NSC COP8CCR9LVA8

COP8CBR9/COP8CCR9/COP8CDR9
8-Bit CMOS Flash Microcontroller with 32k Memory,
Virtual EEPROM, 10-Bit A/D and Brownout
1.0 General Description
The COP8CBR/CCR/CDR9 Flash microcontrollers are
highly integrated COP8™ Feature core devices, with 32k
Flash memory and advanced features including Virtual EEPROM, A/D, High Speed Timers, USART, and Brownout
Reset. This single-chip CMOS device is suited for applica-
tions requiring a full featured, in-system reprogrammable
controller with large memory and low EMI. The same device
is used for development, pre-production and volume production with a range of COP8 software and hardware development tools.
Device included in this datasheet:
Device
Flash Program
Memory
(bytes)
RAM
(bytes)
Brownout
Voltage
I/O
Pins
Packages
Temperature
COP8CBR9
32k
1k
2.7V to 2.9V
37,39,49,
59
44 LLP,
44/68 PLCC,
48/56 TSSOP
−40˚C to +85˚C
COP8CCR9
32k
1k
4.17V to 4.5V
37,39,49,
59
44 LLP,
44/68 PLCC,
48/56 TSSOP
−40˚C to +85˚C
−40˚C to +125˚C
COP8CDR9
32k
1k
No Brownout
37,39,49,
59
44 LLP,
44/68 PLCC,
48/56 TSSOP
−40˚C to +85˚C
−40˚C to +125˚C
2.0 Features
KEY FEATURES
n 32 kbytes Flash Program Memory with Security Feature
n Virtual EEPROM using Flash Program Memory
n 1 kbyte volatile RAM
n 10-bit Successive Approximation Analog to Digital
Converter (up to 16 channels)
n 100% Precise Analog Emulation
n USART with onchip baud generator
n 2.7V – 5.5V In-System Programmability of Flash
n High endurance -100k Read/Write Cycles
n Superior Data Retention - 100 years
n Dual Clock Operation with HALT/IDLE Power Save
Modes
n Three 16-bit timers:
— Timers T2 and T3 can operate at high speed (50 ns
resolution)
— Processor Independent PWM mode
— External Event counter mode
— Input Capture mode
n Brown-out Reset (COP8CBR9/CCR9)
OTHER FEATURES
n Single supply operation:
— 2.7V–5.5V (−40˚C to +85˚C)
— 4.5V–5.5V (−40˚C to +125˚C)
n Quiet Design (low radiated emissions)
n Multi-Input Wake-up with optional interrupts
n MICROWIRE/PLUS (Serial Peripheral Interface
Compatible)
n Clock Doubler for 20 MHz operation from 10 MHz
Oscillator, with 0.5 µs Instruction Cycle
n Thirteen multi-source vectored interrupts servicing:
— External Interrupt
— USART (2)
— Idle Timer T0
— Three Timers (each with 2 interrupts)
— MICROWIRE/PLUS Serial peripheral interface
— Multi-Input Wake-up
— Software Trap
n Idle Timer with programmable interrupt interval
n 8-bit Stack Pointer SP (stack in RAM)
n Two 8-bit Register Indirect Data Memory Pointers
n True bit manipulation
n WATCHDOG and Clock Monitor logic
n Software selectable I/O options
— TRI-STATE ® Output/High Impedance Input
— Push-Pull Output
— Weak Pull Up Input
n Schmitt trigger inputs on I/O ports
n High Current I/Os
n Temperature range: –40˚C to +85˚C and –40˚C to
+125˚C (COP8CCR9/CDR9)
n Packaging: 44 and 68 PLCC, 44 LLP, 48 and 56 TSSOP
n True In-System, real time emulation and debug tools
available
COP8™ is a trademark of National Semiconductor Corporation.
© 2003 National Semiconductor Corporation
DS101374
www.national.com
COP8CBR9/COP8CCR9/COP8CDR9 8-Bit CMOS Flash Based Microcontroller with 32k Memory,
Virtual EEPROM, 10-Bit A/D and Brownout
August 2003
COP8CBR9/COP8CCR9/COP8CDR9
3.0 Block Diagram
10137401
4.0 Ordering Information
Part Numbering Scheme
COP8
CB
R
9
H
VA
8
Family and
Feature Set
Indicator
Program
Memory
Size
Program
Memory
Type
No. Of Pins
Package
Type
Temperature
CB = Low Brownout Voltage
CC = High Brownout Voltage
CD = No Brownout
www.national.com
R = 32k
9 = Flash
2
H = 44 Pin
I = 48 Pin
k = 56 Pin
L = 68 Pin
LQ = LLP
MT = TSSOP
VA = PLCC
7 = -40 to +125˚C
8 = -40 to +85˚C
3
www.national.com
COP8CBR9/COP8CCR9/COP8CDR9
Table of Contents
1.0 General Description ..................................................................................................................................... 1
2.0 Features ....................................................................................................................................................... 1
3.0 Block Diagram .............................................................................................................................................. 2
4.0 Ordering Information .................................................................................................................................... 2
5.0 Connection Diagrams ................................................................................................................................... 6
6.0 Architectural Overview ............................................................................................................................... 10
6.1 EMI REDUCTION .................................................................................................................................... 10
6.2 IN-SYSTEM PROGRAMMING AND VIRTUAL EEPROM ...................................................................... 10
6.3 DUAL CLOCK AND CLOCK DOUBLER ................................................................................................. 10
6.4 TRUE IN-SYSTEM EMULATION ............................................................................................................ 10
6.5 ARCHITECTURE ................................................................................................................................... 10
6.6 INSTRUCTION SET ............................................................................................................................... 10
6.6.1 Key Instruction Set Features ............................................................................................................. 10
6.6.2 Single Byte/Single Cycle Code Execution ....................................................................................... 10
6.6.3 Many Single-Byte, Multi-Function Instructions .................................................................................. 10
6.6.4 Bit-Level Control ................................................................................................................................ 11
6.6.5 Register Set ....................................................................................................................................... 11
6.7 PACKAGING/PIN EFFICIENCY .............................................................................................................. 11
7.0 Absolute Maximum Ratings ....................................................................................................................... 12
8.0 Electrical Characteristics ............................................................................................................................ 12
9.0 Pin Descriptions ......................................................................................................................................... 18
9.1 EMULATION CONNECTION ................................................................................................................... 20
10.0 Functional Description .............................................................................................................................. 20
10.1 CPU REGISTERS ................................................................................................................................. 20
10.2 PROGRAM MEMORY ........................................................................................................................... 20
10.3 DATA MEMORY .................................................................................................................................... 20
10.4 DATA MEMORY SEGMENT RAM EXTENSION .................................................................................. 21
10.4.1 Virtual EEPROM .............................................................................................................................. 22
10.5 OPTION REGISTER ............................................................................................................................. 22
10.6 SECURITY ............................................................................................................................................ 23
10.7 RESET ................................................................................................................................................... 23
10.7.1 External Reset ................................................................................................................................. 24
10.7.2 On-Chip Brownout Reset ................................................................................................................. 24
10.8 OSCILLATOR CIRCUITS ...................................................................................................................... 26
10.8.1 Oscillator .......................................................................................................................................... 26
................................................................................................................................................................... 0
10.8.2 Clock Doubler .................................................................................................................................. 27
10.9 CONTROL REGISTERS ....................................................................................................................... 27
10.9.1 CNTRL Register (Address X'00EE) ................................................................................................. 27
10.9.2 PSW Register (Address X'00EF) ..................................................................................................... 27
10.9.3 ICNTRL Register (Address X'00E8) ................................................................................................ 27
10.9.4 T2CNTRL Register (Address X'00C6) ............................................................................................. 27
10.9.5 T3CNTRL Register (Address X'00B6) ............................................................................................. 27
10.9.6 HSTCR Register (Address X'00AF) ................................................................................................ 28
10.9.7 ITMR Register (Address X'00CF) .................................................................................................... 28
10.9.8 ENAD Register (Address X'00CB) .................................................................................................. 28
11.0 In-System Programming ........................................................................................................................... 28
11.1 INTRODUCTION ................................................................................................................................... 28
11.2 FUNCTIONAL DESCRIPTION .............................................................................................................. 28
11.3 REGISTERS .......................................................................................................................................... 29
11.3.1 ISP Address Registers ..................................................................................................................... 29
11.3.2 ISP Read Data Register .................................................................................................................. 29
11.3.3 ISP Write Data Register ................................................................................................................... 29
11.3.4 ISP Write Timing Register ................................................................................................................ 29
11.4 MANEUVERING BACK AND FORTH BETWEEN FLASH MEMORY AND BOOT ROM ..................... 30
11.5 FORCED EXECUTION FROM BOOT ROM ......................................................................................... 30
11.6 RETURN TO FLASH MEMORY WITHOUT HARDWARE RESET ....................................................... 31
11.7 MICROWIRE/PLUS ISP ........................................................................................................................ 31
11.8 USER ISP AND VIRTUAL E2 ................................................................................................................ 32
11.9 RESTRICTIONS ON SOFTWARE WHEN CALLING ISP ROUTINES IN BOOT ROM ....................... 34
11.10 FLASH MEMORY DURABILITY CONSIDERATIONS ........................................................................ 34
12.0 Timers ....................................................................................................................................................... 35
COP8CBR9/COP8CCR9/COP8CDR9
Table of Contents
(Continued)
12.1 TIMER T0 (IDLE TIMER) ......................................................................................................................
12.1.1 ITMR Register ..................................................................................................................................
12.2 TIMER T1, TIMER T2, AND TIMER T3 ................................................................................................
12.2.1 Timer Operating Speeds ..................................................................................................................
12.2.2 Mode 1. Processor Independent PWM Mode .................................................................................
12.2.3 Mode 2. External Event Counter Mode ...........................................................................................
12.2.4 Mode 3. Input Capture Mode ..........................................................................................................
12.3 TIMER CONTROL FLAGS ....................................................................................................................
13.0 Power Saving Features ............................................................................................................................
13.1 POWER SAVE MODE CONTROL REGISTER ....................................................................................
13.2 OSCILLATOR STABILIZATION .............................................................................................................
13.3 HIGH SPEED MODE OPERATION ......................................................................................................
13.3.1 High Speed Halt Mode ....................................................................................................................
13.3.1.1 Entering The High Speed Halt Mode .........................................................................................
13.3.1.2 Exiting The High Speed Halt Mode ...........................................................................................
13.3.1.3 HALT Exit Using Reset ..............................................................................................................
13.3.1.4 HALT Exit Using Multi-Input Wake-up .......................................................................................
13.3.1.5 Options .......................................................................................................................................
13.3.2 High Speed Idle Mode .....................................................................................................................
13.4 DUAL CLOCK MODE OPERATION ......................................................................................................
13.4.1 Dual Clock HALT Mode ...................................................................................................................
13.4.1.1 Entering The Dual Clock Halt Mode ..........................................................................................
13.4.1.2 Exiting The Dual Clock Halt Mode .............................................................................................
13.4.1.3 HALT Exit Using Reset ..............................................................................................................
13.4.1.4 HALT Exit Using Multi-Input Wake-up .......................................................................................
13.4.1.5 Options .......................................................................................................................................
13.4.2 Dual Clock Idle Mode ......................................................................................................................
13.5 LOW SPEED MODE OPERATION .......................................................................................................
13.5.1 Low Speed HALT Mode ...................................................................................................................
13.5.1.1 Entering The Low Speed Halt Mode .........................................................................................
13.5.1.2 Exiting The Low Speed Halt Mode ............................................................................................
13.5.1.3 HALT Exit Using Reset ..............................................................................................................
13.5.1.4 HALT Exit Using Multi-Input Wake-up .......................................................................................
13.5.1.5 Options .......................................................................................................................................
13.5.2 Low Speed Idle Mode ......................................................................................................................
13.6 MULTI-INPUT WAKE-UP ......................................................................................................................
14.0 USART .....................................................................................................................................................
14.1 USART CONTROL AND STATUS REGISTERS ...................................................................................
14.2 DESCRIPTION OF USART REGISTER BITS ......................................................................................
14.3 ASSOCIATED I/O PINS ........................................................................................................................
14.4 USART OPERATION ............................................................................................................................
14.4.1 Asynchronous Mode ........................................................................................................................
14.4.2 Synchronous Mode ..........................................................................................................................
14.5 FRAMING FORMATS ............................................................................................................................
14.6 USART INTERRUPTS ..........................................................................................................................
14.7 BAUD CLOCK GENERATION ..............................................................................................................
14.8 EFFECT OF HALT/IDLE .......................................................................................................................
14.9 DIAGNOSTIC ........................................................................................................................................
14.10 ATTENTION MODE .............................................................................................................................
14.11 BREAK GENERATION ........................................................................................................................
15.0 A/D Converter ...........................................................................................................................................
15.1 OPERATING MODES ...........................................................................................................................
15.1.1 A/D Control Register ........................................................................................................................
15.1.1.1 Channel Select ...........................................................................................................................
15.1.1.2 Multiplexor Output Select ...........................................................................................................
15.1.1.3 Mode Select ...............................................................................................................................
15.1.1.4 Prescaler Select .........................................................................................................................
15.1.1.5 Busy Bit ......................................................................................................................................
