XILINX DS077_08

0
Spartan-IIE FPGA Family
Data Sheet
R
DS077 June 18, 2008
0
0
Product Specification
This document includes all four modules of the Spartan®-IIE FPGA data sheet.
Module 1:
Introduction and Ordering Information
Module 3:
DC and Switching Characteristics
DS077-1 (v2.3) June 18, 2008
DS077-3 (v2.3) June 18, 2008
•
•
•
•
•
•
•
Introduction
Features
General Overview
Product Availability
User I/O Chart
Ordering Information
•
Module 2:
Functional Description
DS077-2 (v2.3) June 18, 2008
•
•
•
Architectural Description
- Spartan-IIE Array
- Input/Output Block
- Configurable Logic Block
- Block RAM
- Clock Distribution: Delay-Locked Loop
- Boundary Scan
Development System
Configuration
DC Specifications
- Absolute Maximum Ratings
- Recommended Operating Conditions
- DC Characteristics
- Power-On Requirements
- DC Input and Output Levels
Switching Characteristics
- Pin-to-Pin Parameters
- IOB Switching Characteristics
- Clock Distribution Characteristics
- DLL Timing Parameters
- CLB Switching Characteristics
- Block RAM Switching Characteristics
- TBUF Switching Characteristics
- JTAG Switching Characteristics
- Configuration Switching Characteristics
Module 4:
Pinout Tables
DS077-4 (2.3) June 18, 2008
•
•
Pin Definitions
Pinout Tables
IMPORTANT NOTE: The Spartan-IIE FPGA data sheet is in four modules. Each module has its own Revision History at the
end. Use the PDF "Bookmarks" for easy navigation in this volume.
© 2003-2008 Xilinx, Inc. All rights reserved. XILINX, the Xilinx logo, the Brand Window, and other designated brands included herein are trademarks of Xilinx, Inc. All other
trademarks are the property of their respective owners.
DS077 June 18, 2008
Product Specification
www.xilinx.com
1
R
2
www.xilinx.com
DS077 June 18, 2008
Product Specification
Spartan-IIE FPGA Family:
Introduction and Ordering
Information
R
DS077-1 (v2.3) June 18, 2008
0
Product Specification
Introduction
The Spartan®-IIE Field-Programmable Gate Array family
gives users high performance, abundant logic resources,
and a rich feature set, all at an exceptionally low price. The
seven-member family offers densities ranging from 50,000
to 600,000 system gates, as shown in Table 1. System performance is supported beyond 200 MHz.
Features include block RAM (to 288K bits), distributed RAM
(to 221,184 bits), 19 selectable I/O standards, and four
DLLs (Delay-Locked Loops). Fast, predictable interconnect
means that successive design iterations continue to meet
timing requirements.
The Spartan-IIE family is a superior alternative to
mask-programmed ASICs. The FPGA avoids the initial cost,
lengthy development cycles, and inherent risk of
conventional ASICs. Also, FPGA programmability permits
design upgrades in the field with no hardware replacement
necessary (impossible with ASICs).
•
Features
•
•
Second generation ASIC replacement technology
- Densities as high as 15,552 logic cells with up to
600,000 system gates
- Streamlined features based on Virtex®-E FPGA
architecture
- Unlimited in-system reprogrammability
- Very low cost
- Cost-effective 0.15 micron technology
System level features
- SelectRAM™ hierarchical memory:
·
16 bits/LUT distributed RAM
·
Configurable 4K-bit true dual-port block RAM
·
Fast interfaces to external RAM
Fully 3.3V PCI compliant to 64 bits at 66 MHz and
CardBus compliant
- Low-power segmented routing architecture
- Dedicated carry logic for high-speed arithmetic
- Efficient multiplier support
- Cascade chain for wide-input functions
- Abundant registers/latches with enable, set, reset
- Four dedicated DLLs for advanced clock control
·
Eliminate clock distribution delay
·
Multiply, divide, or phase shift
- Four primary low-skew global clock distribution nets
- IEEE 1149.1 compatible boundary scan logic
Versatile I/O and packaging
- Pb-free package options
- Low-cost packages available in all densities
- Family footprint compatibility in common packages
- 19 high-performance interface standards
·
LVTTL, LVCMOS, HSTL, SSTL, AGP, CTT, GTL
·
LVDS and LVPECL differential I/O
- Up to 205 differential I/O pairs that can be input,
output, or bidirectional
- Hot swap I/O (CompactPCI friendly)
Core logic powered at 1.8V and I/Os powered at 1.5V,
2.5V, or 3.3V
-
•
•
Fully supported by powerful Xilinx® ISE® development
system
- Fully automatic mapping, placement, and routing
- Integrated with design entry and verification tools
- Extensive IP library including DSP functions and
soft processors
Table 1: Spartan-IIE FPGA Family Members
Device
Logic
Cells
Typical
System Gate Range
(Logic and RAM)
CLB
Array
(R x C)
Total
CLBs
Maximum
Available
User I/O(1)
Maximum
Differential
I/O Pairs
Distributed
RAM Bits
Block RAM
Bits
XC2S50E
1,728
23,000 - 50,000
16 x 24
384
182
83
24,576
32K
XC2S100E
2,700
37,000 - 100,000
20 x 30
600
202
86
38,400
40K
XC2S150E
3,888
52,000 - 150,000
24 x 36
864
265
114
55,296
48K
XC2S200E
5,292
71,000 - 200,000
28 x 42
1,176
289
120
75,264
56K
XC2S300E
6,912
93,000 - 300,000
32 x 48
1,536
329
120
98,304
64K
XC2S400E
10,800
145,000 - 400,000
40 x 60
2,400
410
172
153,600
160K
XC2S600E
15,552
210,000 - 600,000
48 x 72
3,456
514
205
221,184
288K
Notes:
1. User I/O counts include the four global clock/user input pins. See details in Table 2, page 5
© 2003-2008 Xilinx, Inc. All rights reserved. XILINX, the Xilinx logo, the Brand Window, and other designated brands included herein are trademarks of Xilinx, Inc. All other
trademarks are the property of their respective owners.
DS077-1 (v2.3) June 18, 2008
Product Specification
www.xilinx.com
3
R
Spartan-IIE FPGA Family: Introduction and Ordering Information
General Overview
The Spartan-IIE family of FPGAs have a regular, flexible,
programmable architecture of Configurable Logic Blocks
(CLBs), surrounded by a perimeter of programmable
Input/Output Blocks (IOBs). There are four Delay-Locked
Loops (DLLs), one at each corner of the die. Two columns
of block RAM lie on opposite sides of the die, between the
CLBs and the IOB columns. The XC2S400E has four columns and the XC2S600E has six columns of block RAM.
These functional elements are interconnected by a powerful
hierarchy of versatile routing channels (see Figure 1).
Spartan-IIE FPGAs are customized by loading configuration data into internal static memory cells. Unlimited reprogramming cycles are possible with this approach. Stored
values in these cells determine logic functions and interconnections implemented in the FPGA. Configuration data can
be read from an external serial PROM (master serial mode),
or written into the FPGA in slave serial, slave parallel, or
Boundary Scan modes. Xilinx offers multiple types of
low-cost configuration solutions including the Platform
Flash in-system programmable configuration PROMs.
Spartan-IIE FPGAs are typically used in high-volume applications where the versatility of a fast programmable solution
adds benefits. Spartan-IIE FPGAs are ideal for shortening
product development cycles while offering a cost-effective
solution for high volume production.
Spartan-IIE FPGAs achieve high-performance, low-cost
operation through advanced architecture and semiconductor technology. Spartan-IIE devices provide system clock
rates beyond 200 MHz. In addition to the conventional benefits of high-volume programmable logic solutions, Spartan-IIE FPGAs also offer on-chip synchronous single-port
and dual-port RAM (block and distributed form), DLL clock
drivers, programmable set and reset on all flip-flops, fast
carry logic, and many other features.
Spartan-IIE Family Compared to Spartan-II
Family
•
•
•
•
•
•
•
Higher density and more I/O
Higher performance
Unique pinouts in cost-effective packages
Differential signaling
- LVDS, Bus LVDS, LVPECL
VCCINT = 1.8V
- Lower power
- 5V tolerance with external resistor
- 3V tolerance directly
PCI, LVTTL, and LVCMOS2 input buffers powered by
VCCO instead of VCCINT
Unique larger bitstream
DLL
BLOCK RAM
CLBs
CLBs
BLOCK RAM
BLOCK RAM
CLBs
CLBs
BLOCK RAM
DLL
DLL
DLL
I/O LOGIC
DS077_01_052102
Figure 1: Basic Spartan-IIE Family FPGA Block Diagram
4
www.xilinx.com
DS077-1 (v2.3) June 18, 2008
Product Specification
R
Spartan-IIE FPGA Family: Introduction and Ordering Information
Spartan-IIE Product Availability
Table 2 shows the maximum user I/Os available on the device and the number of user I/Os available for each
device/package combination.
Table 2: Spartan-IIE FPGA User I/O Chart
Available User I/O According to Package Type
Device
Maximum
User I/O
TQ144
TQG144
PQ208
PQG208
FT256
FTG256
FG456
FGG456
FG676
FGG676
XC2S50E
182
102
146
182
-
-
XC2S100E
202
102
146
182
202
-
XC2S150E
265
-
146
182
265
-
XC2S200E
289
-
146
182
289
-
XC2S300E
329
-
146
182
329
-
XC2S400E
410
-
-
182
329
410
XC2S600E
514
-
-
-
329
514
Notes:
1. User I/O counts include the four global clock/user input pins.
DS077-1 (v2.3) June 18, 2008
Product Specification
www.xilinx.com
5
R
Spartan-IIE FPGA Family: Introduction and Ordering Information
Ordering Information
Spartan-IIE devices are available in both standard and Pb-free packaging options for all device/package combinations. The
Pb-free packages include a special "G" character in the ordering code.
Standard Packaging
Example: XC2S50E -6 PQ 208 C
Device Type
Temperature Range
Speed Grade
Number of Pins
Package Type
DS077-1_03a_072004
Pb-Free Packaging
Example: XC2S50E -6 PQ G 208 C
Device Type
Temperature Range
Speed Grade
Number of Pins
Package Type
Pb-free
DS077-1_03b_072004
Device Ordering Options
Device
Speed Grade
XC2S50E
-6 Standard Performance
XC2S100E
Performance(1)
-7 Higher
Package Type / Number of Pins
Temperature Range ( TJ )(2)
TQ(G)144 144-pin Plastic Thin QFP
C = Commercial
PQ(G)208 208-pin Plastic QFP
I = Industrial
XC2S150E
FT(G)256 256-ball Fine Pitch BGA
XC2S200E
FG(G)456 456-ball Fine Pitch BGA
XC2S300E
FG(G)676 676-ball Fine Pitch BGA
0°C to + 85°C
– 40°C to +100°C
XC2S400E
XC2S600E
Notes:
1. The -7 speed grade is exclusively available in the Commercial temperature range.
2. See www.xilinx.com for information on automotive temperature range devices.
Device Part Marking
Figure 2 is a top marking example for Spartan-IIE FPGAs in
the quad-flat packages. The markings for BGA packages
are nearly identical to those for the quad-flat packages,
except that the marking is rotated with respect to the ball A1
indicator.
The "7C" and "6I" Speed Grade/Temperature Range part
combinations may be dual marked as "7C/6I". Devices
with the dual mark can be used as either -7C or -6I devices.
Devices with a single mark are only guaranteed for the
marked speed grade and temperature range.
R
R
Device Type
Package
Speed
SPARTAN
XC2S50E
PQ208xxx0425
xxxxxxxxx
6C
Date Code
Lot Code (numeric)
Operating Range
Sample package with part marking
for XC2S50E-6PQ208C.
Figure 2: Spartan-IIE QFP Marking Example
6
www.xilinx.com
DS077-1 (v2.3) June 18, 2008
Product Specification
R
Spartan-IIE FPGA Family: Introduction and Ordering Information
Revision History
Date
Version No.
06/27/02
1.1
Updated -7 availability.
11/18/02
2.0
Added XC2S400E and XC2S600E. Corrected XC2S150E max I/O count and XC2S50E
differential I/O count and updated availability.
07/09/03
2.1
Noted hot-swap capability. Updated Table 2 to show that all products are available. Clarified
device part marking.
07/28/04
2.2
Added information on Pb-free packaging options.
06/18/08
2.3
Added dual mark information in Device Part Marking. Updated all modules for continuous
page, figure, and table numbering. Updated links. Synchronized all modules to v2.3.
DS077-1 (v2.3) June 18, 2008
Product Specification
Description
www.xilinx.com
7
Spartan-IIE FPGA Family: Introduction and Ordering Information
8
www.xilinx.com
R
DS077-1 (v2.3) June 18, 2008
Product Specification
Spartan-IIE FPGA Family:
Functional Description
R
DS077-2 (v2.3) June 18, 2008
0
Architectural Description
Spartan-IIE FPGA Array
The Spartan®-IIE user-programmable gate array, shown in
Figure 3, is composed of five major configurable elements:
•
•
•
•
•
IOBs provide the interface between the package pins
and the internal logic
CLBs provide the functional elements for constructing
most logic
Dedicated block RAM memories of 4096 bits each
Clock DLLs for clock-distribution delay compensation
and clock domain control
Versatile multi-level interconnect structure
Product Specification
As can be seen in Figure 3, the CLBs form the central logic
structure with easy access to all support and routing structures. The IOBs are located around all the logic and memory elements for easy and quick routing of signals on and off
the chip.
Values stored in static memory cells control all the configurable logic elements and interconnect resources. These
values load into the memory cells on power-up, and can
reload if necessary to change the function of the device.
Each of these elements will be discussed in detail in the following sections.
DLL
BLOCK RAM
CLBs
CLBs
BLOCK RAM
BLOCK RAM
CLBs
CLBs
BLOCK RAM
DLL
DLL
DLL
I/O LOGIC
DS077_01_052102
Figure 3: Basic Spartan-IIE Family FPGA Block Diagram
© 2003-2007 Xilinx, Inc. All rights reserved. XILINX, the Xilinx logo, the Brand Window, and other designated brands included herein are trademarks of Xilinx, Inc. All other
trademarks are the property of their respective owners.
DS077-2 (v2.3) June 18, 2008
Product Specification
www.xilinx.com
9
R
Spartan-IIE FPGA Family: Functional Description
T
SR
D
VCCO
Q
Package
Pin
TFF
CLK
CK
TCE
EC
VCC
OE
SR
I/O
Programmable
Bias and
ESD Network
Package Pin
SR
O
D
Q
Programmable
Output Buffer
OFF
CK
OCE
VCC(1)
EC
Internal
Reference
Programmable
Delay
IQ
I/O, VREF
SR
I
D
Package Pin
Programmable
Input Buffer
Q
IFF
CK
ICE
To Next I/O
To Other
External VREF Inputs
of Bank
EC
Notes:
1. For some I/O standards.
DS077-2_01_051501
Figure 4: Spartan-IIE Input/Output Block (IOB)
Table 3: Standards Supported by I/O (Typical Values)
I/O Standard
Input
Output
Board
Reference Input Source Termination
Voltage Voltage Voltage
Voltage
(VREF)
(VTT)
(VCCO) (VCCO)
LVTTL (2-24 mA)
N/A
3.3
3.3
N/A
LVCMOS2
N/A
2.5
2.5
N/A
LVCMOS18
N/A
1.8
1.8
N/A
PCI (3V,
33 MHz/66 MHz)
N/A
3.3
3.3
N/A
GTL
0.8
N/A
N/A
1.2
GTL+
1.0
N/A
N/A
1.5
HSTL Class I
0.75
N/A
1.5
0.75
HSTL Class III
0.9
N/A
1.5
1.5
HSTL Class IV
0.9
N/A
1.5
1.5
SSTL3 Class I
and II
1.5
N/A
3.3
1.5
SSTL2 Class I
and II
1.25
N/A
2.5
1.25
CTT
1.5
N/A
3.3
1.5
AGP
1.32
N/A
3.3
N/A
LVDS, Bus LVDS
N/A
N/A
2.5
N/A
LVPECL
N/A
N/A
3.3
N/A
10
Input/Output Block
The Spartan-IIE FPGA IOB, as seen in Figure 4, features
inputs and outputs that support a wide variety of I/O signaling standards. These high-speed inputs and outputs are
capable of supporting various state of the art memory and
bus interfaces. The default standard is LVTTL. Table 3 lists
several of the standards which are supported along with the
required reference (VREF), output (VCCO) and board termination (VTT) voltages needed to meet the standard. For
more details on the I/O standards and termination application examples, see XAPP179, "Using SelectIO Interfaces in
Spartan-II and Spartan-IIE FPGAs."
The three IOB registers function either as edge-triggered
D-type flip-flops or as level-sensitive latches. Each IOB has
a clock signal (CLK) shared by the three registers and independent Clock Enable (CE) signals for each register.
In addition to the CLK and CE control signals, the three registers share a Set/Reset (SR). For each register, this signal
can be independently configured as a synchronous Set, a
synchronous Reset, an asynchronous Preset, or an asynchronous Clear.
A feature not shown in the block diagram, but controlled by
the software, is polarity control. The input and output buffers
and all of the IOB control signals have independent polarity
controls.
www.xilinx.com
DS077-2 (v2.3) June 18, 2008
Product Specification
R
Spartan-IIE FPGA Family: Functional Description
All Spartan-IIE FPGA IOBs support IEEE 1149.1-compatible boundary scan testing.
Input Path
A buffer in the IOB input path routes the input signal directly
to internal logic and through an optional input flip-flop.
An optional delay element at the D-input of this flip-flop eliminates pad-to-pad hold time. The delay is matched to the
internal clock-distribution delay of the FPGA, and when
used, assures that the pad-to-pad hold time is zero.
Each input buffer can be configured to conform to any of the
low-voltage signaling standards supported. In some of
these standards the input buffer utilizes a user-supplied
threshold voltage, VREF. The need to supply VREF imposes
constraints on which standards can used in close proximity
to each other. See I/O Banking.
An optional weak-keeper circuit is connected to each output. When selected, the circuit monitors the voltage on the
pad and weakly drives the pin High or Low to match the
input signal. If the pin is connected to a multiple-source signal, the weak keeper holds the signal in its last state if all
drivers are disabled. Maintaining a valid logic level in this
way helps eliminate bus chatter.
Because the weak-keeper circuit uses the IOB input buffer
to monitor the input level, an appropriate VREF voltage must
be provided if the signaling standard requires one. The provision of this voltage must comply with the I/O banking
rules.
I/O Banking
Some of the I/O standards described above require VCCO
and/or VREF voltages. These voltages are externally supplied and connected to device pins that serve groups of
IOBs, called banks. Consequently, restrictions exist about
which I/O standards can be combined within a given bank.
Eight I/O banks result from separating each edge of the
FPGA into two banks (see Figure 5). The pinout tables
show the bank affiliation of each I/O (see Pinout Tables,
page 53). Each bank has multiple VCCO pins which must be
connected to the same voltage. Voltage requirements are
determined by the output standards in use.
Bank 0
There are optional pull-up and pull-down resistors at each
input for use after configuration.
Bank 1
GCLK3
Bank 2
All pads are protected against damage from electrostatic
discharge (ESD) and from over-voltage transients. After
configuration, clamping diodes are connected to VCCO for
LVTTL, PCI, HSTL, SSTL, CTT, and AGP standards.
can be used in close proximity to each other. See I/O Banking.
Bank 7
Optional pull-up and pull-down resistors and an optional
weak-keeper circuit are attached to each user I/O pad. Prior
to configuration all outputs not involved in configuration are
forced into their high-impedance state. The pull-down resistors and the weak-keeper circuits are inactive, but inputs
may optionally be pulled up. The activation of pull-up resistors prior to configuration is controlled on a global basis by
the configuration mode pins. If the pull-up resistors are not
activated, all the pins will float. Consequently, external
pull-up or pull-down resistors must be provided on pins
required to be at a well-defined logic level prior to configuration.
GCLK2
Bank 6
The output path includes a 3-state output buffer that drives
the output signal onto the pad. The output signal can be
routed to the buffer directly from the internal logic or through
an optional IOB output flip-flop.
The 3-state control of the output can also be routed directly
from the internal logic or through a flip-flip that provides synchronous enable and disable.
GCLK1
Bank 5
Bank 3
Spartan-IIE
Device
Output Path
GCLK0
Bank 4
DS077-2_02_051501
Each output driver can be individually programmed for a
wide range of low-voltage signaling standards. Each output
buffer can source up to 24 mA and sink up to 48 mA. Drive
strength and slew rate controls minimize bus transients. The
default output driver is LVTTL with 12 mA drive strength and
slow slew rate.
In most signaling standards, the output high voltage
depends on an externally supplied VCCO voltage. The need
to supply VCCO imposes constraints on which standards
DS077-2 (v2.3) June 18, 2008
Product Specification
Figure 5: Spartan-IIE I/O Banks
In the TQ144 and PQ208 packages, the eight banks have
VCCO connected together. Thus, only one VCCO level is
allowed in these packages, although different VREF values
are allowed in each of the eight banks.
Within a bank, standards may be mixed only if they use the
same VCCO. Compatible standards are shown in Table 4.
GTL and GTL+ appear under all voltages because their
open-drain outputs do not depend on VCCO. Note that VCCO
www.xilinx.com
11
R
Spartan-IIE FPGA Family: Functional Description
is required for most output standards and for LVTTL,
LVCMOS, and PCI inputs.
Table 4: Compatible Standards
VCCO
Compatible Standards
3.3V
PCI, LVTTL, SSTL3 I, SSTL3 II, CTT, AGP,
LVPECL, GTL, GTL+
2.5V
SSTL2 I, SSTL2 II, LVCMOS2, LVDS, Bus
LVDS, GTL, GTL+
1.8V
LVCMOS18, GTL, GTL+
1.5V
HSTL I, HSTL III, HSTL IV, GTL, GTL+
Hot Swap, Hot Insertion, Hot Socketing Support
The I/O pins support hot swap — also called hot insertion
and hot socketing — and are considered CompactPCI
Friendly according to the PCI Bus v2.2 Specification. Consequently, an unpowered Spartan-IIE FPGA can be
plugged directly into a powered system or backplane without affecting or damaging the system or the FPGA. The hot
swap functionality is built into every XC2S150E,
XC2S400E, and XC2S600E device. All other Spartan-IIE
devices built after Product Change Notice PCN2002-05 also
include hot swap functionality.
To support hot swap, Spartan-IIE devices include the following I/O features.
Some input standards require a user-supplied threshold
voltage, VREF. In this case, certain user-I/O pins are automatically configured as inputs for the VREF voltage. About
one in six of the I/O pins in the bank assume this role.
•
•
VREF pins within a bank are interconnected internally and
consequently only one VREF voltage can be used within
each bank. All VREF pins in the bank, however, must be connected to the external voltage source for correct operation.
In a bank, inputs requiring VREF can be mixed with those
that do not but only one VREF voltage may be used within a
bank. The VCCO and VREF pins for each bank appear in the
device pinout tables.
Within a given package, the number of VREF and VCCO pins
can vary depending on the size of device. In larger devices,
more I/O pins convert to VREF pins. Since these are always
a superset of the VREF pins used for smaller devices, it is
possible to design a PCB that permits migration to a larger
device. All VREF pins for the largest device anticipated must
be connected to the VREF voltage, and not used for I/O.
Table 5: I/O Banking
TQ144, PQ208
FT256, FG456,
FG676
VCCO Banks
Interconnected as 1
8 independent
VREF Banks
8 independent
8 independent
Package
See Xilinx® Application Note XAPP179 for more information
on I/O resources.
12
•
•
Signals can be applied to Spartan-IIE FPGA I/O pins
before powering the FPGA’s VCCINT or VCCO supply
inputs.
Spartan-IIE FPGA I/O pins are high-impedance (i.e.,
three-stated) before and throughout the power-up and
configuration processes when employing a
configuration mode that does not enable the
preconfiguration weak pull-up resistors (see Table 11,
page 22).
There is no current path from the I/O pin back to the
VCCINT or VCCO voltage supplies.
Spartan-IIE FPGAs are immune to latch-up during hot
swap.
Once connected to the system, each pin adds a small
amount of capacitance (CIN). Likewise, each I/O consumes
a small amount of DC current, equivalent to the input leakage specification (IL). There also may be a small amount of
temporary AC current (IHSPO) when the pin input voltage
exceeds VCCO plus 0.4V, which lasts less than 10 ns.
A weak-keeper circuit within each user-I/O pin is enabled
during the last frame of configuration data and has no
noticeable effect on robust system signals driven by an
active driver or a strong pull-up or pull-down resistor.
Undriven or floating system signals may be affected. The
specific effect depends on how the I/O pin is configured.
User-I/O pins configured as outputs or enabled outputs
have a weak pull-up resistor to VCCO during the last configuration frame. User-I/O pins configured as inputs or bidirectional I/Os have weak pull-down resistors. The weak-keeper
circuit turns off when the DONE pin goes High, provided
that it is not used in the configured application.
www.xilinx.com
DS077-2 (v2.3) June 18, 2008
Product Specification
R
Spartan-IIE FPGA Family: Functional Description
Configurable Logic Block
The basic building block of the Spartan-IIE FPGA CLB is the
logic cell (LC). An LC includes a 4-input function generator,
carry logic, and storage element. The output from the function generator in each LC drives the CLB output or the
D input of the flip-flop. Each Spartan-IIE FPGA CLB contains four LCs, organized in two similar slices; a single slice
is shown in Figure 6.
In addition to the four basic LCs, the Spartan-IIE FPGA CLB
contains logic that combines function generators to provide
functions of five or six inputs.
Look-Up Tables
Spartan-IIE FPGA function generators are implemented as
4-input look-up tables (LUTs). In addition to operating as a
function generator, each LUT can provide a 16 x 1-bit synchronous RAM. Furthermore, the two LUTs within a slice
can be combined to create a 16 x 2-bit or 32 x 1-bit synchronous RAM, or a 16 x 1-bit dual-port synchronous RAM.
DS077-2 (v2.3) June 18, 2008
Product Specification
The Spartan-IIE FPGA LUT can also provide a 16-bit shift
register that is ideal for capturing high-speed or burst-mode
data. This mode can also be used to store data in applications such as Digital Signal Processing.
Storage Elements
Storage elements in the Spartan-IIE FPGA slice can be
configured either as edge-triggered D-type flip-flops or as
level-sensitive latches. The D inputs can be driven either by
function generators within the slice or directly from slice
inputs, bypassing the function generators.
In addition to Clock and Clock Enable signals, each slice
has synchronous set and reset signals (SR and BY). SR
forces a storage element into the initialization state specified for it in the configuration. BY forces it into the opposite
state. Alternatively, these signals may be configured to
operate asynchronously.
All control signals are independently invertible, and are
shared by the two flip-flops within the slice.
www.xilinx.com
13
R
Spartan-IIE FPGA Family: Functional Description
COUT
YB
Y
G4
I4
G2
Look-Up
I3 Table
O
I2
G1
I1
G3
S
D
Carry
and
Control
Logic
YQ
Q
CK
EC
R
F5IN
BY
SR
XB
X
F4
I4
F2
Look-Up
I3 Table
O
I2
F1
I1
F3
S
D
Carry
and
Control
Logic
XQ
Q
CK
EC
R
BX
CIN
CLK
CE
DS001_04_091400
Figure 6: Spartan-IIE CLB Slice (two identical slices in each CLB)
Additional Logic
The F5 multiplexer in each slice combines the function generator outputs (Figure 7). This combination provides either
a function generator that can implement any 5-input function, a 4:1 multiplexer, or selected functions of up to nine
inputs.
14
Similarly, the F6 multiplexer combines the outputs of all four
function generators in the CLB by selecting one of the two
F5-multiplexer outputs. This permits the implementation of
any 6-input function, an 8:1 multiplexer, or selected functions of up to 19 inputs.
www.xilinx.com
DS077-2 (v2.3) June 18, 2008
Product Specification
R
Spartan-IIE FPGA Family: Functional Description
Block RAM
CLB
Spartan-IIE FPGAs incorporate several large block RAM
memories. These complement the distributed RAM
Look-Up Tables (LUTs) that provide shallow memory structures implemented in CLBs.
Slice
MUXF6
LUT
Block RAM memory blocks are organized in columns. Most
Spartan-IIE devices contain two such columns, one along
each vertical edge. The XC2S400E has four block RAM columns and the XC2S600E has six block RAM columns.
These columns extend the full height of the chip. Each
memory block is four CLBs high, and consequently, a
Spartan-IIE device 16 CLBs high will contain four memory
blocks per column, and a total of eight blocks.
LUT
MUXF5
Slice
LUT
Table 6: Spartan-IIE Block RAM Amounts
LUT
MUXF5
Spartan-IIE
Device
# of Blocks
Total Block RAM
Bits
XC2S50E
8
32K
XC2S100E
10
40K
XC2S150E
12
48K
XC2S200E
14
56K
XC2S300E
16
64K
XC2S400E
40
160K
XC2S600E
72
288K
DS077-2_05-111501
Figure 7: F5 and F6 Multiplexers
Each CLB has four direct feedthrough paths, one per LC.
These paths provide extra data input lines or additional local
routing that does not consume logic resources.
Arithmetic Logic
Dedicated carry logic provides capability for high-speed
arithmetic functions. The Spartan-IIE FPGA CLB supports
two separate carry chains, one per slice. The height of the
carry chains is two bits per CLB.
Each block RAM cell, as illustrated in Figure 8, is a fully synchronous dual-ported 4096-bit RAM with independent control signals for each port. The data widths of the two ports
can be configured independently, providing built-in
bus-width conversion.
The arithmetic logic includes an XOR gate that allows a
1-bit full adder to be implemented within an LC. In addition,
a dedicated AND gate improves the efficiency of multiplier
implementations.
The dedicated carry path can also be used to cascade function generators for implementing wide logic functions.
BUFTs
Each Spartan-IIE FPGA CLB contains two 3-state drivers
(BUFTs) that can drive on-chip busses. The IOBs on the left
and right sides can also drive the on-chip busses. See Dedicated Routing, page 17. Each Spartan-IIE FPGA BUFT
has an independent 3-state control pin and an independent
input pin. The 3-state control pin is an active-Low enable
(T). When all BUFTs on a net are disabled, the net is High.
There is no need to instantiate a pull-up unless desired for
simulation purposes. Simultaneously driving BUFTs onto
the same net will not cause contention. If driven both High
and Low, the net will be Low.
DS077-2 (v2.3) June 18, 2008
Product Specification
www.xilinx.com
RAMB4_S#_S#
WEA
ENA
RSTA
CLKA
ADD[#:0]
DIA[#:0]
WEB
ENB
RSTB
CLKB
ADDRB[#:0]
DIB[#:0]
DOA[#:0]
DOB[#:0]
DS001_05_060100
Figure 8: Dual-Port Block RAM
15
R
Spartan-IIE FPGA Family: Functional Description
Table 7 shows the depth and width aspect ratios for the
block RAM.
To Adjacent
GRM
Table 7: Block RAM Port Aspect Ratios
Width
Depth
ADDR Bus
Data Bus
1
4096
ADDR<11:0>
DATA<0>
2
2048
ADDR<10:0>
DATA<1:0>
4
1024
ADDR<9:0>
DATA<3:0>
8
512
ADDR<8:0>
DATA<7:0>
16
256
ADDR<7:0>
DATA<15:0>
The Spartan-IIE FPGA block RAM also includes dedicated
routing to provide an efficient interface with both CLBs and
other block RAMs. See Xilinx Application Note XAPP173 for
more information on block RAM.
Programmable Routing
It is the longest delay path that limits the speed of any
design. Consequently, the Spartan-IIE FPGA routing architecture and its place-and-route software were defined jointly
to minimize long-path delays and yield the best system performance.
The joint optimization also reduces design compilation
times because the architecture is software-friendly. Design
cycles are correspondingly reduced due to shorter design
iteration times.
The software automatically uses the best available routing
based on user timing requirements. The details are provided here for reference.
To
Adjacent
GRM
•
•
CLB
Direct
Connection
To Adjacent
CLB
DS001_06_032300
Figure 9: Spartan-IIE Local Routing
General Purpose Routing
Most Spartan-IIE FPGA signals are routed on the general
purpose routing, and consequently, the majority of interconnect resources are associated with this level of the routing
hierarchy. The general routing resources are located in horizontal and vertical routing channels associated with the
rows and columns of CLBs. The general-purpose routing
resources are listed below.
•
•
•
The local routing resources, as shown in Figure 9, provide
the following three types of connections:
Interconnections among the LUTs, flip-flops, and
General Routing Matrix (GRM), described below.
Internal CLB feedback paths that provide high-speed
connections to LUTs within the same CLB, chaining
them together with minimal routing delay
Direct paths that provide high-speed connections
between horizontally adjacent CLBs, eliminating the
delay of the GRM
To Adjacent
GRM
To Adjacent
GRM
Direct Connection
To Adjacent
CLB
Local Routing
•
GRM
•
Adjacent to each CLB is a General Routing Matrix
(GRM). The GRM is the switch matrix through which
horizontal and vertical routing resources connect, and
is also the means by which the CLB gains access to
the general purpose routing.
24 single-length lines route GRM signals to adjacent
GRMs in each of the four directions.
96 buffered Hex lines route GRM signals to other
GRMs six blocks away in each one of the four
directions. Organized in a staggered pattern, Hex lines
may be driven only at their endpoints. Hex-line signals
can be accessed either at the endpoints or at the
midpoint (three blocks from the source). One third of
the Hex lines are bidirectional, while the remaining
ones are unidirectional.
12 Longlines are buffered, bidirectional wires that
distribute signals across the device quickly and
efficiently. Vertical Longlines span the full height of the
device, and horizontal ones span the full width of the
device.
I/O Routing
Spartan-IIE devices have additional routing resources
around their periphery that form an interface between the
CLB array and the IOBs. This additional routing, called the
VersaRing™ routing, facilitates pin-swapping and pin-locking, such that logic redesigns can adapt to existing PCB layouts. Time-to-market is reduced, since PCBs and other
system components can be manufactured while the logic
design is still in progress.
16
www.xilinx.com
DS077-2 (v2.3) June 18, 2008
Product Specification
R
Spartan-IIE FPGA Family: Functional Description
Dedicated Routing
•
Some classes of signal require dedicated routing resources
to maximize performance. In the Spartan-IIE FPGA architecture, dedicated routing resources are provided for two
classes of signal.
•
Horizontal routing resources are provided for on-chip
3-state busses. Four partitionable bus lines are
provided per CLB row, permitting multiple busses
within a row, as shown in Figure 10.
Two dedicated nets per CLB propagate carry signals
vertically to the adjacent CLB.
3-State
Lines
CLB
CLB
CLB
CLB
DS001_07_090600
Figure 10: BUFT Connections to Dedicated Horizontal Bus Lines
Global Routing
Global Routing resources distribute clocks and other signals with very high fanout throughout the device. Spartan-IIE devices include two tiers of global routing resources
referred to as primary and secondary global routing
resources.
•
•
selected either from these pads or from signals in the general purpose routing.
Global
Clock Rows
The primary global routing resources are four
dedicated global nets with dedicated input pins that are
designed to distribute high-fanout clock signals with
minimal skew. Each global clock net can drive all CLB,
IOB, and block RAM clock pins. The primary global
nets may only be driven by global buffers. There are
four global buffers, one for each global net.
The secondary global routing resources consist of 24
backbone lines, 12 across the top of the chip and 12
across the bottom. From these lines, up to 12 unique
signals per column can be distributed via the 12
longlines in the column. These secondary resources
are more flexible than the primary resources since they
are not restricted to routing only to clock pins.
GCLKPAD2
GCLKBUF2
Global Clock
Column
Global Clock
Spine
GCLKBUF1
GCLKPAD1
GCLKBUF0
GCLKPAD0
DS001_08_060100
Figure 11: Global Clock Distribution Network
Clock Distribution
The Spartan-IIE family provides high-speed, low-skew clock
distribution through the primary global routing resources
described above. A typical clock distribution net is shown in
Figure 11.
Four global buffers are provided, two at the top center of the
device and two at the bottom center. These drive the four
primary global nets that in turn drive any clock pin.
Four dedicated clock pads are provided, one adjacent to
each of the global buffers. The input to the global buffer is
DS077-2 (v2.3) June 18, 2008
Product Specification
GCLKPAD3
GCLKBUF3
Delay-Locked Loop (DLL)
Associated with each global clock input buffer is a fully digital Delay-Locked Loop (DLL) that can eliminate skew
between the clock input pad and internal clock-input pins
throughout the device. Each DLL can drive two global clock
networks. The DLL monitors the input clock and the distributed clock, and automatically adjusts a clock delay element
(Figure 12). Additional delay is introduced such that clock
edges reach internal flip-flops exactly one clock period after
they arrive at the input. This closed-loop system effectively
eliminates clock-distribution delay by ensuring that clock
www.xilinx.com
17
R
Spartan-IIE FPGA Family: Functional Description
edges arrive at internal flip-flops in synchronism with clock
edges arriving at the input.
CLKIN
Variable
Delay Line
CLKOUT
Clock
Distribution
Network
Boundary Scan
Spartan-IIE devices support all the mandatory boundary-scan instructions specified in the IEEE standard 1149.1.
A Test Access Port (TAP) and registers are provided that
implement the EXTEST, INTEST, SAMPLE/PRELOAD,
BYPASS, IDCODE, and HIGHZ instructions. The TAP also
supports two USERCODE instructions, internal scan
chains, and configuration/readback of the device.
Control
CLKFB
ds077-2_10_070203
Figure 12: Delay-Locked Loop Block Diagram
In addition to eliminating clock-distribution delay, the DLL
provides advanced control of multiple clock domains. The
DLL provides four quadrature phases of the source clock,
can double the clock, or divide the clock by 1.5, 2, 2.5, 3, 4,
5, 8, or 16. The phase-shifted output have optional
duty-cycle correction (Figure 13).
0
90 180 270
0
DLL can delay the completion of the configuration process
until after it has achieved lock. If the DLL uses external feedback, apply a reset after startup to ensure consistent locking to the external signal. See Xilinx Application Note
XAPP174 for more information on DLLs.
90 180 270
t
CLKIN
The TAP uses dedicated package pins that always operate
using LVTTL. For TDO to operate using LVTTL, the VCCO for
Bank 2 must be 3.3V. Otherwise, TDO switches rail-to-rail
between ground and VCCO. The boundary-scan input pins
(TDI, TMS, TCK) do not have a VCCO requirement and operate with either 2.5V or 3.3V input signaling levels. TDI, TMS,
and TCK hava a default internal weak pull-up resistor, and
TDO has no default resistor. Bitstream options allow setting
any of the four TAP pins to have an internal pull-up,
pull-down, or neither.
Boundary-scan operation is independent of individual IOB
configurations, and unaffected by package type. All IOBs,
including unbonded ones, are treated as independent
3-state bidirectional pins in a single scan chain. Retention of
the bidirectional test capability after configuration facilitates
the testing of external interconnections.
CLK2X
CLKDV_DIVIDE=2
CLKDV
Table 8 lists the boundary-scan instructions supported in
Spartan-IIE FPGAs. Internal signals can be captured during
EXTEST by connecting them to unbonded or unused IOBs.
They may also be connected to the unused outputs of IOBs
defined as unidirectional input pins.
