GMT G1430

G1430
Global Mixed-mode Technology Inc.
2W Stereo Audio Amplifier
Features
General Description
„Depop Circuitry Integrated
„Output Power at 1% THD+N, VDD=5V
G1430 is a stereo audio power amplifier in 16pin Dual
Inline Package. It can drive 1.8W continuous RMS
power into 4Ω load per channel in Bridge-Tied Load
(BTL) mode at 5V supply voltage. Its THD is smaller
than 1% under the above operation condition. To simplify the audio system design in the notebook application, G1430 supports the Bridge-Tied Load (BTL)
mode for driving the speakers, Single-End (SE) mode
for driving the headphone. For the low current consumption applications, the SHDN mode is supported
to disable G1430 when it is idle. The current consumption can be further reduced to below 5µA.
--1.8W/CH (typical) into a 4Ω
Ω Load
--1.2W/CH (typical) into a 8Ω
Ω Load
„Bridge-Tied Load (BTL), Single-Ended (SE)
„Shutdown Control Available
„ Dual Inline Package 16 pin (DIP16)
Applications
„Stereo Power Amplifiers for Notebooks or
Desktop Computers
„Multimedia Monitors
„Stereo Power Amplifiers for Portable Audio
Systems
Ordering Information
ORDER
MARKING
NUMBER
G1430Z4T
G1430
TEMP.
RANGE
PACKAGE
-40°C to +85°C
DIP-16L
Pin Configuration
G1430
LVDD
1
16
SHUTDOWN
LOUT-
2
3
15
LLINEIN
14
LOUT+
LBYPASS
GND/HS
4
13
GND/HS
GND/HS
5
12
GND/HS
SE/BTL
6
11
ROUT-
7
10
ROUT+
RLINEIN
RVDD
8
9
RBYPASS
DIP-16L
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 1.0
Jan 15, 2004
1
G1430
Global Mixed-mode Technology Inc.
Absolute Maximum Ratings
Power Dissipation (1)
TA ≤ 25°C…………………………………………....2W
Electrostatic Discharge, VESD
Human body mode..…………………….-3000 to 3000(2)
Supply Voltage, VCC…………………..…...…….……...6V
Operating Ambient Temperature Range
TA…….…………………………….……….-40°C to +85°C
Maximum Junction Temperature, TJ…..……….….150°C
Storage Temperature Range, TSTG….….-65°C to+150°C
Soldering Temperature, 10seconds, TS……….……260°C
Note:
(1)
: Both dual channels could provide 1.8W peak output power at 4 ohm speaker, but continuous output power is limited by package
(DIP-16) power dissipation : 2W at Ta=25 degree °C
(2)
: Human body model : C = 100pF, R = 1500Ω, 3 positive pulses plus 3 negative pulses
Electrical Characteristics
DC Electrical Characteristics, TA=+25°C
PARAMETER
SYMBOL
CONDITION
Stereo BTL
VDD =3.3V
Supply Current
DC Differential Output Voltage
Supply Current in Mute Mode
IDD in Shutdown
IDD
VO(DIFF)
STEREO SE
Stereo BTL
VDD = 5V
STEREO SE
VDD = 5V,Gain = 2
IDD(MUTE)
VDD = 5V
ISD
VDD = 5V
Stereo BTL
STEREO SE
MIN
TYP
MAX
---
7
10
---------
3.5
8
4
5
6
13
6.5
50
8
13
4
2
6.5
5
MIN
TYP
MAX
-------------------------------------------
1.8
1.12
2
1.4
500
320
650
400
90
500
150
20
10
20
60
75
82
85
2
90
55
-------------------------------------------
-----
UNIT
mA
mV
mA
µA
(AC Operation Characteristics, VDD = 5V, TA=+25°C, RL = 4Ω, unless otherwise noted)
PARAMETER
Output power (each channel) see Note
Total harmonic distortion plus noise
Maximum output power bandwidth
Phase margin
Power supply ripple rejection
Channel-to-channel output separation
BTL attenuation in SE mode
Input impedance
Signal-to-noise ratio
Output noise voltage
SYMBOL
P(OUT)
THD+N
BOM
PSRR
CONDITION
THD = 1%, BTL, RL = 4Ω
THD = 1%, BTL, RL = 8Ω
THD = 10%, BTL, RL = 4Ω
THD = 10%, BTL, RL = 8Ω
THD = 1%, SE, RL = 4Ω
THD = 1%, SE, RL = 8Ω
THD = 10%, SE, RL = 4Ω
THD = 10%, SE, RL L = 8Ω
THD = 0.5%, SE, RL = 32Ω
PO = 1.6W, BTL, RL = 4Ω
PO = 1W, BTL, RL = 8Ω
PO = 75mW, SE, RL = 32Ω
VI = 1V, RL = 10KΩ, G = 1
G = 1, THD = 1%
RL = 4Ω, Open Load
f = 120Hz
f = 1kHz
ZI
Vn
PO = 500mW, BTL
Output noise voltage
UNIT
W
mW
m%
kHz
°
dB
dB
dB
MΩ
dB
µV (rms)
Note :Output power is measured at the output terminals of the IC at 1kHz.