15.1.2 A/D Result Registers .......................................................................................................................
15.2 A/D OPERATION ...................................................................................................................................
15.2.1 Prescaler ..........................................................................................................................................
www.national.com
4
35
36
36
36
36
37
37
38
38
39
40
40
40
40
40
40
40
41
41
42
42
42
42
42
42
42
42
43
43
43
43
43
43
43
44
45
45
46
46
47
48
48
48
48
49
49
51
51
51
51
51
52
52
52
53
54
54
54
54
55
55
(Continued)
15.3 ANALOG INPUT AND SOURCE RESISTANCE CONSIDERATIONS ..................................................
16.0 Interrupts ..................................................................................................................................................
16.1 INTRODUCTION ...................................................................................................................................
16.2 MASKABLE INTERRUPTS ...................................................................................................................
16.3 VIS INSTRUCTION ...............................................................................................................................
16.3.1 VIS Execution ..................................................................................................................................
16.4 NON-MASKABLE INTERRUPT ............................................................................................................
16.4.1 Pending Flag ....................................................................................................................................
16.4.2 Software Trap ..................................................................................................................................
16.4.2.1 Programming Example: External Interrupt .................................................................................
16.5 PORT L INTERRUPTS ..........................................................................................................................
16.6 INTERRUPT SUMMARY .......................................................................................................................
17.0 WATCHDOG/Clock Monitor .....................................................................................................................
17.1 CLOCK MONITOR ................................................................................................................................
17.2 WATCHDOG/CLOCK MONITOR OPERATION ....................................................................................
17.3 WATCHDOG AND CLOCK MONITOR SUMMARY ..............................................................................
17.4 DETECTION OF ILLEGAL CONDITIONS ............................................................................................
18.0 MICROWIRE/PLUS ..................................................................................................................................
18.1 MICROWIRE/PLUS OPERATION .........................................................................................................
18.1.1 MICROWIRE/PLUS Master Mode Operation ..................................................................................
18.1.2 MICROWIRE/PLUS Slave Mode Operation ....................................................................................
18.1.2.1 Alternate SK Phase Operation and SK Idle Polarity .................................................................
19.0 Memory Map ............................................................................................................................................
20.0 Instruction Set ..........................................................................................................................................
20.1 INTRODUCTION ...................................................................................................................................
20.2 INSTRUCTION FEATURES ..................................................................................................................
20.3 ADDRESSING MODES .........................................................................................................................
20.3.1 Operand Addressing Modes ............................................................................................................
20.3.2 Tranfer-of-Control Addressing Modes ..............................................................................................
20.4 INSTRUCTION TYPES .........................................................................................................................
20.4.1 Arithmetic Instructions ......................................................................................................................
20.4.2 Transfer-of-Control Instructions .......................................................................................................
20.4.3 Load and Exchange Instructions .....................................................................................................
20.4.4 Logical Instructions ..........................................................................................................................
20.4.5 Accumulator Bit Manipulation Instructions .......................................................................................
20.4.6 Stack Control Instructions ................................................................................................................
20.4.7 Memory Bit Manipulation Instructions .............................................................................................
20.4.8 Conditional Instructions ...................................................................................................................
20.4.9 No-Operation Instruction ..................................................................................................................
20.5 REGISTER AND SYMBOL DEFINITION ..............................................................................................
20.6 INSTRUCTION SET SUMMARY ..........................................................................................................
20.7 INSTRUCTION EXECUTION TIME ......................................................................................................
21.0 Development Support ..............................................................................................................................
21.1 TOOLS ORDERING NUMBERS FOR THE COP8 FLASH FAMILY DEVICES ...................................
21.2 COP8 TOOLS OVERVIEW ...................................................................................................................
21.3 WHERE TO GET TOOLS .....................................................................................................................
22.0 Revision History .......................................................................................................................................
23.0 Physical Dimensions ................................................................................................................................
5
55
56
56
56
57
58
59
59
59
60
61
61
61
62
62
63
63
63
64
64
64
65
66
67
67
67
68
68
69
69
70
70
70
70
70
70
70
70
70
70
72
73
76
76
78
79
80
83
www.national.com
COP8CBR9/COP8CCR9/COP8CDR9
Table of Contents
COP8CBR9/COP8CCR9/COP8CDR9
5.0 Connection Diagrams
10137403
Top View
Plastic Chip Package
See NS Package Number V44A
10137402
Top View
Plastic Chip Package
See NS Package Number V68A
10137455
Top View
LLP Package
See NS Package Number LQA44A
10137456
Top View
TSSOP Package
See NS Package Number MTD48
www.national.com
6
COP8CBR9/COP8CCR9/COP8CDR9
5.0 Connection Diagrams
(Continued)
10137457
Top View
TSSOP Package
See NS Package Number MTD56
7
www.national.com
COP8CBR9/COP8CCR9/COP8CDR9
5.0 Connection Diagrams
(Continued)
TABLE 1. Pinouts for All Packages
Port
Type
Alt. Fun
In System
Emulation
Mode
44-Pin LLP
44-Pin
PLCC
48-Pin
TSSOP
56-Pin
TSSOP
68-Pin
PLCC
L0
I/O
MIWU or Low Speed OSC In
16
11
11
15
22
L1
I/O
MIWU or CKX or Low Speed
OSC Out
17
12
12
16
23
L2
I/O
MIWU or TDX
18
13
13
17
24
L3
I/O
MIWU or RDX
19
14
14
18
25
L4
I/O
MIWU or T2A
20
15
15
19
26
L5
I/O
MIWU or T2B
21
16
16
20
27
L6
I/O
MIWU or T3A
22
17
17
21
28
L7
I/O
MIWU or T3B
23
18
18
22
29
G0
I/O
INT
7
2
2
2
3
Input
a
G1
I/O
WDOUT
POUT
8
3
3
3
4
G2
I/O
T1B
Output
9
4
4
4
5
G3
I/O
T1A
Clock
10
5
5
5
6
G4
I/O
SO
11
6
6
6
11
G5
I/O
SK
12
7
7
7
12
G6
I
SI
13
8
8
8
13
G7
I
CKO
14
9
9
9
14
D0
O
42
37
41
49
58
D1
O
43
38
42
50
59
D2
O
44
39
43
51
60
D3
O
1
40
44
52
61
D4
O
2
41
45
53
62
D5
O
3
42
46
54
63
D6
O
4
43
47
55
64
D7
O
5
44
48
56
65
E0
I/O
47
54
E1
I/O
48
55
E2
I/O
56
E3
I/O
57
E4
I/O
67
E5
I/O
68
E6
I/O
1
E7
I/O
C0
I/O
11
18
C1
I/O
12
19
C2
I/O
13
20
C3
I/O
14
21
C4
I/O
23
30
C5
I/O
24
31
C6
I/O
25
32
C7
I/O
26
33
A0
I/O
ADCH0
33
39
46
A1
I/O
ADCH1
34
40
47
A2
I/O
ADCH2
36
31
35
41
48
A3
I/O
ADCH3
37
32
36
42
49
A4
I/O
ADCH4
38
33
37
43
50
www.national.com
2
8
(Continued)
TABLE 1. Pinouts for All Packages (Continued)
Port
Type
Alt. Fun
In System
Emulation
Mode
44-Pin LLP
44-Pin
PLCC
48-Pin
TSSOP
56-Pin
TSSOP
68-Pin
PLCC
A5
I/O
ADCH5
39
34
38
44
51
A6
I/O
ADCH6
40
35
39
45
52
A7
I/O
ADCH7
41
36
40
46
53
B0
I/O
ADCH8
24
19
19
27
34
B1
I/O
ADCH9
25
20
20
28
35
B2
I/O
ADCH10
26
21
21
29
36
B3
I/O
ADCH11
27
22
22
30
37
B4
I/O
ADCH12
28
23
23
31
38
B5
I/O
ADCH13 or A/D MUX OUT
29
24
24
32
39
B6
I/O
ADCH14 or A/D MUX OUT
30
25
25
33
40
B7
I/O
ADCH15 or A/DIN
31
26
26
34
41
F0
I/O
7
F1
I/O
8
F2
I/O
9
F3
I/O
10
DVCC
VCC
35
30
32
38
17, 45
DGND
GND
32
27
27
35
16, 42
AVCC
34
29
31
37
44
AGND
33
28
28
36
43
15
10
10
10
15
6
1
1
1
66
CKI
I
RESET
I
RESET
a. G1 operation as WDOUT is controlled by Option Register bit 2.
9
www.national.com
COP8CBR9/COP8CCR9/COP8CDR9
5.0 Connection Diagrams
COP8CBR9/COP8CCR9/COP8CDR9
be bypassed by jumpers on the final application board, can
provide for software and hardware debugging using actual
production units.
6.0 Architectural Overview
6.1 EMI REDUCTION
The COP8CBR/CCR/CDR devices incorporate circuitry that
guards against electromagnetic interference - an increasing
problem in today’s microcontroller board designs. National’s
patented EMI reduction technology offers low EMI clock
circuitry, gradual turn-on output drivers (GTOs) and internal
Icc smoothing filters, to help circumvent many of the EMI
issues influencing embedded control designs. National has
achieved 15 dB–20 dB reduction in EMI transmissions when
designs have incorporated its patented EMI reducing circuitry.
6.5 ARCHITECTURE
The COP8 family is based on a modified Harvard architecture, which allows data tables to be accessed directly from
program memory. This is very important with modern
microcontroller-based applications, since program memory
is usually ROM or EPROM, while data memory is usually
RAM. Consequently constant data tables need to be contained in non-volatile memory, so they are not lost when the
microcontroller is powered down. In a modified Harvard architecture, instruction fetch and memory data transfers can
be overlapped with a two stage pipeline, which allows the
next instruction to be fetched from program memory while
the current instruction is being executed using data memory.
This is not possible with a Von Neumann single-address bus
architecture.
6.2 IN-SYSTEM PROGRAMMING AND VIRTUAL
EEPROM
The device includes a program in a boot ROM that provides
the capability, through the MICROWIRE/PLUS serial interface, to erase, program and read the contents of the Flash
memory.
Additional routines are included in the boot ROM, which can
be called by the user program, to enable the user to customize in system software update capability if MICROWIRE/
PLUS is not desired.
Additional functions will copy blocks of data between the
RAM and the Flash Memory. These functions provide a
virtual EEPROM capability by allowing the user to emulate a
variable amount of EEPROM by initializing nonvolatile variables from the Flash Memory and occasionally restoring
these variables to the Flash Memory.
The contents of the boot ROM have been defined by National. Execution of code from the boot ROM is dependent
on the state of the FLEX bit in the Option Register on exit
from RESET. If the FLEX bit is a zero, the Flash Memory is
assumed to be empty and execution from the boot ROM
begins. For further information on the FLEX bit, refer to
Section 4.5, Option Register.
The COP8 family supports a software stack scheme that
allows the user to incorporate many subroutine calls. This
capability is important when using High Level Languages.
With a hardware stack, the user is limited to a small fixed
number of stack levels.
6.6 INSTRUCTION SET
In today’s 8-bit microcontroller application arena cost/
performance, flexibility and time to market are several of the
key issues that system designers face in attempting to build
well-engineered products that compete in the marketplace.
Many of these issues can be addressed through the manner
in which a microcontroller’s instruction set handles processing tasks. And that’s why the COP8 family offers a unique
and code-efficient instruction set - one that provides the
flexibility, functionality, reduced costs and faster time to market that today’s microcontroller based products require.
Code efficiency is important because it enables designers to
pack more on-chip functionality into less program memory
space (ROM, OTP or Flash). Selecting a microcontroller with
less program memory size translates into lower system
costs, and the added security of knowing that more code can
be packed into the available program memory space.
6.3 DUAL CLOCK AND CLOCK DOUBLER
The device includes a versatile clocking system and two
oscillator circuits designed to drive a crystal or ceramic
resonator. The primary oscillator operates at high speed up
to 10 MHz. The secondary oscillator is optimized for operation at 32.768 kHz.
The user can, through specified transition sequences
(please refer to 13.0 Power Saving Features), switch execution between the high speed and low speed oscillators. The
unused oscillator can then be turned off to minimize power
dissipation. If the low speed oscillator is not used, the pins
are available as general purpose bidirectional ports.
The operation of the CPU will use a clock at twice the
frequency of the selected oscillator (up to 20 MHz for high
speed operation and 65.536 kHz for low speed operation).
This doubled clock will be referred to in this document as
‘MCLK’. The frequency of the selected oscillator will be
referred to as CKI. Instruction execution occurs at one tenth
the selected MCLK rate.
6.6.1 Key Instruction Set Features
The COP8 family incorporates a unique combination of instruction set features, which provide designers with optimum
code efficiency and program memory utilization.
6.6.2 Single Byte/Single Cycle Code Execution
The efficiency is due to the fact that the majority of instructions are of the single byte variety, resulting in minimum
program space. Because compact code does not occupy a
substantial amount of program memory space, designers
can integrate additional features and functionality into the
microcontroller program memory space. Also, the majority
instructions executed by the device are single cycle, resulting in minimum program execution time. In fact, 77% of the
instructions are single byte single cycle, providing greater
code and I/O efficiency, and faster code execution.
