H 200-V/160 Ohm, 1 Form A, Small-Signal Solid State Relay Technical Data HSSR-8200 Features Applications Description • Compact Solid-State Bidirectional Signal Switch • Normally-Off Single-Pole Relay Function (1 Form A) • Very High Output OffImpedance: 10,000 Gigaohms Typical at 25°C • Very Low Output Offset Voltage: < 0.5 µV at IF = 1 mA • 200-Volt Output Withstand Voltage at 25°C • High-Transient Immunity: > 2000 V/µs • Monolithic High-Voltage IC • Operating Range: -40°C to +85°C • Very Low Input Current (1 mA); CMOS Compatibility • High-Speed Switching: 50 µs Typical • 160-Ohm Maximum OnResistance at 25°C • Surface Mount Option • 8-kV ESD Immunity: MILSTD-883 Method 3015 • Input-to-Output Insulation Voltage: 2500 Vac, 1 Minute • UL 508 Recognized • CSA Approved • Relay Scanners & Analog Input Modules of Data Acquisition Systems • Analog Input Modules of Programmable Logic Controllers • Relay Multiplexers of HighPerformance Voltmeters • Telecommunication Test Instruments • Functional Tester of Board Test Equipment • Analog Signal Multiplexer • Flying Capacitor Multiplexer • Reed Relay Replacement The HSSR-8200 consists of a highvoltage integrated circuit optically coupled with a light emitting diode. This device is a solid-state replacement for single-pole, normally-open electromechanical relays used for general purpose switching of analog signals. The light-emitting diode controls the ON/OFF function of the solidstate relay. The detector contains high voltage MOS transistors and a high speed photosensitive drive circuit. This relay has superior OFF impedance, very low output offset voltage and input drive current. Functional Diagram TRUTH TABLE (POSITIVE LOGIC) LED OUTPUT ON L OFF H CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD. 1-454 5965-3574E The electrical and switching characteristics of the HSSR-8200 are specified from –40°C to +85°C. The low IF allows compatibility with TTL, LSTTL, and CMOS logic resulting in low power consumption compared to other solid state and mechanical relays. Selection Guide 6-Pin DIP (300 Mil) Single Channel Package HSSR-8400[1] HSSR-8060[1] 4-Pin DIP (300 Mil) Dual Channel Package HSSR-8200 Maximum Maximum ON Speed Resistance t(ON) R(ON) Ω msec 25°C 25°C 0.95 10 1.4 0.7 1.5 200 6 1 Maximum Output Voltage VO(off) V 25°C 400 60 200 90 Maximum Output Current Io(ON) mA 25°C 150 750 40 800 Minimum Input Current mA 5 5 1 5 Hermetic 8-Pin Single Channel Packages HSSR-7110[1] Note: 1. Technical data are on separate HP publication. Ordering Information Specify part number followed by Option Number (if desired). HSSR-8200#XXX 300 = Gull Wing Surface Mount Lead Option 500 = Tape/Reel Package Option (1 K min) Option data sheets available. Contact your Hewlett-Packard sales representative or authorized distributor for information. Schematic 8 + 1 VF IF SWITCH DRIVER – 4 5 1-455 Package Outline Drawings 4-Pin DIP Package (HSSR-8200) 7.37 (0.290) 7.87 (0.310) 9.40 (0.370) 9.90 (0.390) 5 8 TYPE NUMBER 0.02 (0.008) 0.33 (0.013) DATE CODE HP RXXXX 6.10 (0.240) 6.60 (0.260) YYWW PIN ONE 1 5° TYP. 4 1.19 (0.047) MAX. 4.70 (0.185) MAX. 0.51 (0.020) MIN. 2.92 (0.115) MIN. 0.76 (0.030) 1.40 (0.055) 0.65 (0.025) MAX. 7.37 (0.290) 7.87 (0.310) DIMENSIONS IN MILLIMETERS AND (INCHES). 4-Pin DIP Package with Gull Wing Surface Mount Option 300 9.65 ± 0.25 (0.380 ± 0.010) PIN 1 8 5 1 4 9.65 ± 0.25 (0.380 ± 0.010) 7.62 ± 0.25 (0.300 ± 0.010) 1.19 (0.047) MAX. 6.35 ± 0.25 (0.250 ± 0.010) 0.20 (0.008) 0.33 (0.013) 4.19 MAX. (0.165) 1.080 ± 0.320 (0.043 ± 0.013) 7.62 ± 0.25 (0.300 ± 0.010) 0.50 ± 0.130 (0.020 ± 0.005) DIMENSIONS IN MILLIMETERS (INCHES). 