ALLEGRO A1140

A1140, A1141, A1142, and A1143
Sensitive Two-Wire Chopper-Stabilized
Unipolar Hall Effect Switches
Features and Benefits
Description
▪ Chopper stabilization
▫ Low switchpoint drift over operating
temperature range
▫ Low sensitivity to stress
▪ Factory programmed at end-of-line for optimized
switchpoints
▪ On-chip protection
▫ Supply transient protection
▫ Reverse-battery protection
▫ On-board voltage regulator
▫ 3.5 to 24 V operation
The A1140, A1141, A1142, and A1143 devices are sensitive,
two-wire, unipolar, Hall effect switches that are factoryprogrammed at end-of-line to optimize magnetic switchpoint
accuracy. These devices use a patented high frequency chopperstabilization technique, produced using the Allegro advanced
BiCMOS wafer fabrication process, to achieve magnetic
stability and to eliminate offset inherent in single-element
devices exposed to harsh application environments.
Packages: 3 pin SOT23W (suffix LH), and
3 pin SIP (suffix UA)
Commonly found in a number of automotive applications,
these switches are utilized to sense seat track position,
seat belt buckle presence, hood/trunk latching, and shift
selector position. Two-wire unipolar switches, such as the
A1140/41/42/43 family, are particularly advantageous in
price-sensitive applications because they require one less
wire for operation than do switches with the more traditional
open-collector output. Additionally, the system designer
inherently gains diagnostics because there is always output
current flowing, which should be in either of two narrow
ranges. Any current level not within these ranges indicates a
fault condition. The A1140/41/42/43 family of switches also
Continued on the next page…
Not to scale
Functional Block Diagram
V+
VCC
Regulator
To All Subcircuits
Dynamic Offset
Cancellation
0.01 uF
Amp
Sample and Hold
Clock/Logic
Low-Pass
Filter
GND
Package UA Only
A1140-DS, Rev. 8
GND
Sensitive Two-Wire Chopper-Stabilized
Unipolar Hall Effect Switches
A1140, A1141,
A1142, and A1143
Description (continued)
features on-chip transient protection and a Zener clamp to protect
against overvoltage conditions on the supply line.
and switch HIGH otherwise. The other differences in the switches
are their defined low current levels and magnetic switchpoints.
The output currents of the A1141 and A1143 switch HIGH in the
presence of a south (+) polarity magnetic field of sufficient strength,
and switch LOW otherwise, as in the presence of a weak field or a
north (–) polarity field. The other two devices in the family (A1140
and A1142) have an opposite output: the currents switch LOW in
the presence of a south-polarity magnetic field of sufficient strength,
All versions are offered in two package styles. The LH is a SOT23W, miniature low-profile package for surface-mount applications.
The UA is a three-lead ultramini SIP for through-hole mounting.
Each package is available in a lead (Pb) free version (suffix, –T)
with 100% matte tin plated leadframe. Field-programmable versions
also available: A1180, A1181, A1182, and A1183.
Absolute Maximum Ratings
Characteristic
Symbol
Supply Voltage
VCC
Reverse Supply Voltage
Notes
Rating
Units
28
V
VRCC
–18
V
Magnetic Flux Density
B
Unlimited
G
Operating Ambient Temperature
TA
Maximum Junction Temperature
TJ(max)
165
ºC
Tstg
–65 to 170
ºC
Storage Temperature
Range E
–40 to 85
ºC
Range L
–40 to 150
ºC
Package LH, 3-pin SOT
Package UA, 3-pin SIP
3
NC
1. VCC
2. No connection
3. GND
1
2
1. VCC
2. GND
3. GND
1
2
3
Allegro MicroSystems, Inc.
