N_7 N27 7 IO_L59P_7 P24 7 IO_L59N_7 P23 7 IO_L58P_7 P30 7 IO_L58N_7/VREF_7 N30 7 IO_L57P_7 M28 7 IO_L57N_7 M27 7 IO_L56P_7 R22 7 IO_L56N_7 P22 7 IO_L55P_7 N29 7 IO_L55N_7 M29 7 IO_L54P_7 L27 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP7 XC2VP20, XC2VPX20 XC2VP30 Module 4 of 4 84 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 9: FF896 — XC2VP7, XC2VP20, XC2VPX20, and XC2VP30 Pin Description No Connects XC2VPX20 (if Different) Pin Number Bank Virtex-II Pro devices 7 IO_L54N_7 L26 7 IO_L53P_7 N26 7 IO_L53N_7 N25 7 IO_L52P_7 M30 7 IO_L52N_7/VREF_7 L30 7 IO_L51P_7 K28 7 IO_L51N_7 K27 7 IO_L50P_7 N24 7 IO_L50N_7 N23 7 IO_L49P_7 L29 7 IO_L49N_7 K29 7 IO_L48P_7 J28 7 IO_L48N_7 J27 7 IO_L47P_7 M26 7 IO_L47N_7 M25 7 IO_L46P_7 K30 7 IO_L46N_7/VREF_7 J30 7 IO_L45P_7 K26 7 IO_L45N_7 K25 7 IO_L44P_7 M24 7 IO_L44N_7 M23 7 IO_L43P_7 J29 7 IO_L43N_7 H29 7 IO_L42P_7 H28 NC 7 IO_L42N_7 H27 NC 7 IO_L41P_7 L24 NC 7 IO_L41N_7 L23 NC 7 IO_L40P_7 G30 NC 7 IO_L40N_7/VREF_7 G29 NC 7 IO_L39P_7 G28 NC 7 IO_L39N_7 G27 NC 7 IO_L38P_7 J26 NC 7 IO_L38N_7 J25 NC 7 IO_L37P_7 F30 NC 7 IO_L37N_7 F29 NC 7 IO_L36P_7 F28 NC DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP7 XC2VP20, XC2VPX20 XC2VP30 Module 4 of 4 85 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 9: FF896 — XC2VP7, XC2VP20, XC2VPX20, and XC2VP30 Pin Description No Connects Pin Number XC2VP7 IO_L36N_7 F27 NC 7 IO_L35P_7 K24 NC 7 IO_L35N_7 K23 NC 7 IO_L34P_7 E30 NC 7 IO_L34N_7/VREF_7 E29 NC 7 IO_L33P_7 E28 NC 7 IO_L33N_7 E27 NC 7 IO_L32P_7 H26 NC 7 IO_L32N_7 H25 NC 7 IO_L31P_7 D30 NC 7 IO_L31N_7 D29 NC 7 IO_L06P_7 D28 7 IO_L06N_7 C27 7 IO_L05P_7 J24 7 IO_L05N_7 J23 7 IO_L04P_7 C30 7 IO_L04N_7/VREF_7 C29 7 IO_L03P_7 D26 7 IO_L03N_7 C26 7 IO_L02P_7 G26 7 IO_L02N_7 G25 7 IO_L01P_7/VRN_7 B28 7 IO_L01N_7/VRP_7 A28 0 VCCO_0 K21 0 VCCO_0 K20 0 VCCO_0 K19 0 VCCO_0 K18 0 VCCO_0 K17 0 VCCO_0 K16 0 VCCO_0 J21 0 VCCO_0 J20 0 VCCO_0 J19 0 VCCO_0 J18 1 VCCO_1 K15 1 VCCO_1 K14 Bank Virtex-II Pro devices 7 DS083 (v4.7) November 5, 2007 Product Specification XC2VPX20 (if Different) www.xilinx.com XC2VP20, XC2VPX20 XC2VP30 Module 4 of 4 86 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 9: FF896 — XC2VP7, XC2VP20, XC2VPX20, and XC2VP30 Pin Description No Connects XC2VPX20 (if Different) Pin Number Bank Virtex-II Pro devices 1 VCCO_1 K13 1 VCCO_1 K12 1 VCCO_1 K11 1 VCCO_1 K10 1 VCCO_1 J13 1 VCCO_1 J12 1 VCCO_1 J11 1 VCCO_1 J10 2 VCCO_2 R10 2 VCCO_2 P10 2 VCCO_2 N10 2 VCCO_2 N9 2 VCCO_2 M10 2 VCCO_2 M9 2 VCCO_2 L10 2 VCCO_2 L9 2 VCCO_2 K9 2 VCCO_2 J9 3 VCCO_3 AB9 3 VCCO_3 AA9 3 VCCO_3 Y10 3 VCCO_3 Y9 3 VCCO_3 W10 3 VCCO_3 W9 3 VCCO_3 V10 3 VCCO_3 V9 3 VCCO_3 U10 3 VCCO_3 T10 4 VCCO_4 AB13 4 VCCO_4 AB12 4 VCCO_4 AB11 4 VCCO_4 AB10 4 VCCO_4 AA15 4 VCCO_4 AA14 4 VCCO_4 AA13 4 VCCO_4 AA12 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP7 XC2VP20, XC2VPX20 XC2VP30 Module 4 of 4 87 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 9: FF896 — XC2VP7, XC2VP20, XC2VPX20, and XC2VP30 Pin Description No Connects XC2VPX20 (if Different) Pin Number Bank Virtex-II Pro devices 4 VCCO_4 AA11 4 VCCO_4 AA10 5 VCCO_5 AB21 5 VCCO_5 AB20 5 VCCO_5 AB19 5 VCCO_5 AB18 5 VCCO_5 AA21 5 VCCO_5 AA20 5 VCCO_5 AA19 5 VCCO_5 AA18 5 VCCO_5 AA17 5 VCCO_5 AA16 6 VCCO_6 AB22 6 VCCO_6 AA22 6 VCCO_6 Y22 6 VCCO_6 Y21 6 VCCO_6 W22 6 VCCO_6 W21 6 VCCO_6 V22 6 VCCO_6 V21 6 VCCO_6 U21 6 VCCO_6 T21 7 VCCO_7 R21 7 VCCO_7 P21 7 VCCO_7 N22 7 VCCO_7 N21 7 VCCO_7 M22 7 VCCO_7 M21 7 VCCO_7 L22 7 VCCO_7 L21 7 VCCO_7 K22 7 VCCO_7 J22 N/A CCLK AC7 N/A PROG_B G24 N/A DONE AC8 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP7 XC2VP20, XC2VPX20 XC2VP30 Module 4 of 4 88 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 9: FF896 — XC2VP7, XC2VP20, XC2VPX20, and XC2VP30 Pin Description No Connects XC2VPX20 (if Different) Pin Number Bank Virtex-II Pro devices N/A M0 AD24 N/A M1 AC24 N/A M2 AC23 N/A TCK G7 N/A TDI F26 N/A TDO F5 N/A TMS H8 N/A PWRDWN_B AD7 N/A HSWAP_EN H23 N/A RSVD D6 N/A VBATT H7 N/A DXP H24 N/A DXN D25 N/A AVCCAUXTX4 B26 N/A VTTXPAD4 B27 N/A TXNPAD4 A27 N/A TXPPAD4 A26 N/A GNDA4 C25 N/A RXPPAD4 A25 N/A RXNPAD4 A24 N/A VTRXPAD4 B25 N/A AVCCAUXRX4 B24 N/A AVCCAUXTX6 B19 N/A VTTXPAD6 B20 N/A TXNPAD6 A20 N/A TXPPAD6 A19 N/A GNDA6 C19 N/A RXPPAD6 A18 N/A RXNPAD6 A17 N/A VTRXPAD6 B18 N/A AVCCAUXRX6 B17 N/A AVCCAUXTX7 B13 N/A VTTXPAD7 B14 N/A TXNPAD7 A14 N/A TXPPAD7 A13 N/A GNDA7 C12 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP7 XC2VP20, XC2VPX20 XC2VP30 Module 4 of 4 89 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 9: FF896 — XC2VP7, XC2VP20, XC2VPX20, and XC2VP30 Pin Description No Connects XC2VPX20 (if Different) Pin Number Bank Virtex-II Pro devices N/A RXPPAD7 A12 N/A RXNPAD7 A11 N/A VTRXPAD7 B12 N/A AVCCAUXRX7 B11 N/A AVCCAUXTX9 B6 N/A VTTXPAD9 B7 N/A TXNPAD9 A7 N/A TXPPAD9 A6 N/A GNDA9 C6 N/A RXPPAD9 A5 N/A RXNPAD9 A4 N/A VTRXPAD9 B5 N/A AVCCAUXRX9 B4 N/A AVCCAUXRX16 AJ4 N/A VTRXPAD16 AJ5 N/A RXNPAD16 AK4 N/A RXPPAD16 AK5 N/A GNDA16 AH6 N/A TXPPAD16 AK6 N/A TXNPAD16 AK7 N/A VTTXPAD16 AJ7 N/A AVCCAUXTX16 AJ6 N/A AVCCAUXRX18 AJ11 N/A VTRXPAD18 AJ12 N/A RXNPAD18 AK11 N/A RXPPAD18 AK12 N/A GNDA18 AH12 N/A TXPPAD18 AK13 N/A TXNPAD18 AK14 N/A VTTXPAD18 AJ14 N/A AVCCAUXTX18 AJ13 N/A AVCCAUXRX19 AJ17 N/A VTRXPAD19 AJ18 N/A RXNPAD19 AK17 N/A RXPPAD19 AK18 N/A GNDA19 AH19 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP7 XC2VP20, XC2VPX20 XC2VP30 Module 4 of 4 90 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 9: FF896 — XC2VP7, XC2VP20, XC2VPX20, and XC2VP30 Pin Description No Connects XC2VPX20 (if Different) Pin Number Bank Virtex-II Pro devices N/A TXPPAD19 AK19 N/A TXNPAD19 AK20 N/A VTTXPAD19 AJ20 N/A AVCCAUXTX19 AJ19 N/A AVCCAUXRX21 AJ24 N/A VTRXPAD21 AJ25 N/A RXNPAD21 AK24 N/A RXPPAD21 AK25 N/A GNDA21 AH25 N/A TXPPAD21 AK26 N/A TXNPAD21 AK27 N/A VTTXPAD21 AJ27 N/A AVCCAUXTX21 AJ26 N/A VCCAUX AK29 N/A VCCAUX AK16 N/A VCCAUX AK15 N/A VCCAUX AK2 N/A VCCAUX AJ30 N/A VCCAUX AJ1 N/A VCCAUX T30 N/A VCCAUX T1 N/A VCCAUX R30 N/A VCCAUX R1 N/A VCCAUX B30 N/A VCCAUX B1 N/A VCCAUX A29 N/A VCCAUX A16 N/A VCCAUX A15 N/A VCCAUX A2 N/A VCCINT Y19 N/A VCCINT Y18 N/A VCCINT Y17 N/A VCCINT Y16 N/A VCCINT Y15 N/A VCCINT Y14 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP7 XC2VP20, XC2VPX20 XC2VP30 Module 4 of 4 91 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 9: FF896 — XC2VP7, XC2VP20, XC2VPX20, and XC2VP30 Pin Description No Connects XC2VPX20 (if Different) Pin Number Bank Virtex-II Pro devices N/A VCCINT Y13 N/A VCCINT Y12 N/A VCCINT W20 N/A VCCINT W11 N/A VCCINT V20 N/A VCCINT V11 N/A VCCINT U20 N/A VCCINT U11 N/A VCCINT T20 N/A VCCINT T11 N/A VCCINT R20 N/A VCCINT R11 N/A VCCINT P20 N/A VCCINT P11 N/A VCCINT N20 N/A VCCINT N11 N/A VCCINT M20 N/A VCCINT M11 N/A VCCINT L19 N/A VCCINT L18 N/A VCCINT L17 N/A VCCINT L16 N/A VCCINT L15 N/A VCCINT L14 N/A VCCINT L13 N/A VCCINT L12 N/A GND AK22 N/A GND AK9 N/A GND AJ29 N/A GND AJ2 N/A GND AH28 N/A GND AH17 N/A GND AH14 N/A GND AH3 N/A GND AG27 N/A GND AG22 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP7 XC2VP20, XC2VPX20 XC2VP30 Module 4 of 4 92 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 9: FF896 — XC2VP7, XC2VP20, XC2VPX20, and XC2VP30 Pin Description No Connects XC2VPX20 (if Different) Pin Number Bank Virtex-II Pro devices N/A GND AG19 N/A GND AG12 N/A GND AG9 N/A GND AG4 N/A GND AF26 N/A GND AF5 N/A GND AE25 N/A GND AE18 N/A GND AE13 N/A GND AE6 N/A GND AC30 N/A GND AC1 N/A GND Y28 N/A GND Y25 N/A GND Y20 N/A GND Y11 N/A GND Y6 N/A GND Y3 N/A GND W19 N/A GND W18 N/A GND W17 N/A GND W16 N/A GND W15 N/A GND W14 N/A GND W13 N/A GND W12 N/A GND V19 N/A GND V18 N/A GND V17 N/A GND V16 N/A GND V15 N/A GND V14 N/A GND V13 N/A GND V12 N/A GND U25 N/A GND U19 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP7 XC2VP20, XC2VPX20 XC2VP30 Module 4 of 4 93 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 9: FF896 — XC2VP7, XC2VP20, XC2VPX20, and XC2VP30 Pin Description No Connects XC2VPX20 (if Different) Pin Number Bank Virtex-II Pro devices N/A GND U18 N/A GND U17 N/A GND U16 N/A GND U15 N/A GND U14 N/A GND U13 N/A GND U12 N/A GND U6 N/A GND T19 N/A GND T18 N/A GND T17 N/A GND T16 N/A GND T15 N/A GND T14 N/A GND T13 N/A GND T12 N/A GND R19 N/A GND R18 N/A GND R17 N/A GND R16 N/A GND R15 N/A GND R14 N/A GND R13 N/A GND R12 N/A GND P25 N/A GND P19 N/A GND P18 N/A GND P17 N/A GND P16 N/A GND P15 N/A GND P14 N/A GND P13 N/A GND P12 N/A GND P6 N/A GND N19 N/A GND N18 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP7 XC2VP20, XC2VPX20 XC2VP30 Module 4 of 4 94 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 9: FF896 — XC2VP7, XC2VP20, XC2VPX20, and XC2VP30 Pin Description No Connects XC2VPX20 (if Different) Pin Number Bank Virtex-II Pro devices N/A GND N17 N/A GND N16 N/A GND N15 N/A GND N14 N/A GND N13 N/A GND N12 N/A GND M19 N/A GND M18 N/A GND M17 N/A GND M16 N/A GND M15 N/A GND M14 N/A GND M13 N/A GND M12 N/A GND L28 N/A GND L25 N/A GND L20 N/A GND L11 N/A GND L6 N/A GND L3 N/A GND H30 N/A GND H1 N/A GND F25 N/A GND F18 N/A GND F13 N/A GND F6 N/A GND E26 N/A GND E5 N/A GND D27 N/A GND D22 N/A GND D19 N/A GND D12 N/A GND D9 N/A GND D4 N/A GND C28 N/A GND C17 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP7 XC2VP20, XC2VPX20 XC2VP30 Module 4 of 4 95 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 9: FF896 — XC2VP7, XC2VP20, XC2VPX20, and XC2VP30 Pin Description No Connects XC2VPX20 (if Different) Pin Number Bank Virtex-II Pro devices N/A GND C14 N/A GND C3 N/A GND B29 N/A GND B2 N/A GND A22 N/A GND A9 XC2VP7 XC2VP20, XC2VPX20 XC2VP30 Notes: 1. See Table 4 for an explanation of the signals available on this pin. DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 4 of 4 96 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information FF896 Flip-Chip Fine-Pitch BGA Package Specifications (1.00mm pitch) Figure 5: FF896 Flip-Chip Fine-Pitch BGA Package Specifications DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 4 of 4 97 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information FF1152 Flip-Chip Fine-Pitch BGA Package As shown in Table 10, XC2VP20, XC2VP30, XC2VP40, and XC2VP50 Virtex-II Pro devices are available in the FF1152 flip-chip fine-pitch BGA package. Pins in each of these devices are the same, except for the differences shown in the No Connect column. Following this table are the FF1152 Flip-Chip Fine-Pitch BGA Package Specifications (1.00mm pitch). Table 10: FF1152 — XC2VP20, XC2VP30, XC2VP40, and XC2VP50 Bank Pin Description Pin Number 0 IO_L01N_0/VRP_0 E29 0 IO_L01P_0/VRN_0 E28 0 IO_L02N_0 H26 0 IO_L02P_0 G26 0 IO_L03N_0 H25 0 IO_L03P_0/VREF_0 G25 0 IO_L05_0/No_Pair J25 0 IO_L06N_0 K24 0 IO_L06P_0 J24 0 IO_L07N_0 F26 0 IO_L07P_0 E26 0 IO_L08N_0 D30 0 IO_L08P_0 D29 0 IO_L09N_0 K23 0 IO_L09P_0/VREF_0 J23 0 IO_L19N_0 0 No Connects XC2VP20 XC2VP30 F24 NC NC IO_L19P_0 E24 NC NC 0 IO_L20N_0 D28 NC NC 0 IO_L20P_0 C28 NC NC 0 IO_L21N_0 H24 NC NC 0 IO_L21P_0 G24 NC NC 0 IO_L25N_0 G23 NC NC 0 IO_L25P_0 F23 NC NC 0 IO_L26N_0 E27 NC NC 0 IO_L26P_0 D27 NC NC 0 IO_L27N_0 K22 NC NC 0 IO_L27P_0/VREF_0 J22 NC NC 0 IO_L37N_0 H22 0 IO_L37P_0 G22 0 IO_L38N_0 D26 0 IO_L38P_0 C26 0 IO_L39N_0 K21 0 IO_L39P_0 J21 0 IO_L43N_0 F22 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP40 XC2VP50 Module 4 of 4 98 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 10: FF1152 — XC2VP20, XC2VP30, XC2VP40, and XC2VP50 Bank Pin Description Pin Number 0 IO_L43P_0 E22 0 IO_L44N_0 E25 0 IO_L44P_0 D25 0 IO_L45N_0 H21 0 IO_L45P_0/VREF_0 G21 0 IO_L46N_0 D22 0 IO_L46P_0 D23 0 IO_L47N_0 D24 0 IO_L47P_0 C24 0 IO_L48N_0 K20 0 IO_L48P_0 J20 0 IO_L49N_0 F21 0 IO_L49P_0 E21 0 IO_L50_0/No_Pair C21 0 IO_L53_0/No_Pair C22 0 IO_L54N_0 L19 0 IO_L54P_0 K19 0 IO_L55N_0 G20 0 IO_L55P_0 F20 0 IO_L56N_0 D21 0 IO_L56P_0 D20 0 IO_L57N_0 J19 0 IO_L57P_0/VREF_0 H19 0 IO_L67N_0 G19 0 IO_L67P_0 F19 0 IO_L68N_0 E19 0 IO_L68P_0 D19 0 IO_L69N_0 L18 0 IO_L69P_0/VREF_0 K18 0 IO_L73N_0 G18 0 IO_L73P_0 F18 0 IO_L74N_0/GCLK7P E18 0 IO_L74P_0/GCLK6S D18 0 IO_L75N_0/GCLK5P J18 0 IO_L75P_0/GCLK4S H18 1 IO_L75N_1/GCLK3P H17 1 IO_L75P_1/GCLK2S J17 DS083 (v4.7) November 5, 2007 Product Specification No Connects XC2VP20 www.xilinx.com XC2VP30 XC2VP40 XC2VP50 Module 4 of 4 99 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 10: FF1152 — XC2VP20, XC2VP30, XC2VP40, and XC2VP50 Bank Pin Description Pin Number 1 IO_L74N_1/GCLK1P D17 1 IO_L74P_1/GCLK0S E17 1 IO_L73N_1 F17 1 IO_L73P_1 G17 1 IO_L69N_1/VREF_1 K17 1 IO_L69P_1 L17 1 IO_L68N_1 D16 1 IO_L68P_1 E16 1 IO_L67N_1 F16 1 IO_L67P_1 G16 1 IO_L57N_1/VREF_1 H16 1 IO_L57P_1 J16 1 IO_L56N_1 D15 1 IO_L56P_1 D14 1 IO_L55N_1 F15 1 IO_L55P_1 G15 1 IO_L54N_1 K16 1 IO_L54P_1 L16 1 IO_L53_1/No_Pair C13 1 IO_L50_1/No_Pair C14 1 IO_L49N_1 E14 1 IO_L49P_1 F14 1 IO_L48N_1 J15 1 IO_L48P_1 K15 1 IO_L47N_1 C11 1 IO_L47P_1 D11 1 IO_L46N_1 D12 1 IO_L46P_1 D13 1 IO_L45N_1/VREF_1 G14 1 IO_L45P_1 H14 1 IO_L44N_1 D10 1 IO_L44P_1 E10 1 IO_L43N_1 E13 1 IO_L43P_1 F13 1 IO_L39N_1 J14 1 IO_L39P_1 K14 1 IO_L38N_1 C9 1 IO_L38P_1 D9 DS083 (v4.7) November 5, 2007 Product Specification No Connects XC2VP20 www.xilinx.com XC2VP30 XC2VP40 XC2VP50 Module 4 of 4 100 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 10: FF1152 — XC2VP20, XC2VP30, XC2VP40, and XC2VP50 Bank Pin Description Pin Number 1 IO_L37N_1 G13 1 IO_L37P_1 H13 1 IO_L27N_1/VREF_1 1 No Connects XC2VP20 XC2VP30 J13 NC NC IO_L27P_1 K13 NC NC 1 IO_L26N_1 D8 NC NC 1 IO_L26P_1 E8 NC NC 1 IO_L25N_1 F12 NC NC 1 IO_L25P_1 G12 NC NC 1 IO_L21N_1 G11 NC NC 1 IO_L21P_1 H11 NC NC 1 IO_L20N_1 C7 NC NC 1 IO_L20P_1 D7 NC NC 1 IO_L19N_1 E11 NC NC 1 IO_L19P_1 F11 NC NC 1 IO_L09N_1/VREF_1 J12 1 IO_L09P_1 K12 1 IO_L08N_1 D6 1 IO_L08P_1 D5 1 IO_L07N_1 E9 1 IO_L07P_1 F9 1 IO_L06N_1 J11 1 IO_L06P_1 K11 1 IO_L05_1/No_Pair J10 1 IO_L03N_1/VREF_1 G10 1 IO_L03P_1 H10 1 IO_L02N_1 G9 1 IO_L02P_1 H9 1 IO_L01N_1/VRP_1 E7 1 IO_L01P_1/VRN_1 E6 2 IO_L01N_2/VRP_2 D2 2 IO_L01P_2/VRN_2 D1 2 IO_L02N_2 F8 2 IO_L02P_2 F7 2 IO_L03N_2 E4 2 IO_L03P_2 E3 2 IO_L04N_2/VREF_2 E2 2 IO_L04P_2 E1 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP40 XC2VP50 Module 4 of 4 101 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 10: FF1152 — XC2VP20, XC2VP30, XC2VP40, and XC2VP50 No Connects Bank Pin Description Pin Number 2 IO_L05N_2 J8 2 IO_L05P_2 J7 2 IO_L06N_2 F5 2 IO_L06P_2 F4 2 IO_L15N_2 G4 NC 2 IO_L15P_2 G3 NC 2 IO_L16N_2/VREF_2 G6 NC 2 IO_L16P_2 G5 NC 2 IO_L17N_2 F2 NC 2 IO_L17P_2 F1 NC 2 IO_L18N_2 L10 NC 2 IO_L18P_2 L9 NC 2 IO_L19N_2 H6 NC 2 IO_L19P_2 H5 NC 2 IO_L20N_2 G2 NC 2 IO_L20P_2 G1 NC 2 IO_L21N_2 J6 NC 2 IO_L21P_2 J5 NC 2 IO_L22N_2/VREF_2 J4 NC 2 IO_L22P_2 J3 NC 2 IO_L23N_2 K8 NC 2 IO_L23P_2 K7 NC 2 IO_L24N_2 H4 NC 2 IO_L24P_2 H3 NC 2 IO_L31N_2 H2 2 IO_L31P_2 H1 2 IO_L32N_2 M10 2 IO_L32P_2 M9 2 IO_L33N_2 K5 2 IO_L33P_2 K4 2 IO_L34N_2/VREF_2 J2 2 IO_L34P_2 K2 2 IO_L35N_2 L8 2 IO_L35P_2 L7 2 IO_L36N_2 L6 2 IO_L36P_2 L5 2 IO_L37N_2 K1 2 IO_L37P_2 L1 DS083 (v4.7) November 5, 2007 Product Specification XC2VP20 www.xilinx.com XC2VP30 XC2VP40 XC2VP50 Module 4 of 4 102 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 10: FF1152 — XC2VP20, XC2VP30, XC2VP40, and XC2VP50 Bank Pin Description Pin Number 2 IO_L38N_2 N10 2 IO_L38P_2 N9 2 IO_L39N_2 M7 2 IO_L39P_2 M6 2 IO_L40N_2/VREF_2 L2 2 IO_L40P_2 M2 2 IO_L41N_2 N8 2 IO_L41P_2 N7 2 IO_L42N_2 L4 2 IO_L42P_2 L3 2 IO_L43N_2 M4 2 IO_L43P_2 M3 2 IO_L44N_2 P10 2 IO_L44P_2 P9 2 IO_L45N_2 N6 2 IO_L45P_2 N5 2 IO_L46N_2/VREF_2 M1 2 IO_L46P_2 N1 2 IO_L47N_2 P8 2 IO_L47P_2 P7 2 IO_L48N_2 N4 2 IO_L48P_2 N3 2 IO_L49N_2 N2 2 IO_L49P_2 P2 2 IO_L50N_2 R10 2 IO_L50P_2 R9 2 IO_L51N_2 P6 2 IO_L51P_2 P5 2 IO_L52N_2/VREF_2 P4 2 IO_L52P_2 P3 2 IO_L53N_2 T11 2 IO_L53P_2 U11 2 IO_L54N_2 R7 2 IO_L54P_2 R6 2 IO_L55N_2 P1 2 IO_L55P_2 R1 2 IO_L56N_2 T10 2 IO_L56P_2 T9 DS083 (v4.7) November 5, 2007 Product Specification No Connects XC2VP20 www.xilinx.com XC2VP30 XC2VP40 XC2VP50 Module 4 of 4 103 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 10: FF1152 — XC2VP20, XC2VP30, XC2VP40, and XC2VP50 Bank Pin Description Pin Number 2 IO_L57N_2 R4 2 IO_L57P_2 R3 2 IO_L58N_2/VREF_2 R2 2 IO_L58P_2 T2 2 IO_L59N_2 T8 2 IO_L59P_2 T7 2 IO_L60N_2 T6 2 IO_L60P_2 T5 2 IO_L85N_2 T4 2 IO_L85P_2 T3 2 IO_L86N_2 U10 2 IO_L86P_2 U9 2 IO_L87N_2 U6 2 IO_L87P_2 U5 2 IO_L88N_2/VREF_2 U2 2 IO_L88P_2 V2 2 IO_L89N_2 U8 2 IO_L89P_2 U7 2 IO_L90N_2 U4 2 IO_L90P_2 U3 3 IO_L90N_3 V3 3 IO_L90P_3 V4 3 IO_L89N_3 V7 3 IO_L89P_3 V8 3 IO_L88N_3 V5 3 IO_L88P_3 V6 3 IO_L87N_3/VREF_3 W2 3 IO_L87P_3 Y2 3 IO_L86N_3 V9 3 IO_L86P_3 V10 3 IO_L85N_3 W3 3 IO_L85P_3 W4 3 IO_L60N_3 Y1 3 IO_L60P_3 AA1 3 IO_L59N_3 V11 3 IO_L59P_3 W11 3 IO_L58N_3 W5 DS083 (v4.7) November 5, 2007 Product Specification No Connects XC2VP20 www.xilinx.com XC2VP30 XC2VP40 XC2VP50 Module 4 of 4 104 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 10: FF1152 — XC2VP20, XC2VP30, XC2VP40, and XC2VP50 Bank Pin Description Pin Number 3 IO_L58P_3 W6 3 IO_L57N_3/VREF_3 Y3 3 IO_L57P_3 Y4 3 IO_L56N_3 W7 3 IO_L56P_3 W8 3 IO_L55N_3 Y6 3 IO_L55P_3 Y7 3 IO_L54N_3 AA2 3 IO_L54P_3 AB2 3 IO_L53N_3 W9 3 IO_L53P_3 W10 3 IO_L52N_3 AA3 3 IO_L52P_3 AA4 3 IO_L51N_3/VREF_3 AB1 3 IO_L51P_3 AC1 3 IO_L50N_3 Y9 3 IO_L50P_3 Y10 3 IO_L49N_3 AA5 3 IO_L49P_3 AA6 3 IO_L48N_3 AB3 3 IO_L48P_3 AB4 3 IO_L47N_3 AA7 3 IO_L47P_3 AA8 3 IO_L46N_3 AB5 3 IO_L46P_3 AB6 3 IO_L45N_3/VREF_3 AC2 3 IO_L45P_3 AD2 3 IO_L44N_3 AA9 3 IO_L44P_3 AA10 3 IO_L43N_3 AC3 3 IO_L43P_3 AC4 3 IO_L42N_3 AD1 3 IO_L42P_3 AE1 3 IO_L41N_3 AB7 3 IO_L41P_3 AB8 3 IO_L40N_3 AC6 3 IO_L40P_3 AC7 3 IO_L39N_3/VREF_3 AD3 DS083 (v4.7) November 5, 2007 Product Specification No Connects XC2VP20 www.xilinx.com XC2VP30 XC2VP40 XC2VP50 Module 4 of 4 105 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 10: FF1152 — XC2VP20, XC2VP30, XC2VP40, and XC2VP50 No Connects Bank Pin Description Pin Number 3 IO_L39P_3 AD4 3 IO_L38N_3 AB9 3 IO_L38P_3 AB10 3 IO_L37N_3 AD5 3 IO_L37P_3 AD6 3 IO_L36N_3 AE2 3 IO_L36P_3 AF2 3 IO_L35N_3 AD7 3 IO_L35P_3 AD8 3 IO_L34N_3 AE4 3 IO_L34P_3 AE5 3 IO_L33N_3/VREF_3 AG1 3 IO_L33P_3 AG2 3 IO_L32N_3 AC9 3 IO_L32P_3 AC10 3 IO_L31N_3 AF3 3 IO_L31P_3 AF4 3 IO_L24N_3 AH1 NC 3 IO_L24P_3 AH2 NC 3 IO_L23N_3 AE7 NC 3 IO_L23P_3 AE8 NC 3 IO_L22N_3 AF5 NC 3 IO_L22P_3 AF6 NC 3 IO_L21N_3/VREF_3 AG3 NC 3 IO_L21P_3 AG4 NC 3 IO_L20N_3 AD9 NC 3 IO_L20P_3 AD10 NC 3 IO_L19N_3 AH3 NC 3 IO_L19P_3 AH4 NC 3 IO_L18N_3 AJ1 NC 3 IO_L18P_3 AJ2 NC 3 IO_L17N_3 AF7 NC 3 IO_L17P_3 AF8 NC 3 IO_L16N_3 AK1 NC 3 IO_L16P_3 AK2 NC 3 IO_L15N_3/VREF_3 AG5 NC 3 IO_L15P_3 AG6 NC 3 IO_L06N_3 AL1 DS083 (v4.7) November 5, 2007 Product Specification XC2VP20 www.xilinx.com XC2VP30 XC2VP40 XC2VP50 Module 4 of 4 106 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 10: FF1152 — XC2VP20, XC2VP30, XC2VP40, and XC2VP50 Bank Pin Description Pin Number 3 IO_L06P_3 AL2 3 IO_L05N_3 AG7 3 IO_L05P_3 AH8 3 IO_L04N_3 AH5 3 IO_L04P_3 AH6 3 IO_L03N_3/VREF_3 AK3 3 IO_L03P_3 AK4 3 IO_L02N_3 AJ7 3 IO_L02P_3 AJ8 3 IO_L01N_3/VRP_3 AJ4 3 IO_L01P_3/VRN_3 AJ5 4 IO_L01N_4/BUSY/DOUT (1) AL5 4 IO_L01P_4/INIT_B AL6 4 IO_L02N_4/D0/DIN (1) AG9 4 IO_L02P_4/D1 AH9 4 IO_L03N_4/D2 AK6 4 IO_L03P_4/D3 AK7 4 IO_L05_4/No_Pair AF10 4 IO_L06N_4/VRP_4 AL7 4 IO_L06P_4/VRN_4 AM7 4 IO_L07N_4 AE11 4 IO_L07P_4/VREF_4 AF11 4 IO_L08N_4 AG10 4 IO_L08P_4 AH10 4 IO_L09N_4 AK8 4 IO_L09P_4/VREF_4 AL8 4 IO_L19N_4 4 No Connects XC2VP20 XC2VP30 AE12 NC NC IO_L19P_4 AF12 NC NC 4 IO_L20N_4 AJ9 NC NC 4 IO_L20P_4 AK9 NC NC 4 IO_L21N_4 AL9 NC NC 4 IO_L21P_4 AM9 NC NC 4 IO_L25N_4 AG11 NC NC 4 IO_L25P_4 AH11 NC NC 4 IO_L26N_4 AH12 NC NC 4 IO_L26P_4 AJ12 NC NC 4 IO_L27N_4 AK10 NC NC DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP40 XC2VP50 Module 4 of 4 107 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 10: FF1152 — XC2VP20, XC2VP30, XC2VP40, and XC2VP50 Bank Pin Description Pin Number 4 IO_L27P_4/VREF_4 AL10 4 IO_L37N_4 AE13 4 IO_L37P_4 AF13 4 IO_L38N_4 AG13 4 IO_L38P_4 AH13 4 IO_L39N_4 AJ11 4 IO_L39P_4 AK11 4 IO_L43N_4 AE14 4 IO_L43P_4 AF14 4 IO_L44N_4 AJ13 4 IO_L44P_4 AK13 4 IO_L45N_4 AL11 4 IO_L45P_4/VREF_4 AM11 4 IO_L46N_4 AE15 4 IO_L46P_4 AF15 4 IO_L47N_4 AG14 4 IO_L47P_4 AH14 4 IO_L48N_4 AL13 4 IO_L48P_4 AL12 4 IO_L49N_4 AD16 4 IO_L49P_4 AE16 4 IO_L50_4/No_Pair AJ14 4 IO_L53_4/No_Pair AK14 4 IO_L54N_4 AM14 4 IO_L54P_4 AM13 4 IO_L55N_4 AF16 4 IO_L55P_4 AG16 4 IO_L56N_4 AH15 4 IO_L56P_4 AJ15 4 IO_L57N_4 AL14 4 IO_L57P_4/VREF_4 AL15 4 IO_L67N_4 AD17 4 IO_L67P_4 AE17 4 IO_L68N_4 AH16 4 IO_L68P_4 AJ16 4 IO_L69N_4 AK16 4 IO_L69P_4/VREF_4 AL16 4 IO_L73N_4 AF17 DS083 (v4.7) November 5, 2007 Product Specification No Connects XC2VP20 XC2VP30 NC NC www.xilinx.com XC2VP40 XC2VP50 Module 4 of 4 108 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 10: FF1152 — XC2VP20, XC2VP30, XC2VP40, and XC2VP50 Bank Pin Description Pin Number 4 IO_L73P_4 AG17 4 IO_L74N_4/GCLK3S AH17 4 IO_L74P_4/GCLK2P AJ17 4 IO_L75N_4/GCLK1S AK17 4 IO_L75P_4/GCLK0P AL17 5 IO_L75N_5/GCLK7S AL18 5 IO_L75P_5/GCLK6P AK18 5 IO_L74N_5/GCLK5S AJ18 5 IO_L74P_5/GCLK4P AH18 5 IO_L73N_5 AG18 5 IO_L73P_5 AF18 5 IO_L69N_5/VREF_5 AL19 5 IO_L69P_5 AK19 5 IO_L68N_5 AJ19 5 IO_L68P_5 AH19 5 IO_L67N_5 AE18 5 IO_L67P_5 AD18 5 IO_L57N_5/VREF_5 AL20 5 IO_L57P_5 AL21 5 IO_L56N_5 AJ20 5 IO_L56P_5 AH20 5 IO_L55N_5 AG19 5 IO_L55P_5 AF19 5 IO_L54N_5 AM22 5 IO_L54P_5 AM21 5 IO_L53_5/No_Pair AK21 5 IO_L50_5/No_Pair AJ21 5 IO_L49N_5 AE19 5 IO_L49P_5 AD19 5 IO_L48N_5 AL23 5 IO_L48P_5 AL22 5 IO_L47N_5 AH21 5 IO_L47P_5 AG21 5 IO_L46N_5 AF20 5 IO_L46P_5 AE20 5 IO_L45N_5/VREF_5 AM24 5 IO_L45P_5 AL24 DS083 (v4.7) November 5, 2007 Product Specification No Connects XC2VP20 www.xilinx.com XC2VP30 XC2VP40 XC2VP50 Module 4 of 4 109 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 10: FF1152 — XC2VP20, XC2VP30, XC2VP40, and XC2VP50 Bank Pin Description Pin Number 5 IO_L44N_5 AK22 5 IO_L44P_5 AJ22 5 IO_L43N_5 AF21 5 IO_L43P_5 AE21 5 IO_L39N_5 AK24 5 IO_L39P_5 AJ24 5 IO_L38N_5 AH22 5 IO_L38P_5 AG22 5 IO_L37N_5 AF22 5 IO_L37P_5 AE22 5 IO_L27N_5/VREF_5 5 No Connects XC2VP20 XC2VP30 AL25 NC NC IO_L27P_5 AK25 NC NC 5 IO_L26N_5 AJ23 NC NC 5 IO_L26P_5 AH23 NC NC 5 IO_L25N_5 AH24 NC NC 5 IO_L25P_5 AG24 NC NC 5 IO_L21N_5 AM26 NC NC 5 IO_L21P_5 AL26 NC NC 5 IO_L20N_5 AK26 NC NC 5 IO_L20P_5 AJ26 NC NC 5 IO_L19N_5 AF23 NC NC 5 IO_L19P_5 AE23 NC NC 5 IO_L09N_5/VREF_5 AL27 5 IO_L09P_5 AK27 5 IO_L08N_5 AH25 5 IO_L08P_5 AG25 5 IO_L07N_5/VREF_5 AF24 5 IO_L07P_5 AE24 5 IO_L06N_5/VRP_5 AM28 5 IO_L06P_5/VRN_5 AL28 5 IO_L05_5/No_Pair AF25 5 IO_L03N_5/D4 AK28 5 IO_L03P_5/D5 AK29 5 IO_L02N_5/D6 AH26 5 IO_L02P_5/D7 AG26 5 IO_L01N_5/RDWR_B AL29 5 IO_L01P_5/CS_B AL30 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP40 XC2VP50 Module 4 of 4 110 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 10: FF1152 — XC2VP20, XC2VP30, XC2VP40, and XC2VP50 No Connects Bank Pin Description Pin Number 6 IO_L01P_6/VRN_6 AJ30 6 IO_L01N_6/VRP_6 AJ31 6 IO_L02P_6 AJ27 6 IO_L02N_6 AJ28 6 IO_L03P_6 AK31 6 IO_L03N_6/VREF_6 AK32 6 IO_L04P_6 AH29 6 IO_L04N_6 AH30 6 IO_L05P_6 AH27 6 IO_L05N_6 AG28 6 IO_L06P_6 AL33 6 