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 1.0
Jan 15, 2004
2
G1430
Global Mixed-mode Technology Inc.
(AC Operation Characteristics, VDD = 3.3V, TA=+25°C, RL = 4Ω
Ω, unless otherwise noted)
PARAMETER
Output power (each channel) see Note
Total harmonic distortion plus noise
Maximum output power bandwidth
Phase margin
Power supply ripple rejection
Channel-to-channel output separation
BTL attenuation in SE mode
Input impedance
Signal-to-noise ratio
Output noise voltage
SYMBOL
P(OUT)
THD+N
BOM
PSRR
CONDITION
THD = 1%, BTL, RL = 4Ω
THD = 1%, BTL, RL = 8Ω
THD = 10%, BTL, RL = 4Ω
THD = 10%, BTL, RL = 8Ω
THD = 1%, SE, RL = 4Ω
THD = 1%, SE, RL = 8Ω
THD = 10%, SE, RL = 4Ω
THD = 10%, SE, RL L = 8Ω
THD = 0.5%, SE, RL = 32Ω
PO = 1.6W, BTL, RL = 4Ω
PO = 1W, BTL, RL = 8Ω
PO = 75mW, SE, RL = 32Ω
VI = 1V, RL = 10KΩ, G = 1
G = 1, THD 1%
RL = 4Ω, Open Load
f = 120Hz
f = 1kHz
ZI
Vn
PO = 500mW, BTL
Output noise voltage
MIN
TYP
MAX
-------------------------------------------
0.8
0.5
1
0.6
230
140
290
180
43
270
100
20
10
20
60
75
80
85
2
90
55
-------------------------------------------
UNIT
W
mW
m%
kHz
°
dB
dB
dB
MΩ
dB
µV (rms)
Note :Output power is measured at the output terminals of the IC at 1kHz.
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 1.0
Jan 15, 2004
3
Global Mixed-mode Technology Inc.
G1430
Pin Description
PIN
NAME
I/O
FUNCTION
1
2
LVDD
SHUTDOWN
I
I
3
4,5,12,13
6
LOUTGND/HS
O
SE/ BTL
I
Supply voltage input for left channel and for primary bias circuits.
Shutdown mode control signal input, places entire IC in shutdown mode when held high,
IDD = 5µA.
Left channel - output in BTL mode, high impedance state in SE mode.
Ground connection for circuitry, directly connected to thermal pad.
Mode control signal input, hold low for BTL mode, hold high for SE mode.
7
8
9
10
11
14
15
16
ROUTRVDD
RBYPASS
RLINE IN
ROUT+
LOUT+
LLINE IN
LBYPASS
O
I
I
O
O
I
Right channel - output in BTL mode, high impedance state in SE mode.
Supply voltage input for right channel.
Connect to voltage divider for right channel internal mid-supply bias.
Right channel line input, selected when HP/pin is held low.
Right channel + output in BTL mode, + output in SE mode.
Left channel + output in BTL mode, + output in SE mode.
Left channel line input, selected when HP/ pin is held low.
Connect to voltage divider for left channel internal mid-supply bias.
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 1.0
Jan 15, 2004
4
G1430
Global Mixed-mode Technology Inc.
Typical Characteristics
Table of Graphs
FIGURE
vs Frequency
2,4,5,7,8,11,12,14,15,17,18,20,21,23,24,26,27,29,30,32,33
vs Output power
1,3,6,9,10,13,16,19,22,25,28,31
vs Frequency
34,35
Supply ripple rejection ratio
vs Frequency
36,37
Crosstalk
vs Frequency
38,39,40,41
Closed loop response
vs Frequency
42,43,44,45
vs supply voltage
46
vs supply voltage
47,48
vs Load resistance
49,50
vs Output power
51,52,53,54
THD +N Total harmonic distortion plus noise
Vn Output noise voltage
IDD Supply current
PO Output power
PD Power dissipation
TOTAL HARMONIC DISTORTION PLUS NOISE
TOTAL HARMONIC DISTORTION PLUS NOISE
vs OUTPUT POWER
vs OUTPUT FREQUENCY
10
10
5
5
20kHz
2
2
1
1
1kHz
0.5
Po=1.8W
0.5
%
%
0.2
0.1
0.2
0.1
20 Hz
VDD=5V
RL=3Ω
BTL
0.05
0.02
0.01
3m
5m
10m
20m
50m
100m
200m
500m
1
0.05
0.02
2
0.01
20
3
W
50
100
200
500
1k
2k
5k
10k
20k
Hz
Figure 1
Ver: 1.0
Jan 15, 2004
VDD=5V
RL=3Ω
BTL
Av=-2V/V
Po=1.5W
Figure 2
5
TEL: 886-3-5788833
http://www.gmt.com.tw
G1430
Global Mixed-mode Technology Inc.
