BB INA2134UA

®
INA134
INA2134
INA
134
INA
213
4
INA
134
INA
213
4
AUDIO DIFFERENTIAL LINE RECEIVERS
0dB (G = 1)
FEATURES
APPLICATIONS
● SINGLE AND DUAL VERSIONS
● AUDIO DIFFERENTIAL LINE RECEIVER
● LOW DISTORTION: 0.0005% at f = 1kHz
● HIGH SLEW RATE: 14V/µs
● SUMMING AMPLIFIER
● UNITY-GAIN INVERTING AMPLIFIER
● FAST SETTLING TIME: 3µs to 0.01%
● WIDE SUPPLY RANGE: ±4V to ±18V
● PSUEDOGROUND GENERATOR
● INSTRUMENTATION BUILDING BLOCK
● LOW QUIESCENT CURRENT: 2.9mA max
● HIGH CMRR: 90dB
● CURRENT SHUNT MONITOR
● VOLTAGE-CONTROLLED CURRENT
SOURCE
● FIXED GAIN = 0dB (1V/V)
● PACKAGES—SINGLE: 8-PIN DIP, SO-8
● GROUND LOOP ELIMINATOR
V+
DUAL: 14-PIN DIP, SO-14
7
DESCRIPTION
The INA134 and INA2134 are differential line receivers consisting of high performance op amps with onchip precision resistors. They are fully specified for
high performance audio applications and have excellent ac specifications, including low distortion
(0.0005% at 1kHz) and high slew rate (14V/µs), assuring good dynamic response. In addition, wide output
voltage swing and high output drive capability allow
use in a wide variety of demanding applications. The
dual version features completely independent circuitry
for lowest crosstalk and freedom from interaction,
even when overdriven or overloaded.
–In
2
25kΩ
25kΩ
5
6
+In
The INA134 and INA2134 on-chip resistors are laser
trimmed for accurate gain and optimum
common-mode rejection. Furthermore, excellent TCR
tracking of the resistors maintains gain accuracy and
common-mode rejection over temperature. Operation
is guaranteed from ±4V to ±18V (8V to 36V total
supply).
3
25kΩ
25kΩ
1
Sense
Output
Ref
INA134
V+
4
11
V–
–In A
2
25kΩ
25kΩ
13
A
+In A
–In B
3
6
25kΩ
25kΩ
25kΩ
25kΩ
+In B
5
25kΩ
14
10
9
B
The INA134 is available in 8-pin DIP and SO-8
surface-mount packages. The INA2134 comes in
14-pin DIP and SO-14 surface-mount packages. Both
are specified for operation over the extended industrial
temperature range, –40°C to +85°C.
12
25kΩ
8
Sense A
Out A
Ref A
Sense B
Out B
Ref B
INA2134
4
V–
International Airport Industrial Park • Mailing Address: PO Box 11400, Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd., Tucson, AZ 85706 • Tel: (520) 746-1111 • Twx: 910-952-1111
Internet: http://www.burr-brown.com/ • FAXLine: (800) 548-6133 (US/Canada Only) • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132
©1997 Burr-Brown Corporation
SBOS071
PDS-1390A
Printed in U.S.A. July, 1997
SPECIFICATIONS: VS = ±18V
At TA = +25°C, VS = ±18V, RL = 2kΩ, and Ref Pin connected to Ground, unless otherwise noted.
