DynamEQ® I Dynamic Equalizer - Class D GS3021 - DATA SHEET FEATURES DESCRIPTION • • • • designed to drive class D integrated receivers handles high input levels (up to 100 mVRMS) cleanly low THD and IMD distortion unique twin average detectors • • • • • dual channel signal processing adjustable AGC threshold levels MPO range externally adjustable highpass filter with adjustable corner frequency 2:1 compression of high frequencies The DynamEQ® I hybrid is a dynamically adaptive loudness growth equalizer. Its gain and frequency response is dependent on the user's environment, and is designed for level dependant frequency response providing treble increase at low levels (TILL). The unique twin averaging detector circuit dramatically reduces pumping effects and is optimized for mild to moderate hearing loss. DynamEQ ® I has two signal paths for dual channel processing incorporating 4 amplifying stages (A , B, C, D) and the AGC processing circuit. • no external capacitors or resistors required • 30% smaller by volume than DynamEQ® I (GS3011) Stage A is a highpass channel with 2:1 compression, Stage B is a wideband unity gain buffer. The sum of the two paths gives a high frequency boost to low level signals, which gradually compresses to a flat response at high input levels. Stage C is used for volume control adjustment, while stage D is a fixed gain stage with MPO control designed to drive class D integrated receivers. STANDARD PACKAGING • Hybrid Typical Dimensions 0.250 in x 0.115 in x 0.115 in (6.35 mm x 2.92 mm x 2.92 mm) VB 5 C7 C6 2µ2 0µ1 100k VREG 10 REGULATOR C1 2µ2 SLOW AVERAGE DETECTOR FAST AVERAGE DETECTOR 2:1 COMPRESSION CONTROL CURRENT REFERENCE RTH 1 100k R1 68k RECTIFIER VB CHP 11 C2 48k 12k -A IN 9 -C 3n9 C3 0µ1 R2 D 3 OUT 48k -B 50k 50k 50k MGND 8 2 MPO 50k C5 GND 4 C4 0µ1 GS3021 0µ1 7 All resistors in ohms, all capacitors in farads unless otherwise stated. Patent Pending. CIN 6 COUT FUNCTIONAL BLOCK DIAGRAM Revision Date: May 1998 Document No. 521 - 06 - 03 GENNUM CORPORATION P.O. Box 489, Stn. A, Burlington, Ontario, Canada L7R 3Y3 tel. +1 (905) 632-2996 Web Site: www.gennum.com E-mail: [email protected] PAD CONNECTION ABSOLUTE MAXIMUM RATINGS PARAMETER VALUE / UNITS Supply Voltage 3 VDC Power Dissipation 25 mW Operating Temperature Range -10° C to 40° C Storage Temperature Range -20° C to 70° C RTH 1 MPO 2 OUT 3 4 GND 5 6 7 8 11 CHP 10 VREG 9 VB COUT CIN MGND IN CAUTION CLASS 1 ESD SENSITIVITY ELECTRICAL CHARACTERISTICS Conditions: Input Level VIN = -97dBV, Frequency = 5 kHz, Temperature = 25°C, Supply Voltage VB = 1.3 V PARAMETER SYMBOL CONDITIONS Hybrid Current I AMP Minimum Voltage VB Total Harmonic Distortion THD RVC= 15kΩ; VIN= -40dBV at1kHz Input Referred Noise IRN NFB 0.2 to 10kHz at 12dB/oct Total System Gain AV VIN = 0VRMS , R MPO = 50kΩ MIN TYP MAX