IO_L06N_6 AL34 6 IO_L15P_6 AG29 NC 6 IO_L15N_6/VREF_6 AG30 NC 6 IO_L16P_6 AK33 NC 6 IO_L16N_6 AK34 NC 6 IO_L17P_6 AF27 NC 6 IO_L17N_6 AF28 NC 6 IO_L18P_6 AJ33 NC 6 IO_L18N_6 AJ34 NC 6 IO_L19P_6 AH31 NC 6 IO_L19N_6 AH32 NC 6 IO_L20P_6 AD25 NC 6 IO_L20N_6 AD26 NC 6 IO_L21P_6 AG31 NC 6 IO_L21N_6/VREF_6 AG32 NC 6 IO_L22P_6 AF29 NC 6 IO_L22N_6 AF30 NC 6 IO_L23P_6 AE27 NC 6 IO_L23N_6 AE28 NC 6 IO_L24P_6 AH33 NC 6 IO_L24N_6 AH34 NC 6 IO_L31P_6 AF31 6 IO_L31N_6 AF32 6 IO_L32P_6 AC25 6 IO_L32N_6 AC26 6 IO_L33P_6 AG33 6 IO_L33N_6/VREF_6 AG34 DS083 (v4.7) November 5, 2007 Product Specification XC2VP20 www.xilinx.com XC2VP30 XC2VP40 XC2VP50 Module 4 of 4 111 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 10: FF1152 — XC2VP20, XC2VP30, XC2VP40, and XC2VP50 Bank Pin Description Pin Number 6 IO_L34P_6 AE30 6 IO_L34N_6 AE31 6 IO_L35P_6 AD27 6 IO_L35N_6 AD28 6 IO_L36P_6 AF33 6 IO_L36N_6 AE33 6 IO_L37P_6 AD29 6 IO_L37N_6 AD30 6 IO_L38P_6 AB25 6 IO_L38N_6 AB26 6 IO_L39P_6 AD31 6 IO_L39N_6/VREF_6 AD32 6 IO_L40P_6 AC28 6 IO_L40N_6 AC29 6 IO_L41P_6 AB27 6 IO_L41N_6 AB28 6 IO_L42P_6 AE34 6 IO_L42N_6 AD34 6 IO_L43P_6 AC31 6 IO_L43N_6 AC32 6 IO_L44P_6 AA25 6 IO_L44N_6 AA26 6 IO_L45P_6 AD33 6 IO_L45N_6/VREF_6 AC33 6 IO_L46P_6 AB29 6 IO_L46N_6 AB30 6 IO_L47P_6 AA27 6 IO_L47N_6 AA28 6 IO_L48P_6 AB31 6 IO_L48N_6 AB32 6 IO_L49P_6 AA29 6 IO_L49N_6 AA30 6 IO_L50P_6 Y25 6 IO_L50N_6 Y26 6 IO_L51P_6 AC34 6 IO_L51N_6/VREF_6 AB34 6 IO_L52P_6 AA31 6 IO_L52N_6 AA32 DS083 (v4.7) November 5, 2007 Product Specification No Connects XC2VP20 www.xilinx.com XC2VP30 XC2VP40 XC2VP50 Module 4 of 4 112 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 10: FF1152 — XC2VP20, XC2VP30, XC2VP40, and XC2VP50 Bank Pin Description Pin Number 6 IO_L53P_6 W25 6 IO_L53N_6 W26 6 IO_L54P_6 AB33 6 IO_L54N_6 AA33 6 IO_L55P_6 Y28 6 IO_L55N_6 Y29 6 IO_L56P_6 W27 6 IO_L56N_6 W28 6 IO_L57P_6 Y31 6 IO_L57N_6/VREF_6 Y32 6 IO_L58P_6 W29 6 IO_L58N_6 W30 6 IO_L59P_6 W24 6 IO_L59N_6 V24 6 IO_L60P_6 AA34 6 IO_L60N_6 Y34 6 IO_L85P_6 W31 6 IO_L85N_6 W32 6 IO_L86P_6 V25 6 IO_L86N_6 V26 6 IO_L87P_6 Y33 6 IO_L87N_6/VREF_6 W33 6 IO_L88P_6 V29 6 IO_L88N_6 V30 6 IO_L89P_6 V27 6 IO_L89N_6 V28 6 IO_L90P_6 V31 6 IO_L90N_6 V32 7 IO_L90P_7 U32 7 IO_L90N_7 U31 7 IO_L89P_7 U28 7 IO_L89N_7 U27 7 IO_L88P_7 V33 7 IO_L88N_7/VREF_7 U33 7 IO_L87P_7 U30 7 IO_L87N_7 U29 7 IO_L86P_7 U26 DS083 (v4.7) November 5, 2007 Product Specification No Connects XC2VP20 www.xilinx.com XC2VP30 XC2VP40 XC2VP50 Module 4 of 4 113 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 10: FF1152 — XC2VP20, XC2VP30, XC2VP40, and XC2VP50 Bank Pin Description Pin Number 7 IO_L86N_7 U25 7 IO_L85P_7 T32 7 IO_L85N_7 T31 7 IO_L60P_7 T30 7 IO_L60N_7 T29 7 IO_L59P_7 T28 7 IO_L59N_7 T27 7 IO_L58P_7 T33 7 IO_L58N_7/VREF_7 R33 7 IO_L57P_7 R32 7 IO_L57N_7 R31 7 IO_L56P_7 T26 7 IO_L56N_7 T25 7 IO_L55P_7 R34 7 IO_L55N_7 P34 7 IO_L54P_7 R29 7 IO_L54N_7 R28 7 IO_L53P_7 U24 7 IO_L53N_7 T24 7 IO_L52P_7 P32 7 IO_L52N_7/VREF_7 P31 7 IO_L51P_7 P30 7 IO_L51N_7 P29 7 IO_L50P_7 R26 7 IO_L50N_7 R25 7 IO_L49P_7 P33 7 IO_L49N_7 N33 7 IO_L48P_7 N32 7 IO_L48N_7 N31 7 IO_L47P_7 P28 7 IO_L47N_7 P27 7 IO_L46P_7 N34 7 IO_L46N_7/VREF_7 M34 7 IO_L45P_7 N30 7 IO_L45N_7 N29 7 IO_L44P_7 P26 7 IO_L44N_7 P25 7 IO_L43P_7 M32 DS083 (v4.7) November 5, 2007 Product Specification No Connects XC2VP20 www.xilinx.com XC2VP30 XC2VP40 XC2VP50 Module 4 of 4 114 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 10: FF1152 — XC2VP20, XC2VP30, XC2VP40, and XC2VP50 No Connects Bank Pin Description Pin Number 7 IO_L43N_7 M31 7 IO_L42P_7 L32 7 IO_L42N_7 L31 7 IO_L41P_7 N28 7 IO_L41N_7 N27 7 IO_L40P_7 M33 7 IO_L40N_7/VREF_7 L33 7 IO_L39P_7 M29 7 IO_L39N_7 M28 7 IO_L38P_7 N26 7 IO_L38N_7 N25 7 IO_L37P_7 L34 7 IO_L37N_7 K34 7 IO_L36P_7 L30 7 IO_L36N_7 L29 7 IO_L35P_7 L28 7 IO_L35N_7 L27 7 IO_L34P_7 K33 7 IO_L34N_7/VREF_7 J33 7 IO_L33P_7 K31 7 IO_L33N_7 K30 7 IO_L32P_7 M26 7 IO_L32N_7 M25 7 IO_L31P_7 H34 7 IO_L31N_7 H33 7 IO_L24P_7 H32 NC 7 IO_L24N_7 H31 NC 7 IO_L23P_7 K28 NC 7 IO_L23N_7 K27 NC 7 IO_L22P_7 J32 NC 7 IO_L22N_7/VREF_7 J31 NC 7 IO_L21P_7 J30 NC 7 IO_L21N_7 J29 NC 7 IO_L20P_7 G34 NC 7 IO_L20N_7 G33 NC 7 IO_L19P_7 H30 NC 7 IO_L19N_7 H29 NC 7 IO_L18P_7 L26 NC DS083 (v4.7) November 5, 2007 Product Specification XC2VP20 www.xilinx.com XC2VP30 XC2VP40 XC2VP50 Module 4 of 4 115 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 10: FF1152 — XC2VP20, XC2VP30, XC2VP40, and XC2VP50 No Connects Bank Pin Description Pin Number 7 IO_L18N_7 L25 NC 7 IO_L17P_7 F34 NC 7 IO_L17N_7 F33 NC 7 IO_L16P_7 G30 NC 7 IO_L16N_7/VREF_7 G29 NC 7 IO_L15P_7 G32 NC 7 IO_L15N_7 G31 NC 7 IO_L06P_7 F31 7 IO_L06N_7 F30 7 IO_L05P_7 J28 7 IO_L05N_7 J27 7 IO_L04P_7 E34 7 IO_L04N_7/VREF_7 E33 7 IO_L03P_7 E32 7 IO_L03N_7 E31 7 IO_L02P_7 F28 7 IO_L02N_7 F27 7 IO_L01P_7/VRN_7 D34 7 IO_L01N_7/VRP_7 D33 0 VCCO_0 C29 0 VCCO_0 E20 0 VCCO_0 F25 0 VCCO_0 L20 0 VCCO_0 L21 0 VCCO_0 L22 0 VCCO_0 L23 0 VCCO_0 M18 0 VCCO_0 M19 0 VCCO_0 M20 0 VCCO_0 M21 0 VCCO_0 M22 1 VCCO_1 C6 1 VCCO_1 E15 1 VCCO_1 F10 1 VCCO_1 L12 1 VCCO_1 L13 1 VCCO_1 L14 DS083 (v4.7) November 5, 2007 Product Specification XC2VP20 www.xilinx.com XC2VP30 XC2VP40 XC2VP50 Module 4 of 4 116 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 10: FF1152 — XC2VP20, XC2VP30, XC2VP40, and XC2VP50 Bank Pin Description Pin Number 1 VCCO_1 L15 1 VCCO_1 M13 1 VCCO_1 M14 1 VCCO_1 M15 1 VCCO_1 M16 1 VCCO_1 M17 2 VCCO_2 F3 2 VCCO_2 K6 2 VCCO_2 M11 2 VCCO_2 N11 2 VCCO_2 N12 2 VCCO_2 P11 2 VCCO_2 P12 2 VCCO_2 R5 2 VCCO_2 R11 2 VCCO_2 R12 2 VCCO_2 T12 2 VCCO_2 U12 3 VCCO_3 V12 3 VCCO_3 W12 3 VCCO_3 Y5 3 VCCO_3 Y11 3 VCCO_3 Y12 3 VCCO_3 AA11 3 VCCO_3 AA12 3 VCCO_3 AB11 3 VCCO_3 AB12 3 VCCO_3 AC11 3 VCCO_3 AE6 3 VCCO_3 AJ3 4 VCCO_4 AC13 4 VCCO_4 AC14 4 VCCO_4 AC15 4 VCCO_4 AC16 4 VCCO_4 AC17 4 VCCO_4 AD12 4 VCCO_4 AD13 4 VCCO_4 AD14 DS083 (v4.7) November 5, 2007 Product Specification No Connects XC2VP20 www.xilinx.com XC2VP30 XC2VP40 XC2VP50 Module 4 of 4 117 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 10: FF1152 — XC2VP20, XC2VP30, XC2VP40, and XC2VP50 Bank Pin Description Pin Number 4 VCCO_4 AD15 4 VCCO_4 AJ10 4 VCCO_4 AK15 4 VCCO_4 AM6 5 VCCO_5 AC18 5 VCCO_5 AC19 5 VCCO_5 AC20 5 VCCO_5 AC21 5 VCCO_5 AC22 5 VCCO_5 AD20 5 VCCO_5 AD21 5 VCCO_5 AD22 5 VCCO_5 AD23 5 VCCO_5 AJ25 5 VCCO_5 AK20 5 VCCO_5 AM29 6 VCCO_6 V23 6 VCCO_6 W23 6 VCCO_6 Y23 6 VCCO_6 Y24 6 VCCO_6 Y30 6 VCCO_6 AA23 6 VCCO_6 AA24 6 VCCO_6 AB23 6 VCCO_6 AB24 6 VCCO_6 AC24 6 VCCO_6 AE29 6 VCCO_6 AJ32 7 VCCO_7 F32 7 VCCO_7 K29 7 VCCO_7 M24 7 VCCO_7 N23 7 VCCO_7 N24 7 VCCO_7 P23 7 VCCO_7 P24 7 VCCO_7 R23 7 VCCO_7 R24 7 VCCO_7 R30 DS083 (v4.7) November 5, 2007 Product Specification No Connects XC2VP20 www.xilinx.com XC2VP30 XC2VP40 XC2VP50 Module 4 of 4 118 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 10: FF1152 — XC2VP20, XC2VP30, XC2VP40, and XC2VP50 Bank Pin Description Pin Number 7 VCCO_7 T23 7 VCCO_7 U23 N/A CCLK AE9 N/A PROG_B J26 N/A DONE AE10 N/A M0 AF26 N/A M1 AE26 N/A M2 AE25 N/A TCK J9 N/A TDI H28 N/A TDO H7 N/A TMS K10 N/A PWRDWN_B AF9 N/A HSWAP_EN K25 N/A RSVD G8 N/A VBATT K9 N/A DXP K26 N/A DXN G27 N/A AVCCAUXTX2 N/A No Connects XC2VP20 XC2VP30 B32 NC NC VTTXPAD2 B33 NC NC N/A TXNPAD2 A33 NC NC N/A TXPPAD2 A32 NC NC N/A GNDA2 C30 NC NC N/A RXPPAD2 A31 NC NC N/A RXNPAD2 A30 NC NC N/A VTRXPAD2 B31 NC NC N/A AVCCAUXRX2 B30 NC NC N/A AVCCAUXTX4 B28 N/A VTTXPAD4 B29 N/A TXNPAD4 A29 N/A TXPPAD4 A28 N/A GNDA4 C27 N/A RXPPAD4 A27 N/A RXNPAD4 A26 N/A VTRXPAD4 B27 N/A AVCCAUXRX4 B26 N/A AVCCAUXTX5 B24 NC NC DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP40 XC2VP50 NC Module 4 of 4 119 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 10: FF1152 — XC2VP20, XC2VP30, XC2VP40, and XC2VP50 No Connects Bank Pin Description Pin Number N/A VTTXPAD5 B25 NC NC NC N/A TXNPAD5 A25 NC NC NC N/A TXPPAD5 A24 NC NC NC N/A GNDA5 C23 NC NC NC N/A RXPPAD5 A23 NC NC NC N/A RXNPAD5 A22 NC NC NC N/A VTRXPAD5 B23 NC NC NC N/A AVCCAUXRX5 B22 NC NC NC N/A AVCCAUXTX6 B20 N/A VTTXPAD6 B21 N/A TXNPAD6 A21 N/A TXPPAD6 A20 N/A GNDA6 C20 N/A RXPPAD6 A19 N/A RXNPAD6 A18 N/A VTRXPAD6 B19 N/A AVCCAUXRX6 B18 N/A AVCCAUXTX7 B16 N/A VTTXPAD7 B17 N/A TXNPAD7 A17 N/A TXPPAD7 A16 N/A GNDA7 C15 N/A RXPPAD7 A15 N/A RXNPAD7 A14 N/A VTRXPAD7 B15 N/A AVCCAUXRX7 B14 N/A AVCCAUXTX8 B12 NC NC NC N/A VTTXPAD8 B13 NC NC NC N/A TXNPAD8 A13 NC NC NC N/A TXPPAD8 A12 NC NC NC N/A GNDA8 C12 NC NC NC N/A RXPPAD8 A11 NC NC NC N/A RXNPAD8 A10 NC NC NC N/A VTRXPAD8 B11 NC NC NC N/A AVCCAUXRX8 B10 NC NC NC N/A AVCCAUXTX9 B8 N/A VTTXPAD9 B9 N/A TXNPAD9 A9 DS083 (v4.7) November 5, 2007 Product Specification XC2VP20 XC2VP30 XC2VP40 www.xilinx.com XC2VP50 Module 4 of 4 120 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 10: FF1152 — XC2VP20, XC2VP30, XC2VP40, and XC2VP50 Bank Pin Description Pin Number N/A TXPPAD9 A8 N/A GNDA9 C8 N/A RXPPAD9 A7 N/A RXNPAD9 A6 N/A VTRXPAD9 B7 N/A AVCCAUXRX9 B6 N/A AVCCAUXTX11 N/A No Connects XC2VP20 XC2VP30 B4 NC NC VTTXPAD11 B5 NC NC N/A TXNPAD11 A5 NC NC N/A TXPPAD11 A4 NC NC N/A GNDA11 C5 NC NC N/A RXPPAD11 A3 NC NC N/A RXNPAD11 A2 NC NC N/A VTRXPAD11 B3 NC NC N/A AVCCAUXRX11 B2 NC NC N/A AVCCAUXRX14 AN2 NC NC N/A VTRXPAD14 AN3 NC NC N/A RXNPAD14 AP2 NC NC N/A RXPPAD14 AP3 NC NC N/A GNDA14 AM5 NC NC N/A TXPPAD14 AP4 NC NC N/A TXNPAD14 AP5 NC NC N/A VTTXPAD14 AN5 NC NC N/A AVCCAUXTX14 AN4 NC NC N/A AVCCAUXRX16 AN6 N/A VTRXPAD16 AN7 N/A RXNPAD16 AP6 N/A RXPPAD16 AP7 N/A GNDA16 AM8 N/A TXPPAD16 AP8 N/A TXNPAD16 AP9 N/A VTTXPAD16 AN9 N/A AVCCAUXTX16 AN8 N/A AVCCAUXRX17 AN10 NC NC NC N/A VTRXPAD17 AN11 NC NC NC N/A RXNPAD17 AP10 NC NC NC N/A RXPPAD17 AP11 NC NC NC N/A GNDA17 AM12 NC NC NC DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP40 XC2VP50 Module 4 of 4 121 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 10: FF1152 — XC2VP20, XC2VP30, XC2VP40, and XC2VP50 No Connects Bank Pin Description Pin Number N/A TXPPAD17 AP12 NC NC NC N/A TXNPAD17 AP13 NC NC NC N/A VTTXPAD17 AN13 NC NC NC N/A AVCCAUXTX17 AN12 NC NC NC N/A AVCCAUXRX18 AN14 N/A VTRXPAD18 AN15 N/A RXNPAD18 AP14 N/A RXPPAD18 AP15 N/A GNDA18 AM15 N/A TXPPAD18 AP16 N/A TXNPAD18 AP17 N/A VTTXPAD18 AN17 N/A AVCCAUXTX18 AN16 N/A AVCCAUXRX19 AN18 N/A VTRXPAD19 AN19 N/A RXNPAD19 AP18 N/A RXPPAD19 AP19 N/A GNDA19 AM20 N/A TXPPAD19 AP20 N/A TXNPAD19 AP21 N/A VTTXPAD19 AN21 N/A AVCCAUXTX19 AN20 N/A AVCCAUXRX20 AN22 NC NC NC N/A VTRXPAD20 AN23 NC NC NC N/A RXNPAD20 AP22 NC NC NC N/A RXPPAD20 AP23 NC NC NC N/A GNDA20 AM23 NC NC NC N/A TXPPAD20 AP24 NC NC NC N/A TXNPAD20 AP25 NC NC NC N/A VTTXPAD20 AN25 NC NC NC N/A AVCCAUXTX20 AN24 NC NC NC N/A AVCCAUXRX21 AN26 N/A VTRXPAD21 AN27 N/A RXNPAD21 AP26 N/A RXPPAD21 AP27 N/A GNDA21 AM27 N/A TXPPAD21 AP28 N/A TXNPAD21 AP29 DS083 (v4.7) November 5, 2007 Product Specification XC2VP20 XC2VP30 XC2VP40 www.xilinx.com XC2VP50 Module 4 of 4 122 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 10: FF1152 — XC2VP20, XC2VP30, XC2VP40, and XC2VP50 Bank Pin Description Pin Number N/A VTTXPAD21 AN29 N/A AVCCAUXTX21 AN28 N/A AVCCAUXRX23 N/A No Connects XC2VP20 XC2VP30 AN30 NC NC VTRXPAD23 AN31 NC NC N/A RXNPAD23 AP30 NC NC N/A RXPPAD23 AP31 NC NC N/A GNDA23 AM30 NC NC N/A TXPPAD23 AP32 NC NC N/A TXNPAD23 AP33 NC NC N/A VTTXPAD23 AN33 NC NC N/A AVCCAUXTX23 AN32 NC NC N/A VCCINT L11 N/A VCCINT L24 N/A VCCINT M12 N/A VCCINT M23 N/A VCCINT N13 N/A VCCINT N14 N/A VCCINT N15 N/A VCCINT N16 N/A VCCINT N17 N/A VCCINT N18 N/A VCCINT N19 N/A VCCINT N20 N/A VCCINT N21 N/A VCCINT N22 N/A VCCINT P13 N/A VCCINT P22 N/A VCCINT R13 N/A VCCINT R22 N/A VCCINT T13 N/A VCCINT T22 N/A VCCINT U13 N/A VCCINT U22 N/A VCCINT V13 N/A VCCINT V22 N/A VCCINT W13 N/A VCCINT W22 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP40 XC2VP50 Module 4 of 4 123 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 10: FF1152 — XC2VP20, XC2VP30, XC2VP40, and XC2VP50 Bank Pin Description Pin Number N/A VCCINT Y13 N/A VCCINT Y22 N/A VCCINT AA13 N/A VCCINT AA22 N/A VCCINT AB13 N/A VCCINT AB14 N/A VCCINT AB15 N/A VCCINT AB16 N/A VCCINT AB17 N/A VCCINT AB18 N/A VCCINT AB19 N/A VCCINT AB20 N/A VCCINT AB21 N/A VCCINT AB22 N/A VCCINT AC12 N/A VCCINT AC23 N/A VCCINT AD11 N/A VCCINT AD24 N/A VCCAUX C3 N/A VCCAUX C4 N/A VCCAUX C17 N/A VCCAUX C18 N/A VCCAUX C31 N/A VCCAUX C32 N/A VCCAUX D3 N/A VCCAUX D32 N/A VCCAUX U1 N/A VCCAUX V1 N/A VCCAUX U34 N/A VCCAUX V34 N/A VCCAUX AL3 N/A VCCAUX AL32 N/A VCCAUX AM3 N/A VCCAUX AM4 N/A VCCAUX AM17 N/A VCCAUX AM18 N/A VCCAUX AM31 N/A VCCAUX AM32 DS083 (v4.7) November 5, 2007 Product Specification No Connects XC2VP20 www.xilinx.com XC2VP30 XC2VP40 XC2VP50 Module 4 of 4 124 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 10: FF1152 — XC2VP20, XC2VP30, XC2VP40, and XC2VP50 Bank Pin Description Pin Number N/A GND AF34 N/A GND B34 N/A GND C1 N/A GND C2 N/A GND C10 N/A GND C16 N/A GND C19 N/A GND C25 N/A GND C33 N/A GND C34 N/A GND D4 N/A GND D31 N/A GND E5 N/A GND E12 N/A GND E23 N/A GND E30 N/A GND F6 N/A GND F29 N/A GND G7 N/A GND G28 N/A GND B1 N/A GND H8 N/A GND H12 N/A GND H15 N/A GND H20 N/A GND J1 N/A GND H27 N/A GND AF1 N/A GND K3 N/A GND K32 N/A GND M5 N/A GND M8 N/A GND M27 N/A GND M30 N/A GND P14 N/A GND P15 N/A GND P16 DS083 (v4.7) November 5, 2007 Product Specification No Connects XC2VP20 www.xilinx.com XC2VP30 XC2VP40 XC2VP50 Module 4 of 4 125 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 10: FF1152 — XC2VP20, XC2VP30, XC2VP40, and XC2VP50 Bank Pin Description Pin Number N/A GND P17 N/A GND P18 N/A GND P19 N/A GND P20 N/A GND P21 N/A GND R8 N/A GND R14 N/A GND R15 N/A GND R16 N/A GND R17 N/A GND R18 N/A GND R19 N/A GND R20 N/A GND R21 N/A GND R27 N/A GND T1 N/A GND T14 N/A GND T15 N/A GND T16 N/A GND T17 N/A GND T18 N/A GND T19 N/A GND T20 N/A GND T21 N/A GND T34 N/A GND U14 N/A GND U15 N/A GND U16 N/A GND U17 N/A GND U18 N/A GND U19 N/A GND U20 N/A GND U21 N/A GND V14 N/A GND V15 N/A GND V16 N/A GND V17 N/A GND V18 DS083 (v4.7) November 5, 2007 Product Specification No Connects XC2VP20 www.xilinx.com XC2VP30 XC2VP40 XC2VP50 Module 4 of 4 126 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 10: FF1152 — XC2VP20, XC2VP30, XC2VP40, and XC2VP50 Bank Pin Description Pin Number N/A GND V19 N/A GND V20 N/A GND V21 N/A GND W1 N/A GND W14 N/A GND W15 N/A GND W16 N/A GND W17 N/A GND W18 N/A GND W19 N/A GND W20 N/A GND W21 N/A GND W34 N/A GND Y8 N/A GND Y14 N/A GND Y15 N/A GND Y16 N/A GND Y17 N/A GND Y18 N/A GND Y19 N/A GND Y20 N/A GND Y21 N/A GND Y27 N/A GND AA14 N/A GND AA15 N/A GND AA16 N/A GND AA17 N/A GND AA18 N/A GND AA19 N/A GND AA20 N/A GND AA21 N/A GND AC5 N/A GND AC8 N/A GND AC27 N/A GND AC30 N/A GND AE3 N/A GND AE32 N/A GND H23 DS083 (v4.7) November 5, 2007 Product Specification No Connects XC2VP20 www.xilinx.com XC2VP30 XC2VP40 XC2VP50 Module 4 of 4 127 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 10: FF1152 — XC2VP20, XC2VP30, XC2VP40, and XC2VP50 Bank Pin Description Pin Number N/A GND AG8 N/A GND AG12 N/A GND AG15 N/A GND AG20 N/A GND AG23 N/A GND AG27 N/A GND J34 N/A GND AH7 N/A GND AH28 N/A GND AJ6 N/A GND AJ29 N/A GND AK5 N/A GND AK12 N/A GND AK23 N/A GND AK30 N/A GND AL4 N/A GND AL31 N/A GND AM1 N/A GND AM2 N/A GND AM10 N/A GND AM16 N/A GND AM19 N/A GND AM25 N/A GND AM33 N/A GND AM34 N/A GND AN1 N/A GND AN34 No Connects XC2VP20 XC2VP30 XC2VP40 XC2VP50 Notes: 1. See Table 4 for an explanation of the signals available on this pin. DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 4 of 4 128 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information FF1152 Flip-Chip Fine-Pitch BGA Package Specifications (1.00mm pitch) Figure 6: FF1152 Flip-Chip Fine-Pitch BGA Package Specifications DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 4 of 4 129 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information FF1148 Flip-Chip Fine-Pitch BGA Package As shown in Table 11, XC2VP40 and XC2VP50 Virtex-II Pro devices are available in the FF1148 flip-chip fine-pitch BGA package. Pins in each of these devices are the same, except for the differences shown in the No Connect column. Following this table are the FF1148 Flip-Chip Fine-Pitch BGA Package Specifications (1.00mm pitch). Table 11: FF1148 — XC2VP40 and XC2VP50 No Connects Bank Pin Description Pin Number 0 IO_L01N_0/VRP_0 E25 0 IO_L01P_0/VRN_0 F25 0 IO_L02N_0 J24 0 IO_L02P_0 K24 0 IO_L03N_0 C25 0 IO_L03P_0/VREF_0 D25 0 IO_L05_0/No_Pair G25 0 IO_L06N_0 A25 0 IO_L06P_0 B25 0 IO_L07N_0 G24 0 IO_L07P_0 G23 0 IO_L08N_0 H23 0 IO_L08P_0 H22 0 IO_L09N_0 E24 0 IO_L09P_0/VREF_0 F24 0 IO_L19N_0 C24 0 IO_L19P_0 C23 0 IO_L20N_0 J23 0 IO_L20P_0 K23 0 IO_L21N_0 A24 0 IO_L21P_0 B24 0 IO_L25N_0 E23 0 IO_L25P_0 F23 0 IO_L26N_0 K22 0 IO_L26P_0 L22 0 IO_L27N_0 D23 0 IO_L27P_0/VREF_0 D22 0 IO_L37N_0 A23 0 IO_L37P_0 B23 0 IO_L38N_0 J21 0 IO_L38P_0 J20 0 IO_L39N_0 F22 0 IO_L39P_0 G22 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP40 XC2VP50 Module 4 of 4 130 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 11: FF1148 — XC2VP40 and XC2VP50 No Connects Bank Pin Description Pin Number 0 IO_L43N_0 B22 0 IO_L43P_0 C22 0 IO_L44N_0 K21 0 IO_L44P_0 L21 0 IO_L45N_0 G21 0 IO_L45P_0/VREF_0 H21 0 IO_L46N_0 E21 0 IO_L46P_0 F21 0 IO_L47N_0 K20 0 IO_L47P_0 L20 0 IO_L48N_0 C21 0 IO_L48P_0 D21 0 IO_L49N_0 A21 0 IO_L49P_0 B21 0 IO_L50_0/No_Pair G20 0 IO_L53_0/No_Pair H19 0 IO_L54N_0 E20 0 IO_L54P_0 F20 0 IO_L55N_0 C20 0 IO_L55P_0 D19 0 IO_L56N_0 K19 0 IO_L56P_0 L19 0 IO_L57N_0 A20 0 IO_L57P_0/VREF_0 B20 0 IO_L66N_0 F19 NC 0 IO_L66P_0/VREF_0 G19 NC 0 IO_L67N_0 B19 0 IO_L67P_0 C19 0 IO_L68N_0 H18 0 IO_L68P_0 J18 0 IO_L69N_0 F18 0 IO_L69P_0/VREF_0 G18 0 IO_L73N_0 D18 0 IO_L73P_0 E18 0 IO_L74N_0/GCLK7P K18 0 IO_L74P_0/GCLK6S L18 0 IO_L75N_0/GCLK5P B18 0 IO_L75P_0/GCLK4S C18 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP40 XC2VP50 Module 4 of 4 131 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 11: FF1148 — XC2VP40 and XC2VP50 No Connects Bank Pin Description Pin Number 1 IO_L75N_1/GCLK3P C17 1 IO_L75P_1/GCLK2S B17 1 IO_L74N_1/GCLK1P L17 1 IO_L74P_1/GCLK0S K17 1 IO_L73N_1 E17 1 IO_L73P_1 D17 1 IO_L69N_1/VREF_1 G17 1 IO_L69P_1 F17 1 IO_L68N_1 J17 1 IO_L68P_1 H17 1 IO_L67N_1 C16 1 IO_L67P_1 B16 1 IO_L66N_1/VREF_1 G16 NC 1 IO_L66P_1 F16 NC 1 IO_L57N_1/VREF_1 B15 1 IO_L57P_1 A15 1 IO_L56N_1 L16 1 IO_L56P_1 K16 1 IO_L55N_1 D16 1 IO_L55P_1 C15 1 IO_L54N_1 F15 1 IO_L54P_1 E15 1 IO_L53_1/No_Pair H16 1 IO_L50_1/No_Pair G15 1 IO_L49N_1 B14 1 IO_L49P_1 A14 1 IO_L48N_1 D14 1 IO_L48P_1 C14 1 IO_L47N_1 L15 1 IO_L47P_1 K15 1 IO_L46N_1 F14 1 IO_L46P_1 E14 1 IO_L45N_1/VREF_1 H14 1 IO_L45P_1 G14 1 IO_L44N_1 L14 1 IO_L44P_1 K14 1 IO_L43N_1 C13 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP40 XC2VP50 Module 4 of 4 132 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 11: FF1148 — XC2VP40 and XC2VP50 No Connects Bank Pin Description Pin Number 1 IO_L43P_1 B13 1 IO_L39N_1 G13 1 IO_L39P_1 F13 1 IO_L38N_1 J15 1 IO_L38P_1 J14 1 IO_L37N_1 B12 1 IO_L37P_1 A12 1 IO_L27N_1/VREF_1 D13 1 IO_L27P_1 D12 1 IO_L26N_1 L13 1 IO_L26P_1 K13 1 IO_L25N_1 F12 1 IO_L25P_1 E12 1 IO_L21N_1 B11 1 IO_L21P_1 A11 1 IO_L20N_1 K12 1 IO_L20P_1 J12 1 IO_L19N_1 C12 1 IO_L19P_1 C11 1 IO_L09N_1/VREF_1 F11 1 IO_L09P_1 E11 1 IO_L08N_1 H13 1 IO_L08P_1 H12 1 IO_L07N_1 G12 1 IO_L07P_1 G11 1 IO_L06N_1 B10 1 IO_L06P_1 A10 1 IO_L05_1/No_Pair G10 1 IO_L03N_1/VREF_1 D10 1 IO_L03P_1 C10 1 IO_L02N_1 K11 1 IO_L02P_1 J11 1 IO_L01N_1/VRP_1 F10 1 IO_L01P_1/VRN_1 E10 2 IO_L01N_2/VRP_2 B8 2 IO_L01P_2/VRN_2 B9 2 IO_L02N_2 C9 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP40 XC2VP50 Module 4 of 4 133 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 11: FF1148 — XC2VP40 and XC2VP50 No Connects Bank Pin Description Pin Number 2 IO_L02P_2 D9 2 IO_L03N_2 B7 2 IO_L03P_2 A7 2 IO_L04N_2/VREF_2 B6 2 IO_L04P_2 A6 2 IO_L05N_2 E8 2 IO_L05P_2 D8 2 IO_L06N_2 B4 2 IO_L06P_2 A4 2 IO_L07N_2 B3 2 IO_L07P_2 A3 2 IO_L08N_2 H7 2 IO_L08P_2 H8 2 IO_L09N_2 C6 2 IO_L09P_2 C7 2 IO_L10N_2/VREF_2 C5 2 IO_L10P_2 B5 2 IO_L11N_2 K8 2 IO_L11P_2 J8 2 IO_L12N_2 C1 2 IO_L12P_2 C2 2 IO_L13N_2 E7 2 IO_L13P_2 D7 2 IO_L14N_2 J6 2 IO_L14P_2 J7 2 IO_L15N_2 D5 2 IO_L15P_2 D6 2 IO_L16N_2/VREF_2 E4 2 IO_L16P_2 D4 2 IO_L17N_2 L9 2 IO_L17P_2 K9 2 IO_L18N_2 E3 2 IO_L18P_2 D3 2 IO_L19N_2 D1 2 IO_L19P_2 D2 2 IO_L20N_2 K7 2 IO_L20P_2 L7 2 IO_L21N_2 F6 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP40 XC2VP50 Module 4 of 4 134 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 11: FF1148 — XC2VP40 and XC2VP50 No Connects Bank Pin Description Pin Number 2 IO_L21P_2 E6 2 IO_L22N_2/VREF_2 F7 2 IO_L22P_2 F8 2 IO_L23N_2 M10 2 IO_L23P_2 L10 2 IO_L24N_2 G5 2 IO_L24P_2 F5 2 IO_L25N_2 F3 2 IO_L25P_2 F4 2 IO_L26N_2 M8 2 IO_L26P_2 M9 2 IO_L27N_2 F1 2 IO_L27P_2 F2 2 IO_L28N_2/VREF_2 G6 2 IO_L28P_2 G7 2 IO_L29N_2 M7 2 IO_L29P_2 N8 2 IO_L30N_2 G3 2 IO_L30P_2 H4 2 IO_L31N_2 G1 2 IO_L31P_2 G2 2 IO_L32N_2 N10 2 IO_L32P_2 N11 2 IO_L33N_2 H5 2 IO_L33P_2 H6 2 IO_L34N_2/VREF_2 H2 2 IO_L34P_2 H3 2 IO_L35N_2 N6 2 IO_L35P_2 N7 2 IO_L36N_2 K4 2 IO_L36P_2 J4 2 IO_L37N_2 J2 2 IO_L37P_2 J3 2 IO_L38N_2 P10 2 IO_L38P_2 P11 2 IO_L39N_2 K5 2 IO_L39P_2 K6 2 IO_L40N_2/VREF_2 L3 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP40 XC2VP50 Module 4 of 4 135 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 11: FF1148 — XC2VP40 and XC2VP50 No Connects Bank Pin Description Pin Number 2 IO_L40P_2 K3 2 IO_L41N_2 R9 2 IO_L41P_2 P9 2 IO_L42N_2 K1 2 IO_L42P_2 K2 2 IO_L43N_2 L5 2 IO_L43P_2 L6 2 IO_L44N_2 P7 2 IO_L44P_2 P8 2 IO_L45N_2 L1 2 IO_L45P_2 L2 2 IO_L46N_2/VREF_2 M5 2 IO_L46P_2 M6 2 IO_L47N_2 R10 2 IO_L47P_2 R11 2 IO_L48N_2 M3 2 IO_L48P_2 M4 2 IO_L49N_2 M1 2 IO_L49P_2 M2 2 IO_L50N_2 R7 2 IO_L50P_2 T8 2 IO_L51N_2 P4 2 IO_L51P_2 N4 2 IO_L52N_2/VREF_2 N2 2 IO_L52P_2 N3 2 IO_L53N_2 T10 2 IO_L53P_2 T11 2 IO_L54N_2 P5 2 IO_L54P_2 P6 2 IO_L55N_2 R3 2 IO_L55P_2 P3 2 IO_L56N_2 T6 2 IO_L56P_2 T7 2 IO_L57N_2 P1 2 IO_L57P_2 P2 2 IO_L58N_2/VREF_2 R5 2 IO_L58P_2 R6 2 IO_L59N_2 U10 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP40 XC2VP50 Module 4 of 4 136 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 11: FF1148 — XC2VP40 and XC2VP50 No Connects Bank Pin Description Pin Number 2 IO_L59P_2 U11 2 IO_L60N_2 R1 2 IO_L60P_2 R2 2 IO_L85N_2 T3 2 IO_L85P_2 T4 2 IO_L86N_2 U8 2 IO_L86P_2 U9 2 IO_L87N_2 U2 2 IO_L87P_2 T2 2 IO_L88N_2/VREF_2 U4 2 IO_L88P_2 U5 2 IO_L89N_2 U6 2 IO_L89P_2 U7 2 IO_L90N_2 V3 2 IO_L90P_2 U3 3 IO_L90N_3 V6 3 IO_L90P_3 V7 3 IO_L89N_3 V10 3 IO_L89P_3 V11 3 IO_L88N_3 V4 3 IO_L88P_3 V5 3 IO_L87N_3/VREF_3 V2 3 IO_L87P_3 W2 3 IO_L86N_3 V8 3 IO_L86P_3 V9 3 IO_L85N_3 W6 3 IO_L85P_3 W7 3 IO_L60N_3 W3 3 IO_L60P_3 W4 3 IO_L59N_3 W10 3 IO_L59P_3 W11 3 IO_L58N_3 Y5 3 IO_L58P_3 Y6 3 IO_L57N_3/VREF_3 Y3 3 IO_L57P_3 AA3 3 IO_L56N_3 W8 3 IO_L56P_3 Y7 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP40 XC2VP50 Module 4 of 4 137 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 11: FF1148 — XC2VP40 and XC2VP50 No Connects Bank Pin Description Pin Number 3 IO_L55N_3 Y1 3 IO_L55P_3 Y2 3 IO_L54N_3 AA5 3 IO_L54P_3 AA6 3 IO_L53N_3 Y10 3 IO_L53P_3 Y11 3 IO_L52N_3 AA4 3 IO_L52P_3 