AVAGO AMMC-5024-W50

AMMC-5024
30 KHz – 40 GHz Traveling Wave Amplifier
Data Sheet
Description
Features
• Wide frequency range: 30 KHz – 40 GHz
• High gain: 16 dB
• Gain flatness: ±0.75 dB
• Return loss: Input: 13 dB, Output: 13 dB
• Medium power: P-1dB = 22.5 dBm at 22 GHz
• Low noise figure: 4.6 dB at 26 GHz
Avago Technologies' AMMC-5024 is a broadband PHEMT
GaAs MMIC TWA designed for medium output power and
high gain over the full 30 KHz to 40 GHz frequency
range. The design employs a 9-stage,cascade-connected
FET structure to ensure flat gain and power as well as uniform group delay. E-beam lithography is used to produce
uniform gate lengths of 0.15 mm and MBE technology
assures precise semiconductor layer control. For improved
reliability and moisture protection, the die is passivated
at the active areas.
Chip Size:
Applications
• Communication systems
• Microwave instrumentation
• Optical systems
• Broadband applications requiring flat gain and group
delay with excellent input and output port matches over
the 30 KHz and 40 GHz frequency range
2350 x 1050 µm (92.5 x 41.3 mils)
Chip Size Tolerance: ±10 µm (±0.4 mils)
Chip Thickness:
100 ± 10 µm (4 ± 0.4 mils)
Pad Dimensions:
80 x 80 µm (2.95 x 0.4 mils)
Absolute Maximum Ratings [1]
Symbol
Parameters/Conditions
Units
Min.
Max.
Vdd
Positive Drain Voltage
V
10
Idd
Total Drain Current
mA
340
Vg1
First Gate Voltage
V
-9.5
0
Ig1
First Gate Current
mA
-38
+1
+4
Vg2
Second Gate Voltage
V
-3.5
Ig2
Second Gate Current
mA
-20
Pin
CW Input Power
dBm
17
Tch
Operating Channel Temperature
°C
+150
Tb
Operating Backside Temperature
°C
-55
Tstg
Storage Temperature
°C
-65
+165
Tmax
Max. Assembly Temp (60 sec max)
°C
+300
Notes:
1. Absolute maximum ratings for continuous operation unless otherwise noted.
AMMC-5024 DC Specifications/Physical Properties[1]
Symbol
Parameters and Test Conditions
Units
Min.
Typ.
Max.
Idss
Saturated Drain Current (Vdd =7 V, Vg1=0 V, Vg2=open circuit)
mA
265
350
385
Vp
First Gate Pinch-off Voltage (Vdd=7 V, Idd=30 mA, Vg2=open circuit)
V
-8.2
Vg2
Second Gate Self-bias Voltage (Vdd=7 V, Idd = 200 mA, Vg2=open circuit)
V
2.75
Idsmin
(Vg1)
First Gate Minimum Drain Current
(Vdd =7 V, Vg1=-7 V, Vg2=open circuit)
mA
47
Idsmin
(Vg2)
Second Gate Minimum Drain Current
(Vdd =7 V, Vg1=0 V, Vg2= -3.5 V)
mA
105
θch-b
Thermal Resistance[2] (Backside temperature, Tb = 25°C)
°C/W
52
RF Specifications for High Power Applications[2, 3] (Vdd=7 V, Idd(Q)=200 mA, Zin= Zo =50Ω
Symbol
Parameters and Test Conditions
Units
Min.
Typ.
Max.
Small-signal Gain
dB
14
16
18
∆|S21| Small-signal Gain Flatness
dB
±0.75
±2
RLin
Input Return Loss
dB
12
16.9
RLout
Output Return Loss
dB
10
16.8
|S12| Isolation
dB
26
28
P-1dB
Output Power @ 1 dB Gain Compression
f = 22 GHz
dBm
21
22.5
Psat
Saturated Output Power
f = 22 GHz
dBm
23
24.5
2
|S21| 2
2
rd
OIP3
Output 3 Order Intercept Point, Rfin1 = Rfin2 = 2 dBm, f = 22 GHz, ∆f = 2 MHz
dBm
27
30
NF
Noise Figure (Vds = 3V, Ids = 140 mA)
dB
dB
4.6
7.2
6.5
9
Max.
f = 26 GHz
f = 40 GHz
RF Specifications for High Gain and Low Power Applications[2, 3] (Vdd=4 V, Idd(Q)=160 mA, Zin= Zo =50Ω
Symbol
Parameters and Test Conditions
Units
Min.