INA134PA, UA
INA2134PA, UA
PARAMETER
CONDITIONS
AUDIO PERFORMANCE
Total Harmonic Distortion + Noise, f = 1kHz
Noise Floor(1)
Headroom(1)
VIN = 10Vrms
20kHz BW
THD+N < 1%
FREQUENCY RESPONSE
Small-Signal Bandwidth
Slew Rate
Settling Time: 0.1%
0.01%
Overload Recovery Time
Channel Separation (dual), f = 1kHz
MIN
10V Step, CL = 100pF
10V Step, CL = 100pF
50% Overdrive
OUTPUT NOISE VOLTAGE(2)
f = 20Hz to 20kHz
f = 1kHz
OFFSET VOLTAGE(3)
Input Offset Voltage
vs Temperature
vs Power Supply
INPUT
Common-Mode Voltage Range: Positive
Negative
Differential Voltage Range
Common-Mode Rejection
Impedance(4)
Differential
Common-Mode
GAIN
Initial
Error
vs Temperature
Nonlinearity
VO = 0V
VO = 0V
2(V+)–5
2(V–)+5
VCM = ±31V, RS = 0Ω
74
VO = –16V to 16V
(V+)–2
(V–)+2
±4
IO = 0
TEMPERATURE RANGE
Specification Range
Operation Range
Storage Range
Thermal Resistance, θJA
8-Pin DIP
SO-8 Surface-Mount
14-Pin DIP
SO-14 Surface-Mount
UNITS
%
dBu
dBu
3.1
14
2
3
3
117
MHz
V/µs
µs
µs
µs
dB
7
52
µVrms
nV/√HZ
±1000
±60
µV
µV/°C
µV/V
2(V+)–4
2(V–)+2
See Typical Curve
90
dB
50
50
kΩ
kΩ
1
±0.02
±1
0.0001
OUTPUT
Voltage Output, Positive
Negative
Current Limit, Continuous to Common
Capacitive Load (Stable Operation)
MAX
0.0005
–100
+23
±100
±2
±5
VCM = 0V
Specified Temperature Range
VS = ±4V to ±18V
VO = –16V to 16V
POWER SUPPLY
Rated Voltage
Voltage Range
Quiescent Current (per Amplifier)
TYP
V
V
±0.1
±10
(V+)–1.8
(V–)+1.6
±60
500
±18
±2.4
–40
–55
–55
100
150
80
100
V/V
%
ppm/°C
%
V
V
mA
pF
±18
±2.9
V
V
mA
85
125
125
°C
°C
°C
°C/W
°C/W
°C/W
°C/W
NOTES: (1) dBu = 20log (Vrms /0.7746). (2) Includes effects of amplifier’s input current noise and thermal noise contribution of resistor network.
(3) Includes effects of amplifier’s input bias and offset currents. (4) 25kΩ resistors are ratio matched but have ±25% absolute value.
The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes
no responsibility for the use of this information, and all use of such information shall be entirely at the user’s own risk. Prices and specifications are subject to change
without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant
any BURR-BROWN product for use in life support devices and/or systems.
®
INA134/2134
2
PIN CONFIGURATIONS
Top View
8-Pin DIP/SO-8
Top View
14-Pin DIP/SO-14
Ref
1
8
NC
NC
1
–In
2
7
V+
–In A
2
14
Ref A
13
Out A
A
+In
3
6
Output
+In A
3
12
Sense A
V–
4
5
Sense
V–
4
11
V+
+In B
5
10
Sense B
B
NC = No Connection
ABSOLUTE MAXIMUM RATINGS(1)
Supply Voltage, V+ to V– .................................................................... 40V
Input Voltage Range .......................................................................... ±80V
Output Short-Circuit (to ground)(2) ........................................... Continuous
Operating Temperature ................................................. –55°C to +125°C
Storage Temperature ..................................................... –55°C to +125°C
Junction Temperature .................................................................... +150°C
Lead Temperature (soldering, 10s) ............................................... +300°C
PRODUCT
PACKAGE
Single
INA134PA
INA134UA
8-Pin DIP
SO-8 Surface-Mount
006
182
–40°C to +85°C
–40°C to +85°C
Dual
INA2134PA
INA2134UA
14-Pin DIP
SO-14 Surface-Mount
010
235
–40°C to +85°C
–40°C to +85°C
9
Out B
NC
7
8
Ref B
ELECTROSTATIC
DISCHARGE SENSITIVITY
PACKAGE/ORDERING INFORMATION
SPECIFICATION
TEMPERATURE
RANGE
6
NC = No Connection
NOTE: (1) Stresses above these ratings may cause permanent damage.
(2) One channel per package.
PACKAGE
DRAWING
NUMBER(1)
–In B
This integrated circuit can be damaged by ESD. Burr-Brown
recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and
installation procedures can cause damage.
ESD damage can range from subtle performance degradation
to complete device failure. Precision integrated circuits may
be more susceptible to damage because very small parametric
changes could cause the device not to meet its published
specifications.
NOTE: (1) For detailed drawing and dimension table, please see end of data
sheet, or Appendix C of Burr-Brown IC Data Book.
®
3
INA134/2134
TYPICAL PERFORMANCE CURVES
At TA = +25°C, VS = ±18V, unless otherwise noted.