AB4 3 IO_L51N_3/VREF_3 AA1 3 IO_L51P_3 AA2 3 IO_L50N_3 Y9 3 IO_L50P_3 AA9 3 IO_L49N_3 AB6 3 IO_L49P_3 AB7 3 IO_L48N_3 AB2 3 IO_L48P_3 AB3 3 IO_L47N_3 AA10 3 IO_L47P_3 AA11 3 IO_L46N_3 AC5 3 IO_L46P_3 AC6 3 IO_L45N_3/VREF_3 AC3 3 IO_L45P_3 AC4 3 IO_L44N_3 AA7 3 IO_L44P_3 AA8 3 IO_L43N_3 AC1 3 IO_L43P_3 AC2 3 IO_L42N_3 AD5 3 IO_L42P_3 AD6 3 IO_L41N_3 AB10 3 IO_L41P_3 AB11 3 IO_L40N_3 AD3 3 IO_L40P_3 AE3 3 IO_L39N_3/VREF_3 AD1 3 IO_L39P_3 AD2 3 IO_L38N_3 AB8 3 IO_L38P_3 AC7 3 IO_L37N_3 AE5 3 IO_L37P_3 AE6 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP40 XC2VP50 Module 4 of 4 138 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 11: FF1148 — XC2VP40 and XC2VP50 No Connects Bank Pin Description Pin Number 3 IO_L36N_3 AE4 3 IO_L36P_3 AF4 3 IO_L35N_3 AC10 3 IO_L35P_3 AD10 3 IO_L34N_3 AE1 3 IO_L34P_3 AE2 3 IO_L33N_3/VREF_3 AF6 3 IO_L33P_3 AF7 3 IO_L32N_3 AC8 3 IO_L32P_3 AC9 3 IO_L31N_3 AF2 3 IO_L31P_3 AF3 3 IO_L30N_3 AG5 3 IO_L30P_3 AG6 3 IO_L29N_3 AD9 3 IO_L29P_3 AE9 3 IO_L28N_3 AG4 3 IO_L28P_3 AH3 3 IO_L27N_3/VREF_3 AG2 3 IO_L27P_3 AG3 3 IO_L26N_3 AD7 3 IO_L26P_3 AE7 3 IO_L25N_3 AH6 3 IO_L25P_3 AH7 3 IO_L24N_3 AH5 3 IO_L24P_3 AJ5 3 IO_L23N_3 AE8 3 IO_L23P_3 AF8 3 IO_L22N_3 AH1 3 IO_L22P_3 AH2 3 IO_L21N_3/VREF_3 AJ6 3 IO_L21P_3 AK6 3 IO_L20N_3 AG7 3 IO_L20P_3 AG8 3 IO_L19N_3 AJ3 3 IO_L19P_3 AJ4 3 IO_L18N_3 AJ1 3 IO_L18P_3 AJ2 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP40 XC2VP50 Module 4 of 4 139 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 11: FF1148 — XC2VP40 and XC2VP50 No Connects Bank Pin Description Pin Number 3 IO_L17N_3 AH9 3 IO_L17P_3 AJ9 3 IO_L16N_3 AK7 3 IO_L16P_3 AL7 3 IO_L15N_3/VREF_3 AK4 3 IO_L15P_3 AL4 3 IO_L14N_3 AJ7 3 IO_L14P_3 AJ8 3 IO_L13N_3 AK3 3 IO_L13P_3 AL3 3 IO_L12N_3 AL5 3 IO_L12P_3 AL6 3 IO_L11N_3 AK8 3 IO_L11P_3 AL8 3 IO_L10N_3 AL1 3 IO_L10P_3 AL2 3 IO_L09N_3/VREF_3 AM6 3 IO_L09P_3 AM7 3 IO_L08N_3 AL9 3 IO_L08P_3 AM9 3 IO_L07N_3 AM5 3 IO_L07P_3 AN5 3 IO_L06N_3 AM1 3 IO_L06P_3 AM2 3 IO_L05N_3 AN8 3 IO_L05P_3 AN9 3 IO_L04N_3 AN6 3 IO_L04P_3 AP6 3 IO_L03N_3/VREF_3 AN4 3 IO_L03P_3 AP4 3 IO_L02N_3 AN7 3 IO_L02P_3 AP7 3 IO_L01N_3/VRP_3 AN3 3 IO_L01P_3/VRN_3 AP3 4 IO_L01N_4/BUSY/DOUT (1) AK10 4 IO_L01P_4/INIT_B AJ10 4 IO_L02N_4/D0/DIN (1) AF11 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP40 XC2VP50 Module 4 of 4 140 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 11: FF1148 — XC2VP40 and XC2VP50 No Connects Bank Pin Description Pin Number 4 IO_L02P_4/D1 AE11 4 IO_L03N_4/D2 AM10 4 IO_L03P_4/D3 AL10 4 IO_L05_4/No_Pair AH10 4 IO_L06N_4/VRP_4 AP10 4 IO_L06P_4/VRN_4 AN10 4 IO_L07N_4 AH11 4 IO_L07P_4/VREF_4 AH12 4 IO_L08N_4 AG12 4 IO_L08P_4 AG13 4 IO_L09N_4 AK11 4 IO_L09P_4/VREF_4 AJ11 4 IO_L19N_4 AM11 4 IO_L19P_4 AM12 4 IO_L20N_4 AF12 4 IO_L20P_4 AE12 4 IO_L21N_4 AP11 4 IO_L21P_4 AN11 4 IO_L25N_4 AK12 4 IO_L25P_4 AJ12 4 IO_L26N_4 AE13 4 IO_L26P_4 AD13 4 IO_L27N_4 AL12 4 IO_L27P_4/VREF_4 AL13 4 IO_L37N_4 AP12 4 IO_L37P_4 AN12 4 IO_L38N_4 AF14 4 IO_L38P_4 AF15 4 IO_L39N_4 AJ13 4 IO_L39P_4 AH13 4 IO_L43N_4 AN13 4 IO_L43P_4 AM13 4 IO_L44N_4 AE14 4 IO_L44P_4 AD14 4 IO_L45N_4 AH14 4 IO_L45P_4/VREF_4 AG14 4 IO_L46N_4 AK14 4 IO_L46P_4 AJ14 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP40 XC2VP50 Module 4 of 4 141 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 11: FF1148 — XC2VP40 and XC2VP50 No Connects Bank Pin Description Pin Number 4 IO_L47N_4 AE15 4 IO_L47P_4 AD15 4 IO_L48N_4 AM14 4 IO_L48P_4 AL14 4 IO_L49N_4 AP14 4 IO_L49P_4 AN14 4 IO_L50_4/No_Pair AH15 4 IO_L53_4/No_Pair AG16 4 IO_L54N_4 AK15 4 IO_L54P_4 AJ15 4 IO_L55N_4 AM15 4 IO_L55P_4 AL16 4 IO_L56N_4 AE16 4 IO_L56P_4 AD16 4 IO_L57N_4 AP15 4 IO_L57P_4/VREF_4 AN15 4 IO_L66N_4 AJ16 NC 4 IO_L66P_4/VREF_4 AH16 NC 4 IO_L67N_4 AN16 4 IO_L67P_4 AM16 4 IO_L68N_4 AG17 4 IO_L68P_4 AF17 4 IO_L69N_4 AJ17 4 IO_L69P_4/VREF_4 AH17 4 IO_L73N_4 AL17 4 IO_L73P_4 AK17 4 IO_L74N_4/GCLK3S AE17 4 IO_L74P_4/GCLK2P AD17 4 IO_L75N_4/GCLK1S AN17 4 IO_L75P_4/GCLK0P AM17 5 IO_L75N_5/GCLK7S AM18 5 IO_L75P_5/GCLK6P AN18 5 IO_L74N_5/GCLK5S AD18 5 IO_L74P_5/GCLK4P AE18 5 IO_L73N_5 AK18 5 IO_L73P_5 AL18 5 IO_L69N_5/VREF_5 AH18 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP40 XC2VP50 Module 4 of 4 142 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 11: FF1148 — XC2VP40 and XC2VP50 No Connects Bank Pin Description Pin Number 5 IO_L69P_5 AJ18 5 IO_L68N_5 AF18 5 IO_L68P_5 AG18 5 IO_L67N_5 AM19 5 IO_L67P_5 AN19 5 IO_L66N_5/VREF_5 AH19 NC 5 IO_L66P_5 AJ19 NC 5 IO_L57N_5/VREF_5 AN20 5 IO_L57P_5 AP20 5 IO_L56N_5 AD19 5 IO_L56P_5 AE19 5 IO_L55N_5 AL19 5 IO_L55P_5 AM20 5 IO_L54N_5 AJ20 5 IO_L54P_5 AK20 5 IO_L53_5/No_Pair AG19 5 IO_L50_5/No_Pair AH20 5 IO_L49N_5 AN21 5 IO_L49P_5 AP21 5 IO_L48N_5 AL21 5 IO_L48P_5 AM21 5 IO_L47N_5 AD20 5 IO_L47P_5 AE20 5 IO_L46N_5 AJ21 5 IO_L46P_5 AK21 5 IO_L45N_5/VREF_5 AG21 5 IO_L45P_5 AH21 5 IO_L44N_5 AD21 5 IO_L44P_5 AE21 5 IO_L43N_5 AM22 5 IO_L43P_5 AN22 5 IO_L39N_5 AH22 5 IO_L39P_5 AJ22 5 IO_L38N_5 AF20 5 IO_L38P_5 AF21 5 IO_L37N_5 AN23 5 IO_L37P_5 AP23 5 IO_L27N_5/VREF_5 AL22 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP40 XC2VP50 Module 4 of 4 143 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 11: FF1148 — XC2VP40 and XC2VP50 No Connects Bank Pin Description Pin Number 5 IO_L27P_5 AL23 5 IO_L26N_5 AD22 5 IO_L26P_5 AE22 5 IO_L25N_5 AJ23 5 IO_L25P_5 AK23 5 IO_L21N_5 AN24 5 IO_L21P_5 AP24 5 IO_L20N_5 AE23 5 IO_L20P_5 AF23 5 IO_L19N_5 AM23 5 IO_L19P_5 AM24 5 IO_L09N_5/VREF_5 AJ24 5 IO_L09P_5 AK24 5 IO_L08N_5 AG22 5 IO_L08P_5 AG23 5 IO_L07N_5/VREF_5 AH23 5 IO_L07P_5 AH24 5 IO_L06N_5/VRP_5 AN25 5 IO_L06P_5/VRN_5 AP25 5 IO_L05_5/No_Pair AH25 5 IO_L03N_5/D4 AL25 5 IO_L03P_5/D5 AM25 5 IO_L02N_5/D6 AE24 5 IO_L02P_5/D7 AF24 5 IO_L01N_5/RDWR_B AJ25 5 IO_L01P_5/CS_B AK25 6 IO_L01P_6/VRN_6 AP32 6 IO_L01N_6/VRP_6 AN32 6 IO_L02P_6 AP28 6 IO_L02N_6 AN28 6 IO_L03P_6 AP31 6 IO_L03N_6/VREF_6 AN31 6 IO_L04P_6 AP29 6 IO_L04N_6 AN29 6 IO_L05P_6 AN26 6 IO_L05N_6 AN27 6 IO_L06P_6 AM33 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP40 XC2VP50 Module 4 of 4 144 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 11: FF1148 — XC2VP40 and XC2VP50 No Connects Bank Pin Description Pin Number 6 IO_L06N_6 AM34 6 IO_L07P_6 AN30 6 IO_L07N_6 AM30 6 IO_L08P_6 AM26 6 IO_L08N_6 AL26 6 IO_L09P_6 AM28 6 IO_L09N_6/VREF_6 AM29 6 IO_L10P_6 AL33 6 IO_L10N_6 AL34 6 IO_L11P_6 AL27 6 IO_L11N_6 AK27 6 IO_L12P_6 AL29 6 IO_L12N_6 AL30 6 IO_L13P_6 AL32 6 IO_L13N_6 AK32 6 IO_L14P_6 AJ27 6 IO_L14N_6 AJ28 6 IO_L15P_6 AL31 6 IO_L15N_6/VREF_6 AK31 6 IO_L16P_6 AL28 6 IO_L16N_6 AK28 6 IO_L17P_6 AJ26 6 IO_L17N_6 AH26 6 IO_L18P_6 AJ33 6 IO_L18N_6 AJ34 6 IO_L19P_6 AJ31 6 IO_L19N_6 AJ32 6 IO_L20P_6 AG27 6 IO_L20N_6 AG28 6 IO_L21P_6 AK29 6 IO_L21N_6/VREF_6 AJ29 6 IO_L22P_6 AH33 6 IO_L22N_6 AH34 6 IO_L23P_6 AF27 6 IO_L23N_6 AE27 6 IO_L24P_6 AJ30 6 IO_L24N_6 AH30 6 IO_L25P_6 AH28 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP40 XC2VP50 Module 4 of 4 145 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 11: FF1148 — XC2VP40 and XC2VP50 No Connects Bank Pin Description Pin Number 6 IO_L25N_6 AH29 6 IO_L26P_6 AE28 6 IO_L26N_6 AD28 6 IO_L27P_6 AG32 6 IO_L27N_6/VREF_6 AG33 6 IO_L28P_6 AH32 6 IO_L28N_6 AG31 6 IO_L29P_6 AE26 6 IO_L29N_6 AD26 6 IO_L30P_6 AG29 6 IO_L30N_6 AG30 6 IO_L31P_6 AF32 6 IO_L31N_6 AF33 6 IO_L32P_6 AC26 6 IO_L32N_6 AC27 6 IO_L33P_6 AF28 6 IO_L33N_6/VREF_6 AF29 6 IO_L34P_6 AE33 6 IO_L34N_6 AE34 6 IO_L35P_6 AD25 6 IO_L35N_6 AC25 6 IO_L36P_6 AF31 6 IO_L36N_6 AE31 6 IO_L37P_6 AE29 6 IO_L37N_6 AE30 6 IO_L38P_6 AC28 6 IO_L38N_6 AB27 6 IO_L39P_6 AD33 6 IO_L39N_6/VREF_6 AD34 6 IO_L40P_6 AE32 6 IO_L40N_6 AD32 6 IO_L41P_6 AB24 6 IO_L41N_6 AB25 6 IO_L42P_6 AD29 6 IO_L42N_6 AD30 6 IO_L43P_6 AC33 6 IO_L43N_6 AC34 6 IO_L44P_6 AA27 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP40 XC2VP50 Module 4 of 4 146 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 11: FF1148 — XC2VP40 and XC2VP50 No Connects Bank Pin Description Pin Number 6 IO_L44N_6 AA28 6 IO_L45P_6 AC31 6 IO_L45N_6/VREF_6 AC32 6 IO_L46P_6 AC29 6 IO_L46N_6 AC30 6 IO_L47P_6 AA24 6 IO_L47N_6 AA25 6 IO_L48P_6 AB32 6 IO_L48N_6 AB33 6 IO_L49P_6 AB28 6 IO_L49N_6 AB29 6 IO_L50P_6 AA26 6 IO_L50N_6 Y26 6 IO_L51P_6 AA33 6 IO_L51N_6/VREF_6 AA34 6 IO_L52P_6 AB31 6 IO_L52N_6 AA31 6 IO_L53P_6 Y24 6 IO_L53N_6 Y25 6 IO_L54P_6 AA29 6 IO_L54N_6 AA30 6 IO_L55P_6 Y33 6 IO_L55N_6 Y34 6 IO_L56P_6 Y28 6 IO_L56N_6 W27 6 IO_L57P_6 AA32 6 IO_L57N_6/VREF_6 Y32 6 IO_L58P_6 Y29 6 IO_L58N_6 Y30 6 IO_L59P_6 W24 6 IO_L59N_6 W25 6 IO_L60P_6 W31 6 IO_L60N_6 W32 6 IO_L85P_6 W28 6 IO_L85N_6 W29 6 IO_L86P_6 V26 6 IO_L86N_6 V27 6 IO_L87P_6 W33 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP40 XC2VP50 Module 4 of 4 147 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 11: FF1148 — XC2VP40 and XC2VP50 No Connects Bank Pin Description Pin Number 6 IO_L87N_6/VREF_6 V33 6 IO_L88P_6 V30 6 IO_L88N_6 V31 6 IO_L89P_6 V24 6 IO_L89N_6 V25 6 IO_L90P_6 V28 6 IO_L90N_6 V29 7 IO_L90P_7 U32 7 IO_L90N_7 V32 7 IO_L89P_7 U28 7 IO_L89N_7 U29 7 IO_L88P_7 U30 7 IO_L88N_7/VREF_7 U31 7 IO_L87P_7 T33 7 IO_L87N_7 U33 7 IO_L86P_7 U26 7 IO_L86N_7 U27 7 IO_L85P_7 T31 7 IO_L85N_7 T32 7 IO_L60P_7 R33 7 IO_L60N_7 R34 7 IO_L59P_7 U24 7 IO_L59N_7 U25 7 IO_L58P_7 R29 7 IO_L58N_7/VREF_7 R30 7 IO_L57P_7 P33 7 IO_L57N_7 P34 7 IO_L56P_7 T28 7 IO_L56N_7 T29 7 IO_L55P_7 P32 7 IO_L55N_7 R32 7 IO_L54P_7 P29 7 IO_L54N_7 P30 7 IO_L53P_7 T24 7 IO_L53N_7 T25 7 IO_L52P_7 N32 7 IO_L52N_7/VREF_7 N33 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP40 XC2VP50 Module 4 of 4 148 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 11: FF1148 — XC2VP40 and XC2VP50 No Connects Bank Pin Description Pin Number 7 IO_L51P_7 N31 7 IO_L51N_7 P31 7 IO_L50P_7 T27 7 IO_L50N_7 R28 7 IO_L49P_7 M33 7 IO_L49N_7 M34 7 IO_L48P_7 M31 7 IO_L48N_7 M32 7 IO_L47P_7 R24 7 IO_L47N_7 R25 7 IO_L46P_7 M29 7 IO_L46N_7/VREF_7 M30 7 IO_L45P_7 L33 7 IO_L45N_7 L34 7 IO_L44P_7 P27 7 IO_L44N_7 P28 7 IO_L43P_7 L29 7 IO_L43N_7 L30 7 IO_L42P_7 K33 7 IO_L42N_7 K34 7 IO_L41P_7 P26 7 IO_L41N_7 R26 7 IO_L40P_7 K32 7 IO_L40N_7/VREF_7 L32 7 IO_L39P_7 K29 7 IO_L39N_7 K30 7 IO_L38P_7 P24 7 IO_L38N_7 P25 7 IO_L37P_7 J32 7 IO_L37N_7 J33 7 IO_L36P_7 J31 7 IO_L36N_7 K31 7 IO_L35P_7 N28 7 IO_L35N_7 N29 7 IO_L34P_7 H32 7 IO_L34N_7/VREF_7 H33 7 IO_L33P_7 H29 7 IO_L33N_7 H30 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP40 XC2VP50 Module 4 of 4 149 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 11: FF1148 — XC2VP40 and XC2VP50 No Connects Bank Pin Description Pin Number 7 IO_L32P_7 N24 7 IO_L32N_7 N25 7 IO_L31P_7 G33 7 IO_L31N_7 G34 7 IO_L30P_7 H31 7 IO_L30N_7 G32 7 IO_L29P_7 N27 7 IO_L29N_7 M28 7 IO_L28P_7 G28 7 IO_L28N_7/VREF_7 G29 7 IO_L27P_7 F33 7 IO_L27N_7 F34 7 IO_L26P_7 M26 7 IO_L26N_7 M27 7 IO_L25P_7 F31 7 IO_L25N_7 F32 7 IO_L24P_7 F30 7 IO_L24N_7 G30 7 IO_L23P_7 L25 7 IO_L23N_7 M25 7 IO_L22P_7 F27 7 IO_L22N_7/VREF_7 F28 7 IO_L21P_7 E29 7 IO_L21N_7 F29 7 IO_L20P_7 L28 7 IO_L20N_7 K28 7 IO_L19P_7 D33 7 IO_L19N_7 D34 7 IO_L18P_7 D32 7 IO_L18N_7 E32 7 IO_L17P_7 K26 7 IO_L17N_7 L26 7 IO_L16P_7 D31 7 IO_L16N_7/VREF_7 E31 7 IO_L15P_7 D29 7 IO_L15N_7 D30 7 IO_L14P_7 J28 7 IO_L14N_7 J29 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP40 XC2VP50 Module 4 of 4 150 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 11: FF1148 — XC2VP40 and XC2VP50 No Connects Bank Pin Description Pin Number 7 IO_L13P_7 D28 7 IO_L13N_7 E28 7 IO_L12P_7 C33 7 IO_L12N_7 C34 7 IO_L11P_7 J27 7 IO_L11N_7 K27 7 IO_L10P_7 B30 7 IO_L10N_7/VREF_7 C30 7 IO_L09P_7 C28 7 IO_L09N_7 C29 7 IO_L08P_7 H27 7 IO_L08N_7 H28 7 IO_L07P_7 A32 7 IO_L07N_7 B32 7 IO_L06P_7 A31 7 IO_L06N_7 B31 7 IO_L05P_7 D27 7 IO_L05N_7 E27 7 IO_L04P_7 A29 7 IO_L04N_7/VREF_7 B29 7 IO_L03P_7 A28 7 IO_L03N_7 B28 7 IO_L02P_7 D26 7 IO_L02N_7 C26 7 IO_L01P_7/VRN_7 B26 7 IO_L01N_7/VRP_7 B27 7 VCCO_7 E33 7 VCCO_7 R31 7 VCCO_7 L31 7 VCCO_7 G31 7 VCCO_7 C31 7 VCCO_7 R27 7 VCCO_7 L27 7 VCCO_7 G27 7 VCCO_7 C27 7 VCCO_7 J26 7 VCCO_7 M24 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP40 XC2VP50 Module 4 of 4 151 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 11: FF1148 — XC2VP40 and XC2VP50 No Connects Bank Pin Description Pin Number 7 VCCO_7 U23 7 VCCO_7 T23 7 VCCO_7 R23 7 VCCO_7 P23 7 VCCO_7 N23 6 VCCO_6 AK33 6 VCCO_6 AM31 6 VCCO_6 AH31 6 VCCO_6 AD31 6 VCCO_6 Y31 6 VCCO_6 AM27 6 VCCO_6 AH27 6 VCCO_6 AD27 6 VCCO_6 Y27 6 VCCO_6 AF26 6 VCCO_6 AC24 6 VCCO_6 AB23 6 VCCO_6 AA23 6 VCCO_6 Y23 6 VCCO_6 W23 6 VCCO_6 V23 5 VCCO_5 AL24 5 VCCO_5 AG24 5 VCCO_5 AD23 5 VCCO_5 AC22 5 VCCO_5 AC21 5 VCCO_5 AL20 5 VCCO_5 AG20 5 VCCO_5 AC20 5 VCCO_5 AC19 5 VCCO_5 AC18 4 VCCO_4 AC17 4 VCCO_4 AC16 4 VCCO_4 AL15 4 VCCO_4 AG15 4 VCCO_4 AC15 4 VCCO_4 AC14 4 VCCO_4 AC13 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP40 XC2VP50 Module 4 of 4 152 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 11: FF1148 — XC2VP40 and XC2VP50 No Connects Bank Pin Description Pin Number 4 VCCO_4 AD12 4 VCCO_4 AL11 4 VCCO_4 AG11 3 VCCO_3 AB12 3 VCCO_3 AA12 3 VCCO_3 Y12 3 VCCO_3 W12 3 VCCO_3 V12 3 VCCO_3 AC11 3 VCCO_3 AF9 3 VCCO_3 AM8 3 VCCO_3 AH8 3 VCCO_3 AD8 3 VCCO_3 Y8 3 VCCO_3 AM4 3 VCCO_3 AH4 3 VCCO_3 AD4 3 VCCO_3 Y4 3 VCCO_3 AK2 2 VCCO_2 U12 2 VCCO_2 T12 2 VCCO_2 R12 2 VCCO_2 P12 2 VCCO_2 N12 2 VCCO_2 M11 2 VCCO_2 J9 2 VCCO_2 R8 2 VCCO_2 L8 2 VCCO_2 G8 2 VCCO_2 C8 2 VCCO_2 R4 2 VCCO_2 L4 2 VCCO_2 G4 2 VCCO_2 C4 2 VCCO_2 E2 1 VCCO_1 M17 1 VCCO_1 M16 1 VCCO_1 M15 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP40 XC2VP50 Module 4 of 4 153 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 11: FF1148 — XC2VP40 and XC2VP50 No Connects Bank Pin Description Pin Number 1 VCCO_1 H15 1 VCCO_1 D15 1 VCCO_1 M14 1 VCCO_1 M13 1 VCCO_1 L12 1 VCCO_1 H11 1 VCCO_1 D11 0 VCCO_0 H24 0 VCCO_0 D24 0 VCCO_0 L23 0 VCCO_0 M22 0 VCCO_0 M21 0 VCCO_0 M20 0 VCCO_0 H20 0 VCCO_0 D20 0 VCCO_0 M19 0 VCCO_0 M18 N/A CCLK AG9 N/A PROG_B G26 N/A DONE AF10 N/A M0 AG25 N/A M1 AG26 N/A M2 AF25 N/A TCK G9 N/A TDI F26 N/A TDO F9 N/A TMS H10 N/A PWRDWN_B AG10 N/A HSWAP_EN H25 N/A RSVD H9 N/A VBATT J10 N/A DXP J25 N/A DXN H26 N/A VCCINT AD24 N/A VCCINT L24 N/A VCCINT AC23 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP40 XC2VP50 Module 4 of 4 154 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 11: FF1148 — XC2VP40 and XC2VP50 No Connects Bank Pin Description Pin Number N/A VCCINT M23 N/A VCCINT AB22 N/A VCCINT AA22 N/A VCCINT Y22 N/A VCCINT W22 N/A VCCINT V22 N/A VCCINT U22 N/A VCCINT T22 N/A VCCINT R22 N/A VCCINT P22 N/A VCCINT N22 N/A VCCINT AB21 N/A VCCINT N21 N/A VCCINT AB20 N/A VCCINT N20 N/A VCCINT AB19 N/A VCCINT N19 N/A VCCINT AB18 N/A VCCINT N18 N/A VCCINT AB17 N/A VCCINT N17 N/A VCCINT AB16 N/A VCCINT N16 N/A VCCINT AB15 N/A VCCINT N15 N/A VCCINT AB14 N/A VCCINT N14 N/A VCCINT AB13 N/A VCCINT AA13 N/A VCCINT Y13 N/A VCCINT W13 N/A VCCINT V13 N/A VCCINT U13 N/A VCCINT T13 N/A VCCINT R13 N/A VCCINT P13 N/A VCCINT N13 N/A VCCINT AC12 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP40 XC2VP50 Module 4 of 4 155 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 11: FF1148 — XC2VP40 and XC2VP50 No Connects Bank Pin Description Pin Number N/A VCCINT M12 N/A VCCINT AD11 N/A VCCINT L11 N/A VCCAUX AN34 N/A VCCAUX AG34 N/A VCCAUX U34 N/A VCCAUX H34 N/A VCCAUX B34 N/A VCCAUX AP33 N/A VCCAUX A33 N/A VCCAUX AP27 N/A VCCAUX A27 N/A VCCAUX AP17 N/A VCCAUX A17 N/A VCCAUX AP8 N/A VCCAUX A8 N/A VCCAUX AP2 N/A VCCAUX A2 N/A VCCAUX AN1 N/A VCCAUX AG1 N/A VCCAUX U1 N/A VCCAUX H1 N/A VCCAUX B1 N/A GND AK34 N/A GND AF34 N/A GND AB34 N/A GND W34 N/A GND V34 N/A GND T34 N/A GND N34 N/A GND J34 N/A GND E34 N/A GND AN33 N/A GND B33 N/A GND AM32 N/A GND C32 N/A GND AP30 N/A GND AK30 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP40 XC2VP50 Module 4 of 4 156 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 11: FF1148 — XC2VP40 and XC2VP50 No Connects Bank Pin Description Pin Number N/A GND AF30 N/A GND AB30 N/A GND W30 N/A GND T30 N/A GND N30 N/A GND J30 N/A GND E30 N/A GND A30 N/A GND AP26 N/A GND AK26 N/A GND AB26 N/A GND W26 N/A GND T26 N/A GND N26 N/A GND E26 N/A GND A26 N/A GND AE25 N/A GND K25 N/A GND AP22 N/A GND AK22 N/A GND AF22 N/A GND J22 N/A GND E22 N/A GND A22 N/A GND Y21 N/A GND W21 N/A GND V21 N/A GND U21 N/A GND T21 N/A GND R21 N/A GND AA20 N/A GND Y20 N/A GND W20 N/A GND V20 N/A GND U20 N/A GND T20 N/A GND R20 N/A GND P20 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP40 XC2VP50 Module 4 of 4 157 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 11: FF1148 — XC2VP40 and XC2VP50 No Connects Bank Pin Description Pin Number N/A GND AP19 N/A GND AK19 N/A GND AF19 N/A GND AA19 N/A GND Y19 N/A GND W19 N/A GND V19 N/A GND U19 N/A GND T19 N/A GND R19 N/A GND P19 N/A GND J19 N/A GND E19 N/A GND A19 N/A GND AP18 N/A GND AA18 N/A GND Y18 N/A GND W18 N/A GND V18 N/A GND U18 N/A GND T18 N/A GND R18 N/A GND P18 N/A GND A18 N/A GND AA17 N/A GND Y17 N/A GND W17 N/A GND V17 N/A GND U17 N/A GND T17 N/A GND R17 N/A GND P17 N/A GND AP16 N/A GND AK16 N/A GND AF16 N/A GND AA16 N/A GND Y16 N/A GND W16 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP40 XC2VP50 Module 4 of 4 158 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 11: FF1148 — XC2VP40 and XC2VP50 No Connects Bank Pin Description Pin Number N/A GND V16 N/A GND U16 N/A GND T16 N/A GND R16 N/A GND P16 N/A GND J16 N/A GND E16 N/A GND A16 N/A GND AA15 N/A GND Y15 N/A GND W15 N/A GND V15 N/A GND U15 N/A GND T15 N/A GND R15 N/A GND P15 N/A GND Y14 N/A GND W14 N/A GND V14 N/A GND U14 N/A GND T14 N/A GND R14 N/A GND AP13 N/A GND AK13 N/A GND AF13 N/A GND J13 N/A GND E13 N/A GND A13 N/A GND AE10 N/A GND K10 N/A GND AP9 N/A GND AK9 N/A GND AB9 N/A GND W9 N/A GND T9 N/A GND N9 N/A GND E9 N/A GND A9 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP40 XC2VP50 Module 4 of 4 159 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 11: FF1148 — XC2VP40 and XC2VP50 No Connects Bank Pin Description Pin Number N/A GND AP5 N/A GND AK5 N/A GND AF5 N/A GND AB5 N/A GND W5 N/A GND T5 N/A GND N5 N/A GND J5 N/A GND E5 N/A GND A5 N/A GND AM3 N/A GND C3 N/A GND AN2 N/A GND B2 N/A GND AK1 N/A GND AF1 N/A GND AB1 N/A GND W1 N/A GND V1 N/A GND T1 N/A GND N1 N/A GND J1 N/A GND E1 XC2VP40 XC2VP50 Notes: 1. See Table 4 for an explanation of the signals available on this pin. DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 4 of 4 160 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information FF1148 Flip-Chip Fine-Pitch BGA Package Specifications (1.00mm pitch) Figure 7: FF1148 Flip-Chip Fine-Pitch BGA Package Specifications DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 4 of 4 161 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information FF1517 Flip-Chip Fine-Pitch BGA Package As shown in Table 12, XC2VP50 and XC2VP70 Virtex-II Pro devices are available in the FF1517 flip-chip fine-pitch BGA package. Following this table are the FF1517 Flip-Chip Fine-Pitch BGA Package Specifications (1.00mm pitch). Table 12: FF1517 — XC2VP50 and XC2VP70 No Connects Bank Pin Description Pin Number 0 IO_L01N_0/VRP_0 D31 0 IO_L01P_0/VRN_0 E31 0 IO_L02N_0 K30 0 IO_L02P_0 J30 0 IO_L03N_0 G30 0 IO_L03P_0/VREF_0 H30 0 IO_L05_0/No_Pair K28 0 IO_L06N_0 E30 0 IO_L06P_0 F30 0 IO_L07N_0 C30 0 IO_L07P_0 D30 0 IO_L08N_0 J29 0 IO_L08P_0 K29 0 IO_L09N_0 G29 0 IO_L09P_0/VREF_0 H29 0 IO_L19N_0 E29 0 IO_L19P_0 F29 0 IO_L20N_0 L28 0 IO_L20P_0 L27 0 IO_L21N_0 C29 0 IO_L21P_0 D29 0 IO_L25N_0 H28 0 IO_L25P_0 J28 0 IO_L26N_0 M27 0 IO_L26P_0 M26 0 IO_L27N_0 D28 0 IO_L27P_0/VREF_0 E28 0 IO_L28N_0 H27 NC 0 IO_L28P_0 J27 NC 0 IO_L29N_0 J26 NC 0 IO_L29P_0 K26 NC 0 IO_L30N_0 F28 NC 0 IO_L30P_0 G27 NC 0 IO_L34N_0 D27 NC DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP50 XC2VP70 Module 4 of 4 162 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 12: FF1517 — XC2VP50 and XC2VP70 No Connects Bank Pin Description Pin Number 0 IO_L34P_0 E27 NC 0 IO_L35N_0 L26 NC 0 IO_L35P_0 L25 NC 0 IO_L36N_0 G26 NC 0 IO_L36P_0/VREF_0 H26 NC 0 IO_L37N_0 E26 0 IO_L37P_0 F26 0 IO_L38N_0 K25 0 IO_L38P_0 K24 0 IO_L39N_0 C26 0 IO_L39P_0 D26 0 IO_L43N_0 H25 0 IO_L43P_0 J25 0 IO_L44N_0 M25 0 IO_L44P_0 M24 0 IO_L45N_0 F25 0 IO_L45P_0/VREF_0 G25 0 IO_L46N_0 C25 0 IO_L46P_0 D25 0 IO_L47N_0 L23 0 IO_L47P_0 M22 0 IO_L48N_0 H24 0 IO_L48P_0 J24 0 IO_L49N_0 E25 0 IO_L49P_0 E24 0 IO_L50_0/No_Pair N23 0 IO_L53_0/No_Pair M23 0 IO_L54N_0 H23 0 IO_L54P_0 J23 0 IO_L55N_0 F24 0 IO_L55P_0 G23 0 IO_L56N_0 K22 0 IO_L56P_0 L22 0 IO_L57N_0 C23 0 IO_L57P_0/VREF_0 D23 0 IO_L58N_0 H22 0 IO_L58P_0 J22 0 IO_L59N_0 N22 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP50 XC2VP70 Module 4 of 4 163 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 12: FF1517 — XC2VP50 and XC2VP70 Bank Pin Description Pin Number 0 IO_L59P_0 N21 0 IO_L60N_0 E23 0 IO_L60P_0 F22 0 IO_L64N_0 D22 0 IO_L64P_0 E22 0 IO_L65N_0 H21 0 IO_L65P_0 H20 0 IO_L66N_0 G22 0 IO_L66P_0/VREF_0 G21 0 IO_L67N_0 D21 0 IO_L67P_0 E21 0 IO_L68N_0 J21 0 IO_L68P_0 K21 0 IO_L69N_0 C22 0 IO_L69P_0/VREF_0 C21 0 IO_L73N_0 F21 0 IO_L73P_0 F20 0 IO_L74N_0/GCLK7P L21 0 IO_L74P_0/GCLK6S M21 0 IO_L75N_0/GCLK5P D20 0 IO_L75P_0/GCLK4S E20 1 IO_L75N_1/GCLK3P K20 1 IO_L75P_1/GCLK2S J20 1 IO_L74N_1/GCLK1P N20 1 IO_L74P_1/GCLK0S M20 1 IO_L73N_1 E19 1 IO_L73P_1 D19 1 IO_L69N_1/VREF_1 G19 1 IO_L69P_1 F19 1 IO_L68N_1 L19 1 IO_L68P_1 K19 1 IO_L67N_1 J19 1 IO_L67P_1 H19 1 IO_L66N_1/VREF_1 C19 1 IO_L66P_1 C18 1 IO_L65N_1 N19 1 IO_L65P_1 M19 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com No Connects XC2VP50 XC2VP70 Module 4 of 4 164 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 12: FF1517 — XC2VP50 and XC2VP70 Bank Pin Description Pin Number 1 IO_L64N_1 E18 1 IO_L64P_1 D18 1 IO_L60N_1 G18 1 IO_L60P_1 F18 1 IO_L59N_1 L18 1 IO_L59P_1 K18 1 IO_L58N_1 J18 1 IO_L58P_1 H18 1 IO_L57N_1/VREF_1 D17 1 IO_L57P_1 C17 1 IO_L56N_1 N18 1 IO_L56P_1 M18 1 IO_L55N_1 E17 1 IO_L55P_1 E16 1 IO_L54N_1 G17 1 IO_L54P_1 F16 1 IO_L53_1/No_Pair J17 1 IO_L50_1/No_Pair H17 1 IO_L49N_1 J16 1 IO_L49P_1 H16 1 IO_L48N_1 D15 1 IO_L48P_1 C15 1 IO_L47N_1 L17 1 IO_L47P_1 K16 1 IO_L46N_1 F15 1 IO_L46P_1 E15 1 IO_L45N_1/VREF_1 H15 1 IO_L45P_1 G15 1 IO_L44N_1 N17 1 IO_L44P_1 M17 1 IO_L43N_1 D14 1 IO_L43P_1 C14 1 IO_L39N_1 F14 1 IO_L39P_1 E14 1 IO_L38N_1 M16 1 IO_L38P_1 M15 1 IO_L37N_1 H14 1 IO_L37P_1 G14 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com No Connects XC2VP50 XC2VP70 Module 4 of 4 165 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 12: FF1517 — XC2VP50 and XC2VP70 No Connects Bank Pin Description Pin Number 1 IO_L36N_1/VREF_1 E13 NC 1 IO_L36P_1 D13 NC 1 IO_L35N_1 K15 NC 1 IO_L35P_1 J15 NC 1 IO_L34N_1 G13 NC 1 IO_L34P_1 F12 NC 1 IO_L30N_1 J13 NC 1 IO_L30P_1 H13 NC 1 IO_L29N_1 L15 NC 1 IO_L29P_1 L14 NC 1 IO_L28N_1 E12 NC 1 IO_L28P_1 D12 NC 1 IO_L27N_1/VREF_1 J12 1 IO_L27P_1 H12 1 IO_L26N_1 K14 1 IO_L26P_1 J14 1 IO_L25N_1 D11 1 IO_L25P_1 C11 1 IO_L21N_1 F11 1 IO_L21P_1 E11 1 IO_L20N_1 M14 1 IO_L20P_1 M13 1 IO_L19N_1 H11 1 IO_L19P_1 G11 1 IO_L09N_1/VREF_1 J11 1 IO_L09P_1 J10 1 IO_L08N_1 L13 1 IO_L08P_1 L12 1 IO_L07N_1 D10 1 IO_L07P_1 C10 1 IO_L06N_1 F10 1 