6.4 TRUE IN-SYSTEM EMULATION
On-chip emulation capability has been added which allows
the user to perform true in-system emulation using final
production boards and devices. This simplifies testing and
evaluation of software in real environmental conditions. The
user, merely by providing for a standard connector which can
www.national.com
6.6.3 Many Single-Byte, Multi-Function Instructions
The COP8 instruction set utilizes many single-byte, multifunction instructions. This enables a single instruction to
accomplish multiple functions, such as DRSZ, DCOR, JID,
LD (Load) and X (Exchange) instructions with postincrementing and post-decrementing, to name just a few
10
ability to set, reset and test any individual bit in the data
memory address space, including memory-mapped I/O ports
and associated registers.
(Continued)
examples. In many cases, the instruction set can simultaneously execute as many as three functions with the same
single-byte instruction.
JID: (Jump Indirect); Single byte instruction decodes external events and jumps to corresponding service routines
(analogous to “DO CASE” statements in higher level languages).
LAID: (Load Accumulator-Indirect); Single byte look up table
instruction provides efficient data path from the program
memory to the CPU. This instruction can be used for table
lookup and to read the entire program memory for checksum
calculations.
6.6.5 Register Set
Three memory-mapped pointers handle register indirect addressing and software stack pointer functions. The memory
data pointers allow the option of post-incrementing or postdecrementing with the data movement instructions (LOAD/
EXCHANGE). And 15 memory-mapped registers allow designers to optimize the precise implementation of certain
specific instructions.
6.7 PACKAGING/PIN EFFICIENCY
Real estate and board configuration considerations demand
maximum space and pin efficiency, particularly given today’s
high integration and small product form factors. Microcontroller users try to avoid using large packages to get the I/O
needed. Large packages take valuable board space and
increase device cost, two trade-offs that microcontroller designs can ill afford.
RETSK: (Return Skip); Single byte instruction allows return
from subroutine and skips next instruction. Decision to
branch can be made in the subroutine itself, saving code.
AUTOINC/DEC: (Auto-Increment/Auto-Decrement); These
instructions use the two memory pointers B and X to efficiently process a block of data (simplifying “FOR NEXT” or
other loop structures in higher level languages).
The COP8 family offers a wide range of packages and does
not waste pins.
6.6.4 Bit-Level Control
Bit-level control over many of the microcontroller’s I/O ports
provides a flexible means to ease layout concerns and save
board space. All members of the COP8 family provide the
11
www.national.com
COP8CBR9/COP8CCR9/COP8CDR9
6.0 Architectural Overview
COP8CBR9/COP8CCR9/COP8CDR9
7.0 Absolute Maximum Ratings
Total Current out of GND Pin (Sink)
Storage Temperature Range
(Note 1)
Supply Voltage (VCC)
Voltage at Any Pin
2 kV (Human Body
Model)
Note 1: Absolute maximum ratings indicate limits beyond which damage to
the device may occur. DC and AC electrical specifications are not ensured
when operating the device at absolute maximum ratings.
7V
−0.3V to VCC +0.3V
Total Current into VCC Pin (Source)
−65˚C to +140˚C
ESD Protection Level
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales Office/
Distributors for availability and specifications.
200 mA
200 mA
8.0 Electrical Characteristics
DC Electrical Characteristics (−40˚C ≤ TA ≤ +85˚C)
Datasheet min/max specification limits are guaranteed by design, test, or statistical analysis.
Parameter
Conditions
Min
Typ
Max
Units
Operating Voltage
2.7
5.5
V
Power Supply Rise Time
10
50 x 106
ns
0.1 VCC
V
Power Supply Ripple (Note 2)
Peak-to-Peak
Supply Current (Note 3)
High Speed Mode
CKI = 10 MHz
VCC = 5.5V, tC = 0.5 µs
13.2
mA
CKI = 3.33 MHz
VCC = 4.5V, tC = 1.5 µs
6
mA
CKI = 10 MHz, Low Speed OSC = 32 kHz
VCC = 5.5V, tC = 0.5 µs
13.2
mA
CKI = 3.33 MHz, Low Speed OSC = 32 kHz
VCC = 4.5V, tC = 1.5 µs
6
mA
103
µA
Dual Clock Mode
Low Speed Mode
Low Speed OSC = 32 kHz
VCC = 5.5V
60
HALT Current with BOR Disabled (Note 4)
High Speed Mode
VCC = 5.5V, CKI = 0 MHz
<2
10
µA
Dual Clock Mode
VCC = 5.5V, CKI = 0 MHz, Low
Speed OSC = 32 kHz
<5
17
µA
Low Speed Mode
VCC = 5.5V, CKI = 0 MHz, Low
Speed OSC = 32 kHz
<5
17
µA
Idle Current (Note 3)
High Speed Mode
CKI = 10 MHz
VCC = 5.5V, tC = 0.5 µs
2.5
mA
CKI = 3.33 MHz
VCC = 4.5V, tC = 1.5 µs
1.2
mA
CKI = 10 MHz, Low Speed OSC = 32 kHz
VCC = 5.5V, tC = 0.5 µs
2.5
mA
CKI = 3.33 MHz, Low Speed OSC = 32 kHz
VCC = 4.5V, tC = 1.5 µs
1.2
mA
Dual Clock Mode
Low Speed Mode
Low Speed OSC = 32 kHz
VCC = 5.5V
Supply Current for BOR Feature
VCC = 5.5V
15
30
µA
45
µA
High Brownout Trip Level (BOR Enabled)
4.17
4.28
4.5
V
Low Brownout Trip Level (BOR Enabled)
2.7
2.78
2.9
V
Input Levels (VIH, VIL)
Logic High
0.8 VCC
V
Logic Low
Internal Bias Resistor for the CKI
Crystal/Resonator Oscillator
0.3
1.0
0.16 VCC
V
2.5
MΩ
Hi-Z Input Leakage
VCC = 5.5V
−0.5
+0.5
µA
Input Pullup Current
VCC = 5.5V, VIN = 0V
−50
−210
µA
Port Input Hysteresis
www.national.com
0.25 VCC
12
V
(Continued)
DC Electrical Characteristics (−40˚C ≤ TA ≤ +85˚C)
(Continued)
Datasheet min/max specification limits are guaranteed by design, test, or statistical analysis.
Parameter
Conditions
Min
Typ
Max
Units
Output Current Levels
D Outputs
Source
VCC = 4.5V, VOH = 3.8V
−7
VCC = 2.7V, VOH = 1.8V
−4
mA
Sink (Note 7)
VCC = 4.5V, VOL = 1.0V
10
mA
VCC = 2.7V, VOL = 0.4V
3.5
mA
VCC = 4.5V, VOH = 3.8V
−10
µA
VCC = 2.7V, VOH = 1.8V
−5
µA
Source (Push-Pull Mode)
VCC = 4.5V, VOH = 3.8V
−7
mA
VCC = 2.7V, VOH = 1.8V
−4
mA
Sink (Push-Pull Mode) (Note 7)
VCC = 4.5V, VOL = 1.0V
10
mA
mA
All Others
Source (Weak Pull-Up Mode)
TRI-STATE Leakage
VCC = 2.7V, VOL = 0.4V
3.5
VCC = 5.5V
−0.5
mA
+0.5
µA
15
mA
± 200
mA
Allowable Sink Current per Pin
Maximum Input Current without Latchup (Note 5)
RAM Retention Voltage, VR (in HALT Mode)
2.0
V
Input Capacitance
7
pF
1000
pF
VCC + 7
V
Load Capacitance on D2
Voltage on G6 to Force Execution from Boot
ROM(Note 8)
G6 rise time must be slower than
100 ns
G6 Rise Time to Force Execution from Boot ROM
2 x VCC
100
nS
Input Current on G6 when Input > VCC
VIN = 11V, VCC = 5.5V
500
µA
Flash Memory Data Retention
25˚C
100
yrs
Flash Memory Number of Erase/Write Cycles
See Table 13, Typical Flash
Memory Endurance
105
cycles
AC Electrical Characteristics (−40˚C ≤ TA ≤ +85˚C)
Datasheet min/max specification limits are guaranteed by design, test, or statistical analysis.
Parameter
Conditions
Min
Typ
Max
Units
Instruction Cycle Time (tC)
Crystal/Resonator
Flash Memory Page Erase Time
4.5V ≤ VCC ≤ 5.5V
0.5
DC
µs
2.7V ≤ VCC < 4.5V
1.5
DC
µs
See Table 13, Typical
Flash Memory
Endurance
Flash Memory Mass Erase Time
Frequency of MICROWIRE/PLUS in
Slave Mode
1
ms
8
ms
2
MHz
MICROWIRE/PLUS Setup Time (tUWS)
20
ns
MICROWIRE/PLUS Hold Time (tUWH)
20
ns
MICROWIRE/PLUS Output Propagation
Delay (tUPD)
150
ns
Input Pulse Width
Interrupt Input High Time
1
tC
Interrupt Input Low Time
1
tC
Timer 1 Input High Time
1
tC
13
www.national.com
COP8CBR9/COP8CCR9/COP8CDR9
8.0 Electrical Characteristics
COP8CBR9/COP8CCR9/COP8CDR9
8.0 Electrical Characteristics
(Continued)
AC Electrical Characteristics (−40˚C ≤ TA ≤ +85˚C)
(Continued)
Datasheet min/max specification limits are guaranteed by design, test, or statistical analysis.
Parameter
Conditions
Min
Typ
Max
Units
Timer 1 Input Low Time
1
tC
Timer 2, 3 Input High Time (Note 6)
1
MCLK or tC
Timer 2, 3 Input Low Time (Note 6)
1
MCLK or tC
Timer 2, 3 Output High Time
150
ns
Timer 2, 3 Output Low Time
150
ns
Output Pulse Width
USART Bit Time when using External
CKX
6 CKI
periods
USART CKX Frequency when being
Driven by Internal Baud Rate Generator
2
Reset Pulse Width
1
MHz
tC
tC = instruction cycle time.
Note 2: Maximum rate of voltage change must be < 0.5 V/ms.
Note 3: Supply and IDLE currents are measured with CKI driven with a square wave Oscillator, CKO driven 180˚ out of phase with CKI, inputs connected to VCC
and outputs driven low but not connected to a load.
Note 4: The HALT mode will stop CKI from oscillating. Measurement of IDD HALT is done with device neither sourcing nor sinking current; with L. A. B, C, E, F, G0,
and G2–G5 programmed as low outputs and not driving a load; all D outputs programmed low and not driving a load; all inputs tied to VCC; A/D converter and clock
monitor and BOR disabled. Parameter refers to HALT mode entered via setting bit 7 of the G Port data register.
Note 5: Pins G6 and RESET are designed with a high voltage input network. These pins allow input voltages > VCC and the pins will have sink current to VCC when
biased at voltages > VCC (the pins do not have source current when biased at a voltage below VCC). These two pins will not latch up. The voltage at the pins must
be limited to < 14V. WARNING: Voltages in excess of 14V will cause damage to the pins. This warning excludes ESD transients.
Note 6: If timer is in high speed mode, the minimum time is 1 MCLK. If timer is not in high speed mode, the minimum time is 1 tC.
Note 7: Absolute Maximum Ratings should not be exceeded.
Note 8: Vcc must be valid and stable before G6 is raised to a high voltage.
A/D Converter Electrical Characteristics (−40˚C ≤ TA ≤ +85˚C unless
otherwise noted) (Single-ended mode only)
Datasheet min/max specification limits are guaranteed by design, test, or statistical analysis.
Parameter
Conditions
Min
Resolution
DNL
VCC = 5V
DNL
VCC = 3V,
−20˚C ≤ TA ≤ +85˚C
INL
VCC = 5V
INL
VCC = 3V,
−20˚C ≤ TA ≤ +85˚C
Offset Error
VCC = 5V
Offset Error
VCC = 3V,
−20˚C ≤ TA ≤ +85˚C
Gain Error
VCC = 5V
Gain Error
VCC = 3V,
−20˚C ≤ TA ≤ +85˚C
Input Voltage Range
2.7V ≤ VCC < 5.5V
Max
Units
10
Bits
±1
±1
LSB
±3
±4
LSB
+2.5, −1
LSB
± 2.5
LSB
+0.5, −2.5
LSB
± 2.5
LSB
LSB
LSB
VCC
V
Analog Input Leakage Current
0.5
µA
Analog Input Resistance (Note 9)
6k
Ω
Analog Input Capacitance
7
pF
30
30
µs
µs
Conversion Clock Period
www.national.com
4.5V ≤ VCC < 5.5V
2.7V ≤ VCC < 4.5V
14
0
Typ
0.8
1.2
(Continued)
A/D Converter Electrical Characteristics (−40˚C ≤ TA ≤ +85˚C unless
otherwise noted) (Single-ended mode only) (Continued)
Datasheet min/max specification limits are guaranteed by design, test, or statistical analysis.
Parameter
Conditions
Min
Conversion Time (including S/H Time)
Operating Current on AVCC
Typ
Max
Units
15
AVCC = 5.5V
A/D
Conversion
Clock
Cycles
0.2
0.6
mA
Note 9: Resistance between the device input and the internal sample and hold capacitance.
