NICHIA NHSW007T

No. STSE-CC5097A
<Cat.No.050624>
SPECIFICATIONS FOR NICHIA CHIP TYPE WHITE LED
MODEL : NHSW007T
NICHIA CORPORATION
-0-
Nichia STSE-CC5097A
<Cat.No.050624>
1.SPECIFICATIONS
(1) Absolute Maximum Ratings
Item
Forward Current
Pulse Forward Current
Reverse Voltage
Power Dissipation
Operating Temperature
Storage Temperature
Soldering Temperature
IFP Conditions
Symbol
IF
IFP
VR
PD
Topr
Tstg
Tsld
Pulse Width <
= 10msec.
:
(2) Initial Electrical/Optical Characteristics
Item
Symbol
Forward Voltage
VF
Reverse Current
IR
Luminous Intensity
Iv
x
Chromaticity Coordinate
y
-
Absolute Maximum Rating
10
30
5
30
-40 ~ +100
-40 ~ +100
Reflow Soldering : 260°C
Dip Soldering
: 260°C
Hand Soldering : 350°C
and
(Ta=25°C)
Unit
mA
mA
V
mW
°C
°C
for 10sec.
for 10sec.
for 3sec.
Duty <
= 1/10
Condition
IF=5[mA]
VR= 5[V]
IF=5[mA]
IF=5[mA]
IF=5[mA]
Typ.
(2.9)
(106)
0.31
0.32
(Ta=25°C)
Max.
Unit
3.1
V
50
µA
mcd
-
Min.
125
90
63
(Ta=25°C)
Max.
Unit
180
mcd
125
mcd
90
mcd
Please refer to CIE 1931 chromaticity diagram.
(3) Ranking
Item
Luminous Intensity
Rank S
Rank R
Rank Q
Symbol
Iv
Iv
Iv
Condition
IF=5[mA]
IF=5[mA]
IF=5[mA]
Luminous Intensity Measurement allowance is ± 10%.
Color Ranks
x
y
x
y
0.280
0.248
Rank a0
0.264
0.283
0.267
0.305
0.296
0.276
Rank b2
0.287
0.330
0.295
0.339
0.296
0.276
x
y
0.330
0.318
x
y
0.287
0.295
(IF=5mA,Ta=25°C)
Rank b1
0.283
0.330
0.330
0.305
0.360
0.339
0.330
0.318
Rank c0
0.330
0.361
0.360
0.385
0.356
0.351
Color Coordinates Measurement allowance is ± 0.01.
One delivery will include up to two consecutive color ranks and three luminous intensity ranks of the products.
The quantity-ratio of the ranks is decided by Nichia.
-1-
Nichia STSE-CC5097A
<Cat.No.050624>
2.INITIAL OPTICAL/ELECTRICAL CHARACTERISTICS
Please refer to figure’s page.
3.OUTLINE DIMENSIONS AND MATERIALS
Please refer to figure’s page.
Material as follows ;
Package
Encapsulating Resin
Electrodes
:
:
:
Heat-Resistant Polymer
Epoxy Resin (with Diffused + Phosphor)
Ag Plating Copper Alloy
4.PACKAGING
· The LEDs are packed in cardboard boxes after taping.
Please refer to figure’s page.
The label on the minimum packing unit shows ; Part Number, Lot Number, Ranking, Quantity
· In order to protect the LEDs from mechanical shock, we pack them in cardboard boxes for transportation.
· The LEDs may be damaged if the boxes are dropped or receive a strong impact against them,
so precautions must be taken to prevent any damage.
· The boxes are not water resistant and therefore must be kept away from water and moisture.
· When the LEDs are transported, we recommend that you use the same packing method as Nichia.
5.LOT NUMBER
The first six digits number shows lot number.
The lot number is composed of the following characters;
-U
- Year
( 4 for 2004, 5 for 2005 )
- Month ( 1 for Jan., 9 for Sep., A for Oct.,
- Nichia's Product Number
U - Ranking by Color Coordinates
- Ranking by Luminous Intensity
-2-
B for Nov. )
Nichia STSE-CC5097A
<Cat.No.050624>
6.RELIABILITY
(1) TEST ITEMS AND RESULTS
Standard
Test Method
JEITA ED-4701
300 301
Test Conditions
Tsld=260°C, 10sec.
(Pre treatment 30°C,70%,168hrs.)