IO_L06P_1 E10 1 IO_L05_1/No_Pair K10 1 IO_L03N_1/VREF_1 H10 1 IO_L03P_1 G10 1 IO_L02N_1 K12 1 IO_L02P_1 K11 1 IO_L01N_1/VRP_1 E9 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP50 XC2VP70 Module 4 of 4 166 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 12: FF1517 — XC2VP50 and XC2VP70 No Connects Bank Pin Description Pin Number 1 IO_L01P_1/VRN_1 D9 2 IO_L01N_2/VRP_2 C7 2 IO_L01P_2/VRN_2 D7 2 IO_L02N_2 G9 2 IO_L02P_2 H9 2 IO_L03N_2 C5 2 IO_L03P_2 D5 2 IO_L04N_2/VREF_2 D6 2 IO_L04P_2 E6 2 IO_L05N_2 H8 2 IO_L05P_2 J9 2 IO_L06N_2 E7 2 IO_L06P_2 F7 2 IO_L73N_2 D1 NC 2 IO_L73P_2 D2 NC 2 IO_L75N_2 E2 NC 2 IO_L75P_2 E3 NC 2 IO_L76N_2/VREF_2 F5 NC 2 IO_L76P_2 G5 NC 2 IO_L78N_2 F3 NC 2 IO_L78P_2 F4 NC 2 IO_L79N_2 F1 NC 2 IO_L79P_2 F2 NC 2 IO_L81N_2 G6 NC 2 IO_L81P_2 G7 NC 2 IO_L82N_2/VREF_2 G3 NC 2 IO_L82P_2 G4 NC 2 IO_L84N_2 G1 NC 2 IO_L84P_2 G2 NC 2 IO_L07N_2 H6 2 IO_L07P_2 H7 2 IO_L08N_2 K8 2 IO_L08P_2 K9 2 IO_L09N_2 H2 2 IO_L09P_2 H3 2 IO_L10N_2/VREF_2 J6 2 IO_L10P_2 J7 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP50 XC2VP70 Module 4 of 4 167 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 12: FF1517 — XC2VP50 and XC2VP70 Bank Pin Description Pin Number 2 IO_L11N_2 L9 2 IO_L11P_2 M10 2 IO_L12N_2 H4 2 IO_L12P_2 J5 2 IO_L13N_2 J1 2 IO_L13P_2 J2 2 IO_L14N_2 M8 2 IO_L14P_2 N9 2 IO_L15N_2 K6 2 IO_L15P_2 K7 2 IO_L16N_2/VREF_2 K4 2 IO_L16P_2 K5 2 IO_L17N_2 P10 2 IO_L17P_2 N10 2 IO_L18N_2 K3 2 IO_L18P_2 J3 2 IO_L19N_2 K1 2 IO_L19P_2 K2 2 IO_L20N_2 M11 2 IO_L20P_2 N11 2 IO_L21N_2 L7 2 IO_L21P_2 L8 2 IO_L22N_2/VREF_2 L5 2 IO_L22P_2 L6 2 IO_L23N_2 P8 2 IO_L23P_2 P9 2 IO_L24N_2 L3 2 IO_L24P_2 L4 2 IO_L25N_2 L1 2 IO_L25P_2 L2 2 IO_L26N_2 P11 2 IO_L26P_2 P12 2 IO_L27N_2 M6 2 IO_L27P_2 M7 2 IO_L28N_2/VREF_2 M2 2 IO_L28P_2 M3 2 IO_L29N_2 R9 2 IO_L29P_2 R10 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com No Connects XC2VP50 XC2VP70 Module 4 of 4 168 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 12: FF1517 — XC2VP50 and XC2VP70 Bank Pin Description Pin Number 2 IO_L30N_2 N6 2 IO_L30P_2 N7 2 IO_L31N_2 M4 2 IO_L31P_2 N5 2 IO_L32N_2 R11 2 IO_L32P_2 R12 2 IO_L33N_2 N1 2 IO_L33P_2 N2 2 IO_L34N_2/VREF_2 P6 2 IO_L34P_2 P7 2 IO_L35N_2 R13 2 IO_L35P_2 T13 2 IO_L36N_2 P4 2 IO_L36P_2 P5 2 IO_L37N_2 P3 2 IO_L37P_2 N3 2 IO_L38N_2 T10 2 IO_L38P_2 T11 2 IO_L39N_2 P1 2 IO_L39P_2 P2 2 IO_L40N_2/VREF_2 R7 2 IO_L40P_2 R8 2 IO_L41N_2 T12 2 IO_L41P_2 U12 2 IO_L42N_2 R5 2 IO_L42P_2 R6 2 IO_L43N_2 R3 2 IO_L43P_2 R4 2 IO_L44N_2 U8 2 IO_L44P_2 T8 2 IO_L45N_2 R1 2 IO_L45P_2 R2 2 IO_L46N_2/VREF_2 T6 2 IO_L46P_2 T7 2 IO_L47N_2 U9 2 IO_L47P_2 U10 2 IO_L48N_2 T2 2 IO_L48P_2 T3 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com No Connects XC2VP50 XC2VP70 Module 4 of 4 169 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 12: FF1517 — XC2VP50 and XC2VP70 Bank Pin Description Pin Number 2 IO_L49N_2 U5 2 IO_L49P_2 U6 2 IO_L50N_2 U13 2 IO_L50P_2 V13 2 IO_L51N_2 U4 2 IO_L51P_2 T4 2 IO_L52N_2/VREF_2 U1 2 IO_L52P_2 U2 2 IO_L53N_2 V9 2 IO_L53P_2 V10 2 IO_L54N_2 V7 2 IO_L54P_2 V8 2 IO_L55N_2 V5 2 IO_L55P_2 V6 2 IO_L56N_2 V11 2 IO_L56P_2 V12 2 IO_L57N_2 V3 2 IO_L57P_2 V4 2 IO_L58N_2/VREF_2 V1 2 IO_L58P_2 V2 2 IO_L59N_2 W10 2 IO_L59P_2 W11 2 IO_L60N_2 W7 2 IO_L60P_2 W8 2 IO_L85N_2 W5 2 IO_L85P_2 W6 2 IO_L86N_2 W12 2 IO_L86P_2 W13 2 IO_L87N_2 W3 2 IO_L87P_2 W4 2 IO_L88N_2/VREF_2 Y7 2 IO_L88P_2 Y8 2 IO_L89N_2 W9 2 IO_L89P_2 Y9 2 IO_L90N_2 Y3 2 IO_L90P_2 Y4 3 IO_L90N_3 AA7 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com No Connects XC2VP50 XC2VP70 Module 4 of 4 170 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 12: FF1517 — XC2VP50 and XC2VP70 Bank Pin Description Pin Number 3 IO_L90P_3 AA8 3 IO_L89N_3 Y11 3 IO_L89P_3 Y12 3 IO_L88N_3 AA5 3 IO_L88P_3 AA6 3 IO_L87N_3/VREF_3 AA3 3 IO_L87P_3 AA4 3 IO_L86N_3 Y13 3 IO_L86P_3 AA13 3 IO_L85N_3 AB7 3 IO_L85P_3 AB8 3 IO_L60N_3 AB5 3 IO_L60P_3 AB6 3 IO_L59N_3 AA9 3 IO_L59P_3 AA10 3 IO_L58N_3 AB3 3 IO_L58P_3 AB4 3 IO_L57N_3/VREF_3 AB1 3 IO_L57P_3 AB2 3 IO_L56N_3 AA11 3 IO_L56P_3 AA12 3 IO_L55N_3 AC5 3 IO_L55P_3 AC6 3 IO_L54N_3 AC1 3 IO_L54P_3 AC2 3 IO_L53N_3 AB9 3 IO_L53P_3 AB10 3 IO_L52N_3 AC8 3 IO_L52P_3 AD8 3 IO_L51N_3/VREF_3 AC4 3 IO_L51P_3 AD4 3 IO_L50N_3 AB11 3 IO_L50P_3 AB12 3 IO_L49N_3 AD6 3 IO_L49P_3 AD7 3 IO_L48N_3 AD2 3 IO_L48P_3 AD3 3 IO_L47N_3 AC9 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com No Connects XC2VP50 XC2VP70 Module 4 of 4 171 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 12: FF1517 — XC2VP50 and XC2VP70 Bank Pin Description Pin Number 3 IO_L47P_3 AC10 3 IO_L46N_3 AE7 3 IO_L46P_3 AE8 3 IO_L45N_3/VREF_3 AE5 3 IO_L45P_3 AE6 3 IO_L44N_3 AB13 3 IO_L44P_3 AC13 3 IO_L43N_3 AE3 3 IO_L43P_3 AE4 3 IO_L42N_3 AE1 3 IO_L42P_3 AE2 3 IO_L41N_3 AD10 3 IO_L41P_3 AD11 3 IO_L40N_3 AF6 3 IO_L40P_3 AF7 3 IO_L39N_3/VREF_3 AF4 3 IO_L39P_3 AF5 3 IO_L38N_3 AC12 3 IO_L38P_3 AD12 3 IO_L37N_3 AF1 3 IO_L37P_3 AF2 3 IO_L36N_3 AG6 3 IO_L36P_3 AG7 3 IO_L35N_3 AE9 3 IO_L35P_3 AE10 3 IO_L34N_3 AF3 3 IO_L34P_3 AG3 3 IO_L33N_3/VREF_3 AG1 3 IO_L33P_3 AG2 3 IO_L32N_3 AE11 3 IO_L32P_3 AE12 3 IO_L31N_3 AH6 3 IO_L31P_3 AH7 3 IO_L30N_3 AG5 3 IO_L30P_3 AH4 3 IO_L29N_3 AD13 3 IO_L29P_3 AE13 3 IO_L28N_3 AH2 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com No Connects XC2VP50 XC2VP70 Module 4 of 4 172 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 12: FF1517 — XC2VP50 and XC2VP70 Bank Pin Description Pin Number 3 IO_L28P_3 AH3 3 IO_L27N_3/VREF_3 AJ7 3 IO_L27P_3 AJ8 3 IO_L26N_3 AF8 3 IO_L26P_3 AF9 3 IO_L25N_3 AJ5 3 IO_L25P_3 AJ6 3 IO_L24N_3 AJ3 3 IO_L24P_3 AJ4 3 IO_L23N_3 AF10 3 IO_L23P_3 AG10 3 IO_L22N_3 AJ1 3 IO_L22P_3 AJ2 3 IO_L21N_3/VREF_3 AK6 3 IO_L21P_3 AK7 3 IO_L20N_3 AF11 3 IO_L20P_3 AF12 3 IO_L19N_3 AK4 3 IO_L19P_3 AK5 3 IO_L18N_3 AK1 3 IO_L18P_3 AK2 3 IO_L17N_3 AG9 3 IO_L17P_3 AH8 3 IO_L16N_3 AL6 3 IO_L16P_3 AL7 3 IO_L15N_3/VREF_3 AK3 3 IO_L15P_3 AL3 3 IO_L14N_3 AG11 3 IO_L14P_3 AH11 3 IO_L13N_3 AL1 3 IO_L13P_3 AL2 3 IO_L12N_3 AM6 3 IO_L12P_3 AM7 3 IO_L11N_3 AH10 3 IO_L11P_3 AJ9 3 IO_L10N_3 AL5 3 IO_L10P_3 AM4 3 IO_L09N_3/VREF_3 AM2 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com No Connects XC2VP50 XC2VP70 Module 4 of 4 173 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 12: FF1517 — XC2VP50 and XC2VP70 No Connects Bank Pin Description Pin Number 3 IO_L09P_3 AM3 3 IO_L08N_3 AK8 3 IO_L08P_3 AK9 3 IO_L07N_3 AN6 3 IO_L07P_3 AN7 3 IO_L84N_3 AN3 NC 3 IO_L84P_3 AN4 NC 3 IO_L82N_3 AN1 NC 3 IO_L82P_3 AN2 NC 3 IO_L81N_3/VREF_3 AN5 NC 3 IO_L81P_3 AP5 NC 3 IO_L79N_3 AP3 NC 3 IO_L79P_3 AP4 NC 3 IO_L78N_3 AP1 NC 3 IO_L78P_3 AP2 NC 3 IO_L76N_3 AR2 NC 3 IO_L76P_3 AR3 NC 3 IO_L75N_3/VREF_3 AT1 NC 3 IO_L75P_3 AT2 NC 3 IO_L73N_3 AT5 NC 3 IO_L73P_3 AU5 NC 3 IO_L06N_3 AR6 3 IO_L06P_3 AT6 3 IO_L05N_3 AL9 3 IO_L05P_3 AM8 3 IO_L04N_3 AP7 3 IO_L04P_3 AR7 3 IO_L03N_3/VREF_3 AM9 3 IO_L03P_3 AN9 3 IO_L02N_3 AR8 3 IO_L02P_3 AT8 3 IO_L01N_3/VRP_3 AT7 3 IO_L01P_3/VRN_3 AU7 4 IO_L01N_4/BUSY/DOUT (1) AT9 4 IO_L01P_4/INIT_B AR9 4 IO_L02N_4/D0/DIN (1) AK11 4 IO_L02P_4/D1 AK12 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP50 XC2VP70 Module 4 of 4 174 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 12: FF1517 — XC2VP50 and XC2VP70 No Connects Bank Pin Description Pin Number 4 IO_L03N_4/D2 AN10 4 IO_L03P_4/D3 AM10 4 IO_L05_4/No_Pair AK10 4 IO_L06N_4/VRP_4 AR10 4 IO_L06P_4/VRN_4 AP10 4 IO_L07N_4 AU10 4 IO_L07P_4/VREF_4 AT10 4 IO_L08N_4 AJ12 4 IO_L08P_4 AJ13 4 IO_L09N_4 AL10 4 IO_L09P_4/VREF_4 AL11 4 IO_L19N_4 AN11 4 IO_L19P_4 AM11 4 IO_L20N_4 AH13 4 IO_L20P_4 AH14 4 IO_L21N_4 AR11 4 IO_L21P_4 AP11 4 IO_L25N_4 AU11 4 IO_L25P_4 AT11 4 IO_L26N_4 AL14 4 IO_L26P_4 AK14 4 IO_L27N_4 AM12 4 IO_L27P_4/VREF_4 AL12 4 IO_L28N_4 AT12 NC 4 IO_L28P_4 AR12 NC 4 IO_L29N_4 AJ14 NC 4 IO_L29P_4 AJ15 NC 4 IO_L30N_4 AM13 NC 4 IO_L30P_4 AL13 NC 4 IO_L34N_4 AP12 NC 4 IO_L34P_4 AN13 NC 4 IO_L35N_4 AL15 NC 4 IO_L35P_4 AK15 NC 4 IO_L36N_4 AT13 NC 4 IO_L36P_4/VREF_4 AR13 NC 4 IO_L37N_4 AN14 4 IO_L37P_4 AM14 4 IO_L38N_4 AH15 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP50 XC2VP70 Module 4 of 4 175 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 12: FF1517 — XC2VP50 and XC2VP70 Bank Pin Description Pin Number 4 IO_L38P_4 AH16 4 IO_L39N_4 AR14 4 IO_L39P_4 AP14 4 IO_L43N_4 AU14 4 IO_L43P_4 AT14 4 IO_L44N_4 AH17 4 IO_L44P_4 AG17 4 IO_L45N_4 AN15 4 IO_L45P_4/VREF_4 AM15 4 IO_L46N_4 AR15 4 IO_L46P_4 AP15 4 IO_L47N_4 AK16 4 IO_L47P_4 AJ17 4 IO_L48N_4 AU15 4 IO_L48P_4 AT15 4 IO_L49N_4 AM16 4 IO_L49P_4 AL16 4 IO_L50_4/No_Pair AM17 4 IO_L53_4/No_Pair AL17 4 IO_L54N_4 AP16 4 IO_L54P_4 AN17 4 IO_L55N_4 AR16 4 IO_L55P_4 AR17 4 IO_L56N_4 AH18 4 IO_L56P_4 AG18 4 IO_L57N_4 AU17 4 IO_L57P_4/VREF_4 AT17 4 IO_L58N_4 AM18 4 IO_L58P_4 AL18 4 IO_L59N_4 AK18 4 IO_L59P_4 AJ18 4 IO_L60N_4 AP18 4 IO_L60P_4 AN18 4 IO_L64N_4 AT18 4 IO_L64P_4 AR18 4 IO_L65N_4 AH19 4 IO_L65P_4 AG19 4 IO_L66N_4 AU18 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com No Connects XC2VP50 XC2VP70 Module 4 of 4 176 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 12: FF1517 — XC2VP50 and XC2VP70 Bank Pin Description Pin Number 4 IO_L66P_4/VREF_4 AU19 4 IO_L67N_4 AM19 4 IO_L67P_4 AL19 4 IO_L68N_4 AK19 4 IO_L68P_4 AJ19 4 IO_L69N_4 AP19 4 IO_L69P_4/VREF_4 AN19 4 IO_L73N_4 AT19 4 IO_L73P_4 AR19 4 IO_L74N_4/GCLK3S AH20 4 IO_L74P_4/GCLK2P AG20 4 IO_L75N_4/GCLK1S AL20 4 IO_L75P_4/GCLK0P AK20 5 IO_L75N_5/GCLK7S AR20 5 IO_L75P_5/GCLK6P AT20 5 IO_L74N_5/GCLK5S AH21 5 IO_L74P_5/GCLK4P AJ21 5 IO_L73N_5 AP20 5 IO_L73P_5 AP21 5 IO_L69N_5/VREF_5 AU21 5 IO_L69P_5 AU22 5 IO_L68N_5 AK21 5 IO_L68P_5 AL21 5 IO_L67N_5 AR21 5 IO_L67P_5 AT21 5 IO_L66N_5/VREF_5 AN21 5 IO_L66P_5 AN22 5 IO_L65N_5 AM20 5 IO_L65P_5 AM21 5 IO_L64N_5 AR22 5 IO_L64P_5 AT22 5 IO_L60N_5 AP22 5 IO_L60P_5 AR23 5 IO_L59N_5 AG21 5 IO_L59P_5 AG22 5 IO_L58N_5 AL22 5 IO_L58P_5 AM22 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com No Connects XC2VP50 XC2VP70 Module 4 of 4 177 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 12: FF1517 — XC2VP50 and XC2VP70 No Connects Bank Pin Description Pin Number 5 IO_L57N_5/VREF_5 AT23 5 IO_L57P_5 AU23 5 IO_L56N_5 AJ22 5 IO_L56P_5 AK22 5 IO_L55N_5 AN23 5 IO_L55P_5 AP24 5 IO_L54N_5 AL23 5 IO_L54P_5 AM23 5 IO_L53_5/No_Pair AH23 5 IO_L50_5/No_Pair AG23 5 IO_L49N_5 AR24 5 IO_L49P_5 AR25 5 IO_L48N_5 AL24 5 IO_L48P_5 AM24 5 IO_L47N_5 AH22 5 IO_L47P_5 AJ23 5 IO_L46N_5 AT25 5 IO_L46P_5 AU25 5 IO_L45N_5/VREF_5 AN25 5 IO_L45P_5 AP25 5 IO_L44N_5 AH24 5 IO_L44P_5 AH25 5 IO_L43N_5 AL25 5 IO_L43P_5 AM25 5 IO_L39N_5 AT26 5 IO_L39P_5 AU26 5 IO_L38N_5 AK24 5 IO_L38P_5 AK25 5 IO_L37N_5 AP26 5 IO_L37P_5 AR26 5 IO_L36N_5/VREF_5 AM26 NC 5 IO_L36P_5 AN26 NC 5 IO_L35N_5 AJ25 NC 5 IO_L35P_5 AJ26 NC 5 IO_L34N_5 AR27 NC 5 IO_L34P_5 AT27 NC 5 IO_L30N_5 AN27 NC 5 IO_L30P_5 AP28 NC DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP50 XC2VP70 Module 4 of 4 178 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 12: FF1517 — XC2VP50 and XC2VP70 No Connects Bank Pin Description Pin Number 5 IO_L29N_5 AK26 NC 5 IO_L29P_5 AL26 NC 5 IO_L28N_5 AL27 NC 5 IO_L28P_5 AM27 NC 5 IO_L27N_5/VREF_5 AR28 5 IO_L27P_5 AT28 5 IO_L26N_5 AH26 5 IO_L26P_5 AH27 5 IO_L25N_5 AL28 5 IO_L25P_5 AM28 5 IO_L21N_5 AT29 5 IO_L21P_5 AU29 5 IO_L20N_5 AJ27 5 IO_L20P_5 AJ28 5 IO_L19N_5 AP29 5 IO_L19P_5 AR29 5 IO_L09N_5/VREF_5 AM29 5 IO_L09P_5 AN29 5 IO_L08N_5 AK29 5 IO_L08P_5 AL29 5 IO_L07N_5/VREF_5 AT30 5 IO_L07P_5 AU30 5 IO_L06N_5/VRP_5 AP30 5 IO_L06P_5/VRN_5 AR30 5 IO_L05_5/No_Pair AK28 5 IO_L03N_5/D4 AM30 5 IO_L03P_5/D5 AN30 5 IO_L02N_5/D6 AL30 5 IO_L02P_5/D7 AK30 5 IO_L01N_5/RDWR_B AR31 5 IO_L01P_5/CS_B AT31 6 IO_L01P_6/VRN_6 AU33 6 IO_L01N_6/VRP_6 AT33 6 IO_L02P_6 AT32 6 IO_L02N_6 AR32 6 IO_L03P_6 AN31 6 IO_L03N_6/VREF_6 AM31 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP50 XC2VP70 Module 4 of 4 179 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 12: FF1517 — XC2VP50 and XC2VP70 No Connects Bank Pin Description Pin Number 6 IO_L04P_6 AR33 6 IO_L04N_6 AP33 6 IO_L05P_6 AM32 6 IO_L05N_6 AL31 6 IO_L06P_6 AT34 6 IO_L06N_6 AR34 6 IO_L73P_6 AU35 NC 6 IO_L73N_6 AT35 NC 6 IO_L75P_6 AT38 NC 6 IO_L75N_6/VREF_6 AT39 NC 6 IO_L76P_6 AR37 NC 6 IO_L76N_6 AR38 NC 6 IO_L78P_6 AP38 NC 6 IO_L78N_6 AP39 NC 6 IO_L79P_6 AP36 NC 6 IO_L79N_6 AP37 NC 6 IO_L81P_6 AP35 NC 6 IO_L81N_6/VREF_6 AN35 NC 6 IO_L82P_6 AN38 NC 6 IO_L82N_6 AN39 NC 6 IO_L84P_6 AN36 NC 6 IO_L84N_6 AN37 NC 6 IO_L07P_6 AN33 6 IO_L07N_6 AN34 6 IO_L08P_6 AK31 6 IO_L08N_6 AK32 6 IO_L09P_6 AM37 6 IO_L09N_6/VREF_6 AM38 6 IO_L10P_6 AM36 6 IO_L10N_6 AL35 6 IO_L11P_6 AJ31 6 IO_L11N_6 AH30 6 IO_L12P_6 AM33 6 IO_L12N_6 AM34 6 IO_L13P_6 AL38 6 IO_L13N_6 AL39 6 IO_L14P_6 AH29 6 IO_L14N_6 AG29 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP50 XC2VP70 Module 4 of 4 180 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 12: FF1517 — XC2VP50 and XC2VP70 Bank Pin Description Pin Number 6 IO_L15P_6 AL37 6 IO_L15N_6/VREF_6 AK37 6 IO_L16P_6 AL33 6 IO_L16N_6 AL34 6 IO_L17P_6 AH32 6 IO_L17N_6 AG31 6 IO_L18P_6 AK38 6 IO_L18N_6 AK39 6 IO_L19P_6 AK35 6 IO_L19N_6 AK36 6 IO_L20P_6 AF28 6 IO_L20N_6 AF29 6 IO_L21P_6 AK33 6 IO_L21N_6/VREF_6 AK34 6 IO_L22P_6 AJ38 6 IO_L22N_6 AJ39 6 IO_L23P_6 AG30 6 IO_L23N_6 AF30 6 IO_L24P_6 AJ36 6 IO_L24N_6 AJ37 6 IO_L25P_6 AJ34 6 IO_L25N_6 AJ35 6 IO_L26P_6 AF31 6 IO_L26N_6 AF32 6 IO_L27P_6 AJ32 6 IO_L27N_6/VREF_6 AJ33 6 IO_L28P_6 AH37 6 IO_L28N_6 AH38 6 IO_L29P_6 AE27 6 IO_L29N_6 AD27 6 IO_L30P_6 AH36 6 IO_L30N_6 AG35 6 IO_L31P_6 AH33 6 IO_L31N_6 AH34 6 IO_L32P_6 AE28 6 IO_L32N_6 AE29 6 IO_L33P_6 AG38 6 IO_L33N_6/VREF_6 AG39 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com No Connects XC2VP50 XC2VP70 Module 4 of 4 181 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 12: FF1517 — XC2VP50 and XC2VP70 Bank Pin Description Pin Number 6 IO_L34P_6 AG37 6 IO_L34N_6 AF37 6 IO_L35P_6 AE30 6 IO_L35N_6 AE31 6 IO_L36P_6 AG33 6 IO_L36N_6 AG34 6 IO_L37P_6 AF38 6 IO_L37N_6 AF39 6 IO_L38P_6 AD28 6 IO_L38N_6 AC28 6 IO_L39P_6 AF35 6 IO_L39N_6/VREF_6 AF36 6 IO_L40P_6 AF33 6 IO_L40N_6 AF34 6 IO_L41P_6 AD29 6 IO_L41N_6 AD30 6 IO_L42P_6 AE38 6 IO_L42N_6 AE39 6 IO_L43P_6 AE36 6 IO_L43N_6 AE37 6 IO_L44P_6 AC27 6 IO_L44N_6 AB27 6 IO_L45P_6 AE34 6 IO_L45N_6/VREF_6 AE35 6 IO_L46P_6 AE32 6 IO_L46N_6 AE33 6 IO_L47P_6 AC30 6 IO_L47N_6 AC31 6 IO_L48P_6 AD37 6 IO_L48N_6 AD38 6 IO_L49P_6 AD33 6 IO_L49N_6 AD34 6 IO_L50P_6 AB28 6 IO_L50N_6 AB29 6 IO_L51P_6 AD36 6 IO_L51N_6/VREF_6 AC36 6 IO_L52P_6 AD32 6 IO_L52N_6 AC32 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com No Connects XC2VP50 XC2VP70 Module 4 of 4 182 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 12: FF1517 — XC2VP50 and XC2VP70 Bank Pin Description Pin Number 6 IO_L53P_6 AB30 6 IO_L53N_6 AB31 6 IO_L54P_6 AC38 6 IO_L54N_6 AC39 6 IO_L55P_6 AC34 6 IO_L55N_6 AC35 6 IO_L56P_6 AA28 6 IO_L56N_6 AA29 6 IO_L57P_6 AB38 6 IO_L57N_6/VREF_6 AB39 6 IO_L58P_6 AB36 6 IO_L58N_6 AB37 6 IO_L59P_6 AA30 6 IO_L59N_6 AA31 6 IO_L60P_6 AB34 6 IO_L60N_6 AB35 6 IO_L85P_6 AB32 6 IO_L85N_6 AB33 6 IO_L86P_6 AA27 6 IO_L86N_6 Y27 6 IO_L87P_6 AA36 6 IO_L87N_6/VREF_6 AA37 6 IO_L88P_6 AA34 6 IO_L88N_6 AA35 6 IO_L89P_6 Y28 6 IO_L89N_6 Y29 6 IO_L90P_6 AA32 6 IO_L90N_6 AA33 7 IO_L90P_7 Y36 7 IO_L90N_7 Y37 7 IO_L89P_7 Y31 7 IO_L89N_7 W31 7 IO_L88P_7 Y32 7 IO_L88N_7/VREF_7 Y33 7 IO_L87P_7 W36 7 IO_L87N_7 W37 7 IO_L86P_7 W27 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com No Connects XC2VP50 XC2VP70 Module 4 of 4 183 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 12: FF1517 — XC2VP50 and XC2VP70 Bank Pin Description Pin Number 7 IO_L86N_7 W28 7 IO_L85P_7 W34 7 IO_L85N_7 W35 7 IO_L60P_7 W32 7 IO_L60N_7 W33 7 IO_L59P_7 W29 7 IO_L59N_7 W30 7 IO_L58P_7 V38 7 IO_L58N_7/VREF_7 V39 7 IO_L57P_7 V36 7 IO_L57N_7 V37 7 IO_L56P_7 V28 7 IO_L56N_7 V29 7 IO_L55P_7 V34 7 IO_L55N_7 V35 7 IO_L54P_7 V32 7 IO_L54N_7 V33 7 IO_L53P_7 V30 7 IO_L53N_7 V31 7 IO_L52P_7 U38 7 IO_L52N_7/VREF_7 U39 7 IO_L51P_7 T36 7 IO_L51N_7 U36 7 IO_L50P_7 V27 7 IO_L50N_7 U27 7 IO_L49P_7 U34 7 IO_L49N_7 U35 7 IO_L48P_7 T37 7 IO_L48N_7 T38 7 IO_L47P_7 U30 7 IO_L47N_7 U31 7 IO_L46P_7 T33 7 IO_L46N_7/VREF_7 T34 7 IO_L45P_7 R38 7 IO_L45N_7 R39 7 IO_L44P_7 T32 7 IO_L44N_7 U32 7 IO_L43P_7 R36 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com No Connects XC2VP50 XC2VP70 Module 4 of 4 184 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 12: FF1517 — XC2VP50 and XC2VP70 Bank Pin Description Pin Number 7 IO_L43N_7 R37 7 IO_L42P_7 R34 7 IO_L42N_7 R35 7 IO_L41P_7 U28 7 IO_L41N_7 T28 7 IO_L40P_7 R32 7 IO_L40N_7/VREF_7 R33 7 IO_L39P_7 P38 7 IO_L39N_7 P39 7 IO_L38P_7 T29 7 IO_L38N_7 T30 7 IO_L37P_7 N37 7 IO_L37N_7 P37 7 IO_L36P_7 P35 7 IO_L36N_7 P36 7 IO_L35P_7 T27 7 IO_L35N_7 R27 7 IO_L34P_7 P33 7 IO_L34N_7/VREF_7 P34 7 IO_L33P_7 N38 7 IO_L33N_7 N39 7 IO_L32P_7 R28 7 IO_L32N_7 R29 7 IO_L31P_7 N35 7 IO_L31N_7 M36 7 IO_L30P_7 N33 7 IO_L30N_7 N34 7 IO_L29P_7 R30 7 IO_L29N_7 R31 7 IO_L28P_7 M37 7 IO_L28N_7/VREF_7 M38 7 IO_L27P_7 M33 7 IO_L27N_7 M34 7 IO_L26P_7 P28 7 IO_L26N_7 P29 7 IO_L25P_7 L38 7 IO_L25N_7 L39 7 IO_L24P_7 L36 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com No Connects XC2VP50 XC2VP70 Module 4 of 4 185 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 12: FF1517 — XC2VP50 and XC2VP70 No Connects Bank Pin Description Pin Number 7 IO_L24N_7 L37 7 IO_L23P_7 P31 7 IO_L23N_7 P32 7 IO_L22P_7 L34 7 IO_L22N_7/VREF_7 L35 7 IO_L21P_7 L32 7 IO_L21N_7 L33 7 IO_L20P_7 N29 7 IO_L20N_7 M29 7 IO_L19P_7 K38 7 IO_L19N_7 K39 7 IO_L18P_7 J37 7 IO_L18N_7 K37 7 IO_L17P_7 N30 7 IO_L17N_7 P30 7 IO_L16P_7 K35 7 IO_L16N_7/VREF_7 K36 7 IO_L15P_7 K34 7 IO_L15N_7 K33 7 IO_L14P_7 N31 7 IO_L14N_7 M32 7 IO_L13P_7 J38 7 IO_L13N_7 J39 7 IO_L12P_7 J35 7 IO_L12N_7 H36 7 IO_L11P_7 M30 7 IO_L11N_7 L31 7 IO_L10P_7 J33 7 IO_L10N_7/VREF_7 J34 7 IO_L09P_7 H37 7 IO_L09N_7 H38 7 IO_L08P_7 K31 7 IO_L08N_7 K32 7 IO_L07P_7 H33 7 IO_L07N_7 H34 7 IO_L84P_7 G38 NC 7 IO_L84N_7 G39 NC 7 IO_L82P_7 G36 NC DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP50 XC2VP70 Module 4 of 4 186 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 12: FF1517 — XC2VP50 and XC2VP70 No Connects Bank Pin Description Pin Number 7 IO_L82N_7/VREF_7 G37 NC 7 IO_L81P_7 G33 NC 7 IO_L81N_7 G34 NC 7 IO_L79P_7 F38 NC 7 IO_L79N_7 F39 NC 7 IO_L78P_7 F36 NC 7 IO_L78N_7 F37 NC 7 IO_L76P_7 G35 NC 7 IO_L76N_7/VREF_7 F35 NC 7 IO_L75P_7 E37 NC 7 IO_L75N_7 E38 NC 7 IO_L73P_7 D38 NC 7 IO_L73N_7 D39 NC 7 IO_L06P_7 F33 7 IO_L06N_7 E33 7 IO_L05P_7 J31 7 IO_L05N_7 H32 7 IO_L04P_7 E34 7 IO_L04N_7/VREF_7 D34 7 IO_L03P_7 D35 7 IO_L03N_7 C35 7 IO_L02P_7 H31 7 IO_L02N_7 G31 7 IO_L01P_7/VRN_7 D33 7 IO_L01N_7/VRP_7 C33 7 VCCO_7 E39 7 VCCO_7 U37 7 VCCO_7 N36 7 VCCO_7 J36 7 VCCO_7 E36 7 VCCO_7 Y35 7 VCCO_7 U33 7 VCCO_7 N32 7 VCCO_7 J32 7 VCCO_7 F32 7 VCCO_7 U29 7 VCCO_7 N28 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP50 XC2VP70 Module 4 of 4 187 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 12: FF1517 — XC2VP50 and XC2VP70 Bank Pin Description Pin Number 7 VCCO_7 P27 7 VCCO_7 W26 7 VCCO_7 V26 7 VCCO_7 U26 7 VCCO_7 T26 7 VCCO_7 R26 6 VCCO_6 AR39 6 VCCO_6 AC37 6 VCCO_6 AR36 6 VCCO_6 AL36 6 VCCO_6 AG36 6 VCCO_6 AC33 6 VCCO_6 AP32 6 VCCO_6 AL32 6 VCCO_6 AG32 6 VCCO_6 AC29 6 VCCO_6 AG28 6 VCCO_6 AF27 6 VCCO_6 AE26 6 VCCO_6 AD26 6 VCCO_6 AC26 6 VCCO_6 AB26 6 VCCO_6 AA26 6 VCCO_6 Y26 5 VCCO_5 AP27 5 VCCO_5 AK27 5 VCCO_5 AG26 5 VCCO_5 AG25 5 VCCO_5 AF25 5 VCCO_5 AG24 5 VCCO_5 AF24 5 VCCO_5 AP23 5 VCCO_5 AK23 5 VCCO_5 AF23 5 VCCO_5 AF22 5 VCCO_5 AF21 4 VCCO_4 AF19 4 VCCO_4 AF18 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com No Connects XC2VP50 XC2VP70 Module 4 of 4 188 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 12: FF1517 — XC2VP50 and XC2VP70 Bank Pin Description Pin Number 4 VCCO_4 AP17 4 VCCO_4 AK17 4 VCCO_4 AF17 4 VCCO_4 AG16 4 VCCO_4 AF16 4 VCCO_4 AG15 4 VCCO_4 AF15 4 VCCO_4 AG14 4 VCCO_4 AP13 4 VCCO_4 AK13 3 VCCO_3 AE14 3 VCCO_3 AD14 3 VCCO_3 AC14 3 VCCO_3 AB14 3 VCCO_3 AA14 3 VCCO_3 Y14 3 VCCO_3 AF13 3 VCCO_3 AG12 3 VCCO_3 AC11 3 VCCO_3 AP8 3 VCCO_3 AL8 3 VCCO_3 AG8 3 VCCO_3 AC7 3 VCCO_3 AR4 3 VCCO_3 AL4 3 VCCO_3 AG4 3 VCCO_3 AC3 3 VCCO_3 AR1 2 VCCO_2 W14 2 VCCO_2 V14 2 VCCO_2 U14 2 VCCO_2 T14 2 VCCO_2 R14 2 VCCO_2 P13 2 VCCO_2 N12 2 VCCO_2 U11 2 VCCO_2 N8 2 VCCO_2 J8 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com No Connects XC2VP50 XC2VP70 Module 4 of 4 189 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 12: FF1517 — XC2VP50 and XC2VP70 Bank Pin Description Pin Number 2 VCCO_2 F8 2 VCCO_2 U7 2 VCCO_2 Y5 2 VCCO_2 N4 2 VCCO_2 J4 2 VCCO_2 E4 2 VCCO_2 U3 2 VCCO_2 E1 1 VCCO_1 N14 1 VCCO_1 K13 1 VCCO_1 F13 1 VCCO_1 P19 1 VCCO_1 P18 1 VCCO_1 P17 1 VCCO_1 K17 1 VCCO_1 F17 1 VCCO_1 P16 1 VCCO_1 N16 1 VCCO_1 P15 1 VCCO_1 N15 0 VCCO_0 K27 0 VCCO_0 F27 0 VCCO_0 N26 0 VCCO_0 P25 0 VCCO_0 N25 0 VCCO_0 P24 0 VCCO_0 N24 0 VCCO_0 P23 0 VCCO_0 K23 0 VCCO_0 F23 0 VCCO_0 P22 0 VCCO_0 P21 N/A CCLK AJ10 N/A PROG_B D32 N/A DONE AJ11 N/A M0 AP31 N/A M1 AJ30 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com No Connects XC2VP50 XC2VP70 Module 4 of 4 190 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 12: FF1517 — XC2VP50 and XC2VP70 Bank Pin Description Pin Number N/A M2 AJ29 N/A TCK E8 N/A TDI L30 N/A TDO L10 N/A TMS F9 N/A PWRDWN_B AP9 N/A HSWAP_EN E32 N/A RSVD D8 N/A VBATT L11 N/A DXP L29 N/A DXN F31 N/A AVCCAUXTX2 B35 N/A VTTXPAD2 B36 N/A TXNPAD2 A36 N/A TXPPAD2 A35 N/A GNDA2 C34 N/A RXPPAD2 A34 N/A RXNPAD2 A33 N/A VTRXPAD2 B34 N/A AVCCAUXRX2 B33 N/A AVCCAUXTX4 B31 N/A VTTXPAD4 B32 N/A TXNPAD4 A32 N/A TXPPAD4 A31 N/A GNDA4 C31 N/A RXPPAD4 A30 N/A RXNPAD4 A29 N/A VTRXPAD4 B30 N/A AVCCAUXRX4 B29 N/A AVCCAUXTX5 B27 N/A VTTXPAD5 B28 N/A TXNPAD5 A28 N/A TXPPAD5 A27 N/A GNDA5 C27 N/A RXPPAD5 A26 N/A RXNPAD5 A25 N/A VTRXPAD5 B26 N/A AVCCAUXRX5 B25 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com No Connects XC2VP50 XC2VP70 Module 4 of 4 191 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 12: FF1517 — XC2VP50 and XC2VP70 Bank Pin Description Pin Number N/A AVCCAUXTX6 B23 N/A VTTXPAD6 B24 N/A TXNPAD6 A24 N/A TXPPAD6 A23 N/A GNDA6 C24 N/A RXPPAD6 A22 N/A RXNPAD6 A21 N/A VTRXPAD6 B22 N/A AVCCAUXRX6 B21 N/A AVCCAUXTX7 B18 N/A VTTXPAD7 B19 N/A TXNPAD7 A19 N/A TXPPAD7 A18 N/A GNDA7 C16 N/A RXPPAD7 A17 N/A RXNPAD7 A16 N/A VTRXPAD7 B17 N/A AVCCAUXRX7 B16 N/A AVCCAUXTX8 B14 N/A VTTXPAD8 B15 N/A TXNPAD8 A15 N/A TXPPAD8 A14 N/A GNDA8 C13 N/A RXPPAD8 A13 N/A RXNPAD8 A12 N/A VTRXPAD8 B13 N/A AVCCAUXRX8 B12 N/A AVCCAUXTX9 B10 N/A VTTXPAD9 B11 N/A TXNPAD9 A11 N/A TXPPAD9 A10 N/A GNDA9 C9 N/A RXPPAD9 A9 N/A RXNPAD9 A8 N/A VTRXPAD9 B9 N/A AVCCAUXRX9 B8 N/A AVCCAUXTX11 B6 N/A VTTXPAD11 B7 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com No Connects XC2VP50 XC2VP70 Module 4 of 4 192 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 12: FF1517 — XC2VP50 and XC2VP70 Bank Pin Description Pin Number N/A TXNPAD11 A7 N/A TXPPAD11 A6 N/A GNDA11 C6 N/A RXPPAD11 A5 N/A RXNPAD11 A4 N/A VTRXPAD11 B5 N/A AVCCAUXRX11 B4 N/A AVCCAUXRX14 AV4 N/A VTRXPAD14 AV5 N/A RXNPAD14 AW4 N/A RXPPAD14 AW5 N/A GNDA14 AU6 N/A TXPPAD14 AW6 N/A TXNPAD14 AW7 N/A VTTXPAD14 AV7 N/A AVCCAUXTX14 AV6 N/A AVCCAUXRX16 