DC Electrical Characteristics (−40˚C ≤ TA ≤ +125˚C)
Datasheet min/max specification limits are guaranteed by design, test, or statistical analysis.
Parameter
Conditions
Operating Voltage
Typ
4.5
Power Supply Rise Time
Power Supply Ripple (Note 2)
Min
Max
Units
5.5
10
50 x 10
Peak-to-Peak
V
6
ns
0.1 VCC
V
Supply Current (Note 3)
High Speed Mode
CKI = 10 MHz
VCC = 5.5V, tC = 0.5 µs
14.5
mA
CKI = 3.33 MHz
VCC = 4.5V, tC = 1.5 µs
7
mA
CKI = 10 MHz, Low Speed OSC = 32 kHz
VCC = 5.5V, tC = 0.5 µs
14.5
mA
CKI = 3.33 MHz, Low Speed OSC = 32 kHz
VCC = 4.5V, tC = 1.5 µs
7
mA
110
µA
Dual Clock Mode
Low Speed Mode
Low Speed OSC = 32 kHz
VCC = 5.5V
65
HALT Current with BOR Disabled (Note 4)
High Speed Mode
VCC = 5.5V, CKI = 0 MHz
<4
40
µA
Dual Clock Mode
VCC = 5.5V, CKI = 0 MHz, Low
Speed OSC = 32 kHz
<9
50
µA
Low Speed Mode
VCC = 5.5V, CKI = 0 MHz, Low
Speed OSC = 32 kHz
<9
50
µA
VCC = 5.5V, tC = 0.5 µs
2.7
mA
VCC = 5.5V, tC = 0.5 µs
2.7
mA
Idle Current (Note 3)
High Speed Mode
CKI = 10 MHz
Dual Clock Mode
CKI = 10 MHz, Low Speed OSC = 32 kHz
Low Speed Mode
Low Speed OSC = 32 kHz
VCC = 5.5V
Supply Current for BOR Feature
VCC = 5.5V
30
High Brownout Trip Level (BOR Enabled)
4.17
4.28
70
µA
45
µA
4.5
V
Input Levels (VIH, VIL)
Logic High
0.8 VCC
V
Logic Low
Internal Bias Resistor for the CKI
Crystal/Resonator Oscillator
0.3
1.0
0.16 VCC
V
2.5
MΩ
Hi-Z Input Leakage
VCC = 5.5V
−3
+3
µA
Input Pullup Current
VCC = 5.5V, VIN = 0V
−40
−250
µA
Port Input Hysteresis
0.25 VCC
15
V
www.national.com
COP8CBR9/COP8CCR9/COP8CDR9
8.0 Electrical Characteristics
COP8CBR9/COP8CCR9/COP8CDR9
8.0 Electrical Characteristics
(Continued)
DC Electrical Characteristics (−40˚C ≤ TA ≤ +125˚C)
(Continued)
Datasheet min/max specification limits are guaranteed by design, test, or statistical analysis.
Parameter
Conditions
Min
Typ
Max
Units
Output Current Levels
D Outputs
Source
VCC = 4.5V, VOH = 3.8V
−6.3
mA
Sink (Note 7)
VCC = 4.5V, VOL = 1.0V
9
mA
All Others
Source (Weak Pull-Up Mode)
VCC = 4.5V, VOH = 3.8V
−9
µA
Source (Push-Pull Mode)
VCC = 4.5V, VOH = 3.8V
−6.3
mA
Sink (Push-Pull Mode) (Note 7)
VCC = 4.5V, VOL = 1.0V
9
VCC = 5.5V
−3
TRI-STATE Leakage
mA
+3
µA
1
mA
± 200
mA
7
pF
1000
pF
VCC + 7
V
Allowable Sink Current per Pin
Maximum Input Current without Latchup (Note 5)
RAM Retention Voltage, VR (in HALT Mode)
2.0
V
Input Capacitance
Load Capacitance on D2
Voltage on G6 to Force Execution from Boot
ROM(Note 8)
G6 rise time must be slower than
100 ns
G6 Rise Time to Force Execution from Boot ROM
Input Current on G6 when Input > VCC
2 x VCC
100
VIN = 11V, VCC = 5.5V
nS
500
µA
AC Electrical Characteristics (−40˚C ≤ TA ≤ +125˚C)
Datasheet min/max specification limits are guaranteed by design, test, or statistical analysis.
Parameter
Conditions
Min
4.5V ≤ VCC ≤ 5.5V
0.5
Typ
Max
Units
DC
µs
2
MHz
Instruction Cycle Time (tC)
Crystal/Resonator
Output Propagation Delay
RL =2.2k, CL = 100 pF
Frequency of MICROWIRE/PLUS in
Slave Mode
MICROWIRE/PLUS Setup Time (tUWS)
20
ns
MICROWIRE/PLUS Hold Time (tUWH)
20
ns
MICROWIRE/PLUS Output Propagation
Delay (tUPD)
150
ns
Input Pulse Width
Interrupt Input High Time
1
tC
Interrupt Input Low Time
1
tC
Timer 1 Input High Time
1
tC
Timer 1 Input Low Time
1
tC
Timer 2, 3 Input High Time (Note 6)
1
MCLK or tC
Timer 2, 3 Input Low Time (Note 6)
1
MCLK or tC
Timer 2, 3 Output High Time
150
ns
Timer 2, 3 Output Low Time
150
ns
Output Pulse Width
USART Bit Time when using External
CKX
6 CKI
periods
USART CKX Frequency when being
Driven by Internal Baud Rate Generator
2
Reset Pulse Width
0.5
tC = instruction cycle time.
Note 10: Maximum rate of voltage change must be < 0.5 V/ms.
www.national.com
16
MHz
tC
(Continued)
AC Electrical Characteristics (−40˚C ≤ TA ≤ +125˚C)
(Continued)
Note 11: Supply and IDLE currents are measured with CKI driven with a square wave Oscillator, CKO driven 180˚ out of phase with CKI, inputs connected to VCC
and outputs driven low but not connected to a load.
Note 12: The HALT mode will stop CKI from oscillating. Measurement of IDD HALT is done with device neither sourcing nor sinking current; with L. A. B, C, E, F,
G0, and G2–G5 programmed as low outputs and not driving a load; all D outputs programmed low and not driving a load; all inputs tied to VCC; A/D converter and
clock monitor and BOR disabled. Parameter refers to HALT mode entered via setting bit 7 of the G Port data register.
Note 13: Pins G6 and RESET are designed with a high voltage input network. These pins allow input voltages > VCC and the pins will have sink current to VCC
when biased at voltages > VCC (the pins do not have source current when biased at a voltage below VCC). These two pins will not latch up. The voltage at the pins
must be limited to < (VCC + 7V. WARNING: Voltages in excess of 14V will cause damage to the pins. This warning excludes ESD transients.
Note 14: If timer is in high speed mode, the minimum time is 1 MCLK. If timer is not in high speed mode, the minimum time is 1 tC.
Note 15: Absolute Maximum Ratings should not be exceeded.
Note 16: Vcc must be valid and stable before G6 is raised to a high voltage.
A/D Converter Electrical Characteristics (−40˚C ≤ TA ≤ +125˚C)
(Single-ended mode only)
Datasheet min/max specification limits are guaranteed by design, test, or statistical analysis.
Parameter
Conditions
Min
Typ
Resolution
Max
Units
10
Bits
DNL
VCC = 5V
VCC = 5V
±1
±3
LSB
INL
Offset Error
VCC = 5V
+2.5, −1
LSB
+0.5, −2.5
LSB
Gain Error
VCC = 5V
Input Voltage Range
4.5V ≤ VCC < 5.5V
0
LSB
VCC
V
Analog Input Leakage Current
0.5
µA
Analog Input Resistance (Note 9)
6k
Ω
7
pF
Analog Input Capacitance
Conversion Clock Period
4.5V ≤ VCC < 5.5V
0.8
Conversion Time (including S/H Time)
Operating Current on AVCC
30
15
AVCC = 5.5V
0.2
µs
A/D
Conversion
Clock
Cycles
0.6
mA
Note 17: Resistance between the device input and the internal sample and hold capacitance.
10137405
FIGURE 1. MICROWIRE/PLUS Timing
17
www.national.com
COP8CBR9/COP8CCR9/COP8CDR9
8.0 Electrical Characteristics
COP8CBR9/COP8CCR9/COP8CDR9
under software control as shown below:
9.0 Pin Descriptions
The COP8CBR/CCR/CDR I/O structure enables designers
to reconfigure the microcontroller’s I/O functions with a
single instruction. Each individual I/O pin can be independently configured as output pin low, output high, input with
high impedance or input with weak pull-up device. A typical
example is the use of I/O pins as the keyboard matrix input
lines. The input lines can be programmed with internal weak
pull-ups so that the input lines read logic high when the keys
are all open. With a key closure, the corresponding input line
will read a logic zero since the weak pull-up can easily be
overdriven. When the key is released, the internal weak
pull-up will pull the input line back to logic high. This eliminates the need for external pull-up resistors. The high current options are available for driving LEDs, motors and
speakers. This flexibility helps to ensure a cleaner design,
with less external components and lower costs. Below is the
general description of all available pins.
VCC and GND are the power supply pins. All VCC and GND
pins must be connected.
CONFIGURATION
Register
DATA
Register
0
0
0
1
Input with Weak Pull-Up
1
0
Push-Pull Zero Output
1
1
Push-Pull One Output
Port Set-Up
Hi-Z Input
(TRI-STATE Output)
Port A is an 8-bit I/O port. All A pins have Schmitt triggers on
the inputs. The 44-pin package does not have a full 8-bit port
and contains some unbonded, floating pads internally on the
chip. The binary value read from these bits is undetermined.
The application software should mask out these unknown
bits when reading the Port A register, or use only bit-access
program instructions when accessing Port A. These unconnected bits draw power only when they are addressed (i.e.,
in brief spikes). Additionally, if Port A is being used with some
combination of digital inputs and analog inputs, the analog
inputs will read as undetermined values and should be
masked out by software.
Users of the LLP package are cautioned to be aware that the
central metal area and the pin 1 index mark on the bottom of
the package may be connected to GND. See figure below:
Port A supports the analog inputs for the A/D converter. Port
A has the following alternate pin functions:
A7 Analog Channel 7
A6 Analog Channel 6
A5 Analog Channel 5
A4 Analog Channel 4
A3 Analog Channel 3
A2 Analog Channel 2
A1 Analog Channel 1
A0 Analog Channel 0
Port B is an 8-bit I/O port. All B pins have Schmitt triggers on
the inputs. If Port B is being used with some combination of
digital inputs and analog inputs, the analog inputs will read
as undetermined values. The application software should
mask out these unknown bits when reading the Port B
register, or use only bit-access program instructions when
accessing Port B.
Port B supports the analog inputs for the A/D converter. Port
B has the following alternate pin functions:
B7 Analog Channel 15 or A/D Input
B6 Analog Channel 14 or Analog Multiplexor Output
B5 Analog Channel 13 or Analog Multiplexor Output
B4 Analog Channel 12
B3 Analog Channel 11
B2 Analog Channel 10
B1 Analog Channel 9
B0 Analog Channel 8
10137470
FIGURE 2. LLP Package Bottom View
CKI is the clock input. This can be connected (in conjunction
with CKO) to an external crystal circuit to form a crystal
oscillator. See Oscillator Description section.
RESET is the master reset input. See Reset description
section.
AVCC is the Analog Supply for A/D converter. It should be
connected to VCC externally. This is also the top of the
resistor ladder D/A converter used within the A/D converter.
AGND is the ground pin for the A/D converter. It should be
connected to GND externally. This is also the bottom of the
resistor ladder D/A converter used within the A/D converter.
The device contains up to six bidirectional 8-bit I/O ports (A,
B, C, E, G and L) and one 4-bit I/O port (F), where each
individual bit may be independently configured as an input
(Schmitt trigger inputs on ports L and G), output or TRISTATE under program control. Three data memory address
locations are allocated for each of these I/O ports. Each I/O
port has three associated 8-bit memory mapped registers,
the CONFIGURATION register, the output DATA register and
the Pin input register. (See the memory map for the various
addresses associated with the I/O ports.) Figure 3 shows the
I/O port configurations. The DATA and CONFIGURATION
registers allow for each port bit to be individually configured
www.national.com
Port C is an 8-bit I/O port. The 44-pin device does not offer
Port C. The unavailable pins are not terminated. A read
operation on these unterminated pins will return unpredictable values. On this device, the associated Port C Data and
Configuration registers should not be used. All C pins have
Schmitt triggers on the inputs. Port C draws no power when
unbonded.
Port E is an 8-bit I/O Port. The 44-pin device does not offer
Port E. The unavailable pins are not terminated. A read
operation on these unterminated pins will return unpredictable values. On this device, the associated Port E Data and
18
L4 Multi-input Wake-up or T2A (Timer T2A Input/Output)
(Continued)
L3 Multi-Input Wake-up and/or RDX (USART Receive)
L2 Multi-Input Wake-up or TDX (USART Transmit)
L1 Multi-Input Wake-up and/or CKX (USART Clock) (Low
Speed Oscillator Output)
Configuration registers should not be used. All E pins have
Schmitt triggers on the inputs. Port E draws no power when
unbonded.