Typ.
Small-signal Gain
dB
17.5
∆|S21| Small-signal Gain Flatness
dB
±1.5
RLin
Minimum Input Return Loss
dB
13
RLout
Minimum Output Return Loss
dB
13
|S12| Isolation
dB
30
P-1dB
Output Power @ 1 dB Gain Compression
f = 22 GHz
dBm
17.3
Psat
Saturated Output Power
f = 22 GHz
dBm
20.5
2
|S21| 2
2
rd
OIP3
Output 3 Order Intercept Point, Rfin1 = Rfin2 = 2 dBm, f = 22 GHz, ∆f = 2 MHz
dBm
22.5
NF
Noise Figure
dB
dB
3.7
5.5
f = 26 GHz
f = 40 GHz
Notes:
1. Backside temperature Tb = 25°C unless otherwise noted.
2. Data measured in wafer form, Tchuck = 25°C
3. 100% on-wafer RF test is done at frequency = 2, 10, 20, 30 and 40 GHz, except as noted.
AMMC-5024 Typical Performance (Tchuck = 25°C, Vdd = 7V, Idd = 200 mA, Vg2 = Open, Z0 = 50Ω)
20
0
30
0
18
-40
10
8
6
S21(dB)
S12(dB)
4
P-1
P-3
25
-10
P-1, P-3 (dBm)
12
S12 (dB)
-20
14
RETURN LOSS (dB)
-5
16
S21 (dB)
S11(dB)
S22(dB)
-15
-20
20
15
10
-60
5
-25
2
0
0
10
20
30
40
-80
50
-30
0
10
FREQUENCY (GHz)
30
40
0
50
0
10
Figure 2. Return Loss (Input and Output).
0.12
0.06
0.04
50
30
OIP3 (dBm)
NOISE FIGURE (dB)
0.08
40
40
8
0.1
30
Figure 3. Output Power (P-1 and P-3).
10
0.14
20
FREQUENCY (GHz)
FREQUENCY (GHz)
Figure 1. Gain and Reverse Isolation.
td (nS)
20
6
4
20
10
2
0.02
0
0
10
20
30
FREQUENCY (GHz)
Figure 4. Group Delay.
40
50
0
0
10
20
30
FREQUENCY (GHz)
Figure 5. Noise Figure.
40
50
0
0
10
20
30
FREQUENCY (GHz)
Figure 6. Output IP3.
40
50
AMMC-5024 Typical Scattering Parameters[1] (Tchuck = 25°C, VDD = 7V, IDD = 200 mA, Z in = Zout = 50Ω)
Freq. S11
GHz
dB
Mag
Phase
dB
S21
Mag
Phase
dB
S12 S22
Mag
Phase
dB
Mag
Phase
0.05
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
6.703
6.588
6.514
6.434
6.321
6.214
6.117
6.058
6.051
6.081
6.119
6.099
5.997
5.876
5.826
5.855
5.954
6.070
6.174
6.216
6.211
6.182
6.206
6.253
6.326
6.399
6.410
6.351
6.215
6.078
6.003
6.068
6.158
6.173
6.034
5.800
5.640
5.576
5.539
5.393
5.113
4.776
4.439
4.123
3.769
3.447
3.184
2.978
2.774
2.514
2.214
0.000
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.009
0.010
0.011
0.013
0.014
0.015
0.017
0.018
0.020
0.023
0.025
0.026
0.028
0.029
0.031
0.032
0.034
0.036
0.036
0.037
0.036
0.036
0.036
0.036
0.037
0.037
0.037
0.036
0.035
0.034
0.034
0.035
0.033
0.032
0.030
0.029
0.026
0.024
0.022
0.021
0.020
0.020
0.018
7.766
12.796
18.718
10.362
0.922
-7.610
-12.684
-18.420
-28.987
-47.192
-73.520
-109.900
-157.830
137.330
76.041
29.951
-7.571
-40.792
-74.475
-106.600
-142.950
169.440
104.260
34.057
-13.560
-54.765
-92.329
-131.060
-171.110
145.610
97.895
46.328
-10.820
-62.908
-111.430
-155.460
164.720
122.630
84.484
20.516
-146.250
165.520
133.010
99.260
76.664
93.515
135.190
122.900
114.170
89.641
78.671
-26.524
-24.941
-21.885
-19.412
-17.725
-16.970
-16.940
-17.741
-19.505
-22.752
-25.795
-21.613
-17.435
-14.804
-13.213
-12.628
-12.989
-14.171
-16.678
-20.641
-23.782
-21.425
-19.193
-18.288
-19.046
