ETC AZ494

Data Sheet
Advanced Analog Circuits
PULSE-WIDTH-MODULATION CONTROL CIRCUITS
General Description
Features
The AZ494 incorporates on a single chip all the functions required in the construction of a pulse-widthmodulation (PWM) control circuit. Designed primarily
for power supply control, this device offers the flexibility to tailor the power supply control circuitry to a specific application.
·
·
The AZ494 contains two error amplifiers, an on-chip
adjustable oscillator, a dead-time control (DTC) comparator, a pulse-steering control flip-flop, a 5V regulator, and output control circuits. The error amplifiers
exhibit a common-mode voltage range from -0.3V to
VCC-2V. The dead-time control comparator has a fixed
offset that provides approximately 5% dead time. The
on-chip oscillator can be bypassed by terminating the
RT pin to the reference output and providing a sawtooth input to the CT pin, or it can drive the common
circuits in synchronous multiple-rail power supplies.
The uncommitted output transistors can be configured
in either common-emitter or emitter-follower output
topology. The AZ494 provides for push-pull or singleended output operation, which can be selected through
the output control function. The architecture of this
device prohibits the possibility of either output being
pulsed twice during push-pull operation. The AZ494 is
characterized for operation from -40oC to 85oC.
·
·
·
·
·
AZ494
Complete PWM power-control circuitry
Uncommitted outputs for 200mA sink or source
current
Output control selects single-ended or push-pull
operation
Internal circuitry prohibits double pulse at either
output
Variable dead time provides control over total
range
Internal regulator provides a stable 5V reference
supply with 5% tolerance
Circuit architecture allows easy synchronization
Applications
·
·
SMPS
Back Light Inverter
DIP-16
SOIC-16
Figure 1. Package Types of AZ494
March. 2003
1
Rev.1.0
Data Sheet
Advanced Analog Circuits
PULSE-WIDTH-MODULATION CONTROL CIRCUITS
AZ494
Pin Configuration
M Package / P Package
(SOIC-16 / DIP-16)
1IN +
1
16
2IN +
1IN -
2
15
2IN -
FEEDBACK
3
14
REF
DTC
4
13
OUTPUT CTRL
CT
5
12
VCC
RT
6
11
C2
GND
7
10
E2
C1
8
9
E1
Top View
Figure 2. Pin Configuration of AZ494
Function Table
Input To Output Control
Output Function
VI = GND
Single-ended or parallel output
VI = Vref
Normal push-pull operation
Functional Block Diagram
Output CTRL
see Function Table
RT
CT
6
5
Pulse-Steering
Flip-Flop
Dead-Time Control
Comparator
DTC
9
11
Q2
1
10
PWM
Comparator
2IN -
FEEDBACK
E2
2
12
2IN +
E1
C2
CK
Error Amplifier 1
1IN -
C1
Q1
D
4
0.12V
1IN +
8
13
Oscillator
16
Error Amplifier 2
Reference
Regulator
15
0.7mA
14
7
V CC
REF
GND
3
Figure 3. Functional Block Diagram of AZ494
March. 2003
2
Rev.1.0
Data Sheet
Advanced Analog Circuits
PULSE-WIDTH-MODULATION CONTROL CIRCUITS
AZ494
Ordering Information
Package
SOIC-16
Temperature Range
o
o
-40 C~85 C
DIP-16
Part Number
Marking ID
Packing Type
AZ494M
AZ494M
Tube
AZ494P
AZ494P
Tube
Absolute Maximum Ratings (Note 1)
Parameter
Symbol
Value
Unit
40
V
Supply Voltage (Note 2)
VCC
Amplifier Input Voltage
VI
-0.3 to VCC + 0.3
V
Collector Output Voltage
VO
40
V
Collector Output Current
IO
250
mA
Package Thermal Impedance
(Note 3)
θJA
M Package
73
P Package
67
Lead Temperature 1.6mm from case for 10 seconds
Storage Temperature Range
260
TSTG
-65 to 150
ESD rating (Machine Model)
200
oC/W
oC
oC
V
Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the
device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond
those indicated under "Recommended Operation Ratings" is not implied. Exposure to "Absolute Maximum Ratings"for extended periods may affect device reliability.
Note 2: All voltage values are with respect to the network ground terminal.
Note 3: Maximum power dissipation is a function of TJ(max), θJA and TA. The maximum allowable power dissipation at any allowable ambient temperature is PD = ( TJ(max) - TA ) / θJA. Operating at the absolute maximum TJ of
150oC can affect reliability.
