APEX PA13

����������������������������
������������
��������������������������������������������������������������
� � � � � � � � � � � � � � �
FEATURES
•
•
•
•
•
LOW THERMAL RESISTANCE — 1.1°C/W
CURRENT FOLDOVER PROTECTION
EXCELLENT LINEARITY — Class A/B Output
WIDE SUPPLY RANGE — ±10V to ±45V
HIGH OUTPUT CURRENT — Up to ±15A Peak
12-PIN SIP
PACKAGE STYLE DP
APPLICATIONS
•
•
•
•
•
•
Formed leads avaliable
See package styles ED & EE
MOTOR, VALVE AND ACTUATOR CONTROL
MAGNETIC DEFLECTION CIRCUITS UP TO 10A
POWER TRANSDUCERS UP TO 100kHz
TEMPERATURE CONTROL UP TO 360W
PROGRAMMABLE POWER SUPPLIES UP TO 90V
AUDIO AMPLIFIERS UP TO 120W RMS
EQUIVALENT SCHEMATIC
��
��
���
��
���
��
�
��
��
DESCRIPTION
The PA13 is a state of the art high voltage, very high
output current operational amplifier designed to drive resistive, inductive and capacitive loads. For optimum linearity,
especially at low levels, the output stage is biased for class
A/B operation using a thermistor compensated base-emitter
voltage multiplier circuit. The safe operating area (SOA) can
be observed for all operating conditions by selection of user
programmable current limiting resistors. For continuous operation under load, a heatsink of proper rating is recommended.
The PA13 is not recommended for gains below –3 (inverting)
or +4 (non-inverting).
This hybrid integrated circuit utilizes thick film (cermet) resistors, ceramic capacitors and semiconductor chips to maximize
reliability, minimize size and give top performance. Ultrasonically bonded aluminum wires provide reliable interconnections
at all operating temperatures. The 12-pin power SIP package
is electrically isolated.
TYPICAL APPLICATION
����
����
����
�
����
���
���
�
����
���
����
����
����
�����
��
�����
��
��
�
�
�
��
��������������������������������
���
���
�
��
�
�
POWER RATING
Not all vendors use the same method to rate the power handling capability of a Power Op Amp. APEX rates the internal
dissipation, which is consistent with rating methods used by
transistor manufacturers and gives conservative results. Rating
delivered power is highly application dependent and therefore
can be misleading. For example, the 135W internal dissipation
rating of the PA13 could be expressed as an output rating
of 260W for audio (sine wave) or as 440W if using a single
ended DC load. Please note that all vendors rate maximum
power using an infinite heatsink.
APEX has eliminated the tendency of class A/B output
stages toward thermal runaway and thus has vastly increased
amplifier reliability. This feature, not found in most other Power
Op Amps, was pioneered by APEX in 1981 using thermistors
which assure a negative temperature coefficient in the quiescent current. The reliability benefits of this added circuitry far
outweigh the slight increase in component count.
