G1430 Global Mixed-mode Technology Inc. 2W Stereo Audio Amplifier Features General Description Depop Circuitry Integrated Output Power at 1% THD+N, VDD=5V G1430 is a stereo audio power amplifier in 16pin Dual Inline Package. It can drive 1.8W continuous RMS power into 4Ω load per channel in Bridge-Tied Load (BTL) mode at 5V supply voltage. Its THD is smaller than 1% under the above operation condition. To simplify the audio system design in the notebook application, G1430 supports the Bridge-Tied Load (BTL) mode for driving the speakers, Single-End (SE) mode for driving the headphone. For the low current consumption applications, the SHDN mode is supported to disable G1430 when it is idle. The current consumption can be further reduced to below 5µA. --1.8W/CH (typical) into a 4Ω Ω Load --1.2W/CH (typical) into a 8Ω Ω Load Bridge-Tied Load (BTL), Single-Ended (SE) Shutdown Control Available Dual Inline Package 16 pin (DIP16) Applications Stereo Power Amplifiers for Notebooks or Desktop Computers Multimedia Monitors Stereo Power Amplifiers for Portable Audio Systems Ordering Information ORDER MARKING NUMBER G1430Z4T G1430 TEMP. RANGE PACKAGE -40°C to +85°C DIP-16L Pin Configuration G1430 LVDD 1 16 SHUTDOWN LOUT- 2 3 15 LLINEIN 14 LOUT+ LBYPASS GND/HS 4 13 GND/HS GND/HS 5 12 GND/HS SE/BTL 6 11 ROUT- 7 10 ROUT+ RLINEIN RVDD 8 9 RBYPASS DIP-16L TEL: 886-3-5788833 http://www.gmt.com.tw Ver: 1.0 Jan 15, 2004 1 G1430 Global Mixed-mode Technology Inc. Absolute Maximum Ratings Power Dissipation (1) TA ≤ 25°C…………………………………………....2W Electrostatic Discharge, VESD Human body mode..…………………….-3000 to 3000(2) Supply Voltage, VCC…………………..…...…….……...6V Operating Ambient Temperature Range TA…….…………………………….……….-40°C to +85°C Maximum Junction Temperature, TJ…..……….….150°C Storage Temperature Range, TSTG….….-65°C to+150°C Soldering Temperature, 10seconds, TS……….……260°C Note: (1) : Both dual channels could provide 1.8W peak output power at 4 ohm speaker, but continuous output power is limited by package (DIP-16) power dissipation : 2W at Ta=25 degree °C (2) : Human body model : C = 100pF, R = 1500Ω, 3 positive pulses plus 3 negative pulses Electrical Characteristics DC Electrical Characteristics, TA=+25°C PARAMETER SYMBOL CONDITION Stereo BTL VDD =3.3V Supply Current DC Differential Output Voltage Supply Current in Mute Mode IDD in Shutdown IDD VO(DIFF) STEREO SE Stereo BTL VDD = 5V STEREO SE VDD = 5V,Gain = 2 IDD(MUTE) VDD = 5V ISD VDD = 5V Stereo BTL STEREO SE MIN TYP MAX --- 7 10 --------- 3.5 8 4 5 6 13 6.5 50 8 13 4 2 6.5 5 MIN TYP MAX ------------------------------------------- 1.8 1.12 2 1.4 500 320 650 400 90 500 150 20 10 20 60 75 82 85 2 90 55 ------------------------------------------- ----- UNIT mA mV mA µA (AC Operation Characteristics, VDD = 5V, TA=+25°C, RL = 4Ω, unless otherwise noted) PARAMETER Output power (each channel) see Note Total harmonic distortion plus noise Maximum output power bandwidth Phase margin Power supply ripple rejection