AGILENT HSSR-8200

H
200-V/160 Ohm, 1 Form A,
Small-Signal Solid State Relay
Technical Data
HSSR-8200
Features
Applications
Description
• Compact Solid-State
Bidirectional Signal Switch
• Normally-Off Single-Pole
Relay Function (1 Form A)
• Very High Output OffImpedance: 10,000
Gigaohms Typical at 25°C
• Very Low Output Offset
Voltage: < 0.5 µV at
IF = 1 mA
• 200-Volt Output Withstand
Voltage at 25°C
• High-Transient Immunity:
> 2000 V/µs
• Monolithic High-Voltage IC
• Operating Range: -40°C to
+85°C
• Very Low Input Current
(1 mA); CMOS Compatibility
• High-Speed Switching: 50 µs
Typical
• 160-Ohm Maximum OnResistance at 25°C
• Surface Mount Option
• 8-kV ESD Immunity: MILSTD-883 Method 3015
• Input-to-Output Insulation
Voltage: 2500 Vac, 1 Minute
• UL 508 Recognized
• CSA Approved
• Relay Scanners & Analog
Input Modules of Data
Acquisition Systems
• Analog Input Modules of
Programmable Logic
Controllers
• Relay Multiplexers of HighPerformance Voltmeters
• Telecommunication Test
Instruments
• Functional Tester of Board
Test Equipment
• Analog Signal Multiplexer
• Flying Capacitor Multiplexer
• Reed Relay Replacement
The HSSR-8200 consists of a highvoltage integrated circuit optically
coupled with a light emitting diode.
This device is a solid-state
replacement for single-pole,
normally-open electromechanical
relays used for general purpose
switching of analog signals.
The light-emitting diode controls
the ON/OFF function of the solidstate relay. The detector contains
high voltage MOS transistors and a
high speed photosensitive drive
circuit. This relay has superior OFF
impedance, very low output offset
voltage and input drive current.
Functional Diagram
TRUTH TABLE
(POSITIVE LOGIC)
LED
OUTPUT
ON
L
OFF
H
CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to
prevent damage and/or degradation which may be induced by ESD.
1-454
5965-3574E
The electrical and switching
characteristics of the HSSR-8200
are specified from –40°C to
+85°C. The low IF allows
compatibility with TTL, LSTTL,
and CMOS logic resulting in low
power consumption compared to
other solid state and mechanical
relays.
Selection Guide
6-Pin DIP
(300 Mil)
Single
Channel
Package
HSSR-8400[1]
HSSR-8060[1]
4-Pin DIP
(300 Mil)
Dual
Channel
Package
HSSR-8200
Maximum
Maximum
ON
Speed
Resistance
t(ON)
R(ON)
Ω
msec
25°C
25°C
0.95
10
1.4
0.7
1.5
200
6
1
Maximum
Output
Voltage
VO(off)
V
25°C
400
60
200
90
Maximum
Output
Current
Io(ON)
mA
25°C
150
750
40
800
Minimum
Input
Current
mA
5
5
1
5
Hermetic
8-Pin
Single
Channel
Packages
HSSR-7110[1]
Note:
1. Technical data are on separate HP publication.
Ordering Information
Specify part number followed by Option Number (if desired).
HSSR-8200#XXX
300 = Gull Wing Surface Mount Lead Option
500 = Tape/Reel Package Option (1 K min)
Option data sheets available. Contact your Hewlett-Packard sales representative or authorized distributor for
information.
Schematic
8
+
1
VF
IF
SWITCH
DRIVER
–
4
5
1-455
Package Outline Drawings
4-Pin DIP Package (HSSR-8200)
7.37 (0.290)
7.87 (0.310)
9.40 (0.370)
9.90 (0.390)
5
8
TYPE
NUMBER
0.02 (0.008)
0.33 (0.013)
DATE CODE
HP RXXXX
6.10 (0.240)
6.60 (0.260)
YYWW
PIN
ONE
1
5° TYP.
4
1.19 (0.047) MAX.
4.70 (0.185) MAX.
0.51 (0.020) MIN.
2.92 (0.115) MIN.
0.76 (0.030)
1.40 (0.055)
0.65 (0.025) MAX.
7.37 (0.290)
7.87 (0.310)
DIMENSIONS IN MILLIMETERS
AND (INCHES).
4-Pin DIP Package with Gull Wing Surface Mount Option 300
9.65 ± 0.25
(0.380 ± 0.010)
PIN 1
8
5
1
4
9.65 ± 0.25
(0.380 ± 0.010)
7.62 ± 0.25
(0.300 ± 0.010)
1.19
(0.047)
MAX.
