GMT G1432

G1432
Global Mixed-mode Technology Inc.
2W Stereo Audio Amplifier
Features
General Description
„
The G1432 is a stereo audio power amplifier in 24pin
TSSOP thermal pad package or 24pin QFN package.
It can drive 1.8W continuous RMS power into 4Ω load
per channel in Bridge-Tied Load (BTL) mode at 5V
supply voltage. Its THD is smaller than 1% under the
above operation condition. The G1432 can mute the
output when Mute is activated. For the low current
consumption applications, the SHDN mode is supported to disable the G1432 when it is idle. The current consumption can be further reduced to below
5µA.
„
„
„
„
„
„
Depop Circuitry Integrated
Output Power at 1% THD+N, VDD=5V
--1.8W/CH (typical) into a 4Ω Load
--1.2W/CH (typical) into a 8Ω Load
Maximum Output Power Clamping Circuitry
Integrated
Bridge-Tied Load (BTL)
Stereo Input MUX
Mute and Shutdown Control Available
Surface-Mount Power Package
24-Pin TSSOP-P & 24-Pin QFN Available
The G1432 also supports two input paths, that means
two different gain loops can be set in the same PCB
and choosing either one by setting IN1 /IN2 pin. It enhances the hardware designing flexibility. The G1432
also supports an extra function -- the maximum output
power clamping function to protect the speakers from
burned-out.
Applications
„
Stereo Power Amplifiers for Notebooks or
Desktop Computers
„ Multimedia Monitors
„ Stereo Power Amplifiers for Portable Audio
Systems
Ordering Information
TEMP.
RANGE
ORDER
MARKING
NUMBER
PACKAGE
(Pb free)
G1432F3U
G1432
-40°C to +85°C TSSOP-24 (FD)
G1432Q5U
G1432
-40°C to +85°C
QFN4X4-24
Note: F3:TSSOP-24 (FD) Q5:QFN4X4-24
U: Tape & Reel
RIN2
RBYPASS
LVDD
SHUTDOWN
7
18
RVDD
8
17
GND
NC
9
16
IN1/IN2
LOUT- 10
NC 11
15
14
ROUTMUTE
GND/HS 12
13
GND/HS
Top View
Thermal
Pad
RVDD
GND
IN1/IN2
15
14
13
21
10
GND/HS
GND/HS
22
9
GND/HS
NC
23
8
NC
LOUT+
24
7
LOUT-
Bottom View
TSSOP-24 (FD)
Thermal
Pad
6
19
MUTE
GND/HS
NC
20
6
11
5
5
12
20
4
LIN2
LBYPASS
19
VOL
LVDD
RIN1
ROUT+
SHUTDOWN
21
RIN2
4
RBYPBASS
LIN1
16
ROUT+
3
22
LBYPASS
3
RIN1
VOL
LOUT+
GND/HS
2
23
1
24
2
LIN1
1
NC
LIN2
GND/HS
17
G1432
18
Pin Configuration
ROUT-
G1432 QFN4X4-24
Note: Recommend connecting the Thermal Pad to the GND for excellent power dissipation.
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 1.1
Jun 21, 2006
1
G1432
Global Mixed-mode Technology Inc.
Absolute Maximum Ratings
Power Dissipation (1)
TSSOP-24 (FD)
TA ≤ 25°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2.7W
TA ≤ 70°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1.7W
TA ≤ 85°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1.4W
Electrostatic Discharge, VESD
Human body mode . . . . . . . . . . . . . . .-3000 to 3000V(2)
Supply Voltage, VDD . . . . . . . . . . . . . . . . . . . . . . . . .6V
Input Voltage, VI . . . . . . . . . . . . . . . -0.3V to VDD+0.3V
Operating Ambient Temperature Range
TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -40°C to +85°C
Maximum Junction Temperature,
TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C
Storage Temperature Range,
TSTG . . . . . . . . . . . . . . . . . . . . . . . . . . .-65°C to+150°C
Reflow Temperature (soldering, 10sec) . . . . . . 260°C
Note:
(1)
: Recommended PCB Layout.