-21.832
-27.570
-28.076
-20.068
-16.785
-15.212
-14.889
-16.789
-18.936
-19.985
-19.130
-18.210
-18.457
-22.391
-24.387
-22.649
-20.369
-20.473
-20.560
-18.778
-19.072
-18.104
-14.701
-11.446
-9.005
-6.637
0.047
0.057
0.080
0.107
0.130
0.142
0.142
0.130
0.106
0.073
0.051
0.083
0.134
0.182
0.218
0.234
0.224
0.196
0.147
0.093
0.065
0.085
0.110
0.122
0.112
0.081
0.042
0.039
0.099
0.145
0.174
0.180
0.145
0.113
0.100
0.111
0.123
0.119
0.076
0.060
0.074
0.096
0.095
0.094
0.115
0.111
0.124
0.184
0.268
0.355
0.466
-174.370
-154.440
-146.320
-149.270
-157.970
-168.560
-179.420
170.600
163.170
163.190
-165.530
-134.230
-136.040
-147.840
-163.030
-179.470
163.010
147.400
135.040
130.070
154.470
177.240
173.670
156.910
138.050
114.120
67.164
-50.074
-96.000
-121.770
-145.820
-168.310
173.110
166.700
177.880
179.680
160.620
134.410
91.975
23.468
-37.468
-74.314
-84.567
-91.634
-92.252
-85.034
-73.258
-64.708
-65.771
-76.848
-89.734
Note:
1. Data obtained from on-wafer measurements.
16.526
16.375
16.277
16.170
16.016
15.868
15.731
15.646
15.636
15.679
15.733
15.705
15.558
15.381
15.307
15.351
15.496
15.663
15.812
15.870
15.863
15.823
15.856
15.922
16.022
16.122
16.137
16.057
15.869
15.675
15.567
15.661
15.788
15.810
15.612
15.269
15.025
14.926
14.869
14.636
14.174
13.581
12.946
12.305
11.524
10.748
10.059
9.479
8.863
8.007
6.902
179.390
155.660
133.110
110.580
88.271
66.412
44.780
23.511
2.105
-19.628
-42.046
-64.823
-87.590
-109.420
-130.680
-152.100
-174.100
163.120
139.670
115.610
91.770
67.954
44.285
20.329
-4.276
-29.641
-55.651
-82.011
-108.060
-133.780
-158.990
175.180
147.730
118.780
89.206
60.446
32.215
3.374
-27.424
-59.455
-92.328
-124.820
-157.360
169.650
136.220
103.130
69.590
34.467
-3.117
-42.656
-83.972
-66.134
-61.862
-55.350
-51.048
-48.620
-46.356
-44.560
-42.719
-41.197
-39.902
-38.851
-37.914
-37.130
-36.350
-35.589
-34.692
-33.794
-32.937
-32.208
-31.690
-31.208
-30.781
-30.231
-29.783
-29.336
-28.991
-28.757
-28.622
-28.763
-28.808
-28.853
-28.759
-28.591
-28.536
-28.676
-28.992
-29.214
-29.344
-29.287
-29.189
-29.513
-29.849
-30.351
-30.858
-31.563
-32.440
-33.098
-33.500
-33.995
-33.996
-34.691
-56.514
-109.670
-132.750
-153.970
-174.570
165.210
144.510
123.530
102.140
80.129
58.121
36.356
15.803
-4.845
-25.521
-45.793
-67.515
-90.266
-113.940
-137.810
-161.750
174.640
151.020
126.440
100.950
75.101
47.960
20.890
-6.265
-33.072
-59.523
-86.846
-115.960
-146.370
-177.890
151.190
120.660
90.933
60.092
27.357
-6.508
-39.965
-73.488
-107.270
-142.290
-175.820
150.230
119.650
83.945
49.390
15.240
-29.620
-29.934
-26.919
-25.153
-24.391
-24.068
-23.775
-22.940
-21.619
-20.245
-19.716
-20.130
-21.644
-22.284
-20.256
-18.092
-16.431
-15.737
-15.813
-16.780
-18.810
-21.397
-23.661
-21.101
-18.085
-15.617
-14.258
-13.705
-13.717
-14.430
-15.005
-15.146
-14.682
-13.588
-12.883
-12.719
-13.861
-15.387
-19.170
-30.763