Note
1 time
JEITA ED-4701
300 303
JEITA ED-4701
300 301
Tsld=235 ± 5°C, 2sec.
(using flux, Lead Solder)
Tsld=260°C, 10sec.
(Pre treatment 30°C,70%,168hrs.)
1 time
over 95%
2 times
0/22
JEITA ED-4701
300 303
JEITA ED-4701
300 307
Tsld=215 ± 5°C, 3sec.
(using flux, Lead Solder)
-40°C ~ 100°C
1min. (10sec.) 1min.
(Pre treatment 30°C,70%,168hrs.)
-40°C ~ 25°C ~ 100°C ~ 25°C
30min. 5min. 30min. 5min.
25°C ~ 65°C ~ -10°C
90%RH 24hrs./1cycle
Ta=100°C
1 time
over 95%
100 cycles
0/22
0/100
100 cycles
0/100
10 cycles
0/100
1000 hrs.
0/100
Ta=60°C, RH=90%
1000 hrs.
0/100
Ta=-40°C
1000 hrs.
0/100
Steady State Operating Life
Ta=25°C, IF=10mA
1000 hrs.
0/100
Steady State Operating Life
of High Temperature
Steady State Operating Life
of High Humidity Heat
Steady State Operating Life
of Low Temperature
Permanence of Marking
Ta=85°C, IF=5mA
1000 hrs.
0/100
60°C, RH=90%, IF=5mA
1000 hrs.
0/100
Ta=-40°C, IF=5mA
1000 hrs.
0/100
1 time
0/22
4 times
0/10
3 times
0/10
Test Item
Resistance to
Soldering Heat
(Dip Soldering)
Solderability
(Dip Soldering)
Resistance to
Soldering Heat
(Reflow Soldering)
Solderability
(Reflow Soldering)
Thermal Shock
Temperature Cycle
Moisture Resistance Cyclic
High Temperature Storage
Temperature Humidity
Storage
Low Temperature Storage
Vibration
JEITA ED-4701
100 105
JEITA ED-4701
200 203
JEITA ED-4701
200 201
JEITA ED-4701
100 103
JEITA ED-4701
200 202
JEITA ED-4701
500 501
JEITA ED-4701
400 403
Drop
Solvent : Isopropyl Alcohol
Solvent Temperature : 20 ~ 25°C
Dipping Time : 5 min.
200m/s2, 100 ~ 2000Hz (Sweep 4min.)
48min., 3directions
75cm
Number of
Damaged
0/22
(2) CRITERIA FOR JUDGING DAMAGE
Item
Forward Voltage
Reverse Current
Luminous Intensity
Condition 1
Luminous Intensity
Condition 2
Criteria for Judgement
Min.
Max.
Symbol
Test Conditions
VF
IR
IF=5mA
VR=5V
IV
IF=5mA
L.S.L.**)
0.7
-
IV
IF=5mA
L.S.L.**)
0.5
-
*) U.S.L. : Upper Standard Level
-
U.S.L.*)
U.S.L.*)
**) L.S.L. : Lower Standard Level
These test items are judged by the criteria of Luminous Intensity Condition 2.
-3-
1.1
2.0
0/22
Nichia STSE-CC5097A-1
<Cat.No.061124>
7.CAUTIONS
The LEDs are devices which are materialized by combining Blue LEDs and special phosphors.
Consequently, the color of the LEDs is changed a little by an operating current.
Care should be taken after due consideration when using LEDs.
(1) Moisture Proof Package
· When moisture is absorbed into the SMT package it may vaporize and expand during soldering.
There is a possibility that this can cause exfoliation of the contacts and damage to the optical
characteristics of the LEDs.
For this reason, the moisture proof package is used to keep moisture
to a minimum in the package.
· The moisture proof package is made of an aluminum moisture proof bag.
A package of
a moisture absorbent material (silica gel) is inserted into the aluminum moisture proof bag.
The silica gel changes its color from blue to pink as it absorbs moisture.
(2) Storage
· Storage Conditions
Before opening the package :
The LEDs should be kept at 30°C or less and 90%RH or less. The LEDs should be used within a
year.
When storing the LEDs, moisture proof packaging with absorbent material (silica gel)
is recommended.
After opening the package :
The LEDs should be kept at 30°C or less and 70%RH or less.