(2)
: Human body model : C = 100pF, R = 1500Ω, 3 positive pulses plus 3 negative pulses
Electrical Characteristics
DC Electrical Characteristics, TA=+25°C
PARAMETER
SYMBOL
Supply Current in Mute Mode
IDD(MUTE)
DC Differential Output Voltage
IDD in Shutdown
VO(DIFF)
ISD
CONDITION
VDD =3.3V
Stereo BTL
VDD = 5V
Stereo BTL
VDD = 5V,Gain = 2
VDD = 5V
MIN
TYP
MAX
---------
7
8
5
2
13
16
50
5
MIN
TYP
MAX
---------------------------
1.8
1.2
2
1.4
500
150
10
20
60
75
85
82
80
---------------------------
-------
2
90
55
-------
UNIT
mA
mV
µA
(AC Operation Characteristics, VDD = 5.0V, TA=+25°C, RL = 4Ω, unless otherwise noted)
PARAMETER
Output power (each channel) see Note
Total harmonic distortion plus noise
Maximum output power bandwidth
Phase margin
Power supply ripple rejection
Mute attenuation
Channel-to-channel output separation
IN1 /IN2 input separation
Input impedance
Signal-to-noise ratio
Output noise voltage
SYMBOL
P(OUT)
THD+N
BOM
PSRR
CONDITION
THD = 1%, BTL, RL = 4Ω
THD = 1%, BTL, RL = 8Ω
THD = 10%, BTL, RL = 4Ω
THD = 10%, BTL, RL = 8Ω
PO = 1.6W, BTL, RL = 4Ω
PO = 1W, BTL, RL = 8Ω
VI = 1V, RL = 10KΩ, G = 1
G = 1, THD =1%
RL = 4Ω, Open Load
f = 120Hz
f = 1kHz
ZI
Vn
PO = 500mW, BTL
Output noise voltage
UNIT
W
m%
kHz
°
dB
dB
dB
dB
MΩ
dB
µV (rms)
Note :Output power is measured at the output terminals of the IC at 1kHz.
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 1.1
Jun 21, 2006
2
G1432
Global Mixed-mode Technology Inc.
(AC Operation Characteristics, VDD = 3.3V, TA=+25°C, RL = 4Ω, unless otherwise noted)
PARAMETER
Output power (each channel) see Note
Total harmonic distortion plus noise
Maximum output power bandwidth
Phase margin
Power supply ripple rejection
Mute attenuation
SYMBOL
P(OUT)
THD+N
BOM
PSRR
Channel-to-channel output separation
CONDITION
MIN
TYP
MAX
THD = 1%, BTL, RL = 4Ω
---
0.8
---
THD = 1%, BTL, RL = 8Ω
THD = 10%, BTL, RL = 4Ω
THD = 10%, BTL, RL = 8Ω
-------
0.5
1
0.6
-------
PO = 0.7W, BTL, RL = 4Ω
PO = 0.45W, BTL, RL = 8Ω
VI = 1V, RL = 10KΩ, G = 1
-----
270
100
-----
---
10
---
G = 1, THD 1%
RL = 4Ω, Open Load
-----
20
60
-----
f = 120Hz
-----
75
85
-----
°
dB
dB
f = 1kHz
---
80
---
dB
---
80
---
dB
MΩ
IN1 /IN2 input separation
Input impedance
ZI
Signal-to-noise ratio
Output noise voltage
Vn
UNIT
W
m%
kHz
---
2
---
PO = 500mW, BTL
---
90
---
dB
Output noise voltage
---
55
---
µV (rms)
Note : Output power is measured at the output terminals of the IC at 1kHz.
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 1.1
Jun 21, 2006
3
G1432
Global Mixed-mode Technology Inc.
