NTE NTE797

NTE797
Integrated Circuit
TV Chroma Processor
Features;
D Phase−Locked Subcarrier Regeneration Utilizes Sample−And−Hold Techniques
D Automatic Chrominance Control (ACC)/Killer Detector Employs Sample−And−Hold Techniques
D Supplementary ACC with an Overload Detector to Prevent Oversaturation of this Picture Tube
D Sinusoidal Subcarrier Output
D Keyed Chroma Output
D Emitter−Follower Buffered Outputs for Low Output Impedance
D Linear DC Saturation Control
Absolute Maximum Ratings: (TA = +25°C unless otherwise specified)
Device Dissipation (TA ≤ +55°C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 750mW
Derate Linearly Above TA = +55°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.9mW/°C
DC Supply Voltage (Across Pin5 and Pin12, Note 1) ∆ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.2V
DC Current:
Into Pin12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38mA
Into Pin14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20mA
DC Voltage (Pin9)
Negative Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −5V
Positive Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3V
Operating Ambient Temperature Range, TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40° to +85°C
Storage Temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65° to +150°C
Lead Temperature (During Soldering, 1/32 in (0.79mm) from case, 10sec max.), TL . . . . . . +265°C
Note 1. This rating does not apply when using the internal zener reference in conjunction with an
external pass transistor.
Electrical Characteristics: (TA = +25°C, chroma control at maximum position for all characteristics test except for chroma output test. For this test, control should be set at minimum position.)
Characteristic
Test
Measurement
& Symbol
Switch
S1
Pos.
S2
Chroma
Input
TP1
Min
Typ
Max
Unit
V12
2
2
0
10.1
11.2
12.1
V
Static Characteristics
Voltage Regulator
Supply Current
Dynamic Characteristics (Note 2)
Pull−In Range (Note 3)
V8
Note 3
2
0.5Vp−p
±250
−
−
Hz
Oscillator Output
V8
2
2
0
0.6
1.0
−
Vp−p
100% Chroma Output
V15
1
2
0.5Vp−p
1.4
2.7
−
Vp−p
Overload Detector
V15
1
1
0.5Vp−p
0.4
−
0.7
Vp−p
Minimum Chroma Output
V15
1
2
0.5Vp−p
−
−
20
mVp−p
200% Chroma Output
V15
1
2
1Vp−p
70
100
140
% of 100%
20% Chroma Output
V15
1
2
0.1Vp−p
40
−
105
reading
Kill Level
VTP1
1
2
vary
5
−
60
mVp−p
Note 2. Except for pull−in range testing, tune oscillator trimmer capacitor for free−running frequency
of 3.579545 MHz ± 10Hz.
Note 3. Set Switch 1 to Position 2, detune oscillator ±250Hz, set Switch to Position 1, and check for
oscillator pull−in.
Circuit Description:
The chroma input is applied to Pin1 through the desired band−shaping network. A 2,450−ohm resistor should be placed in series with Pin1 to minimize oscillator pickup in the first chroma amplifier. This
amplifier supplies signals to the second chroma amplifier and to the ACC and AFPC detectors. The
first chroma amplifier is gain−controlled by the ACC amplifier. A horizontal keying pulse is applied
to Pin9. This pulse must be present to ensure proper operation of the oscillator circuit. The subcarrier
burst is sampled during the keying interval in the AFPC detector. The error voltage, produced at Pin2
and proportional to the burst phase, is compared to the quiescent bias voltage at Pin3 by the sample−
and−hold circuitry. This “compared” voltage controls the phase−shifting network in the phase−locked
loop. The operation of the AFPC loop is independent of any external adjustments or voltages except
for an initial capacitor adjustment to set the free−running frequency. The regenerated oscillator signal
at Pin8 is applied internally to the AFPC and ACC detectors through +45 − and −45 −degree phase−
shifter networks to establish the proper phase relationship for these detectors. The ACC detectors,
which also samples the burst during the keying interval, produces a correction voltage proportional
to the burst amplitude. The correction voltage is compared to the quiescent bias level using sample−
and−hold circuitry similar to that used in the AFPC portion of the circuit. The “compared” voltage is
applied internally to the ACC amplifier and killer amplifier. Because the amplifier gains and killer threhold are determined by the ratios of the internal resistors, these functions are independent of external
voltages or controls.
The attenuated chroma signal is fed to the second chroma amplifier, where the burst is removed by
keyer action. The killer amplifier, the chroma gain control, and the overload detector control the action
of the second chroma amplifier, whose gain is proportional to the DC voltage at Pin16. The overload
detector (Pin13) receives a sample of the chroma output (Pin15) and detects the peak of the signal.
The detected voltage is stored in an external capacitor connected to Pin16. This stored voltage on
Pin16 affects the gain of the second chroma in the same manner as the chroma gain control.
Pin Connection Diagram
Chroma Input
1
16 Chroma Gain Control
AF PC Filter Network
2
15 Chroma Output
Bypass
3
14 Zener Reference
RF Bypass
4
13 Overload Det
GND
5
12 VCC
Crystal Filter
6
11 ACC Filter Network
Crystal Filter
7
10 ACC Filter Network
Carrier Output
8
9
Horiz Keying Input
9
16
.260 (6.6)
Max
8
1
.850 (21.6)
.180
(4.0)
.100 (2.54)