ANADIGICS ACA1206

ACA1206
1 GHz CATV Line Amplifier
PRELIMINARY DATA SHEET - Rev 1.0
FEATURES
•
15 dB Gain
•
Very Low Distortion
•
Excellent Input/Output Match
•
Low DC Power Consumption
•
Good RF Stability with High VSWR Load
Conditions
•
RoHS-compliant Surface Mount Package
Compatible with Automatic Assembly
•
Repeatability of Monolithic Fabrication
•
Meets Cenelec Standard
•
1 GHz Specified Performance
APPLICATIONS
•
•
S7 Package
16 Pin Wide Body SOIC
with Heat Slug
CATV Distribution Amplifier
High Linearity CATV Amplifier
PRODUCT DESCRIPTION
The ACA1206 is a surface mount monolithic GaAs
RF Linear Amplifier that has been developed to
replace, in new designs, the standard CATV Hybrid
amplifiers currently in use. The MMIC consist of two
parallel amplifiers, each with 15 dB gain. The
RF Input
amplifier is optimized for exceptionally low distortion
and noise figure while providing flat gain and
excellent input and output return loss for applications
up to 1 GHz. The device requires single +12 V supply,
and is offered in a RoHS-compliant package.
15dB
12dB
15dB
12dB
ACA1206
ACA0862B/D
Figure 1: Hybrid Application Diagram
09/2005
RF Output
ACA1206
1
GND
GND
16
2
N/C
VA
15
3
RFINA
RFOUTA
14
4
GND
GND
13
5
GND
GND
12
6
RFINB
RFOUTB
11
7
IADJ
VB
10
8
GND
GND
9
Figure 2: Pin Out
Table 1: Pin Description
2
PIN
NAME
DESCRIPTION
PIN
NAME
DESCRIPTION
1
GND
Ground
9
GND
Ground
2
N/C
No Connection
10
VB
Supply for Amplifier B
3
RFINA
Input to Amplifier A
11
RFOUTB
Output from Amplifier B
4
GND
Ground
12
GND
Ground
5
GND
Ground
13
GND
Ground
6
RFINB
Input to Amplifier B
14
RFOUTA
Output from Amplifier A
7
IADJ
Current Adjust
15
VA
Supply for Amplifier A
8
GND
Ground
16
GND
Ground
PRELIMINARY DATA SHEET - Rev 1.0
09/2005
ACA1206
ELECTRICAL CHARACTERISTICS
Table 2: Absolute Minimum and Maximum Ratings
PARAMETER
MIN
MAX
UNIT
Amplifier Supplies (pins 10, 11, 14, 15)
0
+15
VD C
RF Input Power (pins 3, 6)
-
+70
dBmV
-65
+150
°C
Soldering Temperature
-
+260
°C
Soldering Time
-
5.0
se c
Storage Temperature
Stresses in excess of the absolute ratings may cause permanent
damage. Functional operation is not implied under these conditions.
Exposure to absolute ratings for extended periods of time may
adversely affect reliability.
Notes:
1. Pins 3 and 6 should be AC-coupled. No external DC bias should be
applied.
2. Pin 7 should be pulled to ground through resistor R1, as shown in Figure 3.
No external DC bias should be applied.
Table 3: Operating Ranges
PARAMETER
MIN
TYP
MAX
UNIT
RF Frequency
40
-
1000
MHz
-
+12
-
VD C
-40
-
+110
Supply: VDD (pins 10, 11, 14, 15)
Operating Temperature
C
O
The device may be operated safely over these conditions; however,
parametric performance is guaranteed only over the conditions defined in
the electrical specifications.
PRELIMINARY DATA SHEET - Rev 1.0
09/2005
3
ACA1206
Table 4: Electrical Specifications
(TA= +25°C, VDD = +12 VDC)
PARAMETER
MIN
TYP
MAX
UNIT
13.7
14.2
14.7
dB
Gain Flatness
-
0.160.1
60.3
0.1 60.1
-
dB
Noise Figure at 1 GHz (1)
-
3.0
3.5
dB
CTB 195 mA (1), (3), (4)
-
-72
-75
-
-69
-
dB c
77 Channels
110 Channels
128 Channels
CTB 325 mA (1), (2), (5)
-
-75
-74
-
-72
-
dB c
77 Channels
110 Channels
128 Channels
CSO 195 mA (1), (3), (4)
-
-75
-77
-
-68
-
dB c
77 Channels
110 Channels
128 Channels
CSO 325 mA (1), (2), (5)
-
-75
-72
-
-64
-
dB c
77 Channels
110 Channels
128 Channels
XMOD 195 mA (1), (3), (4)
-
-64
-68
-
-61
-
dB c
77 Channels
110 Channels
128 Channels
XMOD 325 mA (1), (2), (5)
-
-69
-70
-
-67
-
dB c
77 Channels
110 Channels
128 Channels
185
300
195
325
205
350
mA
R1 = 1.866 kV
R1 = 5.265 kV
-
TBD
-
dB
18
22
-
dB
-
-
6.0
°C/W
Gain at 1 GHz (1)
Supply Current (IDD)
Cable Equivalent Slope
Return Loss
(1)
Thermal Resistance
(1)
COMMENTS
45 to 100 MHz
100 to 800 MHz
800 to 1002 MHz
Notes:
(1) Measured with a balun on the input and output of the device. See Figure 3 for test setup.