TOTAL HARMONIC DISTORTION+NOISE
vs FREQUENCY
DIM INTERMODULATION DISTORTION
vs OUTPUT AMPLITUDE
1
5
BW = 100kHz
VO = 10Vrms
1
DIM (%)
THD+Noise (%)
0.1
0.010
RL = 100kΩ
0.1
RL = 2kΩ, 600Ω
RL = 2kΩ
0.001
0.010
RL = 600Ω
0.0001
0.001
20
100
1k
10k 20k
–10
–5
0
5
10
15
20
Frequency (Hz)
Output Amplitude (dBu)
HEADROOM - TOTAL HARMONIC DISTORTION+NOISE
vs OUTPUT AMPLITUDE
HARMONIC DISTORTION PRODUCTS
vs FREQUENCY
1
25
0.01
Amplitude (% of Fundamental)
f = 1kHz
0.010
RL = 600Ω
0.001
RL = 2kΩ,
100kΩ
RL = 600Ω,
2nd Harmonic
0.001
RL = 600Ω,
3rd Harmonic
RL = 2kΩ,
2nd Harmonic
0.0001
(
RL = 2kΩ,
3rd Harmonic
0.00001
noise limited)
VO = 1Vrms
0.000001
0.0001
0
5
10
15
20
25
30
20
100
1k
Output Amplitude (dBu)
Frequency (Hz)
OUTPUT VOLTAGE NOISE SPECTRAL DENSITY
vs FREQUENCY
OUTPUT NOISE VOLTAGE
vs NOISE BANDWIDTH
10k
10k 20k
100
Noise Voltage (µVrms)
Voltage Noise (nV/√Hz)
THD+Noise (%)
0.1
1k
100
10
10
1
0.1
1
10
100
1k
10k
100k
1M
1
Frequency (Hz)
100
1k
Frequency (Hz)
®
INA134/2134
10
4
10k
100k
TYPICAL PERFORMANCE CURVES
(CONT)
At TA = +25°C, VS = ±18V, unless otherwise noted.
GAIN vs FREQUENCY
COMMON-MODE REJECTION vs FREQUENCY
100
Common-Mode Rejection (dB)
10
Voltage Gain (dB)
0
–10
–20
80
60
40
20
0
–30
1k
10k
100k
1M
10M
1k
10k
Frequency (Hz)
POWER SUPPLY REJECTION vs FREQUENCY
1M
CHANNEL SEPARATION vs FREQUENCY
130
120
RL = 100kΩ
100
80
Channel Separation (dB)
Power Supply Rejection (dB)
100k
Frequency (Hz)
–PSR
60
40
+PSR
20
0
120
RL = 2kΩ
110
100
90
100
1k
10k
100k
20
1M
100
1k
10k 20k
Frequency (Hz)
Frequency (Hz)
MAXIMUM OUTPUT VOLTAGE vs FREQUENCY
INPUT COMMON-MODE VOLTAGE RANGE
vs OUTPUT VOLTAGE
40
40
VS = ±18V
Common-Mode Voltage (V)
Output Voltage (Vp-p)
30
30
20
10
20
10
0
–10
–20
–30
–40
VREF = 0V
RL = 2kΩ
–50
0
100
1k
10k
100k
1M
–20
10M
–15
–10
–5
0
5
10
15
20
Output Voltage (V)
Frequency (Hz)
®
5
INA134/2134
TYPICAL PERFORMANCE CURVES
(CONT)
At TA = +25°C, VS = ±18V, unless otherwise noted.
SLEW RATE vs TEMPERATURE
QUIESCENT CURRENT vs TEMPERATURE
4
16
3
14
Slew Rate (V/µs)
Quiescent Current (mA)
–SR
2
1
+SR
12
10
8
0
–75
–50
–25
0
25
50
75
100
–75
125
–50
–25
0
25
50
75
100
125
Temperature (°C)
Temperature (°C)
SHORT-CIRCUIT CURRENT vs TEMPERATURE
QUIESCENT CURRENT vs SUPPLY VOLTAGE
80
3
40
Quiescent Current (mA)
Short-Circuit Current (mA)
60
+ISC
20
0
–20
–ISC
–40
2
1
–60
0
–80
–75
–50
–25
0
25
50
75
100
125
±4
Temperature (°C)
±10
±12
±14
±16
±18
OFFSET VOLTAGE DRIFT
PRODUCTION DISTRIBUTION
25
Typical Production
Distribution of
Packaged Units.
Percent of Amplifiers (%)
Typical Production Distribution
of Packaged Units.