-24.452
-17.619
-16.143
-16.259
-18.606
-24.603
-21.717
-15.939
-13.445
-12.285
-11.324
0.033
0.032
0.045
0.055
0.060
0.063
0.065
0.071
0.083
0.097
0.103
0.099
0.083
0.077
0.097
0.125
0.151
0.163
0.162
0.145
0.115
0.085
0.066
0.088
0.125
0.166
0.194
0.206
0.206
0.190
0.178
0.175
0.184
0.209
0.227
0.231
0.203
0.170
0.110
0.029
0.060
0.132
0.156
0.154
0.117
0.059
0.082
0.160
0.213
0.243
0.272
AMMC-5024 Typical Performance (Tchuck = 25°C, Vdd = 4V, Idd = 160 mA, Vg2 = Open, Z0 = 50Ω)
20
0
0
30
S11(dB)
S22(dB)
-40
5
-60
-10
-15
-20
S21(dB)
S12(dB)
0
0
20
-25
-80
50
40
-30
0
10
40
0.06
0.04
FREQUENCY (GHz)
Figure 10. Group Delay.
10
40
50
20
30
40
50
Figure 9. Output Power (P-1 and P-3).
30
25
6
4
20
15
10
2
0.02
30
0
FREQUENCY (GHz)
OIP3 (dBm)
NOISE FIGURE (dB)
0.08
20
10
0
50
8
0.1
td (nS)
30
10
0.12
20
Figure 8. Return Loss (Input and Output).
0.14
10
15
FREQUENCY (GHz)
Figure 7. Gain and Reverse Isolation.
0
20
5
FREQUENCY (GHz)
0
P-1
P-3
25
P-1, P-3 (dBm)
S21 (dB)
10
S12 (dB)
-20
15
RETURN LOSS (dB)
-5
0
5
0
10
20
30
FREQUENCY (GHz)
Figure 11. Noise Figure.
40
50
0
0
10
20
30
FREQUENCY (GHz)
Figure 12. Output IP3.
40
50
AMMC-5024 Typical Scattering Parameters[1] (Tchuck = 25°C, VDD = 4V, IDD = 160 mA, Z in = Zout = 50Ω)
Freq. S11
GHz
dB
Mag
Phase
dB
S21
Mag
Phase
dB
S12 S22
Mag
Phase
dB
Mag
Phase
0.05
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
7.005
6.907
6.860
6.805
6.713
6.621
6.535
6.475
6.476
6.522
6.595
6.614
6.559
6.464
6.425
6.464
6.570
6.707
6.853
6.955
7.020
7.051
7.124
7.220
7.345
7.528
7.680
7.774
7.750
7.651
7.540
7.648
7.915
8.282
8.500
8.380
8.130
8.004
8.098
8.200
8.118
7.868
7.748
7.872
7.449
6.130
4.978
4.458
3.887
2.426
1.678
0.001
0.001
0.001
0.002
0.002
0.003
0.004
0.005
0.006
0.008
0.009
0.010
0.011
0.012
0.014
0.015
0.017
0.019
0.021
0.023
0.025
0.027
0.029
0.032
0.034
0.036
0.038
0.040
0.041
0.042
0.043
0.044
0.046
0.049
0.052
0.053
0.052
0.052
0.052
0.053
0.054
0.054
0.053
0.054
0.051
0.042
0.034
0.028
0.022
0.010
0.006
16.703
5.690
17.159
12.590
10.367
9.842
8.417
-0.474
-17.521
-41.715
-72.840
-112.770
-161.860
138.490
82.104
36.945
-0.979
-34.038
-67.232
-96.759
-128.700
-173.310
98.102
10.942
-29.430
-66.154
-100.080
-136.500
-174.690
144.500
101.700
56.891
6.430
-42.887
-92.108
-138.540
-178.190
143.400
116.660
111.200
134.530
118.260
80.564
25.234
-75.636
-173.290
139.690
102.000
75.692
74.549
98.012
-26.046
-25.998
-24.392
-22.084
-20.032
-18.871
-18.430
-18.727
-19.934
-22.656
-27.478
-25.347
-19.749
-16.206
-14.011
-12.962
-12.935
-13.689
-15.570
-19.085
-25.363
-26.442
-20.900
-18.349
-17.560
-18.343
-20.831
-25.482
-21.019
-15.842
-13.096
-11.817
-12.588
-14.900
-21.159
-20.309
-14.744
-12.538
-13.339
-15.011
-16.105
-14.757
-15.383
-21.471
-18.182
-12.590
-13.269
-20.284
-14.029
-9.656
-5.683
0.050
0.050
0.060
0.079
0.100
0.114
0.120
0.116
0.101
0.074
0.042