DUTY_CYCLE_CORRECTION=FALSE
CLK0
CLK90
CLK180
Table 8: Boundary-Scan Instructions
CLK270
Boundary-Scan
Command
Binary
Code[4:0]
EXTEST
00000
Enables boundary-scan
EXTEST operation
SAMPLE/
PRELOAD
00001
Enables boundary-scan
SAMPLE/PRELOAD
operation
USER1
00010
Access user-defined
register 1
Figure 13: DLL Output Characteristics
USER2
00011
Access user-defined
register 2
The DLL also operates as a clock mirror. By driving the output from a DLL off-chip and then back on again, the DLL can
be used to deskew a board level clock among multiple Spartan-IIE devices.
CFG_OUT
00100
Access the
configuration bus for
Readback
CFG_IN
00101
Access the
configuration bus for
Configuration
DUTY_CYCLE_CORRECTION=TRUE
CLK0
CLK90
CLK180
CLK270
x132_07_092599
In order to guarantee that the system clock is operating correctly prior to the FPGA starting up after configuration, the
18
www.xilinx.com
Description
DS077-2 (v2.3) June 18, 2008
Product Specification
R
Spartan-IIE FPGA Family: Functional Description
Table 8: Boundary-Scan Instructions (Continued)
Boundary-Scan
Command
Binary
Code[4:0]
INTEST
00111
Enables boundary-scan
INTEST operation
USERCODE
01000
Enables shifting out
USER code
IDCODE
01001
Enables shifting out of
ID Code
HIGHZ
01010
Disables output pins
while enabling the
Bypass Register
The public boundary-scan instructions are available prior to
configuration, except for USER1 and USER2. After configuration, the public instructions remain available together with
any USERCODE instructions installed during the configuration. While the SAMPLE/PRELOAD and BYPASS instructions are available during configuration, it is recommended
that boundary-scan operations not be performed during this
transitional period.
Description
JSTART
01100
Clock the start-up
sequence when
StartupClk is TCK
BYPASS
11111
Enables BYPASS
RESERVED
All other
codes
Xilinx reserved
instructions
In addition to the test instructions outlined above, the
boundary-scan circuitry can be used to configure the
FPGA, and also to read back the configuration data.
To facilitate internal scan chains, the User Register provides
three outputs (Reset, Update, and Shift) that represent the
corresponding states in the boundary-scan internal state
machine.
Figure 14 is a diagram of the Spartan-IIE family boundary
scan logic. It includes three bits of Data Register per IOB,
the IEEE 1149.1 Test Access Port controller, and the
Instruction Register with decodes.
DATA IN
IOB.T
0
1
0
IOB
IOB
IOB
IOB
sd
D
D
Q
1
LE
IOB
IOB
Q
IOB
1
sd
D
Q
D
Q
0
IOB
IOB
IOB
IOB
LE
1
IOB.I
IOB
IOB
IOB
IOB
IOB
IOB
0
1
IOB
TDI
0
Instruction Register
Q
D
Q
LE
1
0
IOB.Q
IOB
Bypass
Register
sd
D
M TDO
U
X
IOB.T
0
1
0
sd
D
Q
D
Q
1
LE
1
0
sd
D
Q
D
Q
LE
1
IOB.I
0
DATAOUT
SHIFT/
CAPTURE
UPDATE
CLOCK DATA
REGISTER
EXTEST
DS001_09_032300
Figure 14: Spartan-IIE Family Boundary Scan Logic
DS077-2 (v2.3) June 18, 2008
Product Specification
www.xilinx.com
19
R
Spartan-IIE FPGA Family: Functional Description
Bit Sequence
Bit 0 ( TDO end)
Bit 1
Bit 2
The bit sequence within each IOB is: In, Out, 3-State. The
input-only pins contribute only the In bit to the boundary
scan I/O data register, while the output-only pins contributes
all three bits.
TDO.T
TDO.O
Top-edge IOBs (Right to Left)
Left-edge IOBs (Top to Bottom)
From a cavity-up view of the chip (as shown in the FPGA
Editor), starting in the upper right chip corner, the boundary
scan data-register bits are ordered as shown in Figure 15.
MODE.I
BSDL (Boundary Scan Description Language) files for
Spartan-IIE family devices are available on the Xilinx web
site at:
http://www.xilinx.com/support/download/sp2ebsdl.htm.
Bottom-edge IOBs (Left to Right)
Spartan-IIE FPGA boundary scan IDCODE values are
shown in Table 9.
Right-edge IOBs (Bottom to Top)
(TDI end)
BSCANT.UPD
DS001_10_032300
Figure 15: Boundary Scan Bit Sequence
Table 9: Spartan-IIE IDCODE Values
IDCODE
Device
Version
Family
Array Size
Manufacturer
Required
XC2S50E
XXXX
0000 101
0 0001 0000
0000 1001 001
1
XC2S100E
XXXX
0000 101
0 0001 0100
0000 1001 001
1
XC2S150E
XXXX
0000 101
0 0001 1000
0000 1001 001
1
XC2S200E
XXXX
0000 101
0 0001 1100
0000 1001 001
1
XC2S300E
XXXX
0000 101
0 0010 0000
0000 1001 001
1
XC2S400E
XXXX
0000 101
0 0010 1000
0000 1001 001
1
XC2S600E
XXXX
0000 101
0 0011 0000
0000 1001 001
1
Development System
Spartan-IIE FPGAs are supported by the Xilinx ISE® CAE
tools. The basic methodology for Spartan-IIE FPGA design
consists of three interrelated steps: design entry, implementation, and verification. Industry-standard tools are
used for design entry and simulation, while Xilinx provides
proprietary architecture-specific tools for implementation.
The Xilinx development system is integrated under the
Xilinx Project Navigator software, providing designers with a
common user interface regardless of their choice of entry
and verification tools. The software simplifies the selection
of implementation options with pull-down menus and on-line
help.
Several advanced software features facilitate Spartan-IIE
FPGA design. CORE Generator™ tool functions, for example, include macros with relative location constraints to
guide their placement. They help ensure optimal implementation of common functions.
20
For HDL design entry, the Xilinx FPGA development system
provides interfaces to several synthesis design environments.
A standard interface-file specification, Electronic Design
Interchange Format (EDIF), simplifies file transfers into and
out of the development system.
Spartan-IIE FPGAs are supported by a unified library of
standard functions. This library contains over 400 primitives
and macros, ranging from 2-input AND gates to 16-bit accumulators, and includes arithmetic functions, comparators,
counters, data registers, decoders, encoders, I/O functions,
latches, Boolean functions, multiplexers, shift registers, and
barrel shifters.
The design environment supports hierarchical design entry,
with high-level designs that comprise major functional
blocks, while lower-level designs define the logic in these
blocks. These hierarchical design elements are automatically combined by the implementation tools. Different
design entry tools can be combined within a hierarchical
www.xilinx.com
DS077-2 (v2.3) June 18, 2008
Product Specification
R
Spartan-IIE FPGA Family: Functional Description
design, thus allowing the most convenient entry method to
be used for each portion of the design.
Design Implementation
The place-and-route tools automatically provide the implementation flow described in this section. The partitioner
takes the EDIF netlist for the design and maps the logic into
the architectural resources of the FPGA (CLBs and IOBs,
for example). The placer then determines the best locations
for these blocks based on their interconnections and the
desired performance. Finally, the router interconnects the
blocks.
The algorithms support fully automatic implementation of
most designs. For demanding applications, however, the
user can exercise various degrees of control over the process. User partitioning, placement, and routing information
is optionally specified during the design-entry process. The
implementation of highly structured designs can benefit
greatly from basic floorplanning.
The implementation software incorporates timing-driven
placement and routing. Designers specify timing requirements along entire paths during design entry. The timing
path analysis routines then recognize these user-specified
requirements and accommodate them.
Configuration
Configuration is the process by which the bitstream of a
design, as generated by the Xilinx development software, is
loaded into the internal configuration memory of the FPGA.
Spartan-IIE devices support both serial configuration, using
the master/slave serial and JTAG modes, as well as
byte-wide configuration employing the Slave Parallel mode.
Configuration File
Spartan-IIE devices are configured by sequentially loading
frames of data that have been concatenated into a configuration file. Table 10 shows how much nonvolatile storage
space is needed for Spartan-IIE devices.
It is important to note that, while a PROM is commonly used
to store configuration data before loading them into the
FPGA, it is by no means required. Any of a number of different kinds of under populated nonvolatile storage already
available either on or off the board (for example, hard drives,
FLASH cards, and so on) can be used.
Table 10: Spartan-IIE Configuration File Size
Timing requirements are entered in a form directly relating
to the system requirements, such as the targeted clock frequency, or the maximum allowable delay between two registers. In this way, the overall performance of the system
along entire signal paths is automatically tailored to
user-generated specifications. Specific timing information
for individual nets is unnecessary.
Device
Configuration File Size (Bits)
XC2S50E
630,048
XC2S100E
863,840
XC2S150E
1,134,496
XC2S200E
1,442,016
XC2S300E
1,875,648
XC2S400E
2,693,440
XC2S600E
3,961,632
Design Verification
Modes
In addition to conventional software simulation, FPGA users
can use in-circuit debugging techniques. Because Xilinx
devices are infinitely reprogrammable, designs can be verified in real time without the need for extensive sets of software simulation vectors.
Spartan-IIE devices support the following four configuration
modes:
The development system supports both software simulation
and in-circuit debugging techniques. For simulation, the
system extracts the post-layout timing information from the
design database, and back-annotates this information into
the netlist for use by the simulator. Alternatively, the user
can verify timing-critical portions of the design using the
static timing analyzer.
For in-circuit debugging, Xilinx offers a download cable,
which connects the FPGA in the target system to a PC or
workstation. After downloading the design into the FPGA,
the designer can read back the contents of the flip-flops,
and so observe the internal logic state. Simple modifications can be downloaded into the system in a matter of minutes.
DS077-2 (v2.3) June 18, 2008
Product Specification
•
•
•
•
Slave Serial mode
Master Serial mode
Slave Parallel mode
Boundary-scan mode
The Configuration mode pins (M2, M1, M0) select among
these configuration modes with the option in each case of
having the IOB pins either pulled up or left floating prior to
the end of configuration. The selection codes are listed in
Table 11.
Configuration through the boundary-scan port is always
available, independent of the mode selection. Selecting the
boundary-scan mode simply turns off the other modes. The
three mode pins have internal pull-up resistors, and default
to a logic High if left unconnected.
www.xilinx.com
21
R
Spartan-IIE FPGA Family: Functional Description
Table 11: Configuration Modes
Preconfiguration
Pull-ups
M0
M1
M2
CCLK
Direction
Data Width
Serial DOUT
No
0
0
0
Out
1
Yes
Yes
0
0
1
Slave Parallel mode
(SelectMAP)
Yes
0
1
0
In
8
No
No
0
1
1
Boundary-Scan mode
Yes
1
0
0
N/A
1
No
No
1
0
1
Yes
1
1
0
In
1
Yes
No
1
1
1
Configuration Mode
Master Serial mode
Slave Serial mode
Notes:
1. During power-on and throughout configuration, the I/O drivers will be in a high-impedance state. After configuration, all unused I/Os
(those not assigned signals) will remain in a high-impedance state. Pins used as outputs may pulse High at the end of configuration
(see Answer 10504).
2. If the Mode pins are set for preconfiguration pull-ups, those resistors go into effect once the rising edge of INIT samples the Mode
pins. They will stay in effect until GTS is released during startup, after which the UnusedPin bitstream generator option will determine
whether the unused I/Os have a pull-up, pull-down, or no resistor.
Signals
There are two kinds of pins that are used to configure
Spartan-IIE devices: Dedicated pins perform only specific
configuration-related functions; the other pins can serve as
general purpose I/Os once user operation has begun.
The dedicated pins comprise the mode pins (M2, M1, M0),
the configuration clock pin (CCLK), the PROGRAM pin, the
DONE pin and the boundary-scan pins (TDI, TDO, TMS,
TCK). Depending on the selected configuration mode,
CCLK may be an output generated by the FPGA, or may be
generated externally, and provided to the FPGA as an input.
Note that some configuration pins can act as outputs. For
correct operation, these pins require a VCCO of 3.3V to drive
an LVTTL signal or 2.5V to drive an LVCMOS signal. All the
relevant pins fall in banks 2 or 3. The CS and WRITE pins
for Slave Parallel mode are located in bank 1.
For a more detailed description than that given below, see
Module 1 and XAPP176, Configuration and Readback of
the Spartan-II and Spartan-IIE FPGA Families.
The Process
The sequence of steps necessary to configure Spartan-IIE
devices are shown in Figure 16. The overall flow can be
divided into three different phases.
•
•
22
•
•
Loading data frames
Start-up
The memory clearing and start-up phases are the same for
all configuration modes; however, the steps for the loading
of data frames are different. Thus, the details for data frame
loading are described separately in the sections devoted to
each mode.
Initiating Configuration
There are two different ways to initiate the configuration process: applying power to the device or asserting the PROGRAM input.
Configuration on power-up occurs automatically unless it is
delayed by the user, as described in a separate section
below. The waveform for configuration on power-up is
shown in Configuration Switching Characteristics, page 48.
Before configuration can begin, VCCO Bank 2 must be
greater than 1.0V. Furthermore, all VCCINT power pins must
be connected to a 1.8V supply. For more information on
delaying configuration, see Clearing Configuration Memory,
page 23.
Once in user operation, the device can be re-configured
simply by pulling the PROGRAM pin Low. The device
acknowledges the beginning of the configuration process by
driving DONE Low, then enters the memory-clearing phase.
Initiating configuration
Configuration memory clear
www.xilinx.com
DS077-2 (v2.3) June 18, 2008
Product Specification
R
Spartan-IIE FPGA Family: Functional Description
Clearing Configuration Memory
Configuration
at Power-up
Configuration During
User Operation
The device indicates that clearing the configuration memory
is in progress by driving INIT Low.
Delaying Configuration
VCCO
AND
No
User Pulls
PROGRAM
Low
VCCINT
High?
Yes
At this time, the user can delay configuration by holding
either PROGRAM or INIT Low, which causes the device to
remain in the memory clearing phase. Note that the bidirectional INIT line is driving a Low logic level during memory
clearing. Thus, to avoid contention, use an open-drain driver
to keep INIT Low.
With no delay in force, the device indicates that the memory
is completely clear by driving INIT High. The FPGA samples
its mode pins on this Low-to-High transition.
FPGA
Drives INIT
and DONE Low
Loading Configuration Data
Clear
Configuration
Memory
User Holding
PROGRAM
Low?
Delay
Configuration
Yes
CRC Error Checking
No
Delay
Configuration
User Holding
INIT
Low?
Yes
No
FPGA
Samples
Mode Pins
After the loading of configuration data, a CRC value embedded in the configuration file is checked against a CRC value
calculated within the FPGA. If the CRC values do not
match, the FPGA drives INIT Low to indicate that an error
has occurred and configuration is aborted. Note that
attempting to load an incorrect bitstream causes configuration to fail and can damage the device.
To reconfigure the device, the PROGRAM pin should be
asserted to reset the configuration logic. Recycling power
also resets the FPGA for configuration. See Clearing Configuration Memory.
Load
Configuration
Data Frames
CRC
Correct?
Once INIT is High, the user can begin loading configuration
data frames into the device. The details of loading the configuration data are discussed in the sections treating the
configuration modes individually. The sequence of operations necessary to load configuration data using the serial
modes is shown in Figure 18. Loading data using the Slave
Parallel mode is shown in Figure 21, page 28.
Start-up
No
FPGA Drives
INIT Low
Abort Start-up
The start-up sequence oversees the transition of the FPGA
from the configuration state to full user operation. A match
of CRC values, indicating a successful loading of the configuration data, initiates the sequence.
Yes
Start-up Sequence
FPGA Drives DONE High,
Activates I/Os,
Releases GSR net
User Operation
DS001_11_111501
Figure 16: Configuration Flow Diagram
DS077-2 (v2.3) June 18, 2008
Product Specification
www.xilinx.com
23
R
Spartan-IIE FPGA Family: Functional Description
During start-up, the device performs four operations:
Default Cycles
1. The assertion of DONE. The failure of DONE to go High
may indicate the unsuccessful loading of configuration
data.
Start-up CLK
2. The release of the Global Three State (GTS). This
activates all the I/Os to which signals are assigned. The
remaining I/Os stay in a high-impedance state with
internal weak pull-up resistors present.
Phase
GTS
4. The assertion of Global Write Enable (GWE). This
allows all RAMs and flip-flops to change state.
GSR
By default, these operations are synchronized to CCLK.
The entire start-up sequence lasts eight cycles, called
C0-C7, after which the loaded design is fully functional. The
four operations can be selected to switch on any CCLK
cycle
C1-C6
through
settings
in
the
Xilinx
Development Software. The default timing for start-up is
shown in the top half of Figure 17; heavy lines show default
settings.
2
3
4
5
6 7
GWE
Sync to DONE
Start-up CLK
Phase
The default Start-up sequence is that one CCLK cycle after
DONE goes High, the global 3-state signal (GTS) is
released. This permits device outputs to turn on as necessary.
0
1
2
3
4
5
6 7
DONE High
One CCLK cycle later, the Global Set/Reset (GSR) and Global Write Enable (GWE) signals are released. This permits
the internal storage elements to begin changing state in
response to the logic and the user clock.
DONE
The bottom half of Figure 17 shows another commonly
used version of the start-up timing known as
Sync-to-DONE. This version makes the GTS, GSR, and
GWE events conditional upon the DONE pin going High.
This timing is important for a daisy chain of multiple FPGAs
in serial mode, since it ensures that all FPGAs go through
start-up together, after all their DONE pins have gone High.
GSR
The sequence can also be paused at any stage until lock
has been achieved on any or all DLLs.
1
DONE
3. The release of the Global Set Reset (GSR). This allows
all flip-flops to change state.
Sync-to-DONE timing is selected by setting the GTS, GSR,
and GWE cycles to a value of DONE in the configuration
options. This causes these signals to transition one clock
cycle after DONE externally transitions High.
0
GTS
GWE
DS001_13_090600
Figure 17: Start-Up Waveforms
Serial Modes
There are two serial configuration modes. In Master Serial
mode, the FPGA controls the configuration process by driving CCLK as an output. In Slave Serial mode, the FPGA
passively receives CCLK as an input from an external agent
(e.g., a microprocessor, CPLD, or second FPGA in master
mode) that is controlling the configuration process. In both
modes, the FPGA is configured by loading one bit per CCLK
cycle. The MSB of each configuration data byte is always
written to the DIN pin first.
See Figure 18 for the sequence for loading data into the
Spartan-IIE FPGA serially. This is an expansion of the
"Load Configuration Data Frames" block in Figure 16,
page 23. Note that CS and WRITE are not normally used
during serial configuration. To ensure successful loading of
the FPGA, do not toggle WRITE with CS Low during serial
configuration.
24
www.xilinx.com
DS077-2 (v2.3) June 18, 2008
Product Specification
R
Spartan-IIE FPGA Family: Functional Description
from a PROM. A Spartan-IIE device in slave serial mode
should be connected as shown for the third device from the
left. Slave Serial mode is selected by a <11x> on the mode
pins (M0, M1, M2). The weak pull-ups on the mode pins
make slave serial the default mode if the pins are left unconnected.
After INIT
Goes High
User Load One
Configuration
Bit on Next
CCLK Rising Edge
End of
Configuration
Data File?
The serial bitstream must be setup at the DIN input pin a
short time before each rising edge of an externally generated CCLK.
Timing for Slave Serial mode is shown in Figure 24,
page 49.
No
Daisy Chain
Yes
To CRC Check
DS001_14_032300
Figure 18: Loading Serial Mode Configuration Data
Slave Serial Mode
In Slave Serial mode, the FPGA’s CCLK pin is driven by an
external source, allowing the FPGA to be configured from
other logic devices such as microprocessors or in a
daisy-chain configuration. Figure 19 shows connections for
a Master Serial FPGA configuring a Slave Serial FPGA
3.3V
M0 M1
M2
VCCO
VCCINT
1.8V
Multiple FPGAs in Slave Serial mode can be daisy-chained
for configuration from a single source. After an FPGA is
configured, data for the next device is sent to the DOUT pin.
Data on the DOUT pin changes on the rising edge of CCLK.
Note that DOUT changes on the falling edge of CCLK for
some Xilinx families but mixed daisy chains are allowed.
Configuration must be delayed until INIT pins of all
daisy-chained FPGAs are High. For more information, see
Start-up, page 23.
The maximum amount of data that can be sent to the DOUT
pin for a serial daisy chain is 220-1 (1,048,575) 32-bit words,
or 33,554,400 bits, which is approximately 8 XC2S600E bitstreams. The configuration bitstream of downstream
devices is limited to this size.
3.3 K
VCCINT
DIN
DOUT
CCLK
Spartan-IIE
(Master Serial)
VCC
CLK
Xilinx
PROM
DIN
DATA
PROGRAM
CE
DONE
INIT
RESET/OE
GND
1.8V
VCCO
M0 M1
M2
DOUT
CCLK
3.3V
3.3V
3.3V
CEO
Spartan-IIE
(Slave)
PROGRAM
DONE
GND
INIT
GND
PROGRAM
DS077-2_04_061708
Notes:
1. If the DriveDone configuration option is not active for any of the FPGAs, pull up DONE with a 330Ω resistor.
Figure 19: Master/Slave Serial Configuration Circuit Diagram
DS077-2 (v2.3) June 18, 2008
Product Specification
www.xilinx.com
25
R
Spartan-IIE FPGA Family: Functional Description
Master Serial Mode
In Master Serial mode, the CCLK output of the FPGA drives
a Xilinx PROM, which feeds a serial stream of configuration
data to the FPGA’s DIN input. Figure 19 shows a Master
Serial FPGA configuring a Slave Serial FPGA from a
PROM. A Spartan-IIE device in Master Serial mode should
be connected as shown for the device on the left side. Master Serial mode is selected by a <00x> on the mode pins
(M0, M1, M2). The PROM RESET pin is driven by INIT, and
the CE input is driven by DONE. For more information on
serial PROMs, see the Xilinx Configuration PROM data
sheets at:
www.xilinx.com/support/documentation/configuration_proms_data_sheets.htm
The interface is identical to the slave serial mode except
that an oscillator internal to the FPGA is used to generate
the configuration clock (CCLK). Any of a number of different
frequencies ranging from 4 to 60 MHz can be set using the
ConfigRate option in the Xilinx development software.
When selecting a CCLK frequency, ensure that the serial
PROM and any daisy-chained FPGAs are fast enough to
support the clock rate. On power-up, while the first 60 bytes
of the configuration data are being loaded, the CCLK frequency is always 2.5 MHz. This frequency is used until the
ConfigRate bits, part of the configuration file, have been
loaded into the FPGA, at which point the frequency
changes to the selected ConfigRate. Unless a different frequency is specified in the design, the default ConfigRate is
4 MHz. The frequency of the CCLK signal created by the
internal oscillator has a variance of +45%, –30% from the
specified value.
26
The FPGA accepts one bit of configuration data on each rising CCLK edge. After the FPGA has been loaded, the data
for the next device in a daisy-chain is presented on the
DOUT pin after the rising CCLK edge. The timing for Master
Serial mode is shown in Figure 25, page 49.
Slave Parallel Mode (SelectMAP)
The Slave Parallel mode, also known as SelectMAP, is the
fastest configuration option. Byte-wide data is written into
the FPGA on the D0-D7 pins. Note that D0 is the MSB of
each byte for configuration. A BUSY flag is provided for controlling the flow of data at a clock frequency above 50 MHz.
Figure 20, page 27 shows the connections for two
Spartan-IIE devices using the Slave Parallel mode. Slave
Parallel mode is selected by a <011> on the mode pins (M0,
M1, M2).
The agent controlling configuration is not shown. Typically, a
processor, a microcontroller, or CPLD controls the Slave
Parallel interface. The controlling agent provides byte-wide
configuration data, CCLK, a Chip Select (CS) signal and a
Write signal (WRITE). If BUSY is asserted (High) by the
FPGA, the data must be held until BUSY goes Low.
After configuration, the pins of the Slave Parallel port
(D0-D7) can be used as additional user I/O. Alternatively,
the port may be retained to permit high-speed 8-bit readback. Then data can be read by deasserting WRITE. If
retention is selected, prohibit the D0-D7 pins from being
used as user I/O. See Readback, page 28.
www.xilinx.com
DS077-2 (v2.3) June 18, 2008
Product Specification
R
Spartan-IIE FPGA Family: Functional Description
DATA[7:0]
CCLK
WRITE
BUSY
M1 M2
M1 M2
M0
M0
Spartan-IIE
Spartan-IIE
D0:D7
D0:D7
CCLK
CCLK
WRITE
WRITE
BUSY
CS(0)
BUSY
CS(1)
CS
CS
PROGRAM
PROGRAM
DONE
INIT
GND
DONE
INIT
GND
DONE
INIT
PROGRAM
DS077-2_06_110102
Figure 20: Slave Parallel Configuration Circuit Diagram
Multiple Spartan-IIE FPGAs can be configured using the
Slave Parallel mode, and be made to start-up simultaneously. To configure multiple devices in this way, wire the
individual CCLK, Data, WRITE, and BUSY pins of all the
devices in parallel. The individual devices are loaded separately by asserting the CS pin of each device in turn and
writing the appropriate data. Sync-to-DONE start-up timing
is used to ensure that the start-up sequence does not begin
until all the FPGAs have been loaded. See Start-up,
page 23.
Write
When using the Slave Parallel Mode, write operations send
packets of byte-wide configuration data into the FPGA.
Figure 21, page 28 shows a flowchart of the write sequence
used to load data into the Spartan-IIE FPGA. This is an
expansion of the "Load Configuration Data Frames" block in
Figure 16, page 23.
The timing for Slave Parallel mode is shown in Figure 26,
page 50.
For the present example, the user holds WRITE and CS
Low throughout the sequence of write operations. Note that
when CS is asserted on successive CCLKs, WRITE must
remain either asserted or deasserted. Otherwise an abort
will be initiated, as in the next section.
1. Drive data onto D0-D7. Note that to avoid contention,
the data source should not be enabled while CS is Low
and WRITE is High. Similarly, while WRITE is High, no
more than one device’s CS should be asserted.
2. On the rising edge of CCLK: If BUSY is Low, the data is
accepted on this clock. If BUSY is High (from a previous
write), the data is not accepted. Acceptance will instead
occur on the first clock after BUSY goes Low, and the
data must be held until this happens.
3. Repeat steps 1 and 2 until all the data has been sent.
4. Deassert CS and WRITE.
DS077-2 (v2.3) June 18, 2008
Product Specification
www.xilinx.com
27
R
Spartan-IIE FPGA Family: Functional Description
If CCLK is slower than FCCNH, the FPGA will never assert
BUSY. In this case, the above handshake is unnecessary,
and data can simply be entered into the FPGA every CCLK
cycle.
Abort
To abort configuration during a write sequence, deassert
WRITE while holding CS Low. The abort operation is initiated at the rising edge of CCLK. The device will remain
BUSY until the aborted operation is complete. After aborting
configuration, data is assumed to be unaligned to word
boundaries and the FPGA requires a new synchronization
word prior to accepting any new packets.
After INIT
Goes High
User Drives
WRITE and CS
Low
Boundary-Scan Configuration Mode
In the boundary-scan mode, no nondedicated pins are
required, configuration being done entirely through the
IEEE 1149.1 Test Access Port (TAP).
Load One
Configuration
Byte on Next
CCLK Rising Edge
FPGA
Driving BUSY
High?
tions. However, to avoid aborting configuration, WRITE
must continue to be asserted while CS is asserted during
CCLK transitions.
Configuration through the TAP uses the special CFG_IN
instruction. This instruction allows data input on TDI to be
converted into data packets for the internal configuration
bus.
The following steps are required to configure the FPGA
through the boundary-scan port.
Yes
1. Load the CFG_IN instruction into the boundary-scan
instruction register (IR)
2. Enter the Shift-DR (SDR) state
No
3. Shift a standard configuration bitstream into TDI
End of
Configuration
Data File?
4. Return to Run-Test-Idle (RTI)
No
5. Load the JSTART instruction into IR
6. Enter the SDR state
Yes
7. Clock TCK (if selected) through the startup sequence
(the length is programmable)
User Drives
WRITE and CS
High
8. Return to RTI
To CRC Check
DS001_19_032300
Figure 21: Loading Configuration Data for the Slave
Parallel Mode
A configuration packet does not have to be written in one
continuous stretch, rather it can be split into many write
sequences. Each sequence would involve assertion of CS.
In applications where multiple clock cycles may be required
to access the configuration data before each byte can be
loaded into the Slave Parallel interface, a new byte of data
may not be ready for each consecutive CCLK edge. In such
a case the CS signal may be deasserted until the next byte
is valid on D0-D7. While CS is High, the Slave Parallel interface does not expect any data and ignores all CCLK transi28
Configuration and readback via the TAP is always available.
The boundary-scan mode simply locks out the other modes.
The boundary-scan mode is selected by a <10x> on the
mode pins (M0, M1, M2). Note that the PROGRAM pin must
be pulled High prior to reconfiguration. A Low on the PROGRAM pin resets the TAP controller and no boundary scan
operations can be performed. See Xilinx Application Note
XAPP188 for more information on boundary-scan configuration.
Readback
The configuration data stored in the Spartan-IIE FPGA configuration memory can be read back for verification. Along
with the configuration data it is possible to read back the
contents of all flip-flops/latches, LUT RAMs, and block
RAMs. This capability is used for real-time debugging.
For more detailed information see Xilinx Application Note
XAPP176, Configuration and Readback of the Spartan-II
and Spartan-IIE FPGA Families.
www.xilinx.com
DS077-2 (v2.3) June 18, 2008
Product Specification
R
Spartan-IIE FPGA Family: Functional Description
Revision History
Version No.
Date
1.0
11/15/01
Initial Xilinx release.
2.0
11/18/02
Added XC2S400E and XC2S600E. Removed Preliminary designation. Clarified details of I/O
standards, boundary scan, and configuration.
2.1
07/09/03
Added hot swap description (see Hot Swap, Hot Insertion, Hot Socketing Support). Added
Table 9 containing JTAG IDCODE values. Clarified configuration PROM support.
2.3
06/18/08
Added note that TDI, TMS, and TCK have a default pull-up resistor. Add note on maximum
daisy-chain limit. Updated Figure 19 since Mode pins can be pulled up to either 2.5V or 3.3V.
Updated all modules for continuous page, figure, and table numbering. Updated links.
Synchronized all modules to v2.3.
DS077-2 (v2.3) June 18, 2008
Product Specification
Description
www.xilinx.com
29
R
Spartan-IIE FPGA Family: Functional Description
30
www.xilinx.com
DS077-2 (v2.3) June 18, 2008
Product Specification
Spartan-IIE FPGA Family:
DC and Switching Characteristics
R
DS077-3 (v2.3) June 18, 2008
0
Product Specification
Definition of Terms
In this document, some specifications may be designated as Advance or Preliminary. These designations are based on the
more detailed timing information used by the development system and reported in the output files. These terms are defined
as follows:
Advance: Initial estimates based on simulation and/or extrapolation from other speed grades, devices, or families. Values
are subject to change. Use as estimates, not for production.
Preliminary: Based on characterization. Further changes are not expected.
Except for pin-to-pin input and output parameters, the AC parameter delay specifications included in this document are
derived from measuring internal test patterns. All specifications are representative of worst-case supply voltage and junction
temperature conditions. The parameters included are common to popular designs and typical applications. All specifications
are subject to change without notice.
DC Specifications
Absolute Maximum Ratings (1)
Symbol
Description
Min
Max
Units
VCCINT
Supply voltage relative to GND
–0.5
2.0
V
VCCO
Supply voltage relative to GND
–0.5
4.0
V
VREF
Input reference voltage
–0.5
4.0
V
–0.5
4.0
V
GND (2,3)
VIN
Input voltage relative to
VTS
Voltage applied to 3-state output(3)
–0.5
4.0
V
TSTG
Storage temperature (ambient)
–65
+150
°C
-
+125
°C
TJ
Junction temperature
Notes:
1. Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress
ratings only, and functional operation of the device at these or any other conditions beyond those listed under Operating Conditions
is not implied. Exposure to Absolute Maximum Ratings conditions for extended periods of time may affect device reliability.
2. VIN should not exceed VCCO by more than 3.6V over extended periods of time (e.g., longer than a day).
3. Maximum DC overshoot must be limited to either VCCO + 0.5V or 10 mA, and undershoot must be limited to –0.5V or 10 mA,
whichever is easier to achieve. The Maximum AC conditions are as follows: The device pins may undershoot to –2.0V or overshoot
to VCCO + 2.0V, provided this over/undershoot lasts no more than 11 ns with a forcing current no greater than 100 mA.
4. For soldering guidelines, see the Packaging Information on the Xilinx® website.
© 2003-2007 Xilinx, Inc. All rights reserved. XILINX, the Xilinx logo, the Brand Window, and other designated brands included herein are trademarks of Xilinx, Inc. All other
trademarks are the property of their respective owners.
DS077-3 (v2.3) June 18, 2008
Product Specification
www.xilinx.com
31
R
Spartan-IIE FPGA Family: DC and Switching Characteristics
Recommended Operating Conditions
Symbol
TJ
Description
Junction temperature
Min
0
85
°C
100
°C
Commercial
1.8 – 5%
1.8 + 5%
V
Industrial
1.8 – 5%
1.8 + 5%
V
Commercial
1.2
3.6
V
Industrial
1.2
3.6
V
-
250
ns
Industrial
VCCINT
VCCO
TIN
Supply voltage relative to
Supply voltage relative to
GND (2)
Input signal transition
Units
–40
Commercial
GND (1)
Max
time (3)
Notes:
1. Functional operation is guaranteed down to a minimum VCCINT of 1.62V (Nominal VCCINT –10%). For every 50 mV reduction in
VCCINT below 1.71V (nominal VCCINT –5%), all delay parameters increase by approximately 3%.
2. Minimum and maximum values for VCCO vary according to the I/O standard selected.
3. Input and output measurement threshold is ~50% of VCCO. See Delay Measurement Methodology, page 41 for specific details.
DC Characteristics Over Operating Conditions
Symbol
Description
Min
Typ
Max
Units
VDRINT
Data retention VCCINT voltage (below which configuration data may
be lost)
1.5
-
-
V
VDRIO
Data retention VCCO voltage (below which configuration data may be
lost)
1.2
-
-
V
Commercial
-
10
200
mA
Industrial
-
10
200
mA
Commercial
-
10
200
mA
Industrial
-
10
200
mA
Commercial
-
10
300
mA
Industrial
-
10
300
mA
Commercial
-
10
300
mA
Industrial
-
10
300
mA
Commercial
-
12
300
mA
Industrial
-
12
300
mA
Commercial
-
15
300
mA
Industrial
-
15
300
mA
Commercial
-
15
400
mA
Industrial
ICCINTQ
Quiescent VCCINT supply current (1)
XC2S50E
XC2S100E
XC2S150E
XC2S200E
XC2S300E
XC2S400E
XC2S600E
ICCOQ
IREF
IL
-
15
400
mA
Quiescent VCCO supply current (1)
-
-
2
mA
VREF current per VREF pin
-
-
20
μA
–10
-
+10
μA
Input or output leakage current per pin
CIN
Input capacitance (sample tested)
-
-
8
pF
IRPU
Pad pull-up (when selected) @ VIN = 0V, VCCO = 3.3V
(sample tested) (2)
TQ, PQ, FG, FT packages
-
-
0.25
mA
IRPD
Pad pull-down (when selected) @ VIN = 3.6V (sample tested) (2)
-
-
0.25
mA
Notes:
1. With no output current loads, no active input pull-up resistors, all I/O pins 3-stated and floating.
2. Internal pull-up and pull-down resistors guarantee valid logic levels at unconnected input pins. These pull-up and pull-down resistors
do not provide valid logic levels when input pins are connected to other circuits.
32
www.xilinx.com
DS077-3 (v2.3) June 18, 2008
Product Specification
R
Spartan-IIE FPGA Family: DC and Switching Characteristics
Power-On Requirements
Spartan®-IIE FPGAs require that a minimum supply current
ICCPO be provided to the VCCINT lines for a successful
power-on. If more current is available, the FPGA can consume more than ICCPO min., though this cannot adversely
affect reliability.
Symbol
I CCPO
A maximum limit for ICCPO is not specified. Be careful when
using foldback/crowbar supplies and fuses. It is possible to
control the magnitude of ICCPO by limiting the supply current
available to the FPGA. A current limit below the trip level will
avoid inadvertently activating over-current protection circuits.
Min(1)
Typ
Max
Units
After PCN(2)
300
-
-
mA
Before
PCN(2)
500
-
-
mA
500
-
-
mA
500
-
-
mA
2
-
-
A
XC2S400E - XC2S600E
700
-
-
mA
After PCN(2)
500
-
-
μs
2
-
50
ms
-
±60
-
μA
Description
Total VCCINT supply current
required during power-on
Commercial
XC2S50E - XC2S300E
XC2S400E - XC2S600E
Industrial
XC2S50E - XC2S300E
After
PCN(2)
Before
PCN(2)
TCCPO
VCCINT(3,4) ramp time
Before
IHSPO
AC current per pin during power-on in
hot-swap applications when
VIN > VCCO + 0.4V; duration < 10ns
After
PCN(2)
PCN(2)
Notes:
1. The ICCPO requirement applies for a brief time (commonly only a few milliseconds) when VCCINT ramps from 0 to 1.8V.
2. Devices built after the Product Change Notice PCN 2002-05 (see
http://www.xilinx.com/support/documentation/customer_notices/pcn2002-05.pdf) have improved power-on requirements. Devices
after the PCN have a ‘T’ preceding the date code as referenced in the PCN. Note that the XC2S150E, XC2S400E, and XC2S600E
always have this mark. Devices before the PCN have an ‘S’ preceding the date code. Note that devices before the PCN are
measured with VCCINT and VCCO powering up simultaneously.
3. The ramp time is measured from GND to 1.8V on a fully loaded board.
4. VCCINT must not dip in the negative direction during power on.
5. I/Os are not guaranteed to be disabled until VCCINT is applied.
6. For more information on designing to meet the power-on specifications, refer to the application note XAPP450 "Power-On Current
Requirements for the Spartan-II and Spartan-IIE Families".
DC Input and Output Levels
standards meet their specifications. The selected standards
are tested at minimum VCCO with the respective IOL and IOH
currents shown. Other standards are sample tested.
Values for VIL and VIH are recommended input voltages.