The LEDs should be soldered
within 168 hours (7days) after opening the package.
If unused LEDs remain, they should be
stored in moisture proof packages, such as sealed containers with packages of moisture absorbent
material (silica gel). It is also recommended to return the LEDs to the original moisture proof bag
and to reseal the moisture proof bag again.
· If the moisture absorbent material (silica gel) has faded away or the LEDs have exceeded the storage
time, baking treatment should be performed using the following conditions.
Baking treatment : more than 24 hours at 65 ± 5°C
· Nichia LED electrodes are silver plated copper alloy. The silver surface may be affected by
environments which contain corrosive substances. Please avoid conditions which may cause the LED
to corrode, tarnish or discolor. This corrosion or discoloration may cause difficulty during soldering
operations. It is recommended that the User use the LEDs as soon as possible.
· Please avoid rapid transitions in ambient temperature, especially in high humidity environments where
condensation can occur.
(3) Heat Generation
· Thermal design of the end product is of paramount importance.
Please consider the heat generation
of the LED when making the system design. The coefficient of temperature increase per input
electric power is affected by the thermal resistance of the circuit board and density of LED placement
on the board, as well as other components. It is necessary to avoid intense heat generation and operate
within the maximum ratings given in this specification.
· The operating current should be decided after considering the ambient maximum temperature of LEDs.
-4-
Nichia
STSE-CC5097A-1
<Cat.No.061124>
(4) Soldering Conditions
· The LEDs can be soldered in place using the reflow soldering method and the dip soldering method.
· Recommended soldering conditions
Pre-heat
Pre-heat time
Peak
temperature
Soldering time
Condition
Reflow Soldering
Lead Solder
Lead-free Solder
180 ~ 200°C
120 ~ 150°C
120 sec. Max.
120 sec. Max.
260°C Max.
240°C Max.
10 sec. Max.
refer to
Temperature
- profile 2.
(N2 reflow is
recommended.)
10 sec. Max.
refer to
Temperature
- profile 1.
Dip Soldering
Pre-heat
Pre-heat time
Solder bath
temperature
Dipping time
Hand Soldering
100°C Max.
60 sec. Max.
260°C Max.
Temperature
Soldering time
350°C Max.
3 sec. Max.
(one time only)
10 sec. Max.
Although the recommended soldering conditions are specified in the above table, reflow, dip or hand
soldering at the lowest possible temperature is desirable for the LEDs.
A rapid-rate process is not recommended for cooling the LEDs down from the peak temperature.
[Temperature-profile (Surface of circuit board)]
Use the conditions shown to the under figure.
<1 : Lead Solder>
<2 : Lead-free Solder>
2.5 ~ 5°C / sec.
2.5 ~ 5°C / sec.
Pre-heating
120 ~ 150°C
1~ 5°C / sec.
240°C Max.
10sec. Max.
1~ 5°C / sec.
60sec.Max.
Above 200°C
Pre-heating
180 ~ 200°C
260°C Max.
10sec. Max.
60sec.Max.
Above 220°C
120sec.Max.
120sec.Max.
[Recommended soldering pad design]
Use the following conditions shown in the figure.
8.8
4
4
: Solder resist
4
1
1.4
1
(Unit : mm)
· Occasionally there is a brightness decrease caused by the influence of heat or ambient atmosphere
during air reflow. It is recommended that the User use the nitrogen reflow method.
· Repairing should not be done after the LEDs have been soldered. When repairing is unavoidable,
a double-head soldering iron should be used. It should be confirmed beforehand whether the
characteristics of the LEDs will or will not be damaged by repairing.
· Reflow soldering should not be done more than two times.
· Dip soldering should not be done more than one time.
· When soldering, do not put stress on the LEDs during heating.
· After soldering, do not warp the circuit board.
-5-
Nichia STSE-CC5097A-1
<Cat.No.061124>
(5) Cleaning
· It is recommended that isopropyl alcohol be used as a solvent for cleaning the LEDs.
When using
other solvents, it should be confirmed beforehand whether the solvents will dissolve the package and the
resin or not.
Freon solvents should not be used to clean the LEDs because of worldwide regulations.
· Do not clean the LEDs by the ultrasonic. When it is absolutely necessary, the influence of ultrasonic
cleaning on the LEDs depends on factors such as ultrasonic power and the assembled condition.