Port F is a 4-bit I/O Port. All F pins have Schmitt triggers on
the inputs.
L0 Multi-Input Wake-up (Low Speed Oscillator Input)
Port D is an 8-bit output port that is preset high when RESET
goes low. The user can tie two or more D port outputs
(except D2) together in order to get a higher drive.
The 68-pin package has fewer than eight Port F pins, and
contains unbonded, floating pads internally on the chip. The
binary values read from these bits are undetermined. The
application software should mask out these unknown bits
when reading the Port F register, or use only bit-access
program instructions when accessing Port F. The unconnected bits draw power only when they are addressed (i.e.,
in brief spikes).
Note: Care must be exercised with the D2 pin operation. At
RESET, the external loads on this pin must ensure that the
output voltages stay above 0.7 VCC to prevent the chip from
entering special modes. Also keep the external loading on
D2 to less than 1000 pF.
Port G is an 8-bit port. Pin G0, G2–G5 are bi-directional I/O
ports. Pin G6 is always a general purpose Hi-Z input. All pins
have Schmitt Triggers on their inputs. Pin G1 serves as the
dedicated WATCHDOG output with weak pull-up if the
WATCHDOG feature is selected by the Option register.
The pin is a general purpose I/O if WATCHDOG feature is
not selected. If WATCHDOG feature is selected, bit 1 of the
Port G configuration and data register does not have any
effect on Pin G1 setup. G7 serves as the dedicated output
pin for the CKO clock output.
Since G6 is an input only pin and G7 is the dedicated CKO
clock output pin, the associated bits in the data and configuration registers for G6 and G7 are used for special purpose
functions as outlined below. Reading the G6 and G7 data
bits will return zeros.
The device will be placed in the HALT mode by writing a “1”
to bit 7 of the Port G Data Register. Similarly the device will
be placed in the IDLE mode by writing a “1” to bit 6 of the
Port G Data Register.
Writing a “1” to bit 6 of the Port G Configuration Register
enables the MICROWIRE/PLUS to operate with the alternate phase of the SK clock. The G7 configuration bit, if set
high, enables the clock start up delay after HALT when the
R/C clock configuration is used.
Config. Reg.
10137406
FIGURE 3. I/O Port Configurations
Data Reg.
G7
CLKDLY
HALT
G6
Alternate SK
IDLE
Port G has the following alternate features:
G7 CKO Oscillator dedicated output
G6 SI (MICROWIRE/PLUS Serial Data Input)
G5 SK (MICROWIRE/PLUS Serial Clock)
G4 SO (MICROWIRE/PLUS Serial Data Output)
G3 T1A (Timer T1 I/O)
G2 T1B (Timer T1 Capture Input)
G1 WDOUT WATCHDOG and/or Clock Monitor if WATCHDOG enabled, otherwise it is a general purpose I/O
G0 INTR (External Interrupt Input)
10137407
FIGURE 4. I/O Port Configurations — Output Mode
G0 through G3 are also used for In-System Emulation.
Port L is an 8-bit I/O port. All L-pins have Schmitt triggers on
the inputs.
Port L supports the Multi-Input Wake-up feature on all eight
pins. Port L has the following alternate pin functions:
L7 Multi-Input Wake-up or T3B (Timer T3B Input)
L6 Multi-Input Wake-up or T3A (Timer T3A Input/Output)
L5 Multi-Input Wake-up or T2B (Timer T2B Input)
19
www.national.com
COP8CBR9/COP8CCR9/COP8CDR9
9.0 Pin Descriptions
COP8CBR9/COP8CCR9/COP8CDR9
9.0 Pin Descriptions
addressing space with separate address buses. The architecture, though based on the Harvard architecture, permits
transfer of data from Flash Memory to RAM.
(Continued)
10.1 CPU REGISTERS
The CPU can do an 8-bit addition, subtraction, logical or shift
operation in one instruction (tC) cycle time.
There are six CPU registers:
A is the 8-bit Accumulator Register
PC is the 15-bit Program Counter Register
PU is the upper 7 bits of the program counter (PC)
PL is the lower 8 bits of the program counter (PC)
B is an 8-bit RAM address pointer, which can be optionally
post auto incremented or decremented.
X is an 8-bit alternate RAM address pointer, which can be
optionally post auto incremented or decremented.
S is the 8-bit Data Segment Address Register used to extend
the lower half of the address range (00 to 7F) into 256 data
segments of 128 bytes each.
10137408
FIGURE 5. I/O Port Configurations — Input Mode
SP is the 8-bit stack pointer, which points to the subroutine/
interrupt stack (in RAM). With reset the SP is initialized to
RAM address 06F Hex. The SP is decremented as items are
pushed onto the stack. SP points to the next available location on the stack.
All the CPU registers are memory mapped with the exception of the Accumulator (A) and the Program Counter (PC).
9.1 EMULATION CONNECTION
Connection to the emulation system is made via a 2 x 7
connector which interrupts the continuity of the RESET, G0,
G1, G2 and G3 signals between the COP8 device and the
rest of the target system (as shown in Figure 6). This connector can be designed into the production pc board and can
be replaced by jumpers or signal traces when emulation is
no longer necessary. The emulator will replicate all functions
of G0 - G3 and RESET. For proper operation, no connection
should be made on the device side of the emulator connector.
10.2 PROGRAM MEMORY
The program memory consists of 32,768 bytes of Flash
Memory. These bytes may hold program instructions or constant data (data tables for the LAID instruction, jump vectors
for the JID instruction, and interrupt vectors for the VIS
instruction). The program memory is addressed by the 15-bit
program counter (PC). All interrupts in the device vector to
program memory location 00FF Hex. The program memory
reads 00 Hex in the erased state. Program execution starts
at location 0 after RESET.
If a Return instruction is executed when the SP contains 6F
(hex), instruction execution will continue from Program
Memory location 7FFF (hex). If location 7FFF is accessed by
an instruction fetch, the Flash Memory will return a value of
00. This is the opcode for the INTR instruction and will cause
a Software Trap.
For the purpose of erasing and rewriting the Flash Memory,
it is organized in pages of 128 bytes.
10.3 DATA MEMORY
The data memory address space includes the on-chip RAM
and data registers, the I/O registers (Configuration, Data and
Pin), the control registers, the MICROWIRE/PLUS SIO shift
register, and the various registers, and counters associated
with the timers and the USART (with the exception of the
IDLE timer). Data memory is addressed directly by the instruction or indirectly by the B, X and SP pointers.
The data memory consists of 1024 bytes of RAM. Sixteen
bytes of RAM are mapped as “registers” at addresses 0F0 to
0FF Hex. These registers can be loaded immediately, and
also decremented and tested with the DRSZ (decrement
register and skip if zero) instruction. The memory pointer
registers X, SP, B and S are memory mapped into this space
at address locations 0FC to 0FF Hex respectively, with the
other registers being available for general usage.
10137409
FIGURE 6. Emulation Connection
10.0 Functional Description
The architecture of the device is a modified Harvard architecture. With the Harvard architecture, the program memory
(Flash) is separate from the data store memory (RAM). Both
Program Memory and Data Memory have their own separate
www.national.com
20
range (00 to 7F hex) into 256 data segments of 128 bytes
each, with a total addressing range of 32 kbytes from XX00
to XX7F. This organization allows a total of 256 data segments of 128 bytes each with an additional upper base
segment of 128 bytes. Furthermore, all addressing modes
are available for all data segments. The S register must be
changed under program control to move from one data
segment (128 bytes) to another. However, the upper base
segment (containing the 16 memory registers, I/O registers,
control registers, etc.) is always available regardless of the
contents of the S register, since the upper base segment
(address range 0080 to 00FF) is independent of data segment extension.
The instructions that utilize the stack pointer (SP) always
reference the stack as part of the base segment (Segment
0), regardless of the contents of the S register. The S register
is not changed by these instructions. Consequently, the
stack (used with subroutine linkage and interrupts) is always
located in the base segment. The stack pointer will be initialized to point at data memory location 006F as a result of
reset.
The 128 bytes of RAM contained in the base segment are
split between the lower and upper base segments. The first
112 bytes of RAM are resident from address 0000 to 006F in
the lower base segment, while the remaining 16 bytes of
RAM represent the 16 data memory registers located at
addresses 00F0 to 00FF of the upper base segment. No
RAM is located at the upper sixteen addresses (0070 to
007F) of the lower base segment.
Additional RAM beyond these initial 128 bytes, however, will
always be memory mapped in groups of 128 bytes (or less)
at the data segment address extensions (XX00 to XX7F) of
the lower base segment. The additional 892 bytes of RAM in
this device are memory mapped at address locations 0100
to 017F through 0700 to 077F hex.
(Continued)
The instruction set permits any bit in memory to be set, reset
or tested. All I/O and registers (except A and PC) are
memory mapped; therefore, I/O bits and register bits can be
directly and individually set, reset and tested. The accumulator (A) bits can also be directly and individually tested.
Note: RAM contents are undefined upon power-up.
10.4 DATA MEMORY SEGMENT RAM EXTENSION
Data memory address 0FF is used as a memory mapped
location for the Data Segment Address Register (S).
The data store memory is either addressed directly by a
single byte address within the instruction, or indirectly relative to the reference of the B, X, or SP pointers (each
contains a single-byte address). This single-byte address
allows an addressing range of 256 locations from 00 to FF
hex. The upper bit of this single-byte address divides the
data store memory into two separate sections as outlined
previously. With the exception of the RAM register memory
from address locations 00F0 to 00FF, all RAM memory is
memory mapped with the upper bit of the single-byte address being equal to zero. This allows the upper bit of the
single-byte address to determine whether or not the base
address range (from 0000 to 00FF) is extended. If this upper
bit equals one (representing address range 0080 to 00FF),
then address extension does not take place. Alternatively, if
this upper bit equals zero, then the data segment extension
register S is used to extend the base address range (from
0000 to 007F) from XX00 to XX7F, where XX represents the
8 bits from the S register. Thus the 128-byte data segment
extensions are located from addresses 0100 to 017F for
data segment 1, 0200 to 027F for data segment 2, etc., up to
FF00 to FF7F for data segment 255. The base address
range from 0000 to 007F represents data segment 0.
Figure 7 illustrates how the S register data memory extension is used in extending the lower half of the base address
21
www.national.com
COP8CBR9/COP8CCR9/COP8CDR9
10.0 Functional Description
COP8CBR9/COP8CCR9/COP8CDR9
10.0 Functional Description
(Continued)
10137410
FIGURE 7. RAM Organization
10.4.1 Virtual EEPROM
The Flash memory and the User ISP functions (see Section
5.7), provide the user with the capability to use the flash
program memory to back up user defined sections of RAM.
This effectively provides the user with the same nonvolatile
data storage as EEPROM. Management, and even the
amount of memory used, are the responsibility of the user,
however the flash memory read and write functions have
been provided in the boot ROM.
One typical method of using the Virtual EEPROM feature
would be for the user to copy the data to RAM during system
initialization, periodically, and if necessary, erase the page of
Flash and copy the contents of the RAM back to the Flash.
www.national.com
10.5 OPTION REGISTER
The Option register, located at address 0x7FFF in the Flash
Program Memory, is used to configure the user selectable
security, WATCHDOG, and HALT options. The register can
be programmed only in external Flash Memory programming
or ISP Programming modes. Therefore, the register must be
programmed at the same time as the program memory. The
contents of the Option register shipped from the factory read
00 Hex.
22
10.6 SECURITY
The device has a security feature which, when enabled,
prevents external reading of the Flash program memory. The
security bit in the Option Register determines, whether security is enabled or disabled. If the security feature is disabled, the contents of the internal Flash Memory may be
read by external programmers or by the built in
MICROWIRE/PLUS serial interface ISP. Security must be
enforced by the user when the contents of the Flash
Memory are accessed via the user ISP or Virtual EEPROM capability.
(Continued)
The format of the Option register is as follows:
Bit 7
Bit 6
Reserved
Bit 5
SECURITY
Bit 4
Bit 3
Reserved
Bit 2
Bit 1
Bit 0
WATCH
DOG
HALT
FLEX
Bits 7, 6 These bits are reserved and must be 0.
Bit 5
=1
=0
Security enabled. Flash Memory read and write
are not allowed except in User ISP/Virtual E2 commands. Mass Erase is allowed.
If the security feature is enabled, then any attempt to externally read the contents of the Flash Memory will result in the
value FF (hex) being read from all program locations (except
the Option Register). In addition, with the security feature
enabled, the write operation to the Flash program memory
and Option Register is inhibited. Page Erases are also inhibited when the security feature is enabled. The Option Register is readable regardless of the state of the security bit by
accessing location FFFF (hex). Mass Erase Operations are
possible regardless of the state of the security bit.
The security bit can be erased only by a Mass Erase of the
entire contents of the Flash unless Flash operation is under
the control of User ISP functions.
Note: The actual memory address of the Option Register is
7FFF (hex), however the MICROWIRE/PLUS ISP routines
require the address FFFF (hex) to be used to read the
Option Register when the Flash Memory is secured.
The entire Option Register must be programmed at one time
and cannot be rewritten without first erasing the entire last
page of Flash Memory.
Security disabled. Flash Memory read and write
are allowed.