115 Northeast Cutoff, Box 15036
Worcester, Massachusetts 01615-0036 (508) 853-5000
www.allegromicro.com
2
Sensitive Two-Wire Chopper-Stabilized
Unipolar Hall Effect Switches
A1140, A1141,
A1142, and A1143
Product Selection Guide
A1140EUATI-T4
Yes
Tape and Reel, 2000 pieces/reel
Through Hole
Operating Ambient
Temperature, TA
(°C)
–40 to 85
A1140LUATI-T4
Yes
Tape and Reel, 2000 pieces/reel
Through Hole
–40 to 150
A1141EUATI-T4
Yes
Tape and Reel, 2000 pieces/reel
Through Hole
–40 to 85
–40 to 150
Part Number
Pb-Free1
Packing2
Package
A1141LUATI-T4
Yes
Tape and Reel, 2000 pieces/reel
Through Hole
A1142ELHLT-T
Yes
Tape and Reel, 3000 pieces/reel
Surface Mount
A1142EUA-T
Yes
Bulk Bag, 500 pieces/bag
A1142EUATI-T4
Yes
Tape and Reel, 2000 pieces/reel
A1142LLHLT-T
Yes
Tape and Reel, 3000 pieces/reel
A1142LUA-T
Yes
Bulk Bag, 500 pieces/bag
A1142LUATI-T4
Yes
Tape and Reel, 2000 pieces/reel
A1143ELHLT-T
Yes
Tape and Reel, 3000 pieces/reel
A1143EUA-T
Yes
Bulk Bag, 500 pieces/bag
A1143EUATI-T4
Yes
Tape and Reel, 2000 pieces/reel
A1143LLHLT-T
Yes
Tape and Reel, 3000 pieces/reel
Through Hole
Low
2 to 5
High
Low
–40 to 150
5 to 6.9
Surface Mount
Through Hole
Surface Mount
Supply Current at
Low Output, ICC(L)
(mA)
–40 to 85
Surface Mount
Through Hole
Output Level in
South (+) Field3
–40 to 85
High
A1143LUA-T
Yes
Bulk Bag, 500 pieces/bag
–40 to 150
Through Hole
Yes
Tape and Reel, 2000 pieces/reel
A1143LUATI-T4
1Pb-based variants are being phased out of the product line.
(a) Certain variants cited in this footnote are in production but have been determined to be NOT FOR NEW DESIGN. This classification indicates that
sale of this device is currently restricted to existing customer applications. The device should not be purchased for new design applications because
obsolescence in the near future is probable. Samples are no longer available. Status change: May 1, 2006. These variants include A1140EUATI,
A1140LUATI, A1140LUATI, A1141EUA, A1141EUATI, A1141LLHLT, A1141LUA, A1141LUATI, A1142EUATI, A1142LUATI,A1142LLHLT, A1142LUA,
A1143EUATI, A1143LUA , and A1143LUATI.
(b) Certain variants cited in this footnote are in production but have been determined to be LAST TIME BUY. This classification indicates that the
product is obsolete and notice has been given. Sale of this device is currently restricted to existing customer applications. The device should not be
purchased for new design applications because of obsolescence in the near future. Samples are no longer available. Status date change October 31,
2006. Deadline for receipt of LAST TIME BUY orders is April 27, 2007. These variants include: A1142ELHLT, A1142EUA, A1143ELHLT, A1143EUA, and
A1143LLHLT.
2Contact Allegro for additional packing options.
3South (+) magnetic fields must be of sufficient strength.
4Some restrictions may apply to certain types of sales. Contact Allegro for details.
5The sensors listed in this footnote are available only in limited distribution. Interested customers should contact the appropriate sales person or
field application engineer for more information on availability. These variants include: A1140ELHLT-T, A1140EUA-T, A1140LLHLT-T, A1140LUA-T,
A1141ELHLT-T, A1141EUA-T, A1141LLHLT-T, and A1141LUA-T.
Allegro MicroSystems, Inc.