Values for VOL and VOH are guaranteed output voltages
over the recommended operating conditions. Only selected
standards are tested. These are chosen to ensure that all
Input/Output
Standard
VIL
VIH
VOL
VOH
IOL
IOH
V, Min
V, Max
V, Min
V, Max
V, Max
V, Min
mA
mA
LVTTL(1)
–0.5
0.8
2.0
3.6
0.4
2.4
24
–24
LVCMOS2
–0.5
0.7
1.7
2.7
0.4
1.9
12
–12
LVCMOS18
–0.5
35% VCCO
65% VCCO
1.95
0.4
VCCO – 0.4
8
–8
PCI, 3.3V
–0.5
30% VCCO
50% VCCO
VCCO + 0.5
10% VCCO
90% VCCO
Note (2)
Note (2)
GTL
–0.5
VREF – 0.05
VREF + 0.05
3.6
0.4
-
40
-
GTL+
–0.5
VREF – 0.1
VREF + 0.1
3.6
0.6
-
36
-
DS077-3 (v2.3) June 18, 2008
Product Specification
www.xilinx.com
33
R
Spartan-IIE FPGA Family: DC and Switching Characteristics
Input/Output
Standard
VIH
VIL
VOL
VOH
IOL
IOH
V, Min
V, Max
V, Min
V, Max
V, Max
V, Min
mA
mA
HSTL I
–0.5
VREF – 0.1
VREF + 0.1
3.6
0.4
VCCO – 0.4
8
–8
HSTL III
–0.5
VREF – 0.1
VREF + 0.1
3.6
0.4
VCCO – 0.4
24
–8
HSTL IV
–0.5
VREF – 0.1
VREF + 0.1
3.6
0.4
VCCO – 0.4
48
–8
SSTL3 I
–0.5
VREF – 0.2
VREF + 0.2
3.6
VREF – 0.6
VREF + 0.6
8
–8
SSTL3 II
–0.5
VREF – 0.2
VREF + 0.2
3.6
VREF – 0.8
VREF + 0.8
16
–16
SSTL2 I
–0.5
VREF – 0.2
VREF + 0.2
3.6
VREF – 0.61
VREF + 0.61
7.6
–7.6
SSTL2 II
–0.5
VREF – 0.2
VREF + 0.2
3.6
VREF – 0.8
VREF + 0.8
15.2
–15.2
CTT
–0.5
VREF – 0.2
VREF + 0.2
3.6
VREF – 0.4
VREF + 0.4
8
–8
AGP
–0.5
VREF – 0.2
VREF + 0.2
3.6
10% VCCO
90% VCCO
Note (2)
Note (2)
Notes:
1. VOL and VOH for lower drive currents are sample tested.
2. Tested according to the relevant specifications.
LVDS DC Specifications
Symbol
VCCO
Description
Conditions
Supply voltage
Min
Typ
Max
Units
2.375
2.5
2.625
V
VOH
Output High voltage for Q and Q
RT = 100Ω across Q and Q signals
1.25
1.425
1.6
V
VOL
Output Low voltage for Q and Q
RT = 100Ω across Q and Q signals
0.9
1.075
1.25
V
VODIFF
Differential output voltage (Q – Q),
Q = High or (Q – Q), Q = High
RT = 100Ω across Q and Q signals
250
350
450
mV
VOCM
Output common-mode voltage
RT = 100Ω across Q and Q signals
1.125
1.25
1.375
V
VIDIFF
Differential input voltage (Q – Q),
Q = High or (Q – Q), Q = High
Common-mode input voltage = 1.25 V
100
350
-
mV
VICM
Input common-mode voltage
Differential input voltage = ±350 mV
0.2
1.25
2.2
V
LVPECL DC Specifications
These values are valid at the output of the source termination pack shown under LVPECL, with a 100Ω differential
load only. The VOH levels are 200 mV below standard
DC Parameter
Min
VCCO
34
LVPECL levels and are compatible with devices tolerant of
lower common-mode ranges. The following table summarizes the DC output specifications of LVPECL.
Max
Min
3.0
Max
Min
3.3
Max
3.6
Units
V
VOH
1.8
2.11
1.92
2.28
2.13
2.41
V
VOL
0.96
1.27
1.06
1.43
1.30
1.57
V
VIH
1.49
2.72
1.49
2.72
1.49
2.72
V
VIL
0.86
2.125
0.86
2.125
0.86
2.125
V
Differential input voltage
0.3
-
0.3
-
0.3
-
V
www.xilinx.com
DS077-3 (v2.3) June 18, 2008
Product Specification
R
Spartan-IIE FPGA Family: DC and Switching Characteristics
Switching Characteristics
Internal timing parameters are derived from measuring
internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing
analyzer (TRACE in the Xilinx Development System) and
back-annotated to the simulation netlist. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). Values apply to all
Spartan-IIE devices unless otherwise noted.
Global Clock Input to Output Delay for LVTTL, with DLL (Pin-to-Pin)(1)
Speed Grade
All
-7
-6
Symbol
Description
Min
Max
Max
Units
TICKOFDLL
LVTTL global clock input to output delay using
output flip-flop for LVTTL, 12 mA, fast slew rate,
with DLL.
1.0
3.1
3.1
ns
Notes:
1. Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and
where all accessible IOB and CLB flip-flops are clocked by the global clock net.
2. Output timing is measured at 1.4V with 35 pF external capacitive load for LVTTL. The 35 pF load does not apply to the Min values.
For other I/O standards and different loads, see the tables Constants for Calculating TIOOP and Delay Measurement Methodology,
page 41.
3. DLL output jitter is already included in the timing calculation.
4. For data output with different standards, adjust delays with the values shown in IOB Output Delay Adjustments for Different
Standards(1), page 40. For a global clock input with standards other than LVTTL, adjust delays with values from the I/O Standard
Global Clock Input Adjustments, page 42.
Global Clock Input to Output Delay for LVTTL, without DLL (Pin-to-Pin)(1)
Speed Grade
All
-7
-6
Symbol
Description
Device
Min
Max
Max
Units
TICKOF
LVTTL global clock input to output
delay using output flip-flop for
LVTTL, 12 mA, fast slew rate,
without DLL.
XC2S50E
1.5
4.4
4.6
ns
XC2S100E
1.5
4.4
4.6
ns
XC2S150E
1.5
4.5
4.7
ns
XC2S200E
1.5
4.5
4.7
ns
XC2S300E
1.5
4.5
4.7
ns
XC2S400E
1.5
4.6
4.8
ns
XC2S600E
1.6
4.7
4.9
ns
Notes:
1. Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and
where all accessible IOB and CLB flip-flops are clocked by the global clock net.
2. Output timing is measured at 1.4V with 35 pF external capacitive load for LVTTL. The 35 pF load does not apply to the Min values.
For other I/O standards and different loads, see the tables Constants for Calculating TIOOP and Delay Measurement Methodology,
page 41.
3. For data output with different standards, adjust delays with the values shown in IOB Output Delay Adjustments for Different
Standards(1), page 40. For a global clock input with standards other than LVTTL, adjust delays with values from the I/O Standard
Global Clock Input Adjustments, page 42.
DS077-3 (v2.3) June 18, 2008
Product Specification
www.xilinx.com
35
R
Spartan-IIE FPGA Family: DC and Switching Characteristics
Global Clock Setup and Hold for LVTTL Standard, with DLL (Pin-to-Pin)
Speed Grade
-7
-6
Symbol
Description
Min
Min
Units
TPSDLL / TPHDLL
Input setup and hold time relative to global clock input signal
for LVTTL standard, no delay, IFF,(1) with DLL
1.6 / 0
1.7 / 0
ns
Notes:
1. IFF = Input Flip-Flop or Latch
2. Setup time is measured relative to the Global Clock input signal with the fastest route and the lightest load. Hold time is measured
relative to the Global Clock input signal with the slowest route and heaviest load.
3. DLL output jitter is already included in the timing calculation.
4. For data input with different standards, adjust the setup time delay by the values shown in IOB Input Delay Adjustments for Different
Standards, page 38. For a global clock input with standards other than LVTTL, adjust delays with values from the I/O Standard
Global Clock Input Adjustments, page 42.
5. A zero hold time listing indicates no hold time or a negative hold time.
Global Clock Setup and Hold for LVTTL Standard, without DLL (Pin-to-Pin)
Speed Grade
-7
-6
Symbol
Description
Device
Min
Min
Units
TPSFD / TPHFD
Input setup and hold time relative
to global clock input signal for
LVTTL standard, with delay, IFF,(1)
without DLL
XC2S50E
1.8 / 0
1.8 / 0
ns
XC2S100E
1.8 / 0
1.8 / 0
ns
XC2S150E
1.9 / 0
1.9 / 0
ns
XC2S200E
1.9 / 0
1.9 / 0
ns
XC2S300E
2.0 / 0
2.0 / 0
ns
XC2S400E
2.0 / 0
2.0 / 0
ns
XC2S600E
2.1 / 0
2.1 / 0
ns
Notes:
1. IFF = Input Flip-Flop or Latch
2. Setup time is measured relative to the Global Clock input signal with the fastest route and the lightest load. Hold time is measured
relative to the Global Clock input signal with the slowest route and heaviest load.
3. For data input with different standards, adjust the setup time delay by the values shown in IOB Input Delay Adjustments for Different
Standards, page 38. For a global clock input with standards other than LVTTL, adjust delays with values from the I/O Standard
Global Clock Input Adjustments, page 42.
36
www.xilinx.com
DS077-3 (v2.3) June 18, 2008
Product Specification
R
Spartan-IIE FPGA Family: DC and Switching Characteristics
IOB Input Switching Characteristics (1)
Input delays associated with the pad are specified for LVTTL levels. For other standards, adjust the delays with the values
shown in IOB Input Delay Adjustments for Different Standards, page 38.
Speed Grade
-7
Symbol
Description
-6
Device
Min
Max
Min
Max
Units
Propagation Delays
TIOPI
Pad to I output, no delay
All
0.4
0.8
0.4
0.8
ns
TIOPID
Pad to I output, with delay
All
0.5
1.0
0.5
1.0
ns
TIOPLI
Pad to output IQ via transparent latch,
no delay
All
0.7
1.5
0.7
1.6
ns
TIOPLID
Pad to output IQ via transparent latch,
with delay
XC2S50E
1.3
3.0
1.3
3.1
ns
XC2S100E
1.3
3.0
1.3
3.1
ns
XC2S150E
1.3
3.2
1.3
3.3
ns
XC2S200E
1.3
3.2
1.3
3.3
ns
XC2S300E
1.3
3.2
1.3
3.3
ns
XC2S400E
1.4
3.2
1.4
3.4
ns
XC2S600E
1.5
3.5
1.5
3.7
ns
All
0.1
0.7
0.1
0.7
ns
All
1.4 / 0
-
1.5 / 0
-
ns
XC2S50E
2.9 / 0
-
2.9 / 0
-
ns
XC2S100E
2.9 / 0
-
2.9 / 0
-
ns
XC2S150E
3.1 / 0
-
3.1 / 0
-
ns
XC2S200E
3.1 / 0
-
3.1 / 0
-
ns
XC2S300E
3.1 / 0
-
3.1 / 0
-
ns
XC2S400E
3.2 / 0
-
3.2 / 0
-
ns
XC2S600E
3.5 / 0
-
3.5 / 0
-
ns
All
0.7 / 0.01
-
0.7 / 0.01
-
ns
Sequential Delays
TIOCKIQ
Clock CLK to output IQ
Setup/Hold Times with Respect to Clock CLK
TIOPICK / TIOICKP
Pad, no delay
TIOPICKD / TIOICKPD Pad, with delay
TIOICECK / TIOCKICE ICE input
Set/Reset Delays
TIOSRCKI
SR input (IFF, synchronous)
All
0.9
-
1.0
-
ns
TIOSRIQ
SR input to IQ (asynchronous)
All
0.5
1.2
0.5
1.4
ns
TGSRQ
GSR to output IQ
All
3.8
8.5
3.8
9.7
ns
Notes:
1. Input timing for LVTTL is measured at 1.4V. For other I/O standards, see the table Delay Measurement Methodology, page 41.
DS077-3 (v2.3) June 18, 2008
Product Specification
www.xilinx.com
37
R
Spartan-IIE FPGA Family: DC and Switching Characteristics
IOB Input Delay Adjustments for Different Standards
Input delays associated with the pad are specified for LVTTL. For other standards, adjust the delays by the values shown. A
delay adjusted in this way constitutes a worst-case limit.
Speed Grade
Symbol
Description
Standard
-7
-6
Units
LVTTL
0
0
ns
LVCMOS2
0
0
ns
LVCMOS18
0.20
0.20
ns
LVDS
0.15
0.15
ns
TILVPECL
LVPECL
0.15
0.15
ns
TIPCI33_3
PCI, 33 MHz, 3.3V
0.08
0.08
ns
TIPCI66_3
PCI, 66 MHz, 3.3V
–0.11
–0.11
ns
TIGTL
GTL
0.14
0.14
ns
TIGTLP
GTL+
0.14
0.14
ns
TIHSTL
HSTL
0.04
0.04
ns
TISSTL2
SSTL2
0.04
0.04
ns
TISSTL3
SSTL3
0.04
0.04
ns
TICTT
CTT
0.10
0.10
ns
TIAGP
AGP
0.04
0.04
ns
Data Input Delay Adjustments
TILVTTL
TILVCMOS2
TILVCMOS18
TILVDS
38
Standard-specific data input delay
adjustments
www.xilinx.com
DS077-3 (v2.3) June 18, 2008
Product Specification
R
Spartan-IIE FPGA Family: DC and Switching Characteristics
IOB Output Switching Characteristics
Output delays terminating at a pad are specified for LVTTL with 12 mA drive and fast slew rate. For other standards, adjust
the delays with the values shown in IOB Output Delay Adjustments for Different Standards(1), page 40.
Speed Grade
-7
Symbol
Description
-6
Min
Max
Min
Max
Units
Propagation Delays
TIOOP
O input to pad
1.0
2.7
1.0
2.9
ns
TIOOLP
O input to pad via transparent latch
1.2
3.1
1.2
3.4
ns
TIOTHZ
T input to pad high impedance (1)
0.7
1.7
0.7
1.9
ns
TIOTON
T input to valid data on pad
1.1
2.9
1.1
3.1
ns
0.8
2.0
0.8
2.2
ns
3-state Delays
impedance via transparent latch (1)
TIOTLPHZ
T input to pad high
TIOTLPON
T input to valid data on pad via transparent latch
1.2
3.2
1.2
3.4
ns
TGTS
impedance (1)
1.9
4.6
1.9
4.9
ns
GTS to pad high
Sequential Delays
TIOCKP
Clock CLK to pad
0.9
2.8
0.9
2.9
ns
TIOCKHZ
Clock CLK to pad high impedance (synchronous)(1)
0.7
2.0
0.7
2.2
ns
TIOCKON
Clock CLK to valid data on pad (synchronous)
1.1
3.2
1.1
3.4
ns
1.0 / 0
-
1.1 / 0
-
ns
TIOOCECK / TIOCKOCE OCE input
0.7 / 0
-
0.7 / 0
-
ns
TIOSRCKO / TIOCKOSR SR input (OFF)
0.9 / 0
-
1.0 / 0
-
ns
0.6 / 0
-
0.7 / 0
-
ns
TIOTCECK / TIOCKTCE 3-state setup times, TCE input
0.6 / 0
-
0.8 / 0
-
ns
TIOSRCKT / TIOCKTSR 3-state setup times, SR input (TFF)
0.9 / 0
-
1.0 / 0
-
ns
1.2
3.3
1.2
3.5
ns
1.0
2.4
1.0
2.7
ns
Setup/Hold Times with Respect to Clock CLK
TIOOCK / TIOCKO
TIOTCK / TIOCKT
O input
3-state setup times, T input
Set/Reset Delays
TIOSRP
SR input to pad (asynchronous)
(asynchronous)(1)
TIOSRHZ
SR input to pad high impedance
TIOSRON
SR input to valid data on pad (asynchronous)
1.4
3.7
1.4
3.9
ns
TIOGSRQ
GSR to pad
3.8
8.5
3.8
9.7
ns
Notes:
1. Three-state turn-off delays should not be adjusted.
DS077-3 (v2.3) June 18, 2008
Product Specification
www.xilinx.com
39
R
Spartan-IIE FPGA Family: DC and Switching Characteristics
IOB Output Delay Adjustments for Different Standards(1)
Output delays terminating at a pad are specified for LVTTL with 12 mA drive and fast slew rate. For other standards, adjust
the delays by the values shown. A delay adjusted in this way constitutes a worst-case limit.
Speed Grade
Symbol
Description
Standard
-7
-6
Units
LVTTL, Slow, 2 mA
14.7
14.7
ns
4 mA
7.5
7.5
ns
6 mA
4.8
4.8
ns
Output Delay Adjustments (Adj)
TOLVTTL_S2
TOLVTTL_S4
TOLVTTL_S6
TOLVTTL_S8
Standard-specific adjustments for
output delays terminating at pads
(based on standard capacitive
load, CSL)
8 mA
3.0
3.0
ns
TOLVTTL_S12
12 mA
1.9
1.9
ns
TOLVTTL_S16
16 mA
1.7
1.7
ns
TOLVTTL_S24
24 mA
1.3
1.3
ns
13.1
13.1
ns
TOLVTTL_F2
LVTTL, Fast, 2 mA
TOLVTTL_F4
4 mA
5.3
5.3
ns
TOLVTTL_F6
6 mA
3.1
3.1
ns
TOLVTTL_F8
8 mA
1.0
1.0
ns
TOLVTTL_F12
12 mA
0
0
ns
TOLVTTL_F16
16 mA
–0.05
–0.05
ns
TOLVTTL_F24
24 mA
–0.20
–0.20
ns
TOLVCMOS2
LVCMOS2
0.09
0.09
ns
TOLVCMOS18
LVCMOS18
0.7
0.7
ns
LVDS
–1.2
–1.2
ns
TOLVPECL
LVPECL
–0.41
–0.41
ns
TOPCI33_3
PCI, 33 MHz, 3.3V
2.3
2.3
ns
TOPCI66_3
TOLVDS
PCI, 66 MHz, 3.3V
–0.41
–0.41
ns
TOGTL
GTL
0.49
0.49
ns
TOGTLP
GTL+
0.8
0.8
ns
TOHSTL_I
HSTL I
–0.51
–0.51
ns
TOHSTL_III
HSTL III
–0.91
–0.91
ns
TOHSTL_IV
HSTL IV
–1.01
–1.01
ns
TOSSTL2_I
SSTL2 I
–0.51
–0.51
ns
TOSSLT2_II
SSTL2 II
–0.91
–0.91
ns
TOSSTL3_I
SSTL3 I
–0.51
–0.51
ns
TOSSTL3_II
SSTL3 II
–1.01
–1.01
ns
TOCTT
CTT
–0.61
–0.61
ns
TOAGP
AGP
–0.91
–0.91
ns
Notes:
1. Output timing is measured at 1.4V with 35 pF external capacitive load for LVTTL. For other I/O standards and different loads, see the
tables Constants for Calculating TIOOP and Delay Measurement Methodology, page 41.
40
www.xilinx.com
DS077-3 (v2.3) June 18, 2008
Product Specification
R
Spartan-IIE FPGA Family: DC and Switching Characteristics
Calculation of TIOOP as a Function of
Capacitance
Constants for Calculating TIOOP
CSL(1)
(pF)
FL
(ns/pF)
TIOOP is the propagation delay from the O Input of the IOB
to the pad. The values for TIOOP are based on the standard
capacitive load (CSL) for each I/O standard as listed in the
table Constants for Calculating TIOOP, below.
LVTTL Fast Slew Rate, 2 mA drive
35
0.41
LVTTL Fast Slew Rate, 4 mA drive
35
0.20
For other capacitive loads, use the formulas below to calculate an adjusted propagation delay, TIOOP1.
LVTTL Fast Slew Rate, 6 mA drive
35
0.13
LVTTL Fast Slew Rate, 8 mA drive
35
0.079
LVTTL Fast Slew Rate, 12 mA drive
35
0.044
LVTTL Fast Slew Rate, 16 mA drive
35
0.043
LVTTL Fast Slew Rate, 24 mA drive
35
0.033
LVTTL Slow Slew Rate, 2 mA drive
35
0.41
CLOAD is the capacitive load for the design
LVTTL Slow Slew Rate, 4 mA drive
35
0.20
FL
LVTTL Slow Slew Rate, 6 mA drive
35
0.100
LVTTL Slow Slew Rate, 8 mA drive
35
0.086
LVTTL Slow Slew Rate, 12 mA drive
35
0.058
LVTTL Slow Slew Rate, 16 mA drive
35
0.050
LVTTL Slow Slew Rate, 24 mA drive
35
0.048
LVCMOS2
35
0.041
LVCMOS18
35
0.050
PCI 33 MHz 3.3V
10
0.050
PCI 66 MHz 3.3V
10
0.033
GTL
0
0.014
GTL+
0
0.017
HSTL Class I
20
0.022
HSTL Class III
20
0.016
HSTL Class IV
20
0.014
SSTL2 Class I
30
0.028
SSTL2 Class II
30
0.016
SSTL3 Class I
30
0.029
SSTL3 Class II
30
0.016
TIOOP1 = TIOOP + Adj + (CLOAD – CSL) * FL
Where:
Adj
is selected from IOB Output Delay Adjustments
for Different Standards(1), page 40, according
to the I/O standard used
is the capacitance scaling factor
Delay Measurement Methodology
Meas. VREF
Point Typ (2)
VL(1)
VH (1)
LVTTL
0
3
1.4
-
LVCMOS2
0
2.5
1.125
-
Standard
PCI33_3
Per PCI Spec
-
PCI66_3
Per PCI Spec
-
Standard
GTL
VREF – 0.2
VREF + 0.2
VREF
0.80
GTL+
VREF – 0.2
VREF + 0.2
VREF
1.0
HSTL Class I
VREF – 0.5
VREF + 0.5
VREF
0.75
HSTL Class III
VREF – 0.5
VREF + 0.5
VREF
0.90
HSTL Class IV VREF – 0.5
VREF + 0.5
VREF
0.90
SSTL3 I and II VREF – 1.0
VREF + 1.0
VREF
1.5
SSTL2 I and II VREF – 0.75 VREF + 0.75 VREF
1.25
CTT
VREF – 0.2
VREF + 0.2
VREF
1.5
AGP
VREF –
VREF +
(0.2xVCCO) (0.2xVCCO)
VREF
Per AGP
Spec
LVDS
1.2 – 0.125 1.2 + 0.125
1.2
CTT
20
0.035
1.6
AGP
10
0.037
LVPECL
1.6 – 0.3
1.6 + 0.3
Notes:
1. Input waveform switches between VL and VH.
2. Measurements are made at VREF Typ, Maximum, and
Minimum. Worst-case values are reported.
3. I/O parameter measurements are made with the capacitance
values shown in the following table, Constants for Calculating
TIOOP. Refer to Application Note XAPP179 for appropriate
terminations.
4. I/O standard measurements are reflected in the IBIS model
information except where the IBIS format precludes it.
DS077-3 (v2.3) June 18, 2008
Product Specification
Notes:
1. I/O parameter measurements are made with the capacitance
values shown above. Refer to Application Note XAPP179 for
appropriate terminations.
2. I/O standard measurements are reflected in the IBIS model
information except where the IBIS format precludes it.
www.xilinx.com
41
R
Spartan-IIE FPGA Family: DC and Switching Characteristics
Clock Distribution Switching Characteristics
TGPIO is specified for LVTTL levels. For other standards, adjust TGPIO with the values shown in I/O Standard Global Clock
Input Adjustments.
Speed Grade
Symbol
Description
-7
-6
Max
Max
Units
GCLK IOB and Buffer
TGPIO
Global clock pad to output
0.7
0.7
ns
TGIO
Global clock buffer I input to O output
0.45
0.5
ns
I/O Standard Global Clock Input Adjustments
Delays associated with a global clock input pad are specified for LVTTL levels. For other standards, adjust the delays by the
values shown. A delay adjusted in this way constitutes a worst-case limit.
Speed Grade
Symbol
Description
Standard
-7
-6
Units
LVTTL
0
0
ns
LVCMOS2
0
0
ns
TGPLVCMOS18
LVCMOS18
0.2
0.2
ns
TGPLVCDS
LVDS
0.38
0.38
ns
TGPLVPECL
LVCPECL
0.38
0.38
ns
TGPPCI33_3
PCI, 33 MHz, 3.3V
0.08
0.08
ns
TGPPCI66_3
PCI, 66 MHz, 3.3V
–0.11
–0.11
ns
TGPGTL
GTL
0.37
0.37
ns
TGPGTLP
GTL+
0.37
0.37
ns
TGPHSTL
HSTL
0.27
0.27
ns
TGPSSTL2
SSTL2
0.27
0.27
ns
TGPSSTL3
SSTL3
0.27
0.27
ns
TGPCTT
CTT
0.33
0.33
ns
TGPAGP
AGP
0.27
0.27
ns
Data Input Delay Adjustments
TGPLVTTL
TGPLVCMOS2
Standard-specific global clock
input delay adjustments
Notes:
1. Input timing for GPLVTTL is measured at 1.4V. For other I/O standards, see the table Delay Measurement Methodology, page 41.
42
www.xilinx.com
DS077-3 (v2.3) June 18, 2008
Product Specification
R
Spartan-IIE FPGA Family: DC and Switching Characteristics
DLL Timing Parameters
Because of the difficulty in directly measuring many internal
timing parameters, those parameters are derived from
benchmark timing patterns. The following guidelines reflect
worst-case values across the recommended operating conditions.
Speed Grade
-7
Symbol
Description
-6
FCLKIN
Min
Max
Min
Max
Units
FCLKINHF
Input clock frequency (CLKDLLHF)
-
60
320
60
275
MHz
FCLKINLF
Input clock frequency (CLKDLL)
-
25
160
25
135
MHz
TDLLPW
Input clock pulse width
≥25 MHz
5.0
-
5.0
-
ns
≥50 MHz
3.0
-
3.0
-
ns
≥100 MHz
2.4
-
2.4
-
ns
≥150 MHz
2.0
-
2.0
-
ns
≥200 MHz
1.8
-
1.8
-
ns
≥250 MHz
1.5
-
1.5
-
ns
≥300 MHz
1.3
-
NA
-
DLL Clock Tolerance, Jitter, and Phase Information
All DLL output jitter and phase specifications were determined through statistical measurement at the package pins
using a clock mirror configuration and matched drivers.
Figure 22, page 44, provides definitions for various parameters in the table below.
CLKDLLHF
Symbol
Description
FCLKIN
Min
CLKDLL
Max
Min
Max
Units
TIPTOL
Input clock period tolerance
-
1.0
-
1.0
ns
TIJITCC
Input clock jitter tolerance (cycle-to-cycle)
-
±150
-
± 300
ps
> 60 MHz
-
20
-
20
μs
50-60 MHz
-
-
-
25
μs
40-50 MHz
-
-
-
50
μs
30-40 MHz
-
-
-
90
μs
25-30 MHz
-
-
-
120
μs
-
± 60
-
± 60
ps
-
±100
-
±100
ps
-
±140
-
±140
ps
-
±160
-
±160
ps
-
± 200
-
± 200
ps
TLOCK
TOJITCC
Time required for DLL to acquire
lock(1)
Output jitter (cycle-to-cycle) for any DLL clock
output (2)
CLKO (3)
TPHIO
Phase offset between CLKIN and
TPHOO
Phase offset between clock outputs on the DLL(4)
TPHIOM
TPHOOM
Phase difference between CLKIN and
CLKO (5)
Phase difference between clock outputs on the
DLL(6)
Notes:
1. Commercial operating conditions. Add 30% for Industrial operating conditions.
2. Output Jitter is cycle-to-cycle jitter measured on the DLL output clock, excluding input clock jitter.
3. Phase Offset between CLKIN and CLKO is the worst-case fixed time difference between rising edges of CLKIN and CLKO,
excluding output jitter and input clock jitter.
4. Phase Offset between Clock Outputs on the DLL is the worst-case fixed time difference between rising edges of any two DLL
outputs, excluding output jitter and input clock jitter.
5. Maximum Phase Difference between CLKIN and CLKO is the sum of output jitter and phase offset between CLKIN and CLKO, or
the greatest difference between CLKIN and CLKO rising edges due to DLL alone (excluding input clock jitter).
6. Maximum Phase Difference between Clock Outputs on the DLL is the sum of output jitter and phase offset between any DLL
clock outputs, or the greatest difference between any two DLL output rising edges due to DLL alone (excluding input clock jitter).
DS077-3 (v2.3) June 18, 2008
Product Specification
www.xilinx.com
43
R
Spartan-IIE FPGA Family: DC and Switching Characteristics
Period Tolerance: the allowed input clock period change in nanoseconds.
T CLKIN =
1
FCLKIN
TCLKIN +_ TIPTOL
Output Jitter: the difference between an ideal
reference clock edge and the actual design.
Phase Offset and Maximum Phase Difference
Ideal Period
Actual Period
+ Jitter
+/- Jitter
+ Maximum
Phase Difference
+ Phase Offset
DS001_52_090800
Figure 22: Period Tolerance and Clock Jitter
44
www.xilinx.com
DS077-3 (v2.3) June 18, 2008
Product Specification
R
Spartan-IIE FPGA Family: DC and Switching Characteristics
CLB Switching Characteristics
Delays originating at F/G inputs vary slightly according to the input used. The values listed below are worst-case. Precise
values are provided by the timing analyzer.
Speed Grade
-7
Symbol
Description
-6
Min
Max
Min
Max
Units
Combinatorial Delays
TILO
4-input function: F/G inputs to X/Y outputs
0.18
0.42
0.18
0.47
ns
TIF5
5-input function: F/G inputs to F5 output
0.3
0.8
0.3
0.9
ns
TIF5X
5-input function: F/G inputs to X output
0.3
0.8
0.3
0.9
ns
TIF6Y
6-input function: F/G inputs to Y output via F6 MUX
0.3
0.9
0.3
1.0
ns
TF5INY
6-input function: F5IN input to Y output
0.04
0.2
0.04
0.22
ns
TIFNCTL
Incremental delay routing through transparent latch to
XQ/YQ outputs
-
0.7
-
0.8
ns
BY input to YB output
0.18
0.46
0.18
0.51
ns
TCKO
FF clock CLK to XQ/YQ outputs
0.3
0.9
0.3
1.0
ns
TCKLO
Latch clock CLK to XQ/YQ outputs
0.3
0.9
0.3
1.0
ns
TBYYB
Sequential Delays
Setup/Hold Times with Respect to Clock CLK
TICK / TCKI
4-input function: F/G inputs
1.0 / 0
-
1.1 / 0
-
ns
TIF5CK / TCKIF5
5-input function: F/G inputs
1.4 / 0
-
1.5 / 0
-
ns
TF5INCK / TCKF5IN 6-input function: F5IN input
0.8 / 0
-
0.8 / 0
-
ns
6-input function: F/G inputs via F6 MUX
1.5 / 0
-
1.6 / 0
-
ns
BX/BY inputs
0.7 / 0
-
0.8 / 0
-
ns
CE input
0.7 / 0
-
0.7 / 0
-
ns
SR/BY inputs (synchronous)
0.52 / 0
-
0.6 / 0
-
ns
TIF6CK / TCKIF6
TDICK / TCKDI
TCECK / TCKCE
TRCK / TCKR
Clock CLK
TCH
Pulse width, High
1.3
-
1.4
-
ns
TCL
Pulse width, Low
1.3
-
1.4
-
ns
Pulse width, SR/BY inputs
2.1
-
2.4
-
ns
TRQ
Delay from SR/BY inputs to XQ/YQ outputs
(asynchronous)
0.3
0.9
0.3
1.0
ns
FTOG
Toggle frequency (for export control)
-
400
-
357
MHz
Set/Reset
TRPW
DS077-3 (v2.3) June 18, 2008
Product Specification
www.xilinx.com
45
R
Spartan-IIE FPGA Family: DC and Switching Characteristics
CLB Arithmetic Switching Characteristics
Setup times not listed explicitly can be approximated by decreasing the combinatorial delays by the setup time adjustment
listed. Precise values are provided by the timing analyzer.
Speed Grade
-7
Symbol
Description
-6
Min
Max
Min
Max
Units
Combinatorial Delays
TOPX
F operand inputs to X via XOR
-
0.8
-
0.8
ns
TOPXB
F operand input to XB output
-
0.8
-
0.9
ns
TOPY
F operand input to Y via XOR
-
1.4
-
1.5
ns
TOPYB
F operand input to YB output
-
1.1
-
1.3
ns
TOPCYF
F operand input to COUT output
-
0.9
-
1.0
ns
TOPGY
G operand inputs to Y via XOR
-
0.8
-
0.9
ns
TOPGYB
G operand input to YB output
-
1.2
-
1.3
ns
TOPCYG
G operand input to COUT output
-
0.9
-
1.0
ns
TBXCY
BX initialization input to COUT
-
0.51
-
0.6
ns
TCINX
CIN input to X output via XOR
-
0.6
-
0.7
ns
TCINXB
CIN input to XB
-
0.07
-
0.1
ns
TCINY
CIN input to Y via XOR
-
0.7
-
0.7
ns
TCINYB
CIN input to YB
-
0.4
-
0.5
ns
CIN input to COUT output
-
0.14
-
0.15
ns
TFANDXB
F1/2 operand inputs to XB output via AND
-
0.35
-
0.4
ns
TFANDYB
F1/2 operand inputs to YB output via AND
-
0.7
-
0.8
ns
TFANDCY
F1/2 operand inputs to COUT output via AND
-
0.5
-
0.6
ns
TGANDYB
G1/2 operand inputs to YB output via AND
-
0.6
-
0.7
ns
TGANDCY
G1/2 operand inputs to COUT output via AND
-
0.3
-
0.4
ns
TBYP
Multiplier Operation
Setup/Hold Times with Respect to Clock CLK
46
TCCKX / TCKCX
CIN input to FFX
1.2 / 0
-
1.3 / 0
-
ns
TCCKY / TCKCY
CIN input to FFY
1.2 / 0
-
1.3 / 0
-
ns
www.xilinx.com
DS077-3 (v2.3) June 18, 2008
Product Specification
R
Spartan-IIE FPGA Family: DC and Switching Characteristics
CLB Distributed RAM Switching Characteristics
Speed Grade
-7
Symbol
Description
Sequential Delays
TSHCKO16
Clock CLK to X/Y outputs (WE active, 16 x 1 mode)
TSHCKO32
Clock CLK to X/Y outputs (WE active, 32 x 1 mode)
-6
Min
Max
Min
Max
Units
0.6
1.5
0.6
1.7
ns
0.8
1.9
0.8
2.1
ns
Setup/Hold Times with Respect to Clock CLK
TAS / TAH
F/G address inputs
0.42 / 0
-
0.5 / 0
-
ns
TDS / TDH
BX/BY data inputs (DIN)
0.53 / 0
-
0.6 / 0
-
ns
CE input (WS)
0.7 / 0
-
0.8 / 0
-
ns
Pulse width, High
2.1
-
2.4
-
ns
TWPL
Pulse width, Low
2.1
-
2.4
-
ns
TWC
Clock period to meet address write cycle time
4.2
-
4.8
-
ns
TWS / TWH
Clock CLK
TWPH
CLB Shift Register Switching Characteristics
Speed Grade
-7
Symbol
Description
-6
Min
Max
Min
Max
Units
1.2
2.9
1.2
3.2
ns
0.53 / 0
-
0.6 / 0
-
ns
0.7 / 0
-
0.8 / 0
-
ns
Pulse width, High
2.1
-
2.4
-
ns
Pulse width, Low
2.1
-
2.4
-
ns
Sequential Delays
TREG
Clock CLK to X/Y outputs
Setup/Hold Times with Respect to Clock CLK
TSHDICK
BX/BY data inputs (DIN)
TSHCECK
Clock CLK
TSRPH
TSRPL
CE input (WS)
Block RAM Switching Characteristics
Speed Grade
-7
Symbol
Description
Sequential Delays
TBCKO
Clock CLK to DOUT output
Setup/Hold Times with Respect to Clock CLK
TBACK / TBCKA
ADDR inputs
-6
Min
Max
Min
Max
Units
0.6
3.1
0.6
3.5
ns
1.0 / 0
-
1.1 / 0
-
ns
TBDCK/ TBCKD
DIN inputs
1.0 / 0
-
1.1 / 0
-
ns
TBECK/ TBCKE
EN inputs
2.2 / 0
-
2.5 / 0
-
ns
TBRCK/ TBCKR
RST input
2.1 / 0
-
2.3 / 0
-
ns
WEN input
2.0 / 0
-
2.2 / 0
-
ns
TBWCK/ TBCKW
Clock CLK
TBPWH
Pulse width, High
1.4
-
1.5
-
ns
TBPWL
Pulse width, Low
1.4
-
1.5
-
ns
TBCCS
CLKA -> CLKB setup time for different ports
2.7
-
3.0
-
ns
DS077-3 (v2.3) June 18, 2008
Product Specification
www.xilinx.com
47
R
Spartan-IIE FPGA Family: DC and Switching Characteristics
TBUF Switching Characteristics
Speed Grade
Symbol
TIO
Description
-7
-6
Max
Max
Units
0
0
ns
IN input to OUT output
TOFF
TRI input to OUT output high impedance
0.1
0.11
ns
TON
TRI input to valid data on OUT output
0.1
0.11
ns
JTAG Test Access Port Switching Characteristics
Speed Grade
-7
-6
Symbol
Description
Setup/Hold Times with Respect to TCK
TTAPTCK / TTCKTAP TMS and TDI setup times and hold times
Sequential Delays
TTCKTDO
Output delay from clock TCK to output TDO
Min
Max
Min
Max
Units
4.0 / 2.0
-
4.0 / 2.0
-
ns
-
11.0
-
11.0
ns
TCK clock frequency
-
33
-
33
MHz
FTCK
Configuration Switching Characteristics
VCC(1)
TPOR
PROGRAM
TPL
INIT
TICCK
CCLK Output or Input
M0, M1, M2
(Required)
Valid
DS001_12_102301
.
All Devices
Symbol
Description
Min
Max
Units
TPOR
Power-on reset
-
2
ms
TPL
Program latency
-
100
μs
TICCK
CCLK output delay (Master serial
mode only)
0.5
4
μs
TPROGRAM
Program pulse width
300
-
ns
Notes:
1. Before configuration can begin, VCCINT and VCCO Bank 2 must reach the recommended operating voltage.
Figure 23: Configuration Timing on Power-Up
48
www.xilinx.com
DS077-3 (v2.3) June 18, 2008
Product Specification
R
Spartan-IIE FPGA Family: DC and Switching Characteristics
DIN
TCCD
TDCC
TCCL
CCLK
TCCH
TCCO
DOUT
(Output)
DS001_16_032300
.
All Devices
Symbol
Description
DIN setup/hold
TDCC /
TCCD
TCCO
TCCH
CCLK
DOUT
Min
Max
Units
5/0
-
ns
-
12
ns
High time
5
-
ns
TCCL
Low time
5
-
ns
FCC
Maximum frequency
-
66
MHz
Figure 24: Slave Serial Mode Timing
CCLK
(Output)
TCKDS
TDSCK
Serial Data In
TCCO
Serial DOUT
(Output)
DS001_17_110101
.
All Devices
Symbol
Description
TDSCK /
TCKDS
TCCO
FCC
DIN setup/hold
CCLK
Min
Max
5/0
-
ns
-
12
ns
–30%
+45%
-
DOUT
Frequency tolerance with respect to
nominal
Units
Figure 25: Master Serial Mode Timing
DS077-3 (v2.3) June 18, 2008
Product Specification
www.xilinx.com
49
R
Spartan-IIE FPGA Family: DC and Switching Characteristics
CCLK
CS
WRITE
TSMCCCS
TSMCSCC
TSMWCC
TSMCCW
TSMDCC
TSMCCD
DATA[7:0]
TSMCKBY
BUSY
No Write
Write
No Write
Write
DS001_20_061200
All Devices
Symbol
Description
Min
Max
Units
TSMDCC /
TSMCCD
D0-D7 setup/hold
5/1
-
ns
TSMCSCC /
TSMCCCS
CS setup/hold
7/1
-
ns
WRITE setup/hold
7/1
-
ns
TSMCCW /
TSMWCC
CCLK
TSMCKBY
BUSY propagation delay
-
12
ns
FCC
Frequency
-
66
MHz
FCCNH
Frequency with no handshake
-
50
MHz
Figure 26: Slave Parallel (SelectMAP) Mode Write Timing
CCLK
CS
WRITE
DATA[7:0]
BUSY
Abort
DS001_21_032300
Figure 27: Slave Parallel (SelectMAP) Mode Write Abort Waveforms
50
www.xilinx.com
DS077-3 (v2.3) June 18, 2008
Product Specification
R
Spartan-IIE FPGA Family: DC and Switching Characteristics
Revision History
Version No.