TOTAL HARMONIC DISTORTION PLUS NOISE
vs OUTPUT POWER
TOTAL HARMONIC DISTORTION PLUS NOISE
vs OUTPUT FREQUENCY
10
10
5
5
Av=-4V/V
20kHz
2
2
1
1
0.5
Av=-2V/V
0.5
1kHz
%
%
0.2
0.2
0.1
0.1
VDD=5V
RL=4Ω
BTL
20 Hz
0.05
0.02
0.01
3m
5m
10m
20m
50m
100m
200m
500m
1
VDD=5V
RL=4Ω
BTL
Po=1.5W
Av=-1V/V
0.05
0.02
2
0.01
20
3
50
100
200
500
W
1k
2k
5k
10k
20k
Hz
Figure 3
Figure 4
TOTAL HARMONIC DISTORTION PLUS NOISE
TOTAL HARMONIC DISTORTION PLUS NOISE
vs OUTPUT FREQUENCY
vs OUTPUT POWER
10
5
2
1
10
VDD=5V
RL=4Ω
BTL
Av=-2V/V
VDD=5V
RL=8Ω
BTL
Av=-2V/V
5
Po=1.5W
20kHz
2
1
Po=0.25W
0.5
0.5
%
%
0.2
0.2
Po=0.75W
0.1
0.05
0.05
0.02
0.02
0.01
20
50
100
200
500
1k
2k
5k
10k
0.01
3m
20k
Hz
20Hz
5m
10m
20m
50m
100m
200m
500m
1
2
3
W
Figure 5
Ver: 1.0
Jan 15, 2004
1kHz
0.1
Figure 6
6
TEL: 886-3-5788833
http://www.gmt.com.tw
G1430
Global Mixed-mode Technology Inc.
TOTAL HARMONIC DISTORTION PLUS NOISE
TOTAL HARMONIC DISTORTION PLUS NOISE
vs OUTPUT FREQUENCY
vs OUTPUT FREQUENCY
10
5
2
1
10
VDD=5V
RL=8Ω
BTL
Av=-2V/V
5
2
Po=1W
1
Po=0.25W
0.5
VDD=5V
RL=8Ω
BTL
Po=1W
Av=-4V/V
0.5
%
Av=-2V/V
%
0.2
0.2
0.1
0.1
Po=0.5W
0.05
0.05
0.02
Av=-1V/V
0.02
0.01
20
50
100
200
500
1k
2k
5k
10k
0.01
20
20k
50
100
200
500
Hz
1k
2k
5k
10k
20k
Hz
Figure 8
Figure 7
TOTAL HARMONIC DISTORTION PLUS NOISE
TOTAL HARMONIC DISTORTION PLUS NOISE
vs OUTPUT POWER
vs OUTPUT POWER
10
10
5
5
20kHz
20kHz
2
2
1
1
1kHz
0.5
1kHz
0.5
%
%
0.2
0.1
0.05
0.02
0.01
1m
0.2
0.1
VDD=3.3V
RL=3Ω
BTL
2m
5m
20Hz
0.05
0.02
10m
20m
50m
100m
200m
500m
0.01
1m
1
W
2m
5m
20Hz
10m
20m
50m
100m
200m
500m
1
W
Figure 9
Ver: 1.0
Jan 15, 2004
VDD=3.3V
RL=4Ω
BTL
Figure 10
7
TEL: 886-3-5788833
http://www.gmt.com.tw
G1430
Global Mixed-mode Technology Inc.
