Agilent HCPL-354 AC Input Phototransistor Optocoupler SMD Mini-Flat Type Data Sheet Description The HCPL-354 contains a phototransistor, optically coupled to two light emitting diodes connected inverse parallel. It can operate directly by AC input current. It is packaged in a 4-pin mini-flat SMD package with a 2.0 mm profile. The small dimension of this product allows significant space saving. The package volume is 30% smaller than that of conventional DIP type. Inputoutput isolation voltage is 3750 Vrms. Response time, tr, is typically 4 µs and minimum CTR is 20% at input current of ± 1 mA. Ordering Information Specify Part Number followed by Option Number (if desired). HCPL-354-XXXE Lead Free Option Number 000 = No Options 060 = IEC/EN/DIN EN 60747-5-2 Option 00A = Rank Mark A Functional Diagram 1 4 2 3 1. ANODE, CATHODE 2. CATHODE, ANODE Features • AC input response • Current transfer ratio (CTR: min. 20% at IF = ± 1 mA, VCE = 5 V) • Isolation voltage between input and output (Viso = 3,750 Vrms) • Subminiature type (The volume is smaller than that of conventional DIP type by as far as 30%) • Mini-flat package • 2.0 mm profile • UL approved • CSA approved • IEC/EN/DIN EN 60747-5-2 approved • Options available: – IEC/EN/DIN EN 60747-5-2 approvals (060) Applications • Detecting or monitoring AC signals • Programmable controllers • AC/DC-input modules • AC line/digital logic isolation 3. EMITTER 4. COLLECTOR CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD. Package Outline Drawing HCPL-354-000E 2.54 ± 0.25 3.60 ± 0.3 354 Y WW LEAD FREE 5.30 ± 0.3 DATE CODE *1 0.2 ± 0.05 2.00 ± 0.2 4.40 ± 0.2 + 0.2 7.00 – 0.7 0.10 ± 0.1 0.40 ± 0.1 RANK *2 DIMENSIONS IN MILLIMETERS. HCPL-354-060E 2.54 ± 0.25 3.60 ± 0.3 354 V Y WW LEAD FREE 5.30 ± 0.3 DATE CODE *1 0.2 ± 0.05 2.00 ± 0.2 4.40 ± 0.2 + 0.2 7.00 – 0.7 0.10 ± 0.1 0.40 ± 0.1 RANK *2 DIMENSIONS IN MILLIMETERS. 2) When using another soldering method such as infrared ray lamp, the temperature may rise partially in the mold of the device. Keep the temperature on the package of the device within the condition of (1) above. 2 30 seconds 250°C Temperature (°C) Solder Reflow Temperature Profile 1) One-time soldering reflow is recommended within the condition of temperature and time profile shown at right. 260°C (Peak Temperature) 217°C 200°C 150°C 60 sec 25°C 60 ~ 150 sec 90 sec Time (sec) 60 sec Absolute Maximum Ratings Parameters Storage Temperature Ambient Operating Temperature Lead Solder Temperature for 10s (1.6 mm below seating plane) Average Forward Current Input Power Dissipation Collector Current Collector-Emitter Voltage Emitter-Collector Voltage Collector Power Dissipation Total Power Dissipation Isolation Voltage (AC for 1 minute, R.H. = 40 ~ 60%)[1] Symbol TS TA Tsol Min. –55 –55 IF PI IC VCEO VECO PC Ptot Viso Max. 150 100 260 Units ˚C ˚C ˚C ±50 70 50 35 6 150 170 3750 mA mW mA V V mW mW Vrms Electrical Specifications (TA = 25˚C) Parameter Forward Voltage Terminal Capacitance Collector Dark Current Collector-Emitter Breakdown Voltage Emitter-Collector Breakdown Voltage Collector Current Current Transfer Ratio[2] Collector-Emitter Saturation Voltage Isolation Resistance Symbol VF Ct ICEO BVCEO BVECO IC CTR VCE(sat) Riso Min. – – – 35 6 0.2 20 – 5 x 1010 Typ. 1.2 30 – – – – – 0.1 1 x 1011 Max. 1.4 250 100 – – 4 400 0.2 – Units V pF nA V V mA % V Ω Floating Capacitance Response Time (Rise) Response Time (Fall) Cf tr tf – – – 0.6 4 3 1 18 18 pF µs µs Rank Mark A No Mark CTR (%) 50 ~ 150 20 ~ 400 Conditions IF = ±1 mA, VCE = 5 V, TA = 25˚C Notes: 1. Isolation voltage shall be measured using the following method: (a) Short between anode and cathode on the primary side and between collector and emitter on the secondary side. (b) The isolation voltage tester with zero-cross circuit shall be used. (c) The waveform of applied voltage shall be a sine wave. I 2. CTR = C x 100% IF 3 Test Conditions IF = ±20 mA V = 0, f = 1 kHz VCE = 20 V, IF = 0 IC = 0.1 mA, IF = 0 IE = 10 µA, IF = 0 IF = ±1 mA, VCE = 5 V IF = ±20 mA, IC = 1 mA DC 500 V 40 ~ 60% R.H. V = 0, f = 1 MHz VCE = 2 V, IC = 2 mA, RL = 100 Ω 30 20 10 25 50 75 100 125 TA – AMBIENT TEMPERATURE – °C Figure 1. Forward current vs. ambient temperature. IF – FORWARD CURRENT – mA 500 TA = 75°C TA = 50°C TA = 25°C 200 TA = -25°C 50 20 10 5 2 1 0 1.0 0.5 1.5 2.0 2.5 50 3.0 50 75 100 50 0 20 40 60 80 100 Figure 7. Relative current transfer ratio vs. ambient temperature. IC = 5 mA IC = 7 mA 2 1 0 2.5 7.5 5.0 50 100 80 60 40 20 0 0.1 0.2 0.5 1 2 5 10 20 10.0 12.5 15.0 Figure 3. Collector-emitter saturation voltage vs. forward current. TA = 25°C 40 IF = 30 mA PC (MAX.) 30 IF = 20 mA 20 IF = 10 mA 10 IF = 5 mA 0 50 100 IF = 1 mA 1 0 2 3 4 5 6 7 8 9 10 VCE – COLLECTOR-EMITTER VOLTAGE – V Figure 5. Current transfer ratio vs. forward current. Figure 6. Collector current vs. collectoremitter voltage. 0.10 100 IC = 3 mA 3 IF – FORWARD CURRENT – mA VCE = 5 V TA = 25°C 120 150 IF = 1 mA VCE = 5 V IC = 1 mA 4 125 140 VCE(SAT.) – COLLECTOR-EMITTER SATURATION VOLTAGE – V RELATIVE CURRENT TRANSFER RATIO – % 25 IF – FORWARD CURRENT – mA TA – AMBIENT TEMPERATURE – °C 4 0 IC = 0.5 mA TA – AMBIENT TEMPERATURE – °C VF – FORWARD VOLTAGE – V Figure 4. Forward current vs. forward voltage. TA = 25°C 5 0 0 -55 Figure 2. Collector power dissipation vs. ambient temperature. TA = 0°C 100 100 IC – COLLECTOR CURRENT – mA 0 150 ICEO – COLLECTOR DARK CURRENT – nA 0 -55 6 200 VCE(SAT.) – COLLECTOR-EMITTER SATURATION VOLTAGE – V 40 PC – COLLECTOR POWER DISSIPATION – mW 50 CTR – CURRENT TRANSFER RATIO – % IF – FORWARD CURRENT – mA 60 10000 IF = 20 mA IC = 1 mA 0.08 0.06 0.04 0.02 0 20 40 60 80 100 TA – AMBIENT TEMPERATURE – °C Figure 8. Collector-emitter saturation voltage vs. ambient temperature. VCE = 20 V 1000 100 10 1 20 40 60 80 100 TA – AMBIENT TEMPERATURE – °C Figure 9. Collector dark current vs. ambient temperature. RESPONSE TIME – µs 50 20 VCE = 2 V IC = 2 mA TA = 25°C VCE = 2 V IC = 2 mA tr VOLTAGE GAIN AV – dB 100 TA = 25°C 10 tf 5 td 2 ts 1 0.5 0 RL = 10 kΩ -10 RL = 1 kΩ RL = 100 Ω 0.2 0.1 0.1 0.2 0.5 1 2 5 -20 0.2 10 0.5 1 2 5 10 1000 100 f – FREQUENCY – kHz RL – LOAD RESISTANCE – kΩ Figure 10. Response time vs. load resistance. Figure 11. Frequency response. VCC ;; RD INPUT INPUT RL OUTPUT 90% td ; ;; VCC RL OUTPUT Figure 13. Test circuit for frequency response. 5 ts tr Figure 12. Test circuit for response time. RD 10% OUTPUT tf www.agilent.com/semiconductors For product information and a complete list of distributors, please go to our web site. For technical assistance call: Americas/Canada: +1 (800) 235-0312 or (916) 788-6763 Europe: +49 (0) 6441 92460 China: 10800 650 0017 Hong Kong: (+65) 6756 2394 India, Australia, New Zealand: (+65) 6755 1939 Japan: (+81 3) 3335-8152 (Domestic/International), or 0120-61-1280 (Domestic Only) Korea: (+65) 6755 1989 Singapore, Malaysia, Vietnam, Thailand, Philippines, Indonesia: (+65) 6755 2044 Taiwan: (+65) 6755 1843 Data subject to change. Copyright © 2004 Agilent Technologies, Inc. Obsoletes 5989-0313EN November 3, 2004 5989-1739EN