Date
1.0
11/15/01
Initial Xilinx release.
1.1
06/28/02
Added -7 speed grade and extended DLL specs to Industrial.
2.0
11/18/02
Added XC2S400E and XC2S600E. Added minimum specifications. Added reference to
XAPP450 for Power-On Requirements. Removed Preliminary designation.
2.1
07/09/03
Added ICCINTQ typical values. Reduced I CCPO power-on current requirements. Relaxed
TCCPO power-on ramp requirements. Added IHSPO to describe current in hot-swap
applications. Updated TPSFD / TPHFD description to indicate use of delay element.
2.3
06/18/08
Updated I/O measurement thresholds. Updated all modules for continuous page, figure, and
table numbering. Updated links. Synchronized all modules to v2.3.
DS077-3 (v2.3) June 18, 2008
Product Specification
Description
www.xilinx.com
51
Spartan-IIE FPGA Family: DC and Switching Characteristics
52
www.xilinx.com
R
DS077-3 (v2.3) June 18, 2008
Product Specification
Spartan-IIE FPGA Family:
Pinout Tables
R
DS077-4 (2.3) June 18, 2008
0
Product Specification
Introduction
Pin Types
This section describes how the various pins on a
Spartan®-IIE FPGA connect within the supported
component packages, and provides device-specific thermal
characteristics. Spartan-IIE FPGAs are available in both
standard and Pb-free, RoHS versions of each package, with
the Pb-free version adding a “G” to the middle of the
package code. Except for the thermal characteristics, all
information for the standard package applies equally to the
Pb-free package.
Most pins on a Spartan-IIE FPGA are general-purpose,
user-defined I/O pins. There are, however, different
functional types of pins on Spartan-IIE FPGA packages, as
outlined below.
Pin Definitions
Dedicated
Pin
Direction
GCK0, GCK1, GCK2,
GCK3
No
Input
Clock input pins that connect to Global Clock buffers or DLL
inputs. These pins become user inputs when not needed for
clocks.
DLL
No
Input
Clock input pins that connect to DLL input or feedback clocks.
Differential clock input (N input of pair) when paired with adjacent
GCK input. Becomes a user I/O when not needed for clocks.
M0, M1, M2
Yes
Input
Mode pins used to specify the configuration mode.
CCLK
Yes
Input or Output
PROGRAM
Yes
Input
DONE
Yes
Bidirectional
Indicates that configuration loading is complete, and that the
start-up sequence is in progress. The output may be open drain.
INIT
No
Bidirectional
(Open-drain)
When Low, indicates that the configuration memory is being
cleared. Goes High to indicate the end of initialization. Goes back
Low to indicate a CRC error. This pin becomes a user I/O after
configuration.
DOUT/BUSY
No
Output
In Slave Parallel mode, BUSY controls the rate at which
configuration data can be loaded. It is not needed below 50 MHz.
This pin becomes a user I/O after configuration unless the Slave
Parallel port is retained.
Pad Name
Description
The configuration Clock I/O pin. It is an input for Slave Parallel
and Slave Serial modes, and output in Master Serial mode. After
configuration, it is an input only with Don’t Care logic levels.
Initiates a configuration sequence when asserted Low.
In serial modes, DOUT provides configuration data to
downstream devices in a daisy-chain. This pin becomes a user
I/O after configuration.
© 2003-2007 Xilinx, Inc. All rights reserved. XILINX, the Xilinx logo, the Brand Window, and other designated brands included herein are trademarks of Xilinx, Inc. All other
trademarks are the property of their respective owners.
DS077-4 (2.3) June 18, 2008
Product Specification
www.xilinx.com
53
R
Spartan-IIE FPGA Family: Pinout Tables
Pin Definitions (Continued)
Pad Name
D0/DIN, D1, D2, D3,
D4, D5, D6, D7
Dedicated
Pin
Direction
Description
No
Input or Output
In Slave Parallel mode, D0-D7 are configuration data input pins.
During readback, D0-D7 are output pins. These pins become
user I/Os after configuration unless the Slave Parallel port is
retained.
In serial modes, DIN is the single data input. This pin becomes a
user I/O after configuration.
WRITE
No
Input
In Slave Parallel mode, the active-low Write Enable signal. This
pin becomes a user I/O after configuration unless the Slave
Parallel port is retained.
CS
No
Input
In Slave Parallel mode, the active-low Chip Select signal. This pin
becomes a user I/O after configuration unless the Slave Parallel
port is retained.
TDI, TDO, TMS, TCK
Yes
Mixed
Boundary Scan Test Access Port pins (IEEE 1149.1).
VCCINT
Yes
Input
1.8V power supply pins for the internal core logic.
VCCO
Yes
Input
Power supply pins for output drivers (1.5V, 1.8V, 2.5V, or 3.3V
subject to banking rules in the Functional Description module.
VREF
No
Input
Input threshold reference voltage pins. Become user I/Os when
an external threshold voltage is not needed (subject to banking
rules in the Functional Description module.
GND
Yes
Input
Ground. All must be connected.
IRDY, TRDY
No
See PCI core
documentation
These signals can only be accessed when using Xilinx PCI cores.
If the cores are not used, these pins are available as user I/Os.
L#[P/N]
(e.g., L0P)
No
Bidirectional
Differential I/O with synchronous output. P = positive, N =
negative. The number (#) is used to associate the two pins of a
differential pair. Becomes a general user I/O when not needed for
differential signals.
L#[P/N]_Y
(e.g., L0P_Y)
No
Bidirectional
Differential I/O with asynchronous or synchronous output
(asynchronous output not compatible for all densities in a
package). P = positive, N = negative. The number (#) is used to
associate the two pins of a differential pair. Becomes a general
user I/O when not needed for differential signals.
L#[P/N]_YY
(e.g., L0P_YY)
No
Bidirectional
Differential I/O with asynchronous or synchronous output
(compatible for all densities in a package). P = positive, N =
negative. The number (#) is used to associate the two pins of a
differential pair. Becomes a general user I/O when not needed for
differential signals.
I/O
No
Bidirectional
These pins can be configured to be input and/or output after
configuration is completed. Unused I/Os are disabled with a weak
pull-down resistor. After power-on and before configuration is
completed, these pins are either pulled up or left floating
according to the Mode pin values. See the DC and Switching
Characteristics module for power-on characteristics.
54
www.xilinx.com
DS077-4 (2.3) June 18, 2008
Product Specification
R
Spartan-IIE FPGA Family: Pinout Tables
Spartan-IIE Package Pinouts
The Spartan®-IIE family of FPGAs is available in five popular, low-cost packages, including plastic quad flat packs and
fine-pitch ball grid arrays. Family members have footprint
compatibility across devices provided in the same package,
with minor exceptions due to the smaller number of I/O in
smaller devices or due to LVDS/LVPECL pin pairing. The
Spartan-IIE family is not footprint compatible with any other
FPGA family. The following package-specific pinout tables
indicate function, pin, and bank information for all devices
available in that package. The pinouts follow the pad locations around the die, starting from pin 1 on the QFP packages.
Table 12: Spartan-IIE Family Package Options
Maximum
I/O
Lead Pitch
(mm)
Footprint
Area (mm)
Height
(mm)
Mass(1)
(g)
Thin Quad Flat Pack (TQFP)
102
0.5
22 x 22
1.60
1.4
208
Plastic Quad Flat Pack (PQFP)
146
0.5
30.6 x 30.6
3.70
5.3
FT256 / FTG256
256
Fine-pitch Thin Ball Grid Array (FBGA)
182
1.0
17 x 17
1.55
1.0
FG456 / FGG456
456
Fine-pitch Ball Grid Array (FBGA)
329
1.0
23 x 23
2.60
2.2
FG676 / FGG676
676
Fine-pitch Ball Grid Array (FBGA)
514
1.0
27 x 27
2.60
3.1
Package
Leads
TQ144 / TQG144
144
PQ208 / PQG208
Type
Notes:
1.
Package mass is ±10%.
Package Overview
Mechanical Drawings
Table 12 shows the five low-cost, space-saving production
package styles for the Spartan-IIE family.
Detailed mechanical drawings for each package type are
available from the Xilinx web site at the specified location in
Table 13.
Each package style is available in an environmentally
friendly lead-free (Pb-free) option. The Pb-free packages
include an extra ‘G’ in the package style name. For
example, the standard “TQ144” package becomes
“TQG144” when ordered as the Pb-free option. Leaded
(non-Pb-free) packages may be available for selected
devices, with the same pin-out and without the "G" in the
ordering code; contact Xilinx® sales for more information.
The mechanical dimensions of the standard and Pb-free
packages are similar, as shown in the mechanical drawings
provided in Table 13.
For additional package information, see UG112: Device
Package User Guide.
Material Declaration Data Sheets (MDDS) are also
available on the Xilinx web site for each package.
Table 13: Xilinx Package Documentation
Package
TQ144
Drawing
Package Drawing
TQG144
PQ208
Package Drawing
Package Drawing
FGG676
DS077-4 (2.3) June 18, 2008
Product Specification
www.xilinx.com
PK158_FT256
PK115_FTG256
Package Drawing
FGG456
FG676
PK166_PQ208
PK123_PQG208
FTG256
FG456
PK169_TQ144
PK126_TQG144
PQG208
FT256
MDDS
PK154_FG456
PK109_FGG456
Package Drawing
PK155_FG676
PK111_FGG676
55
R
Spartan-IIE FPGA Family: Pinout Tables
Package Thermal Characteristics
Table 14 provides the thermal characteristics for the various
Spartan-II FPGA package offerings. This information is also
available using the Thermal Query tool on xilinx.com
(www.xilinx.com/cgi-bin/thermal/thermal.pl).
The junction-to-case thermal resistance (θJC) indicates the
difference between the temperature measured on the
package body (case) and the die junction temperature per
watt of power consumption. The junction-to-board (θJB)
value similarly reports the difference between the board and
junction temperature. The junction-to-ambient (θJA) value
reports the temperature difference between the ambient
environment and the junction temperature. The θJA value is
reported at different air velocities, measured in linear feet
per minute (LFM). The “Still Air (0 LFM)” column shows the
θJA value in a system without a fan. The thermal resistance
drops with increasing air flow.
Table 14: Spartan-IIE Package Thermal Characteristics
Junction-to-Ambient (θJA)
at Different Air Flows
Package
Device
Junction-to-Case
(θJC)
Junction-toBoard (θJB)
Still Air
(0 LFM)
250 LFM
500 LFM
750 LFM
Units
TQ144
TQG144
XC2S50E
5.8
N/A
32.3
25.1
21.5
20.1
°C/Watt
XC2S100E
5.3
N/A
31.4
24.4
20.8
19.6
°C/Watt
XC2S50E
7.1
N/A
35.1
25.9
22.9
21.2
°C/Watt
XC2S100E
6.1
N/A
34.2
25.2
22.3
20.7
°C/Watt
XC2S150E
6.0
N/A
34.1
25.2
22.2
20.6
°C/Watt
XC2S200E
4.6
N/A
32.4
23.9
21.2
19.6
°C/Watt
XC2S300E
4.0
N/A
31.6
23.3
20.6
19.1
°C/Watt
XC2S50E
7.3
17.8
27.4
21.6
20.4
20.0
°C/Watt
XC2S100E
5.8
15.1
25.0
19.5
18.2
17.8
°C/Watt
XC2S150E
5.7
14.8
24.8
19.3
18.0
17.6
°C/Watt
XC2S200E
3.9
11.4
21.9
16.6
15.2
14.7
°C/Watt
XC2S300E
3.2
10.1
20.8
15.6
14.2
13.7
°C/Watt
XC2S400E
2.5
8.8
19.7
14.5
13.2
12.6
°C/Watt
XC2S100E
8.4
14.9
24.3
19.2
18.1
17.4
°C/Watt
XC2S150E
8.2
14.6
24.1
19.0
17.9
17.1
°C/Watt
XC2S200E
6.3
11.6
21.0
16.1
15.0
14.3
°C/Watt
XC2S300E
5.6
10.4
19.9
15.1
13.9
13.2
°C/Watt
XC2S400E
3.6
6.5
17.7
11.7
10.5
10.0
°C/Watt
XC2S600E
2.7
5.0
17.3
11.2
10.0
9.5
°C/Watt
XC2S400E
4.1
7.9
15.6
11.1
9.8
9.2
°C/Watt
XC2S600E
3.4
6.9
14.5
9.9
8.6
7.9
°C/Watt
PQ208
PQG208
FT256
FTG256
FG456
FGG456
FG676
FGG676
56
www.xilinx.com
DS077-4 (2.3) June 18, 2008
Product Specification
R
Spartan-IIE FPGA Family: Pinout Tables
Low Voltage Differential Signals (LVDS
and LVPECL)
The Spartan-IIE family features low-voltage differential signaling (LVDS and LVPECL). Each signal utilizes two pins on
the Spartan-IIE device, known as differential pin pairs. Each
differential pin pair has a Positive (P) and a Negative (N) pin.
These pairs are labeled in the following manner.
I/O, L#[P/N][-/_Y/_YY]
where
Because of differences between densities, the differential
pairs that can be used for asynchronous outputs vary by
device. The pairs that are available in all densities for a
given package have the _YY suffix. These pins should be
used for differential asynchronous outputs if the design may
later move to a different density. All other differential pairs
that can be used for asynchronous outputs have the _Y suffix.
To simplify the following tables, the "Pad Name" column
shows the part of the name that is common across densities. The "Pad Name" column leaves out the _Y suffix and
the "LVDS Asynchronous Output Option" column indicates
the densities that allow asynchronous outputs for LVDS or
LVPECL on the given pin.
L = LVDS or LVPECL pin
# = Pin pair number
P = Positive
N = Negative
_Y = Asynchronous output allowed (device-dependent)
_YY = Asynchronous output allowed (all devices)
Available Differential Pairs According to
Package Type
Device
TQ144
PQ208
FT256
FG456
FG676
XC2S50E
28
50
83
-
-
XC2S100E
28
50
83
86
-
XC2S150E
-
50
83
114
-
XC2S200E
-
50
83
120
-
XC2S300E
-
50
83
120
-
XC2S400E
-
-
83
120
172
XC2S600E
-
-
-
120
205
Synchronous or Asynchronous
I/O pins for differential signals can either be synchronous or
asynchronous, input or output. Differential signaling
requires the pins of each pair to switch simultaneously. If the
output signals driving the pins are from IOB flip-flops, they
are synchronous. If the signals driving the pins are from
internal logic, they are asynchronous, and therefore more
care must be taken that they are simultaneous. Any differential pairs can be used for synchronous input and output
signals as well as asynchronous input signals.
However, only the differential pairs with the _Y or _YY suffix
can be used for asynchronous output signals.
DS077-4 (2.3) June 18, 2008
Product Specification
Asynchronous Output Pad Name Designation
DLL Pins
Pins labeled "I/O (DLL)" can be used as general-purpose
I/O or as inputs to the DLL. Adjacent DLL pins form a differential pair. They reside in two different banks, so if they are
outputs the VCCO level must be the same for both banks.
Each DLL pin can also be paired with the adjacent GCK
clock pin for a differential clock input. The "I/O (DLL)" pin
always becomes the N terminal when paired with GCK,
even if it is labeled "P" for its pairing with the adjacent DLL
pin.
VREF Pins
Pins labeled "I/O, VREF" can be used as either an I/O or a
VREF pin. If any I/O pin within the bank requires a VREF
input, all the VREF pins in the bank must be connected to
the same voltage. See the I/O banking rules in the Functional Description module for more detail. If no pin in a
given bank requires VREF, then that bank's VREF pins can
be used as general I/O.
To simplify the following tables, the "Pad Name" column
shows the part of the name that is common across densities. When VREF is only available in limited densities, the
"Pad Name" column leaves out the VREF designation and
the "VREF Option" column indicates the densities that provide VREF on the given pin.
VCCO Banks
In the TQ144 and PQ208 packages, the eight banks have
VCCO connected together. Thus, only one VCCO is
allowed in these packages, although different VREF values
are allowed in each of the eight banks. See I/O Banking.
www.xilinx.com
57
R
Spartan-IIE FPGA Family: Pinout Tables
Pinout Tables
The following device-specific pinout tables include all packages available for each Spartan-IIE device. They follow the
pad locations around the die. In the TQ144 package, all
VCCO pins must be connected to the same voltage.
TQ144 Pinouts (XC2S50E and XC2S100E)
(Continued)
Pad Name
Bank
Pin
LVDS
Async.
Output
Option
I/O, L22N
6
P27
XC2S50E
XC2S100E
I/O
6
P28
-
-
I/O, VREF
Bank 6
6
P29
-
All
I/O
6
P30
-
-
I/O, L21P_YY
6
P31
All
-
I/O, L21N_YY
6
P32
All
-
M1
-
P33
-
-
GND
-
P34
-
-
M0
-
P35
-
-
VCCO
-
P36
-
-
M2
-
P37
-
-
I/O, L20N_YY
5
P38
All
-
I/O, L20P_YY
5
P39
All
-
I/O
5
P40
-
-
I/O, VREF
Bank 5
5
P41
-
All
I/O
5
P42
-
-
I/O, L19N_YY
5
P43
All
XC2S100E
I/O, L19P_YY
5
P44
All
-
GND
-
P45
-
-
VCCINT
-
P46
-
-
I/O, L18N_YY
5
P47
All
-
I/O, L18P_YY
5
P48
All
-
I/O, VREF
Bank 5
5
P49
-
All
I/O (DLL), L17N
5
P50
-
-
VCCINT
-
P51
-
-
GCK1, I
5
P52
-
-
VCCO
5
P53
-
-
GND
-
P54
-
-
GCK0, I
4
P55
-
-
TQ144 Pinouts (XC2S50E and XC2S100E)
Function
Pad Name
Bank
Pin
LVDS
Async.
Output
Option
GND
-
P1
-
-
TMS
-
P2
-
-
I/O
7
P3
-
-
I/O
7
P4
-
-
I/O, VREF
Bank 7
7
P5
-
All
I/O
7
P6
-
-
I/O, L27P
7
P7
XC2S50E
XC2S100E
I/O, L27N
7
P8
XC2S50E
-
GND
-
P9
-
-
I/O, L26P_YY
7
P10
All
-
I/O, L26N_YY
7
P11
All
-
I/O, VREF
Bank 7, L25P
7
P12
XC2S50E
All
I/O, L25N
7
P13
XC2S50E
-
I/O
7
P14
-
-
I/O (IRDY)
7
P15
-
-
GND
-
P16
-
-
VCCO
-
P17
-
-
Function
VREF
Option
I/O (TRDY)
6
P18
-
-
VCCINT
-
P19
-
-
I/O
6
P20
-
-
I/O, L24P
6
P21
XC2S50E
-
I/O, VREF
Bank 6, L24N
6
P22
XC2S50E
All
I/O, L23P_YY
6
P23
All
-
I/O, L23N_YY
6
P24
All
-
GND
-
P25
-
-
I/O, L22P
6
P26
XC2S50E
-
58
www.xilinx.com
VREF
Option
DS077-4 (2.3) June 18, 2008
Product Specification
R
Spartan-IIE FPGA Family: Pinout Tables
TQ144 Pinouts (XC2S50E and XC2S100E)
(Continued)
Pad Name
Function
Bank
Pin
LVDS
Async.
Output
Option
I/O (DLL), L17P
4
P56
-
-
I/O
4
P57
-
-
I/O, VREF
Bank 4
4
P58
-
All
I/O, L16N_YY
4
P59
All
I/O, L16P_YY
4
P60
VCCINT
-
GND
TQ144 Pinouts (XC2S50E and XC2S100E)
(Continued)
Bank
Pin
LVDS
Async.
Output
Option
I/O, VREF
Bank 3, L10N
3
P85
XC2S50E
All
I/O (D4), L10P
3
P86
XC2S50E
-
I/O
3
P87
-
-
-
VCCINT
-
P88
-
-
All
-
I/O (TRDY)
3
P89
-
-
P61
-
-
VCCO
-
P90
-
-
-
P62
-
-
GND
-
P91
-
-
I/O, L15N_YY
4
P63
All
-
I/O, L15P_YY
4
P64
All
XC2S100E
I/O (IRDY)
2
P92
-
-
I/O
4
P65
-
-
I/O
2
P93
-
-
I/O, VREF
Bank 4
4
P66
-
All
I/O (D3), L9N
2
P94
XC2S50E
-
P95
XC2S50E
All
4
P67
-
-
I/O, VREF
Bank 2, L9P
2
I/O
I/O, L14N_YY
4
P68
All
-
I/O
2
P96
-
-
I/O, L14P_YY
4
P69
All
-
I/O, L8N_YY
2
P97
All
-
GND
-
P70
-
-
I/O (D2),
L8P_YY
2
P98
All
-
DONE
3
P71
-
-
GND
-
P99
-
-
VCCO
-
P72
-
-
I/O (D1), L7N
2
P100
XC2S50E
-
PROGRAM
-
P73
-
-
I/O, L7P
2
P101
XC2S50E
XC2S100E
I/O (INIT),
L13N_YY
3
P74
All
-
I/O
2
P102
-
-
2
P103
-
All
I/O (D7),
L13P_YY
3
I/O, VREF
Bank 2
I/O
2
P104
-
-
I/O
3
P76
-
-
2
P105
All
-
I/O, VREF
Bank 3
3
P77
-
All
I/O (DIN, D0),
L6N_YY
2
P106
All
-
I/O
3
P78
-
-
I/O (DOUT,
BUSY),
L6P_YY
I/O, L12N
3
P79
XC2S50E
XC2S100E
CCLK
2
P107
-
-
I/O (D6), L12P
3
P80
XC2S50E
-
VCCO
-
P108
-
-
GND
-
P81
-
-
TDO
2
P109
-
-
I/O (D5),
L11N_YY
3
P82
All
-
GND
-
P110
-
-
I/O, L11P_YY
3
P83
All
-
TDI
-
P111
-
-
I/O
3
P84
-
-
DS077-4 (2.3) June 18, 2008
Product Specification
P75
All
Pad Name
VREF
Option
-
Function
www.xilinx.com
VREF
Option
59
R
Spartan-IIE FPGA Family: Pinout Tables
TQ144 Pinouts (XC2S50E and XC2S100E)
(Continued)
Pad Name
Function
Bank
Pin
LVDS
Async.
Output
Option
TQ144 Pinouts (XC2S50E and XC2S100E)
(Continued)
Pad Name
Bank
Pin
LVDS
Async.
Output
Option
I/O
0
P139
-
-
VREF
Option
Function
VREF
Option
I/O (CS),
L5P_YY
1
P112
All
-
I/O, VREF
Bank 0
0
P140
-
All
I/O (WRITE),
L5N_YY
1
P113
All
-
I/O
0
P141
-
-
I/O
0
P142
-
-
I/O
1
P114
-
-
TCK
-
P143
-
-
I/O, VREF
Bank 1
1
P115
-
All
VCCO
-
P144
-
-
I/O
1
P116
-
-
I/O, L4P_YY
1
P117
All
XC2S100E
I/O, L4N_YY
1
P118
All
-
GND
-
P119
-
-
VCCINT
-
P120
-
-
I/O, L3P_YY
1
P121
All
-
I/O, L3N_YY
1
P122
All
-
I/O, VREF
Bank 1
1
P123
-
All
I/O
1
P124
-
-
I/O (DLL), L2P
1
P125
-
-
GCK2, I
1
P126
-
-
GND
-
P127
-
-
VCCO
-
P128
-
-
GCK3, I
0
P129
-
-
VCCINT
-
P130
-
-
I/O (DLL), L2N
0
P131
-
-
I/O, VREF
Bank 0
0
P132
-
All
I/O, L1P_YY
0
P133
All
-
I/O, L1N_YY
0
P134
All
-
VCCINT
-
P135
-
-
GND
-
P136
-
-
I/O, L0P_YY
0
P137
All
-
I/O, L0N_YY
0
P138
All
XC2S100E
60
TQ144 Differential Clock Pins
P
Clock
N
Bank
Pin
Name
Pin
Name
GCK0
4
P55
GCK0, I
P56
I/O (DLL),
L17P
GCK1
5
P52
GCK1, I
P50
I/O (DLL),
L17N
GCK2
1
P126
GCK2, I
P125
I/O (DLL),
L2P
GCK3
0
P129
GCK3, I
P131
I/O (DLL),
L2N
www.xilinx.com
DS077-4 (2.3) June 18, 2008
Product Specification
R
Spartan-IIE FPGA Family: Pinout Tables
In the PQ208 package, all VCCO pins must be connected to
the same voltage.
PQ208 Pinouts (XC2S50E, XC2S100E,
XC2S150E, XC2S200E, XC2S300E)
Pad Name
Bank
Pin
LVDS
Async.
Output
Option
I/O
7
P22
-
-
I/O,
L44P_YY
7
P23
All
-
I/O (IRDY),
L44N_YY
7
P24
All
-
GND
-
P25
-
-
VCCO
-
P26
-
-
I/O (TRDY)
6
P27
-
-
VCCINT
-
P28
-
-
I/O
6
P29
-
-
I/O, L43P
6
P30
XC2S50E,
300E
-
I/O, VREF
Bank 6,
L43N
6
P31
XC2S50E,
300E
All
GND
-
P32
-
-
I/O,
L42P_YY
6
P33
All
-
I/O,
L42N_YY
6
P34
All
-
I/O,
L41P_YY
6
P35
All
-
I/O,
L41N_YY
6
P36
All
-
VCCINT
-
P37
-
-
VCCO
-
P38
-
-
GND
-
P39
-
-
I/O, L40P
6
P40
XC2S50E,
300E
-
I/O, L40N
6
P41
XC2S50E,
300E
XC2S100E,
150E, 200E,
300E
I/O
6
P42
-
-
I/O
6
P43
-
-
I/O
6
P44
-
-
PQ208 Pinouts (XC2S50E, XC2S100E,
XC2S150E, XC2S200E, XC2S300E)
Pad Name
Bank
Pin
LVDS
Async.
Output
Option
GND
-
P1
-
-
TMS
-
P2
-
-
I/O
7
P3
-
-
I/O
7
P4
-
XC2S200E,
300E
I/O
7
P5
-
-
I/O, VREF
Bank 7,
L49P
7
P6
XC2S50E,
150E, 200E,
300E
All
I/O, L49N
7
P7
XC2S50E,
150E, 200E,
300E
-
I/O
7
P8
-
-
I/O
7
P9
-
-
I/O, L48P
7
P10
XC2S50E,
300E
XC2S100E,
150E, 200E,
300E
Function
Function
VREF
Option
I/O, L48N
7
P11
XC2S50E,
300E
-
GND
-
P12
-
-
VCCO
-
P13
-
-
VCCINT
-
P14
-
-
I/O,
L47P_YY
7
P15
All
-
I/O,
L47N_YY
7
P16
All
-
I/O,
L46P_YY
7
P17
All
-
I/O,
L46N_YY
7
P18
All
-
GND
-
P19
-
-
I/O, VREF
Bank 7,
L45P
7
P20
XC2S50E,
300E
All
I/O, L45N
7
XC2S50E,
300E
-
P21
DS077-4 (2.3) June 18, 2008
Product Specification
www.xilinx.com
VREF
Option
61
R
Spartan-IIE FPGA Family: Pinout Tables
PQ208 Pinouts (XC2S50E, XC2S100E,
XC2S150E, XC2S200E, XC2S300E)
Pad Name
Function
Bank
Pin
I/O, VREF
Bank 6,
L39P
6
P45
I/O, L39N
6
I/O
LVDS
Async.
Output
Option
PQ208 Pinouts (XC2S50E, XC2S100E,
XC2S150E, XC2S200E, XC2S300E)
Pad Name
VREF
Option
XC2S100E,
150E
All
P46
XC2S100E,
150E
-
6
P47
-
XC2S200E,
300E
I/O,
L38P_YY
6
P48
All
-
I/O,
L38N_YY
6
P49
All
-
M1
-
P50
-
-
GND
-
P51
-
-
M0
-
P52
-
-
VCCO
-
P53
-
-
M2
-
P54
-
-
I/O,
L37N_YY
5
P55
All
-
I/O,
L37P_YY
5
P56
All
-
I/O
5
P57
-
XC2S200E,
300E
I/O
5
P58
-
-
I/O, VREF
Bank 5,
L36N_YY
5
P59
All
All
I/O,
L36P_YY
5
P60
All
-
I/O, L35N
5
P61
XC2S50E,
100E, 300E
-
I/O, L35P
5
P62
XC2S50E,
100E, 300E
-
I/O, L34N
5
P63
XC2S50E,
100E, 200E,
300E
XC2S100E,
150E, 200E,
300E
XC2S50E,
100E, 200E,
300E
-
-
-
I/O, L34P
GND
62
5
-
P64
P65
Bank
Pin
LVDS
Async.
Output
Option
VCCO
-
P66
-
-
VCCINT
-
P67
-
-
I/O, L33N
5
P68
XC2S50E,
100E, 200E,
300E
-
I/O, L33P
5
P69
XC2S50E,
100E, 200E,
300E
-
I/O
5
P70
-
-
I/O, L32N
5
P71
XC2S100E,
150E
-
GND
-
P72
-
-
I/O, VREF
Bank 5,
L32P
5
P73
XC2S100E,
150E
All
I/O
5
P74
-
-
I/O (DLL),
L31N
5
P75
-
-
VCCINT
-
P76
-
-
GCK1, I
5
P77
-
-
VCCO
-
P78
-
-
GND
-
P79
-
-
GCK0, I
4
P80
-
-
I/O (DLL),
L31P
4
P81
-
-
I/O
4
P82
-
-
I/O, L30N
4
P83
XC2S50E,
200E, 300E
-
I/O, VREF
Bank 4,
L30P
4
P84
XC2S50E,
200E, 300E
All
GND
-
P85
-
-
I/O, L29N
4
P86
XC2S50E,
200E, 300E
-
I/O, L29P
4
P87
XC2S50E,
200E, 300E
-
I/O, L28N
4
P88
XC2S50E,
100E, 200E,
300E
-
Function
www.xilinx.com
VREF
Option
DS077-4 (2.3) June 18, 2008
Product Specification
R
Spartan-IIE FPGA Family: Pinout Tables
PQ208 Pinouts (XC2S50E, XC2S100E,
XC2S150E, XC2S200E, XC2S300E)
Pad Name
Function
LVDS
Async.
Output
Option
PQ208 Pinouts (XC2S50E, XC2S100E,
XC2S150E, XC2S200E, XC2S300E)
Pad Name
VREF
Option
Bank
Pin
I/O, L28P
4
P89
XC2S50E,
100E, 200E,
300E
-
VCCINT
-
P90
-
-
VCCO
-
P91
-
-
GND
-
P92
-
-
I/O, L27N
4
P93
XC2S50E,
100E, 200E,
300E
-
XC2S50E,
100E, 200E,
300E
XC2S100E,
150E, 200E,
300E
I/O, L27P
4
P94
Function
LVDS
Async.
Output
Option
VREF
Option
Bank
Pin
I/O, VREF
Bank 3,
L23N
3
P111
XC2S50E,
150E, 200E,
300E
All
I/O, L23P
3
P112
XC2S50E,
150E, 200E,
300E
-
I/O
3
P113
-
-
I/O
3
P114
-
-
I/O, L22N
3
P115
XC2S50E,
300E
XC2S100E,
150E, 200E,
300E
I/O (D6),
L22P
3
P116
XC2S50E,
300E
-
GND
-
P117
-
-
VCCO
-
P118
-
-
VCCINT
-
P119
-
-
I/O (D5),
L21N_YY
3
P120
All
-
I/O
4
P95
-
-
I/O
4
P96
-
-
I/O,
L26N_YY
4
P97
All
-
I/O, VREF
Bank 4,
L26P_YY
4
P98
All
All
P121
All
-
4
P99
-
-
I/O,
L21P_YY
3
I/O
I/O
4
P100
-
XC2S200E,
300E
I/O,
L20N_YY
3
P122
All
-
I/O,
L25N_YY
4
P101
All
-
I/O,
L20P_YY
3
P123
All
-
I/O,
L25P_YY
4
P102
All
-
GND
-
P124
-
-
P125
P103
-
-
XC2S50E,
300E
All
-
I/O, VREF
Bank 3,
L19N
3
GND
DONE
3
P104
-
-
I/O (D4),
L19P
3
P126
XC2S50E,
300E
-
VCCO
-
P105
-
-
I/O
3
P127
-
-
PROGRAM
-
P106
-
-
VCCINT
-
P128
-
-
I/O (INIT),
L24N_YY
3
P107
All
-
I/O (TRDY)
3
P129
-
-
I/O (D7),
L24P_YY
3
P108
All
-
VCCO
-
P130
-
-
GND
-
P131
-
-
I/O
3
P109
-
XC2S200E,
300E
P132
All
-
3
P110
-
-
I/O (IRDY),
L18N_YY
2
I/O
I/O,
L18P_YY
2
P133
All
-
DS077-4 (2.3) June 18, 2008
Product Specification
www.xilinx.com
63
R
Spartan-IIE FPGA Family: Pinout Tables
PQ208 Pinouts (XC2S50E, XC2S100E,
XC2S150E, XC2S200E, XC2S300E)
Pad Name
PQ208 Pinouts (XC2S50E, XC2S100E,
XC2S150E, XC2S200E, XC2S300E)
Bank
Pin
LVDS
Async.
Output
Option
Bank
Pin
LVDS
Async.
Output
Option
I/O
2
P134
-
-
VCCO
-
P156
-
-
I/O (D3),
L17N
2
P135
XC2S50E,
300E
-
TDO
2
P157
-
-
I/O, VREF
Bank 2,
L17P
2
P136
XC2S50E,
300E
All
GND
-
P158
-
-
TDI
-
P159
-
-
GND
-
P137
-
-
I/O (CS),
L11P_YY
1
P160
All
-
I/O,
L16N_YY
2
P138
All
-
I/O
(WRITE),
L11N_YY
1
P161
All
-
I/O,
L16P_YY
2
P139
All
-
I/O,
L15N_YY
2
P140
All
-
I/O
1
P162
-
XC2S200E,
300E
I/O (D2),
L15P_YY
2
P141
All
-
I/O
1
P163
-
-
I/O, VREF
Bank 1,
L10P_YY
1
P164
All
All
VCCINT
-
P142
-
-
VCCO
-
P143
-
-
GND
-
P144
-
I/O,
L10N_YY
1
P165
All
-
-
I/O (D1),
L14N
2
P145
XC2S50E,
300E
-
I/O
1
P166
-
-
I/O, L14P
2
I/O
1
P167
-
-
P146
XC2S50E,
300E
XC2S100E,
150E, 200E,
300E
I/O, L9P
1
P168
XC2S50E,
100E, 200E,
300E
XC2S100E,
150E, 200E,
300E
I/O
2
P147
-
-
I/O, L9N
1
P169
2
P148
-
-
I/O
2
P149
-
-
XC2S50E,
100E, 200E,
300E
-
I/O
I/O, VREF
Bank 2,
L13N
2
P150
XC2S100E,
150E
All
GND
-
P170
-
-
VCCO
-
P171
-
-
VCCINT
-
P172
-
-
I/O, L13P
2
P151
XC2S100E,
150E
-
I/O, L8P
1
P173
-
I/O
2
P152
-
XC2S200E,
300E
XC2S50E,
100E, 200E,
300E
I/O, L8N
1
P174
2
P153
All
-
XC2S50E,
100E, 200E,
300E
-
I/O (DIN,
D0),
L12N_YY
I/O, L7P
1
P175
2
P154
All
-
XC2S50E,
200E, 300E
-
I/O (DOUT,
BUSY),
L12P_YY
I/O, L7N
1
P176
XC2S50E,
200E, 300E
-
CCLK
2
GND
-
P177
-
-
Function
64
P155
-
Pad Name
VREF
Option
-
Function
www.xilinx.com
VREF
Option
DS077-4 (2.3) June 18, 2008
Product Specification
R
Spartan-IIE FPGA Family: Pinout Tables
PQ208 Pinouts (XC2S50E, XC2S100E,
XC2S150E, XC2S200E, XC2S300E)
Pad Name
LVDS
Async.
Output
Option
PQ208 Pinouts (XC2S50E, XC2S100E,
XC2S150E, XC2S200E, XC2S300E)
Pad Name
VREF
Option
Function
Bank
Pin
I/O, VREF
Bank 1, L6P
1
P178
XC2S50E,
200E, 300E
All
I/O, L6N
1
P179
XC2S50E,
200E, 300E
-
I/O
1
P180
-
-
I/O (DLL),
L5P
1
P181
-
-
GCK2, I
1
P182
-
-
GND
-
P183
-
-
VCCO
-
P184
-
-
GCK3, I
0
P185
-
-
VCCINT
-
P186
-
-
I/O (DLL),
L5N
0
P187
-
-
I/O, L4P
0
P188
XC2S50E,
200E, 300E
-
XC2S50E,
200E, 300E
All
P189
Bank
Pin
LVDS
Async.
Output
Option
I/O
0
P201
-
-
I/O,
L0P_YY
0
P202
All
-
I/O, VREF
Bank 0,
L0N_YY
0
P203
All
All
I/O
0
P204
-
-
I/O
0
P205
-
XC2S200E,
300E
I/O
0
P206
-
-
TCK
-
P207
-
-
VCCO
-
P208
-
-
Function
VREF
Option
PQ208 Differential Clock Pins
P
N
Clock
Bank
Pin
Name
Pin
Name
GCK0
4
P80
GCK0, I
P81
I/O (DLL),
L31P
GCK1
5
P77
GCK1, I
P75
I/O (DLL),
L31N
I/O, VREF
Bank 0, L4N
0
GND
-
P190
-
-
I/O, L3P
0
P191
XC2S50E,
200E, 300E
-
GCK2
1
P182
GCK2, I
P181
I/O (DLL),
L5P
I/O, L3N
0
P192
XC2S50E,
200E, 300E
-
GCK3
0
P185
GCK3, I
P187
I/O (DLL),
L5N
I/O, L2P
0
P193
XC2S50E,
100E, 200E,
300E
-
I/O, L2N
0
P194
XC2S50E,
100E, 200E,
300E
-
VCCINT
-
P195
-
-
VCCO
-
P196
-
-
GND
-
P197
-
-
I/O, L1P
0
P198
XC2S50E,
100E, 200E,
300E
-
I/O, L1N
0
P199
XC2S50E,
100E, 200E,
300E
XC2S100E,
150E, 200E,
300E
I/O
0
P200
-
-
DS077-4 (2.3) June 18, 2008
Product Specification
www.xilinx.com
65
R
Spartan-IIE FPGA Family: Pinout Tables
FT256 Pinouts (XC2S50E, XC2S100E,
XC2S150E, XC2S200E, XC2S300E, XC2S400E)
(Continued)
FT256 Pinouts (XC2S50E, XC2S100E,
XC2S150E, XC2S200E, XC2S300E,
XC2S400E)
Pad Name
Pad Name
Bank
Pin
LVDS
Async.
Output
Option
TMS
-
B1
-
-
I/O
7
D3
-
-
I/O, L83P
7
C2
XC2S100E,
150E
-
Function
VREF
Option
Function
LVDS
Async.