EXTERNAL CONNECTIONS
��
�
����
�
��
�
�
�
�
�
�
�
��
��
��
����
��
�������
������������ ����
���
��
THERMAL STABILITY
����
�����
���� ���
�
�������
��
�
�
��
���
�� ��
���
���
�� ��
���
���
���
���
������
APEX MICROTECHNOLOGY CORPORATION • TELEPHONE (520) 690-8600 • FAX (520) 888-3329 • ORDERS (520) 690-8601 • EMAIL [email protected]
1
PA13
ABSOLUTE MAXIMUM RATINGS
SPECIFICATIONS
ABSOLUTE MAXIMUM RATINGS
SPECIFICATIONS
PARAMETER
TEST CONDITIONS 2, 5
INPUT
OFFSET VOLTAGE, initial
OFFSET VOLTAGE, vs. temperature
OFFSET VOLTAGE, vs. supply
OFFSET VOLTAGE, vs. power
BIAS CURRENT, initial
BIAS CURRENT, vs. temperature
BIAS CURRENT, vs. supply
OFFSET CURRENT, initial
OFFSET CURRENT, vs. temperature
INPUT IMPEDANCE, DC
INPUT CAPACITANCE
COMMON MODE VOLTAGE RANGE3
COMMON MODE REJECTION, DC
TC = 25°C
Full temperature range
TC = 25°C
TC = 25°C
TC = 25°C
Full temperature range
TC = 25°C
TC = 25°C
Full temperature range
TC = 25°C
TC = 25°C
Full temperature range
Full temp. range, VCM = ±VS –6V
GAIN
OPEN LOOP GAIN at 10Hz
OPEN LOOP GAIN at 10Hz
GAIN BANDWIDTH PRODUCT @ 1MHz
POWER BANDWIDTH
PHASE MARGIN , AV = +4
TC = 25°C, 1KΩ load
Full temp. range, 8Ω load
TC = 25°C, 8Ω load
TC = 25°C, 8Ω load
Full temp. range, 8Ω load
OUTPUT
VOLTAGE SWING3
VOLTAGE SWING3
VOLTAGE SWING3
CURRENT, peak
SETTLING TIME to .1%
SLEW RATE
CAPACITIVE LOAD
CAPACITIVE LOAD
TC = 25°C, PA13 = 10A, PA13A = 15A
TC = 25°C, IO = 5A
Full temp. range, IO = 80mA
TC = 25°C
TC = 25°C, 2V step
TC = 25°C
Full temperature range, AV = 4
Full temperature range, AV > 10
POWER SUPPLY
VOLTAGE
CURRENT, quiescent
Full temperature range
TC = 25°C
THERMAL
RESISTANCE, AC, junction to case4
RESISTANCE, DC, junction to case
RESISTANCE, DC, junction to air
TEMPERATURE RANGE, case
TC = –55 to +125°C, F > 60Hz
TC = –55 to +125°C
TC = –55 to +125°C
Meets full range specification
NOTES:
PA13/PA13A
100V
15A
135W
±VS –3V
±VS
260°C
175°C
–40 to +85°C
–25 to +85°C
SUPPLY VOLTAGE, +Vs to –Vs
OUTPUT CURRENT, within SOA
POWER DISSIPATION, internal
INPUT VOLTAGE, differential
INPUT VOLTAGE, common mode
TEMPERATURE, pin solder -10s max.
TEMPERATURE, junction1
TEMPERATURE RANGE, storage
OPERATING TEMPERATURE RANGE, case
MIN
PA13
TYP
±VS –5
74
±2
±10
±30
±20
±12
±50
±10
±12
±50
200
3
±VS –3
100
96
13
±VS –6
±VS –5
±VS–5
10
2.5
±10
–25
MAX
PA13A
TYP
*
*
±1
*
*
*
±10
*
*
±5
*
*
*
*
*
±6
±65
±200
±30
±500
±30
110
108
4
20
20
2
4
MIN
*
*
*
*
*
15
1.5
SOA
±40
25
±45
50
.6
.9
30
.7
1.1
+85
*
*
*
MAX
UNITS
±4
±40
*
mV
µV/°C
µV/V
µV/W
nA
pA/°C
pA/V
nA
pA/°C
MΩ
pF
V
dB
±20
*
±10
*
*
*
*
*
*
*
dB
dB
MHz
kHz
°
*
*
V
V
V
A
µs
V/µs
nF
*
*
*
*
V
mA
*
*
*
*
*
°C/W
°C/W
°C/W
°C
*
* The specification of PA13A is identical to the specification for PA13 in the applicable column to the left
1. Long term operation at the maximum junction temperature will result in reduced product life. Derate internal power dissipation to
achieve high MTTF.
2. The power supply voltage for all tests is ±40, unless otherwise noted as a test condition.
3. +VS and –VS denote the positive and negative supply rail respectively. Total VS is measured from +VS to –VS.