AV8 N/A VTRXPAD16 AV9 N/A RXNPAD16 AW8 N/A RXPPAD16 AW9 N/A GNDA16 AU9 N/A TXPPAD16 AW10 N/A TXNPAD16 AW11 N/A VTTXPAD16 AV11 N/A AVCCAUXTX16 AV10 N/A AVCCAUXRX17 AV12 N/A VTRXPAD17 AV13 N/A RXNPAD17 AW12 N/A RXPPAD17 AW13 N/A GNDA17 AU13 N/A TXPPAD17 AW14 N/A TXNPAD17 AW15 N/A VTTXPAD17 AV15 N/A AVCCAUXTX17 AV14 N/A AVCCAUXRX18 AV16 N/A VTRXPAD18 AV17 N/A RXNPAD18 AW16 N/A RXPPAD18 AW17 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com No Connects XC2VP50 XC2VP70 Module 4 of 4 193 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 12: FF1517 — XC2VP50 and XC2VP70 Bank Pin Description Pin Number N/A GNDA18 AU16 N/A TXPPAD18 AW18 N/A TXNPAD18 AW19 N/A VTTXPAD18 AV19 N/A AVCCAUXTX18 AV18 N/A AVCCAUXRX19 AV21 N/A VTRXPAD19 AV22 N/A RXNPAD19 AW21 N/A RXPPAD19 AW22 N/A GNDA19 AU24 N/A TXPPAD19 AW23 N/A TXNPAD19 AW24 N/A VTTXPAD19 AV24 N/A AVCCAUXTX19 AV23 N/A AVCCAUXRX20 AV25 N/A VTRXPAD20 AV26 N/A RXNPAD20 AW25 N/A RXPPAD20 AW26 N/A GNDA20 AU27 N/A TXPPAD20 AW27 N/A TXNPAD20 AW28 N/A VTTXPAD20 AV28 N/A AVCCAUXTX20 AV27 N/A AVCCAUXRX21 AV29 N/A VTRXPAD21 AV30 N/A RXNPAD21 AW29 N/A RXPPAD21 AW30 N/A GNDA21 AU31 N/A TXPPAD21 AW31 N/A TXNPAD21 AW32 N/A VTTXPAD21 AV32 N/A AVCCAUXTX21 AV31 N/A AVCCAUXRX23 AV33 N/A VTRXPAD23 AV34 N/A RXNPAD23 AW33 N/A RXPPAD23 AW34 N/A GNDA23 AU34 N/A TXPPAD23 AW35 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com No Connects XC2VP50 XC2VP70 Module 4 of 4 194 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 12: FF1517 — XC2VP50 and XC2VP70 Bank Pin Description Pin Number N/A TXNPAD23 AW36 N/A VTTXPAD23 AV36 N/A AVCCAUXTX23 AV35 N/A VCCINT AH28 N/A VCCINT M28 N/A VCCINT AG27 N/A VCCINT N27 N/A VCCINT AF26 N/A VCCINT P26 N/A VCCINT AE25 N/A VCCINT AD25 N/A VCCINT AC25 N/A VCCINT AB25 N/A VCCINT AA25 N/A VCCINT Y25 N/A VCCINT W25 N/A VCCINT V25 N/A VCCINT U25 N/A VCCINT T25 N/A VCCINT R25 N/A VCCINT AE24 N/A VCCINT AD24 N/A VCCINT T24 N/A VCCINT R24 N/A VCCINT AE23 N/A VCCINT R23 N/A VCCINT AE22 N/A VCCINT R22 N/A VCCINT AE21 N/A VCCINT R21 N/A VCCINT AE20 N/A VCCINT R20 N/A VCCINT AE19 N/A VCCINT R19 N/A VCCINT AE18 N/A VCCINT R18 N/A VCCINT AE17 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com No Connects XC2VP50 XC2VP70 Module 4 of 4 195 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 12: FF1517 — XC2VP50 and XC2VP70 Bank Pin Description Pin Number N/A VCCINT R17 N/A VCCINT AE16 N/A VCCINT AD16 N/A VCCINT T16 N/A VCCINT R16 N/A VCCINT AE15 N/A VCCINT AD15 N/A VCCINT AC15 N/A VCCINT AB15 N/A VCCINT AA15 N/A VCCINT Y15 N/A VCCINT W15 N/A VCCINT V15 N/A VCCINT U15 N/A VCCINT T15 N/A VCCINT R15 N/A VCCINT AF14 N/A VCCINT P14 N/A VCCINT AG13 N/A VCCINT N13 N/A VCCINT AH12 N/A VCCINT M12 N/A VCCAUX AV39 N/A VCCAUX AA39 N/A VCCAUX Y39 N/A VCCAUX W39 N/A VCCAUX B39 N/A VCCAUX AW38 N/A VCCAUX Y38 N/A VCCAUX A38 N/A VCCAUX AR35 N/A VCCAUX E35 N/A VCCAUX AP34 N/A VCCAUX F34 N/A VCCAUX AW20 N/A VCCAUX AV20 N/A VCCAUX B20 N/A VCCAUX A20 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com No Connects XC2VP50 XC2VP70 Module 4 of 4 196 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 12: FF1517 — XC2VP50 and XC2VP70 Bank Pin Description Pin Number N/A VCCAUX AP6 N/A VCCAUX F6 N/A VCCAUX AR5 N/A VCCAUX E5 N/A VCCAUX AW2 N/A VCCAUX Y2 N/A VCCAUX A2 N/A VCCAUX AV1 N/A VCCAUX AA1 N/A VCCAUX Y1 N/A VCCAUX W1 N/A VCCAUX B1 N/A GND A3 N/A GND AV2 N/A GND AU2 N/A GND AA2 N/A GND W2 N/A GND C2 N/A GND B2 N/A GND AU1 N/A GND AM1 N/A GND AH1 N/A GND AD1 N/A GND T1 N/A GND M1 N/A GND H1 N/A GND C1 N/A GND AD5 N/A GND T5 N/A GND M5 N/A GND H5 N/A GND AU4 N/A GND AT4 N/A GND D4 N/A GND C4 N/A GND AW3 N/A GND AV3 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com No Connects XC2VP50 XC2VP70 Module 4 of 4 197 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 12: FF1517 — XC2VP50 and XC2VP70 Bank Pin Description Pin Number N/A GND AU3 N/A GND AT3 N/A GND D3 N/A GND C3 N/A GND B3 N/A GND AN12 N/A GND G12 N/A GND C12 N/A GND Y10 N/A GND AH9 N/A GND AD9 N/A GND T9 N/A GND M9 N/A GND AU8 N/A GND AN8 N/A GND G8 N/A GND C8 N/A GND Y6 N/A GND AM5 N/A GND AH5 N/A GND T17 N/A GND AT16 N/A GND AN16 N/A GND AJ16 N/A GND AC16 N/A GND AB16 N/A GND AA16 N/A GND Y16 N/A GND W16 N/A GND V16 N/A GND U16 N/A GND L16 N/A GND G16 N/A GND D16 N/A GND AU12 N/A GND AB18 N/A GND AA18 N/A GND Y18 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com No Connects XC2VP50 XC2VP70 Module 4 of 4 198 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 12: FF1517 — XC2VP50 and XC2VP70 Bank Pin Description Pin Number N/A GND W18 N/A GND V18 N/A GND U18 N/A GND T18 N/A GND AD17 N/A GND AC17 N/A GND AB17 N/A GND AA17 N/A GND Y17 N/A GND W17 N/A GND V17 N/A GND U17 N/A GND P20 N/A GND L20 N/A GND G20 N/A GND C20 N/A GND AD19 N/A GND AC19 N/A GND AB19 N/A GND AA19 N/A GND Y19 N/A GND W19 N/A GND V19 N/A GND U19 N/A GND T19 N/A GND AD18 N/A GND AC18 N/A GND U21 N/A GND T21 N/A GND AU20 N/A GND AN20 N/A GND AJ20 N/A GND AF20 N/A GND AD20 N/A GND AC20 N/A GND AB20 N/A GND AA20 N/A GND Y20 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com No Connects XC2VP50 XC2VP70 Module 4 of 4 199 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 12: FF1517 — XC2VP50 and XC2VP70 Bank Pin Description Pin Number N/A GND W20 N/A GND V20 N/A GND U20 N/A GND T20 N/A GND AC22 N/A GND AB22 N/A GND AA22 N/A GND Y22 N/A GND W22 N/A GND V22 N/A GND U22 N/A GND T22 N/A GND AD21 N/A GND AC21 N/A GND AB21 N/A GND AA21 N/A GND Y21 N/A GND W21 N/A GND V21 N/A GND B38 N/A GND AW37 N/A GND AV37 N/A GND AU37 N/A GND AT37 N/A GND D37 N/A GND C37 N/A GND B37 N/A GND A37 N/A GND AU36 N/A GND AT36 N/A GND D36 N/A GND C36 N/A GND AM35 N/A GND AH35 N/A GND AD35 N/A GND T35 N/A GND M35 N/A GND H35 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com No Connects XC2VP50 XC2VP70 Module 4 of 4 200 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 12: FF1517 — XC2VP50 and XC2VP70 Bank Pin Description Pin Number N/A GND Y34 N/A GND AU32 N/A GND AN32 N/A GND G32 N/A GND C32 N/A GND AH31 N/A GND AD31 N/A GND T31 N/A GND M31 N/A GND Y30 N/A GND AU28 N/A GND AN28 N/A GND G28 N/A GND C28 N/A GND AT24 N/A GND AN24 N/A GND AJ24 N/A GND AC24 N/A GND AB24 N/A GND AA24 N/A GND Y24 N/A GND W24 N/A GND V24 N/A GND U24 N/A GND L24 N/A GND G24 N/A GND D24 N/A GND AD23 N/A GND AC23 N/A GND AB23 N/A GND AA23 N/A GND Y23 N/A GND W23 N/A GND V23 N/A GND U23 N/A GND T23 N/A GND AD22 N/A GND AU39 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com No Connects XC2VP50 XC2VP70 Module 4 of 4 201 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 12: FF1517 — XC2VP50 and XC2VP70 Bank Pin Description Pin Number N/A GND AM39 N/A GND AH39 N/A GND AD39 N/A GND T39 N/A GND M39 N/A GND H39 N/A GND C39 N/A GND AV38 N/A GND AU38 N/A GND AA38 N/A GND W38 N/A GND C38 No Connects XC2VP50 XC2VP70 Notes: 1. See Table 4 for an explanation of the signals available on this pin. DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 4 of 4 202 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information FF1517 Flip-Chip Fine-Pitch BGA Package Specifications (1.00mm pitch) Figure 8: FF1517 Flip-Chip Fine-Pitch BGA Package Specifications DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 4 of 4 203 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information FF1704 Flip-Chip Fine-Pitch BGA Package As shown in Table 13, XC2VP70 and XC2VP100 Virtex-II Pro devices are available in the FF1704 flip-chip fine-pitch BGA package. Following this table are the FF1704 Flip-Chip Fine-Pitch BGA Package Specifications (1.00mm pitch). Table 13: FF1704 — XC2VP70, XC2VPX70, and XC2VP100 Pin Description No Connects XC2VPX70 (if Different) Bank Virtex-II Pro Devices 0 IO_L01N_0/VRP_0 G34 0 IO_L01P_0/VRN_0 H34 0 IO_L02N_0 F34 0 IO_L02P_0 E34 0 IO_L03N_0 C34 0 IO_L03P_0/VREF_0 D34 0 IO_L05_0/No_Pair K32 0 IO_L06N_0 H33 0 IO_L06P_0 J33 0 IO_L07N_0 F33 0 IO_L07P_0 G33 0 IO_L08N_0 E33 0 IO_L08P_0 D33 0 IO_L09N_0 H32 0 IO_L09P_0/VREF_0 J32 0 IO_L19N_0 E32 0 IO_L19P_0 F32 0 IO_L20N_0 C33 0 IO_L20P_0 C32 0 IO_L21N_0 K31 0 IO_L21P_0 L31 0 IO_L25N_0 H31 0 IO_L25P_0 J31 0 IO_L26N_0 G31 0 IO_L26P_0 F31 0 IO_L27N_0 D31 0 IO_L27P_0/VREF_0 E31 0 IO_L28N_0 L30 0 IO_L28P_0 M30 0 IO_L29N_0 J30 0 IO_L29P_0 K30 0 IO_L30N_0 G30 0 IO_L30P_0 H30 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Pin Number XC2VP70, XC2VPX70 XC2VP100 Module 4 of 4 204 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 13: FF1704 — XC2VP70, XC2VPX70, and XC2VP100 Pin Description No Connects XC2VPX70 (if Different) Virtex-II Pro Devices 0 IO_L34N_0 E30 0 IO_L34P_0 F30 0 IO_L35N_0 D30 0 IO_L35P_0 C30 0 IO_L36N_0 M28 0 IO_L36P_0/VREF_0 M29 0 IO_L78N_0 K29 NC 0 IO_L78P_0 L29 NC 0 IO_L83_0/No_Pair H29 NC 0 IO_L84N_0 F29 NC 0 IO_L84P_0 G29 NC 0 IO_L85N_0 D29 NC 0 IO_L85P_0 E29 NC 0 IO_L86N_0 L28 NC 0 IO_L86P_0 K28 NC 0 IO_L87N_0 H28 NC 0 IO_L87P_0/VREF_0 J28 NC 0 IO_L37N_0 E28 0 IO_L37P_0 F28 0 IO_L38N_0 C29 0 IO_L38P_0 C28 0 IO_L39N_0 L27 0 IO_L39P_0 M27 0 IO_L43N_0 J27 0 IO_L43P_0 K27 0 IO_L44N_0 H27 0 IO_L44P_0 G27 0 IO_L45N_0 E27 0 IO_L45P_0/VREF_0 F27 0 IO_L46N_0 M25 0 IO_L46P_0 M26 0 IO_L47N_0 L26 0 IO_L47P_0 K26 0 IO_L48N_0 H26 0 IO_L48P_0 J26 0 IO_L49N_0 F26 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Pin Number XC2VP70, XC2VPX70 Bank XC2VP100 Module 4 of 4 205 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 13: FF1704 — XC2VP70, XC2VPX70, and XC2VP100 Pin Description No Connects XC2VPX70 (if Different) Bank Virtex-II Pro Devices 0 IO_L49P_0 G26 0 IO_L50_0/No_Pair D27 0 IO_L53_0/No_Pair D26 0 IO_L54N_0 K25 0 IO_L54P_0 L25 0 IO_L55N_0 G25 0 IO_L55P_0 H25 0 IO_L56N_0 E26 0 IO_L56P_0 E25 0 IO_L57N_0 C25 0 IO_L57P_0/VREF_0 C26 0 IO_L58N_0 L24 0 IO_L58P_0 M24 0 IO_L59N_0 J24 0 IO_L59P_0 K24 0 IO_L60N_0 G24 0 IO_L60P_0 H24 0 IO_L64N_0 E24 0 IO_L64P_0 F24 0 IO_L65N_0 D24 0 IO_L65P_0 C24 0 IO_L66N_0 M22 0 IO_L66P_0/VREF_0 M23 0 IO_L67N_0 K23 0 IO_L67P_0 L23 0 IO_L68N_0 J23 0 IO_L68P_0 H23 0 IO_L69N_0 E23 0 IO_L69P_0/VREF_0 F23 0 IO_L73N_0 C23 0 IO_L73P_0 D23 0 IO_L74N_0/GCLK7P K22 0 IO_L74P_0/GCLK6S J22 0 IO_L75N_0/GCLK5P BREFCLKN F22 0 IO_L75P_0/GCLK4S BREFCLKP G22 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Pin Number XC2VP70, XC2VPX70 XC2VP100 Module 4 of 4 206 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 13: FF1704 — XC2VP70, XC2VPX70, and XC2VP100 Pin Description No Connects XC2VPX70 (if Different) Bank Virtex-II Pro Devices 1 IO_L75N_1/GCLK3P G21 1 IO_L75P_1/GCLK2S F21 1 IO_L74N_1/GCLK1P J21 1 IO_L74P_1/GCLK0S K21 1 IO_L73N_1 D20 1 IO_L73P_1 C20 1 IO_L69N_1/VREF_1 F20 1 IO_L69P_1 E20 1 IO_L68N_1 H20 1 IO_L68P_1 J20 1 IO_L67N_1 L20 1 IO_L67P_1 K20 1 IO_L66N_1/VREF_1 M20 1 IO_L66P_1 M21 1 IO_L65N_1 C19 1 IO_L65P_1 D19 1 IO_L64N_1 F19 1 IO_L64P_1 E19 1 IO_L60N_1 H19 1 IO_L60P_1 G19 1 IO_L59N_1 K19 1 IO_L59P_1 J19 1 IO_L58N_1 M19 1 IO_L58P_1 L19 1 IO_L57N_1/VREF_1 C17 1 IO_L57P_1 C18 1 IO_L56N_1 E18 1 IO_L56P_1 E17 1 IO_L55N_1 H18 1 IO_L55P_1 G18 1 IO_L54N_1 L18 1 IO_L54P_1 K18 1 IO_L53_1/No_Pair D17 1 IO_L50_1/No_Pair D16 1 IO_L49N_1 G17 1 IO_L49P_1 F17 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Pin Number XC2VP70, XC2VPX70 XC2VP100 Module 4 of 4 207 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 13: FF1704 — XC2VP70, XC2VPX70, and XC2VP100 Pin Description No Connects XC2VPX70 (if Different) Virtex-II Pro Devices 1 IO_L48N_1 J17 1 IO_L48P_1 H17 1 IO_L47N_1 K17 1 IO_L47P_1 L17 1 IO_L46N_1 M17 1 IO_L46P_1 M18 1 IO_L45N_1/VREF_1 F16 1 IO_L45P_1 E16 1 IO_L44N_1 G16 1 IO_L44P_1 H16 1 IO_L43N_1 K16 1 IO_L43P_1 J16 1 IO_L39N_1 M16 1 IO_L39P_1 L16 1 IO_L38N_1 C15 1 IO_L38P_1 C14 1 IO_L37N_1 F15 1 IO_L37P_1 E15 1 IO_L87N_1/VREF_1 J15 NC 1 IO_L87P_1 H15 NC 1 IO_L86N_1 K15 NC 1 IO_L86P_1 L15 NC 1 IO_L85N_1 E14 NC 1 IO_L85P_1 D14 NC 1 IO_L84N_1 G14 NC 1 IO_L84P_1 F14 NC 1 IO_L83_1/No_Pair H14 NC 1 IO_L78N_1 L14 NC 1 IO_L78P_1 K14 NC 1 IO_L36N_1/VREF_1 M14 1 IO_L36P_1 M15 1 IO_L35N_1 C13 1 IO_L35P_1 D13 1 IO_L34N_1 F13 1 IO_L34P_1 E13 1 IO_L30N_1 H13 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Pin Number XC2VP70, XC2VPX70 Bank XC2VP100 Module 4 of 4 208 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 13: FF1704 — XC2VP70, XC2VPX70, and XC2VP100 Pin Description No Connects XC2VPX70 (if Different) Bank Virtex-II Pro Devices 1 IO_L30P_1 G13 1 IO_L29N_1 K13 1 IO_L29P_1 J13 1 IO_L28N_1 M13 1 IO_L28P_1 L13 1 IO_L27N_1/VREF_1 E12 1 IO_L27P_1 D12 1 IO_L26N_1 F12 1 IO_L26P_1 G12 1 IO_L25N_1 J12 1 IO_L25P_1 H12 1 IO_L21N_1 L12 1 IO_L21P_1 K12 1 IO_L20N_1 C11 1 IO_L20P_1 C10 1 IO_L19N_1 F11 1 IO_L19P_1 E11 1 IO_L09N_1/VREF_1 J11 1 IO_L09P_1 H11 1 IO_L08N_1 D10 1 IO_L08P_1 E10 1 IO_L07N_1 G10 1 IO_L07P_1 F10 1 IO_L06N_1 J10 1 IO_L06P_1 H10 1 IO_L05_1/No_Pair K11 1 IO_L03N_1/VREF_1 D9 1 IO_L03P_1 C9 1 IO_L02N_1 E9 1 IO_L02P_1 F9 1 IO_L01N_1/VRP_1 H9 1 IO_L01P_1/VRN_1 G9 2 IO_L01N_2/VRP_2 C5 2 IO_L01P_2/VRN_2 C6 2 IO_L02N_2 E7 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Pin Number XC2VP70, XC2VPX70 XC2VP100 Module 4 of 4 209 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 13: FF1704 — XC2VP70, XC2VPX70, and XC2VP100 Pin Description No Connects XC2VPX70 (if Different) Bank Virtex-II Pro Devices 2 IO_L02P_2 D7 2 IO_L03N_2 E6 2 IO_L03P_2 D6 2 IO_L04N_2/VREF_2 G6 2 IO_L04P_2 F7 2 IO_L05N_2 D3 2 IO_L05P_2 E3 2 IO_L06N_2 D1 2 IO_L06P_2 D2 2 IO_L73N_2 E1 2 IO_L73P_2 E2 2 IO_L74N_2 F4 2 IO_L74P_2 F3 2 IO_L75N_2 F1 2 IO_L75P_2 F2 2 IO_L76N_2/VREF_2 G3 2 IO_L76P_2 G4 2 IO_L77N_2 G2 2 IO_L77P_2 G1 2 IO_L78N_2 G5 2 IO_L78P_2 H6 2 IO_L79N_2 H4 2 IO_L79P_2 H5 2 IO_L80N_2 H3 2 IO_L80P_2 H2 2 IO_L81N_2 H7 2 IO_L81P_2 J8 2 IO_L82N_2/VREF_2 J6 2 IO_L82P_2 J7 2 IO_L83N_2 J5 2 IO_L83P_2 J4 2 IO_L84N_2 J1 2 IO_L84P_2 J2 2 IO_L07N_2 K9 2 IO_L07P_2 L10 2 IO_L08N_2 K6 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Pin Number XC2VP70, XC2VPX70 XC2VP100 Module 4 of 4 210 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 13: FF1704 — XC2VP70, XC2VPX70, and XC2VP100 Pin Description No Connects XC2VPX70 (if Different) Bank Virtex-II Pro Devices 2 IO_L08P_2 K5 2 IO_L09N_2 K8 2 IO_L09P_2 K7 2 IO_L10N_2/VREF_2 K2 2 IO_L10P_2 K1 2 IO_L11N_2 L8 2 IO_L11P_2 L9 2 IO_L12N_2 L6 2 IO_L12P_2 L7 2 IO_L13N_2 K3 2 IO_L13P_2 L3 2 IO_L14N_2 L5 2 IO_L14P_2 L4 2 IO_L15N_2 L1 2 IO_L15P_2 L2 2 IO_L16N_2/VREF_2 M7 2 IO_L16P_2 M8 2 IO_L17N_2 M11 2 IO_L17P_2 M12 2 IO_L18N_2 M9 2 IO_L18P_2 M10 2 IO_L19N_2 M2 2 IO_L19P_2 M3 2 IO_L20N_2 M4 2 IO_L20P_2 M5 2 IO_L21N_2 N7 2 IO_L21P_2 N8 2 IO_L22N_2/VREF_2 N5 2 IO_L22P_2 N6 2 IO_L23N_2 N9 2 IO_L23P_2 N10 2 IO_L24N_2 N3 2 IO_L24P_2 N4 2 IO_L25N_2 N1 2 IO_L25P_2 N2 2 IO_L26N_2 N11 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Pin Number XC2VP70, XC2VPX70 XC2VP100 Module 4 of 4 211 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 13: FF1704 — XC2VP70, XC2VPX70, and XC2VP100 Pin Description No Connects XC2VPX70 (if Different) Bank Virtex-II Pro Devices 2 IO_L26P_2 N12 2 IO_L27N_2 P9 2 IO_L27P_2 P10 2 IO_L28N_2/VREF_2 P7 2 IO_L28P_2 P8 2 IO_L29N_2 P11 2 IO_L29P_2 P12 2 IO_L30N_2 P5 2 IO_L30P_2 P6 2 IO_L31N_2 P1 2 IO_L31P_2 P2 2 IO_L32N_2 R9 2 IO_L32P_2 R10 2 IO_L33N_2 R5 2 IO_L33P_2 R6 2 IO_L34N_2/VREF_2 P3 2 IO_L34P_2 R3 2 IO_L35N_2 R1 2 IO_L35P_2 R2 2 IO_L36N_2 R11 2 IO_L36P_2 R12 2 IO_L37N_2 T6 2 IO_L37P_2 T7 2 IO_L38N_2 T8 2 IO_L38P_2 R8 2 IO_L39N_2 T4 2 IO_L39P_2 T5 2 IO_L40N_2/VREF_2 T2 2 IO_L40P_2 T3 2 IO_L41N_2 T10 2 IO_L41P_2 T11 2 IO_L42N_2 U7 2 IO_L42P_2 U8 2 IO_L43N_2 U5 2 IO_L43P_2 U6 2 IO_L44N_2 U9 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Pin Number XC2VP70, XC2VPX70 XC2VP100 Module 4 of 4 212 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 13: FF1704 — XC2VP70, XC2VPX70, and XC2VP100 Pin Description No Connects XC2VPX70 (if Different) Bank Virtex-II Pro Devices 2 IO_L44P_2 U10 2 IO_L45N_2 U3 2 IO_L45P_2 U4 2 IO_L46N_2/VREF_2 U1 2 IO_L46P_2 U2 2 IO_L47N_2 T12 2 IO_L47P_2 U12 2 IO_L48N_2 V10 2 IO_L48P_2 V11 2 IO_L49N_2 V7 2 IO_L49P_2 V8 2 IO_L50N_2 U11 2 IO_L50P_2 V12 2 IO_L51N_2 V4 2 IO_L51P_2 V5 2 IO_L52N_2/VREF_2 V1 2 IO_L52P_2 V2 2 IO_L53N_2 W9 2 IO_L53P_2 W10 2 IO_L54N_2 W7 2 IO_L54P_2 W8 2 IO_L55N_2 W5 2 IO_L55P_2 W6 2 IO_L56N_2 W11 2 IO_L56P_2 W12 2 IO_L57N_2 W3 2 IO_L57P_2 W4 2 IO_L58N_2/VREF_2 W1 2 IO_L58P_2 W2 2 IO_L59N_2 Y9 2 IO_L59P_2 Y10 2 IO_L60N_2 Y6 2 IO_L60P_2 Y7 2 IO_L85N_2 Y3 2 IO_L85P_2 Y4 2 IO_L86N_2 Y11 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Pin Number XC2VP70, XC2VPX70 XC2VP100 Module 4 of 4 213 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 13: FF1704 — XC2VP70, XC2VPX70, and XC2VP100 Pin Description No Connects XC2VPX70 (if Different) Bank Virtex-II Pro Devices 2 IO_L86P_2 Y12 2 IO_L87N_2 AA9 2 IO_L87P_2 AA10 2 IO_L88N_2/VREF_2 AA6 2 IO_L88P_2 AA7 2 IO_L89N_2 AA12 2 IO_L89P_2 AB12 2 IO_L90N_2 AA3 2 IO_L90P_2 AA4 3 IO_L90N_3 AB3 3 IO_L90P_3 AB4 3 IO_L89N_3 AB6 3 IO_L89P_3 AB7 3 IO_L88N_3 AB9 3 IO_L88P_3 AB10 3 IO_L87N_3/VREF_3 AC3 3 IO_L87P_3 AC4 3 IO_L86N_3 AC11 3 IO_L86P_3 AC12 3 IO_L85N_3 AC6 3 IO_L85P_3 AC7 3 IO_L60N_3 AC9 3 IO_L60P_3 AC10 3 IO_L59N_3 AD9 3 IO_L59P_3 AD10 3 IO_L58N_3 AD1 3 IO_L58P_3 AD2 3 IO_L57N_3/VREF_3 AD3 3 IO_L57P_3 AD4 3 IO_L56N_3 AD11 3 IO_L56P_3 AD12 3 IO_L55N_3 AD5 3 IO_L55P_3 AD6 3 IO_L54N_3 AD7 3 IO_L54P_3 AD8 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Pin Number XC2VP70, XC2VPX70 XC2VP100 Module 4 of 4 214 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 13: FF1704 — XC2VP70, XC2VPX70, and XC2VP100 Pin Description No Connects XC2VPX70 (if Different) Bank Virtex-II Pro Devices 3 IO_L53N_3 AE10 3 IO_L53P_3 AE11 3 IO_L52N_3 AE1 3 IO_L52P_3 AE2 3 IO_L51N_3/VREF_3 AE4 3 IO_L51P_3 AE5 3 IO_L50N_3 AF11 3 IO_L50P_3 AE12 3 IO_L49N_3 AE7 3 IO_L49P_3 AE8 3 IO_L48N_3 AF1 3 IO_L48P_3 AF2 3 IO_L47N_3 AG12 3 IO_L47P_3 AF12 3 IO_L46N_3 AF3 3 IO_L46P_3 AF4 3 IO_L45N_3/VREF_3 AF5 3 IO_L45P_3 AF6 3 IO_L44N_3 AF7 3 IO_L44P_3 AF8 3 IO_L43N_3 AF9 3 IO_L43P_3 AF10 3 IO_L42N_3 AG2 3 IO_L42P_3 AG3 3 IO_L41N_3 AG10 3 IO_L41P_3 AG11 3 IO_L40N_3 AG4 3 IO_L40P_3 AG5 3 IO_L39N_3/VREF_3 AG6 3 IO_L39P_3 AG7 3 IO_L38N_3 AG8 3 IO_L38P_3 AH8 3 IO_L37N_3 AH1 3 IO_L37P_3 AH2 3 IO_L36N_3 AH3 3 IO_L36P_3 AJ3 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Pin Number XC2VP70, XC2VPX70 XC2VP100 Module 4 of 4 215 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 13: FF1704 — XC2VP70, XC2VPX70, and XC2VP100 Pin Description No Connects XC2VPX70 (if Different) Bank Virtex-II Pro Devices 3 IO_L35N_3 AH11 3 IO_L35P_3 AH12 3 IO_L34N_3 AH5 3 IO_L34P_3 AH6 3 IO_L33N_3/VREF_3 AH9 3 IO_L33P_3 AH10 3 IO_L32N_3 AJ11 3 IO_L32P_3 AJ12 3 IO_L31N_3 AJ1 3 IO_L31P_3 AJ2 3 IO_L30N_3 AJ5 3 IO_L30P_3 AJ6 3 IO_L29N_3 AJ9 3 IO_L29P_3 AJ10 3 IO_L28N_3 AJ7 3 IO_L28P_3 AJ8 3 IO_L27N_3/VREF_3 AK1 3 IO_L27P_3 AK2 3 IO_L26N_3 AK11 3 IO_L26P_3 AK12 3 IO_L25N_3 AK3 3 IO_L25P_3 AK4 3 IO_L24N_3 AK5 3 IO_L24P_3 AK6 3 IO_L23N_3 AK9 3 IO_L23P_3 AK10 3 IO_L22N_3 AK7 3 IO_L22P_3 AK8 3 IO_L21N_3/VREF_3 AL2 3 IO_L21P_3 AL3 3 IO_L20N_3 AL11 3 IO_L20P_3 AL12 3 IO_L19N_3 AL4 3 IO_L19P_3 AL5 3 IO_L18N_3 AL7 3 IO_L18P_3 AL8 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Pin Number XC2VP70, XC2VPX70 XC2VP100 Module 4 of 4 216 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 13: FF1704 — XC2VP70, XC2VPX70, and XC2VP100 Pin Description No Connects XC2VPX70 (if Different) Bank Virtex-II Pro Devices 3 IO_L17N_3 AL9 3 IO_L17P_3 AL10 3 IO_L16N_3 AM1 3 IO_L16P_3 AM2 3 IO_L15N_3/VREF_3 AM3 3 IO_L15P_3 AN3 3 IO_L14N_3 AM8 3 IO_L14P_3 AM9 3 IO_L13N_3 AM4 3 IO_L13P_3 AM5 3 IO_L12N_3 AM6 3 IO_L12P_3 AM7 3 IO_L11N_3 AN9 3 IO_L11P_3 AM10 3 IO_L10N_3 AN1 3 IO_L10P_3 AN2 3 IO_L09N_3/VREF_3 AN5 3 IO_L09P_3 AN6 3 IO_L08N_3 AN7 3 IO_L08P_3 AN8 3 IO_L07N_3 AP1 3 IO_L07P_3 AP2 3 IO_L84N_3 AP4 3 IO_L84P_3 AP5 3 IO_L83N_3 AR7 3 IO_L83P_3 AP8 3 IO_L82N_3 AP6 3 IO_L82P_3 AP7 3 IO_L81N_3/VREF_3 AR2 3 IO_L81P_3 AR3 3 IO_L80N_3 AT5 3 IO_L80P_3 AR6 3 IO_L79N_3 AR4 3 IO_L79P_3 AR5 3 IO_L78N_3 AT1 3 IO_L78P_3 AT2 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Pin Number XC2VP70, XC2VPX70 XC2VP100 Module 4 of 4 217 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 13: FF1704 — XC2VP70, XC2VPX70, and XC2VP100 Pin Description No Connects XC2VPX70 (if Different) Bank Virtex-II Pro Devices 3 IO_L77N_3 AT3 3 IO_L77P_3 AT4 3 IO_L76N_3 AU1 3 IO_L76P_3 AU2 3 IO_L75N_3/VREF_3 AU3 3 IO_L75P_3 AU4 3 IO_L74N_3 AV3 3 IO_L74P_3 AW3 3 IO_L73N_3 AV1 3 IO_L73P_3 AV2 3 IO_L06N_3 AW1 3 IO_L06P_3 AW2 3 IO_L05N_3 AT8 3 IO_L05P_3 AU8 3 IO_L04N_3 AT6 3 IO_L04P_3 AU7 3 IO_L03N_3/VREF_3 AY5 3 IO_L03P_3 AY6 3 IO_L02N_3 AV7 3 IO_L02P_3 AW7 3 IO_L01N_3/VRP_3 AV6 3 IO_L01P_3/VRN_3 AW6 4 IO_L01N_4/BUSY/DOUT (1) AT9 4 IO_L01P_4/INIT_B AR9 4 IO_L02N_4/D0/DIN (1) AU9 4 IO_L02P_4/D1 AV9 4 IO_L03N_4/D2 AY9 4 IO_L03P_4/D3 AW9 4 IO_L05_4/No_Pair AN11 4 IO_L06N_4/VRP_4 AR10 4 IO_L06P_4/VRN_4 AP10 4 IO_L07N_4 AU10 4 IO_L07P_4/VREF_4 AT10 4 IO_L08N_4 AV10 4 IO_L08P_4 AW10 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Pin Number XC2VP70, XC2VPX70 XC2VP100 Module 4 of 4 218 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 13: FF1704 — XC2VP70, XC2VPX70, and XC2VP100 Pin Description No Connects XC2VPX70 (if Different) Virtex-II Pro Devices 4 IO_L09N_4 AR11 4 IO_L09P_4/VREF_4 AP11 4 IO_L19N_4 AV11 4 IO_L19P_4 AU11 4 IO_L20N_4 AY10 4 IO_L20P_4 AY11 4 IO_L21N_4 AN12 4 IO_L21P_4 AM12 4 IO_L25N_4 AR12 4 IO_L25P_4 AP12 4 IO_L26N_4 AT12 4 IO_L26P_4 AU12 4 IO_L27N_4 AW12 4 IO_L27P_4/VREF_4 AV12 4 IO_L28N_4 AM13 4 IO_L28P_4 AL13 4 IO_L29N_4 AP13 4 IO_L29P_4 AN13 4 IO_L30N_4 AT13 4 IO_L30P_4 AR13 4 IO_L34N_4 AV13 4 IO_L34P_4 AU13 4 IO_L35N_4 AW13 4 IO_L35P_4 AY13 4 IO_L36N_4 AL15 4 IO_L36P_4/VREF_4 AL14 4 IO_L78N_4 AN14 NC 4 IO_L78P_4 AM14 NC 4 IO_L83_4/No_Pair AR14 NC 4 IO_L84N_4 AU14 NC 4 IO_L84P_4 AT14 NC 4 IO_L85N_4 AW14 NC 4 IO_L85P_4 AV14 NC 4 IO_L86N_4 AM15 NC 4 IO_L86P_4 AN15 NC 4 IO_L87N_4 AR15 NC DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Pin Number XC2VP70, XC2VPX70 Bank XC2VP100 Module 4 of 4 219 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 13: FF1704 — XC2VP70, XC2VPX70, and XC2VP100 Pin Description No Connects Pin Number XC2VP70, XC2VPX70 IO_L87P_4/VREF_4 AP15 NC 4 IO_L37N_4 AV15 4 IO_L37P_4 AU15 4 IO_L38N_4 AY14 4 IO_L38P_4 AY15 4 IO_L39N_4 AM16 4 IO_L39P_4 AL16 4 IO_L43N_4 AP16 4 IO_L43P_4 AN16 4 IO_L44N_4 AR16 4 IO_L44P_4 AT16 4 IO_L45N_4 AV16 4 IO_L45P_4/VREF_4 AU16 4 IO_L46N_4 AL18 4 IO_L46P_4 AL17 4 IO_L47N_4 AM17 4 IO_L47P_4 AN17 4 IO_L48N_4 AR17 4 IO_L48P_4 AP17 4 IO_L49N_4 AU17 4 IO_L49P_4 AT17 4 IO_L50_4/No_Pair AW16 4 IO_L53_4/No_Pair AW17 4 IO_L54N_4 AN18 4 IO_L54P_4 AM18 4 IO_L55N_4 AT18 4 IO_L55P_4 AR18 4 IO_L56N_4 AV17 4 IO_L56P_4 AV18 4 IO_L57N_4 AY18 4 IO_L57P_4/VREF_4 AY17 4 IO_L58N_4 AM19 4 IO_L58P_4 AL19 4 IO_L59N_4 AP19 4 IO_L59P_4 AN19 4 IO_L60N_4 AT19 Bank Virtex-II Pro Devices 4 DS083 (v4.7) November 5, 2007 Product Specification XC2VPX70 (if Different) www.xilinx.com XC2VP100 Module 4 of 4 220 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 13: FF1704 — XC2VP70, XC2VPX70, and XC2VP100 Pin Description No Connects