March. 2003
3
Rev.1.0
Data Sheet
Advanced Analog Circuits
PULSE-WIDTH-MODULATION CONTROL CIRCUITS
AZ494
Recommended Operating Conditions
Parameter
Symbol
Min
Max
Unit
Supply Voltage
VCC
7
36
V
Amplifier Input Voltage
VI
VCC - 2
V
Collector Output Voltage
VO
36
V
200
mA
0.3
mA
300
KHz
-0.3
Collector Output Current
(Each Transistor)
Current Into Feedback Terminal
Oscillator Frequency
fosc
Timing Capacitor
CT
0.47
10000
nF
Timing Resistor
RT
1.8
500
KΩ
Operating Free-Air Temperature
TA
-40
85
oC
March. 2003
4
Rev.1.0
Data Sheet
Advanced Analog Circuits
PULSE-WIDTH-MODULATION CONTROL CIRCUITS
AZ494
Electrical Characteristics
All typical values, except for parameter changes with temperature, are at TA = 25oC.
Vcc=15V, f=10KHz unless otherwise noted.
Parameter
Symbol
Conditions (Note 4)
Min
Typ
Max
Unit
IO=1mA
4.75
5
5.25
V
Reference Section
Output Voltage (REF)
Vref
Line Regulation
VCC = 7V to 36V
2
25
mV
Load Regulation
IO=1mA to 10mA
1
15
mV
Output Voltage Change with Temperature
∆TA = MIN to MAX
2
10
mV/V
REF = 0V
25
mA
10
KHz
100
Hz/KHz
1
Hz/KHz
Short-Circuit Output Current (Note 5)
ISC
Oscillator Section, CT = 0.01µF, RT = 12KΩ (See Figure 4)
Frequency
fosc
Standard Deviation of Frequency
(Note 6)
All values of VCC, CT, RT and
TA constant
Frequency Change with Voltage
VCC=7V to 36V, TA = 25oC
Frequency Change with Temperature
(Note 7)
∆TA= MIN to MAX
10
Hz/KHz
Error-Amplifier Section (See Figure 5)
Input Offset Voltage
VOS
VO (FEEDBACK) = 2.5V
2
10
mV
Input Offset Current
IOS
VO (FEEDBACK) = 2.5V
25
250
nA
Input Bias Current
IBIAS
VO (FEEDBACK) = 2.5V
0.2
1
µA
VCC=7V to 36V
Common-Mode Input Voltage Range
Large-Signal Open-Loop Voltage Gain
AVO
∆VO = 3V, RL =2KΩ,
VO =0.5V to 3.5V
Large-Signal Unity-Gain Bandwidth
GB
VO =0.5V to 3.5V, RL =2KΩ
Common-Mode Rejection Ratio
Output Sink Current (FEEDBACK)
Output Source Current (FEEDBACK)
V
-0.3 to
VCC-2
70
95
dB
800
KHz
CMRR
∆VO = 36V, TA = 25oC
65
80
dB
ISINK
VID = -15mV to -5V,
V(FEEDBACK) = 0.7V
0.3
0.7
mA
VID = 15mV to 5V, V(FEEDBACK) = 3.5V
-2
ISOURCE
mA
Output Section
Collector Off-State Current
IC, OFF
VCE = 36V, VCC=36V
Emitter Off-State Current
IE, OFF
VCC = VC = 36V, VE = 0
Collector-Emitter
Saturation Voltage
March. 2003
2
100
µA
-100
µA
V
Common
Emitter
VE = 0, IC =200mA
1.1
1.3
Emitter Follower
VO (C1 or C2) = 15V,
IE = -200mA
1.5
2.5
5
Rev.1.0
Data Sheet
Advanced Analog Circuits
PULSE-WIDTH-MODULATION CONTROL CIRCUITS
AZ494
Electrical Characteristics (Continued)
Parameter
Symbol
Conditions
Min
Typ
VI = Vref
Output Control Input Current
Max
Unit
3.5
mA
-10
µA
Dead-Time Control Section
Input Bias Current
VI = 0 to 5.25V
-2
Maximum Duty Cycle,
Each Output
VI (DEAD-TIME CTRL) = 0, CT
=0.01µF, RT =12KΩ
45
Input Threshold Voltage
Zero Duty Cycle
3
3.3
V
4
4.5
V
Maximum Duty Cycle
%
0
PWM Comparator Section (See Figure 4)
Input Threshold Voltage (FEEDBACK)
Zero duty cycle
Input Sink Current (FEEDBACK)
V(FEEDBACK) = 0.7V
0.3
0.7
mA
Total Device
Standby Supply Current
ISTDBY
Average Supply Current
RT=Vref, All other VCC = 15V
inputs and outputs V = 36V
CC
open
6
10
9
15
mA
VI (DEAD-TIME-CTRL) =2V
See Figure 4.
7.5
mA
Common-emitter Configuration
See Figure 6
100
200
ns
25
100
ns
Emitter-follower Configuration
See Figure 7
100
200
ns
40
100
ns
Switching Characteristics
Rise Time
tr
Fall Time
tf
Rise Time
tr
Fall Time
tf
Note 4: For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating
conditions.
Note 5: Duration of the short circuit should not exceed one second.