TOTAL HARMONIC DISTORTION PLUS NOISE
TOTAL HARMONIC DISTORTION PLUS NOISE
vs OUTPUT FREQUENCY
vs OUTPUT FREQUENCY
10
10
5
2
1
VDD=3.3V
RL=4Ω
BTL
Po=0.65W
5
Av=-4V/V
2
Av=-2V/V
1
VDD=3.3V
RL=4Ω
BTL
Av=-2V/V
Po=0.7W
0.5
0.5
%
%
Po=0.1W
0.2
0.2
0.1
0.1
Av=-1V/V
0.05
0.05
0.02
0.02
0.01
20
50
100
200
500
1k
2k
5k
10k
0.01
20
20k
Po=0.35W
50
100
200
500
1k
2k
5k
10k
20k
Hz
Hz
Figure 11
Figure 12
TOTAL HARMONIC DISTORTION PLUS NOISE
TOTAL HARMONIC DISTORTION PLUS NOISE
vs OUTPUT POWER
vs OUTPUT FREQUENCY
10
10
VDD=3.3V
RL=8Ω
BTL
5
20kHz
2
5
2
1
1
0.5
VDD=3.3V
RL=8Ω
BTL
Po=0.4W
Av=-4V/V
Av=-2V/V
0.5
%
%
1kHz
0.2
0.2
0.1
0.1
0.05
0.05
Av=-1V/V
20Hz
0.02
0.01
1m
0.02
2m
5m
10m
20m
50m
100m
200m
500m
0.01
20
1
W
100
200
500
1k
2k
5k
10k
20k
Hz
Figure 13
Ver: 1.0
Jan 15, 2004
50
Figure 14
8
TEL: 886-3-5788833
http://www.gmt.com.tw
G1430
Global Mixed-mode Technology Inc.
TOTAL HARMONIC DISTORTION PLUS NOISE
TOTAL HARMONIC DISTORTION PLUS NOISE
vs OUTPUT FREQUENCY
vs OUTPUT POWER
10
5
2
1
10
VDD=3.3V
RL=8Ω
BTL
Av=-2V/V
5
2
Po=0.4W
VDD=5V
RL=4Ω
SE
20kHz
1
0.5
0.5
%
%
Po=0.1W
0.2
0.2
0.1
1kHz
0.1
0.05
0.05
Po=0.25W
100Hz
0.02
0.02
0.01
20
50
100
200
500
1k
2k
5k
10k
0.01
1m
20k
2m
5m
10m
20m
50m
Hz
100m
200m
500m
1
W
Figure 15
Figure 16
TOTAL HARMONIC DISTORTION PLUS NOISE
TOTAL HARMONIC DISTORTION PLUS NOISE
vs OUTPUT FREQUENCY
vs OUTPUT FREQUENCY
10
5
2
1
10
VDD=5V
RL=4Ω
SE
Po=0.5W
5
Av=-4V/V
2
1
0.5
0.2
%
0.2
0.1
Po=0.1W
0.1
0.05
0.05
Av=-1V/V
Po=0.25W
0.02
0.02
50
100
200
500
1k
2k
5k
10k
0.01
20
20k
Hz
50
100
200
500
1k
2k
5k
10k
20k
Hz
Figure 18
Figure 17
Ver: 1.0
Jan 15, 2004
Po=0.4W
0.5
Av=-2V/V
%
0.01
20
VDD=5V
RL=4Ω
SE
Av=-2V/V
9
TEL: 886-3-5788833
http://www.gmt.com.tw
G1430
Global Mixed-mode Technology Inc.
TOTAL HARMONIC DISTORTION PLUS NOISE
TOTAL HARMONIC DISTORTION PLUS NOISE
vs OUTPUT POWER
vs OUTPUT FREQUENCY
10
10
5
2
VDD=5V
RL=8Ω
SE
5
2
1
1
20kHz
VDD=5V
RL=8Ω
SE
Po=0.25W
0.5
0.5
Av=-2V/V
%
%
0.2
0.2
0.1
0.1
1kHz
0.05
0.02
0.01
1m
100Hz
2m
5m
Av=-4V/V
0.05
Av=-1V/V
0.02
10m
20m
50m
100m
200m
500m
0.01
20
1
50
100
200
500
1k
2k
5k
10k
20k
Hz
W
Figure 19
Figure 20
TOTAL HARMONIC DISTORTION PLUS NOISE
TOTAL HARMONIC DISTORTION PLUS NOISE
vs OUTPUT FREQUENCY
vs OUTPUT POWER
10
5
2
1
10
5
VDD=5V
RL=8Ω
SE
Av=-2
2
1
0.5
0.2
Po=0.05W
%
0.1
0.2
0.05
0.1
0.02
Po=0.1W
0.005
Po=0.25W
1kHz
0.002
50
100
200
500
1k
2k
5k
10k
0.001
1m
20k
Hz
2m
5m
10m
20m
50m
100m
200m
W
Figure 21
Ver: 1.0
Jan 15, 2004
20Hz
0.01
0.02
0.01
20
20kHz
0.5
%
0.05
VDD=5V
RL=32Ω
SE
Figure 22
10
TEL: 886-3-5788833
http://www.gmt.com.tw
G1430
Global Mixed-mode Technology Inc.