Before cleaning, a pre-test should be done to confirm whether any damage to the LEDs will occur.
(6) Static Electricity
· Static electricity or surge voltage damages the LEDs.
It is recommended that a wrist band or an anti-electrostatic glove be used when handling the LEDs.
· All devices, equipment and machinery must be properly grounded. It is recommended that precautions
be taken against surge voltage to the equipment that mounts the LEDs.
· When inspecting the final products in which LEDs were assembled, it is recommended to check
whether the assembled LEDs are damaged by static electricity or not. It is easy to find
static-damaged LEDs by a light-on test or a VF test at a lower current (below 1mA is recommended).
· Damaged LEDs will show some unusual characteristics such as the leak current remarkably
increases, the forward voltage becomes lower, or the LEDs do not light at the low current.
Criteria : (VF > 2.0V at IF=0.5mA)
(7) Others
· NHSW007 complies with RoHS Directive.
· Care must be taken to ensure that the reverse voltage will not exceed the absolute maximum rating
when using the LEDs with matrix drive.
· The LED light output is strong enough to injure human eyes. Precautions must be taken to prevent
looking directly at the LEDs with unaided eyes for more than a few seconds.
· Flashing lights have been known to cause discomfort in people; you can prevent this by taking
precautions during use. Also, people should be cautious when using equipment that has had LEDs
incorporated into it.
· The LEDs described in this brochure are intended to be used for ordinary electronic equipment (such
as office equipment, communications equipment, measurement instruments and household appliances).
Consult Nichia’s sales staff in advance for information on the applications in which exceptional quality
and reliability are required, particularly when the failure or malfunction of the LEDs may directly
jeopardize life or health (such as for airplanes, aerospace, submersible repeaters, nuclear reactor
control systems, automobiles, traffic control equipment, life support systems and safety devices).
· User shall not reverse engineer by disassembling or analysis of the LEDs without having prior written
consent from Nichia.
When defective LEDs are found, the User shall inform Nichia directly before
disassembling or analysis.
· The formal specifications must be exchanged and signed by both parties before large volume purchase begins.
· The appearance and specifications of the product may be modified for improvement without notice.
-6-
Nichia STSE-CC5097A
<Cat.No.050624>
ICI Chromaticity Diagram
0.9
520
530
0.8
540
510
550
0.7
560
0.6
570
500
0.5
y
580
590
0.4
600
b1
0.3 490
a0
c0
610
620
630
b2
0.2
480
0.1
470
460
0
0
0.1
0.2
0.3
0.4
x
½ Color Coordinates Measurement allowance is ± 0.01.
-7-
0.5
0.6
0.7
0.8
3.0
2.5
2.0
1.5
1.0
0.5
0
2.7 2.9 3.1 3.3 3.5
Forward Voltage VF (V)
Ta=25°C
3.5
0
10
20
30
40
Forward Current IFP (mA)
Ambient Temperature vs.
Forward Voltage
Ambient Temperature vs.
Relative Luminosity
3.2
2.0
-8-
3.1
IFP=5mA
3.0
2.9
2.8
2.7
2.6
-60 -40 -20 0 20 40 60 80 100
Ambient Temperature Ta (°C)
Allowable Forward Current IFP (mA)
Relative Luminosity (a.u.)
5
Relative Luminosity (a.u.)
Forward Current IFP (mA)
10
1
2.5
Forward Voltage VF (V)
Ta=25°C
100
Ta=25°C
50
30
10
5
1
1
5 10 20
50 100
Duty Ratio (%)
Ambient Temperature vs.
Allowable Forward Current
Allowable Forward Current IF (mA)
4.0
100
50
30
Duty Ratio vs.
Allowable Forward Current
Forward Current vs.
Relative Luminosity
Forward Voltage vs.
Forward Current
15.0
IFP=5mA
1.0
12.5
10.0
0.5
0.2
-60 -40 -20 0 20 40 60 80 100
Ambient Temperature Ta (°C)
7.5
5.0
2.5
0
0
20 40 60 80 100 120
Ambient Temperature Ta (°C)
NICHIA CORPORATION
NHSW007
Title
CHARACTERISTICS
No.
050610541581
Nichia STSE-CC5097A
<Cat.No.050624>
Model
Spectrum
0.34
1mA Ta=25°C
0.33
0.32
y
5mA
10mA
0.31
30mA
0.30
0.29
0.29 0.30 0.31 0.32 0.33 0.34
Relative Emission Intensity (a.u.)