Typical Characteristics
Table of Graphs
FIGURE
vs Output Power
vs Frequency
1,3,6,9,10,13,16
2,4,5,7,8,11,12,14,15
Output Noise Voltage
Supply Ripple Rejection Ratio
vs Frequency
vs Frequency
16,17
18,19
Crosstalk
vs Frequency
vs Frequency
20,21
22,23
vs Supply Voltage
vs Supply Voltage
vs Load Resistance
24
25
26
vs Output Power
27,28
THD +N Total Harmonic Distortion Plus Noise
Vn
Closed loop Response
Supply Current
IDD
PO Output Power
PD Power Dissipation
Total Harmonic Distortion Plus
Noise vs Output Power
Total Harmonic Distortion Plus
Noise vs Output Frequency
10
10
5
5
20kHz
2
2
1
Po=1.8W
1
1kHz
0.5
0.5
%
%
0.2
0.2
0.1
VDD=5V
RL=3Ω
BTL
0 .05
0 .02
0 .01
3m
5m
10 m
20m
5 0m
1 00m
20 0m
500 m
1
VDD=5V
RL=3Ω
BTL
Av=-2V/V
Po=1.5W
0.1
20 Hz
0 .05
0 .02
2
0 .01
20
3
50
10 0
2 00
5 00
1k
2k
5k
W
Hz
Figure 1
Figure 2
Total Harmonic Distortion Plus
Noise vs Output Power
Total Harmonic Distortion Plus
Noise vs Output Frequency
10
10 k
20k
10
5
5
Av=-4V/V
20kHz
2
2
1
1
1kHz
0.5
Av=-2V/V
0.5
%
%
0.2
0.2
0.1
0.1
VDD=5V
RL=4Ω
BTL
20 Hz
0 .05
0 .02
0 .01
3m
5m
10 m
20m
5 0m
1 00m
20 0m
500 m
1
VDD=5V
RL=4Ω
BTL
Po=1.5W
Av=-1V/V
0 .05
0 .02
2
0 .01
20
3
50
10 0
2 00
5 00
1k
W
Hz
Figure 3
Figure 4
2k
5k
10 k
20k
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 1.1
Jun 21, 2006
4
G1432
Global Mixed-mode Technology Inc.
Total Harmonic Distortion Plus
Noise vs Output Frequency
Total Harmonic Distortion Plus
Noise vs Output Power
10
5
2
1
10
VDD=5V
RL=4Ω
BTL
Av=-2V/V
VDD=5V
RL=8Ω
BTL
Av=-2V/V
5
Po=1.5W
20kHz
2
1
Po=0.25W
0.5
0.5
%
%
0.2
0.2
0.1
0.1
Po=0.75W
0 .05
1kHz
0 .05
0 .02
20Hz
0 .02
0 .01
20
50
10 0
2 00
5 00
1k
2k
5k
10 k
0 .01
3m
20k
5m
10m
20m
5 0m
1 00m
Hz
2
1
500 m
1
2
Figure 5
Figure 6
Total Harmonic Distortion Plus
Noise vs Output Frequency
Total Harmonic Distortion Plus
Noise vs Output Frequency
10
5
20 0m
3
W
10
VDD=5V
RL=8Ω
BTL
Av=-2V/V
5
Po=1W
2
1
Po=0.25W
0.5
VDD=5V
RL=8Ω
BTL
Po=1W
Av=-4V/V
Av=-2V/V
0.5
%
%
0.2
0.2
0.1
0.1
Po=0.5W
0 .05
0 .05
0 .02
Av=-1V/V
0 .02
0 .01
20
50
10 0
2 00
5 00
1k
2k
5k
10 k
0 .01
20
20k
50
10 0
2 00
5 00
Hz
1k
2k
5k
10 k
20k
Hz
Figure 8
Figure 7
Total Harmonic Distortion Plus
Noise vs Output Power
Total Harmonic Distortion Plus
Noise vs Output Power
10
10
5
5
20kHz
20kHz
2
2
1
1
1kHz
0.5
1kHz
0.5
%
%
0.2
0.1
0 .05
0 .02
0 .01
1m
0.2
0.1
VDD=3.3V
RL=3Ω
BTL
2m
5m
20Hz
0 .05
VDD=3.3V
RL=4Ω
BTL
20Hz
0 .02
1 0m
20 m
50 m
10 0m
2 00 m
500 m
0 .01
1m
1
W
2m
5m
1 0m
20 m
50 m
10 0m
2 00 m
500 m
1
W
Figure 9
Figure 10
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 1.1
Jun 21, 2006
5
G1432
Global Mixed-mode Technology Inc.