Output
Option
VREF
Option
Bank
Pin
I/O, L74P
7
H4
XC2S100E,
150E, 200E
-
I/O, L74N
7
H3
XC2S100E,
150E, 200E
XC2S400E
I/O, L73P_YY
7
H2
All
-
I/O (IRDY),
L73N_YY
7
H1
All
-
I/O (TRDY)
6
J4
-
-
I/O, L83N
7
C1
XC2S100E,
150E
XC2S200E,
300E, 400E
I/O, L82P_YY
7
D2
All
-
I/O, L82N_YY
7
D1
All
-
I/O, VREF
Bank 7, L81P
7
E3
XC2S50E,
150E, 200E,
300E, 400E
All
I/O, L72P
6
J2
XC2S100E,
150E, 200E,
400E
XC2S400E
I/O, L81N
7
E4
XC2S50E,
150E, 200E,
300E, 400E
-
I/O, L72N
6
J3
XC2S100E,
150E, 200E,
400E
-
I/O, L80P
7
E2
XC2S200E,
400E
-
I/O, L71P
6
J1
XC2S50E,
300E, 400E
-
I/O, L80N
7
E1
XC2S200E,
400E
-
I/O, VREF
Bank 6, L71N
6
K1
XC2S50E,
300E, 400E
All
I/O, L79P
7
F4
XC2S50E, XC2S100E,
300E, 400E 150E, 200E,
300E, 400E
I/O, L70P_YY
6
K2
All
-
I/O, L70N_YY
6
K3
All
-
I/O, L69P
6
L1
XC2S100E,
150E, 400E
-
I/O, L69N
6
L2
XC2S100E,
150E, 400E
-
I/O, L79N
7
F3
XC2S50E,
300E, 400E
-
I/O, L78P_YY
7
F2
All
-
I/O, L78N_YY
7
F1
All
-
I/O, L68P_YY
6
K4
All
-
I/O, L77P
7
F5
XC2S100E,
150E
-
I/O, L68N_YY
6
K5
All
-
I/O, L77N
7
G5
XC2S100E,
150E
-
I/O, L67P
6
L3
XC2S50E,
300E, 400E
-
I/O, L76P_YY
7
G3
All
-
I/O, L67N
6
M2
I/O, L76N_YY
7
G4
All
-
XC2S50E, XC2S100E,
300E, 400E 150E, 200E,
300E, 400E
I/O, VREF
Bank 7, L75P
7
G2
XC2S50E,
300E, 400E
All
I/O, L66P
6
M1
XC2S150E,
200E, 400E
-
I/O, L75N
7
G1
XC2S50E,
300E, 400E
-
I/O, L66N
6
N1
XC2S150E,
200E, 400E
-
66
www.xilinx.com
DS077-4 (2.3) June 18, 2008
Product Specification
R
Spartan-IIE FPGA Family: Pinout Tables
FT256 Pinouts (XC2S50E, XC2S100E,
XC2S150E, XC2S200E, XC2S300E, XC2S400E)
(Continued)
Pad Name
LVDS
Async.
Output
Option
FT256 Pinouts (XC2S50E, XC2S100E,
XC2S150E, XC2S200E, XC2S300E, XC2S400E)
(Continued)
Pad Name
VREF
Option
Bank
Pin
I/O, L65P
6
L4
XC2S50E,
150E, 200E,
300E, 400E
-
I/O, VREF
Bank 6, L65N
6
L5
XC2S50E,
150E, 200E,
300E, 400E
I/O, L64P_YY
6
M3
I/O, L64N_YY
6
I/O, L63P
LVDS
Async.
Output
Option
VREF
Option
Bank
Pin
I/O, L57P
5
P6
XC2S50E,
100E, 150E,
300E
All
I/O, L56N
5
R6
XC2S50E, XC2S100E,
100E, 200E, 150E, 200E,
300E, 400E 300E, 400E
All
-
I/O, L56P
5
T6
-
M4
All
-
XC2S50E,
100E, 200E,
300E, 400E
6
N2
XC2S100E,
200E, 300E
-
I/O, L55N
5
M6
-
I/O, L63N
6
N3
XC2S100E,
200E, 300E
XC2S200E,
300E, 400E
XC2S50E,
100E, 200E,
300E, 400E
I/O, L55P
5
N7
6
P1
All
-
I/O, L62N_YY
6
P2
All
-
XC2S50E,
100E, 200E,
300E, 400E
-
I/O, L62P_YY
M1
-
R1
-
-
I/O
5
P7
-
-
M0
-
T2
-
-
I/O, L54N
5
R7
-
M2
-
R3
-
-
XC2S50E,
200E, 300E,
400E
I/O, L54P
5
T7
XC2S50E,
200E, 300E,
400E
-
I/O, VREF
Bank 5, L53N
5
M7
XC2S50E,
200E, 300E,
400E
All
I/O, L53P
5
N8
XC2S50E,
200E, 300E,
400E
-
I/O
5
P8
-
XC2S400E
I/O (DLL),
L52N
5
R8
-
-
GCK1, I
5
T8
-
-
GCK0, I
4
T9
-
-
I/O (DLL),
L52P
4
R9
-
-
I/O, L51N
4
P9
XC2S50E,
150E, 200E,
400E
XC2S400E
Function
I/O, L61N_YY
5
P4
All
-
I/O, L61P_YY
5
R4
All
-
I/O, L60N
5
T3
XC2S50E, XC2S200E,
100E, 200E, 300E, 400E
300E, 400E
I/O, L60P
5
T4
XC2S50E,
100E, 200E,
300E, 400E
-
I/O, L59N_YY
5
N5
All
-
I/O, L59P_YY
5
P5
All
-
I/O, VREF
Bank 5,
L58N_YY
5
R5
All
All
I/O, L58P_YY
5
T5
All
-
I/O, L57N
5
N6
XC2S50E,
100E, 150E,
300E
-
DS077-4 (2.3) June 18, 2008
Product Specification
Function
www.xilinx.com
-
67
R
Spartan-IIE FPGA Family: Pinout Tables
FT256 Pinouts (XC2S50E, XC2S100E,
XC2S150E, XC2S200E, XC2S300E, XC2S400E)
(Continued)
Pad Name
LVDS
Async.
Output
Option
Pad Name
VREF
Option
Bank
Pin
I/O, L51P
4
N9
XC2S50E,
150E, 200E,
400E
-
I/O, L50N
4
T10
XC2S50E,
200E, 300E,
400E
-
Function
I/O, VREF
Bank 4, L50P
4
R10
XC2S50E,
200E, 300E,
400E
All
I/O, L49N
4
P10
XC2S50E,
200E, 300E,
400E
-
XC2S50E,
200E, 300E,
400E
-
I/O, L49P
4
R11
I/O
4
T11
-
-
I/O, L48N
4
N10
XC2S50E,
100E, 200E,
300E, 400E
-
I/O, L48P
4
M10
XC2S50E,
100E, 200E,
300E, 400E
-
I/O, L47N
4
P11
XC2S50E,
100E, 200E,
300E, 400E
-
I/O, L47P
4
R12
XC2S50E, XC2S100E,
100E, 200E, 150E, 200E,
300E, 400E 300E, 400E
I/O, L46N
4
T12
XC2S50E,
100E, 150E,
300E
-
XC2S50E,
100E, 150E,
300E
-
I/O, L46P
4
T13
I/O, L45N_YY
4
N11
All
-
I/O, VREF
Bank 4,
L45P_YY
4
M11
All
All
I/O, L44N_YY
4
P12
All
-
I/O, L44P_YY
4
N12
All
-
68
FT256 Pinouts (XC2S50E, XC2S100E,
XC2S150E, XC2S200E, XC2S300E, XC2S400E)
(Continued)
LVDS
Async.
Output
Option
VREF
Option
Bank
Pin
I/O, L43N
4
R13
XC2S50E,
150E
XC2S200E,
300E, 400E
I/O, L43P
4
P13
XC2S50E,
150E
-
I/O, L42N_YY
4
T14
All
-
I/O, L42P_YY
4
R14
All
-
DONE
3
T15
-
-
PROGRAM
-
R16
-
-
I/O (INIT),
L41N_YY
3
P15
All
-
I/O (D7),
L41P_YY
3
P16
All
-
I/O, L40N
3
N15
XC2S100E,
150E, 400E
-
I/O, L40P
3
N16
XC2S100E, XC2S200E,
150E, 400E 300E, 400E
I/O, L39N
3
N14
XC2S50E,
100E, 150E,
200E,
300E(1)
-
I/O, L39P
3
M14
XC2S50E,
100E, 150E,
200E,
300E(1)
-
I/O, VREF
Bank 3, L38N
3
M15
XC2S50E,
150E, 200E,
300E, 400E
All
I/O, L38P
3
M16
XC2S50E,
150E, 200E,
300E, 400E
-
I/O(2)
3
M13
-
-
I/O(2)
3
L14
-
-
I/O, L36N
3
L15
XC2S50E, XC2S100E,
300E, 400E 150E, 200E,
300E, 400E
I/O (D6), L36P
3
L16
XC2S50E,
300E, 400E
Function
www.xilinx.com
-
DS077-4 (2.3) June 18, 2008
Product Specification
R
Spartan-IIE FPGA Family: Pinout Tables
FT256 Pinouts (XC2S50E, XC2S100E,
XC2S150E, XC2S200E, XC2S300E, XC2S400E)
(Continued)
Pad Name
Bank
Pin
LVDS
Async.
Output
Option
I/O (D5),
L35N_YY
3
L13
All
I/O, L35P_YY
3
K14
I/O, L34N
3
I/O, L34P
I/O, L33N
Function
I/O, L33P
FT256 Pinouts (XC2S50E, XC2S100E,
XC2S150E, XC2S200E, XC2S300E, XC2S400E)
(Continued)
Pad Name
VREF
Option
LVDS
Async.
Output
Option
VREF
Option
Function
Bank
Pin
-
I/O, VREF
Bank 2, L28P
2
F16
XC2S50E,
300E, 400E
All
All
-
I/O, L27N
2
H13
-
K15
XC2S100E,
150E, 400E
-
XC2S50E,
100E, 150E,
200E,
300E(1)
3
K16
XC2S100E,
150E, 400E
-
I/O, L27P
2
G14
-
3
L12
XC2S50E,
100E, 150E,
200E,
300E(1)
-
XC2S50E,
100E, 150E,
200E,
300E(2)
I/O, L26N
2
F15
XC2S100E,
150E, 400E
-
XC2S50E,
100E, 150E,
200E,
300E(1)
-
I/O, L26P
2
E16
XC2S100E,
150E, 400E
-
I/O, L25N_YY
2
G13
All
-
I/O (D2),
L25P_YY
2
F14
All
-
3
K12
I/O, VREF
Bank 3, L32N
3
K13
XC2S50E,
300E, 400E
All
I/O (D4), L32P
3
J14
XC2S50E,
300E, 400E
-
I/O (D1), L24N
2
E15
XC2S50E,
300E, 400E
I/O, L31N
3
J15
XC2S100E,
150E, 200E,
400E
-
I/O, L24P
2
D16
XC2S50E, XC2S100E,
300E, 400E 150E, 200E,
300E, 400E
I/O, L31P
3
J16
XC2S100E,
150E, 200E,
400E
XC2S400E
I/O, L23N
2
F13
XC2S150E,
200E, 400E
-
I/O, L23P
2
E14
3
J13
-
-
XC2S150E,
200E, 400E
-
I/O (TRDY)
I/O, L22N
2
D15
XC2S50E,
150E, 200E,
300E, 400E
-
I/O, VREF
Bank 2, L22P
2
C16
XC2S50E,
150E, 200E,
300E, 400E
All
I/O, L21N
2
G12
XC2S50E,
100E, 200E,
300E
-
I/O, L21P
2
F12
XC2S50E,
100E, 200E,
300E
-
I/O, L20N
2
E13
XC2S100E,
200E, 300E
-
I/O (IRDY),
L30N_YY
2
H16
All
-
I/O, L30P_YY
2
G16
All
-
I/O, L29N
2
H14
XC2S100E,
150E, 200E,
400E
XC2S400E
XC2S100E,
150E, 200E,
400E
-
XC2S50E,
300E, 400E
-
I/O, L29P
I/O (D3), L28N
2
2
H15
G15
DS077-4 (2.3) June 18, 2008
Product Specification
www.xilinx.com
69
R
Spartan-IIE FPGA Family: Pinout Tables
FT256 Pinouts (XC2S50E, XC2S100E,
XC2S150E, XC2S200E, XC2S300E, XC2S400E)
(Continued)
Pad Name
LVDS
Async.
Output
Option
Pad Name
VREF
Option
Bank
Pin
I/O, L20P
2
D14
XC2S100E,
200E, 300E
XC2S200E,
300E, 400E
I/O (DIN, D0),
L19N_YY
2
B16
All
-
I/O (DOUT,
BUSY),
L19P_YY
2
CCLK
2
A15
-
-
TDO
2
B14
-
-
TDI
-
C13
-
-
I/O (CS),
L18P_YY
1
A14
All
-
I/O (WRITE),
L18N_YY
1
A13
I/O, L17P
1
B13
XC2S50E, XC2S200E,
100E, 200E, 300E, 400E
300E, 400E
I/O, L17N
1
C12
XC2S50E,
100E, 200E,
300E, 400E
-
I/O, L16P_YY
1
B12
All
-
I/O, L16N_YY
1
A12
All
-
I/O, VREF
Bank 1,
L15P_YY
1
D12
All
All
I/O, L15N_YY
1
E11
All
-
I/O, L14P
1
D11
XC2S50E,
100E, 150E,
300E
-
-
Function
C15
All
All
-
1
C11
XC2S50E,
100E, 150E,
300E
I/O, L13P
1
B11
XC2S50E, XC2S100E,
100E, 200E, 150E, 200E,
300E, 400E 300E, 400E
I/O, L13N
1
A11
XC2S50E,
100E, 200E,
300E, 400E
LVDS
Async.
Output
Option
VREF
Option
Bank
Pin
I/O, L12P
1
E10
XC2S50E,
100E, 200E,
300E, 400E
-
I/O, L12N
1
D10
XC2S50E,
100E, 200E,
300E, 400E
-
I/O
1
C10
-
-
I/O, L11P
1
B10
XC2S50E,
200E, 300E,
400E
-
I/O, L11N
1
A10
XC2S50E,
200E, 300E,
400E
-
I/O, VREF
Bank 1, L10P
1
D9
XC2S50E,
200E, 300E,
400E
All
I/O, L10N
1
C9
XC2S50E,
200E, 300E,
400E
-
I/O, L9P
1
B9
XC2S50E,
150E, 200E,
400E
-
I/O, L9N
1
A9
XC2S50E,
150E, 200E,
400E
XC2S400E
I/O (DLL), L8P
1
A8
-
-
GCK2, I
1
B8
-
-
GCK3, I
0
C8
-
-
I/O (DLL), L8N
0
D8
-
-
I/O
0
A7
-
XC2S400E
I/O, L7P
0
E7
XC2S50E,
200E, 300E,
400E
-
I/O, VREF
Bank 0, L7N
0
D7
XC2S50E,
200E, 300E,
400E
All
Function
-
I/O, L14N
70
FT256 Pinouts (XC2S50E, XC2S100E,
XC2S150E, XC2S200E, XC2S300E, XC2S400E)
(Continued)
-
www.xilinx.com
DS077-4 (2.3) June 18, 2008
Product Specification
R
Spartan-IIE FPGA Family: Pinout Tables
FT256 Pinouts (XC2S50E, XC2S100E,
XC2S150E, XC2S200E, XC2S300E, XC2S400E)
(Continued)
Pad Name
Function
I/O, L6P
I/O, L6N
Bank
Pin
0
C7
0
B7
LVDS
Async.
Output
Option
Pin
Name
Pin
Name
VREF
Option
GCK0
4
T9
GCK0, I
R9
I/O (DLL),
L52P
XC2S50E,
200E, 300E,
400E
-
GCK1
5
T8
GCK1, I
R8
I/O (DLL),
L52N
GCK2
1
B8
GCK2, I
A8
XC2S50E,
200E, 300E,
400E
-
I/O (DLL),
L8P
GCK3
0
C8
GCK3, I
D8
I/O (DLL),
L8N
A6
-
-
I/O, L5P
0
B6
XC2S50E,
100E, 200E,
300E, 400E
-
XC2S50E,
100E, 200E,
300E, 400E
-
XC2S50E,
100E, 200E,
300E, 400E
-
I/O, L4P
I/O, L4N
0
0
C6
A5
B5
N
Bank
0
0
P
Clock
I/O
I/O, L5N
FT256 Differential Clock Pins
Additional FT256 Package Pins
VCCINT Pins
C3
C14
D4
D13
E5
E12
M5
M12
N4
N13
P3
P14
-
-
-
F8
-
-
F10
-
-
H12
-
-
K11
-
-
M9
-
-
VCCO Bank 0 Pins
E8
XC2S50E, XC2S100E,
100E, 200E, 150E, 200E,
300E, 400E 300E, 400E
I/O, L3P
0
D6
XC2S50E,
100E, 300E
-
I/O, L3N
0
E6
XC2S50E,
100E, 300E
-
I/O, L2P_YY
0
D5
All
-
I/O, VREF
Bank 0,
L2N_YY
0
C5
All
All
I/O, L1P_YY
0
B4
All
-
I/O, L1N_YY
0
C4
All
-
I/O, L0P_YY
0
A4
All
-
I/O, L0N_YY
0
A3
All
XC2S200E,
300E, 400E
I/O
0
B3
-
-
TCK
-
A2
-
-
F7
VCCO Bank 1 Pins
E9
F9
VCCO Bank 2 Pins
G11
H11
VCCO Bank 3 Pins
J11
J12
VCCO Bank 4 Pins
L9
L10
Notes:
1. Although designated with the _YY suffix in the XC2S50E,
XC2S100E, XC2S150E, XC2S200E, and XC2S300E, these
differential pairs are not asynchronous in the XC2S400E.
2. There is no pair L37.
DS077-4 (2.3) June 18, 2008
Product Specification
www.xilinx.com
71
R
Spartan-IIE FPGA Family: Pinout Tables
Additional FT256 Package Pins (Continued)
VCCO Bank 5 Pins
L7
L8
M8
-
-
K6
-
-
H5
H6
-
-
A1
A16
B2
B15
F6
F11
G7
G8
G9
G10
H7
H8
H9
H10
J7
J8
J9
J10
K7
K8
K9
K10
L6
L11
R2
T1
T16
-
-
VCCO Bank 6 Pins
J5
J6
VCCO Bank 7 Pins
G6
GND Pins
R15
72
www.xilinx.com
DS077-4 (2.3) June 18, 2008
Product Specification
R
Spartan-IIE FPGA Family: Pinout Tables
FG456 Pinouts (XC2S100E, XC2S150E, XC2S200E, XC2S300E, XC2S400E, XC2S600E)
Pad Name
Function Bank
Pin
LVDS
Async.
Output
Option
Device-Specific Pinouts: XC2S
VREF
Option
100E
150E
200E
300E
400E
600E
TMS
-
E4
-
-
TMS
TMS
TMS
TMS
TMS
TMS
I/O
7
D3
XC2S150E
-
I/O
I/O,
L113P_Y
I/O
I/O
I/O
I/O
I/O
7
C2
-
-
-
-
-
I/O
I/O
I/O
I/O
7
C1
XC2S150E
-
-
I/O,
L113N_Y
I/O
I/O
I/O
I/O
I/O, L#P_Y
7
D2
XC2S150E,
200E, 300E,
400E
-
-
I/O,
L112P_Y
I/O,
L119P_Y
I/O,
L119P_Y
I/O,
L119P_Y
I/O, L119P
I/O, L#N_Y
7
D1
XC2S150E,
200E, 300E,
400E
-
I/O
I/O,
L112N_Y
I/O,
L119N_Y
I/O,
L119N_Y
I/O,
L119N_Y
I/O, L119N
I/O, L#P_Y
7
E2
XC2S100E, XC2S200E, I/O, L85P_Y I/O, L111P
200E, 300E,
300E,
600E
400E, 600E
I/O, VREF
Bank 7,
L118P_Y
I/O, VREF
Bank 7,
L118P_Y
I/O, VREF
Bank 7,
L118P
I/O, VREF
Bank 7,
L118P_Y
I/O, L#N_Y
7
E3
XC2S100E,
200E, 300E,
600E
-
I/O,
L85N_Y
I/O, L111N
I/O,
L118N_Y
I/O,
L118N_Y
I/O, L118N
I/O,
L118N_Y
I/O
7
E1
-
-
-
-
-
I/O
I/O
I/O
I/O
7
F5
-
-
-
I/O
I/O
I/O
I/O
I/O
I/O, L#P_Y
7
F4
XC2S100E,
200E, 300E,
600E
-
I/O,
L117P_Y
I/O,
L117P_Y
I/O, L117P
I/O,
L117P_Y
I/O, L#N_Y
7
F3
XC2S100E,
200E, 300E,
600E
-
I/O,
L84N_Y
I/O, L110N
I/O,
L117N_Y
I/O,
L117N_Y
I/O, L117N
I/O,
L117N_Y
I/O, VREF
Bank 7,
L#P_Y
7
F2
XC2S150E,
200E, 300E,
400E, 600E
All
I/O, VREF
Bank 7,
L83P
I/O, VREF
Bank 7,
L109P_Y
I/O, VREF
Bank 7,
L116P_Y
I/O, VREF
Bank 7,
L116P_Y
I/O, VREF
Bank 7,
L116P_Y
I/O, VREF
Bank 7,
L116P_Y
I/O, L#N_Y
7
F1
XC2S150E,
200E, 300E,
400E, 600E
-
I/O, L83N
I/O,
L109N_Y
I/O,
L116N_Y
I/O,
L116N_Y
I/O,
L116N_Y
I/O,
L116N_Y
I/O
7
G5
-
-
-
I/O
I/O
I/O
I/O
I/O
I/O, L#P_Y
7
G4
XC2S150E,
200E, 300E,
400E
-
-
I/O,
L108P_Y
I/O,
L115P_Y
I/O,
L115P_Y
I/O,
L115P_Y
I/O, L115P
I/O, L#N_Y
7
G3
XC2S150E,
200E, 300E,
400E
-
I/O
I/O,
L108N_Y
I/O,
L115N_Y
I/O,
L115N_Y
I/O,
L115N_Y
I/O, L115N
I/O, L#P_Y
7
G2
XC2S100E,
150E, 300E,
600E
I/O,
L107P_Y
I/O, L114P
I/O,
L114P_Y
I/O, L114P
I/O, VREF
Bank 7,
L114P_Y
I/O, L#N_Y
7
G1
XC2S100E,
150E, 300E,
600E
I/O,
L107N_Y
I/O, L114N
I/O,
L114N_Y
I/O, L114N
I/O,
L114N_Y
DS077-4 (2.3) June 18, 2008
Product Specification
I/O, L84P_Y I/O, L110P
XC2S600E I/O, L82P_Y
-
I/O,
L82N_Y
www.xilinx.com
73
R
Spartan-IIE FPGA Family: Pinout Tables
FG456 Pinouts (XC2S100E, XC2S150E, XC2S200E, XC2S300E, XC2S400E, XC2S600E)
Pad Name
Function Bank
Pin
LVDS
Async.
Output
Option
Device-Specific Pinouts: XC2S
VREF
Option
100E
150E
200E
300E
400E
600E
I/O
7
H5
-
-
-
-
-
I/O
I/O
I/O
I/O, VREF
Bank 7,
L#P_Y
7
H3
XC2S300E,
400E, 600E
All
I/O, VREF
Bank 7,
L81P
I/O, VREF
Bank 7,
L106P
I/O, VREF
Bank 7,
L113P
I/O, VREF
Bank 7,
L113P_Y
I/O, VREF
Bank 7,
L113P_Y
I/O, VREF
Bank 7,
L113P_Y
I/O, L#N_Y
7
H4
XC2S300E,
400E, 600E
-
I/O, L81N
I/O, L106N
I/O, L113N
I/O,
L113N_Y
I/O,
L113N_Y
I/O,
L113N_Y
I/O,
L#P_YY
7
H2
All
-
I/O,
L80P_YY
I/O,
L105P_YY
I/O,
L112P_YY
I/O,
L112P_YY
I/O,
L112P_YY
I/O,
L112P_YY
I/O,
L#N_YY
7
H1
All
-
I/O,
L80N_YY
I/O,
L105N_YY
I/O,
L112N_YY
I/O,
L112N_YY
I/O,
L112N_YY
I/O,
L112N_YY
I/O
7
J6
-
-
-
-
I/O
I/O
I/O
I/O
I/O, L#P_Y
7
J4
XC2S150E,
200E, 300E,
400E
-
-
I/O,
L104P_Y
I/O,
L111P_Y
I/O,
L111P_Y
I/O,
L111P_Y
I/O, L111P
I/O, L#N_Y
7
J5
XC2S100E,
150E, 200E,
300E, 400E
-
I/O, L79P_Y
I/O,
L104N_Y
I/O,
L111N_Y
I/O,
L111N_Y
I/O,
L111N_Y
I/O, L111N
I/O, L#P_Y
7
J3
XC2S100E,
150E, 200E,
300E, 600E
-
I/O,
L79N_Y
I/O,
L103P_Y
I/O,
L110P_Y
I/O,
L110P_Y
I/O, L110P
I/O,
L110P_Y
I/O, L#N_Y
7
J2
XC2S150E,
200E, 300E,
600E
-
-
I/O,
L103N_Y
I/O,
L110N_Y
I/O,
L110N_Y
I/O, L110N
I/O,
L110N_Y
I/O
7
J1
-
-
-
-
I/O
I/O
I/O
I/O
I/O, L#P
7
K5
XC2S100E,
150E, 200E,
300E,
600E(1)
-
I/O,
L78P_YY
I/O,
L102P_YY
I/O,
L109P_YY
I/O,
L109P_YY
I/O, L109P
I/O,
L109P_Y
I/O, L#N
7
K6
XC2S100E,
150E, 200E,
300E,
600E(1)
-
I/O,
L78N_YY
I/O,
L102N_YY
I/O,
L109N_YY
I/O,
L109N_YY
I/O, L109N
I/O,
L109N_Y
I/O, VREF
Bank 7,
L#P_Y
7
K3
XC2S300E,
400E, 600E
All
I/O, VREF
Bank 7,
L77P
I/O, VREF
Bank 7,
L101P
I/O, VREF
Bank 7,
L108P
I/O, VREF
Bank 7,
L108P_Y
I/O, VREF
Bank 7,
L108P_Y
I/O, VREF
Bank 7,
L108P_Y
I/O, L#N_Y
7
K4
XC2S300E,
400E, 600E
-
I/O, L77N
I/O, L101N
I/O, L108N
I/O,
L108N_Y
I/O,
L108N_Y
I/O,
L108N_Y
I/O
7
K2
-
-
-
-
-
I/O
I/O
I/O
I/O, L#P_Y
7
K1
XC2S300E,
400E
-
-
-
I/O, L107P
I/O,
L107P_Y
I/O,
L107P_Y
I/O, L107P
I/O, L#N_Y
7
L1
XC2S100E,
150E, 300E,
400E
-
I/O, L76P_Y
I/O,
L100P_Y
I/O, L107N
I/O,
L107N_Y
I/O,
L107N_Y
I/O, L107N
I/O, L#P_Y
7
L3
XC2S100E,
150E, 200E,
300E, 600E
XC2S400E,
600E
I/O,
L76N_Y
I/O,
L100N_Y
I/O,
L106P_Y
I/O,
L106P_Y
I/O, VREF
Bank 7,
L106P
I/O, VREF
Bank 7,
L106P_Y
I/O, L#N_Y
7
L2
XC2S200E,
300E, 600E
-
-
I/O
I/O,
L106N_Y
I/O,
L106N_Y
I/O, L106N
I/O,
L106N_Y
I/O
7
L4
-
-
-
-
-
I/O
I/O
I/O
74
www.xilinx.com
DS077-4 (2.3) June 18, 2008
Product Specification
R
Spartan-IIE FPGA Family: Pinout Tables
FG456 Pinouts (XC2S100E, XC2S150E, XC2S200E, XC2S300E, XC2S400E, XC2S600E)
Pad Name
Function Bank
Pin
LVDS
Async.
Output
Option
Device-Specific Pinouts: XC2S
VREF
Option
100E
150E
200E
300E
400E
600E
I/O,
L#P_YY
7
L5
All
-
I/O,
L75P_YY
I/O,
L99P_YY
I/O,
L105P_YY
I/O,
L105P_YY
I/O,
L105P_YY
I/O,
L105P_YY
I/O (IRDY),
L#N_YY
7
L6
All
-
I/O (IRDY),
L75N_YY
I/O (IRDY),
L99N_YY
I/O (IRDY),
L105N_YY
I/O (IRDY),
L105N_YY
I/O (IRDY),
L105N_YY
I/O (IRDY),
L105N_YY
I/O (TRDY)
6
M1
-
-
I/O (TRDY)
I/O (TRDY)
I/O (TRDY)
I/O (TRDY)
I/O (TRDY)
I/O (TRDY)
I/O
6
M2
-
-
-
-
-
I/O
I/O
I/O
I/O, L#P_Y
6
M3
XC2S200E,
300E, 600E
-
-
I/O
I/O,
L104P_Y
I/O,
L104P_Y
I/O, L104P
I/O,
L104P_Y
I/O, L#N_Y
6
M4
XC2S100E,
150E, 200E,
300E, 600E
I/O,
L104N_Y
I/O,
L104N_Y
I/O, VREF
Bank 6,
L104N
I/O, VREF
Bank 6,
L104N_Y
I/O, L#P_Y
6
M5
XC2S100E,
150E, 300E,
400E
-
I/O,
L74N_Y
I/O,
L98N_Y
I/O, L103P
I/O,
L103P_Y
I/O,
L103P_Y
I/O, L103P
I/O, L#N_Y
6
M6
XC2S300E,
400E
-
-
-
I/O, L103N
I/O,
L103N_Y
I/O,
L103N_Y
I/O, L103N
I/O
6
N1
-
-
-
-
-
I/O
I/O
I/O
I/O
6
N2
-
-
I/O, L73P
I/O, L97P
I/O
I/O
I/O
I/O
I/O, VREF
Bank 6,
L#P
6
N3
XC2S200E,
400E
All
I/O, VREF
Bank 6,
L73N
I/O, VREF
Bank 6,
L97N
I/O, VREF
Bank 6,
L102P_Y
I/O, VREF
Bank 6,
L102P
I/O, VREF
Bank 6,
L102P_Y
I/O, VREF
Bank 6,
L102P
I/O, L#N
6
N4
XC2S100E,
150E, 200E,
400E
-
I/O,
L102N_Y
I/O, L102N
I/O,
L102N_Y
I/O, L102N
I/O, L#P_Y
6
N5
XC2S100E,
150E, 300E,
600E
-
I/O,
L72N_Y
I/O,
L96N_Y
I/O, L101P
I/O,
L101P_Y
I/O, L101P
I/O,
L101P_Y
I/O, L#N_Y
6
N6
XC2S300E,
600E
-
-
-
I/O, L101N
I/O,
L101N_Y
I/O, L101N
I/O,
L101N_Y
I/O, L#P_Y
6
P1
XC2S150E,
200E, 300E,
600E
-
-
I/O, L95P_Y
I/O,
L100P_Y
I/O,
L100P_Y
I/O, L100P
I/O,
L100P_Y
I/O, L#N_Y
6
P2
XC2S100E,
150E, 200E,
300E, 600E
-
I/O, L71P_Y
I/O,
L95N_Y
I/O,
L100N_Y
I/O,
L100N_Y
I/O, L100N
I/O,
L100N_Y
I/O
6
R1
XC2S100E,
150E
-
I/O,
L71N_Y
I/O, L94P_Y
I/O
I/O
I/O
I/O
I/O, L#P_Y
6
P3
XC2S150E,
200E, 300E,
400E, 600E
-
-
I/O,
L94N_Y
I/O, L#N_Y
6
P4
XC2S200E,
300E, 400E,
600E
-
-
-
I/O,
L99N_Y
I/O,
L99N_Y
I/O,
L99N_Y
I/O,
L99N_Y
I/O,
L#P_YY
6
P5
All
-
I/O,
L70P_YY
I/O,
L93P_YY
I/O,
L98P_YY
I/O,
L98P_YY
I/O,
L98P_YY
I/O,
L98P_YY
I/O,
L#N_YY
6
P6
All
-
I/O,
L70N_YY
I/O,
L93N_YY
I/O,
L98N_YY
I/O,
L98N_YY
I/O,
L98N_YY
I/O,
L98N_YY
DS077-4 (2.3) June 18, 2008
Product Specification
XC2S400E, I/O, L74P_Y I/O, L98P_Y
600E
I/O, L72P_Y I/O, L96P_Y
www.xilinx.com
I/O, L99P_Y I/O, L99P_Y I/O, L99P_Y I/O, L99P_Y
75
R
Spartan-IIE FPGA Family: Pinout Tables
FG456 Pinouts (XC2S100E, XC2S150E, XC2S200E, XC2S300E, XC2S400E, XC2S600E)
Pad Name
Function Bank
Pin
LVDS
Async.
Output
Option
Device-Specific Pinouts: XC2S
VREF
Option
100E
150E
200E
300E
400E
600E
I/O, L#P_Y
6
R2
XC2S300E,
400E, 600E
-
I/O, L69P
I/O, L92P
I/O, L97P
I/O, VREF
Bank 6,
L#N_Y
6
R3
XC2S300E,
400E, 600E
All
I/O, VREF
Bank 6,
L69N
I/O, VREF
Bank 6,
L92N
I/O, VREF
Bank 6,
L97N
I/O, VREF
Bank 6,
L97N_Y
I/O, VREF
Bank 6,
L97N_Y
I/O, VREF
Bank 6,
L97N_Y
I/O
6
R4
-
-
-
-
-
I/O
I/O
I/O
I/O
6
R5
-
-
I/O
I/O
I/O
I/O
I/O
I/O
I/O, L#P
6
T2
XC2S200E,
400E, 600E
XC2S600E
I/O, L68P
I/O, L91P
I/O, L96P_Y
I/O, L96P
I/O, L96P_Y
I/O, VREF
Bank 6,
L96P_Y
I/O, L#N
6
T3
XC2S200E,
400E, 600E
-
I/O, L68N
I/O, L91N
I/O,
L96N_Y
I/O, L96N
I/O,
L96N_Y
I/O,
L96N_Y
I/O, L#P_Y
6
T4
XC2S150E,
300E, 400E
-
-
I/O, L90P_Y
I/O, L95P
I/O, L#N_Y
6
T5
XC2S150E,
300E, 400E
-
-
I/O,
L90N_Y
I/O, L95N
I/O, L#P_Y
6
T1
XC2S150E,
200E, 300E,
400E, 600E
-
I/O, L67P
I/O, VREF
Bank 6,
L#N_Y
6
U1
XC2S150E,
200E, 300E,
400E, 600E
All
I/O, VREF
Bank 6,
L67N
I/O, VREF
Bank 6,
L89N_Y
I/O, VREF
Bank 6,
L94N_Y
I/O, VREF
Bank 6,
L94N_Y
I/O, VREF
Bank 6,
L94N_Y
I/O, VREF
Bank 6,
L94N_Y
I/O
6
U2
XC2S100E
-
I/O, L66P_Y
I/O
I/O
I/O
I/O
I/O
I/O, L#P_Y
6
U3
XC2S100E,
150E, 200E,
300E, 400E,
600E
-
I/O,
L66N_Y
I/O, L#N_Y
6
U4
XC2S150E,
200E, 300E,
400E, 600E
-
-
I/O
6
V1
-
-
-
-
I/O, L#P_Y
6
W1
XC2S100E,
200E, 300E,
600E
-
I/O, L65P_Y
I/O, L87P
I/O, L#N_Y
6
V2
XC2S100E, XC2S200E,
200E, 300E,
300E,
600E
400E, 600E
I/O,
L65N_Y
I/O, L87N
I/O, VREF
Bank 6,
L92N_Y
I/O
6
W2
-
-
I/O
I/O
I/O
I/O, L#P_Y
6
V3
XC2S200E,
300E, 400E
-
-
I/O, L86P
I/O, L#N_Y
6
V4
XC2S200E,
300E, 400E
-
-
I/O, L86N
I/O
6
Y1
-
-
-
-
-
I/O
I/O
I/O
I/O,
L#P_YY
6
Y2
All
-
I/O,
L64P_YY
I/O,
L85P_YY
I/O,
L90P_YY
I/O,
L90P_YY
I/O,
L90P_YY
I/O,
L90P_YY
I/O,
L#N_YY
6
W3
All
-
I/O,
L64N_YY
I/O,
L85N_YY
I/O,
L90N_YY
I/O,
L90N_YY
I/O,
L90N_YY
I/O,
L90N_YY
M1
-
U5
-
-
M1
M1
M1
M1
M1
M1
76
I/O, L97P_Y I/O, L97P_Y I/O, L97P_Y
I/O, L95P_Y I/O, L95P_Y
I/O,
L95N_Y
I/O,
L95N_Y
I/O, L95P
I/O, L95N
I/O, L89P_Y I/O, L94P_Y I/O, L94P_Y I/O, L94P_Y I/O, L94P_Y
I/O, L88P_Y I/O, L93P_Y I/O, L93P_Y I/O, L93P_Y I/O, L93P_Y
I/O,
L88N_Y
www.xilinx.com
I/O,
L93N_Y
I/O,
L93N_Y
-
I/O
I/O,
L93N_Y
I/O
I/O
I/O, L92P
I/O, L92P_Y
I/O, VREF
Bank 6,
L92N_Y
I/O, VREF
Bank 6,
L92N
I/O, VREF
Bank 6,
L92N_Y
I/O
I/O
I/O
I/O, L92P_Y I/O, L92P_Y
I/O, L91P_Y I/O, L91P_Y I/O, L91P_Y
I/O,
L91N_Y
I/O,
L93N_Y
I/O,
L91N_Y
I/O,
L91N_Y
I/O, L91P
I/O, L91N
DS077-4 (2.3) June 18, 2008
Product Specification
R
Spartan-IIE FPGA Family: Pinout Tables
FG456 Pinouts (XC2S100E, XC2S150E, XC2S200E, XC2S300E, XC2S400E, XC2S600E)
Pad Name
Function Bank
Pin
LVDS
Async.