6.35 ± 0.25
(0.250 ± 0.010)
0.20 (0.008)
0.33 (0.013)
4.19 MAX.
(0.165)
1.080 ± 0.320
(0.043 ± 0.013)
7.62 ± 0.25
(0.300 ± 0.010)
0.50 ± 0.130
(0.020 ± 0.005)
DIMENSIONS IN MILLIMETERS (INCHES).
1-456
0.635 ± 0.25
(0.025 ± 0.010)
12° NOM.
TEMPERATURE – °C
Thermal Profile (Option #300)
260
240
220
200
180
160
140
120
100
80
∆T = 145°C, 1°C/SEC
∆T = 115°C, 0.3°C/SEC
∆T = 100°C, 1.5°C/SEC
60
40
20
0
0
1
2
3
4
5
6
7
8
9
10
11
12
TIME – MINUTES
Figure 1. Maximum Solder Reflow Thermal Profile.
(Note: Use of non-chlorine activated fluxes is recommended.)
Regulatory Information
The HSSR-8200 has been
approved by the following
organizations:
UL
Recognized under UL 508,
Component Recognition
Program, Industrial Control
Switches, File E142465.
CSA
Approved under CAN/CSA-C22.2
No. 14-95, Industrial Control
Equipment, File LR 87683.
Insulation and Safety Related Specifications
Parameter
Symbol
Value Units
Conditions
Min. External Air Gap
(External Clearance)
L(IO1)
7.0
mm
Measured from input terminals to output
terminals, shortest distance through air
Min. External Tracking Path
(External Creepage)
L(IO2)
7.5
mm
Measured from input terminals to output
terminals, shortest distance path along body
0.5
mm
Through insulation distance, conductor to
conductor, usually the direct distance
between the photoemitter and photodetector
inside the optocoupler cavity
200
Volts
DIN IEC 112/VDE 0303 PART 1
Min. Internal Plastic Gap
(Internal Clearance)
Tracking Resistance
(Comparative Tracking Index)
Isolation Group
CTI
IIIa
Material Group (DIN VDE 0110, 1/89, Table 1)
Option 300 – surface mount classification is Class A in accordance with CECC 00802.
1-457
Absolute Maximum Ratings
Storage Temperature ................................................... -55°C to+125°C
Operating Temperature ................................................. -40°C to +85°C
Lead Solder Temperature .... 260°C for 10 s (1.6 mm below seating plane)
Average Input Current - IF ............................................................ 10 mA
Repetitive Peak Input Current - IF .................... 20 mA; 50% Duty Cycle
Transient Peak Input Current - IF ............................................... 100 mA
(≤ 1 µs pulse width; 1 kHz Pulse Repetition Rate)
Reverse Input Voltage ....................................................................... 5 V
Average Output Current – IO ................................................... 40 mA[1]
Input Output Insulation Voltage ......................................... 2500 VAC[6]
Output Power Dissipation ..................................................... 320 mW[2]
Output Voltage – VO ..................................................... -200 V to 200 V
Infrared and Vapor Phase Reflow Temperature
(Option #300) .......................................... see Fig. 1, Thermal Profile
Recommended Operating Conditions
Parameter
Input Current (ON)
Input Voltage (OFF)
Operating Temperature
Output Voltage
Output Current
1-458
Symbol
IF(ON)
VF(OFF)
TA
VO(OFF)
IO(ON)
Min.
1
0
-40
-200
-40
Max.
5
0.6
+85
200
40
Units
mA
Volt
°C
Volt
mA
DC Electrical Specifications
–40°C ≤ TA ≤ +85°C, 1 mA ≤ IF(ON) ≤ 5 mA, 0 V ≤ VF(OFF) ≤ 0.6 V, and all Typicals at TA = 25°C unless
otherwise specified.
Parameter
Output Withstand
Voltage
Sym.
Min.
Typ.
|VO(OFF)|
200
245
70
125
160
40
125
250
30
100
200
Output On-Resistance
R(ON)
|IO(ON)|
Output On-Current
Rating
Output Off-Resistance
R(OFF)
Output Off-Leakage
Current
IO(OFF)
Output
Off-Capacitance
C(OFF)
Output Offset
Voltage
VO(OS)
Max.
V
TA = 25°C,
IO = 1 MA
Ω
IO = 1 MA
IO = 40 mA
VO = 200 V
6
4.0
nA
VO = 200 V
6
4.5
pF
VO = 0 V,
f = 1 MHz
7
Note
3
µV
3
10
V
IR = 10 µA
dVF /dT
–1.75
mV/
°C
IF = 1 mA
Input Forward
Voltage
VF
1.5
V
IF = 5 mA
Input Capacitance
CIN
21
pF
VF = 0 V;
f = 1 MHz
Input Diode
Temperature Coefficient
2.0
1
6
IO = 0 A; IF = 1 mA
–1.3
VR
3, 4,
5
GΩ
–0.2
Notes
IO = 1 µA
Note
3
Input Reverse
Breakdown Voltage
Fig.