15
10
5
0
20
15
10
5
0
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
5.5
6
6.5
7
7.5
8
8.5
9
9.5
10
10.5
11
11.5
12
–1000
–900
–800
–700
–600
–500
–400
–300
–200
–100
0
100
200
300
400
500
600
700
800
900
1000
Percent of Amplifiers (%)
20
±8
Supply Voltage (V)
OFFSET VOLTAGE
PRODUCTION DISTRIBUTION
25
±6
Offset Voltage Drift (µV/°C)
Offset Voltage (µV)
®
INA134/2134
6
TYPICAL PERFORMANCE CURVES
(CONT)
At TA = +25°C, VS = ±18V, unless otherwise noted.
SMALL-SIGNAL OVERSHOOT
vs LOAD CAPACITANCE
OUTPUT VOLTAGE SWING vs OUTPUT CURRENT
70
17
–55°C
60
15
25°C
14
50
Overshoot (%)
125°C
13
85°C
12
–12
85°C
125°C
–13
–14
–15
25°C
–16
40
30
20
RL = 2kΩ
100mV Step
10
–55°C
0
–17
0
±20
±40
±60
±80
0
±100
400
800
1200
1600
2000
Load Capacitance (pF)
Output Current (mA)
LARGE-SIGNAL STEP RESPONSE
CL = 500pF
SMALL-SIGNAL STEP RESPONSE
CL = 100pF
5V/div
50mV/div
Output Voltage Swing (V)
16
CL = 500pF
1µs/div
1µs/div
®
7
INA134/2134
APPLICATIONS INFORMATION
V+
V–
Figure 1 shows the basic connections required for operation
of the INA134. Decoupling capacitors are strongly recommended in applications with noisy or high impedance power
supplies. The capacitors should be placed close to the device
pins as shown in Figure 1. All circuitry is completely
independent in the dual version assuring lowest crosstalk
and normal behavior when one amplifier is overdriven or
short-circuited.
1µF
1µF
7
4
INA134
–In
V2
As shown in Figure 1, the differential input signal is connected to pins 2 and 3. The source impedances connected to
the inputs must be nearly equal to assure good commonmode rejection. A 10Ω mismatch in source impedance will
degrade the common-mode rejection of a typical device to
approximately 74dB. If the source has a known impedance
mismatch, an additional resistor in series with the opposite
input can be used to preserve good common-mode rejection.
2
R2
25kΩ
R1
25kΩ
5
6
VOUT = V3 – V2
+In
3
V3
Do not interchange pins 1 and 3 or pins 2 and 5, even though
nominal resistor values are equal. These resistors are laser
trimmed for precise resistor ratios to achieve accurate gain
and highest CMR. Interchanging these pins would not provide specified performance.
R4
25kΩ
R3
25kΩ
1
FIGURE 1. Precision Difference Amplifier (Basic Power
Supply and Signal Connections).
INA134
AUDIO PERFORMANCE
The INA134 and INA2134 were designed for enhanced ac
performance. Very low distortion, low noise, and wide bandwidth provide superior performance in high quality audio
applications. Laser-trimmed matched resistors provide optimum common-mode rejection (typically 90dB), especially
when compared to circuits implemented with an op amp and
discrete precision resistors. In addition, high slew rate
(14V/µs) and fast settling time (3µs to 0.01%) ensure good
dynamic performance.
R1
R2
5
6
10Ω
V3
3
VO
R3
R4
The INA134 and INA2134 have excellent distortion characteristics. THD+Noise is below 0.002% throughout the audio
frequency range. Up to approximately 10kHz distortion is
below the measurement limit of commonly used test equipment. Furthermore, distortion remains relatively flat over its
wide output voltage swing range (approximately 1.7V from
either supply).
+15V
VO = V3 – V2
Offset Adjustment
Range = ±300µV
1
499kΩ
100kΩ
10Ω
–15V
FIGURE 2. Offset Adjustment.
OFFSET VOLTAGE TRIM
The INA134 and INA2134 are laser trimmed for low offset
voltage and drift. Most applications require no external offset
adjustment. Figure 2 shows an optional circuit for trimming
the output offset voltage. The output is referred to the output
reference terminal (pin 1), which is normally grounded. A
voltage applied to the Ref terminal will be summed with the
output signal. This can be used to null offset voltage as
shown in Figure 2. The source impedance of a signal applied
to the Ref terminal should be less than 10Ω to maintain good
common-mode rejection.
®
INA134/2134
2
V2
8
INA134
5
2
INA134
V1
6
1
V1
–In
V0 = V1 + V2
1/2
OPA2134
5
2
R2
V2
3
6
R1
V2
INA134
–In
2
V0
0utput
R2
FIGURE 3. Precision Summing Amplifier.