Output
Option
Device-Specific Pinouts: XC2S
VREF
Option
100E
150E
200E
300E
400E
600E
M0
-
AA1
-
-
M0
M0
M0
M0
M0
M0
M2
-
AB2
-
-
M2
M2
M2
M2
M2
M2
I/O, L#N_Y
5
AA3
XC2S150E,
200E, 300E,
400E, 600E
-
-
I/O,
L84N_Y
I/O,
L89N_Y
I/O,
L89N_Y
I/O,
L89N_Y
I/O,
L89N_Y
I/O, L#P_Y
5
AB3
XC2S150E,
200E, 300E,
400E, 600E
-
-
I/O
5
AB4
-
-
-
-
-
I/O
I/O
I/O
I/O
5
AA5
XC2S100E,
150E
-
I/O,
L63N_Y
I/O,
L83N_Y
I/O
I/O
I/O
I/O
I/O, L#N_Y
5
W5
XC2S100E,
150E, 200E,
300E, 400E,
600E
-
I/O,
L88N_Y
I/O,
L88N_Y
I/O,
L88N_Y
I/O,
L88N_Y
I/O, L#P_Y
5
Y5
XC2S200E,
300E, 400E,
600E
-
I/O, L#N_Y
5
AB5
XC2S100E, XC2S200E,
200E, 300E,
300E,
400E, 600E 400E, 600E
I/O, L#P_Y
5
AB6
XC2S100E,
200E, 300E,
400E, 600E
I/O
5
Y6
I/O
5
I/O,
L#N_YY
5
I/O,
L#P_YY
I/O, L84P_Y I/O, L89P_Y I/O, L89P_Y I/O, L89P_Y I/O, L89P_Y
I/O, L63P_Y I/O, L83P_Y
I/O
I/O
I/O,
L62N_Y
I/O, L82N
-
I/O, L62P_Y
I/O, L82P
-
-
-
-
AA6
-
-
-
I/O
I/O
I/O
I/O
I/O
V6
All
-
I/O,
L61N_YY
I/O,
L81N_YY
I/O,
L86N_YY
I/O,
L86N_YY
I/O,
L86N_YY
I/O,
L86N_YY
5
W6
All
-
I/O,
L61P_YY
I/O,
L81P_YY
I/O,
L86P_YY
I/O,
L86P_YY
I/O,
L86P_YY
I/O,
L86P_YY
I/O, VREF
Bank 5,
L#N_YY
5
AB7
All
All
I/O, VREF
Bank 5,
L60N_YY
I/O, VREF
Bank 5,
L80N_YY
I/O, VREF
Bank 5,
L85N_YY
I/O, VREF
Bank 5,
L85N_YY
I/O, VREF
Bank 5,
L85N_YY
I/O, VREF
Bank 5,
L85N_YY
I/O,
L#P_YY
5
AA7
All
-
I/O,
L60P_YY
I/O,
L80P_YY
I/O,
L85P_YY
I/O,
L85P_YY
I/O,
L85P_YY
I/O,
L85P_YY
I/O
5
Y7
-
-
-
I/O
I/O
I/O
I/O
I/O
I/O, L#N_Y
5
V7
XC2S300E,
600E
-
-
I/O, L79N
I/O, L84N
I/O,
L84N_Y
I/O, L84N
I/O,
L84N_Y
I/O, L#P_Y
5
W7
XC2S300E,
600E
-
I/O
I/O, L79P
I/O, L84P
I/O, L84P_Y
I/O, L84P
I/O, L84P_Y
I/O, L#N_Y
5
AB8
XC2S100E,
300E, 600E
XC2S600E
I/O,
L59N_Y
I/O, L78N
I/O, L83N
I/O,
L83N_Y
I/O, L83N
I/O, VREF
Bank 5,
L83N_Y
I/O, L#P_Y
5
AA8
XC2S100E,
300E, 600E
-
I/O, L59P_Y
I/O, L78P
I/O, L83P
I/O, L83P_Y
I/O, L83P
I/O, L83P_Y
I/O
5
Y8
-
-
-
-
-
I/O
I/O
I/O
DS077-4 (2.3) June 18, 2008
Product Specification
www.xilinx.com
I/O, L88P_Y I/O, L88P_Y I/O, L88P_Y I/O, L88P_Y
I/O, VREF
Bank 5,
L87N_Y
I/O, VREF
Bank 5,
L87N_Y
I/O, VREF
Bank 5,
L87N_Y
I/O, VREF
Bank 5,
L87N_Y
I/O, L87P_Y I/O, L87P_Y I/O, L87P_Y I/O, L87P_Y
-
I/O
I/O
I/O
77
R
Spartan-IIE FPGA Family: Pinout Tables
FG456 Pinouts (XC2S100E, XC2S150E, XC2S200E, XC2S300E, XC2S400E, XC2S600E)
Pad Name
Function Bank
Pin
LVDS
Async.
Output
Option
Device-Specific Pinouts: XC2S
VREF
Option
100E
150E
200E
300E
400E
600E
I/O, VREF
Bank 5,
L82N_Y
I/O, VREF
Bank 5,
L82N_Y
I/O, VREF
Bank 5,
L82N_Y
I/O, VREF
Bank 5,
L82N_Y
I/O, VREF
Bank 5,
L#N_Y
5
V8
XC2S100E,
200E, 300E,
400E, 600E
All
I/O, VREF
Bank 5,
L58N_Y
I/O, VREF
Bank 5,
L77N
I/O, L#P_Y
5
W8
XC2S100E,
200E, 300E,
400E, 600E
-
I/O, L58P_Y
I/O, L77P
I/O, L#N_Y
5
AB9
XC2S100E,
200E, 300E,
400E, 600E
-
I/O,
L57N_Y
I/O, L76N
I/O, L#P_Y
5
AA9
XC2S100E,
200E, 300E,
400E, 600E
-
I/O, L57P_Y
I/O, L76P
I/O
5
AB10
-
-
-
-
I/O
I/O
I/O
I/O
I/O, L#N_Y
5
W9
XC2S150E,
300E, 400E,
600E
-
-
I/O,
L75N_Y
I/O, L80N
I/O,
L80N_Y
I/O,
L80N_Y
I/O,
L80N_Y
I/O, L#P_Y
5
Y9
XC2S100E,
150E, 300E,
400E, 600E
-
I/O,
L56N_Y
I/O, L75P_Y
I/O, L80P
I/O, L#N_Y
5
V9
XC2S100E,
150E, 300E,
400E, 600E
-
I/O, L56P_Y
I/O,
L74N_Y
I/O, L79N
I/O, L#P_Y
5
U9
XC2S150E,
300E, 400E,
600E
-
-
I/O, L74P_Y
I/O, L79P
I/O
5
AA10
-
-
-
-
I/O
I/O
I/O
I/O
I/O, L#N_Y
5
W10
XC2S200E,
300E, 400E,
600E
-
I/O, L55N
I/O, L73N
I/O,
L78N_Y
I/O,
L78N_Y
I/O,
L78N_Y
I/O,
L78N_Y
I/O, L#P_Y
5
Y10
XC2S200E,
300E, 400E,
600E
-
I/O, L55P
I/O, L73P
I/O, VREF
Bank 5,
L#N_Y
5
V10
XC2S200E,
300E, 400E,
600E
All
I/O, VREF
Bank 5,
L54N
I/O, VREF
Bank 5,
L72N
I/O, L#P_Y
5
U10
XC2S200E,
300E, 400E,
600E
-
I/O, L54P
I/O, L72P
I/O
5
U11
-
-
-
-
-
I/O
I/O
I/O
I/O
5
V11
-
-
-
-
I/O
I/O
I/O
I/O
I/O, L#N
5
W11
XC2S200E,
400E
-
I/O
I/O, L71N
I/O,
L76N_Y
I/O, L76N
I/O,
L76N_Y
I/O, L76N
I/O, L#P
5
Y11
XC2S200E,
400E
XC2S400E,
600E
-
I/O, L71P
I/O, L76P_Y
I/O, L76P
I/O, VREF
Bank 5,
L76P_Y
I/O, VREF
Bank 5,
L76P
I/O
5
AA11
-
-
-
-
-
I/O
I/O
I/O
I/O (DLL),
L#N
5
AB11
-
-
I/O (DLL),
L53N
I/O (DLL),
L70N
I/O (DLL),
L75N
I/O (DLL),
L75N
I/O (DLL),
L75N
I/O (DLL),
L75N
GCK1, I
5
AB12
-
-
GCK1, I
GCK1, I
GCK1, I
GCK1, I
GCK1, I
GCK1, I
78
www.xilinx.com
I/O, L82P_Y I/O, L82P_Y I/O, L82P_Y I/O, L82P_Y
I/O,
L81N_Y
I/O,
L81N_Y
I/O,
L81N_Y
I/O,
L81N_Y
I/O, L81P_Y I/O, L81P_Y I/O, L81P_Y I/O, L81P_Y
I/O, L80P_Y I/O, L80P_Y I/O, L80P_Y
I/O,
L79N_Y
I/O,
L79N_Y
I/O,
L79N_Y
I/O, L79P_Y I/O, L79P_Y I/O, L79P_Y
I/O, L78P_Y I/O, L78P_Y I/O, L78P_Y I/O, L78P_Y
I/O, VREF
Bank 5,
L77N_Y
I/O, VREF
Bank 5,
L77N_Y
I/O, VREF
Bank 5,
L77N_Y
I/O, VREF
Bank 5,
L77N_Y
I/O, L77P_Y I/O, L77P_Y I/O, L77P_Y I/O, L77P_Y
DS077-4 (2.3) June 18, 2008
Product Specification
R
Spartan-IIE FPGA Family: Pinout Tables
FG456 Pinouts (XC2S100E, XC2S150E, XC2S200E, XC2S300E, XC2S400E, XC2S600E)
Pad Name
Function Bank
Pin
LVDS
Async.
Output
Option
Device-Specific Pinouts: XC2S
VREF
Option
100E
150E
200E
300E
400E
600E
GCK0, I
4
AA12
-
-
GCK0, I
GCK0, I
GCK0, I
GCK0, I
GCK0, I
GCK0, I
I/O (DLL),
L#P
4
Y12
-
-
I/O (DLL),
L53P
I/O (DLL),
L70P
I/O (DLL),
L75P
I/O (DLL),
L75P
I/O (DLL),
L75P
I/O (DLL),
L75P
I/O
4
W12
-
-
-
-
-
I/O
I/O
I/O
I/O, L#N
4
V12
XC2S150E,
300E, 600E
-
-
I/O,
L69N_Y
I/O, L74N
I/O,
L74N_Y
I/O, L74N
I/O,
L74N_Y
I/O, L#P
4
U12
XC2S150E,
300E, 600E
XC2S400E,
600E
I/O, L52N
I/O, L69P_Y
I/O, L74P
I/O, L74P_Y
I/O, VREF
Bank 4,
L74P
I/O, VREF
Bank 4,
L74P_Y
I/O, L#N
4
AB13 XC2S300E,
600E
-
I/O, L52P
I/O
I/O, L73N
I/O,
L73N_Y
I/O, L73N
I/O,
L73N_Y
I/O, L#P
4
AA13 XC2S300E,
600E
-
-
-
I/O, L73P
I/O, L73P_Y
I/O, L73P
I/O, L73P_Y
I/O
4
Y13
-
-
-
-
-
I/O
I/O
I/O
I/O, L#N
4
W13
XC2S200E,
300E, 400E,
600E
-
I/O, L51N
I/O, L68N
I/O,
L72N_Y
I/O,
L72N_Y
I/O,
L72N_Y
I/O,
L72N_Y
I/O, VREF
Bank 4,
L#P
4
V13
XC2S200E,
300E, 400E,
600E
All
I/O, VREF
Bank 4,
L51P
I/O, VREF
Bank 4,
L68P
I/O, VREF
Bank 4,
L72P_Y
I/O, VREF
Bank 4,
L72P_Y
I/O, VREF
Bank 4,
L72P_Y
I/O, VREF
Bank 4,
L72P_Y
I/O
4
U13
-
-
I/O, L50N
I/O, L67N
I/O
I/O
I/O
I/O
I/O, L#N
4
AB14
-
-
I/O, L50P
I/O, L67P
I/O, L71N
I/O, L71N
I/O, L71N
I/O, L71N
I/O, L#P
4
AA14
-
-
-
-
I/O, L71P
I/O, L71P
I/O, L71P
I/O, L71P
I/O
4
AB15
-
-
-
-
I/O
I/O
I/O
I/O
I/O, L#N
4
Y14
XC2S100E,
150E, 200E
-
I/O,
L49N_Y
I/O,
L66N_Y
I/O,
L70N_Y
I/O, L70N
I/O, L70N
I/O, L70N
I/O, L#P
4
W14
XC2S100E,
150E, 200E
-
I/O, L70P
I/O, L70P
I/O, L70P
I/O, L#N
4
U14
XC2S150E,
200E
-
-
I/O, L69N
I/O, L69N
I/O, L69N
I/O, L#P
4
V14
XC2S150E,
200E
-
-
I/O, L69P
I/O, L69P
I/O, L69P
I/O, L#N
4
AA15 XC2S100E,
200E, 300E,
400E, 600E
-
I/O,
L48N_Y
I/O, L64N
I/O,
L68N_Y
I/O,
L68N_Y
I/O,
L68N_Y
I/O, L#P
4
Y15
XC2S100E,
200E, 300E,
400E, 600E
-
I/O, L48P_Y
I/O, L64P
I/O, L#N
4
W15
XC2S100E,
200E, 300E,
400E, 600E
-
I/O,
L47N_Y
I/O, L63N
I/O,
L67N_Y
I/O,
L67N_Y
I/O,
L67N_Y
I/O,
L67N_Y
I/O, VREF
Bank 4,
L#P
4
V15
XC2S100E,
200E, 300E,
400E, 600E
All
I/O, VREF
Bank 4,
L47P_Y
I/O, VREF
Bank 4,
L63P
I/O, VREF
Bank 4,
L67P_Y
I/O, VREF
Bank 4,
L67P_Y
I/O, VREF
Bank 4,
L67P_Y
I/O, VREF
Bank 4,
L67P_Y
I/O
4
AB16
-
-
-
-
-
I/O
I/O
I/O
I/O
4
AB17
-
-
I/O
I/O
I/O
I/O
I/O
I/O
DS077-4 (2.3) June 18, 2008
Product Specification
I/O, L49P_Y I/O, L66P_Y I/O, L70P_Y
I/O,
L65N_Y
I/O,
L69N_Y
I/O, L65P_Y I/O, L69P_Y
www.xilinx.com
I/O,
L68N_Y
I/O, L68P_Y I/O, L68P_Y I/O, L68P_Y I/O, L68P_Y
79
R
Spartan-IIE FPGA Family: Pinout Tables
FG456 Pinouts (XC2S100E, XC2S150E, XC2S200E, XC2S300E, XC2S400E, XC2S600E)
Pad Name
Function Bank
Pin
LVDS
Async.
Output
Option
AA16 XC2S150E,
200E, 400E
Device-Specific Pinouts: XC2S
VREF
Option
100E
150E
200E
300E
400E
600E
XC2S600E
I/O, L46N
I/O,
L62N_Y
I/O,
L66N_Y
I/O, L66N
I/O,
L66N_Y
I/O, VREF
Bank 4,
L66N
I/O, L66P
I/O, L66P_Y
I/O, L66P
I/O, L65N
I/O, L65N
I/O, L65N
I/O, L65P
I/O, L65P
I/O, L65P
I/O, L#N
4
I/O, L#P
4
Y16
XC2S150E,
200E, 400E
-
I/O, L46P
I/O, L#N
4
W16
XC2S150E,
200E
-
-
I/O, L#P
4
V16
XC2S150E,
200E
-
-
I/O,
L#N_YY
4
AA17
All
-
I/O,
L45N_YY
I/O,
L60N_YY
I/O,
L64N_YY
I/O,
L64N_YY
I/O,
L64N_YY
I/O,
L64N_YY
I/O, VREF
Bank 4,
L#P_YY
4
Y17
All
All
I/O, VREF
Bank 4,
L45P_YY
I/O, VREF
Bank 4,
L60P_YY
I/O, VREF
Bank 4,
L64P_YY
I/O, VREF
Bank 4,
L64P_YY
I/O, VREF
Bank 4,
L64P_YY
I/O, VREF
Bank 4,
L64P_YY
I/O
4
AB18
XC2S100E
-
I/O,
L44N_Y
I/O
I/O
I/O
I/O
I/O
I/O, L#N
4
W17
XC2S100E,
400E, 600E
-
I/O, L44P_Y
I/O, L59N
I/O, L63N
I/O, L63N
I/O,
L63N_Y
I/O,
L63N_Y
I/O, L#P
4
V17
XC2S400E,
600E
-
-
I/O, L59P
I/O, L63P
I/O, L63P
I/O
4
AA18
-
-
-
-
-
I/O
I/O
I/O
I/O, L#N
4
Y18
XC2S100E,
200E, 300E,
400E, 600E
-
I/O,
L43N_Y
I/O, L58N
I/O,
L62N_Y
I/O,
L62N_Y
I/O,
L62N_Y
I/O,
L62N_Y
I/O, L#P
4
W18
XC2S100E, XC2S200E, I/O, L43P_Y
200E, 300E,
300E,
400E, 600E 400E, 600E
I/O, L58P
I/O, VREF
Bank 4,
L62P_Y
I/O, VREF
Bank 4,
L62P_Y
I/O, VREF
Bank 4,
L62P_Y
I/O, VREF
Bank 4,
L62P_Y
I/O
4
AB19
I/O, L#N
4
AA19 XC2S150E,
400E
I/O, L#P
4
Y19
I/O
4
I/O,
L#N_YY
-
I/O, L62P_Y I/O, L66P_Y
I/O,
L61N_Y
I/O,
L65N_Y
I/O, L61P_Y I/O, L65P_Y
I/O, L63P_Y I/O, L63P_Y
-
I/O
I/O
I/O
I/O
I/O
I/O
-
-
I/O,
L57N_Y
I/O, L61N
I/O, L61N
I/O,
L61N_Y
I/O, L61N
XC2S150E,
400E
-
-
I/O, L57P_Y
I/O, L61P
I/O, L61P
I/O, L61P_Y
I/O, L61P
AB21
-
-
-
-
-
I/O
I/O
I/O
4
AB20
All
-
I/O,
L42N_YY
I/O,
L56N_YY
I/O,
L60N_YY
I/O,
L60N_YY
I/O,
L60N_YY
I/O,
L60N_YY
I/O,
L#P_YY
4
AA20
All
-
I/O,
L42P_YY
I/O,
L56P_YY
I/O,
L60P_YY
I/O,
L60P_YY
I/O,
L60P_YY
I/O,
L60P_YY
DONE
DONE
DONE
DONE
DONE
DONE
DONE
3
W20
-
-
PROGRAM
-
Y21
-
-
I/O (INIT),
L#N_YY
3
W21
All
-
I/O (INIT),
L41N_YY
I/O (INIT),
L55N_YY
I/O (INIT),
L59N_YY
I/O (INIT),
L59N_YY
I/O (INIT),
L59N_YY
I/O (INIT),
L59N_YY
I/O (D7),
L#P_YY
3
Y22
All
-
I/O (D7),
L41P_YY
I/O (D7),
L55P_YY
I/O (D7),
L59P_YY
I/O (D7),
L59P_YY
I/O (D7),
L59P_YY
I/O (D7),
L59P_YY
I/O
3
W22
-
-
-
-
-
I/O
I/O
I/O
I/O
3
V21
-
-
-
I/O
I/O
I/O
I/O
I/O
80
PROGRAM PROGRAM PROGRAM PROGRAM PROGRAM PROGRAM
www.xilinx.com
DS077-4 (2.3) June 18, 2008
Product Specification
R
Spartan-IIE FPGA Family: Pinout Tables
FG456 Pinouts (XC2S100E, XC2S150E, XC2S200E, XC2S300E, XC2S400E, XC2S600E)
Pad Name
Function Bank
LVDS
Async.
Output
Option
Pin
Device-Specific Pinouts: XC2S
VREF
Option
100E
150E
200E
300E
400E
600E
I/O,
L54N_Y
I/O,
L58N_Y
I/O,
L58N_Y
I/O,
L58N_Y
I/O, L58N
I/O, L#N
3
V19
XC2S150E,
200E, 300E,
400E
-
-
I/O, L#P
3
V20
XC2S150E,
200E, 300E,
400E
-
I/O
I/O, L#N
3
V22
XC2S100E, XC2S200E,
200E, 300E,
300E,
600E
400E, 600E
I/O, L#P
3
U22
XC2S100E,
200E, 300E,
600E
I/O
3
U21
I/O
3
I/O, L#N
3
I/O, L#P
I/O, L54P_Y I/O, L58P_Y I/O, L58P_Y I/O, L58P_Y
I/O,
L40N_Y
I/O, L53N
-
I/O, L40P_Y
I/O, L53P
-
-
-
-
U20
-
-
-
I/O
I/O
I/O
I/O
I/O
U18
XC2S100E,
200E, 300E,
600E
-
I/O,
L39N_Y
I/O, L52N
I/O,
L56N_Y
I/O,
L56N_Y
I/O, L56N
I/O,
L56N_Y
3
U19
XC2S100E,
200E, 300E,
600E
-
I/O, L39P_Y
I/O, L52P
I/O, L56P
I/O, L56P_Y
I/O, VREF
Bank 3,
L#N
3
T21
XC2S150E,
200E, 300E,
400E, 600E
All
I/O, VREF
Bank 3,
L38N
I/O, VREF
Bank 3,
L51N_Y
I/O, VREF
Bank 3,
L55N_Y
I/O, VREF
Bank 3,
L55N_Y
I/O, L#P
3
T22
XC2S150E,
200E, 300E,
400E, 600E
-
I/O, L38P
I/O
3
T20
-
-
-
I/O
I/O
I/O
I/O
I/O
I/O, L#N
3
T18
XC2S150E,
200E, 300E,
400E
-
-
I/O,
L50N_Y
I/O,
L54N_Y
I/O,
L54N_Y
I/O,
L54N_Y
I/O, L54N
I/O, L#P
3
T19
XC2S150E,
200E, 300E,
400E
-
I/O
I/O, L#N
3
R21
XC2S100E,
150E, 300E,
600E
XC2S600E
I/O,
L37N_Y
I/O, L#P
3
R22
XC2S100E,
150E, 300E,
600E
-
I/O
3
R20
-
-
-
I/O, VREF
Bank 3,
L#N
3
R18
XC2S300E,
400E, 600E
All
I/O (D6),
L#P
3
R19
XC2S300E,
400E, 600E
I/O (D5),
L#N_YY
3
P22
I/O,
L#P_YY
3
P21
DS077-4 (2.3) June 18, 2008
Product Specification
I/O, VREF
Bank 3,
L57N_Y
I/O, VREF
Bank 3,
L57N_Y
I/O, L58P
I/O, L57P_Y I/O, L57P_Y
-
I/O
I/O, L56P_Y I/O, L56P_Y
I/O, VREF
Bank 3,
L55N_Y
I/O, VREF
Bank 3,
L55N_Y
I/O, VREF
Bank 3,
L57N
I/O, VREF
Bank 3,
L57N_Y
I/O, L57P
I/O, L57P_Y
I/O
I/O
I/O, L51P_Y I/O, L55P_Y I/O, L55P_Y I/O, L55P_Y I/O, L55P_Y
I/O, L50P_Y I/O, L54P_Y I/O, L54P_Y I/O, L54P_Y
I/O,
L49N_Y
I/O, L54P
I/O, L53N
I/O,
L53N_Y
I/O, L53N
I/O, VREF
Bank 3,
L53N_Y
I/O, L53P
I/O, L53P_Y
I/O, L53P
I/O, L53P_Y
-
-
I/O
I/O
I/O
I/O, VREF
Bank 3,
L36N
I/O, VREF
Bank 3,
L48N
I/O, VREF
Bank 3,
L52N
I/O, VREF
Bank 3,
L52N_Y
I/O, VREF
Bank 3,
L52N_Y
I/O, VREF
Bank 3,
L52N_Y
-
I/O (D6),
L36P
I/O (D6),
L48P
I/O (D6),
L52P
I/O (D6),
L52P_Y
I/O (D6),
L52P_Y
I/O (D6),
L52P_Y
All
-
I/O (D5),
L35N_YY
I/O (D5),
L47N_YY
I/O (D5),
L51N_YY
I/O (D5),
L51N_YY
I/O (D5)
L51N_YY
I/O (D5),
L51N_YY
All
-
I/O,
L35P_YY
I/O,
L47P_YY
I/O,
L51P_YY
I/O,
L51P_YY
I/O,
L51P_YY
I/O,
L51P_YY
I/O, L37P_Y I/O, L49P_Y
www.xilinx.com
81
R
Spartan-IIE FPGA Family: Pinout Tables
FG456 Pinouts (XC2S100E, XC2S150E, XC2S200E, XC2S300E, XC2S400E, XC2S600E)
Pad Name
Function Bank
Pin
LVDS
Async.
Output
Option
Device-Specific Pinouts: XC2S
VREF
Option
100E
150E
200E
300E
400E
600E
I/O
3
P20
-
-
-
-
I/O
I/O
I/O
I/O
I/O, L#N
3
P18
XC2S150E,
200E, 300E,
400E
-
-
I/O,
L46N_Y
I/O,
L50N_Y
I/O,
L50N_Y
I/O,
L50N_Y
I/O, L50N
I/O, L#P
3
P19
XC2S100E,
150E, 200E,
300E, 400E
-
I/O,
L34N_Y
I/O, L#N
3
N22
XC2S100E,
150E, 200E,
300E, 600E
-
I/O, L34P_Y
I/O, L#P
3
N21
XC2S150E,
200E, 300E,
600E
-
-
I/O
3
P17
-
-
-
-
I/O
I/O
I/O
I/O
I/O, L#N
3
N19
XC2S100E,
150E, 200E,
300E,
600E(1)
-
I/O,
L33N_YY
I/O,
L44N_YY
I/O,
L48N_YY
I/O,
L48N_YY
I/O, L48N
I/O,
L48N_Y
I/O, L#P
3
N20
XC2S100E,
150E, 200E,
300E,
600E(1)
-
I/O,
L33P_YY
I/O,
L44P_YY
I/O,
L48P_YY
I/O,
L48P_YY
I/O, L48P
I/O, L48P_Y
I/O, VREF
Bank 3,
L#N
3
N18
XC2S300E,
400E, 600E
All
I/O, VREF
Bank 3,
L32N
I/O, VREF
Bank 3,
L43N
I/O, VREF
Bank 3,
L47N
I/O, VREF
Bank 3,
L47N_Y
I/O, VREF
Bank 3,
L47N_Y
I/O, VREF
Bank 3,
L47N_Y
I/O (D4),
L#P
3
N17
XC2S300E,
400E, 600E
-
I/O (D4),
L32P
I/O (D4),
L43P
I/O (D4),
L47P
I/O (D4),
L47P_Y
I/O (D4),
L47P_Y
I/O (D4),
L47P_Y
I/O
3
M22
-
-
-
-
-
I/O
I/O
I/O
I/O, L#N
3
M20
XC2S300E,
400E
-
-
-
I/O, L46N
I/O,
L46N_Y
I/O,
L46N_Y
I/O, L46N
I/O, L#P
3
M21
XC2S100E,
150E, 300E,
400E
-
I/O,
L31N_Y
I/O,
L42N_Y
I/O, L46P
I/O, L#N
3
M18
XC2S100E,
150E, 200E,
300E, 600E
I/O, L#P
3
M19
XC2S200E,
300E, 600E
-
-
I/O
I/O
3
M17
-
-
-
-
-
I/O (TRDY)
3
L22
-
-
I/O (TRDY)
I/O (TRDY)
I/O (IRDY),
L#N_YY
2
L21
All
-
I/O (IRDY),
L30N_YY
I/O,
L#P_YY
2
L20
All
-
I/O
2
L19
-
I/O, L#N
2
L18
XC2S200E,
300E, 600E
82
I/O, L46P_Y I/O, L50P_Y I/O, L50P_Y I/O, L50P_Y
I/O,
L45N_Y
I/O,
L49N_Y
I/O,
L49N_Y
I/O, L45P_Y I/O, L49P_Y I/O, L49P_Y
XC2S400E, I/O, L31P_Y I/O, L42P_Y
600E
I/O, L49N
I/O,
L49N_Y
I/O, L49P
I/O, L49P_Y
I/O, L46P_Y I/O, L46P_Y
I/O,
L45N_Y
I/O, L46P
I/O, VREF
Bank 3,
L45N
I/O, VREF
Bank 3,
L45N_Y
I/O, L45P
I/O, L45P_Y
I/O
I/O
I/O
I/O (TRDY)
I/O (TRDY)
I/O (TRDY)
I/O (TRDY)
I/O (IRDY),
L41N_YY
I/O (IRDY),
L44N_YY
I/O (IRDY),
L44N_YY
I/O (IRDY),
L44N_YY
I/O (IRDY),
L44N_YY
I/O,
L30P_YY
I/O,
L41P_YY
I/O,
L44P_YY
I/O,
L44P_YY
I/O,
L44P_YY
I/O,
L44P_YY
-
-
-
-
I/O
I/O
I/O
-
-
I/O
I/O,
L43N_Y
I/O,
L43N_Y
I/O, L43N
I/O,
L43N_Y
www.xilinx.com
I/O,
L45N_Y
I/O, L50P
I/O, L45P_Y I/O, L45P_Y
DS077-4 (2.3) June 18, 2008
Product Specification
R
Spartan-IIE FPGA Family: Pinout Tables
FG456 Pinouts (XC2S100E, XC2S150E, XC2S200E, XC2S300E, XC2S400E, XC2S600E)
Pad Name
Function Bank
LVDS
Async.
Output
Option
Pin
Device-Specific Pinouts: XC2S
VREF
Option
100E
150E
I/O,
L29N_Y
I/O,
L40N_Y
200E
300E
600E
I/O, VREF
Bank 2,
L43P
I/O, VREF
Bank 2,
L43P_Y
I/O,
L42N_Y
I/O, L42N
I/O, L#P
2
L17
XC2S100E,
150E, 200E,
300E, 600E
XC2S400E,
600E
I/O, L#N
2
K22
XC2S100E,
150E, 300E,
400E
-
I/O, L#P
2
K21
XC2S300E,
400E
-
-
-
I/O, L42P
I/O
2
K20
-
-
-
-
-
I/O
I/O
I/O
I/O (D3)
2
K19
-
-
I/O (D3)
I/O (D3),
L39N
I/O (D3)
I/O (D3)
I/O (D3)
I/O (D3)
I/O, VREF
Bank 2,
L#N
2
K18
XC2S100E,
200E, 400E
All
I/O, VREF
Bank 2,
L28N_Y
I/O, VREF
Bank 2,
L39P
I/O, VREF
Bank 2,
L41N_Y
I/O, VREF
Bank 2,
L41N
I/O, VREF
Bank 2,
L41N_Y
I/O, VREF
Bank 2,
L41N
I/O, L#P
2
K17
XC2S100,
150E, 200E,
400E
-
I/O, L28P_Y
I/O,
L38N_Y
I/O, L41P_Y
I/O, L41P
I/O, L41P_Y
I/O, L41P
I/O, L#N
2
J22
XC2S150E,
300E, 600E
-
I/O
I/O, L38P_Y
I/O, L40N
I/O,
L40N_Y
I/O, L40N
I/O,
L40N_Y
I/O, L#P
2
J21
XC2S300E,
600E
-
-
-
I/O, L40P
I/O, L40P_Y
I/O, L40P
I/O, L40P_Y
I/O, L#N
2
J20
XC2S150E,
200E, 300E,
600E
-
-
I/O,
L37N_Y
I/O,
L39N_Y
I/O,
L39N_Y
I/O, L39N
I/O,
L39N_Y
I/O, L#P
2
J19
XC2S100E,
150E, 200E,
300E, 600E
-
I/O,
L27N_Y
I/O, L39P
I/O, L39P_Y
I/O
2
H22
XC2S100E,
150E
-
I/O, L27P_Y
I/O,
L36N_Y
I/O
I/O
I/O
I/O
I/O, L#N
2
J18
XC2S150E,
200E, 300E,
400E, 600E
-
-
I/O, L36P_Y
I/O,
L38N_Y
I/O,
L38N_Y
I/O,
L38N_Y
I/O,
L38N_Y
I/O, L#P
2
J17
XC2S200E,
300E, 400E,
600E
-
-
-
I/O, L#N
2
H21
XC2S150E,
200E, 300E,
400E, 600E
-
I/O
I/O,
L35N_Y
I/O,
L37N_Y
I/O,
L37N_Y
I/O,
L37N_Y
I/O,
L37N_Y
I/O (D2),
L#P
2
H20
XC2S150E,
200E, 300E,
400E, 600E
-
I/O (D2)
I/O (D2),
L35P_Y
I/O (D2),
L37P_Y
I/O (D2),
L37P_Y
I/O (D2),
L37P_Y
I/O (D2),
L37P_Y
I/O (D1),
L#N
2
H19
XC2S300E,
400E, 600E
-
I/O (D1),
L26N
I/O (D1),
L34N
I/O (D1),
L36N
I/O (D1),
L36N_Y
I/O (D1),
L36N_Y
I/O (D1),
L36N_Y
I/O, VREF
Bank 2,
L#P
2
H18
XC2S300E,
400E, 600E
All
I/O, VREF
Bank 2,
L26P
I/O, VREF
Bank 2,
L34P
I/O, VREF
Bank 2,
L36P
I/O, VREF
Bank 2,
L36P_Y
I/O, VREF
Bank 2,
L36P_Y
I/O, VREF
Bank 2,
L36P_Y
I/O
2
G22
-
-
-
-
-
I/O
I/O
I/O
I/O
2
F22
-
-
I/O
I/O
I/O
I/O
I/O
I/O
DS077-4 (2.3) June 18, 2008
Product Specification
I/O, L29P_Y I/O, L40P_Y
I/O, L43P_Y I/O, L43P_Y
400E
I/O, L42N
I/O,
L42N_Y
I/O, L42P_Y I/O, L42P_Y
I/O, L37P_Y I/O, L39P_Y I/O, L39P_Y
www.xilinx.com
I/O, L42P
I/O, L38P_Y I/O, L38P_Y I/O, L38P_Y I/O, L38P_Y
83
R
Spartan-IIE FPGA Family: Pinout Tables
FG456 Pinouts (XC2S100E, XC2S150E, XC2S200E, XC2S300E, XC2S400E, XC2S600E)
Pad Name
Function Bank
Pin
LVDS
Async.
Output
Option
Device-Specific Pinouts: XC2S
VREF
Option
100E
150E
200E
300E
400E
600E
I/O,
L35N_Y
I/O, VREF
Bank 2,
L35N_Y
I/O, L#N
2
G21
XC2S200E,
400E, 600E
XC2S600E
I/O, L25N
I/O, L33N
I/O,
L35N_Y
I/O, L35N
I/O, L#P
2
G20
XC2S200E,
400E, 600E
-
I/O, L25P
I/O, L33P
I/O, L35P_Y
I/O, L35P
I/O, L#N
2
G19
XC2S150E,
300E
-
-
I/O,
L32N_Y
I/O, L34N
I/O,
L34N_Y
I/O, L34N
I/O, L34N
I/O, L#P
2
G18
XC2S150E,
300E
-
-
I/O, L32P_Y
I/O, L34P
I/O, L34P_Y
I/O, L34P
I/O, L34P
I/O, L#N
2
E22
XC2S150E,
200E, 300E,
400E, 600E
-
I/O, L24N
I/O,
L31N_Y
I/O,
L33N_Y
I/O,
L33N_Y
I/O,
L33N_Y
I/O,
L33N_Y
I/O, VREF
Bank 2,
L#P
2
F21
XC2S150E,
200E, 300E,
400E, 600E
All
I/O, VREF
Bank 2,
L24P
I/O, VREF
Bank 2,
L31P_Y
I/O, VREF
Bank 2,
L33P_Y
I/O, VREF
Bank 2,
L33P_Y
I/O, VREF
Bank 2,
L33P_Y
I/O, VREF
Bank 2,
L33P_Y
I/O
2
E21
XC2S100E
-
I/O,
L23N_Y
I/O
I/O
I/O
I/O
I/O
I/O, L#N
2
F20
XC2S100E,
150E, 200E,
300E, 400E,
600E
-
I/O, L23P_Y
I/O,
L30N_Y
I/O,
L32N_Y
I/O,
L32N_Y
I/O,
L32N_Y
I/O,
L32N_Y
I/O, L#P
2
F19
XC2S150E,
200E, 300E,
400E, 600E
-
-
I/O
2
F18
-
-
-
-
-
I/O
I/O
I/O
I/O, L#N
2
D22
XC2S100E,
200E, 300E,
600E
-
I/O,
L22N_Y
I/O, L29N
I/O,
L31N_Y
I/O,
L31N_Y
I/O, L31N
I/O,
L31N_Y
I/O, L#P
2
D21
XC2S100E, XC2S200E, I/O, L22P_Y
200E, 300E,
300E,
600E
400E, 600E
I/O, L29P
I/O, VREF
Bank 2,
L31P_Y
I/O, VREF
Bank 2,
L31P_Y
I/O, VREF
Bank 2,
L31P
I/O, VREF
Bank 2,
L31P_Y
I/O, L#N
2
E20
XC2S200E,
300E, 400E
-
I/O
I/O, L28N
I/O,
L30N_Y
I/O,
L30N_Y
I/O,
L30N_Y
I/O, L30N
I/O, L#P
2
E19
XC2S200E,
300E, 400E
-
-
I/O, L28P
I/O
2
D20
-
-
-
-
-
I/O
I/O
I/O
I/O (DIN,
D0),
L#N_YY
2
C22
All
-
I/O (DIN,
D0),
L21N_YY
I/O (DIN,
D0),
L27N_YY
I/O (DIN,
D0),
L29N_YY
I/O (DIN,
D0),
L29N_YY
I/O (DIN,
D0),
L29N_YY
I/O (DIN,
D0),
L29N_YY
I/O (DOUT,
BUSY),
L#P_YY
2
C21
All
-
I/O (DOUT,
BUSY),
L21P_YY
I/O (DOUT,
BUSY),
L27P_YY
I/O (DOUT,
BUSY),
L29P_YY
I/O (DOUT,
BUSY),
L29P_YY
I/O (DOUT,
BUSY),
L29P_YY
I/O (DOUT,
BUSY),
L29P_YY
CCLK
2
B22
-
-
CCLK
CCLK
CCLK
CCLK
CCLK
CCLK
TDO
2
A21
-
-
TDO
TDO
TDO
TDO
TDO
TDO
TDI
-
C19
-
-
TDI
TDI
TDI
TDI
TDI
TDI
I/O (CS),
L#P_YY
1
B20
All
-
I/O (CS),
L20P_YY
I/O (CS),
L26P_YY
I/O (CS),
L28P_YY
I/O (CS),
L28P_YY
I/O (CS),
L28P_YY
I/O (CS),
L28P_YY
84
I/O, L35P_Y I/O, L35P_Y
I/O, L30P_Y I/O, L32P_Y I/O, L32P_Y I/O, L32P_Y I/O, L32P_Y
www.xilinx.com
I/O, L30P_Y I/O, L30P_Y I/O, L30P_Y
I/O, L30P
DS077-4 (2.3) June 18, 2008
Product Specification
R
Spartan-IIE FPGA Family: Pinout Tables
FG456 Pinouts (XC2S100E, XC2S150E, XC2S200E, XC2S300E, XC2S400E, XC2S600E)
Pad Name
Function Bank
Pin
LVDS
Async.