Total Harmonic Distortion Plus
Noise vs Output Frequency
Total Harmonic Distortion Plus
Noise vs Output Frequency
10
10
5
2
1
VDD=3.3V
RL=4Ω
BTL
Po=0.65W
5
Av=-4V/V
2
Av=-2V/V
1
VDD=3.3V
RL=4Ω
BTL
Av=-2V/V
Po=0.7W
0.5
0.5
%
%
Po=0.1W
0.2
0.2
Po=0.35W
0.1
0.1
Av=-1V/V
0 .05
0 .05
0 .02
0 .02
0 .01
20
50
10 0
2 00
5 00
1k
2k
5k
10 k
0 .01
20
20k
50
10 0
2 00
5 00
1k
2k
10
10
VDD=3.3V
RL=8Ω
BTL
5
20kHz
2
5
2
1
1
0.5
0.5
%
VDD=3.3V
RL=8Ω
BTL
Po=0.4W
Av=-4V/V
Av=-2V/V
%
1kHz
0.2
0.2
0.1
0.1
0 .05
0 .05
Av=-1V/V
20Hz
0 .02
0 .02
2m
5m
1 0m
20 m
50 m
10 0m
2 00 m
500 m
0 .01
20
1
50
10 0
2 00
Figure 13
1k
2k
5k
10 k
20k
Figure 14
Output Noise Voltage
vs Frequency
Total Harmonic Distortion Plus
Noise vs Output Frequency
10
1
5 00
Hz
W
2
20k
Total Harmonic Distortion Plus
Noise vs Output Frequency
Total Harmonic Distortion Plus
Noise vs Output Power
5
10 k
Figure 12
Figure 11
0 .01
1m
5k
Hz
Hz
100 u
90 u
VDD=3.3V
RL=8Ω
BTL
Av=-2V/V
80 u
70 u
60 u
Po=0.4W
50 u
40 u
0.5
%
V
Po=0.1W
0.2
BW=22Hz to 22kHz
30 u
A- Weighted Filter
0.1
20 u
VDD=5V
0 .05
Po=0.25W
RL=4Ω
0 .02
0 .01
20
50
10 0
2 00
5 00
1k
2k
5k
10 k
10 u
20
20k
50
100
2 00
50 0
1k
2k
5k
10k
2 0k
Hz
Hz
Figure 16
Figure 15
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 1.1
Jun 21, 2006
6
G1432
Global Mixed-mode Technology Inc.
Supply Ripple Rejection
Ratio vs Frequency
Output Noise Voltage
vs Frequency
100u
90u
+0
80u
-10
T
70u
-20
60u
-30
50u
-40
BW=22Hz to 22kHz
40u
V
VDD=5V
RL=4Ω
CB=4.7µF
-50
d
B
30u
A- Weighted Filter
-60
-70
-80
20u
VDD=3.3V
-90
RL=4Ω
-100
-110
10u
20
50
100
200
500
1k
2k
5k
10k
-120
20
20k
50
100
200
Figure 17
5k
1 0k
20k
5k
10k
20k
-20
+0
T
-40
2k
Crosstalk vs Frequency
-25
-10
-30
1k
Figure 18
Supply Ripple Rejection
Ratio vs Frequency
-20
500
Hz
Hz
VDD=5V
RL=4Ω
CB=4.7µF
-30
-35
-40
-45
VDD=5V
Po=1.5W
RL=4Ω
BTL
-50
-50
d
B
-55
d
B
-60
-60
-65
-70
L to R
-70
-80
-75
-90
-80
-85
-100
-90
-110
-120
20
R to L
-95
50
100
20 0
500
Hz
1k
2k
5k
10k
-100
20
20k
50
100
200
500
1k
2k
Hz
Figure 19
Figure 20
Crosstalk vs Frequency
Closed Loop Response
-20
-25
-30
-35
-40
-45
-50
VDD=3.3V
Po=0.75W
RL=4Ω
BTL
-55
d
B
-60
-65
-70
L to R
-75
-80
-85
-90
-95
-100
20
R to L
50
100
200
500
1k
2k
5k
10k
20k
Hz
Figure 21
Figure 22
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 1.1
Jun 21, 2006
7
G1432
Global Mixed-mode Technology Inc.