(2) 15.6 dB tilt, 49 dBmV output (per channel) at 1002 MHz plus QAM set 6 dBmV down from carrier.
(3) 3 dB tilt, 37 dBmV output (per channel) at 1002 MHz plus QAM set 6 dBmV down from carrier.
(4) Tested with R1 = 5.265 kV
(5) Tested with R1 = 1.866 kV
4
PRELIMINARY DATA SHEET - Rev 1.0
09/2005
ACA1206
+12 Vdc
1
N/C
.01 uF
RF IN
.01 uF
See Table 5 R1
2
ACA1206 16
15dB
15
3
14
4
13
5
15dB
.01 uF
390 nH
300pF
RF Out
12
6
11
7
10
8
9
300pF
390 nH
.01
uF
+12 Vdc
Note: Apply voltage to both +12Vdc lines simultaneoulsy
Figure 3: Test Circuit
Table 5
NOMINAL CURRENT
R1
195 mA
1.866 kV
325 mA
5.265 kV
PRELIMINARY DATA SHEET - Rev 1.0
09/2005
5
ACA1206
PERFORMANCE DATA
Figure 5: Reverse Isolation vs. Frequency
(VDD = +12 V, IDD = 195 mA)
Figure 4: Gain vs. Frequency
(VDD = +12 V, IDD = 195 mA)
0
17
-5
16
-10
-15
15
S12 (dB)
S21 (dB)
-20
14
-25
-30
13
-35
-40
12
-45
11
-50
0
100
200
300
400
500
600
700
800
900
1000
1100
1200
0
100
200
300
400
500
Frequency (MHz)
5
5
0
0
-5
-5
-10
-10
-15
-15
-20
800
900
1000
1100
1200
-20
-25
-25
-30
-30
-35
-35
-40
-40
0
100
200
300
400
500
600
700
800
900
1000
1100
1200
0
100
200
300
Frequency (MHz)
3.5
3
2.5
2
1.5
1
0.5
0
0
200
400
600
Frequency (MHz)
400
500
600
Frequency (MHz)
Figure 8: Noise Figure vs. Frequency
(VDD = +12 V, IDD = 195 mA)
Noise Figure
700
Figure 7: Output Return Loss vs. Frequency
(VDD = +12 V, IDD = 195 mA)
S22 (dB)
S11 (dB)
Figure 6: Input Return Loss vs. Frequency
(VDD = +12 V, IDD = 195 mA)
6
600
Frequency (MHz)
800
1000
1200
PRELIMINARY DATA SHEET - Rev 1.0
09/2005
700
800
900
1000
1100
1200
ACA1206
Figure 9: CTB vs. Frequency
(VDD = +12 V, IDD = 195 mA, 79 Analog Channels, 3 dB Tilt, +37 dBmV output power at 1 GHz)
-60
-65
CTB (dBc)
-70
-75
-80
-85
-90
0
100
200
300
400
500
600
Frequency (MHz)
Figure 10: CSO vs. Frequency
(VDD = +12 V, IDD = 195 mA, 79 Analog Channels, 3 dB Tilt, +37 dBmV output power at 1 GHz)
-60
-65
CSO (dBc)
-70
-75
-80
-85
-90
-95
0
100
200
300
400
500
600
Frequency (MHz)
Figure 11: XMOD vs. Frequency
(VDD = +12 V, IDD = 195 mA, 79 Analog Channels, 3 dB Tilt, +37 dBmV output power at 1 GHz)
-60
-62
-64
XMOD (dBc)
-66
-68
-70
-72
-74
-76
-78
-80
0
100
200
300
400
500
600
Frequency (MHz)
PRELIMINARY DATA SHEET - Rev 1.0
09/2005
7
ACA1206
Figure 12: CTB vs. Frequency
(VDD = +12 V, IDD = 195 mA, 112 Analog Channels, 3 dB Tilt, +37 dBmV output power at 1 GHz)
-60
-65
CTB (dBc)
-70
-75
-80
-85
-90
0
100
200
300
400
500
600
700
800
Frequency (MHz)
Figure 13: CSO vs. Frequency
(VDD = +12 V, IDD = 195 mA, 112 Analog Channels, 3 dB Tilt, +37 dBmV output power at 1 GHz)
-60
-65
-70
CSO (dBc)
-75
-80
-85
-90
-95
-100
0
100
200
300
400
500
600
700
800
Frequency (MHz)
Figure 14: XMOD vs. Frequency
(VDD = +12 V, IDD = 195 mA, 112 Analog Channels, 3 dB Tilt, +37 dBmV output power at 1 GHz)
-60
-62
-64
-66