UNITS 120 230 380 µA 1.1 - - V - 0.1 1 % µVRMS - 2.5 - 45 48 51 1.74:1 1.95:1 2.11:1 Ratio dB AGC Compression Ratio COMP VIN= -60dBV and -80dBV Compression Gain Range ARANGE RVC= 10kΩ; Note 1 High Pass Corner Frequency ƒ HPC CHP - Not Connected System Gain in Compression A80 VIN= -80dBV Maximum Output Level MPO MPO Range ∆MPO Threshold - -94 - dBV 26 28 - dB - 3.4 - kHz 38 40 42 dB VIN = -20dBV, RMPO = 0Ω -14.3 -12.3 -10.3 dBV VIN = -20dBV, RMPO = 0 to 50kΩ 13.8 15.8 17.8 dB 0.89 0.94 0.99 V OUTPUT STAGE REGULATOR Regulator Voltage VREG All parameters and switches remain as shown in the Test Circuit unless otherwise stated in CONDITIONS column V PX actual voltage measured on the pin at given condition (X is pin number) Notes: 521 - 06 - 03 1. ARANGE = V P3 [VIN = -97dBV] - V P3 [VIN = -20 dBV] + 77dBV 2 1.3V 5 C7 C6 2µ2 0µ1 100k 10 REGULATOR C1 2µ2 R1 68k CHP=0µ1 FAST AVERAGE DETECTOR 2:1 COMPRESSION CONTROL CURRENT REFERENCE 1 100k SLOW AVERAGE DETECTOR RECTIFIER VB 11 48k 12k C2 -A 9 -C 3n9 0µ1 D 3 3k9 VIN C3 R2 0µ1 50k 48k 50k -B 50k 50k 8 2 50k C5 4 RMPO=0 0µ1 C4 GS3021 0µ1 7 6 RVC All resistors in ohms, all capacitors in farads unless otherwise stated. 100k Fig.1 Production Test Circuit 1.3V 5 C7 C6 2µ2 0µ1 100k 10 REGULATOR C1 2µ2 FAST AVERAGE DETECTOR 2:1 COMPRESSION CONTROL CURRENT REFERENCE 1 100k SLOW AVERAGE DETECTOR R1 68k RECTIFIER VB 1.3V 11 EK3024 or MODEL 39 48k C2 12k -A 9 -C 3n9 C3 R2 0µ1 50k 0µ1 D EP3074 3 2µ2 48k -B 50k 50k 8 2 50k C5 4 C4 0µ1 GS3021 0µ1 6 7 All resistors in ohms, all capacitors in farads unless otherwise stated. RVC Microphones and receivers shown above are for illustrative purposes only. 100k Manufacturers can design with other appropriate transducers. Fig. 2 Example of Hearing Instrument Application 3 521 - 06 - 03 VOLUME CONTROL BATTERY + - MIC+ + 2µ2 EK3024 or MODEL 39 REC EP3074 10 9 8 7 6 5 4 3 0µ1 2 11 1 RMPO Microphones and receivers shown above are for illustrative purposes only. Manufacturers can design with other appropriate transducers. Fig. 3 Example of Assembly Diagram 1.3V 5 C7 C6 2µ2 0µ1 100k 10 REGULATOR C1 2µ2 ∞ R1 68k RTH= CHP (Normally not connected) FAST AVERAGE DETECTOR 2:1 COMPRESSION CONTROL CURRENT REFERENCE 1 100k SLOW AVERAGE DETECTOR RECTIFIER VB 11 C2 48k 12k -A 9 0µ1 -C 3n9 D 3 3k9 VIN C3 R2 0µ1 50k -B 50k 50k 8 2 50k C5 4 C4 0µ1 GS3021 0µ1 7 All resistors in ohms, all capacitors in farads unless otherwise stated. 