115 Northeast Cutoff, Box 15036
Worcester, Massachusetts 01615-0036 (508) 853-5000
www.allegromicro.com
3
Sensitive Two-Wire Chopper-Stabilized
Unipolar Hall Effect Switches
A1140, A1141,
A1142, and A1143
ELECTRICAL CHARACTERISTICS over the operating voltage and temperature ranges, unless otherwise specified
Characteristic
Supply Voltage1
Symbol
Test Conditions
Typ.
Max.
Units
3.5
–
24
V
B>BOP for A1140; B<BRP for A1141
2
–
5
mA
B>BOP for A1142; B<BRP for A1143
5
-–
6.9
mA
B>BOP for A1141, A1143
B<BRP for A1140, A1142
12
-–
17
mA
–
–
–1.6
mA
VCC
ICC(L)
Supply Current 2
ICC(H)
Reverse Supply Current
Min.
IRCC
VRCC = –18 V
Supply Zener Clamp Voltage
VZSUPPLY
ICC = ICC(L)(max) + 3 mA; TA = 25°C
28
–
40
V
Supply Zener Clamp Current
IZSUPPLY
VZSUPPLY = 28 V
–
–
ICC(L)(max)
+ 3 mA
mA
Capacitance of the oscilloscope performing the
measurement = 20 pF
–
36
–
mA/μs
–
200
–
kHz
CBYPASS = 0.01 μF
–
–
25
μs
t < ton; VCC slew rate > 25 mV/μs
–
HIGH
–
–
Output Slew Rate3
di/dt
Chopping Frequency
fC
Power-On Time3
ton
Power-On State5,6
POS
1V
CC represents
2Relative values
the generated voltage between the VCC pin and the GND pin.
of B use the algebraic convention, where positive values indicate south magnetic polarity, and negative values indicate north magnetic
polarity; therefore greater B values indicate a stronger south polarity field (or a weaker north polarity field, if present).
3Measured without bypass capacitor between VCC and GND. Use of a bypass capacitor results in slower current change.
3Measured with and without bypass capacitor of 0.01 μF. Adding a larger bypass capacitor causes longer Power-On Time.
5POS is defined as true only with a V
CC slew rate of 25 mV / μs or greater. Operation with a VCC slew rate less than 25 mV / μs can permanently harm
device performance.
6POS is undefined for t > t or B
on
RP < B < BOP .
MAGNETIC CHARACTERISTICS over the operating voltage and temperature ranges, unless otherwise specified
Characteristic
Symbol
Operate Point
BOP
Release Point
BRP
Hysteresis
BHYS
Test Conditions
A1140, A1142 ICC = ICC(L)
A1141, A1143 ICC = ICC(H)
A1140, A1142 ICC = ICC(H)
A1141, A1143 ICC = ICC(L)
BHYS = BOP – BRP
Min.
Typ.*
Max.
Units
50
80
110
G
45
65
105
G
5
15
30
G
*Typical data are for initial design estimations only, and assume optimum manufacturing and application conditions, such as TA = 25°C and VCC = 12 V.
Performance may vary for individual units, within the specified maximum and minimum limits.
Allegro MicroSystems, Inc.