Bits 4, 3 These bits are reserved and must be 0.
Bit 2
=1
=0
Bit 1
=1
=0
Bit 0
=1
=0
WATCHDOG feature disabled. G1 is a general
purpose I/O.
WATCHDOG feature enabled. G1 pin is
WATCHDOG output with weak pullup.
HALT mode disabled.
HALT mode enabled.
Execution following RESET will be from Flash
Memory.
Flash Memory is erased. Execution following RESET will be from Boot ROM with the MICROWIRE/
PLUS ISP routines.
10.7 RESET
The device is initialized when the RESET pin is pulled low or
the On-chip Brownout Reset is activated. The Brownout
Reset feature is not available on the COP8CDR9.
The COP8 assembler defines a special ROM section type,
CONF, into which the Option Register data may be coded.
The Option Register is programmed automatically by programmers that are certified by National.
The user needs to ensure that the FLEX bit will be set when
the device is programmed.
The following examples illustrate the declaration of the Option Register.
Syntax:
[label:].sect
config, conf
.db
value
;1 byte,
;configures
;options
.endsect
Example: The following sets a value in the Option Register
and User Identification for a COP8CBR9HVA7. The Option
Register bit values shown select options: Security disabled,
WATCHDOG enabled HALT mode enabled and execution
will commence from Flash Memory.
.chip
8CBR
.sect
option, conf
.db
0x01
;wd, halt, flex
.endsect
...
.end
start
Note: All programmers certified for programming this family
of parts will support programming of the Option Register.
Please contact National or your device programmer supplier
for more information.
10137411
FIGURE 8. Reset Logic
The following occurs upon initialization:
Port A: TRI-STATE (High Impedance Input)
Port B: TRI-STATE (High Impedance Input)
Port C: TRI-STATE (High Impedance Input)
Port D: HIGH
Port E: TRI-STATE (High Impedance Input)
Port F: TRI-STATE (High Impedance Input)
Port G: TRI-STATE (High Impedance Input). Exceptions: If
Watchdog is enabled, then G1 is Watchdog output. G0
and G2 have their weak pull-up enabled during RESET.
Port L: TRI-STATE (High Impedance Input)
PC: CLEARED to 0000
PSW, CNTRL and ICNTRL registers: CLEARED
SIOR:
UNAFFECTED after RESET with power already applied
RANDOM after RESET at power-on
23
www.national.com
COP8CBR9/COP8CCR9/COP8CDR9
10.0 Functional Description
COP8CBR9/COP8CCR9/COP8CDR9
10.0 Functional Description
10.7.1 External Reset
The RESET input when pulled low initializes the device. The
RESET pin must be held low for a minimum of one instruction cycle to guarantee a valid reset. During Power-Up initialization, the user must ensure that the RESET pin of a
device without the Brownout Reset feature is held low until
the device is within the specified VCC voltage. Any rising
edge on the RESET pin while VCC is below the specified
operating range may cause unpredictable results. An R/C
circuit on the RESET pin with a delay 5 times (5x) greater
than the power supply rise time is recommended. Reset
should also be wide enough to ensure crystal start-up upon
Power-Up.
(Continued)
T2CNTRL: CLEARED
T3CNTRL: CLEARED
HSTCR: CLEARED
ITMR: Cleared except Bit 6 (HSON) = 1
Accumulator, Timer 1, Timer 2 and Timer 3:
RANDOM after RESET
WKEN, WKEDG: CLEARED
WKPND: RANDOM
SP (Stack Pointer):
Initialized to RAM address 06F Hex
B and X Pointers:
RESET may also be used to cause an exit from the HALT
mode.
A recommended reset circuit for this device is shown in
Figure 9.
UNAFFECTED after RESET with power already applied
RANDOM after RESET at power-on
S Register: CLEARED
RAM:
UNAFFECTED after RESET with power already applied
RANDOM after RESET at power-on
USART:
PSR, ENU, ENUR, ENUI: Cleared except the TBMT bit
which is set to one.
ANALOG TO DIGITAL CONVERTER:
ENAD: CLEARED
ADRSTH: RANDOM
ADRSTL: RANDOM
ISP CONTROL:
ISPADLO: CLEARED
ISPADHI: CLEARED
PGMTIM: PRESET TO VALUE FOR 10 MHz CKI
WATCHDOG (if enabled):
The device comes out of reset with both the WATCHDOG
logic and the Clock Monitor detector armed, with the
WATCHDOG service window bits set and the Clock Monitor bit set. The WATCHDOG and Clock Monitor circuits
are inhibited during reset. The WATCHDOG service window bits being initialized high default to the maximum
WATCHDOG service window of 64k T0 clock cycles. The
Clock Monitor bit being initialized high will cause a Clock
Monitor error following reset if the clock has not reached
the minimum specified frequency at the termination of
reset. A Clock Monitor error will cause an active low error
output on pin G1. This error output will continue until
16–32 T0 clock cycles following the clock frequency
reaching the minimum specified value, at which time the
G1 output will go high.
www.national.com
10137412
FIGURE 9. Reset Circuit Using External Reset
10.7.2 On-Chip Brownout Reset
When enabled, the device generates an internal reset as
VCC rises. While VCC is less than the specified brownout
voltage (Vbor), the device is held in the reset condition and
the Idle Timer is preset with 00Fx (240–256 tC). When VCC
reaches a value greater than Vbor, the Idle Timer starts
counting down. Upon underflow of the Idle Timer, the internal
reset is released and the device will start executing instructions. This internal reset will perform the same functions as
external reset. Once VCC is above the Vbor and this initial Idle
Timer time-out takes place, instruction execution begins and
the Idle Timer can be used normally. If, however, VCC drops
below the selected Vbor, an internal reset is generated, and
the Idle Timer is preset with 00Fx. The device now waits until
VCC is greater than Vbor and the countdown starts over.
When enabled, the functional operation of the device, at
frequency, is guaranteed down to the Vbor level.
24
COP8CBR9/COP8CCR9/COP8CDR9
10.0 Functional Description
(Continued)
10137413
FIGURE 10. Brownout Reset Operation
filtering of VCC be done to ensure that the brownout feature
works correctly. Power supply decoupling is vital even in
battery powered systems.
There are two optional brownout voltages. The part numbers
for the three versions of this device are:
COP8CBR, Vbor = low voltage range
COP8CCR, Vbor = high voltage range
One exception to the above is that the brownout circuit will
insert a delay of approximately 3 ms on power up or any time
the VCC drops below a voltage of about 1.8V. The device will
be held in Reset for the duration of this delay before the Idle
Timer starts counting the 240 to 256 tC. This delay starts as
soon as the VCC rises above the trigger voltage (approximately 1.8V). This behavior is shown in Figure 10.
In Case 1, VCC rises from 0V and the on-chip RESET is
undefined until the supply is greater than approximately
1.0V. At this time the brownout circuit becomes active and
holds the device in RESET. As the supply passes a level of
about 1.8V, a delay of about 3 ms (td) is started and the Idle
Timer is preset to a value between 00F0 and 00FF (hex).
Once VCC is greater than Vbor and td has expired, the Idle
Timer is allowed to count down (tid).
Case 2 shows a subsequent dip in the supply voltage which
goes below the approximate 1.8V level. As VCC drops below
Vbor, the internal RESET signal is asserted. When VCC rises
back above the 1.8V level, td is started. Since the power
supply rise time is longer for this case, td has expired before
VCC rises above Vbor and tid starts immediately when VCC is
greater than Vbor.
Case 3 shows a dip in the supply where VCC drops below
Vbor, but not below 1.8V. On-chip RESET is asserted when
VCC goes below Vbor and tid starts as soon as the supply
goes back above Vbor.
If the Brownout Reset feature is enabled, the internal reset
will not be turned off until the Idle Timer underflows. The
internal reset will perform the same functions as external
reset. The device is guaranteed to operate at the specified
frequency down to the specified brownout voltage. After the
underflow, the logic is designed such that no additional
internal resets occur as long as VCC remains above the
brownout voltage.
The device is relatively immune to short duration negativegoing VCC transients (glitches). It is essential that good
COP8CDR, BOR is disabled.
Refer to the device specifications for the actual Vbor voltages.
High brownout voltage devices are guaranteed to operate at
10MHz down to the brownout voltage. Low brownout voltage
devices are guaranteed to operate at 3.33MHz down to the
brownout voltage. Devices are not guaranteed to operate
at 10MHz down to the low brownout voltage.
Under no circumstances should the RESET pin be allowed
to float. If the on-chip Brownout Reset feature is being used,
the RESET pin should be connected directly to VCC. The
RESET input may also be connected to an external pull-up
resistor or to other external circuitry. Any rising edge on the
RESET pin while VCC is below the specified operating range
may cause unpredictable results. The output of the brownout
reset detector will always preset the Idle Timer to a value
between 00F0 and 00FF (240 to 256 tC). At this time, the
internal reset will be generated.
If the BOR feature is disabled, then no internal resets are
generated and the Idle Timer will power-up with an unknown
value. In this case, the external RESET must be used. When
BOR is disabled, this on-chip circuitry is disabled and draws
no DC current.
The contents of data registers and RAM are unknown following the on-chip reset.
25
www.national.com
COP8CBR9/COP8CCR9/COP8CDR9
10.0 Functional Description
Section 7.0 Power Saving Features. The low speed oscillator
utilizes the L0 and L1 port pins. References in the following
text to CKI will also apply to L0 and references to G7/CKO
will also apply to L1.
(Continued)
10.8.1 Oscillator
CKI is the clock input while G7/CKO is the clock generator
output to the crystal. An on-chip bias resistor connected
between CKI and CKO is provided to reduce system part
count. The value of the resistor is in the range of 0.5M to 2M
(typically 1.0M). Table 2 shows the component values required for various standard crystal values. Resistor R2 is
on-chip, for the high speed oscillator, and is shown for
reference. Figure 12 shows the crystal oscillator connection
diagram. A ceramic resonator of the required frequency may
be used in place of a crystal if the accuracy requirements are
not quite as strict.
10137414
FIGURE 11. Reset Circuit Using Power-On Reset
10.8 OSCILLATOR CIRCUITS
The device has two crystal oscillators to facilitate low power
operation while maintaining throughput when required. Further information on the use of the two oscillators is found in
High Speed Oscillator
Low Speed Oscillator
10137416
10137415
FIGURE 12. Crystal Oscillator
C2 can be trimmed to obtain the desired frequency. C2
should be less than or equal to C1.
Note: The low power design of the low speed oscillator
makes it extremely sensitive to board layout and load capacitance. The user should place the crystal and load capacitors within 1cm. of the device and must ensure that the
above equation for load capacitance is strictly followed. If
these conditions are not met, the application may have
problems with startup of the low speed oscillator.
TABLE 2. Crystal Oscillator Configuration,
TA = 25˚C, VCC = 5V
R1 (kΩ)
R2 (MΩ)
C1 (pF)
C2 (pF)
CKI Freq.
(MHz)
0
On Chip
18
18
10
0
On Chip
18
18
5
0
On Chip
18–36
18–36
1
5.6
On Chip
100
100–156
0.455
0
20
**
**
32.768
kHz*
TABLE 3. Startup Times
*Applies to connection to low speed oscillator on port pins L0 and L1 only.
**See Note below.
The crystal and other oscillator components should be
placed in close proximity to the CKI and CKO pins to minimize printed circuit trace length.
The values for the external capacitors should be chosen to
obtain the manufacturer’s specified load capacitance for the
crystal when combined with the parasitic capacitance of the
trace, socket, and package (which can vary from 0 to 8 pF).
The guideline in choosing these capacitors is:
Manufacturer’s specified load cap = (C1 * C2) / (C1 + C2) +
Cparasitic
www.national.com
26
CKI Frequency
Startup Time
10 MHz
1–10 ms
3.33 MHz
3–10 ms
1 MHz
3–20 ms
455 kHz
10–30 ms
32 kHz (low speed oscillator)
2–5 sec
10.9.3 ICNTRL Register (Address X'00E8)
(Continued)
Unused
10.8.2 Clock Doubler
This device contains a frequency doubler that doubles the
frequency of the oscillator selected to operate the main
microcontroller core. The details of how to select either the
high speed oscillator or low speed oscillator are described in,
Power Saving Features. When the high speed oscillator
connected to CKI operates at 10 MHz, the internal clock
frequency is 20 MHz, resulting in an instruction cycle time of
0.5 µs. When the 32 kHz oscillator connected to L0 and L1 is
selected, the internal clock frequency is 64 kHz, resulting in
an instruction cycle of 152.6 µs. The output of the clock
doubler is called MCLK and is referenced in many places
within this document.