Output
Option
Device-Specific Pinouts: XC2S
VREF
Option
100E
150E
200E
300E
400E
600E
I/O
(WRITE),
L#N_YY
1
A20
All
-
I/O
(WRITE),
L20N_YY
I/O
(WRITE),
L26N_YY
I/O
(WRITE),
L28N_YY
I/O
(WRITE),
L28N_YY
I/O
(WRITE),
L28N_YY
I/O
(WRITE),
L28N_YY
I/O
1
D18
-
-
-
-
-
I/O
I/O
I/O
I/O
1
C18
-
-
-
I/O
I/O
I/O
I/O
I/O
I/O, L#P
1
B19
XC2S200E,
300E, 400E,
600E
-
-
I/O, L25P
I/O, L#N
1
A19
XC2S200E,
300E, 400E,
600E
-
I/O
I/O, L25N
I/O,
L27N_Y
I/O,
L27N_Y
I/O,
L27N_Y
I/O,
L27N_Y
I/O, L#P
1
B18
XC2S100E, XC2S200E, I/O, L19P_Y
200E, 300E,
300E,
400E, 600E 400E, 600E
I/O, L24P
I/O, VREF
Bank 1,
L26P_Y
I/O, VREF
Bank 1,
L26P_Y
I/O, VREF
Bank 1,
L26P_Y
I/O, VREF
Bank 1,
L26P_Y
I/O, L#N
1
A18
XC2S100E,
200E, 300E,
400E, 600E
-
I/O,
L19N_Y
I/O, L24N
I/O,
L26N_Y
I/O,
L26N_Y
I/O,
L26N_Y
I/O,
L26N_Y
I/O
1
D17
-
-
-
-
-
I/O
I/O
I/O
I/O
1
C17
-
-
-
I/O
I/O
I/O
I/O
I/O
I/O,
L#P_YY
1
B17
All
-
I/O,
L18P_YY
I/O,
L23P_YY
I/O,
L25P_YY
I/O,
L25P_YY
I/O,
L25P_YY
I/O,
L25P_YY
I/O,
L#N_YY
1
A17
All
-
I/O,
L18N_YY
I/O,
L23N_YY
I/O,
L25N_YY
I/O,
L25N_YY
I/O,
L25N_YY
I/O,
L25N_YY
I/O, VREF
Bank 1,
L#P_YY
1
E16
All
All
I/O, VREF
Bank 1,
L17P_YY
I/O, VREF
Bank 1,
L22P_YY
I/O, VREF
Bank 1,
L24P_YY
I/O, VREF
Bank 1,
L24P_YY
I/O, VREF
Bank 1,
L24P_YY
I/O, VREF
Bank 1,
L24P_YY
I/O,
L#N_YY
1
E17
All
-
I/O,
L17N_YY
I/O,
L22N_YY
I/O,
L24N_YY
I/O,
L24N_YY
I/O,
L24N_YY
I/O,
L24N_YY
I/O
1
E15
-
-
-
I/O
I/O
I/O
I/O
I/O
I/O, L#P
1
D16
XC2S300E,
600E
-
-
I/O, L21P
I/O, L23P
I/O, L23P_Y
I/O, L23P
I/O, L23P_Y
I/O, L#N
1
C16
XC2S300E,
600E
-
I/O
I/O, L21N
I/O, L23N
I/O,
L23N_Y
I/O, L23N
I/O,
L23N_Y
I/O, L#P
1
B16
XC2S100E,
300E, 600E
I/O, L20P
I/O, L22P
I/O, L22P_Y
I/O, L22P
I/O, VREF
Bank 1,
L22P_Y
I/O, L#N
1
A16
XC2S100E,
300E, 600E
-
I/O,
L16N_Y
I/O, L20N
I/O, L22N
I/O,
L22N_Y
I/O, L22N
I/O,
L22N_Y
I/O
1
F14
-
-
-
-
-
I/O
I/O
I/O
I/O, VREF
Bank 1,
L#P
1
D15
XC2S100E,
200E, 300E,
400E, 600E
All
I/O, VREF
Bank 1,
L15P_Y
I/O, VREF
Bank 1,
L19P
I/O, VREF
Bank 1,
L21P_Y
I/O, VREF
Bank 1,
L21P_Y
I/O, VREF
Bank 1,
L21P_Y
I/O, VREF
Bank 1,
L21P_Y
I/O, L#N
1
C15
XC2S100E,
200E, 300E,
400E, 600E
-
I/O,
L15N_Y
I/O, L19N
I/O,
L21N_Y
I/O,
L21N_Y
I/O,
L21N_Y
I/O,
L21N_Y
I/O, L#P
1
B15
XC2S100E,
200E, 300E,
400E, 600E
-
I/O, L14P_Y
I/O, L18P
DS077-4 (2.3) June 18, 2008
Product Specification
XC2S600E I/O, L16P_Y
www.xilinx.com
I/O, L27P_Y I/O, L27P_Y I/O, L27P_Y I/O, L27P_Y
I/O, L20P_Y I/O, L20P_Y I/O, L20P_Y I/O, L20P_Y
85
R
Spartan-IIE FPGA Family: Pinout Tables
FG456 Pinouts (XC2S100E, XC2S150E, XC2S200E, XC2S300E, XC2S400E, XC2S600E)
Pad Name
Function Bank
Pin
LVDS
Async.
Output
Option
Device-Specific Pinouts: XC2S
VREF
Option
100E
150E
200E
300E
400E
600E
I/O, L#N
1
A15
XC2S100E,
200E, 300E,
400E, 600E
-
I/O,
L14N_Y
I/O, L18N
I/O,
L20N_Y
I/O,
L20N_Y
I/O,
L20N_Y
I/O,
L20N_Y
I/O
1
E14
-
-
-
-
I/O
I/O
I/O
I/O
I/O, L#P
1
D14
XC2S150E,
300E, 400E,
600E
-
-
I/O, L17P_Y
I/O, L19P
I/O, L#N
1
C14
XC2S100E,
150E, 300E,
400E, 600E
-
I/O, L13P_Y
I/O,
L17N_Y
I/O, L19N
I/O, L#P
1
B14
XC2S100E,
150E, 300E,
400E, 600E
-
I/O,
L13N_Y
I/O, L16P_Y
I/O, L18P
I/O, L#N
1
A14
XC2S150E,
300E, 400E,
600E
-
-
I/O,
L16N_Y
I/O, L18N
I/O,
L18N_Y
I/O,
L18N_Y
I/O,
L18N_Y
I/O
1
E13
-
-
-
-
I/O
I/O
I/O
I/O
I/O, L#P
1
D13
XC2S200E,
300E, 400E,
600E
-
I/O, L12P
I/O, L15P
I/O, L#N
1
C13
XC2S200E,
300E, 400E,
600E
-
I/O, L12N
I/O, L15N
I/O,
L17N_Y
I/O,
L17N_Y
I/O,
L17N_Y
I/O,
L17N_Y
I/O, VREF
Bank 1,
L#P
1
B13
XC2S200E,
300E, 400E,
600E
All
I/O, VREF
Bank 1,
L11P
I/O, VREF
Bank 1,
L14P
I/O, VREF
Bank 1,
L16P_Y
I/O, VREF
Bank 1,
L16P_Y
I/O, VREF
Bank 1,
L16P_Y
I/O, VREF
Bank 1,
L16P_Y
I/O, L#N
1
A13
XC2S200E,
300E, 400E,
600E
-
I/O, L11N
I/O, L14N
I/O,
L16N_Y
I/O,
L16N_Y
I/O,
L16N_Y
I/O,
L16N_Y
I/O
1
F13
-
-
-
-
-
I/O
I/O
I/O
I/O, L#P
1
C12
XC2S300E,
600E
-
-
-
I/O, L15P
I/O, L15P_Y
I/O, L15P
I/O, L15P_Y
I/O, L#N
1
B12
XC2S300E,
600E
-
I/O, L10P
I/O
I/O, L15N
I/O,
L15N_Y
I/O, L15N
I/O,
L15N_Y
I/O, L#P
1
D12
XC2S150E,
300E, 600E
XC2S400E,
600E
I/O, L10N
I/O, L13P_Y
I/O, L14P
I/O, L14P_Y
I/O, VREF
Bank 1,
L14P
I/O, VREF
Bank 1,
L14P_Y
I/O, L#N
1
E12
XC2S150E,
300E, 600E
-
-
I/O,
L13N_Y
I/O, L14N
I/O,
L14N_Y
I/O, L14N
I/O,
L14N_Y
I/O
1
F12
-
-
-
-
-
I/O
I/O
I/O
I/O (DLL),
L#P
1
A12
-
-
I/O (DLL),
L9P
I/O (DLL),
L12P
I/O (DLL),
L13P
I/O (DLL),
L13P
I/O (DLL),
L13P
I/O (DLL),
L13P
GCK2, I
1
A11
-
-
GCK2, I
GCK2, I
GCK2, I
GCK2, I
GCK2, I
GCK2, I
GCK3, I
0
C11
-
-
GCK3, I
GCK3, I
GCK3, I
GCK3, I
GCK3, I
GCK3, I
I/O (DLL),
L#N
0
B11
-
-
I/O (DLL),
L9N
I/O (DLL),
L12N
I/O (DLL),
L13N
I/O (DLL),
L13N
I/O (DLL),
L13N
I/O (DLL),
L13N
I/O
0
D11
-
-
-
-
-
I/O
I/O
I/O
86
www.xilinx.com
I/O, L19P_Y I/O, L19P_Y I/O, L19P_Y
I/O,
L19N_Y
I/O,
L19N_Y
I/O,
L19N_Y
I/O, L18P_Y I/O, L18P_Y I/O, L18P_Y
I/O, L17P_Y I/O, L17P_Y I/O, L17P_Y I/O, L17P_Y
DS077-4 (2.3) June 18, 2008
Product Specification
R
Spartan-IIE FPGA Family: Pinout Tables
FG456 Pinouts (XC2S100E, XC2S150E, XC2S200E, XC2S300E, XC2S400E, XC2S600E)
Pad Name
Function Bank
Pin
LVDS
Async.
Output
Option
Device-Specific Pinouts: XC2S
VREF
Option
100E
150E
200E
300E
400E
600E
I/O
0
F11
-
XC2S400E,
600E
-
-
I/O
I/O
I/O, VREF
Bank 0
I/O, VREF
Bank 0
I/O, L#P
0
A10
XC2S300E,
600E
-
I/O
I/O, L11P
I/O, L12P
I/O, L12P_Y
I/O, L12P
I/O, L12P_Y
I/O, L#N
0
B10
XC2S300E,
600E
-
-
I/O, L11N
I/O, L12N
I/O,
L12N_Y
I/O, L12N
I/O,
L12N_Y
I/O
0
E11
-
-
-
-
-
I/O
I/O
I/O
I/O, L#P
0
C10
XC2S200E,
300E, 400E,
600E
-
I/O, L8P
I/O, L10P
I/O, VREF
Bank 0,
L#N
0
D10
XC2S200E,
300E, 400E,
600E
All
I/O, VREF
Bank 0,
L8N
I/O, VREF
Bank 0,
L10N
I/O
0
F10
-
-
I/O, L7P
I/O
I/O
I/O
I/O
I/O
I/O, L#P
0
A9
-
-
I/O, L7N
I/O
I/O, L10P
I/O, L10P
I/O, L10P
I/O, L10P
I/O, L#N
0
B9
-
-
-
-
I/O, L10N
I/O, L10N
I/O, L10N
I/O, L10N
I/O
0
E10
-
-
-
-
I/O
I/O
I/O
I/O
I/O, L#P
0
C9
XC2S100E,
150E, 200E
-
I/O, L6P_Y
I/O, L9P_Y
I/O, L9P_Y
I/O, L9P
I/O, L9P
I/O, L9P
I/O, L#N
0
D9
XC2S100E,
150E, 200E
-
I/O, L6N_Y
I/O, L9N_Y
I/O, L9N_Y
I/O, L9N
I/O, L9N
I/O, L9N
I/O, L#P
0
F9
XC2S150E,
200E
-
-
I/O, L8P_Y
I/O, L8P_Y
I/O, L8P
I/O, L8P
I/O, L8P
I/O, L#N
0
E9
XC2S150E,
200E
-
-
I/O, L8N_Y
I/O, L8N_Y
I/O, L8N
I/O, L8N
I/O, L8N
I/O, L#P
0
A8
XC2S100E,
200E, 300E,
400E, 600E
-
I/O, L5P_Y
I/O, L7P
I/O, L7P_Y
I/O, L7P_Y
I/O, L7P_Y
I/O, L7P_Y
I/O, L#N
0
B8
XC2S100E,
200E, 300E,
400E, 600E
-
I/O, L5N_Y
I/O, L7N
I/O, L7N_Y
I/O, L7N_Y
I/O, L7N_Y
I/O, L7N_Y
I/O, L#P
0
C8
XC2S100E,
200E, 300E,
400E, 600E
-
I/O, L4P_Y
I/O, L6P
I/O, L6P_Y
I/O, L6P_Y
I/O, L6P_Y
I/O, L6P_Y
I/O, VREF
Bank 0,
L#N
0
D8
XC2S100E,
200E, 300E,
400E, 600E
All
I/O, VREF
Bank 0,
L4N_Y
I/O, VREF
Bank 0,
L6N
I/O, VREF
Bank 0,
L6N_Y
I/O, VREF
Bank 0,
L6N_Y
I/O, VREF
Bank 0,
L6N_Y
I/O, VREF
Bank 0,
L6N_Y
I/O
0
A7
-
-
-
-
-
I/O
I/O
I/O
I/O
0
B7
-
-
I/O
I/O
I/O
I/O
I/O
I/O
I/O, L#P
0
C7
XC2S150E,
200E
XC2S600E
I/O, L3P
I/O, L5P_Y
I/O, L5P_Y
I/O, L5P
I/O, L5P
I/O, VREF
Bank 0, L5P
I/O, L#N
0
D7
XC2S150E,
200E
-
I/O, L3N
I/O, L5N_Y
I/O, L5N_Y
I/O, L5N
I/O, L5N
I/O, L5N
I/O, L#P
0
E8
XC2S150E,
200E
-
-
I/O, L4P_Y
I/O, L4P_Y
I/O, L4P
I/O, L4P
I/O, L4P
I/O, L#N
0
E7
XC2S150E,
200E
-
-
I/O, L4N_Y
I/O, L4N_Y
I/O, L4N
I/O, L4N
I/O, L4N
DS077-4 (2.3) June 18, 2008
Product Specification
www.xilinx.com
I/O, L11P_Y I/O, L11P_Y I/O, L11P_Y I/O, L11P_Y
I/O, VREF
Bank 0,
L11N_Y
I/O, VREF
Bank 0,
L11N_Y
I/O, VREF
Bank 0,
L11N_Y
I/O, VREF
Bank 0,
L11N_Y
87
R
Spartan-IIE FPGA Family: Pinout Tables
FG456 Pinouts (XC2S100E, XC2S150E, XC2S200E, XC2S300E, XC2S400E, XC2S600E)
Pad Name
Function Bank
Pin
LVDS
Async.
Output
Option
Device-Specific Pinouts: XC2S
VREF
Option
100E
150E
200E
300E
400E
600E
I/O,
L#P_YY
0
A6
All
-
I/O,
L2P_YY
I/O,
L3P_YY
I/O,
L3P_YY
I/O,
L3P_YY
I/O,
L3P_YY
I/O,
L3P_YY
I/O, VREF
Bank 0,
L#N_YY
0
B6
All
All
I/O, VREF
Bank 0,
L2N_YY
I/O, VREF
Bank 0,
L3N_YY
I/O, VREF
Bank 0,
L3N_YY
I/O, VREF
Bank 0,
L3N_YY
I/O, VREF
Bank 0,
L3N_YY
I/O, VREF
Bank 0,
L3N_YY
I/O
0
C6
XC2S100E
-
I/O, L1P_Y
I/O
I/O
I/O
I/O
I/O
I/O, L#P
0
A5
XC2S100E
-
I/O, L1N_Y
I/O, L2P
I/O, L2P
I/O, L2P
I/O, L2P
I/O, L2P
I/O, L#N
0
B5
-
-
-
I/O, L2N
I/O, L2N
I/O, L2N
I/O, L2N
I/O, L2N
I/O
0
D6
-
-
-
-
-
I/O
I/O
I/O
I/O, L#P
0
B4
XC2S100E,
200E, 300E,
400E, 600E
-
I/O, L0P_Y
I/O, L1P
I/O, L1P_Y
I/O, L1P_Y
I/O, L1P_Y
I/O, L1P_Y
I/O, L#N
0
C5
XC2S100E, XC2S200E, I/O, L0N_Y
200E, 300E,
300E,
400E, 600E 400E, 600E
I/O, L1N
I/O, VREF
Bank 0,
L1N_Y
I/O, VREF
Bank 0,
L1N_Y
I/O, VREF
Bank 0,
L1N_Y
I/O, VREF
Bank 0,
L1N_Y
I/O
0
A4
-
-
I/O
I/O
I/O
I/O
I/O
I/O
I/O, L#P
0
A3
XC2S150E,
400E, 600E
-
-
I/O, L0P_Y
I/O, L0P
I/O, L0P
I/O, L0P_Y
I/O, L0P_Y
I/O, L#N
0
B3
XC2S150E,
400E, 600E
-
-
I/O, L0N_Y
I/O, L0N
I/O, L0N
I/O, L0N_Y
I/O, L0N_Y
I/O
0
C4
-
-
-
-
-
I/O
I/O
I/O
I/O
0
D5
-
-
I/O
I/O
I/O
I/O
I/O
I/O
TCK
-
E6
-
-
TCK
TCK
TCK
TCK
TCK
TCK
Notes:
1. Although designated with the _YY suffix in the XC2S100E, XC2S150E, XC2S200E, and XC2S300E, these differential pairs are not
asynchronous in the XC2S400E.
FG456 Differential Clock Pins
P
N
Clock
Bank
Pin
Name
Pin
Name
GCK0
4
AA12
GCK0, I
Y12
I/O (DLL), L#P
GCK1
5
AB12
GCK1, I
AB11
I/O (DLL), L#N
GCK2
1
A11
GCK2, I
A12
I/O (DLL), L#P
GCK3
0
C11
GCK3, I
B11
I/O (DLL), L#N
Additional FG456 Package Pins
VCCINT Pins
D4(1)
D19(1)
E5
E18
F6
F17
G7
G8
G15
G16
H7
H16
R7
R16
T7
T8
T15
T16
W19(1)
-
-
-
-
-
-
-
U6
U17
V5
V18
W4(1)
F8
G9
G10
-
VCCO Bank 0 Pins
F7
88
www.xilinx.com
DS077-4 (2.3) June 18, 2008
Product Specification
R
Spartan-IIE FPGA Family: Pinout Tables
Additional FG456 Package Pins (Continued)
VCCO Bank 1 Pins
F15
F16
G13
G14
-
-
-
-
-
H17
J16
K16
-
-
-
-
-
P16
R17
T17
-
-
-
-
-
T14
U15
U16
-
-
-
-
-
T10
U7
U8
-
-
-
-
-
P7
R6
T6
-
-
-
-
-
H6
J7
K7
-
-
-
-
-
A1
A2(2)
A22
B1(2)
B2
B21
C3
C20
G11
G12
J9
J10
J11
J12
J13
J14
K9
K10
K11
K12
K13
K14
L7
L9
L10
L11
L12
L13
L14
L16
M7
M9
M10
M11
M12
M13
M14
M16
N9
N10
N11
N12
N13
N14
P9
P10
P11
P12
P13
P14
T11
T12
Y20
Y3
AA2
AA4(2)
AA21
AA22(2)
AB1
AB22
-
-
D4(1)
D19(1)
W4(1)
W19(1)
Y4(2)
AA4(2)
AA22(2)
VCCO Bank 2 Pins
G17
VCCO Bank 3 Pins
N16
VCCO Bank 4 Pins
T13
VCCO Bank 5 Pins
T9
VCCO Bank 6 Pins
N7
VCCO Bank 7 Pins
G6
GND Pins
Y4(2)
Not Connected Pins
A2(2)
B1(2)
Notes:
1. VCCINT connections in XC2S400E and XC2S600E. No Connects (no internal connection) in XC2S100E, XC2S150E, XC2S200E,
and XC2S300E.
2. GND connections in XC2S400E and XC2S600E. No Connects (no internal connection) in XC2S100E, XC2S150E, XC2S200E, and
XC2S300E
FG676 Pinouts (XC2S400E, XC2S600E)
Pad Name
Device-Specific Pinouts
Bank
Pin
LVDS Async.
Output Option
TMS
-
B1
-
-
TMS
TMS
I/O
7
D3
-
-
I/O
I/O
I/O, L204P
7
C2
-
-
-
I/O, L204P
I/O, L204N
7
C1
-
-
-
I/O, L204N
I/O, L203P
7
D2
XC2S600E
-
-
I/O, L203P_Y
I/O, L203N
7
D1
XC2S600E
-
I/O
I/O, L203N_Y
I/O, L202P_YY
7
E2
All
-
I/O, L202P_YY
I/O, L202P_YY
I/O, L202N_YY
7
E1
All
-
I/O, L202N_YY
I/O, L202N_YY
Function
DS077-4 (2.3) June 18, 2008
Product Specification
VREF
Option
XC2S400E
XC2S600E
www.xilinx.com
89
R
Spartan-IIE FPGA Family: Pinout Tables
FG676 Pinouts (XC2S400E, XC2S600E) (Continued)
Pad Name
Device-Specific Pinouts
Bank
Pin
LVDS Async.
Output Option
I/O, L201P
7
E4
XC2S400E
-
I/O, L201P_Y
I/O, L201P
I/O, L201N
7
F5
XC2S400E
-
I/O, L201N_Y
I/O, L201N
I/O, VREF Bank 7,
L200P
7
F4
XC2S600E
All
I/O, VREF Bank 7,
L200P
I/O, VREF Bank 7,
L200P_Y
I/O, L200N
7
F3
XC2S600E
-
I/O, L200N
I/O, L200N_Y
I/O, L199P
7
F2
XC2S600E
-
-
I/O, L199P_Y
I/O, L199N
7
F1
XC2S600E
-
I/O
I/O, L199N_Y
I/O, L198P
7
G6
XC2S400E
-
I/O, L198P_Y
I/O, L198P
I/O, L198N
7
G5
XC2S400E
-
I/O, L198N_Y
I/O, L198N
I/O, L197P
7
G4
XC2S600E
-
I/O, L197P
I/O, L197P_Y
I/O, L197N
7
G3
XC2S600E
-
I/O, L197N
I/O, L197N_Y
I/O, VREF Bank 7,
L196P_YY
7
G2
All
All
I/O, VREF Bank 7,
L196P_YY
I/O, VREF Bank 7,
L196P_YY
I/O, L196N_YY
7
G1
All
-
I/O, L196N_YY
I/O, L196N_YY
I/O
7
H7
-
-
I/O
I/O
I/O, L195P_YY
7
H6
All
-
I/O, L195P_YY
I/O, L195P_YY
I/O, L195N_YY
7
H5
All
-
I/O, L195N_YY
I/O, L195N_YY
I/O
7
J8
-
-
-
I/O
I/O, L194P
7
H2
XC2S400E
-
I/O, L194P_Y
I/O, L194P
I/O, L194N
7
H1
XC2S400E
-
I/O, L194N_Y
I/O, L194N
I/O, L193P
7
J7
XC2S600E
XC2S600E
I/O
I/O, VREF Bank 7,
L193P_Y
I/O, L193N
7
J6
XC2S600E
-
-
I/O, L193N_Y
I/O
7
J5
-
-
I/O
I/O
I/O, L192P_YY
7
J4
All
-
I/O, L192P_YY
I/O, L192P_YY
I/O, L192N_YY
7
J3
All
-
I/O, L192N_YY
I/O, L192N_YY
I/O
7
K5
-
-
I/O
I/O
I/O, VREF Bank 7,
L191P_YY
7
J2
All
All
I/O, VREF Bank 7,
L191P_YY
I/O, VREF Bank 7,
L191P_YY
I/O, L191N_YY
7
J1
All
-
I/O, L191N_YY
I/O, L191N_YY
I/O, L190P_YY
7
K8
All
-
I/O, L190P_YY
I/O, L190P_YY
I/O, L190N_YY
7
K7
All
-
I/O, L190N_YY
I/O, L190N_YY
I/O
7
K4
-
-
-
I/O
I/O, L189P_YY
7
K3
All
-
I/O, L189P_YY
I/O, L189P_YY
I/O, L189N_YY
7
K2
All
-
I/O, L189N_YY
I/O, L189N_YY
I/O
7
K1
-
-
-
I/O
Function
90
VREF
Option
XC2S400E
XC2S600E
www.xilinx.com
DS077-4 (2.3) June 18, 2008
Product Specification
R
Spartan-IIE FPGA Family: Pinout Tables
FG676 Pinouts (XC2S400E, XC2S600E) (Continued)
Pad Name
Device-Specific Pinouts
Bank
Pin
LVDS Async.
Output Option
I/O, L188P
7
L8
XC2S400E
-
I/O, L188P_Y
I/O, L188P
I/O, L188N
7
L7
XC2S400E
-
I/O, L188N_Y
I/O, L188N
I/O, L187P
7
L6
XC2S600E
-
I/O, L187P
I/O, L187P_Y
I/O, L187N
7
L5
XC2S600E
-
I/O, L187N
I/O, L187N_Y
I/O
7
L3
-
-
-
I/O
I/O, L186P
7
L2
XC2S600E
-
I/O, L186P
I/O, L186P_Y
I/O, L186N
7
L1
XC2S600E
-
I/O, L186N
I/O, L186N_Y
I/O
7
M9
-
-
-
I/O
I/O, L185P
7
M8
XC2S600E
-
I/O, L185P
I/O, L185P_Y
I/O, L185N
7
M7
XC2S600E
-
I/O, L185N
I/O, L185N_Y
I/O, VREF Bank 7,
L184P_YY
7
M6
All
All
I/O, VREF Bank 7,
L184P_YY
I/O, VREF Bank 7,
L184P_YY
I/O, L184N_YY
7
M5
All
-
I/O, L184N_YY
I/O, L184N_YY
I/O
7
M4
-
-
-
I/O
I/O, L183P_YY
7
M2
All
-
I/O, L183P_YY
I/O, L183P_YY
I/O, L183N_YY
7
M1
All
-
I/O, L183N_YY
I/O, L183N_YY
I/O
7
N9
-
-
-
I/O
I/O, L182P
7
N8
XC2S400E
-
I/O, L182P_Y
I/O, L182P
I/O, L182N
7
N7
XC2S400E
-
I/O, L182N_Y
I/O, L182N
I/O, VREF Bank 7,
L181P
7
N6
XC2S600E
All
I/O, VREF Bank 7,
L181P
I/O, VREF Bank 7,
L181P_Y
I/O, L181N
7
N5
XC2S600E
-
I/O, L181N
I/O, L181N_Y
I/O
7
N4
-
-
-
I/O
I/O, L180P_YY
7
N3
All
-
I/O, L180P_YY
I/O, L180P_YY
I/O, L180N_YY
7
N2
All
-
I/O, L180N_YY
I/O, L180N_YY
I/O
7
N1
-
-
-
I/O
I/O, L179P_YY
7
P1
All
-
I/O, L179P_YY
I/O, L179P_YY
I/O (IRDY), L179N_YY
7
P2
All
-
I/O (IRDY),
L179N_YY
I/O (IRDY), L179N_YY
I/O (TRDY), L178P
6
P3
XC2S600E
-
I/O (TRDY)
I/O (TRDY), L178P_Y
I/O, L178N
6
P4
XC2S600E
-
-
I/O, L178N_Y
I/O, L177P
6
P5
XC2S600E
-
-
I/O, L177P_Y
I/O, L177N
6
P6
XC2S600E
-
I/O
I/O, L177N_Y
I/O
6
P7
-
-
I/O
I/O
I/O, L176P
6
P8
XC2S600E
-
I/O, L176P
I/O, L176P_Y
Function
DS077-4 (2.3) June 18, 2008
Product Specification
VREF
Option
XC2S400E
XC2S600E
www.xilinx.com
91
R
Spartan-IIE FPGA Family: Pinout Tables
FG676 Pinouts (XC2S400E, XC2S600E) (Continued)
Pad Name
Bank
Pin
LVDS Async.
Output Option
I/O, VREF Bank 6,
L176N
6
P9
XC2S600E
I/O, L175P
6
R1
I/O, L175N
6
I/O
Function
VREF
Option
Device-Specific Pinouts
XC2S400E
XC2S600E
All
I/O, VREF Bank 6,
L176N
I/O, VREF Bank 6,
L176N_Y
XC2S400E
-
I/O, L175P_Y
I/O, L175P
R2
XC2S400E
-
I/O, L175N_Y
I/O, L175N
6
R4
-
-
-
I/O
I/O, L174P_YY
6
R5
All
-
I/O, L174P_YY
I/O, L174P_YY
I/O, L174N_YY
6
R6
All
-
I/O, L174N_YY
I/O, L174N_YY
I/O
6
R7
-
-
-
I/O
I/O, L173P_YY
6
R8
All
-
I/O, L173P_YY
I/O, L173P_YY
I/O, VREF Bank 6,
L173N_YY
6
R9
All
All
I/O, VREF Bank 6,
L173N_YY
I/O, VREF Bank 6,
L173N_YY
I/O, L172P
6
T1
XC2S600E
-
I/O, L172P
I/O, L172P_Y
I/O, L172N
6
T2
XC2S600E
-
I/O, L172N
I/O, L172N_Y
I/O
6
T3
-
-
-
I/O
I/O, L171P
6
T5
XC2S600E
-
I/O, L171P
I/O, L171P_Y
I/O, L171N
6
T6
XC2S600E
-
I/O, L171N
I/O, L171N_Y
I/O
6
U1
-
-
-
I/O
I/O, L170P
6
T7
XC2S600E
-
I/O, L170P
I/O, L170P_Y
I/O, L170N
6
T8
XC2S600E
-
I/O, L170N
I/O, L170N_Y
I/O, L169P
6
U2
XC2S400E
-
I/O, L169P_Y
I/O, L169P
I/O, L169N
6
U3
XC2S400E
-
I/O, L169N_Y
I/O, L169N
I/O
6
U7
-
-
-
I/O
I/O, L168P
6
U4
XC2S600E
-
-
I/O, L168P_Y
I/O, L168N
6
U5
XC2S600E
-
I/O
I/O, L168N_Y
I/O
6
U8
-
-
I/O
I/O
I/O, L167P_YY
6
V1
All
-
I/O, L167P_YY
I/O, L167P_YY
I/O, L167N_YY
6
V2
All
-
I/O, L167N_YY
I/O, L167N_YY
I/O
6
V3
-
-
I/O
I/O
I/O, VREF Bank 6,
L166P_YY
6
V4
All
All
I/O, VREF Bank 6,
L166P_YY
I/O, VREF Bank 6,
L166P_YY
I/O, L166N_YY
6
V5
All
-
I/O, L166N_YY
I/O, L166N_YY
I/O, L165P_YY
6
V6
All
-
I/O, L165P_YY
I/O, L165P_YY
I/O, L165N_YY
6
V7
All
-
I/O, L165N_YY
I/O, L165N_YY
I/O
6
V8
-
-
-
I/O
I/O, L164P
6
W1
XC2S600E
-
I/O, L164P
I/O, L164P_Y
92
www.xilinx.com
DS077-4 (2.3) June 18, 2008
Product Specification
R
Spartan-IIE FPGA Family: Pinout Tables
FG676 Pinouts (XC2S400E, XC2S600E) (Continued)
Pad Name
Device-Specific Pinouts
Bank
Pin
LVDS Async.
Output Option
I/O, L164N
6
W2
XC2S600E
XC2S600E
I/O, L164N
I/O, VREF Bank 6,
L164N_Y
I/O, L163P
6
W5
XC2S400E
-
I/O, L163P_Y
I/O, L163P
I/O, L163N
6
W6
XC2S400E
-
I/O, L163N_Y
I/O, L163N
I/O
6
W7
-
-
I/O
I/O
I/O, L162P_YY
6
Y1
All
-
I/O, L162P_YY
I/O, L162P_YY
I/O, L162N_YY
6
Y2
All
-
I/O, L162N_YY
I/O, L162N_YY
I/O
6
Y3
-
-
-
I/O
I/O, L161P_YY
6
Y4
All
-
I/O, L161P_YY
I/O, L161P_YY
I/O, VREF Bank 6,
L161N_YY
6
Y5
All
All
I/O, VREF Bank 6,
L161N_YY
I/O, VREF Bank 6,
L161N_YY
I/O
6
Y6
-
-
I/O
I/O
I/O, L160P_YY
6
AA1
All
-
I/O, L160P_YY
I/O, L160P_YY
I/O, L160N_YY
6
AA2
All
-
I/O, L160N_YY
I/O, L160N_YY
I/O, L159P
6
AA3
XC2S600E
-
I/O, L159P
I/O, L159P_Y
I/O, L159N
6
AA4
XC2S600E
-
I/O, L159N
I/O, L159N_Y
I/O
6
Y7
-
-
-
I/O
I/O, L158P
6
AA5
XC2S600E
-
I/O, L158P
I/O, L158P_Y
I/O, VREF Bank 6,
L158N
6
AB5
XC2S600E
All
I/O, VREF Bank 6,
L158N
I/O, VREF Bank 6,
L158N_Y
I/O, L157P
6
AB1
XC2S400E
-
I/O, L157P_Y
I/O, L157P
I/O, L157N
6
AB2
XC2S400E
-
I/O, L157N_Y
I/O, L157N
I/O, L156P
6
AC1
XC2S600E
-
-
I/O, L156P_Y
I/O, L156N
6
AC2
XC2S600E
-
I/O
I/O, L156N_Y
I/O, L155P_YY
6
AC3
All
-
I/O, L155P_YY
I/O, L155P_YY
I/O, L155N_YY
6
AB4
All
-
I/O, L155N_YY
I/O, L155N_YY
I/O, L154P
6
AD1
-
-
-
I/O, L154P
I/O, L154N
6
AD2
-
-
-
I/O, L154N
I/O, L153P_YY
6
AE1
All
-
I/O, L153P_YY
I/O, L153P_YY
I/O, L153N_YY
6
AF2
All
-
I/O, L153N_YY
I/O, L153N_YY
M1
-
AE3
-
-
M1
M1
M0
-
AF3
-
-
M0
M0
M2
-
AD4
-
-
M2
M2
Function
DS077-4 (2.3) June 18, 2008
Product Specification
VREF
Option
XC2S400E
XC2S600E
www.xilinx.com
93
R
Spartan-IIE FPGA Family: Pinout Tables
FG676 Pinouts (XC2S400E, XC2S600E) (Continued)
Pad Name
Device-Specific Pinouts
Bank
Pin
LVDS Async.
Output Option
I/O
5
AC5
-
-
I/O
I/O
I/O, L152N
5
AE4
-
-
I/O
I/O, L152N
I/O, L152P
5
AF4
-
-
-
I/O, L152P
I/O, L151N
5
AE5
-
-
-
I/O, L151N
I/O, L151P
5
AF5
-
-
I/O
I/O, L151P
I/O, L150N
5
AA6
XC2S400E
-
I/O, L150N_Y
I/O, L150N
I/O, L150P
5
AB6
XC2S400E
-
I/O, L150P_Y
I/O, L150P
I/O, L149N_YY
5
AC6
All
-
I/O, L149N_YY
I/O, L149N_YY
I/O, L149P_YY
5
AD6
All
-
I/O, L149P_YY
I/O, L149P_YY
I/O, VREF Bank 5,
L148N_YY
5
AE6
All
All
I/O, VREF Bank 5,
L148N_YY
I/O, VREF Bank 5,
L148N_YY
I/O, L148P_YY
5
AF6
All
-
I/O, L148P_YY
I/O, L148P_YY
I/O, L147N
5
AA7
XC2S600E
-
-
I/O, L147N_Y
I/O, L147P
5
AB7
XC2S600E
-
I/O
I/O, L147P_Y
I/O, L146N_YY
5
AC7
All
-
I/O, L146N_YY
I/O, L146N_YY
I/O, L146P_YY
5
AD7
All
-
I/O, L146P_YY
I/O, L146P_YY
I/O, L145N_YY
5
AE7
All
-
I/O, L145N_YY
I/O, L145N_YY
I/O, L145P_YY
5
AF7
All
-
I/O, L145P_YY
I/O, L145P_YY
I/O, VREF Bank 5,
L144N_YY
5
Y8
All
All
I/O, VREF Bank 5,
L144N_YY
I/O, VREF Bank 5,
L144N_YY
I/O, L144P_YY
5
AA8
All
-
I/O, L144P_YY
I/O, L144P_YY
I/O, L143N_YY
5
AE8
All
-
I/O, L143N_YY
I/O, L143N_YY
I/O, L143P_YY
5
AF8
All
-
I/O, L143P_YY
I/O, L143P_YY
I/O
5
AB8
-
-
I/O
I/O
I/O, L142N
5
W9
XC2S600E
-
I/O, L142N
I/O, L142N_Y
I/O, L142P
5
Y9
XC2S600E
-
I/O, L142P
I/O, L142P_Y
I/O, L141N
5
AA9
XC2S600E
XC2S600E
-
I/O, VREF Bank 5,
L141N_Y
I/O, L141P
5
AB9
XC2S600E
-
I/O
I/O, L141P_Y
I/O, L140N_YY
5
AC9
All
-
I/O, L140N_YY
I/O, L140N_YY
I/O, L140P_YY
5
AD9
All
-
I/O, L140P_YY
I/O, L140P_YY
I/O, L139N_YY
5
AE9
All
-
I/O, L139N_YY
I/O, L139N_YY
I/O, L139P_YY
5
AF9
All
-
I/O, L139P_YY
I/O, L139P_YY
I/O, VREF Bank 5,
L138N_YY
5
W10
All
All
I/O, VREF Bank 5,
L138N_YY
I/O, VREF Bank 5,
L138N_YY
Function
94
VREF
Option
XC2S400E
XC2S600E
www.xilinx.com
DS077-4 (2.3) June 18, 2008
Product Specification
R
Spartan-IIE FPGA Family: Pinout Tables
FG676 Pinouts (XC2S400E, XC2S600E) (Continued)
Pad Name
Device-Specific Pinouts
Bank
Pin
LVDS Async.
Output Option
I/O, L138P_YY
5
Y10
All
-
I/O, L138P_YY
I/O, L138P_YY
I/O, L137N_YY
5
AB10
All
-
I/O, L137N_YY
I/O, L137N_YY
I/O, L137P_YY
5
AC10
All
-
I/O, L137P_YY
I/O, L137P_YY
I/O
5
AD10
-
-
-
I/O
I/O, L136N
5
AE10
XC2S600E
-
I/O, L136N
I/O, L136N_Y
I/O, L136P
5
AF10
XC2S600E
-
I/O, L136P
I/O, L136P_Y
I/O
5
AD11
-
-
-
I/O
I/O, L135N_YY
5
W11
All
-
I/O, L135N_YY
I/O, L135N_YY
I/O, L135P_YY
5
Y11
All
-
I/O, L135P_YY
I/O, L135P_YY
I/O, L134N_YY
5
AA11
All
-
I/O, L134N_YY
I/O, L134N_YY
I/O, L134P_YY
5
AB11
All
-
I/O, L134P_YY
I/O, L134P_YY
I/O
5
V12
-
-
-
I/O
I/O, L133N
5
AE11
-
-
I/O, L133N
I/O, L133N
I/O, L133P
5
AF11
-
-
I/O, L133P
I/O, L133P
I/O
5
W12
-
-
-
I/O
I/O, L132N_YY
5
Y12
All
-
I/O, L132N_YY
I/O, L132N_YY
I/O, L132P_YY
5
AA12
All
-
I/O, L132P_YY
I/O, L132P_YY
I/O, VREF Bank 5,
L131N_YY
5
AB12
All
All
I/O, VREF Bank 5,
L131N_YY
I/O, VREF Bank 5,
L131N_YY
I/O, L131P_YY
5
AC12
All
-
I/O, L131P_YY
I/O, L131P_YY
I/O
5
V13
-
-
-
I/O
I/O, L130N_YY
5
AE12
All
-
I/O, L130N_YY
I/O, L130N_YY
I/O, L130P_YY
5
AF12
All
-
I/O, L130P_YY
I/O, L130P_YY
I/O
5
W13
-
-
-
I/O
I/O, L129N
5
Y13
XC2S600E
-
I/O, L129N
I/O, L129N_Y
I/O, L129P
5
AA13
XC2S600E
-
I/O, L129P
I/O, L129P_Y
I/O, VREF Bank 5,
L128N
5
AB13
XC2S600E
All
I/O, VREF Bank 5,
L128N
I/O, VREF Bank 5,
L128N_Y
I/O, L128P
5
AC13
XC2S600E
-
I/O, L128P
I/O, L128P_Y
I/O
5
AD13
-
-
-
I/O
I/O, L127N
5
V14
-
-
I/O
I/O, L127N
I/O, L127P
5
W14
-
-
-
I/O, L127P
I/O (DLL), L126N
5
AE13
-
-
I/O (DLL), L126N
I/O (DLL), L126N
GCK1, I
5
AF13
-
-
GCK1, I
GCK1, I
Function
DS077-4 (2.3) June 18, 2008
Product Specification
VREF
Option
XC2S400E
XC2S600E
www.xilinx.com
95
R
Spartan-IIE FPGA Family: Pinout Tables
FG676 Pinouts (XC2S400E, XC2S600E) (Continued)
Pad Name
Device-Specific Pinouts
Bank
Pin
LVDS Async.