1/2
OPA2134
1
3
+In
5
VO = (1 + 2R2/R1) (V2 –V1)
6
3
BUF634
6
VO
FIGURE 5. High Input Impedance Instrumentation Amplifier.
+In
3
1
FIGURE 4. Boosting Output Current.
The difference amplifier is a highly versatile building
block that is useful in a wide variety of applications. See
the INA105 data sheet for additional applications ideas,
including:
• Precision Summing Instrumentation Amplifier
• Current Receiver with Compliance to Rails
• Differential Input Voltage-to-Current Converter for Low
IOUT
• Isolating Current Source
• Precision Absolute Value Buffer
• Precision Voltage-to-Current Converter with Differential
Inputs
• Precision Unity-Gain Inverting Amplifier
• ±10V Precision Voltage Reference
• ±5V Precision Voltage Reference
• Precision Unity-Gain Buffer
• Differential Output Difference Amplifier
• Isolating Current Source with Buffering Amplifier for
Greater Accuracy
• Precision Average Value Amplifier
• Precision G = 2 Amplifier
• Window Comparator with Window Span and Window
Center Inputs
• Precision Voltage-Controlled Current Source with Buffered Differential Inputs and Gain
• Precision Summing Amplifier
• Precision G = 1/2 Amplifier
• Precision Bipolar Offsetting
• Precision Summing Amplifier with Gain
• Digitally Controlled Gain of ±1 Amplifier
• Instrumentation Amplifier Guard Drive Generator
®
9
INA134/2134
PACKAGE OPTION ADDENDUM
www.ti.com
6-Dec-2006
PACKAGING INFORMATION
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
INA134PA
ACTIVE
PDIP
P
8
50
Green (RoHS &
no Sb/Br)
CU NIPDAU
N / A for Pkg Type
INA134PAG4
ACTIVE
PDIP
P
8
50
Green (RoHS &
no Sb/Br)
CU NIPDAU
N / A for Pkg Type
INA134UA
ACTIVE
SOIC
D
8
100
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
INA134UA/2K5
ACTIVE
SOIC
D
8
2500
Pb-Free
(RoHS)
CU NIPDAU
Level-3-260C-168 HR
INA134UA/2K5E4
ACTIVE
SOIC
D
8
2500
Pb-Free
(RoHS)
CU NIPDAU
Level-3-260C-168 HR
INA134UAE4
ACTIVE
SOIC
D
8
100
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
INA134UAG4
ACTIVE
SOIC
D
8
100
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
INA2134PA
ACTIVE
PDIP
N
14
25
Green (RoHS &
no Sb/Br)
CU NIPDAU
N / A for Pkg Type
INA2134UA
ACTIVE
SOIC
D
14
58
Pb-Free
(RoHS)
CU NIPDAU
Level-3-260C-168 HR
INA2134UA/2K5
ACTIVE
SOIC
D
14
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
INA2134UA/2K5E4
ACTIVE
SOIC
D
14
2500
CU NIPDAU
Level-3-260C-168 HR
INA2134UA/2K5G4
ACTIVE
SOIC
D
14
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
INA2134UAE4
ACTIVE
SOIC
D
14
CU NIPDAU
Level-3-260C-168 HR
58
Pb-Free
(RoHS)
Pb-Free
(RoHS)
Lead/Ball Finish
MSL Peak Temp (3)
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check
http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS
compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder
temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on
Addendum-Page 1
PACKAGE OPTION ADDENDUM
www.ti.com
6-Dec-2006
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited
information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI
to Customer on an annual basis.
Addendum-Page 2
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:
Products
Applications
Amplifiers
amplifier.ti.com
Audio
www.ti.com/audio
Data Converters
dataconverter.ti.com
Automotive
www.ti.com/automotive
DSP
dsp.ti.com
Broadband
www.ti.com/broadband
Interface
interface.ti.com
Digital Control
www.ti.com/digitalcontrol
Logic
logic.ti.com
Military
www.ti.com/military
Power Mgmt
power.ti.com
Optical Networking
www.ti.com/opticalnetwork
Microcontrollers
microcontroller.ti.com
Security
www.ti.com/security
Low Power Wireless www.ti.com/lpw
Mailing Address:
Telephony
www.ti.com/telephony
Video & Imaging
www.ti.com/video
Wireless
www.ti.com/wireless
Texas Instruments
Post Office Box 655303 Dallas, Texas 75265
Copyright  2006, Texas Instruments Incorporated