115 Northeast Cutoff, Box 15036
Worcester, Massachusetts 01615-0036 (508) 853-5000
www.allegromicro.com
4
Sensitive Two-Wire Chopper-Stabilized
Unipolar Hall Effect Switches
A1140, A1141,
A1142, and A1143
Characteristic Data
Supply Current (Low) versus Ambient Temperature
at Various Levels of VCC
(A1140 and A1141)
Supply Current (Low) versus Ambient Temperature
at Various Levels of VCC
(A1142 and A1143)
10
10
8
8
6
VCC
3.5 V
12.0 V
24.0 V
4
ICC(L) (mA)
ICC(L) (mA)
VCC
2
0
–50
6
3.5 V
12.0 V
24.0 V
4
2
0
50
100
150
0
–50
200
0
Ambient Temperature, TA (°C)
50
100
150
200
Ambient Temperature, TA (°C)
Supply Current (High) versus Ambient Temperature
at Various Levels of VCC
(A1140, A1141, A1142, and A1143)
20
18
ICC(H) (mA)
VCC
16
3.5 V
12.0 V
24.0 V
14
12
10
–50
0
50
100
150
200
Ambient Temperature, TA (°C)
Operate Point versus Ambient Temperature
at Various Levels of VCC
(A1140, A1141, A1142, and A1143)
Switchpoint Hysteresis versus Ambient Temperature
at Various Levels of VCC
(A1140, A1141, A1142, and A1143)
110
10
100
8
VCC
3.5 V
12.0 V
24.0 V
80
70
6
3.5 V
12.0 V
24.0 V
4
2
60
50
–50
VCC
BHYS (G)
BOP (G)
90
0
50
100
Ambient Temperature, TA (°C)
150
200
0
–50
0
50
100
150
200
Ambient Temperature, TA (°C)
Allegro MicroSystems, Inc.
115 Northeast Cutoff, Box 15036
Worcester, Massachusetts 01615-0036 (508) 853-5000
www.allegromicro.com
5
Sensitive Two-Wire Chopper-Stabilized
Unipolar Hall Effect Switches
A1140, A1141,
A1142, and A1143
THERMAL CHARACTERISTICS may require derating at maximum conditions, see application information
Characteristic
Symbol
Test Conditions*
RθJA
Package Thermal Resistance
Value Units
Package LH, 1-layer PCB with copper limited to solder pads
228
ºC/W
Package LH, 2-layer PCB with 0.463 in.2 of copper area each side
connected by thermal vias
110
ºC/W
Package UA, 1-layer PCB with copper limited to solder pads
165
ºC/W
*Additional thermal information available on Allegro Web site.
Maximum Allowable VCC (V)
Power Derating Curve
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
VCC(max)
2-layer PCB, Package LH
(RθJA = 110 ºC/W)
1-layer PCB, Package UA
(RθJA = 165 ºC/W)
1-layer PCB, Package LH
(RθJA = 228 ºC/W)
20
40
60
80
100
VCC(min)
120
140
160
180
Temperature (ºC)
Power Dissipation, PD (m W)
Power Dissipation versus Ambient Temperature
1900
1800
1700
1600
1500
1400
1300
1200
1100
1000
900
800
700
600
500
400
300
200
100
0
2l
(R aye
rP
θJ
C
A =
11 B, P
0 º ac
1-la
C/ ka
W
(R yer PC
) ge L
θJA =
B
H
165 , Pac
ºC/ kage
W)
UA
1-lay
er P
(R
CB,
θJA =
228 Packag
ºC/W
e LH
)
20
40
60
80
100
120
Temperature (°C)
140
160
180
Allegro MicroSystems, Inc.
115 Northeast Cutoff, Box 15036
Worcester, Massachusetts 01615-0036 (508) 853-5000
www.allegromicro.com
6
Sensitive Two-Wire Chopper-Stabilized
Unipolar Hall Effect Switches
A1140, A1141,
A1142, and A1143
Functional Description
Operation
BRP
BHYS
(A) A1140, A1142
B+
0
ICC(L)
B–
BRP
BOP
B–
ICC(H)
ICC
ICC
ICC(L)
0
I+
Switch to Low
Switch to Low
Switch to High
ICC(H)
Switch to High
I+
in hysteresis allows clean switching of the output even in the
presence of external mechanical vibration and electrical noise.
The A1141 and A1143 devices switch with opposite polarity for
similar BOP and BRP values, in comparison to the A1140 and
A1142 (see figure 1).
BOP
The output, ICC, of the A1140 and A1142 devices switch low
after the magnetic field at the Hall sensor exceeds the operate
point threshold, BOP. When the magnetic field is reduced to
below the release point threshold, BRP, the device output goes
high. The differences between the magnetic operate and release
point is called the hysteresis of the device, BHYS. This built-
B+
BHYS
(B) A1141, A1143
Figure 1. Alternative switching behaviors are available in the A114x device family. On the horizontal axis, the B+ direction indicates
increasing south polarity magnetic field strength, and the B– direction indicates decreasing south polarity field strength (including the
case of increasing north polarity).
