GENNUM GS3020

DynamEQ® I
Dynamic Equalizer
GS3020 - DATA SHEET
FEATURES
DESCRIPTION
• handles high input levels (up to 100 mVRMS)
cleanly
• low THD and IMD distortion
• unique twin average detectors
• dual channel signal processing
The DynamEQ ® I hybrid is a dynamically adaptive loudness
growth equalizer. Its gain and frequency response is
dependent on the user's environment, and is designed for
level dependant frequency response providing treble
increase at low levels (TILL). The unique twin averaging
detector circuit dramatically reduces pumping effects and
is optimized for mild to moderate hearing loss.
•
•
•
•
adjustable AGC threshold levels
highpass filter with adjustable corner frequency
2:1 compression of high frequencies
no external capacitors or resistors required
DynamEQ® I has two signal paths for dual channel processing
incorporating 4 amplifying stages ( A, B, C, D ) and the
AGC processing circuit.
• 30% smaller by volume than DynamEQ® I GS3011
Stage A is a highpass channel with 2:1 compression,
Stage B is a wideband unity gain buffer. The sum of the two
paths gives a high frequency boost to low level signals,
which gradually compresses to a flat response at high
input levels. Stage C is used for volume control adjustment,
while stage D is a class A power amplifier with receiver
bias current adjustment.
STANDARD PACKAGING
• Hybrid Typical Dimensions
0.250 in x 0.115 in x 0.115 in
(6.35 mm x 2.92 mm x 2.92 mm)
VB
5
C7
C6
2µ2
0µ1
100k
VREG 10
REGULATOR
C1
2µ2
SLOW
AVERAGE
DETECTOR
FAST
AVERAGE
DETECTOR
2:1
COMPRESSION
CONTROL
CURRENT
REFERENCE
RTH 1
100k
R1
68k
RECTIFIER
VB
24k
CHP 11
C2
IN
12k
3
-A
9
-C
3n9
C3
R2
0µ1
50k
OUT
D
2 RE
11
1k
-B
50k
515
50k
MGND 8
50k
C5
GND 4
C4
0µ1
GS3020
0µ1
7
All resistors in ohms, all capacitors in farads unless otherwise stated.
Patent Pending.
CIN
6
COUT
FUNCTIONAL BLOCK DIAGRAM
Revision Date: May 1998
Document No. 521 - 05 - 04
GENNUM CORPORATION P.O. Box 489, Stn. A, Burlington, Ontario, Canada L7R 3Y3 tel. +1 (905) 632-2996
Web Site: www.gennum.com E-mail: [email protected]
PAD CONNECTION
ABSOLUTE MAXIMUM RATINGS
PARAMETER
RTH
1
RE
2
OUT
3
VALUE / UNITS
Supply Voltage
3 VDC
Power Dissipation
25 mW
Operating Temperature Range
-10° C to 40° C
Storage Temperature Range
-20° C to 70° C
4
GND
5
6
7
8
11
CHP
10
VREG
9
VB COUT CIN MGND IN
CAUTION
CLASS 1 ESD SENSITIVITY
ELECTRICAL CHARACTERISTICS
Conditions: Input Level VIN = -97 dBV, Frequency = 5 kHz, Temperature = 25°C, Supply Voltage V B = 1.3 V
PARAMETER
SYMBOL
CONDITIONS
Hybrid Current
I AMP
Minimum Voltage
VB
Total Harmonic Distortion
THD
RVC= 15kΩ; VIN= -40dBV at1kHz