Channel-to-channel output separation BTL attenuation in SE mode Input impedance Signal-to-noise ratio Output noise voltage SYMBOL P(OUT) THD+N BOM PSRR CONDITION THD = 1%, BTL, RL = 4Ω THD = 1%, BTL, RL = 8Ω THD = 10%, BTL, RL = 4Ω THD = 10%, BTL, RL = 8Ω THD = 1%, SE, RL = 4Ω THD = 1%, SE, RL = 8Ω THD = 10%, SE, RL = 4Ω THD = 10%, SE, RL L = 8Ω THD = 0.5%, SE, RL = 32Ω PO = 1.6W, BTL, RL = 4Ω PO = 1W, BTL, RL = 8Ω PO = 75mW, SE, RL = 32Ω VI = 1V, RL = 10KΩ, G = 1 G = 1, THD = 1% RL = 4Ω, Open Load f = 120Hz f = 1kHz ZI Vn PO = 500mW, BTL Output noise voltage UNIT W mW m% kHz ° dB dB dB MΩ dB µV (rms) Note :Output power is measured at the output terminals of the IC at 1kHz. TEL: 886-3-5788833 http://www.gmt.com.tw Ver: 1.0 Jan 15, 2004 2 G1430 Global Mixed-mode Technology Inc. (AC Operation Characteristics, VDD = 3.3V, TA=+25°C, RL = 4Ω Ω, unless otherwise noted) PARAMETER Output power (each channel) see Note Total harmonic distortion plus noise Maximum output power bandwidth Phase margin Power supply ripple rejection Channel-to-channel output separation BTL attenuation in SE mode Input impedance Signal-to-noise ratio Output noise voltage SYMBOL P(OUT) THD+N BOM PSRR CONDITION THD = 1%, BTL, RL = 4Ω THD = 1%, BTL, RL = 8Ω THD = 10%, BTL, RL = 4Ω THD = 10%, BTL, RL = 8Ω THD = 1%, SE, RL = 4Ω THD = 1%, SE, RL = 8Ω THD = 10%, SE, RL = 4Ω THD = 10%, SE, RL L = 8Ω THD = 0.5%, SE, RL = 32Ω PO = 1.6W, BTL, RL = 4Ω PO = 1W, BTL, RL = 8Ω PO = 75mW, SE, RL = 32Ω VI = 1V, RL = 10KΩ, G = 1 G = 1, THD 1% RL = 4Ω, Open Load f = 120Hz f = 1kHz ZI Vn PO = 500mW, BTL Output noise voltage MIN TYP MAX ------------------------------------------- 0.8 0.5 1 0.6 230 140 290 180 43 270 100 20 10 20 60 75 80 85 2 90 55 ------------------------------------------- UNIT W mW m% kHz ° dB dB dB MΩ dB µV (rms) Note :Output power is measured at the output terminals of the IC at 1kHz. TEL: 886-3-5788833 http://www.gmt.com.tw Ver: 1.0 Jan 15, 2004 3 Global Mixed-mode Technology Inc. G1430 Pin Description PIN NAME I/O FUNCTION 1 2 LVDD SHUTDOWN I I 3 4,5,12,13 6 LOUTGND/HS O SE/ BTL I Supply voltage input for left channel and for primary bias circuits. Shutdown mode control signal input, places entire IC in shutdown mode when held high, IDD = 5µA. Left channel - output in BTL mode, high impedance state in SE mode. Ground connection for circuitry, directly connected to thermal pad. Mode control signal input, hold low for BTL mode, hold high for SE mode. 7 8 9 10 11 14 15 16 ROUTRVDD RBYPASS RLINE IN ROUT+ LOUT+ LLINE IN LBYPASS O I I O O I Right channel - output in BTL mode, high impedance state in SE mode. Supply voltage input for right channel. Connect to voltage divider for right channel internal mid-supply bias. Right channel line input, selected when HP/pin is held low. Right channel + output in BTL mode, + output in SE mode. Left channel + output in BTL mode, + output in SE mode. Left channel line input, selected when HP/ pin is held low. Connect to voltage divider