Allegro MicroSystems, Inc.
115 Northeast Cutoff, Box 15036
Worcester, Massachusetts 01615-0036 (508) 853-5000
www.allegromicro.com
7
Sensitive Two-Wire Chopper-Stabilized
Unipolar Hall Effect Switches
A1140, A1141,
A1142, and A1143
Chopper Stabilization Technique
When using Hall-effect technology, a limiting factor for
switchpoint accuracy is the small signal voltage developed
across the Hall element. This voltage is disproportionally small
relative to the offset that can be produced at the output of the
Hall sensor. This makes it difficult to process the signal while
maintaining an accurate, reliable output over the specified operating temperature and voltage ranges.
Chopper stabilization is a unique approach used to minimize
Hall offset on the chip. The patented Allegro technique, namely
Dynamic Quadrature Offset Cancellation, removes key sources
of the output drift induced by thermal and mechanical stresses.
This offset reduction technique is based on a signal modulationdemodulation process. The undesired offset signal is separated
from the magnetic field-induced signal in the frequency domain,
through modulation. The subsequent demodulation acts as a
modulation process for the offset, causing the magnetic fieldinduced signal to recover its original spectrum at baseband, while
the dc offset becomes a high-frequency signal. The magneticsourced signal then can pass through a low-pass filter, while the
modulated dc offset is suppressed. This configuration is illustrated in figure 2.
The chopper stabilization technique uses a 200 kHz high
frequency clock. For demodulation process, a sample and hold
technique is used, where the sampling is performed at twice the
chopper frequency (400 kHz). This high-frequency operation
allows a greater sampling rate, which results in higher accuracy
and faster signal-processing capability. This approach desensitizes the chip to the effects of thermal and mechanical stresses,
and produces devices that have extremely stable quiescent Hall
output voltages and precise recoverability after temperature
cycling. This technique is made possible through the use of a
BiCMOS process, which allows the use of low-offset, low-noise
amplifiers in combination with high-density logic integration
and sample-and-hold circuits.
The repeatability of magnetic field-induced switching is affected
slightly by a chopper technique. However, the Allegro highfrequency chopping approach minimizes the affect of jitter and
makes it imperceptible in most applications. Applications that
are more likely to be sensitive to such degradation are those
requiring precise sensing of alternating magnetic fields; for
example, speed sensing of ring-magnet targets. For such applications, Allegro recommends its digital sensor families with lower
sensitivity to jitter. For more information on those devices,
contact your Allegro sales representative.
Regulator
Hall Element
Amp
Sample and
Hold
Clock/Logic
Low-Pass
Filter
Figure 2. Chopper stabilization circuit (Dynamic Quadrature Offset Cancellation)
Allegro MicroSystems, Inc.
115 Northeast Cutoff, Box 15036
Worcester, Massachusetts 01615-0036 (508) 853-5000
www.allegromicro.com
8
A1140, A1141,
A1142, and A1143
Sensitive Two-Wire Chopper-Stabilized
Unipolar Hall Effect Switches
Application Information
Typical Application Circuit
The A114x family of devices must be protected by an external
bypass capacitor, CBYP, connected between the supply, VCC,
and the ground, GND, of the device. CBYP reduces both external
noise and the noise generated by the chopper-stabilization function. As shown in figure 3, a 0.01 μF capacitor is typical.
V+
VCC
A114x
Installation of CBYP must ensure that the traces that connect it to
the A114x pins are no greater than 5 mm in length.
All high-frequency interferences conducted along the supply
lines are passed directly to the load through CBYP, and it serves
only to protect the A114x internal circuitry. As a result, the load
ECU (electronic control unit) must have sufficient protection,
other than CBYP, installed in parallel with the A114x.