TOTAL HARMONIC DISTORTION PLUS NOISE
TOTAL HARMONIC DISTORTION PLUS NOISE
vs OUTPUT FREQUENCY
vs OUTPUT FREQUENCY
10
10
5
2
1
0.5
5
VDD=5V
RL=32Ω
SE
Po=75mW
2
1
Av=-4V/V
0.5
Po=25mW
0.2
0.2
%
VDD=5V
RL=32Ω
SE
%
0.1
Av=-2V/V
0.05
0.1
0.05
0.02
0.02
0.01
0.01
0.005
0.005
Av=-1V/V
0.002
0.002
0.001
20
0.001
20
50
100
200
500
1k
2k
5k
10k
20k
Po=50mW
Po=75mW
50
100
200
500
1k
2k
5k
10k
20k
Hz
Hz
Figure 23
Figure 24
TOTAL HARMONIC DISTORTION PLUS NOISE
TOTAL HARMONIC DISTORTION PLUS NOISE
vs OUTPUT POWER
vs OUTPUT FREQUENCY
10
10
5
2
VDD=3.3V
RL=4Ω,SE
Av=-2
5
2
20kHz
1
1
Av=-4V/V
0.5
0.5
%
%
1kHz
0.2
0.2
Av=-2V/V
0.1
0.1
0.05
0.05
100Hz
0.02
0.01
1m
VDD=3.3V
RL=4Ω
SE
Po=0.2W
2m
5m
10m
20m
50m
100m
200m
500m
0.01
20
1
50
100
200
500
1k
2k
5k
10k
20k
Hz
W
Figure 25
Ver: 1.0
Jan 15, 2004
Av=-1V/V
0.02
Figure 26
11
TEL: 886-3-5788833
http://www.gmt.com.tw
G1430
Global Mixed-mode Technology Inc.
TOTAL HARMONIC DISTORTION PLUS NOISE
TOTAL HARMONIC DISTORTION PLUS NOISE
vs OUTPUT FREQUENCY
vs OUTPUT POWER
10
5
2
1
10
VDD=3.3V
RL=4Ω
SE
Av=-2
5
Po=50mW
2
VDD=3.3V
RL=8Ω,SE
Av=-2
20kHz
1
0.5
0.5
%
%
0.2
0.2
Po=100mW
0.1
0.1
0.05
0.05
Po=150mW
0.02
0.01
20
50
100
200
500
1k
2k
5k
10k
20k
1kHz
0.02
100Hz
0.01
1m
2m
5m
Hz
10m
20m
50m
100m
200m
W
Figure 27
Figure 28
TOTAL HARMONIC DISTORTION PLUS NOISE
TOTAL HARMONIC DISTORTION PLUS NOISE
vs OUTPUT FREQUENCY
vs OUTPUT FREQUENCY
10
10
5
2
1
5
VDD=3.3V
RL=8Ω
SE
Po=100mW
2
VDD=3.3V
RL=8Ω
SE
1
Av=-4V/V
Po=25mW
0.5
0.5
%
%
0.2
0.2
Av=-2V/V
0.1
0.05
0.05
Av=-1V/V
0.02
0.01
20
50
100
200
500
1k
2k
5k
0.02
10k
0.01
20
20k
Po=100mW
50
100
200
500
1k
2k
5k
10k
20k
Hz
Hz
Figure 29
Ver: 1.0
Jan 15, 2004
Po=50mW
0.1
Figure 30
12
TEL: 886-3-5788833
http://www.gmt.com.tw
G1430
Global Mixed-mode Technology Inc.
TOTAL HARMONIC DISTORTION PLUS NOISE
TOTAL HARMONIC DISTORTION PLUS NOISE
vs OUTPUT POWER
vs OUTPUT FREQUENCY
10
10
5
2
5
VDD=3.3V
RL=32Ω
SE
2
1kHz
1
0.5
1
20kHz
0.5
VDD=3.3V
RL=32Ω
SE
Po=30mW
0.2
%
%
0.2
Av=-4V/V
Av=-2V/V
0.1
0.05
0.1
0.02
20Hz
0.05
0.01
Av=-1V/V
0.005
0.02
0.002
0.01
1m
2m
5m
10m
20m
50m
0.001
20
100m
50
100
200
500
1k
Figure 31
OUTPUT NOISE VOLTAGE
vs OUTPUT FREQUENCY
vs FREQUENCY
10
2
1
100u
90u
VDD=3.3V
RL=32Ω
SE
80u
70u
60u
VDD=5V
20k
5k
10k
20k
BW=20Hz to 20kHz
RL=4Ω
40u
0.2
%
10k
50u
Po=10mW
0.5
5k
Figure 32
TOTAL HARMONIC DISTORTION PLUS NOISE
5
2k
Hz
W
0.1
V
Vo BTL
30u
Po=20mW
0.05
0.02
Vo SE
20u
0.01
0.005
Po=30mW
0.002
0.001
20
50
100
200
500
1k
2k
5k
10k
10u
20
20k
Hz
100
200
500
1k
2k
Hz
Figure 33
Ver: 1.0
Jan 15, 2004
50
Figure 34
13
TEL: 886-3-5788833
http://www.gmt.com.tw
G1430
Global Mixed-mode Technology Inc.