XMOD (dBc)
-68
-70
-72
-74
-76
-78
-80
0
100
200
300
400
500
600
Frequency (MHz)
8
PRELIMINARY DATA SHEET - Rev 1.0
09/2005
700
800
ACA1206
Figure 16: Reverse Isolation vs. Frequency
(VDD = +12 V, IDD = 325 mA)
17
0
16.5
-5
16
-10
15.5
-15
15
-20
S12 (dB)
S21 (dB)
Figure 15: Gain vs. Frequency
(VDD = +12 V, IDD = 325 mA)
14.5
14
-25
-30
13.5
-35
13
-40
12.5
-45
12
0
100
200
300
400
500
600
700
800
900
1000
1100
-50
1200
0
Frequency (MHz)
200
300
400
500
600
700
800
900
1000
1100
1200
Frequency (MHz)
Figure 18: Output Return Loss vs. Frequency
(VDD = +12 V, IDD = 325 mA)
Figure 17: Input Return Loss vs. Frequency
(VDD = +12 V, IDD = 325 mA)
5
5
0
0
-5
-5
-10
S22 (dB)
-10
S11 (dB)
100
-15
-20
-15
-20
-25
-25
-30
-30
-35
-35
-40
-40
0
0
100
200
300
400
500
600
700
800
900
1000
1100
100
200
300
1200
400
500
600
700
800
900
1000
1100
1200
Frequency (MHz)
Frequency (MHz)
Figure 19: Noise Figure vs. Frequency
(VDD = +12 V, IDD = 325 mA)
3.5
3
Noise Figure
2.5
2
1.5
1
0.5
0
0
200
400
600
Frequency(MHz)
800
1000
1200
PRELIMINARY DATA SHEET - Rev 1.0
09/2005
9
ACA1206
Figure 20: CTB vs. Frequency
(VDD = +12 V, IDD = 325 mA, 79 Analog Channels, 15.6 dB Tilt, +49 dBmV output power at 1 GHz)
-60
-65
CTB (dBc)
-70
-75
-80
-85
-90
0
100
200
300
400
500
600
Frequency (MHz)
Figure 21: CSO vs. Frequency
(VDD = +12 V, IDD = 325 mA, 79 Analog Channels, 15.6 dB Tilt, +49 dBmV output power at 1 GHz)
-60
-65
-70
CSO (dBc)
-75
-80
-85
-90
-95
-100
0
100
200
300
400
500
600
Frequency (MHz)
Figure 22: XMOD vs. Frequency
(VDD = +12 V, IDD = 325 mA, 79 Analog Channels, 15.6 dB Tilt, +49 dBmV output power at 1 GHz)
-60
-62
-64
-66
XMOD (dBc)
-68
-70
-72
-74
-76
-78
-80
0
100
200
300
400
500
Frequency (MHz)
10
PRELIMINARY DATA SHEET - Rev 1.0
09/2005
600
ACA1206
Figure 23: CTB vs. Frequency
(VDD = +12 V, IDD = 325 mA, 112 Analog Channels, 15.6 dB Tilt, +49 dBmV output power at 1 GHz)
-60
-65
CTB (dBc)
-70
-75
-80
-85
-90
0
100
200
300
400
500
600
700
800
Frequency (MHz)
Figure 24: CSO vs. Frequency
(VDD = +12 V, IDD = 325 mA, 112 Analog Channels, 15.6 dB Tilt, +49 dBmV output power at 1 GHz)
-60
-65
-70
CSO (dBc)
-75
-80
-85
-90
-95
-100
0
100
200
300
400
500
600
700
800
Frequency (MHz)
Figure 25: XMOD vs. Frequency
(VDD = +12 V, IDD = 325 mA, 112 Analog Channels, 15.6 dB Tilt, +49 dBmV output power at 1 GHz)
-60
-62
-64
-66
XMOD (dBc)
-68
-70
-72
-74
-76
-78
-80
0
100
200
300
400
500
600
700
800
Frequency (MHz)
PRELIMINARY DATA SHEET - Rev 1.0
09/2005
11
ACA1206
APPLICATION INFORMATION
The ACA1206 is designed as an input stage. This
part can be used alone for low gain, low output level
applications or can be cascaded with one of the
ACA0862 output stages for higher gain and output
signal drive level. The ACA1206 is a low power
dissipation part designed as a driver for the
ACA0862B output stage.