Input Referred Noise
IRN
NFB 0.2 to 10kHz at 12dB/oct
Total System Gain
AV
VIN = 0V RMS
MIN
TYP
MAX
UNITS
90
190
300
µA
1.1
-
-
V
-
0.1
1
%
µVRMS
-
2.5
-
52.5
55.5
58.5
1.74:1
1.95:1
2.11:1
Ratio
dB
AGC
Compression Ratio
COMP
VIN= -60dBV & -80dBV, RVC= 15k
Compression Gain Range
ARANGE
RVC= 15kΩ; Note 1
High Pass Corner Frequency
ƒ HPC
CHP - Not Connected
System Gain in Compression
A80
VIN = -80dBV
Minimum Transducer Current
I TR
RE - Not Connected
Maximum Current Sink
Threshold
-
-94
-
dBV
26
28
-
dB
-
3.4
-
kHz
45
47
49
dB
130
160
190
µA
I SINK
3
6
-
mA
Output Impedance
ZOUT
20
24
28
kΩ
RE Voltage
VRE
52
56
60
mV
0.89
0.95
0.99
OUTPUT STAGE
REGULATOR
Regulator Voltage
VREG
All parameters and switches remain as shown in the Test Circuit unless otherwise stated in CONDITIONS column
V PX actual voltage measured on the pin at given condition (X is pin number)
Notes:
521 - 05 - 04
1. ARANGE = V P3 [VIN = -97dBV] - V P3 [VIN = -20 dBV] + 77dBV
2
V
1.3V
5
C7
C6
2µ2
0µ1
100k
10
REGULATOR
C1
2µ2
FAST
AVERAGE
DETECTOR
2:1
COMPRESSION
CONTROL
CURRENT
REFERENCE
1
100k
SLOW
AVERAGE
DETECTOR
R1
68k
RECTIFIER
1kΩ
24k
11
CHP
0µ1
1.3V
VB
12k
C2
-A
9
3
-C
D
3n9
3k9
11
2
VIN
C3
R2
0µ1
50k
-B
515
1k
50k
RE
100
50k
8
50k
C5
4
0µ1
C4
GS3020
0µ1
7
6
RVC
All resistors in ohms, all capacitors in farads unless otherwise stated.
100K
Fig.1 Production Test Circuit
1.3V
5
C7
C6
2µ2
0µ1
100k
REGULATOR
10
C1
2µ2
FAST
AVERAGE
DETECTOR
2:1
COMPRESSION
CONTROL
CURRENT
REFERENCE
1
100k
SLOW
AVERAGE
DETECTOR
R1
68k
1.3V
RECTIFIER
VB
24k
11
C2
EK3024
or
MODEL 39
ED1913
or
MODEL 2313
12k
-A
9
3
-C
D
3n9
11
2
MGND
C3
R2
0µ1
50k
-B
1k
50k
515
RE
100
50k
8
50k
C5
4
C4 0µ1
GS3020
0µ1
7
All resistors in ohms, all capacitors in farads unless otherwise stated.
Microphones and receivers shown above are for illustrative purposes only.
Manufacturers can design with other appropriate transducers.
6
RVC
100k
Fig. 2 Example of Hearing Instrument Application
3
521 - 05 - 04
VOLUME
CONTROL
BATTERY
+
-
MIC+
+
EK3024
or
MODEL 39
REC
10
9
8
7
5
6
ED1913
or
MODEL 2313
4
3
2
11
1
100Ω
Microphones and receivers shown above are for illustrative purposes only.
Manufacturers can design with other appropriate transducers.
Fig. 3 Example of Assembly Diagram
1.3V
5
C7
C6
2µ2
0µ1
100k
10
REGULATOR
C1
2µ2
RTH=∞ ∞
CHP
(Normally not
connected)
FAST
AVERAGE
DETECTOR
2:1
COMPRESSION
CONTROL
CURRENT
REFERENCE
1
100k
SLOW
AVERAGE
DETECTOR
R1
68k
RECTIFIER
2.6V
VB
1k82
24k
11
C2
12k
-A
9
3
-C
3n9
D
3k9
11
2
VIN
C3
R2
0µ1
50k
1k
-B
50k
515
50k
8
50k
C5
4
C4
0µ1
GS3020
0µ1
6
7
All resistors in ohms, all capacitors in farads unless otherwise stated.