OUTPUT NOISE VOLTAGE
SUPPLY RIPPLE REJECTION RATIO
vs FREQUENCY
vs FREQUENCY
100u
90u
80u
70u
+0
VDD=3.3V
BW=20Hz to 20kHz
RL=4Ω
-10
-20
60u
50u
-30
Vo BTL
40u
V
VDD=5V
RL=4Ω
CB=4.7uF
-40
d
B
30u
-50
BTL
-60
20u
-70
Vo SE
-80
SE
-90
10u
20
50
100
200
500
1k
2k
5k
10k
-100
20
20k
50
100
200
Hz
500
1k
2k
5k
10k
20k
5k
10k
20k
Hz
Figure 35
Figure 36
SUPPLY RIPPLE REJECTION RATIO
CROSSTALK vs FREQUENCY
vs FREQUENCY
-20
+0
-25
-10
-20
-30
VDD=3.3V
RL=4Ω
CB=4.7uF
-30
-35
-40
-45
-50
-40
d
B
VDD=5V
Po=1.5W
RL=4Ω
BTL
-55
-50
d
B
BTL
-60
-65
-60
L to R
-70
-75
-70
-80
-80
-85
SE
-90
-90
R to L
-95
-100
20
50
100
200
500
1k
2k
5k
10k
-100
20
20k
Hz
100
200
500
1k
2k
Hz
Figure 37
Ver: 1.0
Jan 15, 2004
50
Figure 38
14
TEL: 886-3-5788833
http://www.gmt.com.tw
G1430
Global Mixed-mode Technology Inc.
CROSSTALK vs FREQUENCY
CROSSTALK vs FREQUENCY
-30
-20
-25
-30
-35
-40
-45
-50
-35
VDD=3.3V
Po=0.75W
RL=4Ω
BTL
-40
-45
-50
-55
-60
-55
d
B
VDD=5V
Po=75mW
RL=32Ω
SE
d
B
-60
-65
L to R
-70
-65
R to L
-70
-75
-75
-80
-80
-85
-85
-90
R to L
-90
L to R
-95
-95
-100
20
50
100
200
500
1k
2k
5k
10k
-100
20
20k
Hz
50
100
200
500
1k
2k
5k
10k
20k
Hz
Figure 39
Figure 40
CROSSTALK vs FREQUENCY
-30
-35
-40
-45
-50
-55
VDD=3.3V
Po=35mW
RL=32Ω
SE
-60
d
B
-65
R to L
-70
-75
-80
-85
-90
L to R
-95
-100
20
50
100
200
500
1k
2k
5k
10k
20k
Hz
Figure 41
Ver: 1.0
Jan 15, 2004
15
TEL: 886-3-5788833
http://www.gmt.com.tw
Global Mixed-mode Technology Inc.
G1430
CLOSED LOOP RESPONSE
Figure 42
CLOSED LOOP RESPONSE
Figure 43
Ver: 1.0
Jan 15, 2004
16
TEL: 886-3-5788833
http://www.gmt.com.tw
Global Mixed-mode Technology Inc.
G1430
CLOSED LOOP RESPONSE
Figure 44
CLOSED LOOP RESPONSE
Figure 45
Ver: 1.0
Jan 15,
17
TEL: 886-3-5788833
http://www.gmt.com.tw
G1430
Global Mixed-mode Technology Inc.
SUPPLY CURRENT vs SUPPLY VOLTAGE
OUTPUT POWER vs SUPPLY VOLTAGE
2.5
10
THD+N=1%
BTL
Each Channel
9
Supply Current(mA)
Po-Output Power (W)
Stereo BTL
8
7
6
Stereo SE
5
4
3
2
2
RL=4Ω
1.5
RL=3Ω
1
RL=8Ω
0.5
1
0
0
3
3.5
4
4.5
5
5.5
2.5
6
3.5
5.5
6.5
Figure 47
Figure 46
OUTPUT POWER vs LOAD RESISTANCE
OUTPUT POWER vs SUPPLY VOLTAGE
2
0.7
1.8
THD+N=1%
SE
Each Channel
0.5
0.4
THD+N=1%
BTL
Each Channel
1.6
Po-Output Power(W)
0.6
Po-Output Power(W)
4.5
SUPPLY VOLTAGE(V)
SUPPLY VOLTAGE(V)
RL=8Ω
RL=4Ω
0.3
0.2
RL=32Ω
1.4
VDD=5V
1.2
1
0.8
0.6
0.4
0.1
VDD=3.3V
0.2
0
0
2.5
Ver: 1.0
Jan 15, 2004
3.5
4.5
5.5
0
6.5
4
8
12
16
20
Supply Voltage(V)
Load Resistance(Ω)
Figure 48
Figure 49
18
24
28
32
TEL: 886-3-5788833
http://www.gmt.com.tw
G1430
Global Mixed-mode Technology Inc.