0.054
0.103
0.155
0.199
0.225
0.226
0.207
0.167
0.111
0.054
0.048
0.090
0.121
0.132
0.121
0.091
0.053
0.089
0.161
0.221
0.257
0.235
0.180
0.088
0.097
0.183
0.236
0.215
0.178
0.157
0.183
0.170
0.084
0.123
0.235
0.217
0.097
0.199
0.329
0.520
-175.110
-164.940
-151.920
-147.760
-152.230
-160.550
-170.290
179.750
170.600
164.210
-179.640
-126.840
-120.480
-131.310
-146.840
-164.520
176.980
159.730
143.690
128.620
133.080
-165.970
-156.420
-172.490
168.580
145.730
110.490
47.234
-43.397
-84.248
-115.690
-144.730
-171.610
163.390
161.170
-141.280
-158.220
170.230
132.480
78.005
6.891
-61.000
-108.170
-141.240
-72.748
-105.520
-153.320
126.900
-5.310
-41.069
-68.263
Note:
1. Data obtained from on-wafer measurements.
16.908
16.786
16.727
16.657
16.538
16.419
16.305
16.225
16.227
16.287
16.384
16.410
16.336
16.209
16.158
16.210
16.352
16.530
16.717
16.846
16.926
16.965
17.054
17.170
17.320
17.534
17.708
17.813
17.786
17.674
17.547
17.670
17.969
18.362
18.588
18.465
18.201
18.066
18.167
18.276
18.189
17.917
17.784
17.922
17.442
15.750
13.940
12.983
11.793
7.696
4.495
179.610
156.790
135.230
113.560
92.010
70.825
49.938
29.369
8.799
-12.033
-33.532
-55.435
-77.463
-98.816
-119.500
-140.230
-161.440
176.800
154.440
131.460
108.520
85.461
62.568
39.543
16.078
-8.082
-32.996
-58.575
-84.438
-110.030
-134.660
-159.020
175.550
148.060
118.310
88.090
59.059
30.963
1.607
-29.543
-62.709
-95.764
-128.890
-165.490
151.790
110.450
75.442
40.022
-5.741
-50.048
-69.558
-59.336
-65.942
-59.134
-54.398
-52.371
-49.621
-47.520
-45.659
-43.865
-42.482
-41.201
-40.162
-39.239
-38.327
-37.323
-36.407
-35.276
-34.270
-33.419
-32.607
-31.889
-31.268
-30.682
-30.022
-29.439
-28.885
-28.374
-27.893
-27.722
-27.501
-27.408
-27.130
-26.768
-26.185
-25.723
-25.559
-25.633
-25.760
-25.749
-25.454
-25.424
-25.415
-25.467
-25.277
-25.857
-27.536
-29.470
-30.994
-33.295
-39.913
-44.196
-61.940
-108.900
-128.490
-158.090
-178.300
161.460
141.190
119.280
97.498
74.972
53.471
31.594
10.910
-9.819
-29.734
-50.251
-72.076
-94.562
-118.010
-141.710
-166.020
169.730
145.660
121.250
96.409
70.972
44.076
17.025
-10.669
-38.170
-65.246
-92.100
-119.520
-148.970
179.060
145.960
113.580
82.862
52.499
20.356
-13.439
-47.607
-83.226
-122.260
-166.580
150.440
112.520
73.538
27.040
-10.430
11.969
-32.459
-34.057
-31.519
-30.113
-29.546
-28.527
-26.705
-24.546
-22.558
-21.031
-20.499
-20.801
-21.844
-22.131
-20.818
-19.513
-18.421
-18.158
-18.744
-20.205
-23.130
-27.569
-33.534
-26.084
-21.809
-18.685
-16.869
-15.693
-15.062
-15.047
-15.045
-14.911
-14.657
-13.556
-12.691
-12.218
-13.056
-14.378
-16.970
-21.811
-20.840
-16.035
-15.120
-16.069
-19.776
-14.233
-11.523
-10.251
-12.501
-17.076
-12.434
0.024
0.020
0.027
0.031
0.033
0.037
0.046
0.059
0.074
0.089
0.094
0.091
0.081
0.078
0.091
0.106
0.120
0.124
0.116
0.098
0.070
0.042
0.021
0.050
0.081
0.116
0.143
0.164
0.177