Note 6: Standard deviation is a measure of the statistical distribution about the mean as derived from the formula:
Note 7: Temperature coefficient of timing capacitor and timing resistor are not taken into account.
March. 2003
6
Rev.1.0
Data Sheet
Advanced Analog Circuits
PULSE-WIDTH-MODULATION CONTROL CIRCUITS
AZ494
Parameter Measurement Information
VCC = 15V
12
4
Test
Inputs
3
12KΩ 6
5
0.01uF 1
2
16
15
13
50KΩ
VCC
DTC
C1
FEEDBACK
E1
RT
C2
CT
E2
8
150Ω
2W
150Ω
2W
Output 1
9
11
Output 2
10
1IN+
1IN2IN+
2INOUTPUT
CTRL
GND
REF
14
7
Test Circuit
Voltage
at C1
VCC
Voltage
at C2
VCC
0V
0V
Voltage
at CT
Threshold Voltage
DTC
0V
Threshold Voltage
FEEDBACK
0.7V
Duty Cycle
MAX
0%
0%
Voltage Waveforms
Figure 4. Operational Test Circuit and Waveforms
March. 2003
7
Rev.1.0
Data Sheet
Advanced Analog Circuits
PULSE-WIDTH-MODULATION CONTROL CIRCUITS
AZ494
Parameter Measurement Information
Amplifier Under Test
VI
FEEDBACK
Vref
Other Amplifier
Figure 5. Error Amplifier Characteristics
15V
68Ω
2W
Each Output
Circuit
tf
Output
tr
90%
90%
CL = 15pF
(See Note A)
10%
10%
Note A: CL includes probe and jig capacitance.
Figure 6. Common-Emitter Configuration
15V
Each Output
Circuit
90%
90%
Output
CL = 15pF
(See Note A)
10%
68Ω
2W
10%
tr
tf
Note A: CL includes probe and jig capacitance.
Figure 7. Emitter-Follower Configuration
March. 2003
8
Rev.1.0
Data Sheet
Advanced Analog Circuits
PULSE-WIDTH-MODULATION CONTROL CIRCUITS
AZ494
Typical Characteristics
100k
Oscillator Frequency-Hz
Vcc=15V
o
TA=25 C
0.001uF
10k
0.01uF
1k
0.1uF
CT=1uF
100
10
1k
10k
100k
1M
Timing Resistance-Ω
Figure 8. Oscillator Frequency vs. Timing Resistance
100
Vcc=15V
∆Vo=3V
o
TA=25 C
90
Voltage Gain-dB
80
70
60
50
40
30
20
10
0
1
10
100
1k
10k
100k
1M
Frequency-Hz
Figure 9. Error Amplifier Small-Signal Voltage Gain vs. Frequency
March. 2003
9
Rev.1.0
Data Sheet
Advanced Analog Circuits
PULSE-WIDTH-MODULATION CONTROL CIRCUITS
AZ494
Mechanical Dimensions
SOIC-16
1.65
0.70
1.00
1.30
7°
7°
0.406
A
20:1
B
0.25
0.55±0.05
10.00
1.27
φ2.0
±2°
3°
Depth 0.06~
0.10
R0.20
R0.20
0.25(0.20min)
0.20±0.05
6.04
C-C
50:1
B
20:1
8°
9.5°
C
0.20
Sφ1.00×0.20
5°
±2°
8°
8°
0.40×45°
March. 2003
A
1.00
0.203
3.94
C
10
Rev.1.0
Data Sheet
Advanced Analog Circuits
PULSE-WIDTH-MODULATION CONTROL CIRCUITS
AZ494
Mechanical Dimensions (Continued)
DIP-16
6°
1.524
0.7
6°
4°
4°
3.4±0.15
7.62±0.25
5°
19.0±0.10
3.3
φ3×0.10±0.05
0.254
0.254
8.4~9.0
2.54
6.3±0.10
0.457
R0.75
March. 2003
11
Rev.1.0
Advanced Analog Circuits
http://www .aacmicro.com
USA: 1510 Montague Expressway, San Jose, CA 95131, USA
China: 8th Floor, Zone B, 900 Yi Shan Road , Shanghai 200233, China
Tel: 408-433 9888,Fax: 408-432 9888
Tel: 86-21-6495 9539, Fax: 86-21-6485 9673
Taiwan: Room 2210, 22nd Fl, 333, Keelung Road, Secretary 1, Taipei, Taiwan Tel: 886-2-2564 3699, Fax: 886-2-2564 3770
IMPORTANT NOTICE
Advanced Analog Circuits Corporation reserves the right to make changes to its products or specifications at any time, without
notice, to improve design or performance and to supply the best possible product. Advanced Analog Circuits does not assume any
responsibility for use of any circuitry described other than the circuitry embodied in Advanced Analog Circuits' products. The
company makes no representation that circuitry described herein is free from patent infringement or other rights of Advanced Analog Circuits Corporation.