4. Rating applies if the output current alternates between both output transistors at a rate faster than 60Hz.
5. Full temperature range specifications are guaranteed but not 100% tested.
CAUTION
The exposed substrate contains beryllia (BeO). Do not crush, machine, or subject to temperatures in excess of 850°C to
avoid generating toxic fumes.
APEX MICROTECHNOLOGY CORPORATION • 5980 NORTH SHANNON ROAD • TUCSON, ARIZONA 85741 • USA • APPLICATIONS HOTLINE: 1 (800) 546-2739
2
��������������
��
��
����
��
���
���
��
�� �� �� �� ��� ��� ���
�������������������������
�
���������������������
��
���
������������
���
��
��
����
���
�
����
��
��� �� ��� ��� �� ���
�����������������
���������������������
���
��
��
��
��
�
�
�
�
��� �� ��� ���
�����������������
�
�
��
��
��
��
���
����
���
�
�
�
�
�
������������
��
������
��������
�������
�
�
��
��
��
�
�
��
���
��
�� ��� ���
�����������������
���
���
��
��
������
��
��
� ������
��
� ������
���
� ������
��
�
�
��
��
��
��
���
��
��
������������������������
��
��
�����������������������
��
���
���
���
��
���
���
�������������������������
��
�����������������
��
���
��������������������
���
��
�
��� ��� �
�� �� �� ��� ���
�������������������������
��
��
��
��
�� ���
����������������������������
��� ���
��� ��� ���
�����������������
�����������
���
�
�������������������
�
��
��
���
��� �� ��� ��� �� ���
�����������������
��������������
�
��
��
�
��
�
���
�� ������
�
��������������
����
����
�� ����
��
�� ����
���
���
���
�
� �
� ���
��������������������
���
��������������
�
���
��
����
��
�� �� �� ��� ���
��� ��� �
�������������������������
����������������������
����������������������
�������������������������������
���
��������������������
����
��������������������������������
�
���
����
����������������������������
��
���
�����������������������
���
�������������
����
�������������������������
���
������������
���
�������������������������������
���
���
���������������
TYPICAL PERFORMANCE
GRAPHS
������������������
���������������������������������
PA13
��
��
��
��
��
��
��
��
���
���
�����������������
���
��������������������
�
�
���
�
�
���
�
�
�
�
�
�
��
�����������������������
��
APEX MICROTECHNOLOGY CORPORATION • TELEPHONE (520) 690-8600 • FAX (520) 888-3329 • ORDERS (520) 690-8601 • EMAIL [email protected]
3
OPERATING
CONSIDERATIONS
PA13
GENERAL
Please read Application Note 1 "General Operating Considerations" which covers stability, supplies, heat sinking,
mounting, current limit, SOA interpretation, and specification
interpretation. Visit www.apexmicrotech.com for design tools
that help automate tasks such as calculations for stability,
internal power dissipation, current limit; heat sink selection;
Apex’s complete Application Notes library; Technical Seminar
Workbook; and Evaluation Kits.
SAFE OPERATING AREA (SOA)
���
��
��
��
� ��
���
�
��
� ��
���
�
���
���
���
���
���
��
��
��
��
�
�
��
�
�
��� �
���
�
��� ���
���
��
�
���
��
��
���
���
��
���
��
��
��
��
����������������������������������
The output stage of most power amplifiers has three distinct
limitations:
1. The current handling capability of the transistor geometry
and the wire bonds.
2. The second breakdown effect which occurs whenever the
simultaneous collector current and collector-emitter voltage
exceeds specified limits.
3. The junction temperature of the output transistors.
The SOA curves combine the effect of all limits for this Power
��
��
��
��
�� ��
��
��
��������������������������������������������������
Op Amp. For a given application, the direction and magnitude
of the output current should be calculated or measured and
checked against the SOA curves. This is simple for resistive
loads but more complex for reactive and EMF generating
loads. However, the following guidelines may save extensive
analytical efforts.