0.177
0.177
0.180
0.185
0.210
0.232
0.245
0.222
0.191
0.142
0.081
0.091
0.158
0.175
0.157
0.103
0.194
0.265
0.307
0.237
0.140
0.239
AMMC-5024 Typical Performance (Over Temperature and Voltage)
20
30
20
25
10
S21, S11, and S22 (dB)
25
P-1 (dBm)
GAIN (dB)
20
15
7V/200mA
6V/187mA
5V/174mA
4V/160mA
3V/147mA
10
5
0
0
10
20
30
15
10
7V/200mA
6V/187mA
5V/174mA
4V/160mA
3V/147mA
5
40
0
50
0
10
30
-20
-40
50
0
P-1/80°C
P-1/25°C
P-1/-40°C
4
3
2
5
50
8
NOISE FIGURE (dB)
P-1 (dBm)
15
40
Figure 15. Gain and Return Loss with
Temperature.
5
20
20
FREQUENCY (GHz)
NF/-40°C
NF/25°C
NF/80°C
6
25
P-1 (dBm)
40
7
30
10
10
-10
-30
Figure 14. P-1 and Voltage.
Figure 13. Gain and Voltage.
7V/200 mA
6V/187 mA
5V/174 mA
4V/160 mA
3V/147 mA
6
4
2
1
0
10
20
30
40
50
FREQUENCY (GHz)
Figure 16. P-1 and Temperature, Vdd=7V,
Idd=200 mA.
30
S11/25°C
S21/80°C
S22/-40°C
S22/25°C
FREQUENCY (GHz)
FREQUENCY (GHz)
0
20
0
S11/80°C
S22/-40°C
S21/25°C
S22/80°C
S22/-40°C
0
0
10
20
30
40
50
FREQUENCY (GHz)
Figure 17. Noise Figure and Temperature at
Vdd=4V, Idd=160 mA.
0
0
10
20
30
40
FREQUENCY (GHz)
Figure 18. Noise Figure and Voltage.
50
Biasing and Operation
AMMC-5024 is biased with a single positive drain supply
(Vdd) a negative gate supply (Vg1) and has a positive control
gate supply (Vg2).
Input and output RF ports are DC coupled; therefore, DC
decoupling capacitors are required if there are DC paths. (Do not attempt to apply bias to these pads.)
For best overall performance the recommended bias
condition for the AMMC-5024 is Vdd =7V and Idd = 200
mA. To achieve this drain current level, Vg1 is typically
between –2.5 to –3.5V. Typically, DC current flow for Vg1
is –10 mA. Open circuit is the default setting for Vg2 when
not utilizing gain control.
RF bond connections should be kept as short as possible
to reduce RF lead inductance which will degrade performance above 20 GHz.
Using the simplest form of assembly (Figure 20), the device
is capable of delivering flat gain over a 2 – 50 GHz range
with a minimum of gain slope and ripple. However, this
device is designed with DC coupled RF I/O ports, and
operation may be extended to lower frequencies (<2
GHz) through the use of off-chip low-frequency extension
circuitry and proper external biasing components. With
low frequency bias extension it may be used in a variety
of time-domain applications (through 40 Gb/s).
Figure 21 shows a typical assembly configuration.
When bypass capacitors are connected to the AUX pads,
the low frequency limit is extended down to the corner
frequency determined by the bypass capacitor and the
combination of the on-chip 50 ohm load and small dequeing resistor. At this frequency the small signal gain
will increase in magnitude and stay at this elevated level
down to the point where the Caux bypass capacitor acts as
an open circuit, effectively rolling off the gain completely.