XC2VPX70 (if Different) Bank Virtex-II Pro Devices 4 IO_L60P_4 AR19 4 IO_L64N_4 AV19 4 IO_L64P_4 AU19 4 IO_L65N_4 AW19 4 IO_L65P_4 AY19 4 IO_L66N_4 AL21 4 IO_L66P_4/VREF_4 AL20 4 IO_L67N_4 AN20 4 IO_L67P_4 AM20 4 IO_L68N_4 AP20 4 IO_L68P_4 AR20 4 IO_L69N_4 AV20 4 IO_L69P_4/VREF_4 AU20 4 IO_L73N_4 AY20 4 IO_L73P_4 AW20 4 IO_L74N_4/GCLK3S AN21 4 IO_L74P_4/GCLK2P AP21 4 IO_L75N_4/GCLK1S AU21 4 IO_L75P_4/GCLK0P AT21 5 IO_L75N_5/GCLK7S BREFCLKN AT22 5 IO_L75P_5/GCLK6P BREFCLKP AU22 5 IO_L74N_5/GCLK5S AP22 5 IO_L74P_5/GCLK4P AN22 5 IO_L73N_5 AW23 5 IO_L73P_5 AY23 5 IO_L69N_5/VREF_5 AU23 5 IO_L69P_5 AV23 5 IO_L68N_5 AR23 5 IO_L68P_5 AP23 5 IO_L67N_5 AM23 5 IO_L67P_5 AN23 5 IO_L66N_5/VREF_5 AL23 5 IO_L66P_5 AL22 5 IO_L65N_5 AY24 5 IO_L65P_5 AW24 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Pin Number XC2VP70, XC2VPX70 XC2VP100 Module 4 of 4 221 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 13: FF1704 — XC2VP70, XC2VPX70, and XC2VP100 Pin Description No Connects XC2VPX70 (if Different) Bank Virtex-II Pro Devices 5 IO_L64N_5 AU24 5 IO_L64P_5 AV24 5 IO_L60N_5 AR24 5 IO_L60P_5 AT24 5 IO_L59N_5 AN24 5 IO_L59P_5 AP24 5 IO_L58N_5 AL24 5 IO_L58P_5 AM24 5 IO_L57N_5/VREF_5 AY26 5 IO_L57P_5 AY25 5 IO_L56N_5 AV25 5 IO_L56P_5 AV26 5 IO_L55N_5 AR25 5 IO_L55P_5 AT25 5 IO_L54N_5 AM25 5 IO_L54P_5 AN25 5 IO_L53_5/No_Pair AW26 5 IO_L50_5/No_Pair AW27 5 IO_L49N_5 AT26 5 IO_L49P_5 AU26 5 IO_L48N_5 AP26 5 IO_L48P_5 AR26 5 IO_L47N_5 AN26 5 IO_L47P_5 AM26 5 IO_L46N_5 AL26 5 IO_L46P_5 AL25 5 IO_L45N_5/VREF_5 AU27 5 IO_L45P_5 AV27 5 IO_L44N_5 AT27 5 IO_L44P_5 AR27 5 IO_L43N_5 AN27 5 IO_L43P_5 AP27 5 IO_L39N_5 AL27 5 IO_L39P_5 AM27 5 IO_L38N_5 AY28 5 IO_L38P_5 AY29 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Pin Number XC2VP70, XC2VPX70 XC2VP100 Module 4 of 4 222 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 13: FF1704 — XC2VP70, XC2VPX70, and XC2VP100 Pin Description No Connects XC2VPX70 (if Different) Virtex-II Pro Devices 5 IO_L37N_5 AU28 5 IO_L37P_5 AV28 5 IO_L87N_5/VREF_5 AP28 NC 5 IO_L87P_5 AR28 NC 5 IO_L86N_5 AN28 NC 5 IO_L86P_5 AM28 NC 5 IO_L85N_5 AV29 NC 5 IO_L85P_5 AW29 NC 5 IO_L84N_5 AT29 NC 5 IO_L84P_5 AU29 NC 5 IO_L83_5/No_Pair AR29 NC 5 IO_L78N_5 AM29 NC 5 IO_L78P_5 AN29 NC 5 IO_L36N_5/VREF_5 AL29 5 IO_L36P_5 AL28 5 IO_L35N_5 AY30 5 IO_L35P_5 AW30 5 IO_L34N_5 AU30 5 IO_L34P_5 AV30 5 IO_L30N_5 AR30 5 IO_L30P_5 AT30 5 IO_L29N_5 AN30 5 IO_L29P_5 AP30 5 IO_L28N_5 AL30 5 IO_L28P_5 AM30 5 IO_L27N_5/VREF_5 AV31 5 IO_L27P_5 AW31 5 IO_L26N_5 AU31 5 IO_L26P_5 AT31 5 IO_L25N_5 AP31 5 IO_L25P_5 AR31 5 IO_L21N_5 AM31 5 IO_L21P_5 AN31 5 IO_L20N_5 AY32 5 IO_L20P_5 AY33 5 IO_L19N_5 AU32 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Pin Number XC2VP70, XC2VPX70 Bank XC2VP100 Module 4 of 4 223 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 13: FF1704 — XC2VP70, XC2VPX70, and XC2VP100 Pin Description No Connects XC2VPX70 (if Different) Bank Virtex-II Pro Devices 5 IO_L19P_5 AV32 5 IO_L09N_5/VREF_5 AP32 5 IO_L09P_5 AR32 5 IO_L08N_5 AW33 5 IO_L08P_5 AV33 5 IO_L07N_5/VREF_5 AT33 5 IO_L07P_5 AU33 5 IO_L06N_5/VRP_5 AP33 5 IO_L06P_5/VRN_5 AR33 5 IO_L05_5/No_Pair AN32 5 IO_L03N_5/D4 AW34 5 IO_L03P_5/D5 AY34 5 IO_L02N_5/D6 AV34 5 IO_L02P_5/D7 AU34 5 IO_L01N_5/RDWR_B AR34 5 IO_L01P_5/CS_B AT34 6 IO_L01P_6/VRN_6 AW37 6 IO_L01N_6/VRP_6 AV37 6 IO_L02P_6 AW36 6 IO_L02N_6 AV36 6 IO_L03P_6 AY37 6 IO_L03N_6/VREF_6 AY38 6 IO_L04P_6 AU36 6 IO_L04N_6 AT37 6 IO_L05P_6 AU35 6 IO_L05N_6 AT35 6 IO_L06P_6 AW41 6 IO_L06N_6 AW42 6 IO_L73P_6 AV41 6 IO_L73N_6 AV42 6 IO_L74P_6 AW40 6 IO_L74N_6 AV40 6 IO_L75P_6 AU39 6 IO_L75N_6/VREF_6 AU40 6 IO_L76P_6 AU41 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Pin Number XC2VP70, XC2VPX70 XC2VP100 Module 4 of 4 224 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 13: FF1704 — XC2VP70, XC2VPX70, and XC2VP100 Pin Description No Connects XC2VPX70 (if Different) Bank Virtex-II Pro Devices 6 IO_L76N_6 AU42 6 IO_L77P_6 AT39 6 IO_L77N_6 AT40 6 IO_L78P_6 AT41 6 IO_L78N_6 AT42 6 IO_L79P_6 AR38 6 IO_L79N_6 AR39 6 IO_L80P_6 AR37 6 IO_L80N_6 AT38 6 IO_L81P_6 AR40 6 IO_L81N_6/VREF_6 AR41 6 IO_L82P_6 AP36 6 IO_L82N_6 AP37 6 IO_L83P_6 AP35 6 IO_L83N_6 AR36 6 IO_L84P_6 AP38 6 IO_L84N_6 AP39 6 IO_L07P_6 AP41 6 IO_L07N_6 AP42 6 IO_L08P_6 AN35 6 IO_L08N_6 AN36 6 IO_L09P_6 AN37 6 IO_L09N_6/VREF_6 AN38 6 IO_L10P_6 AN41 6 IO_L10N_6 AN42 6 IO_L11P_6 AM33 6 IO_L11N_6 AN34 6 IO_L12P_6 AM36 6 IO_L12N_6 AM37 6 IO_L13P_6 AM38 6 IO_L13N_6 AM39 6 IO_L14P_6 AM34 6 IO_L14N_6 AM35 6 IO_L15P_6 AN40 6 IO_L15N_6/VREF_6 AM40 6 IO_L16P_6 AM41 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Pin Number XC2VP70, XC2VPX70 XC2VP100 Module 4 of 4 225 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 13: FF1704 — XC2VP70, XC2VPX70, and XC2VP100 Pin Description No Connects XC2VPX70 (if Different) Bank Virtex-II Pro Devices 6 IO_L16N_6 AM42 6 IO_L17P_6 AL33 6 IO_L17N_6 AL34 6 IO_L18P_6 AL35 6 IO_L18N_6 AL36 6 IO_L19P_6 AL38 6 IO_L19N_6 AL39 6 IO_L20P_6 AL31 6 IO_L20N_6 AL32 6 IO_L21P_6 AL40 6 IO_L21N_6/VREF_6 AL41 6 IO_L22P_6 AK35 6 IO_L22N_6 AK36 6 IO_L23P_6 AK33 6 IO_L23N_6 AK34 6 IO_L24P_6 AK37 6 IO_L24N_6 AK38 6 IO_L25P_6 AK39 6 IO_L25N_6 AK40 6 IO_L26P_6 AK31 6 IO_L26N_6 AK32 6 IO_L27P_6 AK41 6 IO_L27N_6/VREF_6 AK42 6 IO_L28P_6 AJ35 6 IO_L28N_6 AJ36 6 IO_L29P_6 AJ33 6 IO_L29N_6 AJ34 6 IO_L30P_6 AJ37 6 IO_L30N_6 AJ38 6 IO_L31P_6 AJ41 6 IO_L31N_6 AJ42 6 IO_L32P_6 AJ31 6 IO_L32N_6 AJ32 6 IO_L33P_6 AH33 6 IO_L33N_6/VREF_6 AH34 6 IO_L34P_6 AH37 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Pin Number XC2VP70, XC2VPX70 XC2VP100 Module 4 of 4 226 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 13: FF1704 — XC2VP70, XC2VPX70, and XC2VP100 Pin Description No Connects XC2VPX70 (if Different) Bank Virtex-II Pro Devices 6 IO_L34N_6 AH38 6 IO_L35P_6 AH31 6 IO_L35N_6 AH32 6 IO_L36P_6 AJ40 6 IO_L36N_6 AH40 6 IO_L37P_6 AH41 6 IO_L37N_6 AH42 6 IO_L38P_6 AH35 6 IO_L38N_6 AG35 6 IO_L39P_6 AG36 6 IO_L39N_6/VREF_6 AG37 6 IO_L40P_6 AG38 6 IO_L40N_6 AG39 6 IO_L41P_6 AG32 6 IO_L41N_6 AG33 6 IO_L42P_6 AG40 6 IO_L42N_6 AG41 6 IO_L43P_6 AF33 6 IO_L43N_6 AF34 6 IO_L44P_6 AF35 6 IO_L44N_6 AF36 6 IO_L45P_6 AF37 6 IO_L45N_6/VREF_6 AF38 6 IO_L46P_6 AF39 6 IO_L46N_6 AF40 6 IO_L47P_6 AF31 6 IO_L47N_6 AG31 6 IO_L48P_6 AF41 6 IO_L48N_6 AF42 6 IO_L49P_6 AE35 6 IO_L49N_6 AE36 6 IO_L50P_6 AE31 6 IO_L50N_6 AF32 6 IO_L51P_6 AE38 6 IO_L51N_6/VREF_6 AE39 6 IO_L52P_6 AE41 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Pin Number XC2VP70, XC2VPX70 XC2VP100 Module 4 of 4 227 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 13: FF1704 — XC2VP70, XC2VPX70, and XC2VP100 Pin Description No Connects XC2VPX70 (if Different) Bank Virtex-II Pro Devices 6 IO_L52N_6 AE42 6 IO_L53P_6 AE32 6 IO_L53N_6 AE33 6 IO_L54P_6 AD35 6 IO_L54N_6 AD36 6 IO_L55P_6 AD37 6 IO_L55N_6 AD38 6 IO_L56P_6 AD31 6 IO_L56N_6 AD32 6 IO_L57P_6 AD39 6 IO_L57N_6/VREF_6 AD40 6 IO_L58P_6 AD41 6 IO_L58N_6 AD42 6 IO_L59P_6 AD33 6 IO_L59N_6 AD34 6 IO_L60P_6 AC33 6 IO_L60N_6 AC34 6 IO_L85P_6 AC36 6 IO_L85N_6 AC37 6 IO_L86P_6 AC31 6 IO_L86N_6 AC32 6 IO_L87P_6 AC39 6 IO_L87N_6/VREF_6 AC40 6 IO_L88P_6 AB33 6 IO_L88N_6 AB34 6 IO_L89P_6 AB36 6 IO_L89N_6 AB37 6 IO_L90P_6 AB39 6 IO_L90N_6 AB40 7 IO_L90P_7 AA39 7 IO_L90N_7 AA40 7 IO_L89P_7 AB31 7 IO_L89N_7 AA31 7 IO_L88P_7 AA36 7 IO_L88N_7/VREF_7 AA37 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Pin Number XC2VP70, XC2VPX70 XC2VP100 Module 4 of 4 228 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 13: FF1704 — XC2VP70, XC2VPX70, and XC2VP100 Pin Description No Connects XC2VPX70 (if Different) Bank Virtex-II Pro Devices 7 IO_L87P_7 AA33 7 IO_L87N_7 AA34 7 IO_L86P_7 Y31 7 IO_L86N_7 Y32 7 IO_L85P_7 Y39 7 IO_L85N_7 Y40 7 IO_L60P_7 Y36 7 IO_L60N_7 Y37 7 IO_L59P_7 Y33 7 IO_L59N_7 Y34 7 IO_L58P_7 W41 7 IO_L58N_7/VREF_7 W42 7 IO_L57P_7 W39 7 IO_L57N_7 W40 7 IO_L56P_7 W31 7 IO_L56N_7 W32 7 IO_L55P_7 W37 7 IO_L55N_7 W38 7 IO_L54P_7 W35 7 IO_L54N_7 W36 7 IO_L53P_7 W33 7 IO_L53N_7 W34 7 IO_L52P_7 V41 7 IO_L52N_7/VREF_7 V42 7 IO_L51P_7 V38 7 IO_L51N_7 V39 7 IO_L50P_7 V31 7 IO_L50N_7 U32 7 IO_L49P_7 V35 7 IO_L49N_7 V36 7 IO_L48P_7 V32 7 IO_L48N_7 V33 7 IO_L47P_7 U31 7 IO_L47N_7 T31 7 IO_L46P_7 U41 7 IO_L46N_7/VREF_7 U42 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Pin Number XC2VP70, XC2VPX70 XC2VP100 Module 4 of 4 229 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 13: FF1704 — XC2VP70, XC2VPX70, and XC2VP100 Pin Description No Connects XC2VPX70 (if Different) Bank Virtex-II Pro Devices 7 IO_L45P_7 U39 7 IO_L45N_7 U40 7 IO_L44P_7 U33 7 IO_L44N_7 U34 7 IO_L43P_7 U37 7 IO_L43N_7 U38 7 IO_L42P_7 U35 7 IO_L42N_7 U36 7 IO_L41P_7 T32 7 IO_L41N_7 T33 7 IO_L40P_7 T40 7 IO_L40N_7/VREF_7 T41 7 IO_L39P_7 T38 7 IO_L39N_7 T39 7 IO_L38P_7 R35 7 IO_L38N_7 T35 7 IO_L37P_7 T36 7 IO_L37N_7 T37 7 IO_L36P_7 R31 7 IO_L36N_7 R32 7 IO_L35P_7 R41 7 IO_L35N_7 R42 7 IO_L34P_7 R40 7 IO_L34N_7/VREF_7 P40 7 IO_L33P_7 R37 7 IO_L33N_7 R38 7 IO_L32P_7 R33 7 IO_L32N_7 R34 7 IO_L31P_7 P41 7 IO_L31N_7 P42 7 IO_L30P_7 P37 7 IO_L30N_7 P38 7 IO_L29P_7 P31 7 IO_L29N_7 P32 7 IO_L28P_7 P35 7 IO_L28N_7/VREF_7 P36 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Pin Number XC2VP70, XC2VPX70 XC2VP100 Module 4 of 4 230 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 13: FF1704 — XC2VP70, XC2VPX70, and XC2VP100 Pin Description No Connects XC2VPX70 (if Different) Bank Virtex-II Pro Devices 7 IO_L27P_7 P33 7 IO_L27N_7 P34 7 IO_L26P_7 N31 7 IO_L26N_7 N32 7 IO_L25P_7 N41 7 IO_L25N_7 N42 7 IO_L24P_7 N39 7 IO_L24N_7 N40 7 IO_L23P_7 N33 7 IO_L23N_7 N34 7 IO_L22P_7 N37 7 IO_L22N_7/VREF_7 N38 7 IO_L21P_7 N35 7 IO_L21N_7 N36 7 IO_L20P_7 M38 7 IO_L20N_7 M39 7 IO_L19P_7 M40 7 IO_L19N_7 M41 7 IO_L18P_7 M33 7 IO_L18N_7 M34 7 IO_L17P_7 M31 7 IO_L17N_7 M32 7 IO_L16P_7 M35 7 IO_L16N_7/VREF_7 M36 7 IO_L15P_7 L41 7 IO_L15N_7 L42 7 IO_L14P_7 L39 7 IO_L14N_7 L38 7 IO_L13P_7 L40 7 IO_L13N_7 K40 7 IO_L12P_7 L36 7 IO_L12N_7 L37 7 IO_L11P_7 L34 7 IO_L11N_7 L35 7 IO_L10P_7 K42 7 IO_L10N_7/VREF_7 K41 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Pin Number XC2VP70, XC2VPX70 XC2VP100 Module 4 of 4 231 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 13: FF1704 — XC2VP70, XC2VPX70, and XC2VP100 Pin Description No Connects XC2VPX70 (if Different) Bank Virtex-II Pro Devices 7 IO_L09P_7 K36 7 IO_L09N_7 K35 7 IO_L08P_7 K38 7 IO_L08N_7 K37 7 IO_L07P_7 L33 7 IO_L07N_7 K34 7 IO_L84P_7 J41 7 IO_L84N_7 J42 7 IO_L83P_7 J39 7 IO_L83N_7 J38 7 IO_L82P_7 J36 7 IO_L82N_7/VREF_7 J37 7 IO_L81P_7 J35 7 IO_L81N_7 H36 7 IO_L80P_7 H41 7 IO_L80N_7 H40 7 IO_L79P_7 H38 7 IO_L79N_7 H39 7 IO_L78P_7 H37 7 IO_L78N_7 G38 7 IO_L77P_7 G42 7 IO_L77N_7 G41 7 IO_L76P_7 G39 7 IO_L76N_7/VREF_7 G40 7 IO_L75P_7 F41 7 IO_L75N_7 F42 7 IO_L74P_7 F40 7 IO_L74N_7 F39 7 IO_L73P_7 E41 7 IO_L73N_7 E42 7 IO_L06P_7 D41 7 IO_L06N_7 D42 7 IO_L05P_7 E40 7 IO_L05N_7 D40 7 IO_L04P_7 F36 7 IO_L04N_7/VREF_7 G37 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Pin Number XC2VP70, XC2VPX70 XC2VP100 Module 4 of 4 232 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 13: FF1704 — XC2VP70, XC2VPX70, and XC2VP100 Pin Description No Connects XC2VPX70 (if Different) Bank Virtex-II Pro Devices 7 IO_L03P_7 D37 7 IO_L03N_7 E37 7 IO_L02P_7 D36 7 IO_L02N_7 E36 7 IO_L01P_7/VRN_7 C37 7 IO_L01N_7/VRP_7 C38 0 VCCO_0 D25 0 VCCO_0 G23 0 VCCO_0 G28 0 VCCO_0 G32 0 VCCO_0 J25 0 VCCO_0 J29 0 VCCO_0 P22 0 VCCO_0 P23 0 VCCO_0 P24 0 VCCO_0 P25 0 VCCO_0 P26 0 VCCO_0 R22 0 VCCO_0 R23 0 VCCO_0 R24 0 VCCO_0 R25 1 VCCO_1 R21 1 VCCO_1 R20 1 VCCO_1 R19 1 VCCO_1 R18 1 VCCO_1 P21 1 VCCO_1 P20 1 VCCO_1 P19 1 VCCO_1 P18 1 VCCO_1 P17 1 VCCO_1 J18 1 VCCO_1 J14 1 VCCO_1 G20 1 VCCO_1 G15 1 VCCO_1 G11 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Pin Number XC2VP70, XC2VPX70 XC2VP100 Module 4 of 4 233 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 13: FF1704 — XC2VP70, XC2VPX70, and XC2VP100 Pin Description No Connects XC2VPX70 (if Different) Bank Virtex-II Pro Devices 1 VCCO_1 D18 2 VCCO_2 AA15 2 VCCO_2 AA14 2 VCCO_2 Y15 2 VCCO_2 Y14 2 VCCO_2 Y8 2 VCCO_2 Y5 2 VCCO_2 W15 2 VCCO_2 W14 2 VCCO_2 V15 2 VCCO_2 V14 2 VCCO_2 V3 2 VCCO_2 U15 2 VCCO_2 U14 2 VCCO_2 T15 2 VCCO_2 T14 2 VCCO_2 R14 2 VCCO_2 T9 2 VCCO_2 P4 2 VCCO_2 M6 2 VCCO_2 J3 2 VCCO_2 F5 3 VCCO_3 AU5 3 VCCO_3 AP3 3 VCCO_3 AL6 3 VCCO_3 AJ4 3 VCCO_3 AH14 3 VCCO_3 AG15 3 VCCO_3 AG14 3 VCCO_3 AG9 3 VCCO_3 AF15 3 VCCO_3 AF14 3 VCCO_3 AE15 3 VCCO_3 AE14 3 VCCO_3 AE3 3 VCCO_3 AD15 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Pin Number XC2VP70, XC2VPX70 XC2VP100 Module 4 of 4 234 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 13: FF1704 — XC2VP70, XC2VPX70, and XC2VP100 Pin Description No Connects XC2VPX70 (if Different) Bank Virtex-II Pro Devices 3 VCCO_3 AD14 3 VCCO_3 AC15 3 VCCO_3 AC14 3 VCCO_3 AC8 3 VCCO_3 AC5 3 VCCO_3 AB15 3 VCCO_3 AB14 4 VCCO_4 AW18 4 VCCO_4 AT20 4 VCCO_4 AT15 4 VCCO_4 AT11 4 VCCO_4 AP18 4 VCCO_4 AP14 4 VCCO_4 AJ21 4 VCCO_4 AJ20 4 VCCO_4 AJ19 4 VCCO_4 AJ18 4 VCCO_4 AJ17 4 VCCO_4 AH21 4 VCCO_4 AH20 4 VCCO_4 AH19 4 VCCO_4 AH18 5 VCCO_5 AW25 5 VCCO_5 AT32 5 VCCO_5 AT28 5 VCCO_5 AT23 5 VCCO_5 AP29 5 VCCO_5 AP25 5 VCCO_5 AJ26 5 VCCO_5 AJ25 5 VCCO_5 AJ24 5 VCCO_5 AJ23 5 VCCO_5 AJ22 5 VCCO_5 AH25 5 VCCO_5 AH24 5 VCCO_5 AH23 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Pin Number XC2VP70, XC2VPX70 XC2VP100 Module 4 of 4 235 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 13: FF1704 — XC2VP70, XC2VPX70, and XC2VP100 Pin Description No Connects XC2VPX70 (if Different) Bank Virtex-II Pro Devices 5 VCCO_5 AH22 6 VCCO_6 AU38 6 VCCO_6 AP40 6 VCCO_6 AL37 6 VCCO_6 AJ39 6 VCCO_6 AH29 6 VCCO_6 AG34 6 VCCO_6 AG29 6 VCCO_6 AG28 6 VCCO_6 AF29 6 VCCO_6 AF28 6 VCCO_6 AE40 6 VCCO_6 AE29 6 VCCO_6 AE28 6 VCCO_6 AD29 6 VCCO_6 AD28 6 VCCO_6 AC38 6 VCCO_6 AC35 6 VCCO_6 AC29 6 VCCO_6 AC28 6 VCCO_6 AB29 6 VCCO_6 AB28 7 VCCO_7 AA29 7 VCCO_7 AA28 7 VCCO_7 Y38 7 VCCO_7 Y35 7 VCCO_7 Y29 7 VCCO_7 Y28 7 VCCO_7 W29 7 VCCO_7 W28 7 VCCO_7 V40 7 VCCO_7 V29 7 VCCO_7 V28 7 VCCO_7 U29 7 VCCO_7 U28 7 VCCO_7 T34 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Pin Number XC2VP70, XC2VPX70 XC2VP100 Module 4 of 4 236 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 13: FF1704 — XC2VP70, XC2VPX70, and XC2VP100 Pin Description No Connects XC2VPX70 (if Different) Bank Virtex-II Pro Devices 7 VCCO_7 T29 7 VCCO_7 T28 7 VCCO_7 R29 7 VCCO_7 P39 7 VCCO_7 M37 7 VCCO_7 J40 7 VCCO_7 F38 N/A CCLK AY7 N/A PROG_B G35 N/A DONE AW8 N/A M0 AV35 N/A M1 AY36 N/A M2 AW35 N/A TCK G8 N/A TDI C36 N/A TDO C7 N/A TMS F8 N/A PWRDWN_B AV8 N/A HSWAP_EN F35 N/A RSVD D8 N/A VBATT E8 N/A DXP E35 N/A DXN D35 N/A AVCCAUXTX2 B40 N/A VTTXPAD2 B41 N/A TXNPAD2 A41 N/A TXPPAD2 A40 N/A GNDA2 C39 N/A RXPPAD2 A39 N/A RXNPAD2 A38 N/A VTRXPAD2 B39 N/A AVCCAUXRX2 B38 N/A AVCCAUXTX3 B36 N/A VTTXPAD3 B37 N/A TXNPAD3 A37 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Pin Number XC2VP70, XC2VPX70 XC2VP100 Module 4 of 4 237 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 13: FF1704 — XC2VP70, XC2VPX70, and XC2VP100 Pin Description No Connects XC2VPX70 (if Different) Bank Virtex-II Pro Devices N/A TXPPAD3 A36 N/A GNDA3 C35 N/A RXPPAD3 A35 N/A RXNPAD3 A34 N/A VTRXPAD3 B35 N/A AVCCAUXRX3 B34 N/A AVCCAUXTX4 B32 N/A VTTXPAD4 B33 N/A TXNPAD4 A33 N/A TXPPAD4 A32 N/A GNDA4 C31 N/A RXPPAD4 A31 N/A RXNPAD4 A30 N/A VTRXPAD4 B31 N/A AVCCAUXRX4 B30 N/A AVCCAUXTX5 B28 N/A VTTXPAD5 B29 N/A TXNPAD5 A29 N/A TXPPAD5 A28 N/A GNDA5 C27 N/A RXPPAD5 A27 N/A RXNPAD5 A26 N/A VTRXPAD5 B27 N/A AVCCAUXRX5 B26 N/A AVCCAUXTX6 B24 N/A VTTXPAD6 B25 N/A TXNPAD6 A25 N/A TXPPAD6 A24 N/A GNDA6 C22 N/A RXPPAD6 A23 N/A RXNPAD6 A22 N/A VTRXPAD6 B23 N/A AVCCAUXRX6 B22 N/A AVCCAUXTX7 B20 N/A VTTXPAD7 B21 N/A TXNPAD7 A21 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Pin Number XC2VP70, XC2VPX70 XC2VP100 Module 4 of 4 238 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 13: FF1704 — XC2VP70, XC2VPX70, and XC2VP100 Pin Description No Connects XC2VPX70 (if Different) Bank Virtex-II Pro Devices N/A TXPPAD7 A20 N/A GNDA7 C21 N/A RXPPAD7 A19 N/A RXNPAD7 A18 N/A VTRXPAD7 B19 N/A AVCCAUXRX7 B18 N/A AVCCAUXTX8 B16 N/A VTTXPAD8 B17 N/A TXNPAD8 A17 N/A TXPPAD8 A16 N/A GNDA8 C16 N/A RXPPAD8 A15 N/A RXNPAD8 A14 N/A VTRXPAD8 B15 N/A AVCCAUXRX8 B14 N/A AVCCAUXTX9 B12 N/A VTTXPAD9 B13 N/A TXNPAD9 A13 N/A TXPPAD9 A12 N/A GNDA9 C12 N/A RXPPAD9 A11 N/A RXNPAD9 A10 N/A VTRXPAD9 B11 N/A AVCCAUXRX9 B10 N/A AVCCAUXTX10 B8 N/A VTTXPAD10 B9 N/A TXNPAD10 A9 N/A TXPPAD10 A8 N/A GNDA10 C8 N/A RXPPAD10 A7 N/A RXNPAD10 A6 N/A VTRXPAD10 B7 N/A AVCCAUXRX10 B6 N/A AVCCAUXTX11 B4 N/A VTTXPAD11 B5 N/A TXNPAD11 A5 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Pin Number XC2VP70, XC2VPX70 XC2VP100 Module 4 of 4 239 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 13: FF1704 — XC2VP70, XC2VPX70, and XC2VP100 Pin Description No Connects XC2VPX70 (if Different) Bank Virtex-II Pro Devices N/A TXPPAD11 A4 N/A GNDA11 C4 N/A RXPPAD11 A3 N/A RXNPAD11 A2 N/A VTRXPAD11 B3 N/A AVCCAUXRX11 B2 N/A AVCCAUXRX14 BA2 N/A VTRXPAD14 BA3 N/A RXNPAD14 BB2 N/A RXPPAD14 BB3 N/A GNDA14 AY4 N/A TXPPAD14 BB4 N/A TXNPAD14 BB5 N/A VTTXPAD14 BA5 N/A AVCCAUXTX14 BA4 N/A AVCCAUXRX15 BA6 N/A VTRXPAD15 BA7 N/A RXNPAD15 BB6 N/A RXPPAD15 BB7 N/A GNDA15 AY8 N/A TXPPAD15 BB8 N/A TXNPAD15 BB9 N/A VTTXPAD15 BA9 N/A AVCCAUXTX15 BA8 N/A AVCCAUXRX16 BA10 N/A VTRXPAD16 BA11 N/A RXNPAD16 BB10 N/A RXPPAD16 BB11 N/A GNDA16 AY12 N/A TXPPAD16 BB12 N/A TXNPAD16 BB13 N/A VTTXPAD16 BA13 N/A AVCCAUXTX16 BA12 N/A AVCCAUXRX17 BA14 N/A VTRXPAD17 BA15 N/A RXNPAD17 BB14 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Pin Number XC2VP70, XC2VPX70 XC2VP100 Module 4 of 4 240 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 13: FF1704 — XC2VP70, XC2VPX70, and XC2VP100 Pin Description No Connects XC2VPX70 (if Different) Bank Virtex-II Pro Devices N/A RXPPAD17 BB15 N/A GNDA17 AY16 N/A TXPPAD17 BB16 N/A TXNPAD17 BB17 N/A VTTXPAD17 BA17 N/A AVCCAUXTX17 BA16 N/A AVCCAUXRX18 BA18 N/A VTRXPAD18 BA19 N/A RXNPAD18 BB18 N/A RXPPAD18 BB19 N/A GNDA18 AY21 N/A TXPPAD18 BB20 N/A TXNPAD18 BB21 N/A VTTXPAD18 BA21 N/A AVCCAUXTX18 BA20 N/A AVCCAUXRX19 BA22 N/A VTRXPAD19 BA23 N/A RXNPAD19 BB22 N/A RXPPAD19 BB23 N/A GNDA19 AY22 N/A TXPPAD19 BB24 N/A TXNPAD19 BB25 N/A VTTXPAD19 BA25 N/A AVCCAUXTX19 BA24 N/A AVCCAUXRX20 BA26 N/A VTRXPAD20 BA27 N/A RXNPAD20 BB26 N/A RXPPAD20 BB27 N/A GNDA20 AY27 N/A TXPPAD20 BB28 N/A TXNPAD20 BB29 N/A VTTXPAD20 BA29 N/A AVCCAUXTX20 BA28 N/A AVCCAUXRX21 BA30 N/A VTRXPAD21 BA31 N/A RXNPAD21 BB30 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Pin Number XC2VP70, XC2VPX70 XC2VP100 Module 4 of 4 241 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 13: FF1704 — XC2VP70, XC2VPX70, and XC2VP100 Pin Description No Connects XC2VPX70 (if Different) Bank Virtex-II Pro Devices N/A RXPPAD21 BB31 N/A GNDA21 AY31 N/A TXPPAD21 BB32 N/A TXNPAD21 BB33 N/A VTTXPAD21 BA33 N/A AVCCAUXTX21 BA32 N/A AVCCAUXRX22 BA34 N/A VTRXPAD22 BA35 N/A RXNPAD22 BB34 N/A RXPPAD22 BB35 N/A GNDA22 AY35 N/A TXPPAD22 BB36 N/A TXNPAD22 BB37 N/A VTTXPAD22 BA37 N/A AVCCAUXTX22 BA36 N/A AVCCAUXRX23 BA38 N/A VTRXPAD23 BA39 N/A RXNPAD23 BB38 N/A RXPPAD23 BB39 N/A GNDA23 AY39 N/A TXPPAD23 BB40 N/A TXNPAD23 BB41 N/A VTTXPAD23 BA41 N/A AVCCAUXTX23 BA40 N/A VCCINT AB27 N/A VCCINT AB16 N/A VCCINT AC27 N/A VCCINT AC16 N/A VCCINT AD27 N/A VCCINT AD16 N/A VCCINT AE27 N/A VCCINT AE16 N/A VCCINT AF27 N/A VCCINT AF26 N/A VCCINT AF17 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Pin Number XC2VP70, XC2VPX70 XC2VP100 Module 4 of 4 242 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 13: FF1704 — XC2VP70, XC2VPX70, and XC2VP100 Pin Description No Connects XC2VPX70 (if Different) Bank Virtex-II Pro Devices N/A VCCINT AF16 N/A VCCINT AG27 N/A VCCINT AG26 N/A VCCINT AG25 N/A VCCINT AG24 N/A VCCINT AG23 N/A VCCINT AG22 N/A VCCINT AG21 N/A VCCINT AG20 N/A VCCINT AG19 N/A VCCINT AG18 N/A VCCINT AG17 N/A VCCINT AG16 N/A VCCINT AH28 N/A VCCINT AH27 N/A VCCINT AH26 N/A VCCINT AH17 N/A VCCINT AH16 N/A VCCINT AH15 N/A VCCINT AJ29 N/A VCCINT AJ28 N/A VCCINT AJ27 N/A VCCINT AJ16 N/A VCCINT AJ15 N/A VCCINT AJ14 N/A VCCINT AK30 N/A VCCINT AK13 N/A VCCINT AA27 N/A VCCINT AA16 N/A VCCINT Y27 N/A VCCINT Y16 N/A VCCINT W27 N/A VCCINT W16 N/A VCCINT V27 N/A VCCINT V16 N/A VCCINT U27 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Pin Number XC2VP70, XC2VPX70 XC2VP100 Module 4 of 4 243 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 13: FF1704 — XC2VP70, XC2VPX70, and XC2VP100 Pin Description No Connects XC2VPX70 (if Different) Bank Virtex-II Pro Devices N/A VCCINT U26 N/A VCCINT U17 N/A VCCINT U16 N/A VCCINT T27 N/A VCCINT T26 N/A VCCINT T25 N/A VCCINT T24 N/A VCCINT T23 N/A VCCINT T22 N/A VCCINT T21 N/A VCCINT T20 N/A VCCINT T19 N/A VCCINT T18 N/A VCCINT T17 N/A VCCINT T16 N/A VCCINT R28 N/A VCCINT R27 N/A VCCINT R26 N/A VCCINT R17 N/A VCCINT R16 N/A VCCINT R15 N/A VCCINT P29 N/A VCCINT P28 N/A VCCINT P27 N/A VCCINT P16 N/A VCCINT P15 N/A VCCINT P14 N/A VCCINT N30 N/A VCCINT N13 N/A VCCAUX AB42 N/A VCCAUX AB41 N/A VCCAUX AB2 N/A VCCAUX AB1 N/A VCCAUX AC42 N/A VCCAUX AC1 N/A VCCAUX AM32 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Pin Number XC2VP70, XC2VPX70 XC2VP100 Module 4 of 4 244 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 13: FF1704 — XC2VP70, XC2VPX70, and XC2VP100 Pin Description No Connects XC2VPX70 (if Different) Bank Virtex-II Pro Devices N/A VCCAUX AM11 N/A VCCAUX AN33 N/A VCCAUX AN10 N/A VCCAUX AV39 N/A VCCAUX AV4 N/A VCCAUX AW38 N/A VCCAUX AW22 N/A VCCAUX AW21 N/A VCCAUX AW5 N/A VCCAUX AA42 N/A VCCAUX AA41 N/A VCCAUX AA2 N/A VCCAUX AA1 N/A VCCAUX Y42 N/A VCCAUX Y1 N/A VCCAUX L32 N/A VCCAUX L11 N/A VCCAUX K33 N/A VCCAUX K10 N/A VCCAUX E39 N/A VCCAUX E4 N/A VCCAUX D38 N/A VCCAUX D22 N/A VCCAUX D21 N/A VCCAUX D5 N/A GND AB38 N/A GND AB35 N/A GND AB32 N/A GND AB26 N/A GND AB25 N/A GND AB24 N/A GND AB23 N/A GND AB22 N/A GND AB21 N/A GND AB20 N/A GND AB19 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Pin Number XC2VP70, XC2VPX70 XC2VP100 Module 4 of 4 245 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 13: FF1704 — XC2VP70, XC2VPX70, and XC2VP100 Pin Description No Connects XC2VPX70 (if Different) Bank Virtex-II Pro Devices N/A GND AB18 N/A GND AB17 N/A GND AB11 N/A GND AB8 N/A GND AB5 N/A GND AC41 N/A GND AC26 N/A GND AC25 N/A GND AC24 N/A GND AC23 N/A GND AC22 N/A GND AC21 N/A GND AC20 N/A GND AC19 N/A GND AC18 N/A GND AC17 N/A GND AC2 N/A GND AD26 N/A GND AD25 N/A GND AD24 N/A GND AD23 N/A GND AD22 N/A GND AD21 N/A GND AD20 N/A GND AD19 N/A GND AD18 N/A GND AD17 N/A GND AE37 N/A GND AE34 N/A GND AE26 N/A GND AE25 N/A GND AE24 N/A GND AE23 N/A GND AE22 N/A GND AE21 N/A GND AE20 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Pin Number XC2VP70, XC2VPX70 XC2VP100 Module 4 of 4 246 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 13: FF1704 — XC2VP70, XC2VPX70, and XC2VP100 Pin Description No Connects XC2VPX70 (if Different) Bank Virtex-II Pro Devices N/A GND AE19 N/A GND AE18 N/A GND AE17 N/A GND AE9 N/A GND AE6 N/A GND AF25 N/A GND AF24 N/A GND AF23 