T1C1
T0EN
µWPND
µWEN
T1PNDB
T1ENB
T1C0
Bit 0
T0EN
Timer T0 Interrupt Enable (Bit 12 toggle)
µWPND MICROWIRE/PLUS interrupt pending
µWEN
Enable MICROWIRE/PLUS interrupt
T1PNDB Timer T1 Interrupt Pending Flag for T1B capture
edge
T1ENB
Timer T1 Interrupt Enable for T1B Input capture
edge
10.9.4 T2CNTRL Register (Address X'00C6)
10.9.1 CNTRL Register (Address X'00EE)
T1C2
T0PND
The ICNTRL register contains the following bits:
LPEN
L
Port
Interrupt
Enable
(Multi-Input
Wake-up/Interrupt)
T0PND Timer T0 Interrupt pending
10.9 CONTROL REGISTERS
T1C3
LPEN
Bit 7
MSEL
IEDG
T2C3
SL1
Bit 7
T2C2
T2C1
T2C0
T2PNDA
T2ENA
T2PNDB
Bit 7
SL0
Bit 0
T2ENB
Bit 0
The T2CNTRL register contains the following bits:
T2C3
Timer T2 mode control bit
T2C2
Timer T2 mode control bit
T2C1
Timer T2 mode control bit
T2C0
Timer T2 Start/Stop control in timer
modes 1 and 2, Timer T2 Underflow Interrupt
Pending Flag in timer mode 3
T2PNDA Timer T2 Interrupt Pending Flag (Autoreload
RA in mode 1, T2 Underflow in mode 2, T2A
capture edge in mode 3)
T2ENA
Timer T2 Interrupt Enable for Timer Underflow
or T2A Input capture edge
The Timer1 (T1) and MICROWIRE/PLUS control register
contains the following bits:
T1C3
Timer T1 mode control bit
T1C2
Timer T1 mode control bit
T1C1
Timer T1 mode control bit
T1C0
Timer T1 Start/Stop control in timer
modes 1 and 2. T1 Underflow Interrupt
Pending Flag in timer mode 3
MSEL
Selects G5 and G4 as MICROWIRE/PLUS
signals SK and SO respectively
IEDG
External interrupt edge polarity select
(0 = Rising edge, 1 = Falling edge)
T2PNDB Timer T2 Interrupt Pending Flag for T2B capture edge
T2ENB
Timer T2 Interrupt Enable for T2B Input capture
edge
SL1 & SL0 Select the MICROWIRE/PLUS clock divide
by (00 = 2, 01 = 4, 1x = 8)
10.9.2 PSW Register (Address X'00EF)
HC
Bit 7
C
T1PNDA
T1ENA
EXPND
BUSY
EXEN
10.9.5 T3CNTRL Register (Address X'00B6)
GIE
T3C3
Bit 0
Bit 7
The PSW register contains the following select bits:
HC
Half Carry Flag
C
Carry Flag
T1PNDA Timer T1 Interrupt Pending Flag (Autoreload RA
in mode 1, T1 Underflow in Mode 2, T1A capture
edge in mode 3)
T1ENA Timer T1 Interrupt Enable for Timer Underflow
or T1A Input capture edge
EXPND External interrupt pending
BUSY
MICROWIRE/PLUS busy shifting flag
EXEN
Enable external interrupt
GIE
Global interrupt enable (enables interrupts)
T3C2
T3C1
T3C0
T3PNDA
T3ENA
T3PNDB
T3ENB
Bit 0
The T3CNTRL register contains the following bits:
T3C3
Timer T3 mode control bit
T3C2
Timer T3 mode control bit
T3C1
Timer T3 mode control bit
T3C0
Timer T3 Start/Stop control in timer
modes 1 and 2, Timer T3 Underflow Interrupt
Pending Flag in timer mode 3
T3PNDA Timer T3 Interrupt Pending Flag (Autoreload
RA in mode 1, T3 Underflow in mode 2, T3A
capture edge in mode 3)
T3ENA
Timer T3 Interrupt Enable for Timer Underflow
or T3A Input capture edge
T3PNDB Timer T3 Interrupt Pending Flag for T3B capture edge
T3ENB
Timer T3 Interrupt Enable for T3B Input capture
edge
The Half-Carry flag is also affected by all the instructions that
affect the Carry flag. The SC (Set Carry) and R/C (Reset
Carry) instructions will respectively set or clear both the carry
flags. In addition to the SC and R/C instructions, ADC,
SUBC, RRC and RLC instructions affect the Carry and Half
Carry flags.
27
www.national.com
COP8CBR9/COP8CCR9/COP8CDR9
10.0 Functional Description
COP8CBR9/COP8CCR9/COP8CDR9
10.0 Functional Description
ADCH2 ADC channel select bit
ADCH1 ADC channel select bit
(Continued)
ADCH0 ADC channel select bit
10.9.6 HSTCR Register (Address X'00AF)
Reserved
T3HS
Bit 7
ADMOD Places the ADC in single-ended or differential
mode.
MUX
Enables the ADC multiplexor output.
T2HS
Bit 0
PSC
Switches the ADC clock between a divide by one
or a divide by sixteen of MCLK.
ADBSY Signifies that the ADC is currently busy performing a conversion. When set by the user, starts a
conversion.
The HSTCR register contains the following bits:
T3HS Places Timer T3 in High Speed Mode.
T2HS Places Timer T2 in High Speed Mode.
10.9.7 ITMR Register (Address X'00CF)
LSON
HSON
DCEN
CCKS
EL
RSVD
ITSEL2
ITSEL1
Bit 7
11.0 In-System Programming
ITSEL0
Bit 0
11.1 INTRODUCTION
The ITMR register contains the following bits:
LSON
Turns the low speed oscillator on or off.
This device provides the capability to program the program
memory while installed in an application board. This feature
is called In System Programming (ISP). It provides a means
of ISP by using the MICROWIRE/PLUS, or the user can
provide his own, customized ISP routine. The factory installed ISP uses the MICROWIRE/PLUS port. The user can
provide his own ISP routine that uses any of the capabilities
of the device, such as USART, parallel port, etc.
HSON
DCEN
Turns the high speed oscillator on or off.
Selects the high speed oscillator or the low
speed oscillator as the Idle Timer Clock.
CCKSEL Selects the high speed oscillator or the low
speed oscillator as the primary CPU clock.
RSVD
This bit is reserved and must be 0.
ITSEL2 Idle Timer period select bit.
ITSEL1 Idle Timer period select bit.
ITSEL0 Idle Timer period select bit.
11.2 FUNCTIONAL DESCRIPTION
The organization of the ISP feature consists of the user flash
program memory, the factory boot ROM, and some registers
dedicated to performing the ISP function. See Figure 13 for
a simplified block diagram. The factory installed ISP that
uses MICROWIRE/PLUS is located in the Boot ROM. The
size of the Boot ROM is 1K bytes and also contains code to
facilitate in system emulation capability. If a user chooses to
write his own ISP routine, it must be located in the flash
program memory.
10.9.8 ENAD Register (Address X'00CB)
ADCH3 ADCH2
ADCH1
Channel Select
ADCH0
ADMOD
Mode
Select
MUX
PSC
Mux Out Prescale
Bit 7
ADBSY
Busy
Bit 0
The ENAD register contains the following bits:
ADCH3 ADC channel select bit
10137417
FIGURE 13. Block Diagram of ISP
As described in 10.5 OPTION REGISTER, there is a bit,
FLEX, that controls whether the device exits RESET executing from the flash memory or the Boot ROM. The user must
program the FLEX bit as appropriate for the application. In
www.national.com
the erased state, the FLEX bit = 0 and the device will
power-up executing from Boot ROM. When FLEX = 0, this
assumes that either the MICROWIRE/PLUS ISP routine or
external programming is being used to program the device. If
28
TABLE 5. Low Byte of ISP Address
(Continued)
ISPADLO
using the MICROWIRE/PLUS ISP routine, the software in
the boot ROM will monitor the MICROWIRE/PLUS for commands to program the flash memory. When programming
the flash program memory is complete, the FLEX bit will
have to be programmed to a 1 and the device will have to be
reset, either by pulling external Reset to ground or by a
MICROWIRE/PLUS ISP EXIT command, before execution
from flash program memory will occur.
If FLEX = 1, upon exiting Reset, the device will begin executing from location 0000 in the flash program memory. The
assumption, here, is that either the application is not using
ISP, is using MICROWIRE/PLUS ISP by jumping to it within
the application code, or is using a customized ISP routine. If
a customized ISP routine is being used, then it must be
programmed into the flash memory by means of the
MICROWIRE/PLUS ISP or external programming as described in the preceding paragraph.
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Addr 7
Addr 6
Addr 5
Addr 4
Addr 3
Addr 2
Addr 1
Addr 0
11.3.2 ISP Read Data Register
The Read Data Register (ISPRD) contains the value read
back from a read operation. This register can be accessed
from either flash program memory or Boot ROM. This register is undefined on Reset.
TABLE 6. ISP Read Data Register
ISPRD
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
11.3.3 ISP Write Data Register
The Write Data Register (ISPWR) contains the data to be
written into the specified address. This register is undetermined on Reset. This register can be accessed from either
flash program memory or Boot ROM. The Write Data register
must be maintained for the entire duration of the operation.
11.3 REGISTERS
There are six registers required to support ISP: Address
Register Hi byte (ISPADHI), Address Register Low byte
(ISPADLO), Read Data Register (ISPRD), Write Data Register (ISPWR), Write Timing Register (PGMTIM), and the
Control Register (ISPCNTRL). The ISPCNTRL Register is
not available to the user.
TABLE 7. ISP Write Data Register
ISPWR
11.3.1 ISP Address Registers
The address registers (ISPADHI & ISPADLO) are used to
specify the address of the byte of data being written or read.
For page erase operations, the address of the beginning of
the page should be loaded. For mass erase operations,
0000 must be placed into the address registers. When reading the Option register, FFFF (hex) should be placed into the
address registers. Registers ISPADHI and ISPADLO are
cleared to 00 on Reset. These registers can be loaded from
either flash program memory or Boot ROM and must be
maintained for the entire duration of the operation.
Note: The actual memory address of the Option Register is
7FFF (hex), however the MICROWIRE/PLUS ISP routines
require the address FFFF (hex) to be used to read the
Option Register when the Flash Memory is secured.
ISPADHi
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Addr 15
Addr 14
Addr 13
Addr 12
Addr 11
Addr 10
Addr 9
Addr 8
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
11.3.4 ISP Write Timing Register
The Write Timing Register (PGMTIM) is used to control the
width of the timing pulses for write and erase operations. The
value to be written into this register is dependent on the
frequency of CKI and is shown in Table 8. This register must
be written before any write or erase operation can take
place. It only needs to be loaded once, for each value of CKI
frequency. This register can be loaded from either flash
program memory or Boot ROM and must be maintained for
the entire duration of the operation. The MICROWIRE/PLUS
ISP routine that is resident in the boot ROM requires that this
Register be defined prior to any access to the Flash memory.
Refer to 11.7 MICROWIRE/PLUS ISP for more information
on available ISP commands. On Reset, the PGMTIM register is loaded with the value that corresponds to 10 MHz
frequency for CKI.
TABLE 4. High Byte of ISP Address
Bit 7
Bit 7
29
www.national.com
COP8CBR9/COP8CCR9/COP8CDR9
11.0 In-System Programming
COP8CBR9/COP8CCR9/COP8CDR9
11.0 In-System Programming
(Continued)
TABLE 8. PGMTIM Register Format
PGMTIM
Register Bit
CKI Frequency Range
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
37.5 kHz–50 kHz
0
0
0
0
0
0
1
1
50 kHz–66.67 kHz
0
0
0
0
0
1
0
0
62.5 kHz–83.3 kHz
0
0
0
0
0
1
0
1
75 kHz–100 kHz
0
0
0
0
0
1
1
1
100 kHz–133 kHz
0
0
0
0
1
0
0
0
112.5 kHz–150 kHz
0
0
0
0
1
0
1
1
150 kHz–200 kHz
0
0
0
0
1
1
1
1
200 kHz–266.67 kHz
0
0
0
1
0
0
0
1
225 kHz–300 kHz
0
0
0
1
0
1
1
1
300 kHz–400 kHz
0
0
0
1
1
1
0
1
375 kHz–500 kHz
0
0
1
0
0
1
1
1
500 kHz–666.67 kHz
0
0
1
0
1
1
1
1
600 kHz–800 kHz
0
0
1
1
1
1
1
1
800 kHz–1.067 MHz
0
1
0
0
0
1
1
1
1 MHz–1.33 MHz
0
1
0
0
1
0
0
0
1.125 MHz–1.5 MHz
0
1
0
0
1
0
1
1
1.5 MHz–2 MHz
0
1
0
0
1
1
1
1
2 MHz–2.67 MHz
0
1
0
1
0
1
0
0
2.625 MHz–3.5 MHz
0
1
0
1
1
0
1
1
3.5 MHz–4.67 MHz
0
1
1
0
0
0
1
1
4.5 MHz–6 MHz
0
1
1
0
1
1
1
1
6 MHz–8 MHz
0
1
1
1
1
0
1
1
7.5 MHz–10 MHz
R
R/W
R/W
R/W
R/W
R/W
R/W
R/W
11.4 MANEUVERING BACK AND FORTH BETWEEN
FLASH MEMORY AND BOOT ROM
When using ISP, at some point, it will be necessary to
maneuver between the flash program memory and the Boot
ROM, even when using customized ISP routines. This is
because it’s not possible to execute from the flash program
memory while it’s being programmed.
Two instructions are available to perform the jumping back
and forth: Jump to Boot (JSRB) and Return to Flash (RETF).
The JSRB instruction is used to jump from flash memory to
Boot ROM, and the RETF is used to return from the Boot
ROM back to the flash program memory. See 20.0 Instruction Set for specific details on the operation of these instructions.