OUTPUT POWER vs LOAD RESISTANCE
POWER DISSIPATION vs OUTPUT POWER
0.7
1.8
THD+N=1%
SE
Each Channel
0.5
1.6
Power Dissipation(W)
Po-Output Power(W)
0.6
VDD=5V
0.4
0.3
0.2
0.1
VDD=3.3V
1.2
1
RL=4Ω
0.8
0.6
VDD=5V
BTL
Each Channel
RL=8Ω
0.4
0.2
0
0
0
4
8
12
16
20
24
28
32
0
0.5
1
1.5
2
Load Resistance(Ω)
Po-Output Power(W)
Figure 50
Figure 51
POWER DISSIPATION vs OUTPUT POWER
POWER DISSIPATION vs OUTPUT POWER
2.5
0.35
0.8
0.7
0.3
RL=3Ω
0.6
0.5
Power Dissipation(W)
Power Dissipation(W)
RL=3Ω
1.4
RL=4Ω
0.4
0.3
VDD=3.3V
BTL
Each Channel
RL=8Ω
0.2
0.1
RL=4Ω
0.25
0.2
RL=8Ω
0.15
0.1
RL=32Ω
0.05
0
VDD=5V
SE
Each Channel
0
0
0.25
0.5
0.75
1
0
Output Power(W)
Figure 52
Ver: 1.0
Jan 15, 2004
0.2
0.4
Output Power(W)
0.6
0.8
Figure 53
19
TEL: 886-3-5788833
http://www.gmt.com.tw
Global Mixed-mode Technology Inc.
G1430
POWER DISSIPATION vs OUTPUT POWER
POWER DISSIPATION (W)
0.16
0.14
RL=4Ω
0.12
VDD=3.3V
SE
Each Channel
0.1
0.08
0.06
RL=8Ω
0.04
RL=32Ω
0.02
0
0
0.05
0.1
0.15
0.2
0.25
0.3
OUTPUT POWER(W)
Figure 54
Ver: 1.0
Jan 15, 2004
20
TEL: 886-3-5788833
http://www.gmt.com.tw
G1430
Global Mixed-mode Technology Inc.
Block Diagram
20k
10
9
2
RLINEIN
_
SHUTDOW N
LBYPASS
15
LLINEIN
11
ROUT-
7
RVDD
8
+
RBYPASS
16
ROUT+
BIAS CIRCUITS
MODES CONTROL
CIRCUITS
SE/BTL
6
LVDD
1
+
LOUT-
3
_
LOUT+
14
20k
Parameter Measurement Information
8
SHUTDOWN
SE/BTL
6
LVDD
1
RL 4/8/32ohm
6
LBYPASS
CB
4.7µF
+
CI
15
AC source
_
LLINEIN
LOUT-
3
LOUT+
14
RI
RF
BTL Mode Test Circuit
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 1.0
Jan 15, 2004
21
G1430
Global Mixed-mode Technology Inc.
Parameter Measurement Information (Continued)
2
6
SHUTDOWN
15
6
LVDD
1
+
LOUT-
3
_
LOUT+
14
VDD
LBYPASS
CB
4.7µF
CI
SE/BTL
LLINEIN
RI
RL 32ohm
RF
SE Mode Test Circuit
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 1.0
Jan 15, 2004
22
G1430
Global Mixed-mode Technology Inc.
Application Circuits
VDD
1
2
LBYPASS
LVDD
SHUTDOWN
LLINEIN
16
CRL
4.7µF
RFI
15
10k
3
R1
100k
LOUT-
LOUT+
GND
GND
14
5
GND
RCA
RJ1
COUTL
1k
13
330µF
G1430
R2
100k
L input Signal
2.2µF
RFL
20k
4
CLI
RJ2
COUTR
GND
1k
12
330µF
6
SE/BTL
ROUT+
RFR
11
20k
C1
0.1µF
7
ROUT-
RLINEIN
10
RRI
CRI
10k
2.2µF
RCA
VDD
8
RVDD
RBYPASS
9
CBR
4.7µF
Logical Truth Table
INPUTS
SE/ BTL
Shutdown
L/R Out+
X
High
Low
Low
High
Low
---BTL
Output
SE
Output
AMPLIFIER STATES
L/R Out-
Mode
---BTL
Output
Mute
----
SE
BTL
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 1.0
Jan 15, 2004
23
G1430
Global Mixed-mode Technology Inc.