N/A GND AF22 N/A GND AF21 N/A GND AF20 N/A GND AF19 N/A GND AF18 N/A GND AG42 N/A GND AG1 N/A GND AH39 N/A GND AH36 N/A GND AH7 N/A GND AH4 N/A GND AL42 N/A GND AL1 N/A GND AM22 N/A GND AM21 N/A GND AN39 N/A GND AN4 N/A GND AP34 N/A GND AP9 N/A GND AR42 N/A GND AR35 N/A GND AR22 N/A GND AR21 N/A GND AR8 N/A GND AR1 N/A GND AT36 N/A GND AT7 N/A GND AU37 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Pin Number XC2VP70, XC2VPX70 XC2VP100 Module 4 of 4 247 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 13: FF1704 — XC2VP70, XC2VPX70, and XC2VP100 Pin Description No Connects XC2VPX70 (if Different) Bank Virtex-II Pro Devices N/A GND AU25 N/A GND AU18 N/A GND AU6 N/A GND AV38 N/A GND AV22 N/A GND AV21 N/A GND AV5 N/A GND AW39 N/A GND AW32 N/A GND AW28 N/A GND AW15 N/A GND AW11 N/A GND AW4 N/A GND AY42 N/A GND AY41 N/A GND AY40 N/A GND AY3 N/A GND AY2 N/A GND AY1 N/A GND BA42 N/A GND BA1 N/A GND AA38 N/A GND AA35 N/A GND AA32 N/A GND AA26 N/A GND AA25 N/A GND AA24 N/A GND AA23 N/A GND AA22 N/A GND AA21 N/A GND AA20 N/A GND AA19 N/A GND AA18 N/A GND AA17 N/A GND AA11 N/A GND AA8 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Pin Number XC2VP70, XC2VPX70 XC2VP100 Module 4 of 4 248 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 13: FF1704 — XC2VP70, XC2VPX70, and XC2VP100 Pin Description No Connects XC2VPX70 (if Different) Bank Virtex-II Pro Devices N/A GND AA5 N/A GND Y41 N/A GND Y26 N/A GND Y25 N/A GND Y24 N/A GND Y23 N/A GND Y22 N/A GND Y21 N/A GND Y20 N/A GND Y19 N/A GND Y18 N/A GND Y17 N/A GND Y2 N/A GND W26 N/A GND W25 N/A GND W24 N/A GND W23 N/A GND W22 N/A GND W21 N/A GND W20 N/A GND W19 N/A GND W18 N/A GND W17 N/A GND V37 N/A GND V34 N/A GND V26 N/A GND V25 N/A GND V24 N/A GND V23 N/A GND V22 N/A GND V21 N/A GND V20 N/A GND V19 N/A GND V18 N/A GND V17 N/A GND V9 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Pin Number XC2VP70, XC2VPX70 XC2VP100 Module 4 of 4 249 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 13: FF1704 — XC2VP70, XC2VPX70, and XC2VP100 Pin Description No Connects XC2VPX70 (if Different) Bank Virtex-II Pro Devices N/A GND V6 N/A GND U25 N/A GND U24 N/A GND U23 N/A GND U22 N/A GND U21 N/A GND U20 N/A GND U19 N/A GND U18 N/A GND T42 N/A GND T1 N/A GND R39 N/A GND R36 N/A GND R7 N/A GND R4 N/A GND M42 N/A GND M1 N/A GND L22 N/A GND L21 N/A GND K39 N/A GND K4 N/A GND J34 N/A GND J9 N/A GND H42 N/A GND H35 N/A GND H22 N/A GND H21 N/A GND H8 N/A GND H1 N/A GND G36 N/A GND G7 N/A GND F37 N/A GND F25 N/A GND F18 N/A GND F6 N/A GND E38 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Pin Number XC2VP70, XC2VPX70 XC2VP100 Module 4 of 4 250 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 13: FF1704 — XC2VP70, XC2VPX70, and XC2VP100 Pin Description No Connects XC2VPX70 (if Different) Bank Virtex-II Pro Devices Pin Number N/A GND E22 N/A GND E21 N/A GND E5 N/A GND D39 N/A GND D32 N/A GND D28 N/A GND D15 N/A GND D11 N/A GND D4 N/A GND C42 N/A GND C41 N/A GND C40 N/A GND C3 N/A GND C2 N/A GND C1 N/A GND B42 N/A GND B1 N/A GND N14 N/A GND N29 N/A GND AK14 N/A GND AK29 N/A GND P13 N/A GND P30 N/A GND AJ13 N/A GND AJ30 XC2VP70, XC2VPX70 XC2VP100 Notes: 1. See Table 4 for an explanation of the signals available on this pin. DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 4 of 4 251 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information FF1704 Flip-Chip Fine-Pitch BGA Package Specifications (1.00mm pitch) Figure 9: FF1704 Flip-Chip Fine-Pitch BGA Package Specifications DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 4 of 4 252 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information FF1696 Flip-Chip Fine-Pitch BGA Package As shown in Table 14, XC2VP100 Virtex-II Pro devices are available in the FF1696 flip-chip fine-pitch BGA package. Following this table are the FF1696 Flip-Chip Fine-Pitch BGA Package Specifications (1.00mm pitch). Table 14: FF1696 — XC2VP100 No Connects Bank Pin Description Pin Number 0 IO_L01N_0/VRP_0 E33 0 IO_L01P_0/VRN_0 F33 0 IO_L02N_0 K32 0 IO_L02P_0 L32 0 IO_L03N_0 C32 0 IO_L03P_0/VREF_0 C33 0 IO_L05_0/No_Pair G33 0 IO_L06N_0 A33 0 IO_L06P_0 B33 0 IO_L07N_0 F32 0 IO_L07P_0 G32 0 IO_L08N_0 H32 0 IO_L08P_0 J32 0 IO_L09N_0 D32 0 IO_L09P_0/VREF_0 E32 0 IO_L19N_0 A32 0 IO_L19P_0 B32 0 IO_L20N_0 K31 0 IO_L20P_0 L31 0 IO_L21N_0 H30 0 IO_L21P_0 G31 0 IO_L25N_0 E31 0 IO_L25P_0 F31 0 IO_L26N_0 H31 0 IO_L26P_0 J31 0 IO_L27N_0 D30 0 IO_L27P_0/VREF_0 D31 0 IO_L28N_0 B31 0 IO_L28P_0 C31 0 IO_L29N_0 K30 0 IO_L29P_0 L30 0 IO_L30N_0 F30 0 IO_L30P_0 G30 0 IO_L34N_0 B30 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP100 Module 4 of 4 253 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 14: FF1696 — XC2VP100 No Connects Bank Pin Description Pin Number 0 IO_L34P_0 C30 0 IO_L35N_0 L29 0 IO_L35P_0 M29 0 IO_L36N_0 H28 0 IO_L36P_0/VREF_0 G29 0 IO_L76N_0 E29 0 IO_L76P_0 F29 0 IO_L77N_0 J29 0 IO_L77P_0 K29 0 IO_L78N_0 D28 0 IO_L78P_0 C29 0 IO_L79N_0 A29 0 IO_L79P_0 B29 0 IO_L80_0/No_Pair L28 0 IO_L83_0/No_Pair M28 0 IO_L84N_0 G27 0 IO_L84P_0 G28 0 IO_L85N_0 E28 0 IO_L85P_0 F28 0 IO_L86N_0 J28 0 IO_L86P_0 K28 0 IO_L87N_0 C27 0 IO_L87P_0/VREF_0 C28 0 IO_L37N_0 A28 0 IO_L37P_0 B28 0 IO_L38N_0 L27 0 IO_L38P_0 M27 0 IO_L39N_0 H26 0 IO_L39P_0 H27 0 IO_L43N_0 E27 0 IO_L43P_0 F27 0 IO_L44N_0 J27 0 IO_L44P_0 K27 0 IO_L45N_0 D26 0 IO_L45P_0/VREF_0 D27 0 IO_L10N_0 A27 NC 0 IO_L10P_0 B27 NC DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP100 Module 4 of 4 254 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 14: FF1696 — XC2VP100 No Connects Bank Pin Description Pin Number XC2VP100 0 IO_L11N_0 M25 NC 0 IO_L11P_0 M26 NC 0 IO_L12N_0 F26 NC 0 IO_L12P_0 G26 NC 0 IO_L18N_0 B26 NC 0 IO_L18P_0/VREF_0 C26 NC 0 IO_L46N_0 G24 0 IO_L46P_0 G25 0 IO_L47N_0 K26 0 IO_L47P_0 L26 0 IO_L48N_0 E25 0 IO_L48P_0 F25 0 IO_L49N_0 C24 0 IO_L49P_0 C25 0 IO_L50_0/No_Pair L24 0 IO_L53_0/No_Pair L25 0 IO_L54N_0 A25 0 IO_L54P_0 B25 0 IO_L55N_0 H23 0 IO_L55P_0 H24 0 IO_L56N_0 J25 0 IO_L56P_0 K25 0 IO_L57N_0 E24 0 IO_L57P_0/VREF_0 F24 0 IO_L58N_0 D23 0 IO_L58P_0 D24 0 IO_L59N_0 J24 0 IO_L59P_0 K24 0 IO_L60N_0 A24 0 IO_L60P_0 B24 0 IO_L64N_0 F23 0 IO_L64P_0 G23 0 IO_L65N_0 M22 0 IO_L65P_0 M23 0 IO_L66N_0 B23 0 IO_L66P_0/VREF_0 C23 0 IO_L67N_0 H22 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 4 of 4 255 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 14: FF1696 — XC2VP100 No Connects Bank Pin Description Pin Number 0 IO_L67P_0 J22 0 IO_L68N_0 K23 0 IO_L68P_0 L23 0 IO_L69N_0 F22 0 IO_L69P_0/VREF_0 G22 0 IO_L73N_0 D22 0 IO_L73P_0 E22 0 IO_L74N_0/GCLK7P K22 0 IO_L74P_0/GCLK6S L22 0 IO_L75N_0/GCLK5P B22 0 IO_L75P_0/GCLK4S C22 1 IO_L75N_1/GCLK3P C21 1 IO_L75P_1/GCLK2S B21 1 IO_L74N_1/GCLK1P L21 1 IO_L74P_1/GCLK0S K21 1 IO_L73N_1 E21 1 IO_L73P_1 D21 1 IO_L69N_1/VREF_1 G21 1 IO_L69P_1 F21 1 IO_L68N_1 L20 1 IO_L68P_1 K20 1 IO_L67N_1 J21 1 IO_L67P_1 H21 1 IO_L66N_1/VREF_1 C20 1 IO_L66P_1 B20 1 IO_L65N_1 M20 1 IO_L65P_1 M21 1 IO_L64N_1 G20 1 IO_L64P_1 F20 1 IO_L60N_1 B19 1 IO_L60P_1 A19 1 IO_L59N_1 K19 1 IO_L59P_1 J19 1 IO_L58N_1 D19 1 IO_L58P_1 D20 1 IO_L57N_1/VREF_1 F19 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP100 Module 4 of 4 256 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 14: FF1696 — XC2VP100 No Connects Bank Pin Description Pin Number 1 IO_L57P_1 E19 1 IO_L56N_1 K18 1 IO_L56P_1 J18 1 IO_L55N_1 H19 1 IO_L55P_1 H20 1 IO_L54N_1 B18 1 IO_L54P_1 A18 1 IO_L53_1/No_Pair L18 1 IO_L50_1/No_Pair L19 1 IO_L49N_1 C18 1 IO_L49P_1 C19 1 IO_L48N_1 F18 1 IO_L48P_1 E18 1 IO_L47N_1 L17 1 IO_L47P_1 K17 1 IO_L46N_1 G18 1 IO_L46P_1 G19 1 IO_L18N_1/VREF_1 C17 NC 1 IO_L18P_1 B17 NC 1 IO_L12N_1 G17 NC 1 IO_L12P_1 F17 NC 1 IO_L11N_1 M17 NC 1 IO_L11P_1 M18 NC 1 IO_L10N_1 B16 NC 1 IO_L10P_1 A16 NC 1 IO_L45N_1/VREF_1 D16 1 IO_L45P_1 D17 1 IO_L44N_1 K16 1 IO_L44P_1 J16 1 IO_L43N_1 F16 1 IO_L43P_1 E16 1 IO_L39N_1 H16 1 IO_L39P_1 H17 1 IO_L38N_1 M16 1 IO_L38P_1 L16 1 IO_L37N_1 B15 1 IO_L37P_1 A15 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP100 Module 4 of 4 257 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 14: FF1696 — XC2VP100 No Connects Bank Pin Description Pin Number 1 IO_L87N_1/VREF_1 C15 1 IO_L87P_1 C16 1 IO_L86N_1 K15 1 IO_L86P_1 J15 1 IO_L85N_1 F15 1 IO_L85P_1 E15 1 IO_L84N_1 G15 1 IO_L84P_1 G16 1 IO_L83_1/No_Pair M15 1 IO_L80_1/No_Pair L15 1 IO_L79N_1 B14 1 IO_L79P_1 A14 1 IO_L78N_1 C14 1 IO_L78P_1 D15 1 IO_L77N_1 K14 1 IO_L77P_1 J14 1 IO_L76N_1 F14 1 IO_L76P_1 E14 1 IO_L36N_1/VREF_1 G14 1 IO_L36P_1 H15 1 IO_L35N_1 M14 1 IO_L35P_1 L14 1 IO_L34N_1 C13 1 IO_L34P_1 B13 1 IO_L30N_1 G13 1 IO_L30P_1 F13 1 IO_L29N_1 L13 1 IO_L29P_1 K13 1 IO_L28N_1 C12 1 IO_L28P_1 B12 1 IO_L27N_1/VREF_1 D12 1 IO_L27P_1 D13 1 IO_L26N_1 J12 1 IO_L26P_1 H12 1 IO_L25N_1 F12 1 IO_L25P_1 E12 1 IO_L21N_1 G12 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP100 Module 4 of 4 258 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 14: FF1696 — XC2VP100 No Connects Bank Pin Description Pin Number 1 IO_L21P_1 H13 1 IO_L20N_1 L12 1 IO_L20P_1 K12 1 IO_L19N_1 B11 1 IO_L19P_1 A11 1 IO_L09N_1/VREF_1 E11 1 IO_L09P_1 D11 1 IO_L08N_1 J11 1 IO_L08P_1 H11 1 IO_L07N_1 G11 1 IO_L07P_1 F11 1 IO_L06N_1 B10 1 IO_L06P_1 A10 1 IO_L05_1/No_Pair G10 1 IO_L03N_1/VREF_1 C10 1 IO_L03P_1 C11 1 IO_L02N_1 L11 1 IO_L02P_1 K11 1 IO_L01N_1/VRP_1 F10 1 IO_L01P_1/VRN_1 E10 2 IO_L01N_2/VRP_2 B8 2 IO_L01P_2/VRN_2 A8 2 IO_L02N_2 C9 2 IO_L02P_2 B9 2 IO_L03N_2 B7 2 IO_L03P_2 A7 2 IO_L04N_2/VREF_2 B6 2 IO_L04P_2 A6 2 IO_L05N_2 D8 2 IO_L05P_2 D9 2 IO_L06N_2 B4 2 IO_L06P_2 A4 2 IO_L73N_2 C7 2 IO_L73P_2 C8 2 IO_L74N_2 G9 2 IO_L74P_2 F9 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP100 Module 4 of 4 259 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 14: FF1696 — XC2VP100 No Connects Bank Pin Description Pin Number 2 IO_L75N_2 C5 2 IO_L75P_2 B5 2 IO_L76N_2/VREF_2 D7 2 IO_L76P_2 C6 2 IO_L77N_2 H8 2 IO_L77P_2 H9 2 IO_L78N_2 C3 2 IO_L78P_2 C4 2 IO_L79N_2 D1 2 IO_L79P_2 D2 2 IO_L80N_2 J8 2 IO_L80P_2 K9 2 IO_L81N_2 E6 2 IO_L81P_2 D5 2 IO_L82N_2/VREF_2 E4 2 IO_L82P_2 D4 2 IO_L83N_2 L8 2 IO_L83P_2 L9 2 IO_L84N_2 E3 2 IO_L84P_2 D3 2 IO_L61N_2 F8 2 IO_L61P_2 E8 2 IO_L62N_2 M8 2 IO_L62P_2 M9 2 IO_L63N_2 F7 2 IO_L63P_2 E7 2 IO_L64N_2/VREF_2 F3 2 IO_L64P_2 E2 2 IO_L65N_2 N12 2 IO_L65P_2 P12 2 IO_L66N_2 F1 2 IO_L66P_2 F2 2 IO_L67N_2 G7 2 IO_L67P_2 G8 2 IO_L68N_2 N10 2 IO_L68P_2 N11 2 IO_L69N_2 G6 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP100 Module 4 of 4 260 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 14: FF1696 — XC2VP100 No Connects Bank Pin Description Pin Number 2 IO_L69P_2 F6 2 IO_L70N_2/VREF_2 G5 2 IO_L70P_2 F5 2 IO_L71N_2 P10 2 IO_L71P_2 P11 2 IO_L72N_2 G3 2 IO_L72P_2 G4 2 IO_L07N_2 G1 2 IO_L07P_2 G2 2 IO_L08N_2 N8 2 IO_L08P_2 P9 2 IO_L09N_2 H6 2 IO_L09P_2 H7 2 IO_L10N_2/VREF_2 H4 2 IO_L10P_2 H5 2 IO_L11N_2 R12 2 IO_L11P_2 T12 2 IO_L12N_2 H2 2 IO_L12P_2 H3 2 IO_L13N_2 J6 2 IO_L13P_2 J7 2 IO_L14N_2 R10 2 IO_L14P_2 R11 2 IO_L15N_2 J3 2 IO_L15P_2 J4 2 IO_L16N_2/VREF_2 J2 2 IO_L16P_2 H1 2 IO_L17N_2 R8 2 IO_L17P_2 R9 2 IO_L18N_2 K5 2 IO_L18P_2 K6 2 IO_L19N_2 K1 2 IO_L19P_2 K2 2 IO_L20N_2 T10 2 IO_L20P_2 T11 2 IO_L21N_2 L7 2 IO_L21P_2 K7 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP100 Module 4 of 4 261 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 14: FF1696 — XC2VP100 No Connects Bank Pin Description Pin Number 2 IO_L22N_2/VREF_2 L4 2 IO_L22P_2 L5 2 IO_L23N_2 T8 2 IO_L23P_2 T9 2 IO_L24N_2 L3 2 IO_L24P_2 K3 2 IO_L25N_2 L1 2 IO_L25P_2 L2 2 IO_L26N_2 U12 2 IO_L26P_2 V12 2 IO_L27N_2 M7 2 IO_L27P_2 L6 2 IO_L28N_2/VREF_2 M5 2 IO_L28P_2 M6 2 IO_L29N_2 U10 2 IO_L29P_2 U11 2 IO_L30N_2 M3 2 IO_L30P_2 M4 2 IO_L31N_2 N6 2 IO_L31P_2 N7 2 IO_L32N_2 U7 2 IO_L32P_2 U8 2 IO_L33N_2 N3 2 IO_L33P_2 N4 2 IO_L34N_2/VREF_2 N2 2 IO_L34P_2 M2 2 IO_L35N_2 V10 2 IO_L35P_2 V11 2 IO_L36N_2 P6 2 IO_L36P_2 P7 2 IO_L37N_2 P1 2 IO_L37P_2 P2 2 IO_L38N_2 V8 2 IO_L38P_2 V9 2 IO_L39N_2 R6 2 IO_L39P_2 P5 2 IO_L40N_2/VREF_2 R4 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP100 Module 4 of 4 262 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 14: FF1696 — XC2VP100 No Connects Bank Pin Description Pin Number 2 IO_L40P_2 R5 2 IO_L41N_2 V6 2 IO_L41P_2 V7 2 IO_L42N_2 R3 2 IO_L42P_2 P3 2 IO_L43N_2 R1 2 IO_L43P_2 R2 2 IO_L44N_2 W10 2 IO_L44P_2 W11 2 IO_L45N_2 T7 2 IO_L45P_2 R7 2 IO_L46N_2/VREF_2 T4 2 IO_L46P_2 T5 2 IO_L47N_2 W9 2 IO_L47P_2 Y10 2 IO_L48N_2 T1 2 IO_L48P_2 T2 2 IO_L49N_2 U6 2 IO_L49P_2 T6 2 IO_L50N_2 W7 2 IO_L50P_2 Y8 2 IO_L51N_2 U4 2 IO_L51P_2 T3 2 IO_L52N_2/VREF_2 U2 2 IO_L52P_2 U3 2 IO_L53N_2 Y11 2 IO_L53P_2 Y12 2 IO_L54N_2 V4 2 IO_L54P_2 V5 2 IO_L55N_2 V1 2 IO_L55P_2 V2 2 IO_L56N_2 Y6 2 IO_L56P_2 Y7 2 IO_L57N_2 W5 2 IO_L57P_2 W6 2 IO_L58N_2/VREF_2 W3 2 IO_L58P_2 V3 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP100 Module 4 of 4 263 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 14: FF1696 — XC2VP100 No Connects Bank Pin Description Pin Number 2 IO_L59N_2 AA11 2 IO_L59P_2 AA12 2 IO_L60N_2 W1 2 IO_L60P_2 W2 2 IO_L85N_2 Y2 2 IO_L85P_2 Y3 2 IO_L86N_2 AA9 2 IO_L86P_2 AA10 2 IO_L87N_2 AA5 2 IO_L87P_2 AA6 2 IO_L88N_2/VREF_2 AA4 2 IO_L88P_2 Y4 2 IO_L89N_2 AA7 2 IO_L89P_2 AA8 2 IO_L90N_2 AA2 2 IO_L90P_2 AA3 3 IO_L90N_3 AB5 3 IO_L90P_3 AB6 3 IO_L89N_3 AB11 3 IO_L89P_3 AB12 3 IO_L88N_3 AB2 3 IO_L88P_3 AB3 3 IO_L87N_3/VREF_3 AB4 3 IO_L87P_3 AC4 3 IO_L86N_3 AB9 3 IO_L86P_3 AB10 3 IO_L85N_3 AC2 3 IO_L85P_3 AC3 3 IO_L60N_3 AD5 3 IO_L60P_3 AD6 3 IO_L59N_3 AB7 3 IO_L59P_3 AB8 3 IO_L58N_3 AD1 3 IO_L58P_3 AD2 3 IO_L57N_3/VREF_3 AE4 3 IO_L57P_3 AE5 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP100 Module 4 of 4 264 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 14: FF1696 — XC2VP100 No Connects Bank Pin Description Pin Number 3 IO_L56N_3 AC11 3 IO_L56P_3 AC12 3 IO_L55N_3 AD3 3 IO_L55P_3 AE3 3 IO_L54N_3 AE1 3 IO_L54P_3 AE2 3 IO_L53N_3 AC6 3 IO_L53P_3 AC7 3 IO_L52N_3 AF2 3 IO_L52P_3 AF3 3 IO_L51N_3/VREF_3 AF6 3 IO_L51P_3 AG6 3 IO_L50N_3 AD10 3 IO_L50P_3 AD11 3 IO_L49N_3 AG4 3 IO_L49P_3 AG5 3 IO_L48N_3 AF4 3 IO_L48P_3 AG3 3 IO_L47N_3 AC10 3 IO_L47P_3 AD9 3 IO_L46N_3 AG1 3 IO_L46P_3 AG2 3 IO_L45N_3/VREF_3 AG7 3 IO_L45P_3 AH7 3 IO_L44N_3 AC8 3 IO_L44P_3 AD7 3 IO_L43N_3 AH4 3 IO_L43P_3 AH5 3 IO_L42N_3 AH1 3 IO_L42P_3 AH2 3 IO_L41N_3 AE10 3 IO_L41P_3 AE11 3 IO_L40N_3 AJ6 3 IO_L40P_3 AJ7 3 IO_L39N_3/VREF_3 AH6 3 IO_L39P_3 AJ5 3 IO_L38N_3 AE8 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP100 Module 4 of 4 265 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 14: FF1696 — XC2VP100 No Connects Bank Pin Description Pin Number 3 IO_L38P_3 AE9 3 IO_L37N_3 AH3 3 IO_L37P_3 AJ3 3 IO_L36N_3 AJ1 3 IO_L36P_3 AJ2 3 IO_L35N_3 AE6 3 IO_L35P_3 AE7 3 IO_L34N_3 AK6 3 IO_L34P_3 AK7 3 IO_L33N_3/VREF_3 AK3 3 IO_L33P_3 AK4 3 IO_L32N_3 AE12 3 IO_L32P_3 AF12 3 IO_L31N_3 AL5 3 IO_L31P_3 AL6 3 IO_L30N_3 AL3 3 IO_L30P_3 AL4 3 IO_L29N_3 AF10 3 IO_L29P_3 AF11 3 IO_L28N_3 AK2 3 IO_L28P_3 AL2 3 IO_L27N_3/VREF_3 AL7 3 IO_L27P_3 AM6 3 IO_L26N_3 AF7 3 IO_L26P_3 AF8 3 IO_L25N_3 AM4 3 IO_L25P_3 AM5 3 IO_L24N_3 AM1 3 IO_L24P_3 AM2 3 IO_L23N_3 AG10 3 IO_L23P_3 AG11 3 IO_L22N_3 AM7 3 IO_L22P_3 AN7 3 IO_L21N_3/VREF_3 AN5 3 IO_L21P_3 AN6 3 IO_L20N_3 AG8 3 IO_L20P_3 AG9 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP100 Module 4 of 4 266 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 14: FF1696 — XC2VP100 No Connects Bank Pin Description Pin Number 3 IO_L19N_3 AM3 3 IO_L19P_3 AN3 3 IO_L18N_3 AN1 3 IO_L18P_3 AN2 3 IO_L17N_3 AG12 3 IO_L17P_3 AH12 3 IO_L16N_3 AP6 3 IO_L16P_3 AP7 3 IO_L15N_3/VREF_3 AP3 3 IO_L15P_3 AP4 3 IO_L14N_3 AH10 3 IO_L14P_3 AH11 3 IO_L13N_3 AR6 3 IO_L13P_3 AR7 3 IO_L12N_3 AR4 3 IO_L12P_3 AR5 3 IO_L11N_3 AH8 3 IO_L11P_3 AH9 3 IO_L10N_3 AR2 3 IO_L10P_3 AR3 3 IO_L09N_3/VREF_3 AP2 3 IO_L09P_3 AR1 3 IO_L08N_3 AJ10 3 IO_L08P_3 AJ11 3 IO_L07N_3 AT7 3 IO_L07P_3 AT8 3 IO_L72N_3 AT3 3 IO_L72P_3 AT4 3 IO_L71N_3 AJ12 3 IO_L71P_3 AK12 3 IO_L70N_3 AT1 3 IO_L70P_3 AT2 3 IO_L69N_3/VREF_3 AT6 3 IO_L69P_3 AU6 3 IO_L68N_3 AK10 3 IO_L68P_3 AK11 3 IO_L67N_3 AT5 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP100 Module 4 of 4 267 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 14: FF1696 — XC2VP100 No Connects Bank Pin Description Pin Number 3 IO_L67P_3 AU5 3 IO_L66N_3 AU1 3 IO_L66P_3 AU2 3 IO_L65N_3 AJ9 3 IO_L65P_3 AK8 3 IO_L64N_3 AU8 3 IO_L64P_3 AV8 3 IO_L63N_3/VREF_3 AU7 3 IO_L63P_3 AV7 3 IO_L62N_3 AL8 3 IO_L62P_3 AL9 3 IO_L61N_3 AU3 3 IO_L61P_3 AV2 3 IO_L84N_3 AV6 3 IO_L84P_3 AW5 3 IO_L83N_3 AM8 3 IO_L83P_3 AM9 3 IO_L82N_3 AV4 3 IO_L82P_3 AW4 3 IO_L81N_3/VREF_3 AV3 3 IO_L81P_3 AW3 3 IO_L80N_3 AN9 3 IO_L80P_3 AP8 3 IO_L79N_3 AW1 3 IO_L79P_3 AW2 3 IO_L78N_3 AY7 3 IO_L78P_3 AY8 3 IO_L77N_3 AR8 3 IO_L77P_3 AR9 3 IO_L76N_3 AW7 3 IO_L76P_3 AY6 3 IO_L75N_3/VREF_3 AY3 3 IO_L75P_3 AY4 3 IO_L74N_3 AT9 3 IO_L74P_3 AU9 3 IO_L73N_3 AY5 3 IO_L73P_3 BA5 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP100 Module 4 of 4 268 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 14: FF1696 — XC2VP100 No Connects Bank Pin Description Pin Number 3 IO_L06N_3 BA8 3 IO_L06P_3 BB8 3 IO_L05N_3 AW8 3 IO_L05P_3 AW9 3 IO_L04N_3 BA7 3 IO_L04P_3 BB7 3 IO_L03N_3/VREF_3 BA6 3 IO_L03P_3 BB6 3 IO_L02N_3 AY9 3 IO_L02P_3 BA9 3 IO_L01N_3/VRP_3 BA4 3 IO_L01P_3/VRN_3 BB4 4 IO_L01N_4/BUSY/DOUT (1) AL11 4 IO_L01P_4/INIT_B AL12 4 IO_L02N_4/D0/DIN (1) AV10 4 IO_L02P_4/D1 AU10 4 IO_L03N_4/D2 AN11 4 IO_L03P_4/D3 AM11 4 IO_L05_4/No_Pair AT10 4 IO_L06N_4/VRP_4 AY11 4 IO_L06P_4/VRN_4 AY10 4 IO_L07N_4 BB10 4 IO_L07P_4/VREF_4 BA10 4 IO_L08N_4 AU11 4 IO_L08P_4 AT11 4 IO_L09N_4 AR11 4 IO_L09P_4/VREF_4 AP11 4 IO_L19N_4 AW11 4 IO_L19P_4 AV11 4 IO_L20N_4 BB11 4 IO_L20P_4 BA11 4 IO_L21N_4 AN12 4 IO_L21P_4 AM12 4 IO_L25N_4 AR13 4 IO_L25P_4 AT12 4 IO_L26N_4 AV12 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP100 Module 4 of 4 269 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 14: FF1696 — XC2VP100 No Connects Bank Pin Description Pin Number 4 IO_L26P_4 AU12 4 IO_L27N_4 AR12 4 IO_L27P_4/VREF_4 AP12 4 IO_L28N_4 AW13 4 IO_L28P_4 AW12 4 IO_L29N_4 BA12 4 IO_L29P_4 AY12 4 IO_L30N_4 AN13 4 IO_L30P_4 AM13 4 IO_L34N_4 AU13 4 IO_L34P_4 AT13 4 IO_L35N_4 BA13 4 IO_L35P_4 AY13 4 IO_L36N_4 AM14 4 IO_L36P_4/VREF_4 AL14 4 IO_L76N_4 AR15 4 IO_L76P_4 AT14 4 IO_L77N_4 AV14 4 IO_L77P_4 AU14 4 IO_L78N_4 AP14 4 IO_L78P_4 AN14 4 IO_L79N_4 AW15 4 IO_L79P_4 AY14 4 IO_L80_4/No_Pair BB14 4 IO_L83_4/No_Pair BA14 4 IO_L84N_4 AM15 4 IO_L84P_4 AL15 4 IO_L85N_4 AT16 4 IO_L85P_4 AT15 4 IO_L86N_4 AV15 4 IO_L86P_4 AU15 4 IO_L87N_4 AP15 4 IO_L87P_4/VREF_4 AN15 4 IO_L37N_4 AY16 4 IO_L37P_4 AY15 4 IO_L38N_4 BB15 4 IO_L38P_4 BA15 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP100 Module 4 of 4 270 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 14: FF1696 — XC2VP100 No Connects Bank Pin Description Pin Number 4 IO_L39N_4 AM16 4 IO_L39P_4 AL16 4 IO_L43N_4 AR17 4 IO_L43P_4 AR16 4 IO_L44N_4 AV16 4 IO_L44P_4 AU16 4 IO_L45N_4 AP16 4 IO_L45P_4/VREF_4 AN16 4 IO_L10N_4 AW17 NC 4 IO_L10P_4 AW16 NC 4 IO_L11N_4 BB16 NC 4 IO_L11P_4 BA16 NC 4 IO_L12N_4 AL18 NC 4 IO_L12P_4 AL17 NC 4 IO_L16N_4 AU17 NC 4 IO_L16P_4 AT17 NC 4 IO_L18N_4 BA17 NC 4 IO_L18P_4/VREF_4 AY17 NC 4 IO_L46N_4 AT19 4 IO_L46P_4 AT18 4 IO_L47N_4 AN17 4 IO_L47P_4 AM17 4 IO_L48N_4 AV18 4 IO_L48P_4 AU18 4 IO_L49N_4 AY19 4 IO_L49P_4 AY18 4 IO_L50_4/No_Pair AM19 4 IO_L53_4/No_Pair AM18 4 IO_L54N_4 BB18 4 IO_L54P_4 BA18 4 IO_L55N_4 AR20 4 IO_L55P_4 AR19 4 IO_L56N_4 AP18 4 IO_L56P_4 AN18 4 IO_L57N_4 AV19 4 IO_L57P_4/VREF_4 AU19 4 IO_L58N_4 AW20 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP100 Module 4 of 4 271 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 14: FF1696 — XC2VP100 No Connects Bank Pin Description Pin Number 4 IO_L58P_4 AW19 4 IO_L59N_4 AP19 4 IO_L59P_4 AN19 4 IO_L60N_4 BB19 4 IO_L60P_4 BA19 4 IO_L64N_4 AU20 4 IO_L64P_4 AT20 4 IO_L65N_4 AL21 4 IO_L65P_4 AL20 4 IO_L66N_4 BA20 4 IO_L66P_4/VREF_4 AY20 4 IO_L67N_4 AR21 4 IO_L67P_4 AP21 4 IO_L68N_4 AN20 4 IO_L68P_4 AM20 4 IO_L69N_4 AU21 4 IO_L69P_4/VREF_4 AT21 4 IO_L73N_4 AW21 4 IO_L73P_4 AV21 4 IO_L74N_4/GCLK3S AN21 4 IO_L74P_4/GCLK2P AM21 4 IO_L75N_4/GCLK1S BA21 4 IO_L75P_4/GCLK0P AY21 5 IO_L75N_5/GCLK7S AY22 5 IO_L75P_5/GCLK6P BA22 5 IO_L74N_5/GCLK5S AM22 5 IO_L74P_5/GCLK4P AN22 5 IO_L73N_5 AV22 5 IO_L73P_5 AW22 5 IO_L69N_5/VREF_5 AT22 5 IO_L69P_5 AU22 5 IO_L68N_5 AM23 5 IO_L68P_5 AN23 5 IO_L67N_5 AP22 5 IO_L67P_5 AR22 5 IO_L66N_5/VREF_5 AY23 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP100 Module 4 of 4 272 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 14: FF1696 — XC2VP100 No Connects Bank Pin Description Pin Number 5 IO_L66P_5 BA23 5 IO_L65N_5 AL23 5 IO_L65P_5 AL22 5 IO_L64N_5 AT23 5 IO_L64P_5 AU23 5 IO_L60N_5 BA24 5 IO_L60P_5 BB24 5 IO_L59N_5 AN24 5 IO_L59P_5 AP24 5 IO_L58N_5 AW24 5 IO_L58P_5 AW23 5 IO_L57N_5/VREF_5 AU24 5 IO_L57P_5 AV24 5 IO_L56N_5 AN25 5 IO_L56P_5 AP25 5 IO_L55N_5 AR24 5 IO_L55P_5 AR23 5 IO_L54N_5 BA25 5 IO_L54P_5 BB25 5 IO_L53_5/No_Pair AM25 5 IO_L50_5/No_Pair AM24 5 IO_L49N_5 AY25 5 IO_L49P_5 AY24 5 IO_L48N_5 AU25 5 IO_L48P_5 AV25 5 IO_L47N_5 AM26 5 IO_L47P_5 AN26 5 IO_L46N_5 AT25 5 IO_L46P_5 AT24 5 IO_L18N_5/VREF_5 AY26 NC 5 IO_L18P_5 BA26 NC 5 IO_L16N_5 AT26 NC 5 IO_L16P_5 AU26 NC 5 IO_L12N_5 AL26 NC 5 IO_L12P_5 AL25 NC 5 IO_L11N_5 BA27 NC 5 IO_L11P_5 BB27 NC DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP100 Module 4 of 4 273 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 14: FF1696 — XC2VP100 No Connects Bank Pin Description Pin Number XC2VP100 5 IO_L10N_5 AW27 NC 5 IO_L10P_5 AW26 NC 5 IO_L45N_5/VREF_5 AN27 5 IO_L45P_5 AP27 5 IO_L44N_5 AU27 5 IO_L44P_5 AV27 5 IO_L43N_5 AR27 5 IO_L43P_5 AR26 5 IO_L39N_5 AL27 5 IO_L39P_5 AM27 5 IO_L38N_5 BA28 5 IO_L38P_5 BB28 5 IO_L37N_5 AY28 5 IO_L37P_5 AY27 5 IO_L87N_5/VREF_5 AN28 5 IO_L87P_5 AP28 5 IO_L86N_5 AU28 5 IO_L86P_5 AV28 5 IO_L85N_5 AT28 5 IO_L85P_5 AT27 5 IO_L84N_5 AL28 5 IO_L84P_5 AM28 5 IO_L83_5/No_Pair BA29 5 IO_L80_5/No_Pair BB29 5 IO_L79N_5 AY29 5 IO_L79P_5 AW28 5 IO_L78N_5 AN29 5 IO_L78P_5 AP29 5 IO_L77N_5 AU29 5 IO_L77P_5 AV29 5 IO_L76N_5 AT29 5 IO_L76P_5 AR28 5 IO_L36N_5/VREF_5 AL29 5 IO_L36P_5 AM29 5 IO_L35N_5 AY30 5 IO_L35P_5 BA30 5 IO_L34N_5 AT30 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 4 of 4 274 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 14: FF1696 — XC2VP100 No Connects Bank Pin Description Pin Number 5 IO_L34P_5 AU30 5 IO_L30N_5 AM30 5 IO_L30P_5 AN30 5 IO_L29N_5 AY31 5 IO_L29P_5 BA31 5 IO_L28N_5 AW31 5 IO_L28P_5 AW30 5 IO_L27N_5/VREF_5 AP31 5 IO_L27P_5 AR31 5 IO_L26N_5 AU31 5 IO_L26P_5 AV31 5 IO_L25N_5 AT31 5 IO_L25P_5 AR30 5 IO_L21N_5 AM31 5 IO_L21P_5 AN31 5 IO_L20N_5 BA32 5 IO_L20P_5 BB32 5 IO_L19N_5 AV32 5 IO_L19P_5 AW32 5 IO_L09N_5/VREF_5 AP32 5 IO_L09P_5 AR32 5 IO_L08N_5 AT32 5 IO_L08P_5 AU32 5 IO_L07N_5/VREF_5 BA33 5 IO_L07P_5 BB33 5 IO_L06N_5/VRP_5 AY33 5 IO_L06P_5/VRN_5 AY32 5 IO_L05_5/No_Pair AT33 5 IO_L03N_5/D4 AM32 5 IO_L03P_5/D5 AN32 5 IO_L02N_5/D6 AU33 5 IO_L02P_5/D7 AV33 5 IO_L01N_5/RDWR_B AL31 5 IO_L01P_5/CS_B AL32 6 IO_L01P_6/VRN_6 BB39 6 IO_L01N_6/VRP_6 BA39 