GND
CBYP
0.01 μF
GND
B
A
A series resistor on the supply side, RS (not shown), in combination with CBYP, creates a filter for EMI pulses.
When determining the minimum VCC requirement of the A114x
device, the voltage drops across RS and the ECU sense resistor,
RSENSE, must be taken into consideration. The typical value for
RSENSE is approximately 100 Ω.
B
A
Package UA Only
B
Maximum separation 5 mm
RSENSE
ECU
Figure 3. Typical application circuit
For additional general application information, visit the Allegro
Web site at www. allegromicro.com.
Allegro MicroSystems, Inc.
115 Northeast Cutoff, Box 15036
Worcester, Massachusetts 01615-0036 (508) 853-5000
www.allegromicro.com
9
Sensitive Two-Wire Chopper-Stabilized
Unipolar Hall Effect Switches
A1140, A1141,
A1142, and A1143
Power Derating
The device must be operated below the maximum junction
temperature of the device, TJ(max). Under certain combinations of
peak conditions, reliable operation may require derating supplied power or improving the heat dissipation properties of the
application. This section presents a procedure for correlating
factors affecting operating TJ. (Thermal data is also available on
the Allegro MicroSystems Web site.)
The Package Thermal Resistance, RθJA, is a figure of merit summarizing the ability of the application and the device to dissipate
heat from the junction (die), through all paths to the ambient air.
Its primary component is the Effective Thermal Conductivity,
K, of the printed circuit board, including adjacent devices and
traces. Radiation from the die through the device case, RθJC, is
relatively small component of RθJA. Ambient air temperature,
TA, and air motion are significant external factors, damped by
overmolding.
The effect of varying power levels (Power Dissipation, PD), can
be estimated. The following formulas represent the fundamental
relationships used to estimate TJ, at PD.
PD = VIN × IIN
(1)
ΔT = PD × RθJA (2)
TJ = TA + ΔT
Example: Reliability for VCC at TA = 150°C, package UA, using
minimum-K PCB.
Observe the worst-case ratings for the device, specifically:
RθJA = 165°C/W, TJ(max) = 165°C, VCC(max) = 24 V, and
ICC(max) = 17 mA.
Calculate the maximum allowable power level, PD(max). First,
invert equation 3:
ΔTmax = TJ(max) – TA = 165 °C – 150 °C = 15 °C
This provides the allowable increase to TJ resulting from internal
power dissipation. Then, invert equation 2:
PD(max) = ΔTmax ÷ RθJA = 15°C ÷ 165 °C/W = 91 mW
Finally, invert equation 1 with respect to voltage:
VCC(est) = PD(max) ÷ ICC(max) = 91 mW ÷ 17 mA = 5 V
The result indicates that, at TA, the application and device can
dissipate adequate amounts of heat at voltages ≤VCC(est).
Compare VCC(est) to VCC(max). If VCC(est) ≤ VCC(max), then reliable operation between VCC(est) and VCC(max) requires enhanced
RθJA. If VCC(est) ≥ VCC(max), then operation between VCC(est) and
VCC(max) is reliable under these conditions.
(3)
For example, given common conditions such as: TA= 25°C,
VCC = 12 V, ICC = 4 mA, and RθJA = 140 °C/W, then:
PD = VCC × ICC = 12 V × 4 mA = 48 mW
ΔT = PD × RθJA = 48 mW × 140 °C/W = 7°C
TJ = TA + ΔT = 25°C + 7°C = 32°C
A worst-case estimate, PD(max), represents the maximum allowable power level (VCC(max), ICC(max)), without exceeding TJ(max),
at a selected RθJA and TA.
10
Allegro MicroSystems, Inc.