for left channel internal mid-supply bias. TEL: 886-3-5788833 http://www.gmt.com.tw Ver: 1.0 Jan 15, 2004 4 G1430 Global Mixed-mode Technology Inc. Typical Characteristics Table of Graphs FIGURE vs Frequency 2,4,5,7,8,11,12,14,15,17,18,20,21,23,24,26,27,29,30,32,33 vs Output power 1,3,6,9,10,13,16,19,22,25,28,31 vs Frequency 34,35 Supply ripple rejection ratio vs Frequency 36,37 Crosstalk vs Frequency 38,39,40,41 Closed loop response vs Frequency 42,43,44,45 vs supply voltage 46 vs supply voltage 47,48 vs Load resistance 49,50 vs Output power 51,52,53,54 THD +N Total harmonic distortion plus noise Vn Output noise voltage IDD Supply current PO Output power PD Power dissipation TOTAL HARMONIC DISTORTION PLUS NOISE TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT POWER vs OUTPUT FREQUENCY 10 10 5 5 20kHz 2 2 1 1 1kHz 0.5 Po=1.8W 0.5 % % 0.2 0.1 0.2 0.1 20 Hz VDD=5V RL=3Ω BTL 0.05 0.02 0.01 3m 5m 10m 20m 50m 100m 200m 500m 1 0.05 0.02 2 0.01 20 3 W 50 100 200 500 1k 2k 5k 10k 20k Hz Figure 1 Ver: 1.0 Jan 15, 2004 VDD=5V RL=3Ω BTL Av=-2V/V Po=1.5W Figure 2 5 TEL: 886-3-5788833 http://www.gmt.com.tw G1430 Global Mixed-mode Technology Inc. TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT POWER TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT FREQUENCY 10 10 5 5 Av=-4V/V 20kHz 2 2 1 1 0.5 Av=-2V/V 0.5 1kHz % % 0.2 0.2 0.1 0.1 VDD=5V RL=4Ω BTL 20 Hz 0.05 0.02 0.01 3m 5m 10m 20m 50m 100m 200m 500m 1 VDD=5V RL=4Ω BTL Po=1.5W Av=-1V/V 0.05 0.02 2 0.01 20 3 50 100 200 500 W 1k 2k 5k 10k 20k Hz Figure 3 Figure 4 TOTAL HARMONIC DISTORTION PLUS NOISE TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT FREQUENCY vs OUTPUT POWER 10 5 2 1 10 VDD=5V RL=4Ω BTL Av=-2V/V VDD=5V RL=8Ω BTL Av=-2V/V 5 Po=1.5W 20kHz 2 1 Po=0.25W 0.5 0.5 % % 0.2 0.2 Po=0.75W 0.1 0.05 0.05 0.02 0.02 0.01 20 50 100 200 500 1k 2k 5k 10k 0.01 3m 20k Hz 20Hz 5m 10m 20m 50m 100m 200m 500m 1 2 3 W Figure 5 Ver: 1.0 Jan 15, 2004 1kHz 0.1 Figure 6 6 TEL: 886-3-5788833 http://www.gmt.com.tw G1430 Global Mixed-mode Technology Inc. TOTAL HARMONIC DISTORTION PLUS NOISE TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT FREQUENCY vs OUTPUT FREQUENCY 10 5 2 1 10 VDD=5V RL=8Ω BTL Av=-2V/V 5 2 Po=1W 1 Po=0.25W 0.5 VDD=5V RL=8Ω BTL Po=1W Av=-4V/V 0.5 % Av=-2V/V % 0.2 0.2 0.1 0.1 Po=0.5W 0.05 0.05 0.02 Av=-1V/V 0.02 0.01 20 50 100 200 500 1k 2k 5k 10k 0.01 20 20k 50 100 200 500 Hz 1k 2k 5k 10k 20k Hz Figure 8 Figure 7 TOTAL HARMONIC DISTORTION PLUS NOISE TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT POWER vs OUTPUT POWER 10 10 5 5 20kHz 20kHz 2 2 1 1 1kHz 0.5 1kHz 0.5 % % 0.2 0.1 0.05 0.02 0.01 1m 0.2 0.1 VDD=3.3V RL=3Ω BTL 2m 5m 20Hz 0.05 0.02 10m 20m 50m 100m 200m 500m 0.01 1m 1 W 2m 5m 20Hz 10m 20m 50m 100m 200m 500m 1 W Figure 9 Ver: 1.0 Jan 15, 2004 VDD=3.3V RL=4Ω BTL Figure 10 7 TEL: 886-3-5788833 http://www.gmt.com.tw G1430 Global Mixed-mode Technology Inc. TOTAL HARMONIC DISTORTION PLUS NOISE TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT FREQUENCY vs OUTPUT FREQUENCY 10 10 5 2 1 VDD=3.3V RL=4Ω BTL Po=0.65W 5 Av=-4V/V 2 Av=-2V/V 1 VDD=3.3V RL=4Ω BTL Av=-2V/V Po=0.7W 0.5 0.5 % % Po=0.1W 0.2 0.2 0.1 0.1 Av=-1V/V 0.05 0.05 0.02 0.02 0.01 20 50 100 200 500 1k 2k 5k 10k 0.01 20 20k Po=0.35W 50 100 200 500 1k 2k 5k 10k 20k Hz Hz Figure 11 Figure 12 TOTAL HARMONIC DISTORTION PLUS NOISE TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT POWER vs OUTPUT FREQUENCY 10 10 VDD=3.3V RL=8Ω BTL 5 20kHz 2 5 2 1 1 0.5 VDD=3.3V RL=8Ω BTL Po=0.4W Av=-4V/V Av=-2V/V 0.5 % % 1kHz 0.2 0.2 0.1 0.1 0.05 0.05 Av=-1V/V 20Hz 0.02 0.01 1m 0.02 2m 5m 10m 20m 50m 100m 200m 500m 0.01 20 1 W 100 200 500 1k 2k 5k 10k 20k Hz Figure 13 Ver: 1.0 Jan 15, 2004 50 Figure 14 8 TEL: 886-3-5788833 http://www.gmt.com.tw G1430 Global Mixed-mode Technology Inc. TOTAL HARMONIC DISTORTION PLUS NOISE TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT FREQUENCY vs OUTPUT POWER 10 5 2 1 10 VDD=3.3V RL=8Ω BTL Av=-2V/V 5 2 Po=0.4W VDD=5V RL=4Ω SE 20kHz 1 0.5 0.5 % % Po=0.1W 0.2 0.2 0.1 1kHz 0.1 0.05 0.05 Po=0.25W 100Hz 0.02 0.02 0.01 20 50 100 200 500 1k 2k 5k 10k 0.01 1m 20k 2m 5m 10m 20m 50m Hz 100m 200m 500m 1 W Figure 15 Figure 16 TOTAL HARMONIC DISTORTION PLUS NOISE TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT FREQUENCY vs OUTPUT FREQUENCY 10 5 2 1 10 VDD=5V RL=4Ω SE Po=0.5W 5 Av=-4V/V 2 1 0.5 0.2 % 0.2 0.1 Po=0.1W 0.1 0.05 0.05 Av=-1V/V Po=0.25W 0.02 0.02 50 100 200 500 1k 2k 5k 10k 0.01 20 20k Hz 50 100 200 500 1k 2k 5k 10k 20k Hz Figure 18 Figure 17 Ver: 1.0 Jan 15, 2004 Po=0.4W 0.5 Av=-2V/V % 0.01 20 VDD=5V RL=4Ω SE Av=-2V/V 9 TEL: 886-3-5788833 http://www.gmt.com.tw G1430 Global Mixed-mode Technology Inc. TOTAL HARMONIC DISTORTION PLUS NOISE TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT POWER vs OUTPUT FREQUENCY 10 10 5 2 VDD=5V RL=8Ω SE 5 2 1 1 20kHz VDD=5V RL=8Ω SE Po=0.25W 0.5 0.5 Av=-2V/V % % 0.2 0.2 0.1 0.1 1kHz 0.05 0.02 0.01 1m 100Hz 2m 5m Av=-4V/V 0.05 Av=-1V/V 0.02 10m 20m 50m 100m 200m 500m 0.01 20 1 50 100 200 500 1k 2k 5k 10k 20k Hz W Figure 19 Figure 20 TOTAL HARMONIC DISTORTION PLUS NOISE TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT FREQUENCY vs OUTPUT POWER 10 5 2 1 10 5 VDD=5V RL=8Ω SE Av=-2 2 1 0.5 0.2 Po=0.05W % 0.1 0.2 0.05 0.1 0.02 Po=0.1W 0.005 Po=0.25W 1kHz 0.002 50 100 200 500 1k 2k 5k 10k 0.001 1m 20k Hz 2m 5m 10m 20m 50m 100m 200m W Figure 21 Ver: 1.0 Jan 15, 2004 20Hz 0.01 0.02 0.01 20 20kHz 0.5 % 0.05 VDD=5V RL=32Ω SE Figure 22 10 TEL: 886-3-5788833 http://www.gmt.com.tw G1430 Global Mixed-mode Technology Inc. TOTAL HARMONIC DISTORTION PLUS NOISE TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT FREQUENCY vs OUTPUT FREQUENCY 10 10 5 2 1 0.5 5 VDD=5V RL=32Ω SE Po=75mW 2 1 Av=-4V/V 0.5 Po=25mW 0.2 0.2 % VDD=5V RL=32Ω SE % 0.1 Av=-2V/V 0.05 0.1 0.05 0.02 0.02 0.01 0.01 0.005 0.005 Av=-1V/V 0.002 0.002 0.001 20 0.001 20 50 100 200 500 1k 2k 5k 10k 20k Po=50mW Po=75mW 50 100 200 500 1k 2k 5k 10k 20k Hz Hz Figure 23 Figure 24 TOTAL HARMONIC