Application Information
Single Ended Mode Operation
G1430 can drive clean, low distortion SE output power
into headphone loads (generally 16Ω or 32Ω) as in
Figure 1. Please refer to Electrical Characteristics to
see the performances. A coupling capacitor is needed
to block the dc offset voltage, allowing pure ac signals
into headphone loads. Choosing the coupling capacitor will also determine the 3 dB point of the high-pass
filter network, as Figure 2.
Bridged-Tied Load Mode Operation
G1430 has two linear amplifiers to drive both ends of
the speaker load in Bridged-Tied Load (BTL) mode
operation. Figure 3 shows the BTL configuration. The
differential driving to the speaker load means that
when one side is slewing up, the other side is slewing
down, and vice versa. This configuration in effect will
double the voltage swing on the load as compared to a
ground reference load. In BTL mode, the peak-to-peak
voltage VO(PP) on the load will be two times than a
ground reference configuration. The voltage on the
load is doubled, this will also yield 4 times output
power on the load at the same power supply rail and
loading. Another benefit of using differential driving
configuration is that BTL operation cancels the dc offsets, which eliminates the dc coupling capacitor that is
needed to cancelled dc offsets in the ground reference
configuration. Low-frequency performance is then limited only by the input network and speaker responses.
Cost and PCB space can be minimized by eliminating
the dc coupling capacitors.
fC=1/(2πRLCC)
For example, a 68uF capacitor with 32Ω headphone
load would attenuate low frequency performance below 73Hz. So the coupling capacitor should be well
chosen to achieve the excellent bass performance
when in SE mode operation.
VDD
Vo(PP)
VDD
CC
RL
Vo(PP)
Vo(PP)
VDD
Figure 1
RL
2xVo(PP)
-Vo(PP)
Figure 3
-3 dB
fc
Figure 2
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 1.0
Jan 15, 2004
24
G1430
Global Mixed-mode Technology Inc.
SHUTDOWN Mode Operations
G1430 implements the shutdown mode operations
to reduce supply current, IDD, to the absolute minimum level during nonuse periods for battery-power
conservation. When the shutdown pin (pin 2) is
pulled high, all linear amplifiers will be deactivated
to mute the amplifier outputs. And G1430 enters an
extra low current consumption state, IDD is smaller
than 5µA. Shutdown pin should never be left unconnected, this floating condition will cause the amplifier operations unpredictable.
De-popping circuitry of G1430 is shown on Figure 4.
The PNP transistor limits the voltage drop across
the 50kΩ by slewing the internal node slowly when
power is applied. At start-up, the voltage at
BYPASS capacitor is 0. The PNP is ON to pull the
mid-point of the bias circuit down. So the capacitor
sees a lower effective voltage, and thus the charging is slower. This appears as a linear ramp (while
the PNP transistor is conducting), followed by the
expected exponential ramp of an R-C circuit.
Optimizing DEPOP Operation
Circuitry has been implemented in G1430 to minimize the amount of popping heard at power-up and
when coming out of shutdown mode. Popping occurs whenever a voltage step is applied to the
speaker and making the differential voltage generated at the two ends of the speaker. To avoid the
popping heard, the bypass capacitor should be
chosen promptly, 1/(CBx100kΩ) ≦ 1/(CI*(RI+RF)).
Where 100kΩ is the output impedance of the
mid-rail generator, CB is the mid-rail bypass capacitor, CI is the input coupling capacitor, RI is the input
impedance, RF is the gain setting impedance which
is on the feedback path. CB is the most important
capacitor. Besides it is used to reduce the popping,
CB can also determine the rate at which the amplifier
starts up during startup or recovery from shutdown
mode.
VDD
100 kΩ
50 kΩ
Bypass
100 kΩ
Figure 4
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 1.0
Jan 15, 2004
25
G1430
Global Mixed-mode Technology Inc.
Package Information
C
θ
EA
E1
E
D
A2
A
A1
L
B
e
B1
DIP-16L Package
SYMBOL
A
A1
A2
B
B1
C
DIMENSION IN MILIMETER
MIN
NOM
MAX
MIN
----0.381
3.175
4.318
----3.429
----0.015
0.125
-----
-----
-----
--------3.302
0.457 TYP
1.527 TYP
0.254
DIMENSION IN INCH
NOM
--------0.130
0.018 TYP
0.060 TYP
0.010
MAX
0.170
0.015
-----
-----
D
E
E1
EA
e
18.974
6.274
7.366
8.509
19.101
6.401
7.62
9.017
2.540 TYP
19.228
6.528
7.874
9.525
0.740
0.247
0.290
0.335
0.752
0.252
0.300
0.355
0.100 TYP
0.757
0.257
0.310
0.375
L
θ
3.048
3.302
3.556
0.120
0.130
0.140
0°
-----
15°
0°
-----
15°
GMT Inc. does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and GMT Inc. reserves the right at any time without notice to change said circuitry and specifications.
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 1.0
Jan 15, 2004
26