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP100 Module 4 of 4 275 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 14: FF1696 — XC2VP100 No Connects Bank Pin Description Pin Number 6 IO_L02P_6 BA34 6 IO_L02N_6 AY34 6 IO_L03P_6 BB37 6 IO_L03N_6/VREF_6 BA37 6 IO_L04P_6 BB36 6 IO_L04N_6 BA36 6 IO_L05P_6 AW34 6 IO_L05N_6 AW35 6 IO_L06P_6 BB35 6 IO_L06N_6 BA35 6 IO_L73P_6 BA38 6 IO_L73N_6 AY38 6 IO_L74P_6 AU34 6 IO_L74N_6 AT34 6 IO_L75P_6 AY39 6 IO_L75N_6/VREF_6 AY40 6 IO_L76P_6 AY37 6 IO_L76N_6 AW36 6 IO_L77P_6 AR34 6 IO_L77N_6 AR35 6 IO_L78P_6 AY35 6 IO_L78N_6 AY36 6 IO_L79P_6 AW41 6 IO_L79N_6 AW42 6 IO_L80P_6 AP35 6 IO_L80N_6 AN34 6 IO_L81P_6 AW40 6 IO_L81N_6/VREF_6 AV40 6 IO_L82P_6 AW39 6 IO_L82N_6 AV39 6 IO_L83P_6 AM34 6 IO_L83N_6 AM35 6 IO_L84P_6 AW38 6 IO_L84N_6 AV37 6 IO_L61P_6 AV41 6 IO_L61N_6 AU40 6 IO_L62P_6 AL34 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP100 Module 4 of 4 276 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 14: FF1696 — XC2VP100 No Connects Bank Pin Description Pin Number 6 IO_L62N_6 AL35 6 IO_L63P_6 AV36 6 IO_L63N_6/VREF_6 AU36 6 IO_L64P_6 AV35 6 IO_L64N_6 AU35 6 IO_L65P_6 AK35 6 IO_L65N_6 AJ34 6 IO_L66P_6 AU41 6 IO_L66N_6 AU42 6 IO_L67P_6 AU38 6 IO_L67N_6 AT38 6 IO_L68P_6 AK32 6 IO_L68N_6 AK33 6 IO_L69P_6 AU37 6 IO_L69N_6/VREF_6 AT37 6 IO_L70P_6 AT41 6 IO_L70N_6 AT42 6 IO_L71P_6 AK31 6 IO_L71N_6 AJ31 6 IO_L72P_6 AT39 6 IO_L72N_6 AT40 6 IO_L07P_6 AT35 6 IO_L07N_6 AT36 6 IO_L08P_6 AJ32 6 IO_L08N_6 AJ33 6 IO_L09P_6 AR42 6 IO_L09N_6/VREF_6 AP41 6 IO_L10P_6 AR40 6 IO_L10N_6 AR41 6 IO_L11P_6 AH34 6 IO_L11N_6 AH35 6 IO_L12P_6 AR38 6 IO_L12N_6 AR39 6 IO_L13P_6 AR36 6 IO_L13N_6 AR37 6 IO_L14P_6 AH32 6 IO_L14N_6 AH33 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP100 Module 4 of 4 277 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 14: FF1696 — XC2VP100 No Connects Bank Pin Description Pin Number 6 IO_L15P_6 AP39 6 IO_L15N_6/VREF_6 AP40 6 IO_L16P_6 AP36 6 IO_L16N_6 AP37 6 IO_L17P_6 AH31 6 IO_L17N_6 AG31 6 IO_L18P_6 AN41 6 IO_L18N_6 AN42 6 IO_L19P_6 AN40 6 IO_L19N_6 AM40 6 IO_L20P_6 AG34 6 IO_L20N_6 AG35 6 IO_L21P_6 AN37 6 IO_L21N_6/VREF_6 AN38 6 IO_L22P_6 AN36 6 IO_L22N_6 AM36 6 IO_L23P_6 AG32 6 IO_L23N_6 AG33 6 IO_L24P_6 AM41 6 IO_L24N_6 AM42 6 IO_L25P_6 AM38 6 IO_L25N_6 AM39 6 IO_L26P_6 AF35 6 IO_L26N_6 AF36 6 IO_L27P_6 AM37 6 IO_L27N_6/VREF_6 AL36 6 IO_L28P_6 AL41 6 IO_L28N_6 AK41 6 IO_L29P_6 AF32 6 IO_L29N_6 AF33 6 IO_L30P_6 AL39 6 IO_L30N_6 AL40 6 IO_L31P_6 AL37 6 IO_L31N_6 AL38 6 IO_L32P_6 AF31 6 IO_L32N_6 AE31 6 IO_L33P_6 AK39 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP100 Module 4 of 4 278 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 14: FF1696 — XC2VP100 No Connects Bank Pin Description Pin Number 6 IO_L33N_6/VREF_6 AK40 6 IO_L34P_6 AK36 6 IO_L34N_6 AK37 6 IO_L35P_6 AE36 6 IO_L35N_6 AE37 6 IO_L36P_6 AJ41 6 IO_L36N_6 AJ42 6 IO_L37P_6 AJ40 6 IO_L37N_6 AH40 6 IO_L38P_6 AE34 6 IO_L38N_6 AE35 6 IO_L39P_6 AJ38 6 IO_L39N_6/VREF_6 AH37 6 IO_L40P_6 AJ36 6 IO_L40N_6 AJ37 6 IO_L41P_6 AE32 6 IO_L41N_6 AE33 6 IO_L42P_6 AH41 6 IO_L42N_6 AH42 6 IO_L43P_6 AH38 6 IO_L43N_6 AH39 6 IO_L44P_6 AD36 6 IO_L44N_6 AC35 6 IO_L45P_6 AH36 6 IO_L45N_6/VREF_6 AG36 6 IO_L46P_6 AG41 6 IO_L46N_6 AG42 6 IO_L47P_6 AD34 6 IO_L47N_6 AC33 6 IO_L48P_6 AG40 6 IO_L48N_6 AF39 6 IO_L49P_6 AG38 6 IO_L49N_6 AG39 6 IO_L50P_6 AD32 6 IO_L50N_6 AD33 6 IO_L51P_6 AG37 6 IO_L51N_6/VREF_6 AF37 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP100 Module 4 of 4 279 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 14: FF1696 — XC2VP100 No Connects Bank Pin Description Pin Number 6 IO_L52P_6 AF40 6 IO_L52N_6 AF41 6 IO_L53P_6 AC36 6 IO_L53N_6 AC37 6 IO_L54P_6 AE41 6 IO_L54N_6 AE42 6 IO_L55P_6 AE40 6 IO_L55N_6 AD40 6 IO_L56P_6 AC31 6 IO_L56N_6 AC32 6 IO_L57P_6 AE38 6 IO_L57N_6/VREF_6 AE39 6 IO_L58P_6 AD41 6 IO_L58N_6 AD42 6 IO_L59P_6 AB35 6 IO_L59N_6 AB36 6 IO_L60P_6 AD37 6 IO_L60N_6 AD38 6 IO_L85P_6 AC40 6 IO_L85N_6 AC41 6 IO_L86P_6 AB33 6 IO_L86N_6 AB34 6 IO_L87P_6 AC39 6 IO_L87N_6/VREF_6 AB39 6 IO_L88P_6 AB40 6 IO_L88N_6 AB41 6 IO_L89P_6 AB31 6 IO_L89N_6 AB32 6 IO_L90P_6 AB37 6 IO_L90N_6 AB38 7 IO_L90P_7 AA40 7 IO_L90N_7 AA41 7 IO_L89P_7 AA35 7 IO_L89N_7 AA36 7 IO_L88P_7 Y39 7 IO_L88N_7/VREF_7 AA39 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP100 Module 4 of 4 280 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 14: FF1696 — XC2VP100 No Connects Bank Pin Description Pin Number 7 IO_L87P_7 AA37 7 IO_L87N_7 AA38 7 IO_L86P_7 AA33 7 IO_L86N_7 AA34 7 IO_L85P_7 Y40 7 IO_L85N_7 Y41 7 IO_L60P_7 W41 7 IO_L60N_7 W42 7 IO_L59P_7 AA31 7 IO_L59N_7 AA32 7 IO_L58P_7 V40 7 IO_L58N_7/VREF_7 W40 7 IO_L57P_7 W37 7 IO_L57N_7 W38 7 IO_L56P_7 Y36 7 IO_L56N_7 Y37 7 IO_L55P_7 V41 7 IO_L55N_7 V42 7 IO_L54P_7 V38 7 IO_L54N_7 V39 7 IO_L53P_7 Y31 7 IO_L53N_7 Y32 7 IO_L52P_7 U40 7 IO_L52N_7/VREF_7 U41 7 IO_L51P_7 T40 7 IO_L51N_7 U39 7 IO_L50P_7 Y35 7 IO_L50N_7 W36 7 IO_L49P_7 T37 7 IO_L49N_7 U37 7 IO_L48P_7 T41 7 IO_L48N_7 T42 7 IO_L47P_7 Y33 7 IO_L47N_7 W34 7 IO_L46P_7 T38 7 IO_L46N_7/VREF_7 T39 7 IO_L45P_7 R36 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP100 Module 4 of 4 281 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 14: FF1696 — XC2VP100 No Connects Bank Pin Description Pin Number 7 IO_L45N_7 T36 7 IO_L44P_7 W32 7 IO_L44N_7 W33 7 IO_L43P_7 R41 7 IO_L43N_7 R42 7 IO_L42P_7 P40 7 IO_L42N_7 R40 7 IO_L41P_7 V36 7 IO_L41N_7 V37 7 IO_L40P_7 R38 7 IO_L40N_7/VREF_7 R39 7 IO_L39P_7 P38 7 IO_L39N_7 R37 7 IO_L38P_7 V34 7 IO_L38N_7 V35 7 IO_L37P_7 P41 7 IO_L37N_7 P42 7 IO_L36P_7 P36 7 IO_L36N_7 P37 7 IO_L35P_7 V32 7 IO_L35N_7 V33 7 IO_L34P_7 M41 7 IO_L34N_7/VREF_7 N41 7 IO_L33P_7 N39 7 IO_L33N_7 N40 7 IO_L32P_7 U35 7 IO_L32N_7 U36 7 IO_L31P_7 N36 7 IO_L31N_7 N37 7 IO_L30P_7 M39 7 IO_L30N_7 M40 7 IO_L29P_7 U32 7 IO_L29N_7 U33 7 IO_L28P_7 M37 7 IO_L28N_7/VREF_7 M38 7 IO_L27P_7 L37 7 IO_L27N_7 M36 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP100 Module 4 of 4 282 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 14: FF1696 — XC2VP100 No Connects Bank Pin Description Pin Number 7 IO_L26P_7 V31 7 IO_L26N_7 U31 7 IO_L25P_7 L41 7 IO_L25N_7 L42 7 IO_L24P_7 K40 7 IO_L24N_7 L40 7 IO_L23P_7 T34 7 IO_L23N_7 T35 7 IO_L22P_7 L38 7 IO_L22N_7/VREF_7 L39 7 IO_L21P_7 K36 7 IO_L21N_7 L36 7 IO_L20P_7 T32 7 IO_L20N_7 T33 7 IO_L19P_7 K41 7 IO_L19N_7 K42 7 IO_L18P_7 K37 7 IO_L18N_7 K38 7 IO_L17P_7 R34 7 IO_L17N_7 R35 7 IO_L16P_7 H42 7 IO_L16N_7/VREF_7 J41 7 IO_L15P_7 J39 7 IO_L15N_7 J40 7 IO_L14P_7 R32 7 IO_L14N_7 R33 7 IO_L13P_7 J36 7 IO_L13N_7 J37 7 IO_L12P_7 H40 7 IO_L12N_7 H41 7 IO_L11P_7 T31 7 IO_L11N_7 R31 7 IO_L10P_7 H38 7 IO_L10N_7/VREF_7 H39 7 IO_L09P_7 H36 7 IO_L09N_7 H37 7 IO_L08P_7 P34 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP100 Module 4 of 4 283 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 14: FF1696 — XC2VP100 No Connects Bank Pin Description Pin Number 7 IO_L08N_7 N35 7 IO_L07P_7 G41 7 IO_L07N_7 G42 7 IO_L72P_7 G39 7 IO_L72N_7 G40 7 IO_L71P_7 P32 7 IO_L71N_7 P33 7 IO_L70P_7 F38 7 IO_L70N_7/VREF_7 G38 7 IO_L69P_7 F37 7 IO_L69N_7 G37 7 IO_L68P_7 N32 7 IO_L68N_7 N33 7 IO_L67P_7 G35 7 IO_L67N_7 G36 7 IO_L66P_7 F41 7 IO_L66N_7 F42 7 IO_L65P_7 P31 7 IO_L65N_7 N31 7 IO_L64P_7 E41 7 IO_L64N_7/VREF_7 F40 7 IO_L63P_7 E36 7 IO_L63N_7 F36 7 IO_L62P_7 M34 7 IO_L62N_7 M35 7 IO_L61P_7 E35 7 IO_L61N_7 F35 7 IO_L84P_7 D40 7 IO_L84N_7 E40 7 IO_L83P_7 L34 7 IO_L83N_7 L35 7 IO_L82P_7 D39 7 IO_L82N_7/VREF_7 E39 7 IO_L81P_7 D38 7 IO_L81N_7 E37 7 IO_L80P_7 K34 7 IO_L80N_7 J35 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP100 Module 4 of 4 284 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 14: FF1696 — XC2VP100 No Connects Bank Pin Description Pin Number 7 IO_L79P_7 D41 7 IO_L79N_7 D42 7 IO_L78P_7 C39 7 IO_L78N_7 C40 7 IO_L77P_7 H34 7 IO_L77N_7 H35 7 IO_L76P_7 C37 7 IO_L76N_7/VREF_7 D36 7 IO_L75P_7 B38 7 IO_L75N_7 C38 7 IO_L74P_7 F34 7 IO_L74N_7 G34 7 IO_L73P_7 C35 7 IO_L73N_7 C36 7 IO_L06P_7 A39 7 IO_L06N_7 B39 7 IO_L05P_7 D34 7 IO_L05N_7 D35 7 IO_L04P_7 A37 7 IO_L04N_7/VREF_7 B37 7 IO_L03P_7 A36 7 IO_L03N_7 B36 7 IO_L02P_7 B34 7 IO_L02N_7 C34 7 IO_L01P_7/VRN_7 A35 7 IO_L01N_7/VRP_7 B35 7 VCCO_7 W39 7 VCCO_7 P39 7 VCCO_7 K39 7 VCCO_7 F39 7 VCCO_7 D37 7 VCCO_7 W35 7 VCCO_7 P35 7 VCCO_7 K35 7 VCCO_7 M33 7 VCCO_7 H33 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP100 Module 4 of 4 285 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 14: FF1696 — XC2VP100 No Connects Bank Pin Description Pin Number 7 VCCO_7 AA29 7 VCCO_7 Y29 7 VCCO_7 W29 7 VCCO_7 V29 7 VCCO_7 U29 7 VCCO_7 T29 7 VCCO_7 R29 7 VCCO_7 AA28 7 VCCO_7 Y28 7 VCCO_7 W28 7 VCCO_7 V28 7 VCCO_7 U28 7 VCCO_7 T28 6 VCCO_6 AU39 6 VCCO_6 AN39 6 VCCO_6 AJ39 6 VCCO_6 AD39 6 VCCO_6 AW37 6 VCCO_6 AN35 6 VCCO_6 AJ35 6 VCCO_6 AD35 6 VCCO_6 AR33 6 VCCO_6 AL33 6 VCCO_6 AH29 6 VCCO_6 AG29 6 VCCO_6 AF29 6 VCCO_6 AE29 6 VCCO_6 AD29 6 VCCO_6 AC29 6 VCCO_6 AB29 6 VCCO_6 AG28 6 VCCO_6 AF28 6 VCCO_6 AE28 6 VCCO_6 AD28 6 VCCO_6 AC28 6 VCCO_6 AB28 5 VCCO_5 AW33 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP100 Module 4 of 4 286 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 14: FF1696 — XC2VP100 No Connects Bank Pin Description Pin Number 5 VCCO_5 AL30 5 VCCO_5 AW29 5 VCCO_5 AR29 5 VCCO_5 AJ26 5 VCCO_5 AW25 5 VCCO_5 AR25 5 VCCO_5 AJ25 5 VCCO_5 AH25 5 VCCO_5 AJ24 5 VCCO_5 AH24 5 VCCO_5 AJ23 5 VCCO_5 AH23 5 VCCO_5 AJ22 5 VCCO_5 AH22 4 VCCO_4 AJ21 4 VCCO_4 AH21 4 VCCO_4 AJ20 4 VCCO_4 AH20 4 VCCO_4 AJ19 4 VCCO_4 AH19 4 VCCO_4 AW18 4 VCCO_4 AR18 4 VCCO_4 AJ18 4 VCCO_4 AH18 4 VCCO_4 AJ17 4 VCCO_4 AW14 4 VCCO_4 AR14 4 VCCO_4 AL13 4 VCCO_4 AW10 3 VCCO_3 AG15 3 VCCO_3 AF15 3 VCCO_3 AE15 3 VCCO_3 AD15 3 VCCO_3 AC15 3 VCCO_3 AB15 3 VCCO_3 AH14 3 VCCO_3 AG14 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP100 Module 4 of 4 287 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 14: FF1696 — XC2VP100 No Connects Bank Pin Description Pin Number 3 VCCO_3 AF14 3 VCCO_3 AE14 3 VCCO_3 AD14 3 VCCO_3 AC14 3 VCCO_3 AB14 3 VCCO_3 AR10 3 VCCO_3 AL10 3 VCCO_3 AN8 3 VCCO_3 AJ8 3 VCCO_3 AD8 3 VCCO_3 AW6 3 VCCO_3 AU4 3 VCCO_3 AN4 3 VCCO_3 AJ4 3 VCCO_3 AD4 2 VCCO_2 AA15 2 VCCO_2 Y15 2 VCCO_2 W15 2 VCCO_2 V15 2 VCCO_2 U15 2 VCCO_2 T15 2 VCCO_2 AA14 2 VCCO_2 Y14 2 VCCO_2 W14 2 VCCO_2 V14 2 VCCO_2 U14 2 VCCO_2 T14 2 VCCO_2 R14 2 VCCO_2 M10 2 VCCO_2 H10 2 VCCO_2 W8 2 VCCO_2 P8 2 VCCO_2 K8 2 VCCO_2 D6 2 VCCO_2 W4 2 VCCO_2 P4 2 VCCO_2 K4 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP100 Module 4 of 4 288 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 14: FF1696 — XC2VP100 No Connects Bank Pin Description Pin Number 2 VCCO_2 F4 1 VCCO_1 R21 1 VCCO_1 P21 1 VCCO_1 R20 1 VCCO_1 P20 1 VCCO_1 R19 1 VCCO_1 P19 1 VCCO_1 R18 1 VCCO_1 P18 1 VCCO_1 H18 1 VCCO_1 D18 1 VCCO_1 P17 1 VCCO_1 H14 1 VCCO_1 D14 1 VCCO_1 M13 1 VCCO_1 D10 0 VCCO_0 D33 0 VCCO_0 M30 0 VCCO_0 H29 0 VCCO_0 D29 0 VCCO_0 P26 0 VCCO_0 R25 0 VCCO_0 P25 0 VCCO_0 H25 0 VCCO_0 D25 0 VCCO_0 R24 0 VCCO_0 P24 0 VCCO_0 R23 0 VCCO_0 P23 0 VCCO_0 R22 0 VCCO_0 P22 N/A CCLK AM10 N/A PROG_B J33 N/A DONE AN10 N/A M0 AP33 N/A M1 AN33 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP100 Module 4 of 4 289 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 14: FF1696 — XC2VP100 No Connects Bank Pin Description Pin Number N/A M2 AM33 N/A TCK K10 N/A TDI M32 N/A TDO M11 N/A TMS L10 N/A PWRDWN_B AP10 N/A HSWAP_EN K33 N/A RSVD J10 N/A VBATT M12 N/A DXP M31 N/A DXN L33 N/A VCCINT AK30 N/A VCCINT N30 N/A VCCINT AJ29 N/A VCCINT P29 N/A VCCINT AJ28 N/A VCCINT AH28 N/A VCCINT R28 N/A VCCINT P28 N/A VCCINT AJ27 N/A VCCINT AH27 N/A VCCINT AG27 N/A VCCINT AF27 N/A VCCINT AE27 N/A VCCINT AD27 N/A VCCINT AC27 N/A VCCINT AB27 N/A VCCINT AA27 N/A VCCINT Y27 N/A VCCINT W27 N/A VCCINT V27 N/A VCCINT U27 N/A VCCINT T27 N/A VCCINT R27 N/A VCCINT P27 N/A VCCINT AH26 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP100 Module 4 of 4 290 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 14: FF1696 — XC2VP100 No Connects Bank Pin Description Pin Number N/A VCCINT AG26 N/A VCCINT AF26 N/A VCCINT U26 N/A VCCINT T26 N/A VCCINT R26 N/A VCCINT AG25 N/A VCCINT T25 N/A VCCINT AG24 N/A VCCINT T24 N/A VCCINT AG23 N/A VCCINT T23 N/A VCCINT AG22 N/A VCCINT T22 N/A VCCINT AG21 N/A VCCINT T21 N/A VCCINT AG20 N/A VCCINT T20 N/A VCCINT AG19 N/A VCCINT T19 N/A VCCINT AG18 N/A VCCINT T18 N/A VCCINT AH17 N/A VCCINT AG17 N/A VCCINT AF17 N/A VCCINT U17 N/A VCCINT T17 N/A VCCINT R17 N/A VCCINT AJ16 N/A VCCINT AH16 N/A VCCINT AG16 N/A VCCINT AF16 N/A VCCINT AE16 N/A VCCINT AD16 N/A VCCINT AC16 N/A VCCINT AB16 N/A VCCINT AA16 N/A VCCINT Y16 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP100 Module 4 of 4 291 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 14: FF1696 — XC2VP100 No Connects Bank Pin Description Pin Number N/A VCCINT W16 N/A VCCINT V16 N/A VCCINT U16 N/A VCCINT T16 N/A VCCINT R16 N/A VCCINT P16 N/A VCCINT AJ15 N/A VCCINT AH15 N/A VCCINT R15 N/A VCCINT P15 N/A VCCINT AJ14 N/A VCCINT P14 N/A VCCINT AK13 N/A VCCINT N13 N/A VCCAUX BA42 N/A VCCAUX AY42 N/A VCCAUX AL42 N/A VCCAUX AB42 N/A VCCAUX AA42 N/A VCCAUX M42 N/A VCCAUX C42 N/A VCCAUX B42 N/A VCCAUX BB41 N/A VCCAUX A41 N/A VCCAUX BB40 N/A VCCAUX A40 N/A VCCAUX BB31 N/A VCCAUX A31 N/A VCCAUX BB22 N/A VCCAUX A22 N/A VCCAUX BB21 N/A VCCAUX A21 N/A VCCAUX BB12 N/A VCCAUX A12 N/A VCCAUX BB3 N/A VCCAUX A3 N/A VCCAUX BB2 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP100 Module 4 of 4 292 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 14: FF1696 — XC2VP100 No Connects Bank Pin Description Pin Number N/A VCCAUX A2 N/A VCCAUX BA1 N/A VCCAUX AY1 N/A VCCAUX AL1 N/A VCCAUX AB1 N/A VCCAUX AA1 N/A VCCAUX M1 N/A VCCAUX C1 N/A VCCAUX B1 N/A GND AV42 N/A GND AP42 N/A GND AK42 N/A GND AF42 N/A GND AC42 N/A GND Y42 N/A GND U42 N/A GND N42 N/A GND J42 N/A GND E42 N/A GND BA41 N/A GND AY41 N/A GND C41 N/A GND B41 N/A GND BA40 N/A GND B40 N/A GND BB38 N/A GND AV38 N/A GND AP38 N/A GND AK38 N/A GND AF38 N/A GND AC38 N/A GND Y38 N/A GND U38 N/A GND N38 N/A GND J38 N/A GND E38 N/A GND A38 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP100 Module 4 of 4 293 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 14: FF1696 — XC2VP100 No Connects Bank Pin Description Pin Number N/A GND BB34 N/A GND AV34 N/A GND AP34 N/A GND AK34 N/A GND AF34 N/A GND AC34 N/A GND Y34 N/A GND U34 N/A GND N34 N/A GND J34 N/A GND E34 N/A GND A34 N/A GND AD31 N/A GND W31 N/A GND BB30 N/A GND AV30 N/A GND AP30 N/A GND J30 N/A GND E30 N/A GND A30 N/A GND BB26 N/A GND AV26 N/A GND AP26 N/A GND AE26 N/A GND AD26 N/A GND AC26 N/A GND AB26 N/A GND AA26 N/A GND Y26 N/A GND W26 N/A GND V26 N/A GND J26 N/A GND E26 N/A GND A26 N/A GND AF25 N/A GND AE25 N/A GND AD25 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP100 Module 4 of 4 294 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 14: FF1696 — XC2VP100 No Connects Bank Pin Description Pin Number N/A GND AC25 N/A GND AB25 N/A GND AA25 N/A GND Y25 N/A GND W25 N/A GND V25 N/A GND U25 N/A GND AL24 N/A GND AF24 N/A GND AE24 N/A GND AD24 N/A GND AC24 N/A GND AB24 N/A GND AA24 N/A GND Y24 N/A GND W24 N/A GND V24 N/A GND U24 N/A GND M24 N/A GND BB23 N/A GND AV23 N/A GND AP23 N/A GND AF23 N/A GND AE23 N/A GND AD23 N/A GND AC23 N/A GND AB23 N/A GND AA23 N/A GND Y23 N/A GND W23 N/A GND V23 N/A GND U23 N/A GND J23 N/A GND E23 N/A GND A23 N/A GND AF22 N/A GND AE22 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP100 Module 4 of 4 295 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 14: FF1696 — XC2VP100 No Connects Bank Pin Description Pin Number N/A GND AD22 N/A GND AC22 N/A GND AB22 N/A GND AA22 N/A GND Y22 N/A GND W22 N/A GND V22 N/A GND U22 N/A GND AF21 N/A GND AE21 N/A GND AD21 N/A GND AC21 N/A GND AB21 N/A GND AA21 N/A GND Y21 N/A GND W21 N/A GND V21 N/A GND U21 N/A GND BB20 N/A GND AV20 N/A GND AP20 N/A GND AF20 N/A GND AE20 N/A GND AD20 N/A GND AC20 N/A GND AB20 N/A GND AA20 N/A GND Y20 N/A GND W20 N/A GND V20 N/A GND U20 N/A GND J20 N/A GND E20 N/A GND A20 N/A GND AL19 N/A GND AF19 N/A GND AE19 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP100 Module 4 of 4 296 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 14: FF1696 — XC2VP100 No Connects Bank Pin Description Pin Number N/A GND AD19 N/A GND AC19 N/A GND AB19 N/A GND AA19 N/A GND Y19 N/A GND W19 N/A GND V19 N/A GND U19 N/A GND M19 N/A GND AF18 N/A GND AE18 N/A GND AD18 N/A GND AC18 N/A GND AB18 N/A GND AA18 N/A GND Y18 N/A GND W18 N/A GND V18 N/A GND U18 N/A GND BB17 N/A GND AV17 N/A GND AP17 N/A GND AE17 N/A GND AD17 N/A GND AC17 N/A GND AB17 N/A GND AA17 N/A GND Y17 N/A GND W17 N/A GND V17 N/A GND J17 N/A GND E17 N/A GND A17 N/A GND BB13 N/A GND AV13 N/A GND AP13 N/A GND J13 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP100 Module 4 of 4 297 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 14: FF1696 — XC2VP100 No Connects Bank Pin Description Pin Number N/A GND E13 N/A GND A13 N/A GND AD12 N/A GND W12 N/A GND BB9 N/A GND AV9 N/A GND AP9 N/A GND AK9 N/A GND AF9 N/A GND AC9 N/A GND Y9 N/A GND U9 N/A GND N9 N/A GND J9 N/A GND E9 N/A GND A9 N/A GND BB5 N/A GND AV5 N/A GND AP5 N/A GND AK5 N/A GND AF5 N/A GND AC5 N/A GND Y5 N/A GND U5 N/A GND N5 N/A GND J5 N/A GND E5 N/A GND A5 N/A GND BA3 N/A GND B3 N/A GND BA2 N/A GND AY2 N/A GND C2 N/A GND B2 N/A GND AV1 N/A GND AP1 N/A GND AK1 DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com XC2VP100 Module 4 of 4 298 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Table 14: FF1696 — XC2VP100 No Connects Bank Pin Description Pin Number N/A GND AF1 N/A GND AC1 N/A GND Y1 N/A GND U1 N/A GND N1 N/A GND J1 N/A GND E1 XC2VP100 Notes: 1. See Table 4 for an explanation of the signals available on this pin. DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 4 of 4 299 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information FF1696 Flip-Chip Fine-Pitch BGA Package Specifications (1.00mm pitch) Figure 10: FF1696 Flip-Chip Fine-Pitch BGA Package Specifications DS083 (v4.7) November 5, 2007 Product Specification www.xilinx.com Module 4 of 4 300 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Revision History This section records the change history for this module of the data sheet. Date Version 01/31/02 1.0 Initial Xilinx release. 08/14/02 2.0 Added package and pinout information for new devices. 08/27/02 2.1 • • 09/27/02 2.2 Corrected Table 2 and Table 3 entries for XC2VP30, FF1152 package, maximum I/Os from 692 to 644. 11/20/02 2.3 Added Number of Differential Pairs data to Table 3. Removed former Table 4. 12/03/02 2.4 Corrections in Table 4: • Reclassified GCLKx (S/P) pins as Input/Output, since these pins can be used as normal I/Os if not used as clocks. • Added cautionary note to PWRDWN_B pin, indicating that this function is not supported. 01/20/03 2.5 Added and removed package/pinout information for existing devices: • In Table 1, added FG676 package information. • In Table 3, added FG676 package option for XC2VP20, XC2VP30, and XC2VP40. • In Table 12, removed FF1517 package option for XC2VP40. • Added FG676 package pinouts (Table 7) for XC2VP20, XC2VP30, and XC2VP40. • Added package diagram (Figure 3) for FG676 package. 05/19/03 2.5.1 • • Added section BREFCLK Pin Definitions, page 5. Added clarification to Table 4 and all device pinout tables regarding the dual-use nature of pins D0/DIN and BUSY/DOUT during configuration. 06/19/03 2.5.3 • • Added notation of "open-drain" to TDO pin in Table 4. The final GND pin in each of six pinout tables was inadvertently deleted in v2.5.1. This revision restores the deleted GND pins as follows: - Pin A1, Table 6, page 16 (FG456) - Pin AF26, Table 7, page 30 (FG676) - Pin AN34, Table 10, page 98 (FF1152) - Pin E1, Table 11, page 130 (FF1148) - Pin C38, Table 12, page 162 (FF1517) - Pin E1, Table 14, page 253 (FF1696) 08/25/03 2.5.5 • • Table 4: Deleted Note 2, obsolete. There is only one GNDA pin per MGT. Table 4: Deleted pins ALT_VRP and ALT_VRN. Not used in Virtex-II Pro FPGAs. 12/10/03 3.0 • XC2VP2 through XC2VP70 speed grades -5, -6, and -7, and XC2VP100 speed grades -5 and -6, are released to Production status. 02/19/04 3.1 • Table 4, signal descriptions column: - For signals TDI, TMS, and TCK, added: Pins are 3.3V-compatible. - For signals M2, M1, M0, added: Tie to 3.3V only with 100Ω series resistor. No toggling during or after configuration. - For signal TDO, added: No internal pull-up. External pull-up to 3.3V OK with resistor greater than 200Ω. 03/09/04 3.1.1 • Recompiled for backward compatibility with Acrobat 4 and above. No content changes. 06/30/04 4.0 DS083 (v4.7) November 5, 2007 Product Specification Revision Updated SelectIO-Ultra information in Table 4. (Table deleted in v2.3.) Corrected direction for RXNPAD and TXPPAD in Table 4 (formerly Table 5). Merged in DS110-4 (Module 4 of Virtex-II Pro X data sheet). Added data on available Pb-free packages and updated package diagrams for affected devices. www.xilinx.com Module 4 of 4 301 R Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information Date Version Revision 11/17/04 4.1 • Table 4: Added requirement to VBATT to connect pin to VCCAUX or GND if battery is not used. 03/01/05 4.2 • Table 3: Corrected number of Differential I/O Pairs for XC2VP30-FF1152 from 340 to 316. Table 4: Changed Direction for User I/O pins (IO_LXXY_#) from “Input/Output” to “Input/Output/Bidirectional”. • 06/20/05 4.3 No changes in Module 4 for this revision. 09/15/05 4.4 No changes in Module 4 for this revision. 10/10/05 4.5 No changes in Module 4 for this revision. 03/05/07 4.6 • • 11/05/07 4.7 Updated copyright notice and legal disclaimer. Figure 2, page 29: Corrected NOTE 3. Figure 7, page 161: Updated with drawing showing correct heat sink profile and detail. Notice of Disclaimer THE XILINX HARDWARE FPGA AND CPLD DEVICES REFERRED TO HEREIN (“PRODUCTS”) ARE SUBJECT TO THE TERMS AND CONDITIONS OF THE XILINX LIMITED WARRANTY WHICH CAN BE VIEWED AT http://www.xilinx.com/warranty.htm. THIS LIMITED WARRANTY DOES NOT EXTEND TO ANY USE OF PRODUCTS IN AN APPLICATION OR ENVIRONMENT THAT IS NOT WITHIN THE SPECIFICATIONS STATED IN THE XILINX DATA SHEET. ALL SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE. PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS LIFE-SUPPORT OR SAFETY DEVICES OR SYSTEMS, OR ANY OTHER APPLICATION THAT INVOKES THE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). USE OF PRODUCTS IN CRITICAL APPLICATIONS IS AT THE SOLE RISK OF CUSTOMER, SUBJECT TO APPLICABLE LAWS AND REGULATIONS. Virtex-II Pro Data Sheet The Virtex-II Pro Data Sheet contains the following modules: • • Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Introduction and Overview (Module 1) Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Functional Description (Module 2) DS083 (v4.7) November 5, 2007 Product Specification • • Virtex-II Pro and Virtex-II Pro X Platform FPGAs: DC and Switching Characteristics (Module 3) Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Pinout Information (Module 4) www.xilinx.com Module 4 of 4 302