DISTORTION PLUS NOISE TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT POWER vs OUTPUT FREQUENCY 10 10 5 2 VDD=3.3V RL=4Ω,SE Av=-2 5 2 20kHz 1 1 Av=-4V/V 0.5 0.5 % % 1kHz 0.2 0.2 Av=-2V/V 0.1 0.1 0.05 0.05 100Hz 0.02 0.01 1m VDD=3.3V RL=4Ω SE Po=0.2W 2m 5m 10m 20m 50m 100m 200m 500m 0.01 20 1 50 100 200 500 1k 2k 5k 10k 20k Hz W Figure 25 Ver: 1.0 Jan 15, 2004 Av=-1V/V 0.02 Figure 26 11 TEL: 886-3-5788833 http://www.gmt.com.tw G1430 Global Mixed-mode Technology Inc. TOTAL HARMONIC DISTORTION PLUS NOISE TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT FREQUENCY vs OUTPUT POWER 10 5 2 1 10 VDD=3.3V RL=4Ω SE Av=-2 5 Po=50mW 2 VDD=3.3V RL=8Ω,SE Av=-2 20kHz 1 0.5 0.5 % % 0.2 0.2 Po=100mW 0.1 0.1 0.05 0.05 Po=150mW 0.02 0.01 20 50 100 200 500 1k 2k 5k 10k 20k 1kHz 0.02 100Hz 0.01 1m 2m 5m Hz 10m 20m 50m 100m 200m W Figure 27 Figure 28 TOTAL HARMONIC DISTORTION PLUS NOISE TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT FREQUENCY vs OUTPUT FREQUENCY 10 10 5 2 1 5 VDD=3.3V RL=8Ω SE Po=100mW 2 VDD=3.3V RL=8Ω SE 1 Av=-4V/V Po=25mW 0.5 0.5 % % 0.2 0.2 Av=-2V/V 0.1 0.05 0.05 Av=-1V/V 0.02 0.01 20 50 100 200 500 1k 2k 5k 0.02 10k 0.01 20 20k Po=100mW 50 100 200 500 1k 2k 5k 10k 20k Hz Hz Figure 29 Ver: 1.0 Jan 15, 2004 Po=50mW 0.1 Figure 30 12 TEL: 886-3-5788833 http://www.gmt.com.tw G1430 Global Mixed-mode Technology Inc. TOTAL HARMONIC DISTORTION PLUS NOISE TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT POWER vs OUTPUT FREQUENCY 10 10 5 2 5 VDD=3.3V RL=32Ω SE 2 1kHz 1 0.5 1 20kHz 0.5 VDD=3.3V RL=32Ω SE Po=30mW 0.2 % % 0.2 Av=-4V/V Av=-2V/V 0.1 0.05 0.1 0.02 20Hz 0.05 0.01 Av=-1V/V 0.005 0.02 0.002 0.01 1m 2m 5m 10m 20m 50m 0.001 20 100m 50 100 200 500 1k Figure 31 OUTPUT NOISE VOLTAGE vs OUTPUT FREQUENCY vs FREQUENCY 10 2 1 100u 90u VDD=3.3V RL=32Ω SE 80u 70u 60u VDD=5V 20k 5k 10k 20k BW=20Hz to 20kHz RL=4Ω 40u 0.2 % 10k 50u Po=10mW 0.5 5k Figure 32 TOTAL HARMONIC DISTORTION PLUS NOISE 5 2k Hz W 0.1 V Vo BTL 30u Po=20mW 0.05 0.02 Vo SE 20u 0.01 0.005 Po=30mW 0.002 0.001 20 50 100 200 500 1k 2k 5k 10k 10u 20 20k Hz 100 200 500 1k 2k Hz Figure 33 Ver: 1.0 Jan 15, 2004 50 Figure 34 13 TEL: 886-3-5788833 http://www.gmt.com.tw G1430 Global Mixed-mode Technology Inc. OUTPUT NOISE VOLTAGE SUPPLY RIPPLE REJECTION RATIO vs FREQUENCY vs FREQUENCY 100u 90u 80u 70u +0 VDD=3.3V BW=20Hz to 20kHz RL=4Ω -10 -20 60u 50u -30 Vo BTL 40u V VDD=5V RL=4Ω CB=4.7uF -40 d B 30u -50 BTL -60 20u -70 Vo SE -80 SE -90 10u 20 50 100 200 500 1k 2k 5k 10k -100 20 20k 50 100 200 Hz 500 1k 2k 5k 10k 20k 5k 10k 20k Hz Figure 35 Figure 36 SUPPLY RIPPLE REJECTION RATIO CROSSTALK vs FREQUENCY vs FREQUENCY -20 +0 -25 -10 -20 -30 VDD=3.3V RL=4Ω CB=4.7uF -30 -35 -40 -45 -50 -40 d B VDD=5V Po=1.5W RL=4Ω BTL -55 -50 d B BTL -60 -65 -60 L to R -70 -75 -70 -80 -80 -85 SE -90 -90 R to L -95 -100 20 50 100 200 500 1k 2k 5k 10k -100 20 20k Hz 100 200 500 1k 2k Hz Figure 37 Ver: 1.0 Jan 15, 2004 50 Figure 38 14 TEL: 886-3-5788833 http://www.gmt.com.tw G1430 