Output Option
GCK0, I
4
AF14
-
-
GCK0, I
GCK0, I
I/O (DLL), L126P
4
AE14
-
-
I/O (DLL), L126P
I/O (DLL), L126P
I/O
4
AD14
-
-
-
I/O
I/O, L125N
4
AC14
-
-
I/O, L125N
I/O, L125N
I/O, L125P
4
AB14
-
-
I/O, L125P
I/O, L125P
I/O
4
AC15
-
-
-
I/O
I/O, L124N
4
AA14
XC2S600E
-
I/O, L124N
I/O, L124N_Y
I/O, VREF Bank 4,
L124P
4
Y14
XC2S600E
All
I/O, VREF Bank 4,
L124P
I/O, VREF Bank 4,
L124P_Y
I/O, L123N
4
AF15
XC2S600E
-
I/O, L123N
I/O, L123N_Y
I/O, L123P
4
AE15
XC2S600E
-
I/O, L123P
I/O, L123P_Y
I/O
4
AB15
-
-
-
I/O
I/O, L122N_YY
4
AA15
All
-
I/O, L122N_YY
I/O, L122N_YY
I/O, L122P_YY
4
Y15
All
-
I/O, L122P_YY
I/O, L122P_YY
I/O
4
AF16
-
-
-
I/O
I/O, L121N_YY
4
W15
All
-
I/O, L121N_YY
I/O, L121N_YY
I/O, VREF Bank 4,
L121P_YY
4
V15
All
All
I/O, VREF Bank 4,
L121P_YY
I/O, VREF Bank 4,
L121P_YY
I/O, L120N_YY
4
AE16
All
-
I/O, L120N_YY
I/O, L120N_YY
I/O, L120P_YY
4
AD16
All
-
I/O, L120P_YY
I/O, L120P_YY
I/O
4
AB16
-
-
-
I/O
I/O, L119N
4
AA16
-
-
I/O, L119N
I/O, L119N
I/O, L119P
4
Y16
-
-
I/O, L119P
I/O, L119P
I/O
4
W16
-
-
-
I/O
I/O, L118N_YY
4
AF17
All
-
I/O, L118N_YY
I/O, L118N_YY
I/O, L118P_YY
4
AE17
All
-
I/O, L118P_YY
I/O, L118P_YY
I/O, L117N_YY
4
AD17
All
-
I/O, L117N_YY
I/O, L117N_YY
I/O, L117P_YY
4
AC17
All
-
I/O, L117P_YY
I/O, L117P_YY
I/O
4
AB17
-
-
-
I/O
I/O, L116N
4
Y17
XC2S600E
-
I/O, L116N
I/O, L116N_Y
I/O, L116P
4
W17
XC2S600E
-
I/O, L116P
I/O, L116P_Y
I/O
4
AF18
-
-
-
I/O
I/O, L115N_YY
4
AE18
All
-
I/O, L115N_YY
I/O, L115N_YY
I/O, L115P_YY
4
AD18
All
-
I/O, L115P_YY
I/O, L115P_YY
Function
96
VREF
Option
XC2S400E
XC2S600E
www.xilinx.com
DS077-4 (2.3) June 18, 2008
Product Specification
R
Spartan-IIE FPGA Family: Pinout Tables
FG676 Pinouts (XC2S400E, XC2S600E) (Continued)
Pad Name
Device-Specific Pinouts
Bank
Pin
LVDS Async.
Output Option
I/O
4
AC18
-
-
I/O
I/O
I/O, VREF Bank 4,
L114N
4
AB18
-
All
I/O, VREF Bank 4,
L114N
I/O, VREF Bank 4,
L114N
I/O, L114P
4
AA18
-
-
I/O, L114P
I/O, L114P
I/O, L113N
4
Y18
-
-
I/O, L113N
I/O, L113N
I/O, L113P
4
W18
-
-
I/O, L113P
I/O, L113P
I/O
4
AB19
-
-
I/O
I/O
I/O, L112N
4
AF19
XC2S600E
-
I/O
I/O, L112N_Y
I/O, L112P
4
AE19
XC2S600E
XC2S600E
-
I/O, VREF Bank 4,
L112P_Y
I/O, L111N
4
AA19
XC2S600E
-
I/O, L111N
I/O, L111N_Y
I/O, L111P
4
Y19
XC2S600E
-
I/O, L111P
I/O, L111P_Y
I/O
4
AF20
-
-
-
I/O
I/O, L110N
4
AE20
XC2S600E
-
I/O, L110N
I/O, L110N_Y
I/O, L110P
4
AD20
XC2S600E
-
I/O, L110P
I/O, L110P_Y
I/O
4
AC20
-
-
I/O
I/O
I/O, L109N_YY
4
AB20
All
-
I/O, L109N_YY
I/O, L109N_YY
I/O, VREF Bank 4,
L109P_YY
4
AA20
All
All
I/O, VREF Bank 4,
L109P_YY
I/O, VREF Bank 4,
L109P_YY
I/O
4
Y20
-
-
I/O
I/O
I/O, L108N
4
AF21
-
-
I/O, L108N
I/O, L108N
I/O, L108P
4
AE21
-
-
I/O, L108P
I/O, L108P
I/O, L107N
4
AD21
-
-
I/O, L107N
I/O, L107N
I/O, L107P
4
AC21
-
-
I/O, L107P
I/O, L107P
I/O
4
AC22
-
-
-
I/O
I/O, L106N_YY
4
AF22
All
-
I/O, L106N_YY
I/O, L106N_YY
I/O, VREF Bank 4,
L106P_YY
4
AE22
All
All
I/O, VREF Bank 4,
L106P_YY
I/O, VREF Bank 4,
L106P_YY
I/O, L105N_YY
4
AB21
All
-
I/O, L105N_YY
I/O, L105N_YY
I/O, L105P_YY
4
AA21
All
-
I/O, L105P_YY
I/O, L105P_YY
I/O, L104N_YY
4
AF23
All
-
I/O, L104N_YY
I/O, L104N_YY
I/O, L104P_YY
4
AE23
All
-
I/O, L104P_YY
I/O, L104P_YY
I/O, L103N
4
AD23
XC2S600E
-
I/O
I/O, L103N_Y
I/O, L103P
4
AE24
XC2S600E
-
-
I/O, L103P_Y
I/O, L102N_YY
4
AF24
All
-
I/O, L102N_YY
I/O, L102N_YY
I/O, L102P_YY
4
AF25
All
-
I/O, L102P_YY
I/O, L102P_YY
Function
DS077-4 (2.3) June 18, 2008
Product Specification
VREF
Option
XC2S400E
XC2S600E
www.xilinx.com
97
R
Spartan-IIE FPGA Family: Pinout Tables
FG676 Pinouts (XC2S400E, XC2S600E) (Continued)
Pad Name
Device-Specific Pinouts
Bank
Pin
LVDS Async.
Output Option
DONE
3
AE26
-
-
DONE
DONE
PROGRAM
-
AC24
-
-
PROGRAM
PROGRAM
I/O (INIT), L101N_YY
3
AD25
All
-
I/O (INIT), L101N_YY
I/O (INIT), L101N_YY
I/O (D7), L101P_YY
3
AD26
All
-
I/O (D7), L101P_YY
I/O (D7), L101P_YY
I/O, L100N
3
AC25
-
-
-
I/O, L100N
I/O, L100P
3
AC26
-
-
-
I/O, L100P
I/O, L99N
3
AB22
XC2S600E
-
-
I/O, L99N_Y
I/O, L99P
3
AB23
XC2S600E
-
I/O
I/O, L99P_Y
I/O, L98N_YY
3
AB25
All
-
I/O, L98N_YY
I/O, L98N_YY
I/O, L98P_YY
3
AB26
All
-
I/O, L98P_YY
I/O, L98P_YY
I/O, L97N
3
AA23
-
-
I/O, L97N_Y
I/O, L97N
I/O, L97P
3
AA24
-
-
I/O, L97P_Y
I/O, L97P
I/O, VREF Bank 3,
L96N
3
AA25
XC2S600E
All
I/O, VREF Bank 3,
L96N
I/O, VREF Bank 3,
L96N_Y
I/O, L96P
3
AA26
XC2S600E
-
I/O, L96P
I/O, L96P_Y
I/O, L95N
3
AA22
XC2S600E
-
-
I/O, L95N_Y
I/O, L95P
3
Y22
XC2S600E
-
I/O
I/O, L95P_Y
I/O, L94N
3
Y23
XC2S400E
-
I/O, L94N_Y
I/O, L94N
I/O, L94P
3
Y24
XC2S400E
-
I/O, L94P_Y
I/O, L94P
I/O, L93N
3
Y25
XC2S600E
-
I/O, L93N
I/O, L93N_Y
I/O, L93P
3
Y26
XC2S600E
-
I/O, L93P
I/O, L93P_Y
I/O, VREF Bank 3,
L92N_YY
3
W21
All
All
I/O, VREF Bank 3,
L92N_YY
I/O, VREF Bank 3,
L92N_YY
I/O, L92P_YY
3
W22
All
-
I/O, L92P_YY
I/O, L92P_YY
I/O
3
Y21
-
-
-
I/O
I/O, L91N_YY
3
W25
All
-
I/O, L91N_YY
I/O, L91N_YY
I/O, L91P_YY
3
W26
All
-
I/O, L91P_YY
I/O, L91P_YY
I/O
3
W20
-
-
I/O
I/O
I/O, L90N
3
V19
XC2S400E
-
I/O, L90N_Y
I/O, L90N
I/O, L90P
3
V20
XC2S400E
-
I/O, L90P_Y
I/O, L90P
I/O, L89N
3
V21
XC2S600E
XC2S600E
-
I/O, VREF Bank 3,
L89N_Y
I/O, L89P
3
V22
XC2S600E
-
I/O
I/O, L89P_Y
I/O
3
V23
-
-
I/O
I/O
I/O, L88N_YY
3
V24
All
-
I/O, L88N_YY
I/O, L88N_YY
Function
98
VREF
Option
XC2S400E
XC2S600E
www.xilinx.com
DS077-4 (2.3) June 18, 2008
Product Specification
R
Spartan-IIE FPGA Family: Pinout Tables
FG676 Pinouts (XC2S400E, XC2S600E) (Continued)
Pad Name
Device-Specific Pinouts
Bank
Pin
LVDS Async.
Output Option
I/O, L88P_YY
3
V25
All
-
I/O, L88P_YY
I/O, L88P_YY
I/O
3
V26
-
-
I/O
I/O
I/O, VREF Bank 3,
L87N_YY
3
U19
All
All
I/O, VREF Bank 3,
L87N_YY
I/O, VREF Bank 3,
L87N_YY
I/O (D6), L87P_YY
3
U20
All
-
I/O (D6), L87P_YY
I/O (D6), L87P_YY
I/O (D5), L86N_YY
3
U22
All
-
I/O (D5), L86N_YY
I/O (D5), L86N_YY
I/O, L86P_YY
3
U23
All
-
I/O, L86P_YY
I/O, L86P_YY
I/O
3
U24
-
-
-
I/O
I/O, L85N
3
U25
XC2S600E
-
-
I/O, L85N_Y
I/O, L85P
3
U26
XC2S600E
-
I/O
I/O, L85P_Y
I/O
3
R18
-
-
I/O
I/O
I/O, L84N
3
T19
XC2S400E
-
I/O, L84N_Y
I/O, L84N
I/O, L84P
3
T20
XC2S400E
-
I/O, L84P_Y
I/O, L84P
I/O, L83N
3
T21
XC2S600E
-
I/O, L83N
I/O, L83N_Y
I/O, L83P
3
T22
XC2S600E
-
I/O, L83P
I/O, L83P_Y
I/O
3
T24
-
-
-
I/O
I/O, L82N
3
T25
XC2S600E
-
I/O, L82N
I/O, L82N_Y
I/O, L82P
3
T26
XC2S600E
-
I/O, L82P
I/O, L82P_Y
I/O
3
R19
-
-
-
I/O
I/O, L81N
3
R20
XC2S600E
-
I/O, L81N
I/O, L81N_Y
I/O, L81P
3
R21
XC2S600E
-
I/O, L81P
I/O, L81P_Y
I/O, VREF Bank 3,
L80N_YY
3
R22
All
All
I/O, VREF Bank 3,
L80N_YY
I/O, VREF Bank 3,
L80N_YY
I/O (D4), L80P_YY
3
R23
All
-
I/O (D4), L80P_YY
I/O (D4), L80P_YY
I/O
3
P18
-
-
-
I/O
I/O, L79N_YY
3
R25
All
-
I/O, L79N_YY
I/O, L79N_YY
I/O, L79P_YY
3
R26
All
-
I/O, L79P_YY
I/O, L79P_YY
I/O
3
P19
-
-
-
I/O
I/O, L78N
3
P20
XC2S400E
-
I/O, L78N_Y
I/O, L78N
I/O, L78P
3
P21
XC2S400E
-
I/O, L78P_Y
I/O, L78P
I/O, VREF Bank 3,
L77N
3
P22
XC2S600E
All
I/O, VREF Bank 3,
L77N
I/O, VREF Bank 3,
L77N_Y
I/O, L77P
3
P23
XC2S600E
-
I/O, L77P
I/O, L77P_Y
I/O
3
P24
-
-
-
I/O
I/O, L76N_YY
3
P25
All
-
I/O, L76N_YY
I/O, L76N_YY
I/O, L76P_YY
3
P26
All
-
I/O, L76P_YY
I/O, L76P_YY
Function
DS077-4 (2.3) June 18, 2008
Product Specification
VREF
Option
XC2S400E
XC2S600E
www.xilinx.com
99
R
Spartan-IIE FPGA Family: Pinout Tables
FG676 Pinouts (XC2S400E, XC2S600E) (Continued)
Pad Name
Device-Specific Pinouts
Bank
Pin
LVDS Async.
Output Option
I/O
3
N18
-
-
-
I/O
I/O (TRDY)
3
N24
-
-
I/O (TRDY)
I/O (TRDY)
I/O (IRDY), L75N_YY
2
N26
All
-
I/O (IRDY), L75N_YY
I/O (IRDY), L75N_YY
I/O, L75P_YY
2
N25
All
-
I/O, L75P_YY
I/O, L75P_YY
I/O
2
N19
-
-
-
I/O
I/O, L74N
2
N23
XC2S600E
-
-
I/O, L74N_Y
I/O, L74P
2
N22
XC2S600E
-
I/O
I/O, L74P_Y
I/O
2
M23
-
-
I/O
I/O
I/O, L73N
2
N21
XC2S600E
-
I/O, L73N
I/O, L73N_Y
I/O, VREF Bank 2,
L73P
2
N20
XC2S600E
All
I/O, VREF Bank 2,
L73P
I/O, VREF Bank 2,
L73P_Y
I/O, L72N
2
M26
XC2S400E
-
I/O, L72N_Y
I/O, L72N
I/O, L72P
2
M25
XC2S400E
-
I/O, L72P_Y
I/O, L72P
I/O
2
M22
-
-
-
I/O
I/O, L71N_YY
2
M21
All
-
I/O, L71N_YY
I/O, L71N_YY
I/O, L71P_YY
2
M20
All
-
I/O, L71P_YY
I/O, L71P_YY
I/O
2
L26
-
-
-
I/O
I/O (D3), L70N_YY
2
M19
All
-
I/O (D3), L70N_YY
I/O (D3), L70N_YY
I/O, VREF Bank 2,
L70P_YY
2
M18
All
All
I/O, VREF Bank 2,
L70P_YY
I/O, VREF Bank 2,
L70P_YY
I/O, L69N
2
L25
XC2S600E
-
I/O, L69N
I/O, L69N_Y
I/O, L69P
2
L24
XC2S600E
-
I/O, L69P
I/O, L69P_Y
I/O
2
L22
-
-
-
I/O
I/O, L68N
2
L21
XC2S600E
-
I/O, L68N
I/O, L68N_Y
I/O, L68P
2
L20
XC2S600E
-
I/O, L68P
I/O, L68P_Y
I/O
2
L19
-
-
-
I/O
I/O, L67N
2
K26
XC2S600E
-
I/O, L67N
I/O, L67N_Y
I/O, L67P
2
K25
XC2S600E
-
I/O, L67P
I/O, L67P_Y
I/O, L66N
2
K24
-
-
-
I/O, L66N
I/O, L66P
2
K23
-
-
I/O
I/O, L66P
I/O
2
K22
-
-
-
I/O
I/O, L65N
2
K20
XC2S600E
-
I/O
I/O, L65N_Y
I/O, L65P
2
K19
XC2S600E
-
I/O
I/O, L65P_Y
I/O
2
J26
-
-
I/O
I/O
Function
100
VREF
Option
XC2S400E
XC2S600E
www.xilinx.com
DS077-4 (2.3) June 18, 2008
Product Specification
R
Spartan-IIE FPGA Family: Pinout Tables
FG676 Pinouts (XC2S400E, XC2S600E) (Continued)
Pad Name
Device-Specific Pinouts
Bank
Pin
LVDS Async.
Output Option
I/O, L64N_YY
2
J25
All
-
I/O, L64N_YY
I/O, L64N_YY
I/O (D2), L64P_YY
2
J24
All
-
I/O (D2), L64P_YY
I/O (D2), L64P_YY
I/O (D1)
2
J23
-
-
I/O (D1)
I/O (D1)
I/O, VREF Bank 2,
L63N_YY
2
J22
All
All
I/O, VREF Bank 2,
L63N_YY
I/O, VREF Bank 2,
L63N_YY
I/O, L63P_YY
2
J21
All
-
I/O, L63P_YY
I/O, L63P_YY
I/O, L62N_YY
2
J20
All
-
I/O, L62N_YY
I/O, L62N_YY
I/O, L62P_YY
2
J19
All
-
I/O, L62P_YY
I/O, L62P_YY
I/O
2
H22
-
-
I/O
I/O
I/O, L61N
2
H26
XC2S600E
-
I/O
I/O, L61N_Y
I/O, L61P
2
H25
XC2S600E
XC2S600E
-
I/O, VREF Bank 2,
L61P_Y
I/O, L60N
2
H21
XC2S400E
-
I/O, L60N_Y
I/O, L60N
I/O, L60P
2
H20
XC2S400E
-
I/O, L60P_Y
I/O, L60P
I/O
2
G26
-
-
-
I/O
I/O, L59N_YY
2
G25
All
-
I/O, L59N_YY
I/O, L59N_YY
I/O, L59P_YY
2
G24
All
-
I/O, L59P_YY
I/O, L59P_YY
I/O
2
G23
-
-
I/O
I/O
I/O, L58N_YY
2
G22
All
-
I/O, L58N_YY
I/O, L58N_YY
I/O, VREF Bank 2,
L58P_YY
2
G21
All
All
I/O, VREF Bank 2,
L58P_YY
I/O, VREF Bank 2,
L58P_YY
I/O
2
G20
-
-
I/O
I/O
I/O, L57N_YY
2
F26
All
-
I/O, L57N_YY
I/O, L57N_YY
I/O, L57P_YY
2
F25
All
-
I/O, L57P_YY
I/O, L57P_YY
I/O, L56N
2
F24
XC2S600E
-
I/O, L56N
I/O, L56N_Y
I/O, L56P
2
F23
XC2S600E
-
I/O, L56P
I/O, L56P_Y
I/O
2
F22
-
-
-
I/O
I/O, L55N
2
E26
XC2S600E
-
I/O, L55N
I/O, L55N_Y
I/O, VREF Bank 2,
L55P
2
E25
XC2S600E
All
I/O, VREF Bank 2,
L55P
I/O, VREF Bank 2,
L55P_Y
I/O, L54N
2
E23
XC2S400E
-
I/O, L54N_Y
I/O, L54N
I/O, L54P
2
E22
XC2S400E
-
I/O, L54P_Y
I/O, L54P
I/O, L53N_YY
2
F21
All
-
I/O, L53N_YY
I/O, L53N_YY
I/O, L53P_YY
2
E21
All
-
I/O, L53P_YY
I/O, L53P_YY
I/O, L52N
2
D26
XC2S600E
-
I/O
I/O, L52N_Y
I/O, L52P
2
D25
XC2S600E
-
-
I/O, L52P_Y
Function
DS077-4 (2.3) June 18, 2008
Product Specification
VREF
Option
XC2S400E
XC2S600E
www.xilinx.com
101
R
Spartan-IIE FPGA Family: Pinout Tables
FG676 Pinouts (XC2S400E, XC2S600E) (Continued)
Pad Name
Device-Specific Pinouts
Bank
Pin
LVDS Async.
Output Option
I/O, L51N
2
D24
-
-
-
I/O, L51N
I/O, L51P
2
C25
-
-
-
I/O, L51P
I/O (DIN, D0),
L50N_YY
2
C26
All
-
I/O (DIN, D0),
L50N_YY
I/O (DIN, D0),
L50N_YY
I/O (DOUT, BUSY),
L50P_YY
2
B26
All
-
I/O (DOUT, BUSY),
L50P_YY
I/O (DOUT, BUSY),
L50P_YY
CCLK
2
A25
-
-
CCLK
CCLK
TDO
2
C23
-
-
TDO
TDO
TDI
-
D22
-
-
TDI
TDI
I/O (CS), L49P_YY
1
B24
All
-
I/O (CS), L49P_YY
I/O (CS), L49P_YY
I/O (WRITE), L49N_YY
1
A24
All
-
I/O (WRITE),
L49N_YY
I/O (WRITE),
L49N_YY
I/O, L48P
1
B23
-
-
I/O
I/O, L48P
I/O, L48N
1
A23
-
-
-
I/O, L48N
I/O, L47P
1
B22
XC2S400E
-
I/O, L47P_Y
I/O, L47P
I/O, L47N
1
A22
XC2S400E
-
I/O, L47N_Y
I/O, L47N
I/O, L46P_YY
1
D21
All
-
I/O, L46P_YY
I/O, L46P_YY
I/O, L46N_YY
1
C21
All
-
I/O, L46N_YY
I/O, L46N_YY
I/O, VREF Bank 1,
L45P_YY
1
B21
All
All
I/O, VREF Bank 1,
L45P_YY
I/O, VREF Bank 1,
L45P_YY
I/O, L45N_YY
1
A21
All
-
I/O, L45N_YY
I/O, L45N_YY
I/O, L44P
1
F20
XC2S600E
-
-
I/O, L44P_Y
I/O, L44N
1
E20
XC2S600E
-
I/O
I/O, L44N_Y
I/O, L43P_YY
1
D20
All
-
I/O, L43P_YY
I/O, L43P_YY
I/O, L43N_YY
1
C20
All
-
I/O, L43N_YY
I/O, L43N_YY
I/O, L42P_YY
1
B20
All
-
I/O, L42P_YY
I/O, L42P_YY
I/O, L42N_YY
1
A20
All
-
I/O, L42N_YY
I/O, L42N_YY
I/O, VREF Bank 1,
L41P_YY
1
G19
All
All
I/O, VREF Bank 1,
L41P_YY
I/O, VREF Bank 1,
L41P_YY
I/O, L41N_YY
1
F19
All
-
I/O, L41N_YY
I/O, L41N_YY
I/O
1
E19
-
-
-
I/O
I/O, L40P_YY
1
B19
All
-
I/O, L40P_YY
I/O, L40P_YY
I/O, L40N_YY
1
A19
All
-
I/O, L40N_YY
I/O, L40N_YY
I/O
1
H18
-
-
I/O
I/O
I/O, L39P
1
G18
XC2S600E
-
I/O, L39P
I/O, L39P_Y
Function
102
VREF
Option
XC2S400E
XC2S600E
www.xilinx.com
DS077-4 (2.3) June 18, 2008
Product Specification
R
Spartan-IIE FPGA Family: Pinout Tables
FG676 Pinouts (XC2S400E, XC2S600E) (Continued)
Pad Name
Device-Specific Pinouts
Bank
Pin
LVDS Async.
Output Option
I/O, L39N
1
F18
XC2S600E
-
I/O, L39N
I/O, L39N_Y
I/O, L38P
1
D18
XC2S600E
XC2S600E
-
I/O, VREF Bank 1,
L38P_Y
I/O, L38N
1
C18
XC2S600E
-
I/O
I/O, L38N_Y
I/O, L37P_YY
1
B18
All
-
I/O, L37P_YY
I/O, L37P_YY
I/O, L37N_YY
1
A18
All
-
I/O, L37N_YY
I/O, L37N_YY
I/O, L36P_YY
1
H17
All
-
I/O, L36P_YY
I/O, L36P_YY
I/O, L36N_YY
1
G17
All
-
I/O, L36N_YY
I/O, L36N_YY
I/O, VREF Bank 1,
L35P_YY
1
E18
All
All
I/O, VREF Bank 1,
L35P_YY
I/O, VREF Bank 1,
L35P_YY
I/O, L35N_YY
1
E17
All
-
I/O, L35N_YY
I/O, L35N_YY
I/O, L34P_YY
1
D17
All
-
I/O, L34P_YY
I/O, L34P_YY
I/O, L34N_YY
1
C17
All
-
I/O, L34N_YY
I/O, L34N_YY
I/O
1
H16
-
-
-
I/O
I/O, L33P
1
B17
XC2S600E
-
I/O, L33P
I/O, L33P_Y
I/O, L33N
1
A17
XC2S600E
-
I/O, L33N
I/O, L33N_Y
I/O
1
G16
-
-
-
I/O
I/O, L32P_YY
1
F16
All
-
I/O, L32P_YY
I/O, L32P_YY
I/O, L32N_YY
1
E16
All
-
I/O, L32N_YY
I/O, L32N_YY
I/O, L31P_YY
1
C16
All
-
I/O, L31P_YY
I/O, L31P_YY
I/O, L31N_YY
1
B16
All
-
I/O, L31N_YY
I/O, L31N_YY
I/O
1
A16
-
-
-
I/O
I/O, L30P
1
J15
-
-
I/O, L30P
I/O, L30P
I/O, L30N
1
H15
-
-
I/O, L30N
I/O, L30N
I/O
1
G15
-
-
-
I/O
I/O, L29P_YY
1
F15
All
-
I/O, L29P_YY
I/O, L29P_YY
I/O, L29N_YY
1
E15
All
-
I/O, L29N_YY
I/O, L29N_YY
I/O, VREF Bank 1,
L28P_YY
1
B15
All
All
I/O, VREF Bank 1,
L28P_YY
I/O, VREF Bank 1,
L28P_YY
I/O, L28N_YY
1
A15
All
-
I/O, L28N_YY
I/O, L28N_YY
I/O
1
D15
-
-
-
I/O
I/O, L27P_YY
1
J14
All
-
I/O, L27P_YY
I/O, L27P_YY
I/O, L27N_YY
1
H14
All
-
I/O, L27N_YY
I/O, L27N_YY
I/O
1
G14
-
-
-
I/O
I/O, L26P
1
F14
XC2S600E
-
I/O, L26P
I/O, L26P_Y
I/O, L26N
1
E14
XC2S600E
-
I/O, L26N
I/O, L26N_Y
Function
DS077-4 (2.3) June 18, 2008
Product Specification
VREF
Option
XC2S400E
XC2S600E
www.xilinx.com
103
R
Spartan-IIE FPGA Family: Pinout Tables
FG676 Pinouts (XC2S400E, XC2S600E) (Continued)
Pad Name
Bank
Pin
LVDS Async.
Output Option
I/O, VREF Bank 1,
L25P
1
D14
XC2S600E
I/O, L25N
1
C14
I/O
1
I/O, L24P
Function
VREF
Option
Device-Specific Pinouts
XC2S400E
XC2S600E
All
I/O, VREF Bank 1,
L25P
I/O, VREF Bank 1,
L25P_Y
XC2S600E
-
I/O, L25N
I/O, L25N_Y
J13
-
-
-
I/O
1
C13
-
-
I/O, L24P
I/O, L24P
I/O, L24N
1
D13
-
-
I/O, L24N
I/O, L24N
I/O
1
H13
-
-
-
I/O
I/O (DLL), L23P
1
B14
-
-
I/O (DLL), L23P
I/O (DLL), L23P
GCK2, I
1
A14
-
-
GCK2, I
GCK2, I
GCK3, I
0
A13
-
-
GCK3, I
GCK3, I
I/O (DLL), L23N
0
B13
-
-
I/O (DLL), L23N
I/O (DLL), L23N
I/O
0
E13
-
-
-
I/O
I/O, L22P_YY
0
F13
All
-
I/O, L22P_YY
I/O, L22P_YY
I/O, L22N_YY
0
G13
All
-
I/O, L22N_YY
I/O, L22N_YY
I/O, L21P
0
A12
XC2S600E
-
-
I/O, L21P_Y
I/O, VREF Bank 0,
L21N
0
B12
XC2S600E
All
I/O, VREF Bank 0
I/O, VREF Bank 0,
L21N_Y
I/O, L20P
0
D12
XC2S600E
-
I/O, L20P
I/O, L20P_Y
I/O, L20N
0
E12
XC2S600E
-
I/O, L20N
I/O, L20N_Y
I/O
0
F12
-
-
-
I/O
I/O, L19P_YY
0
G12
All
-
I/O, L19P_YY
I/O, L19P_YY
I/O, L19N_YY
0
H12
All
-
I/O, L19N_YY
I/O, L19N_YY
I/O
0
J12
-
-
-
I/O
I/O, L18P_YY
0
A11
All
-
I/O, L18P_YY
I/O, L18P_YY
I/O, VREF Bank 0,
L18N_YY
0
B11
All
All
I/O, VREF Bank 0,
L18N_YY
I/O, VREF Bank 0,
L18N_YY
I/O, L17P_YY
0
E11
All
-
I/O, L17P_YY
I/O, L17P_YY
I/O, L17N_YY
0
F11
All
-
I/O, L17N_YY
I/O, L17N_YY
I/O
0
C11
-
-
-
I/O
I/O, L16P
0
G11
-
-
I/O, L16P
I/O, L16P
I/O, L16N
0
H11
-
-
I/O, L16N
I/O, L16N
I/O
0
C10
-
-
-
I/O
I/O, L15P_YY
0
A10
All
-
I/O, L15P_YY
I/O, L15P_YY
I/O, L15N_YY
0
B10
All
-
I/O, L15N_YY
I/O, L15N_YY
I/O, L14P_YY
0
D10
All
-
I/O, L14P_YY
I/O, L14P_YY
104
www.xilinx.com
DS077-4 (2.3) June 18, 2008
Product Specification
R
Spartan-IIE FPGA Family: Pinout Tables
FG676 Pinouts (XC2S400E, XC2S600E) (Continued)
Pad Name
Device-Specific Pinouts
Bank
Pin
LVDS Async.
Output Option
I/O, L14N_YY
0
E10
All
-
I/O, L14N_YY
I/O, L14N_YY
I/O
0
G10
-
-
-
I/O
I/O, L13P
0
A9
XC2S600E
-
I/O, L13P
I/O, L13P_Y
I/O, L13N
0
B9
XC2S600E
-
I/O, L13N
I/O, L13N_Y
I/O
0
H10
-
-
-
I/O
I/O, L12P_YY
0
C9
All
-
I/O, L12P_YY
I/O, L12P_YY
I/O, L12N_YY
0
D9
All
-
I/O, L12N_YY
I/O, L12N_YY
I/O
0
E9
-
-
I/O
I/O
I/O, VREF Bank 0,
L11P
0
F9
-
All
I/O, VREF Bank 0,
L11P
I/O, VREF Bank 0,
L11P
I/O, L11N
0
G9
-
-
I/O, L11N
I/O, L11N
I/O, L10P
0
A8
-
-
I/O, L10P
I/O, L10P
I/O, L10N
0
B8
-
-
I/O, L10N
I/O, L10N
I/O
0
H9
-
-
I/O
I/O
I/O, L9P
0
E8
XC2S600E
-
I/O
I/O, L9P_Y
I/O, L9N
0
F8
XC2S600E
XC2S600E
-
I/O, VREF Bank 0,
L9N_Y
I/O, L8P
0
A7
XC2S600E
-
I/O, L8P
I/O, L8P_Y
I/O, L8N
0
B7
XC2S600E
-
I/O, L8N
I/O, L8N_Y
I/O
0
G8
-
-
I/O
I/O
I/O, L7P_YY
0
C7
All
-
I/O, L7P_YY
I/O, L7P_YY
I/O, L7N_YY
0
D7
All
-
I/O, L7N_YY
I/O, L7N_YY
I/O
0
E7
-
-
-
I/O
I/O, L6P_YY
0
F7
All
-
I/O, L6P_YY
I/O, L6P_YY
I/O, VREF Bank 0,
L6N_YY
0
G7
All
All
I/O, VREF Bank 0,
L6N_YY
I/O, VREF Bank 0,
L6N_YY
I/O
0
A6
-
-
I/O
I/O
I/O, L5P
0
B6
-
-
I/O, L5P
I/O, L5P
I/O, L5N
0
C6
-
-
I/O, L5N
I/O, L5N
I/O, L4P
0
D6
-
-
I/O, L4P
I/O, L4P
I/O, L4N
0
E6
-
-
I/O, L4N
I/O, L4N
I/O
0
F6
-
-
-
I/O
I/O, L3P_YY
0
A5
All
-
I/O, L3P_YY
I/O, L3P_YY
I/O, VREF Bank 0,
L3N_YY
0
B5
All
All
I/O, VREF Bank 0,
L3N_YY
I/O, VREF Bank 0,
L3N_YY
I/O, L2P_YY
0
D5
All
-
I/O, L2P_YY
I/O, L2P_YY
Function
DS077-4 (2.3) June 18, 2008
Product Specification
VREF
Option
XC2S400E
XC2S600E
www.xilinx.com
105
R
Spartan-IIE FPGA Family: Pinout Tables
FG676 Pinouts (XC2S400E, XC2S600E) (Continued)
Pad Name
Device-Specific Pinouts
Bank
Pin
LVDS Async.
Output Option
I/O, L2N_YY
0
E5
All
-
I/O, L2N_YY
I/O, L2N_YY
I/O, L1P_YY
0
B4
All
-
I/O, L1P_YY
I/O, L1P_YY
I/O, L1N_YY
0
C4
All
-
I/O, L1N_YY
I/O, L1N_YY
I/O, L0P
0
A3
XC2S600E
-
I/O
I/O, L0P_Y
I/O, L0N
0
B3
XC2S600E
-
-
I/O, L0N_Y
I/O
0
A4
-
-
I/O
I/O
TCK
-
A2
-
-
TCK
TCK
Function
VREF
Option
XC2S400E
XC2S600E
FG676 Differential Clock Pins
P Input
N Input
Clock
Bank
Pin
Name
Pin
Name
GCK0
4
AF14
GCK0, I
AE14
I/O (DLL), L126P
GCK1
5
AF13
GCK1, I
AE13
I/O (DLL), L126N
GCK2
1
A14
GCK2, I
B14
I/O (DLL), L23P
GCK3
0
A13
GCK3, I
B13
I/O (DLL), L23N
Additional FG676 Package Pins
VCCINT Pins
H8
H19
J9
J18
K10
K11
K16
K17
L10
L17
T10
T17
U10
U11
U16
U17
V9
V18
W8
W19
-
C8
D11
J10
J11
K12
K13
C22
D16
J16
J17
K14
K15
H24
K18
L18
L23
M17
N17
R17
T18
T23
U18
W24
AB24
U15
V16
V17
AC16
AD19
AD22
U13
V10
V11
AC11
AD5
AD8
R10
T4
T9
U9
W3
AB3
K9
L4
L9
M10
N10
E3
VCCO Bank 0 Pins
C5
VCCO Bank 1 Pins
C19
VCCO Bank 2 Pins
E24
VCCO Bank 3 Pins
P17
VCCO Bank 4 Pins
U14
VCCO Bank 5 Pins
U12
VCCO Bank 6 Pins
P10
VCCO Bank 7 Pins
H3
106
www.xilinx.com
DS077-4 (2.3) June 18, 2008
Product Specification
R
Spartan-IIE FPGA Family: Pinout Tables
Additional FG676 Package Pins (Continued)
GND Pins
A1
A26
B2
B25
C3
C12
C15
C24
D4
D8
D19
D23
F10
F17
H4
H23
K6
K21
L11
L12
L13
L14
L15
L16
M3
M11
M12
M13
M14
M15
M16
M24
N11
N12
N13
N14
N15
N16
P11
P12
P13
P14
P15
P16
R3
R11
R12
R13
R14
R15
R16
R24
T11
T12
T13
T14
T15
T16
U6
U21
W4
W23
AA10
AA17
AC4
AC8
AC19
AC23
AD3
AD12
AD15
AD24
AE2
AE25
AF1
AF26
-
Not Connected Pins (XC2S400E Only)
A12
A16
A23
B3
C1
C2
C10
C11
C25
D2
D15
D18
D24
D25
E7
E13
E19
F2
F6
F8
F12
F20
F22
G10
G14
G15
G16
G26
H10
H13
H16
H25
J6
J8
J12
J13
K1
K4
K22
K24
L3
L19
L22
L26
M4
M9
M22
N1
N4
N9
N18
N19
N23
P4
P5
P18
P19
P24
R4
R7
R19
T3
T24
U1
U4
U7
U24
U25
V8
V12
V13
V21
W12
W13
W14
W16
Y3
Y7
Y21
AA7
AA9
AA22
AB15
AB16
AB17
AB22
AC1
AC15
AC22
AC25
AC26
AD1
AD2
AD10
AD11
AD13
AD14
AE5
AE19
AE24
AF4
AF16
AF18
AF20
-
DS077-4 (2.3) June 18, 2008
Product Specification
www.xilinx.com
107
R
Spartan-IIE FPGA Family: Pinout Tables
Revision History
Version
No.
Date
1.0
11/15/01
Initial Xilinx release.
1.1
12/20/01
Corrected differential pin pair designations.
2.0
11/18/02
Added XC2S400E and XC2S600E and FG676. Removed L37 designation from FT256 pinouts.
Minor corrections and clarifications to pinout definitions. Removed Preliminary designation.
2.1
02/14/03
Added differential pairs table on page 57, fixed 3 P/N designation typos introduced in v2.0.
Clarified that XC2S50E has two VREF pins per bank.
2.3
06/18/08
Added Package Overview section. Updated all modules for continuous page, figure, and table
numbering. Updated links. Synchronized all modules to v2.3.
108
Description
www.xilinx.com
DS077-4 (2.3) June 18, 2008
Product Specification