Closed Loop Response
Supply Current vs Supply Voltage
10
9
Stereo BTL
Supply Current(mA)
8
7
6
5
4
3
2
1
0
3
4
5
Supply Voltage (V)
Figure 23
6
Figure 24
Output Power vs Supply Voltage
Output Power vs Load Resistance
2.5
2
THD+N=1%
BTL
Each Channel
1.8
RL=4Ω
1.5
RL=3Ω
1
RL=8Ω
THD+N=1%
BTL
Each Channel
VDD=5V
1.6
Po-Output Power(W)
Po-Output Power (W)
2
1.4
1.2
1
VDD=3.3V
0.8
0.6
0.4
0.5
0.2
0
0
2.5
3.5
4.5
Supply Voltage (V)
5.5
0
6.5
4
8
Power Dissipation vs Output Power
1.8
24
0.7
RL=3Ω
1.4
Power Dissipation(W)
Power Dissipation(W)
1.6
1.2
RL=4Ω
1
0.8
0.6
RL=8Ω
20
28
32
Power Dissipation vs Output Power
0.8
0.2
16
Figure 26
Figure 25
0.4
12
Load Resistance(Ω)
VDD=5V
BTL
Each Channel
RL=3Ω
0.6
0.5
RL=4Ω
0.4
RL=8Ω
0.3
VDD=3.3V
BTL
Each Channel
0.2
0.1
0
0
0
0.5
1
1.5
Po-Output Pow er(W)
2
2.5
0
0.25
0.5
Output Pow er(W)
0.75
1
Figure 28
Figure 27
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 1.1
Jun 21, 2006
8
G1432
Global Mixed-mode Technology Inc.
Pin Description
PIN
TSSOP
QFN
1,12,13,24 9,10,21,22
NAME
I/O
GND/HS
Ground connection for circuitry, directly connected to thermal pad.
2,9,11
3
6,8,23
24
NC
LOUT+
NC
O
4
1
LIN1
I
5
2
LIN2
I
6
7
8
3
4
5
LBYPASS
LVDD
SHUTDOWN
10
14
15
16
7
11
12
13
LOUTMUTE
ROUT-
17
18
19
20
14
15
16
17
GND
RVDD
RBYPASS
RIN2
21
18
22
23
19
20
Thermal
Pad
Thermal
Pad
IN1 /IN2
FUNCTION
I
I
O
I
O
I
I
Embedded test mode pin, please keep it floating.
Left channel + output in BTL mode
Left channel IN1 input, selected when IN1 /IN2 pin is held low.
Left channel IN2 input, selected when IN1 /IN2 pin is held high.
Connect to voltage divider for left channel internal mid-supply bias.
Supply voltage input for left channel and for primary bias circuits.
Shutdown mode control signal input, places entire IC in shutdown mode
when held high, IDD < 5µA.
Left channel - output in BTL mode.
Mode control signal input, hold low for activation, hold high for mute.
Right channel - output in BTL mode
MUX control input, hold high to select in2 inputs (5,20)/(2/17), hold low to
select in1 inputs (4,21)/(1,18).
Ground connection for circuitry.
Supply voltage input for right channel.
Connect to voltage divider for right channel internal mid-supply bias.
I
Right channel in2 input, selected when IN1 /IN2 pin is held high.
RIN1
I
Right channel lin1 input, selected when IN1 /IN2 pin is held low.
ROUT+
VOL
O
I
Right channel + output in BTL mode
The output power can be clamped by setting a low bound voltage to this pin.
The high bound voltage will be generated internally. The output voltage will
be clamped between high/low bound voltages. Then the output power is limited. It is weakly pull-low internally, let this pin floating or tied to GND can
deactivate this function.
Recommend connecting the Thermal Pad to the GND for excellent power
dissipation.
Recommended Minimum Footprint
QFN4X4-24
TSSOP-24 (FD)
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 1.1
Jun 21, 2006
9
G1432
Global Mixed-mode Technology Inc.
Block Diagram
(TSSOP/QFN Pin No.)
20k
21/18
RIN1
20/17
RIN2
19/16
RBYPASS
14/11
8/5
23/20
_
RIGHT
MUX
ROUT+
22/19
ROUT-
15/12
RVDD
18/15
IN1/IN2
16/13
+
MUTE
BIAS CIRCUITS
MODES CONTROL
CIRCUITS
SHUTDOWN
VOL
6/3
LBYPASS
5/2
LIN2
4/1
LIN1
LEFT
MUX
LVDD
7/4
+
LOUT-
10/7
_
LOUT+
3/24
20k
Parameter Measurement Information
14/11
8/5
23/20
MUTE
IN1/IN2
SHUTDOWN
16/13
VOL
LVDD
7/4
RL 4/8/32Ω
6/3
LBYPASS
CB
4.7µF
CI
AC source
5/2
LIN2
4/1
LIN1
LEFT
MUX
+
LOUT-
10/7
_
LOUT+
3/24
RI
RF
BTL Mode Test Circuit
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 1.1
Jun 21, 2006
10
G1432
Global Mixed-mode Technology Inc.