VO ≤ 8 V,
TA ≤ 40°C
10,000
0.02
Test Conditions
mA
40
50
Units
IO = 0 A; IF = 5 mA
8, 17,
18
3
9
Switching Specifications
–40°C ≤ TA ≤ +85°C, 1 mA ≤ IF(ON) ≤ 5 mA, 0 V ≤ VF(OFF) ≤ 0.6 V, and all Typicals at TA = 25°C unless
otherwise specified.
Parameter
Turn On Time
Turn Off Time
Symbol
Min.
Typ.
Max.
50
200
300
1500
45
250
75
350
tON
tOFF
Units
µs
Input-Output
Transient
Rejection
dVO /dt
µs
Fig.
Notes
VO = 50 V 10, 11,
12, 13
VO = 50 V 10, 11,
12, 13
∆VO = 200 V
2000
≥ 7000
∆VO = 50 V
TA = 25°C
14
TA = 25°C
15
∆VI-O = 300 V
V/µs
2000
IF = 5 mA
IF = 1 mA
V/µs
dVI–O /dt
IF = 5 mA
IF = 1 mA
≥ 7000
Output Transient
Rejection
Test Conditions
∆VI-O = 50 V
1-459
Package Characteristics
For -40°C ≤ TA ≤ +85°C, unless otherwise specified. All Typicals at TA = 25°C.
Parameter
Symbol Min.
Typ.
Max. Units
Test Conditions
Input-Output
VISO
2500
V rms RH = 45%, t = 1 min,
Momentary WithTA = 25°C
stand Voltage*
Resistance
RI-O
100 100,000
GΩ
VI-O = 500 VDC, t = 1 min,
Input-Output
RH = 45%
Capacitance
CI-O
0.6
1.0
pF
VI-O = 0 V, f = 1 MHz,
Input-Output
TA = 25°C
Fig. Notes
4, 5
4
4
*The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output
continuous voltage rating. For the continuous voltage rating refer to the VDE 0884 Insulation Characteristics Table (if applicable),
your equipment level safety specification, or HP Application Note 1074, “Optocoupler Input-Output Endurance Voltage.”
Notes:
1. Derate linearly above 40°C at a rate of
0.3 mA/ °C.
2. Derate linearly above 60°C at a rate of
5 mW/ °C.
3. VO(OS) is a function of IF(ON), and is
defined between pins 8 and 5 with pin 5
as reference. VO(OS) must be measured
in a stable ambient. See Figure 8 for
variation of VO(OS) around the typical
value.
4. Device considered a two terminal
device: pins 1 and 4 shorted together,
and pins 5 and 8 shorted together.
5. This is a momentary withstand proof
test. These parts are 100% tested in
production at 3000 V rms, one second.
6. R(OFF) is defined as VO(OFF)/IO(OFF).
Figure 2. Recommended Input Circuit.
IF = 1 mA
Figure 3. Typical On State I-V Characteristics.
1-460
Figure 4. Typical Output Resistance vs. Input Current.
NORMALIZED TO
R(ON) @ 25 °C
IF(ON) = 5 mA
IO = 40 mA
Figure 5. Typical Output Resistance vs. Temperature.
Figure 6. Typical Output Leakage vs. Temperature.
Figure 7. Typical Output Capacitance vs. Output Voltage.
Figure 8. Output Offset Voltage Distribution.
Figure 9. Typical Input Forward Current vs. Forward
Voltage.
1-461
Figure 10. Switching Test Circuit for t ON, tOFF.
NORMALIZED TO tON AT VO(OFF) = 50 V
TA = 25 °C
IF(ON) = 5 mA
IO = 40 mA
VO(OFF) = 50 V
TA = 25 °C
IO = 40 mA
Figure 11. Typical t ON and tOFF vs. Input Current.
Figure 12. t ON and t OFF vs. Output Voltage.
Figure 13. Normalized t ON and tOFF vs. Temperature.
Figure 14. Output Transient Rejection Test Circuit.
1-462
Figure 15. Input-Output Transient Rejection.
Figure 16. Over-Voltage Protection in Multiplexer Applications.
1-463
Figure 17. Differential Output Connections to Minimize Offset Voltage Effects.
Figure 18. Voltage Offset Test Setup.
1-464