1-456 0.635 ± 0.25 (0.025 ± 0.010) 12° NOM. TEMPERATURE – °C Thermal Profile (Option #300) 260 240 220 200 180 160 140 120 100 80 ∆T = 145°C, 1°C/SEC ∆T = 115°C, 0.3°C/SEC ∆T = 100°C, 1.5°C/SEC 60 40 20 0 0 1 2 3 4 5 6 7 8 9 10 11 12 TIME – MINUTES Figure 1. Maximum Solder Reflow Thermal Profile. (Note: Use of non-chlorine activated fluxes is recommended.) Regulatory Information The HSSR-8200 has been approved by the following organizations: UL Recognized under UL 508, Component Recognition Program, Industrial Control Switches, File E142465. CSA Approved under CAN/CSA-C22.2 No. 14-95, Industrial Control Equipment, File LR 87683. Insulation and Safety Related Specifications Parameter Symbol Value Units Conditions Min. External Air Gap (External Clearance) L(IO1) 7.0 mm Measured from input terminals to output terminals, shortest distance through air Min. External Tracking Path (External Creepage) L(IO2) 7.5 mm Measured from input terminals to output terminals, shortest distance path along body 0.5 mm Through insulation distance, conductor to conductor, usually the direct distance between the photoemitter and photodetector inside the optocoupler cavity 200 Volts DIN IEC 112/VDE 0303 PART 1 Min. Internal Plastic Gap (Internal Clearance) Tracking Resistance (Comparative Tracking Index) Isolation Group CTI IIIa Material Group (DIN VDE 0110, 1/89, Table 1) Option 300 – surface mount classification is Class A in accordance with CECC 00802. 1-457 Absolute Maximum Ratings Storage Temperature ................................................... -55°C to+125°C Operating Temperature ................................................. -40°C to +85°C Lead Solder Temperature .... 260°C for 10 s (1.6 mm below seating plane) Average Input Current - IF ............................................................ 10 mA Repetitive Peak Input Current - IF .................... 20 mA; 50% Duty Cycle Transient Peak Input Current - IF ............................................... 100 mA (≤ 1 µs pulse width; 1 kHz Pulse Repetition Rate) Reverse Input Voltage ....................................................................... 5 V Average Output Current – IO ................................................... 40 mA[1] Input Output Insulation Voltage ......................................... 2500 VAC[6] Output Power Dissipation ..................................................... 320 mW[2] Output Voltage – VO ..................................................... -200 V to 200 V Infrared and Vapor Phase Reflow Temperature (Option #300) .......................................... see Fig. 1, Thermal Profile Recommended Operating Conditions Parameter Input Current (ON) Input Voltage (OFF) Operating Temperature Output Voltage Output Current 1-458 Symbol IF(ON) VF(OFF) TA VO(OFF) IO(ON) Min. 1 0 -40 -200 -40 Max. 5 0.6 +85 200 40 Units mA Volt °C Volt mA DC Electrical Specifications –40°C ≤ TA ≤ +85°C, 1 mA ≤ IF(ON) ≤ 5 mA, 0 V ≤ VF(OFF) ≤ 0.6 V, and all Typicals at TA = 25°C unless otherwise specified. Parameter Output Withstand Voltage Sym. Min. Typ. |VO(OFF)| 200 245 70 125 160 40 125 250 30 100 200 Output On-Resistance R(ON) |IO(ON)| Output On-Current Rating Output Off-Resistance R(OFF) Output Off-Leakage Current IO(OFF) Output Off-Capacitance C(OFF) Output Offset Voltage