RVC
15k
Fig. 4 Characterization Circuit (used to generate typical curves)
521 - 05 - 04
4
RE
100
0
45
V IN=-96dBV
40
VIN=-88dBV
-10
1kHz
OUTPUT LEVEL (dBV)
VIN=-80dBV
35
GAIN (dB)
30
V IN=-60dBV
25
20
V IN=-40dBV
15
VIN=-20dBV
10
-20
2kHz
-30
5kHz
RTH = ∞
-40
-50
1kHz
-60
2kHz
-70
5
-80
-100
0
20
100
1k
10k
RTH = 0
20k
-90
-80
5kHz
-70
-60
-50
-40
-10
Fig. 5 Frequency Response for Different Input Levels
Fig. 6 I/O Transfer Function for Different Test
Frequencies. Shown for Min/Max RTH Resistors Values
45
40
VIN = -50dBV
VIN=-96dBV
40
RVC=100kΩ
35
35
CHP=100nF
RVC=47kΩ
GAIN (dB)
30
GAIN (dB)
-20
INPUT LEVEL (dBV)
45
RVC=22kΩ
25
20
RVC=15kΩ
15
30
CHP=68nF
25
CHP=33nF
CHP=10nF
20
CHP=No Capacitor
15
10
10
5
5
0
20
100
1k
10k
V IN=-20dBV
0
20k
20
100
1k
10k
20k
FREQUENCY (Hz)
FREQUENCY (Hz)
Fig. 7 Frequency Response for Different RVC Values
Fig. 8 Corner Frequency vs C HP Capacitor Value
45
0
40
-10
ƒ = 5kHz
-20
-30
GAIN (dB)
OUTPUT LEVEL (dBV)
-30
FREQUENCY (Hz)
-40
R TH = 0Ω
-50
-70
-80
-100
-90
-80
-70
-60
= 100kΩ
35
= 47kΩ
30
= 22kΩ
=0
25
20
15
22kΩ
47kΩ
100kΩ
RTH = ∞
-60
RTH = ∞
10
5
-50
-40
-30
-20
0
20
-10
VIN=-96dBV
100
1k
10k
20k
INPUT LEVEL (dBV)
FREQUENCY (Hz)
Fig. 9 I/O Transfer Function for Different RTH Resistors
Fig. 10 Frequency Characteristics for Different
RTH Values
5
521 - 05 - 04
1
10
ƒ = 5kHz
V IN=-40dBV
∆ ƒ=200Hz
IMD (%)
THD & NOISE (%)
No Capacitor
1
CHP=0.1µF
CHP =0.1µF
0.1
No Capacitor
0.1
0.01
0.01
-90
-80
-70
-60
-50
-40
-30
1k
-20
10k
100k
FREQUENCY (Hz)
INPUT LEVEL (dBV)
Fig. 11 THD & Noise vs Input Level
Fig. 12 Intermodulation Distortion (CCIF)
vs Frequency
0.250
(6.35)
GS3020
0.115
(2.92)
XXXXXX
0.125 MAX
(3.18)
1
11
C7
C1
2
3
4
5
6
7
8
9
10
Dimension units are in inches.
Dimensions in parenthesis are in millimetres converted
from inches and include minor rounding errors.
1.0000 inches = 25.400 mm.
Dimension ± 0.005 (+0.13) unless otherwise stated.
Pad numbers for illustration purposes only.
Smallest pad 0.020 x 0.027 (0.51 x 0.69)
Largest pad 0.025 x 0.041 (0.64 x 1.04)
XXXXXX - work order number.
This hybrid is designed for point to point manual soldering.
Fig. 13 Hybrid Layout & Dimensions
DOCUMENT IDENTIFICATION: DATA SHEET
The product is in production. Gennum reserves the right to make
changes at any time to improve reliability, function or design, in
order to provide the best product possible.
REVISION NOTES:
Updated to Data sheet
Gennum Corporation assumes no responsibility for the use of any circuits described herein and makes no representations that they are free from patent infringement.
© Copyright December 1993 Gennum Corporation.
All rights reserved.
521 - 05 - 04
6
Printed in Canada.