Global Mixed-mode Technology Inc. CROSSTALK vs FREQUENCY CROSSTALK vs FREQUENCY -30 -20 -25 -30 -35 -40 -45 -50 -35 VDD=3.3V Po=0.75W RL=4Ω BTL -40 -45 -50 -55 -60 -55 d B VDD=5V Po=75mW RL=32Ω SE d B -60 -65 L to R -70 -65 R to L -70 -75 -75 -80 -80 -85 -85 -90 R to L -90 L to R -95 -95 -100 20 50 100 200 500 1k 2k 5k 10k -100 20 20k Hz 50 100 200 500 1k 2k 5k 10k 20k Hz Figure 39 Figure 40 CROSSTALK vs FREQUENCY -30 -35 -40 -45 -50 -55 VDD=3.3V Po=35mW RL=32Ω SE -60 d B -65 R to L -70 -75 -80 -85 -90 L to R -95 -100 20 50 100 200 500 1k 2k 5k 10k 20k Hz Figure 41 Ver: 1.0 Jan 15, 2004 15 TEL: 886-3-5788833 http://www.gmt.com.tw Global Mixed-mode Technology Inc. G1430 CLOSED LOOP RESPONSE Figure 42 CLOSED LOOP RESPONSE Figure 43 Ver: 1.0 Jan 15, 2004 16 TEL: 886-3-5788833 http://www.gmt.com.tw Global Mixed-mode Technology Inc. G1430 CLOSED LOOP RESPONSE Figure 44 CLOSED LOOP RESPONSE Figure 45 Ver: 1.0 Jan 15, 17 TEL: 886-3-5788833 http://www.gmt.com.tw G1430 Global Mixed-mode Technology Inc. SUPPLY CURRENT vs SUPPLY VOLTAGE OUTPUT POWER vs SUPPLY VOLTAGE 2.5 10 THD+N=1% BTL Each Channel 9 Supply Current(mA) Po-Output Power (W) Stereo BTL 8 7 6 Stereo SE 5 4 3 2 2 RL=4Ω 1.5 RL=3Ω 1 RL=8Ω 0.5 1 0 0 3 3.5 4 4.5 5 5.5 2.5 6 3.5 5.5 6.5 Figure 47 Figure 46 OUTPUT POWER vs LOAD RESISTANCE OUTPUT POWER vs SUPPLY VOLTAGE 2 0.7 1.8 THD+N=1% SE Each Channel 0.5 0.4 THD+N=1% BTL Each Channel 1.6 Po-Output Power(W) 0.6 Po-Output Power(W) 4.5 SUPPLY VOLTAGE(V) SUPPLY VOLTAGE(V) RL=8Ω RL=4Ω 0.3 0.2 RL=32Ω 1.4 VDD=5V 1.2 1 0.8 0.6 0.4 0.1 VDD=3.3V 0.2 0 0 2.5 Ver: 1.0 Jan 15, 2004 3.5 4.5 5.5 0 6.5 4 8 12 16 20 Supply Voltage(V) Load Resistance(Ω) Figure 48 Figure 49 18 24 28 32 TEL: 886-3-5788833 http://www.gmt.com.tw G1430 Global Mixed-mode Technology Inc. OUTPUT POWER vs LOAD RESISTANCE POWER DISSIPATION vs OUTPUT POWER 0.7 1.8 THD+N=1% SE Each Channel 0.5 1.6 Power Dissipation(W) Po-Output Power(W) 0.6 VDD=5V 0.4 0.3 0.2 0.1 VDD=3.3V 1.2 1 RL=4Ω 0.8 0.6 VDD=5V BTL Each Channel RL=8Ω 0.4 0.2 0 0 0 4 8 12 16 20 24 28 32 0 0.5 1 1.5 2 Load Resistance(Ω) Po-Output Power(W) Figure 50 Figure 51 POWER DISSIPATION vs OUTPUT POWER POWER DISSIPATION vs OUTPUT POWER 2.5 0.35 0.8 0.7 0.3 RL=3Ω 0.6 0.5 Power Dissipation(W) Power Dissipation(W) RL=3Ω 1.4 RL=4Ω 0.4 0.3 VDD=3.3V BTL Each Channel RL=8Ω 0.2 0.1 RL=4Ω 0.25 0.2 RL=8Ω 0.15 0.1 RL=32Ω 0.05 0 VDD=5V SE Each Channel 0 0 0.25 0.5 0.75 1 0 Output Power(W) Figure 52 Ver: 1.0 Jan 15, 2004 0.2 0.4 Output Power(W) 0.6 0.8 Figure 53 19 TEL: 886-3-5788833 http://www.gmt.com.tw Global Mixed-mode Technology Inc. G1430 POWER DISSIPATION vs OUTPUT POWER POWER DISSIPATION (W) 0.16 0.14 RL=4Ω 0.12 VDD=3.3V SE Each Channel 0.1 0.08 0.06 RL=8Ω 0.04 RL=32Ω 0.02 0 0 0.05 0.1 0.15 0.2 0.25 0.3 OUTPUT POWER(W) Figure 54 Ver: 1.0 Jan 15, 2004 20 TEL: 886-3-5788833 http://www.gmt.com.tw G1430 Global Mixed-mode Technology Inc. Block Diagram 20k 10 9 2 RLINEIN _ SHUTDOW N LBYPASS 15 LLINEIN 11 ROUT- 7 RVDD 8 + RBYPASS 16 ROUT+ BIAS CIRCUITS MODES CONTROL CIRCUITS SE/BTL 6 LVDD 1 + LOUT- 3 _ LOUT+ 14 20k Parameter Measurement Information 8 SHUTDOWN SE/BTL 6 LVDD 1 RL 4/8/32ohm 6 LBYPASS CB 4.7µF + CI 15 AC source _ LLINEIN LOUT- 3 LOUT+ 14 RI RF BTL Mode Test Circuit TEL: 886-3-5788833 http://www.gmt.com.tw Ver: 1.0 Jan 15, 2004 21 G1430 Global Mixed-mode Technology Inc. Parameter Measurement Information (Continued) 2 6 SHUTDOWN 15 6 LVDD 1 + LOUT- 3 _ LOUT+ 14 VDD LBYPASS CB 4.7µF CI SE/BTL LLINEIN RI RL 32ohm RF SE Mode Test Circuit TEL: 886-3-5788833 http://www.gmt.com.tw Ver: 1.0 Jan 15, 2004 22 G1430 Global Mixed-mode Technology Inc. Application Circuits VDD 1 2 LBYPASS LVDD SHUTDOWN LLINEIN 16 CRL 4.7µF RFI 15 10k 3 R1 100k LOUT- LOUT+ GND GND 14 5 GND RCA RJ1 COUTL 1k 13 330µF G1430 R2 100k L input Signal 2.2µF RFL 20k 4 CLI RJ2 COUTR GND 1k 12 330µF 6 SE/BTL ROUT+ RFR 11 20k C1 0.1µF 7 ROUT- RLINEIN 10 RRI CRI 10k 2.2µF RCA VDD 8 RVDD RBYPASS 9 CBR 4.7µF Logical Truth Table INPUTS SE/ BTL Shutdown L/R Out+ X High Low Low High Low ---BTL Output SE Output AMPLIFIER STATES L/R Out- Mode ---BTL Output Mute ---- SE BTL TEL: 886-3-5788833 http://www.gmt.com.tw Ver: 1.0 Jan 15, 2004 23 G1430 Global Mixed-mode Technology Inc. Application Information Single Ended Mode Operation G1430 can drive clean, low distortion SE output power into headphone loads (generally 16Ω or 32Ω) as in Figure 1. Please refer to Electrical Characteristics to see the performances. A coupling capacitor is needed to block the dc offset voltage, allowing pure ac signals into headphone loads. Choosing the coupling capacitor will also determine the 3 dB point of the high-pass filter network, as Figure 2. Bridged-Tied Load Mode Operation G1430 has two linear amplifiers to drive both ends of the speaker load in Bridged-Tied Load (BTL) mode operation. Figure 3 shows the BTL configuration. The differential driving to the speaker load means that when one side is slewing up, the other side is slewing down, and vice versa. This configuration in effect will double the voltage swing on the load as compared to a ground reference load. In BTL mode, the peak-to-peak voltage VO(PP) on the load will be two times than a ground reference configuration. The voltage on the load is doubled, this will also yield 4 times output power on the load at the same power supply rail and loading. Another benefit of using differential driving configuration is that BTL operation cancels the dc offsets, which eliminates the dc coupling capacitor that is needed to cancelled dc offsets in the ground reference configuration. Low-frequency performance is then limited only by the input network and speaker responses. Cost and PCB space can be minimized by eliminating the dc coupling capacitors. fC=1/(2πRLCC) For example, a 68uF capacitor with 32Ω headphone load would attenuate low frequency performance below 73Hz. So the coupling capacitor should be well chosen to achieve the excellent bass performance when in SE mode