1. Capacitive and dynamic* inductive loads up to the following
maximum are safe with the current limits set as specified.
CAPACITIVE LOAD
INDUCTIVE LOAD
±VS
ILIM = 5A
ILIM = 10A
ILIM = 5A
ILIM = 10A
50V
200µF
125µF
5mH
2.0mH
40V
500µF
350µF
15mH
3.0mH
35V
2.0mF
850µF
50mH
5.0mH
30V
7.0mF
2.5mF
150mH
10mH
25V
25mF
10mF
500mH
20mH
20V
60mF
20mF
1,000mH
30mH
15V
150mF
60mF
2,500mH
50mH
*If the inductive load is driven near steady state conditions,
allowing the output voltage to drop more than 12.5V below the
supply rail with ILIM = 10A or 27V below the supply rail with ILIM
= 5A while the amplifier is current limiting, the inductor must
be capacitively coupled or the current limit must be lowered
to meet SOA criteria.
2. The amplifier can handle any EMF generating or reactive
load and short circuits to the supply rail or common if the
current limits are set as follows at TC = 25°C:
SHORT TO ±VS
SHORT TO
±VS
C, L, OR EMF LOAD
COMMON
45V
.43A
3.0A
40V
.65A
3.4A
35V
1.0A
3.9A
30V
1.7A
4.5A
25V
2.7A
5.4A
20V
3.4A
6.7A
15V
4.5A
9.0A
These simplified limits may be exceeded with further analysis
using the operating conditions for a specific application.
CURRENT LIMITING
Refer to Application Note 9, "Current Limiting", for details of
both fixed and foldover current limit operation. Visit the Apex web
site at www.apexmicrotech.com for a copy of Power_design.
exe which plots current limits vs. steady state SOA. Beware that
current limit should be thought of as a +/–20% function initially
and varies about 2:1 over the range of –55°C to 125°C.
For fixed current limit, leave pin 4 open and use equations
1 and 2.
RCL = 0.65/LCL (1)
ICL = 0.65/RCL (2)
Where:
ICL is the current limit in amperes.
RCL is the current limit resistor in ohms.
For certain applications, foldover current limit adds a slope
to the current limit which allows more power to be delivered
to the load without violating the SOA. For maximum foldover
slope, ground pin 4 and use equations 3 and 4.
0.65 + (Vo * 0.014)
ICL =
(3)
RCL
0.65 + (Vo * 0.014)
(4)
RCL =
ICL
Where:
Vo is the output voltage in volts.
Most designers start with either equation 1 to set RCL for the
desired current at 0v out, or with equation 4 to set RCL at the
maximum output voltage. Equation 3 should then be used to
plot the resulting foldover limits on the SOA graph. If equation 3 results in a negative current limit, foldover slope must
be reduced. This can happen when the output voltage is the
opposite polarity of the supply conducting the current.
In applications where a reduced foldover slope is desired,
this can be achieved by adding a resistor (RFO) between pin
4 and ground. Use equations 4 and 5 with this new resistor
in the circuit.
Vo * 0.14
0.65 +
10.14 + RFO
ICL =
(5)
RCL
Vo * 0.14
0.65 +
10.14 + RFO
RCL =
(6)
ICL
Where:
RFO is in K ohms.
This data
sheet has been carefullyCORPORATION
checked and is believed
to beNORTH
reliable, however,
no responsibility
is assumed for
possible inaccuracies
omissions.
All specificationsHOTLINE:
are subject to1 change
notice.
APEX
MICROTECHNOLOGY
• 5980
SHANNON
ROAD • TUCSON,
ARIZONA
85741 • orUSA
• APPLICATIONS
(800)without
546-2739
4
PA13U REV K NOVEMBER 2003 © 2003 Apex Microtechnology Corp.