The low frequency limit can be approximated from the
following equation:
fCaux =
1
2πCaux(Ro + RDEQ)
where:
Ro is the 50Ω gate or drain line termination resistor.
RDEQ is the small series de-queing resistor and 10Ω.
Caux is the capacitance of the bypass capacitor connected to the AUX Drain and AUX Gate pad in farads.
With the external bypass capacitors connected to the AUX
gate and AUX drain pads, gain will show a slight increase
between 1.0 and 1.5 GHz. This is due to a series combination of Caux and the on chip resistance but is exaggerated
by the parasitic inductance (Lc) of the bypass capacitor and
the inductance of the bond wire (Ld). Therefore the bond
wire from the Aux pads to the bypass capacitors should
be made as short as possible. An optional output power detector network is also provided. Detector sensitivity is optimized by biasing the
diodes with typical drain voltage Vdd = 7 volts. Simply connecting Det‑Bias to the Vdd supply is a convenient method
of biasing this detector network. The differential voltage
between the Det-Ref and Det-Out pads can be correlated
with the RF power emerging from the RF output port. A
>0.5 µF capacitor is required for the Det_Out pad to expand power detection performance below 100 MHz.
Ground connections are made with plated through-holes
to the backside of the device; therefore, ground wires are
not needed.
Assembly Techniques
The chip should be attached directly to the ground plane
using either a fluxless AuSn solder preform or electrically
conductive epoxy[1]. For conductive epoxy, the amount
should be just enough to provide a thin fillet around the
bottom perimeter of the die. The ground plane should
be free of any residue that may jeopardize electrical or
mechanical attachment. Caution should be taken to
not exceed the Absolute Maximum Rating for assembly
temperature and time.
Thermosonic wedge bonding is the preferred method for
wire attachment to the bond pads. The RF connections
should be kept as short as possible to minimize inductance. Gold mesh[2] or double-bonding with 0.7 mil gold
wire is recommended. Mesh can be attached using a 2 mil round tracking tool
and a tool force of approximately 22 grams with an ultrasonic power of roughly 55 dB for a duration of 76 ± 8 mS.
A guided wedge at an ultrasonic power level of 64 dB can
be used for the 0.7 mil wire. The recommended wire bond
stage temperature is 150 ± 2°C.
The chip is 100 µm thick and should be handled with
care.
This MMIC has exposed air bridges on the top surface.
Handle at edges or with a custom collet (do not pick up
die with vacuum on die center.)
This MMIC is also static sensitive and ESD handling precautions should be taken.
For more detailed information, see Avago Application
Note 54 “GaAs MMIC ESD, Die Attach and Bonding Guidelines.”
Notes:
1. Ablebond 84-1 LM1 silver epoxy is recommended.
2. Buckbee-Mears Corporation, St.Paul, MN, 800-2623824
GND
DET_OUT
Nine Identical
Drain Bias
(Vdd)
RF_Output
Vdd AUX
DET_BIAS
Second Gate
First Gate
Bias (Vg1)
RF_Input
DET_REF
Figure 19. AMMC-5024 Schematic.
Vdd_AUX Vdd
0 165
DET_Reference
DET_Bias
DET_Output
415 550
830
GND
2260
1270
1050
960
RF Output
733
Vg2
485
RF INPUT
235
90
0
90
Vg1
Figure 20. AMMC-5024 Bonding Pad Locations. (dimensions in micrometers)
2080 2350
2250
GND
Drain bias must be decoupled from
RF to lowest operating frequency
100 pF Capacitor
4 nH Inductor for operation
to 2 GHz bond wire
VDD
IN
OUT
VG1
Gate is decoupled from RF.
(Bond wire length is not important)
Figure 21. AMMC-5024 Assembly Diagram.
Ordering Information
AMMC-5024-W10 = 10 devices per tray
AMMC-5024-W50 = 50 devices per tray
For product information and a complete list of distributors, please go to our web site:
www.avagotech.com
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies, Limited in the United States and other countries.
Data subject to change. Copyright © 2006 Avago Technologies, Limited. All rights reserved. Obsoletes 5989-3931EN
AV02-0632EN - September 11, 2007