Application Circuits
(TSSOP-24)
GND/HS
NC
LOUT+
CIR
RFL
CFR
AUDIO SOURCE
LIN1
RIR
LIN2
LBYPASS
RBYPASS
SHUTDOWN
NC
LOUTNC
GND/HS
1
24
2
23
3
22
4
21
5
20
6
7
19
G1432
18
8
17
9
16
10
15
11
14
12
13
GND/HS
VOL
ROUT+
CIL
RIN1
RFL
RIL
RIN2
CFL
AUDIO SOURCE
LVDD
RVDD
GND
CSR
IN1/IN2
ROUTMUTE
GND/HS
Logical Truth Table
Mute
IN1 /IN2
Shutdown
Input
X
Low
Low
High
X
Low
High
Low
X
L/R IN1
L/R IN2
L/R IN1
High
High
High
Low
Low
Low
Low
L/R IN2
OUTPUT
L/R Out+ L/R Out---Output
Output
Output
Output
---Output
Output
-------
Mode
Shutdown (Mute)
BTL
BTL
Mute
Mute
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 1.1
Jun 21, 2006
11
Global Mixed-mode Technology Inc.
G1432
Application Information
MUTE and SHUTDOWN Mode Operations
The G1432 implements the mute and shutdown
mode operations to reduce supply current, IDD, to
the absolute minimum level during nonuse periods
for battery-power conservation. When the shutdown
pin (pin 8/5) is pulled high, all linear amplifiers will
be deactivated to mute the amplifier outputs. And
the G1432 enters an extra low current consumption
state, IDD is smaller than 5µA. If pulling the mute pin
(pin 14/11) high, it will force the activated linear
amplifier to supply the VDD/2 dc voltage on the
output & shutdown the second linear amplifiers to
mute the AC performance. In the mute mode operation, the current consumption will be a smaller than
BTL modes. Shutdown and Mute pins should never
be left unconnected, this floating condition will
cause the amplifier operations unpredictable.
(TSSOP-24/QFN4X4-24 Pin No.)
Input MUX Operation
There are two input signal paths – IN1 & IN2. With the
prompt setting, the G1432 allows the setting of different gains for different input sources. If setting the
IN1 /IN2 pin low, the IN1 input source is selected.
When setting the IN1 /IN2 pin high, the IN2 input
source is chosen.
Bridged-Tied Load Mode Operation
The G1432 has two linear amplifiers to drive both ends
of the speaker load in Bridged-Tied Load (BTL) mode
operation. Figure A shows the BTL configuration. The
differential driving to the speaker load means that
when one side is slewing up, the other side is slewing
down, and vice versa. This configuration in effect will
double the voltage swing on the load as compared to a
ground reference load. In BTL mode, the peak-to-peak
voltage VO(PP) on the load will be two times than a
ground reference configuration. The voltage on the
load is doubled, this will also yield 4 times output
power on the load at the same power supply rail and
loading. Another benefit of using differential driving
configuration is that BTL operation cancels the dc offsets, which eliminates the dc coupling capacitor that is
needed to cancelled dc offsets in the ground reference
configuration. Low-frequency performance is then limited only by the input network and speaker responses.
Cost and PCB space can be minimized by eliminating
the dc coupling capacitors.
Maximum Power Clampping Function
The G1432 supports the maximum output power
clamping function to avoid damaging the speaker
when the amplifier output a power beyond the speaker
tolerance. The Vol pin (pin 23/20) is weakly pull-low
internally. If inputting a non-zero voltage (low boundary voltage) to the Vol pin, the G1432 will generate a
high boundary voltage which the difference between
the VDD/2 and the high boundary voltage is the same
as the difference between the VDD/2 and the low
boundary voltage. ( i.e. VOH – VDD/2 = VDD/2 – VOL )
Then the outputs of linear amplifiers will be effectively
limited between the high/low boundary voltage, the
maximum output power is clamped. By setting the
voltage of Vol, the maximum output power can be well
controlled. When the maximum power clamping function is not used, the Vol pin should be floated or tied to
GND.
VDD
Vo(PP)
VDD
RL
2xVo(PP)
-Vo(PP)
Figure A
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 1.1
Jun 21, 2006
12
G1432
Global Mixed-mode Technology Inc.