6 RVC 15k Fig. 4 Characterization Circuit (used to generate typical curves) 521 - 06 - 03 50k 48k 4 -10 35 VIN=-96dBV 30 OUTPUT LEVEL (dBV) VIN=-80dBV 20 GAIN (dB) -20 VIN =-88dBV 25 VIN=-70dBV 15 V IN=-60dBV 10 5 V IN=-40dBV 0 VIN=-20dBV -5 1kHz -40 2kHz -50 RTH = ∞ 5kHz -60 1kHz -70 2kHz -80 -10 20 100 1k 10k 20k -90 -80 -70 -60 -50 -40 -30 -20 -10 0 FREQUENCY (Hz) INPUT LEVEL (dBV) Fig. 5 Frequency Response for Different Input Levels Fig. 6 I/O Transfer Function for Different Test Frequencies. Shown for Min/Max RTH Resistors Values 30 35 RVC=100kΩ 25 VIN = -50dBV VIN=-96dBV 30 RVC=47kΩ 25 20 RVC=22kΩ 15 CHP=100nF 20 CHP=68nF 15 GAIN (dB) 10 RVC=15kΩ 5 0 CHP=33nF 10 CHP=10nF 5 CHP=No Capacitor 0 VIN =-20dBV -5 -5 -10 -10 -15 -15 20 100 1k 10k 20k 20 100 1k 10k 20k FREQUENCY (Hz) FREQUENCY (Hz) Fig. 7 Frequency Response for Different RVC Values Fig. 8 Corner Frequency vs C HP Capacitor Value -10 35 -20 30 ƒ = 5kHz 25 -30 -40 GAIN (dB) OUTPUT LEVEL (dBV) 5kHz RTH = 0 -90 -100 -15 GAIN (dB) -30 -50 RTH = 0Ω -60 22kΩ 47kΩ 100kΩ RTH = ∞ -70 -80 -90 -100 RTH = ∞ = 100kΩ = 47kΩ 20 = 22kΩ 15 =0 10 5 0 -5 -10 VIN=-96dBV -15 -90 -80 -70 -60 -50 -40 -30 -20 -10 0 20 100 1k 10k 20k INPUT LEVEL (dBV) FREQUENCY (Hz) Fig. 9 I/O Transfer Function for Different RTH Resistors Fig. 10 Frequency Characteristics for Different RTH Values 5 521 - 06 - 03 -12 10 -14 RMPO=0Ω ƒ = 5kHz -20 ƒ=1kHz RMPO=10kΩ THD & NOISE (%) OUTPUT (dBV) -16 -18 -22 -24 RMPO=22kΩ -26 -28 RMPO=33kΩ -30 RMPO=50kΩ -32 No Capacitor 1 -34 CHP =0.1µF -36 -38 0.1 -80 -40 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 -70 -60 INPUT LEVEL (dBV) -50 -40 -30 -20 INPUT LEVEL (dBV) Fig. 11 I/O for Various RMPO Settings Fig. 12 THD & Noise vs Input Level 1 10 VIN=-40dBV ƒ =4kHz IMD (%) THD & NOISE (%) ∆ ƒ=200Hz CHP =0.1µF 1 No Capacitor No Capacitor CHP =0.1µF 0.1 100 1k 10k 0.1 FREQUENCY (Hz) IMD (%) No Capacitor CHP =0.1µF VIN=-40dBV ∆ ƒ=200Hz 0.1 100k FREQUENCY (Hz) Fig. 15 Intermodulation Distortion (CCIF) vs Frequency 521 - 06 - 03 -60 -50 -40 -30 Fig. 14 Intermodulation Distortion (CCIF) vs Level 1 10k -70 INPUT LEVEL (dBV Fig. 13 THD & Noise vs Frequency 3k -80 6 -20 0.250 (6.35) GS3021 0.115 (2.92) XXXXXX 0.125 MAX (3.18) 1 11 C1 C7 2 3 4 5 6 7 8 9 10 Dimension units are in inches. Dimensions in parenthesis are in millimetres converted from inches and include minor rounding errors. 1.0000 inches = 25.400 mm. Dimension ±0.005 (+0.13) unless otherwise stated. Pad numbers for illustration purposes only. Smallest pad 0.020 x 0.027 (0.51 x 0.69) Largest pad 0.025 x 0.041 (0.64 x 1.04) XXXXXX - work order number. This hybrid is designed for point to point manual soldering. Fig. 16 Hybrid Layout & Dimensions DOCUMENT IDENTIFICATION: DATA SHEET The product is in production. Gennum reserves the right to make changes at any time to improve reliability, function or design, in order to provide the best product possible. REVISION NOTES: Updated to Data Sheet Gennum Corporation assumes no responsibility for the use of any circuits described herein and makes no representations that they are free from patent infringement. © Copyright December 1993 Gennum Corporation. All rights reserved. 7 Printed in Canada. 521 - 06 - 03