operation. VDD Vo(PP) VDD CC RL Vo(PP) Vo(PP) VDD Figure 1 RL 2xVo(PP) -Vo(PP) Figure 3 -3 dB fc Figure 2 TEL: 886-3-5788833 http://www.gmt.com.tw Ver: 1.0 Jan 15, 2004 24 G1430 Global Mixed-mode Technology Inc. SHUTDOWN Mode Operations G1430 implements the shutdown mode operations to reduce supply current, IDD, to the absolute minimum level during nonuse periods for battery-power conservation. When the shutdown pin (pin 2) is pulled high, all linear amplifiers will be deactivated to mute the amplifier outputs. And G1430 enters an extra low current consumption state, IDD is smaller than 5µA. Shutdown pin should never be left unconnected, this floating condition will cause the amplifier operations unpredictable. De-popping circuitry of G1430 is shown on Figure 4. The PNP transistor limits the voltage drop across the 50kΩ by slewing the internal node slowly when power is applied. At start-up, the voltage at BYPASS capacitor is 0. The PNP is ON to pull the mid-point of the bias circuit down. So the capacitor sees a lower effective voltage, and thus the charging is slower. This appears as a linear ramp (while the PNP transistor is conducting), followed by the expected exponential ramp of an R-C circuit. Optimizing DEPOP Operation Circuitry has been implemented in G1430 to minimize the amount of popping heard at power-up and when coming out of shutdown mode. Popping occurs whenever a voltage step is applied to the speaker and making the differential voltage generated at the two ends of the speaker. To avoid the popping heard, the bypass capacitor should be chosen promptly, 1/(CBx100kΩ) ≦ 1/(CI*(RI+RF)). Where 100kΩ is the output impedance of the mid-rail generator, CB is the mid-rail bypass capacitor, CI is the input coupling capacitor, RI is the input impedance, RF is the gain setting impedance which is on the feedback path. CB is the most important capacitor. Besides it is used to reduce the popping, CB can also determine the rate at which the amplifier starts up during startup or recovery from shutdown mode. VDD 100 kΩ 50 kΩ Bypass 100 kΩ Figure 4 TEL: 886-3-5788833 http://www.gmt.com.tw Ver: 1.0 Jan 15, 2004 25 G1430 Global Mixed-mode Technology Inc. Package Information C θ EA E1 E D A2 A A1 L B e B1 DIP-16L Package SYMBOL A A1 A2 B B1 C DIMENSION IN MILIMETER MIN NOM MAX MIN ----0.381 3.175 4.318 ----3.429 ----0.015 0.125 ----- ----- ----- --------3.302 0.457 TYP 1.527 TYP 0.254 DIMENSION IN INCH NOM --------0.130 0.018 TYP 0.060 TYP 0.010 MAX 0.170 0.015 ----- ----- D E E1 EA e 18.974 6.274 7.366 8.509 19.101 6.401 7.62 9.017 2.540 TYP 19.228 6.528 7.874 9.525 0.740 0.247 0.290 0.335 0.752 0.252 0.300 0.355 0.100 TYP 0.757 0.257 0.310 0.375 L θ 3.048 3.302 3.556 0.120 0.130 0.140 0° ----- 15° 0° ----- 15° GMT Inc. does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and GMT Inc. reserves the right at any time without notice to change said circuitry and specifications. TEL: 886-3-5788833 http://www.gmt.com.tw Ver: 1.0 Jan 15, 2004 26