Forward Current vs.
Chromaticity Coordinate
x
Ambient Temperature vs.
Chromaticity Coordinate
Ta=25°C
IF=5mA
1.0
0.8
0.6
0.4
0.2
0
350
450
550
650
Wavelength λ (nm)
0°
1.0
-40°C
0°C
25°C
50°C
0.32
85°C
0.30
0.29
0.29 0.30 0.31 0.32 0.33 0.34
x
Relative Luminosity (a.u.)
0.33
y
-9-
IFP=5mA
750
Directivity
0.34
0.31
1.2
10° 20°
30°
Ta=25°C
IFP=5mA
40°
50°
60°
0.5
70°
80°
0
90°
60°
30°
Radiation Angle
0°
0.5
NICHIA CORPORATION
NHSW007
Title
CHARACTERISTICS
No.
050610541591
Nichia STSE-CC5097A
<Cat.No.050624>
Model
90°
1.0
1.2
(R 0.3)
(0.9)
1.05
(0.8)
A
(1.7)
2
Anode
Cathode mark
(C 0.3)
K
(0.6)
1.3
-10-
(0.4)
Cathode
(0.23)
(0.35)
1
ITEM
MATERIALS
PACKAGE
Heat-Resistant Polymer
Epoxy Resin
(with Diffused + Phosphor)
Ag Plating Copper Alloy
ENCAPSULATING RESIN
ELECTRODES
NICHIA CORPORATION
Title
No.
NxSW007x
OUTLINE DIMENSIONS
050610540822
Unit
mm
15/1
Scale
Allow
±0.1
Nichia STSE-CC5097A
<Cat.No.050624>
Model
4±0.1
φ 1-+0.2
0
1.36±0.1
Reel End of tape
No LEDs
φ2
1 ±0.8
±0.2
φ 13
1.44±0.1
11.4±1
9±0.3
φ 60+1
-0
(2.75)
3.5±0.05
Cathode mark
φ 180+0
-3
2.2±0.1
2±0.05
Reel part
0.25±0.05
8+0.3
- 0.1
4±0.1
φ 1.5+0.1
-0
1.75±0.1
Taping part
Label
XXXX LED
TYPE NxSx007xT
LOT xxxxxx-U„
QTY
pcs
LEDs mounting part
No LEDs
-11-
Pull direction
Top cover
tape
Embossed carrier tape
Reel Lead Min.40mm (No LEDs)
Reel Lead Min.160mm (No LEDs is more than 40)
Reel Lead Min.400mm
Model
Taping is based on the JIS C 0806 : Packaging of Electronic
Components on Continuous Tapes.
NICHIA CORPORATION
Title
No.
NxSx007xT
TAPING DIMENSIONS
050530316604
Unit
mm
Scale
Allow
Nichia STSE-CC5097A
<Cat.No.050624>
3,000pcs/Reel
Nichia STSE-CC5097A
<Cat.No.050624>
The reel and moisture absorbent material are put in the moisture proof foil bag
and then heat sealed.
Reel
Label
NICHIA
Seal
XXXX LED
TYPE
LOT
QTY
NxSx007xT
xxxxxx-U„
PCS
NICHIA CORPORATION
491 OKA, KAMINAKA, ANAN, TOKUSHIMA, JAPAN
Moisture proof foil bag
Moisture
absorbent material
The box is partitioned with the
cardboard.
Label
NICHIA
Nichia
LED
XXXX LED
TYPE
RANK
QTY
NxSx007xT
U„
PCS
NICHIA CORPORATION
491 OKA, KAMINAKA, ANAN, TOKUSHIMA, JAPAN
Packing unit
Moisture proof foil bag
Cardboard box
Cardboard box S
Cardboard box M
Cardboard box L
Reel/bag
1reel
Quantity/bag (pcs)
3,000 MAX.
Dimensions (mm)
291¯237¯120¯8t
259¯247¯243¯5t
444¯262¯259¯8t
NICHIA CORPORATION
-12-
Reel/box
7reel MAX.
15reel MAX.
30reel MAX.
Quantity/box (pcs)
21,000 MAX.
45,000 MAX.
90,000 MAX.
Model
NxSx007xT
Title
PACKING
No.
050530540761