Optimizing DEPOP Operation
Circuitry has been implemented in the G1432 to
minimize the amount of popping heard at power-up
and when coming out of shutdown mode. Popping
occurs whenever a voltage step is applied to the
speaker and making the differential voltage generated at the two ends of the speaker. To avoid the
popping heard, the bypass capacitor should be
chosen promptly, 1/(CBx100kΩ) ≦ 1/(CI*(RI+RF)).
Where 100kΩ is the output impedance of the
mid-rail generator, CB is the mid-rail bypass capacitor, CI is the input coupling capacitor, RI is the
input impedance, RF is the gain setting impedance
which is on the feedback path. CB is the most important capacitor. Besides it is used to reduce the
popping, CB can also determine the rate at which
the amplifier starts up during startup or recovery
from shutdown mode.
VDD
100 kΩ
50 kΩ
Bypass
100 kΩ
Figure B
De-popping circuitry of the G1432 is shown on Figure B. The PNP transistor limits the voltage drop
across the 50kΩ by slewing the internal node slowly
when power is applied. At start-up, the voltage at
BYPASS capacitor is 0. The PNP is ON to pull the
mid-point of the bias circuit down. So the capacitor
sees a lower effective voltage, and thus the charging is slower. This appears as a linear ramp (while
the PNP transistor is conducting), followed by the
expected exponential ramp of an R-C circuit.
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 1.1
Jun 21, 2006
13
G1432
Global Mixed-mode Technology Inc.
Package Information
C
D
24
L
D1
E1 E
E2
1
Note 5
θ
A2
A
A1
e
b
TSSOP-24 (FD) Package
NOTE:
1. Package body sizes exclude mold flash protrusions or gate burrs
2. Tolerance ±0.1mm unless otherwise specified
3. Coplanarity : 0.1mm
4. Controlling dimension is millimeter. Converted inch dimensions are not necessarily exact.
5. Die pad exposure size is according to lead frame design.
6. Follow JEDEC MO-153
SYMBOLS
A
A1
A2
b
C
D
D1
E
E1
E2
e
L
θ
MIN
----0.00
0.80
0.19
0.20
7.7
4.4
4.30
2.7
0.45
0°
DIMENSION IN MM
NOM
--------1.00
--------7.8
----6.40 BSC
4.40
----0.65 BSC
0.60
-----
MAX
MIN
1.20
0.15
1.05
0.30
----7.9
4.9
----0.000
0.031
0.007
0.008
0.303
0.173
4.50
3.2
0.169
0.106
0.75
8°
0.018
0°
DIMENSION IN INCH
NOM
--------0.039
--------0.307
----0.252 BSC
0.173
----0.026 BSC
0.024
-----
MAX
0.047
0.006
0.041
0.012
----0.311
0.193
0.177
0.126
0.030
8°
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 1.1
Jun 21, 2006
14
G1432
Global Mixed-mode Technology Inc.
D2
Pin 1 Dot
By Marking
D
b
Pin #1 Identification
Chamfer 0.3 X 45°
L
e
E
E2
Top View
e1
A
A2
A1
QFN4X4-24 Package
SYMBOL
A
A1
A2
b
D
D2
E
E2
e
e1
L
MIN.
DIMENSION IN MM
NOM.
0.700
0.000
0.178
0.225
3.950
2.650
3.950
2.650
0.350
--------0.203
0.250
4.000
2.700
4.000
2.700
0.500 BSC
2.500 REF
0.400
MAX.
MIN.
1.000
0.050
0.228
0.275
4.050
2.750
4.050
2.750
0.028
0.000
0.007
0.009
0.156
0.104
0.156
0.104
0.450
0.014
DIMENSION IN INCH
NOM.
MAX.
--------0.008
0.010
0.157
0.106
0.157
0.106
0.020 BSC
0.098 REF
0.016
0.039
0.002
0.009
0.011
0.159
0.108
0.159
0.108
0.018
Taping Specification
Feed Direction
Typical TSSOP Package Orientation
PACKAGE
Q’TY/REEL
TSSOP-24 (FD)
QFN4X4-24
2,500 ea
3,000 ea
Feed Direction
Typical QFN Package Orientation
GMT Inc. does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and GMT Inc. reserves the right at any time without notice to change said circuitry and specifications.
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 1.1
Jun 21, 2006
15