115 Northeast Cutoff, Box 15036
Worcester, Massachusetts 01615-0036 (508) 853-5000
www.allegromicro.com
Sensitive Two-Wire Chopper-Stabilized
Unipolar Hall Effect Switches
A1140, A1141,
A1142, and A1143
Device Qualification Program
Contact Allegro for information.
EMC (Electromagnetic Compatibility) Requirements
Contact your local representative for EMC results.
Test Name
Reference Specification
ESD – Human Body Model
AEC-Q100-002
ESD – Machine Model
AEC-Q100-003
Conducted Transients
ISO 7637-2
Direct RF Injection
ISO 11452-7
Bulk Current Injection
ISO 11452-4
TEM Cell
ISO 11452-3
11
Allegro MicroSystems, Inc.
115 Northeast Cutoff, Box 15036
Worcester, Massachusetts 01615-0036 (508) 853-5000
www.allegromicro.com
Sensitive Two-Wire Chopper-Stabilized
Unipolar Hall Effect Switches
A1140, A1141,
A1142, and A1143
Package LH, 3-Pin; (SOT-23W)
3.00 .118
2.70 .106
0.15 [.006] M C A B
3.04 .120
2.80 .110
3
A
A
1.49 .059
NOM
B
B
8º
0º
0.20 .008
0.08 .003
2.10 .083
1.85 .073
Preliminary dimensions, for reference only
Dimensions in millimeters
U.S. Customary dimensions (in.) in brackets, for reference only
(reference JEDEC TO-236 AB, except case width and terminal tip-to-tip)
Dimensions exclusive of mold flash, gate burrs, and dambar protrusions
Exact case and lead configuration at supplier discretion within limits shown
A Hall element (not to scale)
B Active Area Depth 0.28 [.011]
A
0.96 .038
0.60 .024
0.25 .010
A NOM
1
2
0.25 .010
3X
SEATING
PLANE
0.10 [.004] C
3X 0.50 .020
0.30 .012
C
SEATING PLANE
GAUGE PLANE
1.17 .046
0.75 .030
0.20 [.008] M C A B
0.15 .006
0.00 .000
0.95 .037
1.90 .075
12
Allegro MicroSystems, Inc.
115 Northeast Cutoff, Box 15036
Worcester, Massachusetts 01615-0036 (508) 853-5000
www.allegromicro.com
Sensitive Two-Wire Chopper-Stabilized
Unipolar Hall Effect Switches
A1140, A1141,
A1142, and A1143
Package UA, 3-Pin SIP
.164 4.17
.159 4.04
C
D .0805 2.04
.062 1.57
.058 1.47
NOM
.122 3.10
.117 2.97
D
.0565 1.44
NOM D
B
.085 2.16
MAX
.031 0.79
REF
A
.017 0.44
.014 0.35
.640 16.26
.600 15.24
1
2
3
.019 0.48
.014 0.36
.050 1.27
NOM
Dimensions in inches
Metric dimensions (mm) in brackets, for reference only
A Dambar removal protrusion (6X)
B Ejector mark on opposite side
C Active Area Depth .0195 [0.50] NOM
D Hall element (not to scale)
The products described herein are manufactured under one or more of the following U.S. patents: 5,045,920; 5,264,783; 5,442,283; 5,389,889;
5,581,179; 5,517,112; 5,619,137; 5,621,319; 5,650,719; 5,686,894; 5,694,038; 5,729,130; 5,917,320; and other patents pending.
Allegro MicroSystems, Inc. reserves the right to make, from time to time, such departures from the detail specifications as may be required to
permit improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that
the information being relied upon is current.
Allegro products are not authorized for use as critical components in life-support devices or systems without express written approval.
The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems, Inc. assumes no responsibility for its
use; nor for any infringement of patents or other rights of third parties which may result from its use.
Copyright © 2004, 2006 Allegro MicroSystems, Inc.
13
Allegro MicroSystems, Inc.
115 Northeast Cutoff, Box 15036
Worcester, Massachusetts 01615-0036 (508) 853-5000
www.allegromicro.com