Figure 26: Evaluation Board Layout
+12V
1
2
C1
RF IN
ACA1206
C7
16
L1
15
TVS
C3
NC
3
14
4
13
5
12
6
11
7
10
8
9
T2
T1
C2
C9
R1
RF OUT
C4
L2
C6
+12V
Title
Figure 27: Evaluation Board Schematic
12
+
C5
PRELIMINARY DATA SHEET - Rev 1.0
09/2005
ACA1206
Table 6: Evaluation Board Parts List
ITEM
DESCRIPTION
C1,C2,C5,C6
0.01uF. CHIP CAP.
4
MURATA
GRM39X7R1103K25V
C3,C4
470 pF. CHIP CAP.
2
MURATA
GRM47X7R301K25V
C7
47 uF ELECT.CAP.
1
DIGI-KEY CORP.
C9
NOT USED
L1,L2
470 nH CHIP IND.
2
MURATA
LQH1NR47KONOO-03/4052
CORE
2
Fair-Rite
2843002702
MWS Wire Ind.
T-2361429-20
T1,T2- BALUN
QTY VENDOR
WIRE
VENDOR P/N
P5275-ND
1.87 kV
5.27 kV
1
Panasonic
ERJ-3EKF1871V
ERJ-3EKF5231V
TVS
TVS 12 VOLT. 600 WATT
1
DIGI-KEY CORP.
SMBJ12ACCCT-ND
CONNECTOR
75 V N MALE PANEL MOUNT.
2
PASTERNACK
ENTERP.
P E 4504
PRINTED CIRCUIT BOARD
1
300 x 160 MILS
1
INDIUM CORP.
OF AMERICA
14996Y
R1
(4)
INDIUM
Notes:
1. T1, T2 (balun) wind 4 turns thru core as shown. (Figure 28).
2. “N” connector,center pin,should be approximately 80 mils in length.
3. Due to the high power dissapation of this devide the PC board should be mounted/ attached to a large heat
sink.
(4) See Table 5.
Figure 28: Balun Drawing
PRELIMINARY DATA SHEET - Rev 1.0
09/2005
13
ACA1206
PACKAGE OUTLINE
Figure 29: S7 Package Outline - 16 Pin Wide Body SOIC with Heat Slug
14
PRELIMINARY DATA SHEET - Rev 1.0
09/2005
ACA1206
NOTES
PRELIMINARY DATA SHEET - Rev 1.0
09/2005
15
ACA1206
ORDERING INFORMATION
ORDER NUMBER
ACA1206RS7P2
TEMPERATURE
RANGE
PACKAGE
DESCRIPTION
COMPONENT PACKAGING
-40°C to 110°C
RoHS-Compliant
16 Pin Wide Body
SOIC with Heat Sink
1,500 Piece Tape & Reel
ANADIGICS, Inc.
141 Mount Bethel Road
Warren, New Jersey 07059, U.S.A.
Tel: +1 (908) 668-5000
Fax: +1 (908) 668-5132
URL: http://www.anadigics.com
E-mail: [email protected]
IMPORTANT NOTICE
ANADIGICS, Inc. reserves the right to make changes to its products or to discontinue any product at any time without
notice. The product specifications contained in Advanced Product Information sheets and Preliminary Data Sheets are
subject to change prior to a product’s formal introduction. Information in Data Sheets have been carefully checked and are
assumed to be reliable; however, ANADIGICS assumes no responsibilities for inaccuracies. ANADIGICS strongly urges
customers to verify that the information they are using is current before placing orders.
WARNING
ANADIGICS products are not intended for use in life support appliances, devices or systems. Use of an ANADIGICS
product in any such application without written consent is prohibited.
16
PRELIMINARY DATA SHEET - Rev 1.0
09/2005