VO(OS) Max. V TA = 25°C, IO = 1 MA Ω IO = 1 MA IO = 40 mA VO = 200 V 6 4.0 nA VO = 200 V 6 4.5 pF VO = 0 V, f = 1 MHz 7 Note 3 µV 3 10 V IR = 10 µA dVF /dT –1.75 mV/ °C IF = 1 mA Input Forward Voltage VF 1.5 V IF = 5 mA Input Capacitance CIN 21 pF VF = 0 V; f = 1 MHz Input Diode Temperature Coefficient 2.0 1 6 IO = 0 A; IF = 1 mA –1.3 VR 3, 4, 5 GΩ –0.2 Notes IO = 1 µA Note 3 Input Reverse Breakdown Voltage Fig. VO ≤ 8 V, TA ≤ 40°C 10,000 0.02 Test Conditions mA 40 50 Units IO = 0 A; IF = 5 mA 8, 17, 18 3 9 Switching Specifications –40°C ≤ TA ≤ +85°C, 1 mA ≤ IF(ON) ≤ 5 mA, 0 V ≤ VF(OFF) ≤ 0.6 V, and all Typicals at TA = 25°C unless otherwise specified. Parameter Turn On Time Turn Off Time Symbol Min. Typ. Max. 50 200 300 1500 45 250 75 350 tON tOFF Units µs Input-Output Transient Rejection dVO /dt µs Fig. Notes VO = 50 V 10, 11, 12, 13 VO = 50 V 10, 11, 12, 13 ∆VO = 200 V 2000 ≥ 7000 ∆VO = 50 V TA = 25°C 14 TA = 25°C 15 ∆VI-O = 300 V V/µs 2000 IF = 5 mA IF = 1 mA V/µs dVI–O /dt IF = 5 mA IF = 1 mA ≥ 7000 Output Transient Rejection Test Conditions ∆VI-O = 50 V 1-459 Package Characteristics For -40°C ≤ TA ≤ +85°C, unless otherwise specified. All Typicals at TA = 25°C. Parameter Symbol Min. Typ. Max. Units Test Conditions Input-Output VISO 2500 V rms RH = 45%, t = 1 min, Momentary WithTA = 25°C stand Voltage* Resistance RI-O 100 100,000 GΩ VI-O = 500 VDC, t = 1 min, Input-Output RH = 45% Capacitance CI-O 0.6 1.0 pF VI-O = 0 V, f = 1 MHz, Input-Output TA = 25°C Fig. Notes 4, 5 4 4 *The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage rating. For the continuous voltage rating refer to the VDE 0884 Insulation Characteristics Table (if applicable), your equipment level safety specification, or HP Application Note 1074, “Optocoupler Input-Output Endurance Voltage.” Notes: 1. Derate linearly above 40°C at a rate of 0.3 mA/ °C. 2. Derate linearly above 60°C at a rate of 5 mW/ °C. 3. VO(OS) is a function of IF(ON), and is defined between pins 8 and 5 with pin 5 as reference. VO(OS) must be measured in a stable ambient. See Figure 8 for variation of VO(OS) around the typical value. 4. Device considered a two terminal device: pins 1 and 4 shorted together, and pins 5 and 8 shorted together. 5. This is a momentary withstand proof test. These parts are 100% tested in production at 3000 V rms, one second. 6. R(OFF) is defined as VO(OFF)/IO(OFF). Figure 2. Recommended Input Circuit. IF = 1 mA Figure 3. Typical On State I-V Characteristics. 1-460 Figure 4. Typical Output Resistance vs. Input Current. NORMALIZED TO R(ON) @ 25 °C IF(ON) = 5 mA IO = 40 mA Figure 5. Typical Output Resistance vs. Temperature. Figure 6. Typical Output Leakage vs. Temperature. Figure 7. Typical Output Capacitance vs. Output Voltage. Figure 8. Output Offset Voltage Distribution. Figure 9. Typical Input Forward Current vs. Forward Voltage. 1-461 Figure 10. Switching Test Circuit for t ON, tOFF. NORMALIZED TO tON AT VO(OFF) = 50 V TA = 25 °C IF(ON) = 5 mA IO = 40 mA VO(OFF) = 50 V TA = 25 °C IO = 40 mA Figure 11. Typical t ON and tOFF vs. Input Current. Figure 12. t ON and t OFF vs. Output Voltage. Figure 13. Normalized t ON and tOFF vs. Temperature. Figure 14. Output Transient Rejection Test Circuit. 1-462 Figure 15. Input-Output Transient Rejection. Figure 16. Over-Voltage Protection in Multiplexer Applications. 1-463 Figure 17. Differential Output Connections to Minimize Offset Voltage Effects. Figure 18. Voltage Offset Test Setup. 1-464