The JSRB instruction must be used in conjunction with the
Key register. This is to prevent jumping to the Boot ROM in
the event of run-away software. For the JSRB instruction to
actually jump to the Boot ROM, the Key bit must be set. This
is done by writing the value shown in Table 9 to the Key
register. The Key is a 6 bit key and if the key matches, the
KEY bit will be set for 8 instruction cycles. The JSRB instruction must be executed while the KEY bit is set. If the KEY
does not match, then the KEY bit will not be set and the
JSRB will jump to the specified location in the flash memory.
In emulation mode, if a breakpoint is encountered while the
KEY is set, the counter that counts the instruction cycles will
www.national.com
25 kHz–33.3 kHz
be frozen until the breakpoint condition is cleared. If an
interrupt occurs while the key is set, the key will expire
before interrupt service is complete. It is recommended that
the software globally disable interrupts before setting the
key. The Key register is a memory mapped register. Its
format when writing is shown in Table 9. In normal operation,
it is not necessary to test the KEY bit before using the JSRB
instruction. The additional instructions required to test the
key may cause the key to time-out before the JSRB can be
executed.
TABLE 9. KEY Register Write Format
KEY When Writing
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
1
0
0
1
1
0
X
X
Bits 7–2: Key value that must be written to set the KEY bit.
Bits 1–0: Don’t care.
11.5 FORCED EXECUTION FROM BOOT ROM
When the user is developing a customized ISP routine, code
lockups due to software errors may be encountered. The
normal, and preferred, method to recover from these conditions is to reprogram the device with the corrected code by
either an external parallel programmer or the emulation
30
(Continued)
5.
Pull RESET High.
6.
After a delay of at least three instruction cycles, remove
the high voltage from G6.
tools. As a last resort, when this equipment is not available,
there is a hardware method to get out of these lockups and
force execution from the Boot ROM MICROWIRE/PLUS
routine. The customer will then be able to erase the Flash
Memory code and start over.
The method to force this condition is to drive the G6 pin to
high voltage (2 x VCC) and activate Reset. The high voltage
condition on G6 must not be applied before VCC is valid and
stable, and must be held for at least 3 instruction cycles
longer than Reset is active. This special condition will bypass checking the state of the Flex bit in the Option Register
and will start execution from location 0000 in the Boot ROM.
In this state, the user can input the appropriate commands,
using MICROWIRE/PLUS, to erase the flash program
memory and reprogram it. If the device is subsequently reset
before the Flex bit has been erased by specific Page Erase
or Mass Erase ISP commands, execution will start from
location 0000 in the Flash program memory. The high voltage (2 x VCC) on G6 will not erase either the Flex or the
Security bit in the Option Register. The Security bit, if set,
can only be erased by a Mass Erase of the entire contents of
the Flash Memory unless under the control of User ISP
routines in the Application Program.
While the G6 pin is at high voltage, the Load Clock will be
output onto G5, which will look like an SK clock to the
MICROWIRE/PLUS routine executing in slave mode. However, when G6 is at high voltage, the G6 input will also look
like a logic 1. The MICROWIRE/PLUS routine in Boot ROM
monitors the G6 input, waits for it to go low, debounces it,
and then enables the ISP routine. CAUTION: The Load clock
on G5 could be in conflict with the user’s external SK. It is up
to the user to resolve this conflict, as this condition is considered a minor issue that’s only encountered during software development. The user should also be cautious of
the high voltage applied to the G6 pin. This high voltage
could damage other circuitry connected to the G6 pin
(e.g. the parallel port of a PC). The user may wish to
disconnect other circuitry while G6 is connected to the high
voltage.
VCC must be valid and stable before high voltage is applied
to G6.
The correct sequence to be used to force execution from
Boot ROM is :
1. Disconnect G6 from the source of data for MICROWIRE/
PLUS ISP.
2. Apply VCC to the device.
3. Pull RESET Low.
4. After VCC is valid and stable, connect a voltage between
2 x VCC and VCC+7V to the G6 pin. Ensure that the rise
time of the high voltage on G6 is slower than the minimum in the Electrical Specifications. Figure 14 shows a
possible circuit dliagram for implementing the 2 x VCC.
Be aware of the typical input current on the G6 pin when
the high voltage is applied. The resistor used in the RC
network, and the high voltage used, should be chosen to
keep the high voltage at the G6 pin between 2 x VCC and
VCC+7V.
10137466
FIGURE 14. Circuit Diagram for Implementing the 2 x
VCC
11.6 RETURN TO FLASH MEMORY WITHOUT
HARDWARE RESET
After programming the entire program memory, including
options, it is necessary to exit the Boot ROM and return to
the flash program memory for program execution. Upon
receipt and completion of the EXIT command through the
MICROWIRE/PLUS ISP, the ISP code will reset the part and
begin execution from the flash program memory as described in the Reset section. This assumes that the FLEX bit
in the Option register was programmed to 1.
11.7 MICROWIRE/PLUS ISP
National Semiconductor provides a program, which is available from our web site at www.national.com/cop8, that is
capable of programming a device from the parallel port of a
PC. The software accepts manually input commands and is
capable of downloading standard Intel HEX Format files.
Users who wish to write their own MICROWIRE/PLUS ISP
host software should refer to the COP8 FLASH ISP User
Manual, available from the same web site. This document
includes details of command format and delays necessary
between command bytes.
The MICROWIRE/PLUS ISP supports the following features
and commands:
• Write a value to the ISP Write Timing Register. NOTE:
This must be the first command after entering
MICROWIRE/PLUS ISP mode.
• Erase the entire flash program memory (mass erase).
• Erase a page at a specified address.
• Read Option register.
• Read a byte from a specified address.
• Write a byte to a specified address.
• Read multiple bytes starting at a specified address.
• Write multiple bytes starting at a specified address.
• Exit ISP and return execution to flash program memory.
The following table lists the MICROWIRE/PLUS ISP commands and provides information on required parameters and
return values.
31
www.national.com
COP8CBR9/COP8CCR9/COP8CDR9
11.0 In-System Programming
COP8CBR9/COP8CCR9/COP8CDR9
11.0 In-System Programming
(Continued)
TABLE 10. MICROWIRE/PLUS ISP Commands
Command
Function
Command
Value (Hex)
Parameters
Return Data
PGMTIM_SET
Write Pulse Timing
Register
0x3B
Value
N/A
PAGE_ERASE
Page Erase
0xB3
Starting Address of
Page
N/A
MASS_ERASE
Mass Erase
0xBF
Confirmation Code
N/A (The entire Flash
Memory will be erased)
READ_BYTE
Read Byte
0x1D
Address High, Address
Low
Data Byte if Security not
set. 0xFF if Security set.
Option Register if address
= 0xFFFF, regardless of
Security
BLOCKR
Block Read
0xA3
Address High, Address
Low, Byte Count (n)
High, Byte Count (n)
Low
0 ≤ n ≤ 32767
n Data Bytes if Security
not set.
n Bytes of 0xFF if
Security set.
WRITE_BYTE
Write Byte
0x71
Address High, Address
Low, Data Byte
N/A
BLOCKW
Block Write
0x8F
Address High, Address
Low, Byte Count (0 ≤ n
≤ 16), n Data Bytes
N/A
EXIT
EXIT
0xD3
N/A
N/A (Device will Reset)
INVALID
N/A
Any other invalid
command will be
ignored
N/A
Note: The user must ensure that Block Writes do not cross a 64 byte boundary within one operation.
11.8 USER ISP AND VIRTUAL E2
The following commands will support transferring blocks of
data from RAM to flash program memory, and vice-versa.
The user is expected to enforce application security in this
case.
• Erase the entire flash program memory (mass erase).
NOTE: Execution of this command will force the device
into the MICROWIRE/PLUS ISP mode.
• Erase a page of flash memory at a specified address.
• Read a byte from a specified address.
• Write a byte to a specified address.
www.national.com
•
Copy a block of data from RAM into flash program
memory.
• Copy a block of data from program flash memory to RAM.
The following table lists the User ISP/Virtual E2 commands,
required parameters and return data, if applicable. The command entry point is used as an argument to the JSRB
instruction. Table 12 lists the Ram locations and Peripheral
Registers, used for User ISP and Virtual E2, and their expected contents. Please refer to the COP8 FLASH ISP User
Manual for additional information and programming examples on the use of User ISP and Virtual E2.
32
(Continued)
TABLE 11. User ISP/Virtual E2 Entry Points
Command/
Label
Function
Command
Entry Point
Parameters
Return Data
cpgerase
Page Erase
0x17
Register ISPADHI is loaded by the user
with the high byte of the address.
Register ISPADLO is loaded by the
user with the low byte of the address.
N/A (A page of memory beginning at
ISPADHI, ISPADLO will be erased)
cmserase
Mass Erase
0x1A
Accumulator A contains the
confirmation key 0x55.
N/A (The entire Flash Memory will be
erased)
creadbf
Read Byte
0x11
Register ISPADHI is loaded by the user
with the high byte of the address.
Register ISPADLO is loaded by the
user with the low byte of the address.
Data Byte in Register ISPRD.
cblockr
Block Read
0x26
Register ISPADHI is loaded by the user
with the high byte of the address.
Register ISPADLO is loaded by the
user with the low byte of the address.
X pointer contains the beginning RAM
address where the result(s) will be
returned.
Register BYTECOUNTLO contains the
number of n bytes to read
(0 ≤ n ≤ 255). It is up to the user to
setup the segment register.
n Data Bytes, Data will be returned
beginning at a location pointed to by
the RAM address in X.
cwritebf
Write Byte
0x14
Register ISPADHI is loaded by the user
with the high byte of the address.
Register ISPADLO is loaded by the
user with the low byte of the address.
Register ISPWR contains the Data
Byte to be written.
N/A
cblockw
Block Write
0x23
Register ISPADHI is loaded by the user
with the high byte of the address.
Register ISPADLO is loaded by the
user with the low byte of the address.
Register BYTECOUNTLO contains the
number of n bytes to write (0 ≤ n ≤ 16).
The combination of the
BYTECOUNTLO and the ISPADLO
registers must be set such that the
operation will not cross a 64 byte
boundary.
X pointer contains the beginning RAM
address of the data to be written.
It is up to the user to setup the
segment register.
N/A
exit
EXIT
0x62
N/A
N/A (Device will Reset)
uwisp
MICROWIRE/
PLUS
ISP Start
0x00
N/A
N/A (Device will be in
MICROWIRE/PLUS ISP Mode. Must be
terminated by MICROWIRE/PLUS ISP
EXIT command which will Reset the
device)
33
www.national.com
COP8CBR9/COP8CCR9/COP8CDR9
11.0 In-System Programming
COP8CBR9/COP8CCR9/COP8CDR9
11.0 In-System Programming
(Continued)
TABLE 12. Register and Bit Name Definitions
Register
Name
RAM
Location
Purpose
ISPADHI
High byte of Flash Memory Address
0xA9
ISPADLO
Low byte of Flash Memory Address
0xA8
ISPWR
The user must store the byte to be written into this register before jumping into the
write byte routine.
0xAB
ISPRD
Data will be returned to this register after the read byte routine execution.
0xAA
ISPKEY
The ISPKEY Register is required to validate the JSRB instruction and must be loaded
within 6 instruction cycles before the JSRB.
0xE2
BYTECOUNTLO
Holds the count of the number of bytes to be read or written in block operations.
0xF1
PGMTIM
Write Timing Register. This register must be loaded, by the user, with the proper value
before execution of any USER ISP Write or Erase operation. Refer to Table 8 for the
correct value.
0xE1
Confirmation Code
The user must place this code in the accumulator before execution of a Flash Memory
Mass Erase command.
A
KEY
Must be transferred to the ISPKEY register before execution of a JSRB instruction.
11.9 RESTRICTIONS ON SOFTWARE WHEN CALLING
ISP ROUTINES IN BOOT ROM
1. The hardware will disable interrupts from occurring. The
hardware will leave the GIE bit in its current state, and if
set, the hardware interrupts will occur when execution is
returned to Flash Memory. Subsequent interrupts, during ISP operation, from the same interrupt source will be
lost. Interrupts may occur between setting the KEY
and executing the JSRB instruction. In this case, the
KEY will expire before the JSRB is executed. It is,
therefore, recommended that the software globally
disable interrupts before setting the Key.
2. The security feature in the MICROWIRE/PLUS ISP is
guaranteed by software and not hardware. When executing the MICROWIRE/PLUS ISP routine, the security
bit is checked prior to performing all instructions. Only
the mass erase command, write PGMTIM register, and
reading the Option register is permitted within the
MICROWIRE/PLUS ISP routine. When the user is performing his own ISP, all commands are permitted. The
entry points from the user’s ISP code do not check for
security. It is the burden of the user to guarantee his own
security. See the Security bit description in 10.5 OPTION
REGISTER for more details on security.
3. When using any of the ISP functions in Boot ROM, the
ISP routines will service the WATCHDOG within the
selected upper window. Upon return to flash memory,
the WATCHDOG is serviced, the lower window is enabled, and the user can service the WATCHDOG anytime following exit from Boot ROM, but must service it
within the selected upper window to avoid a WATCHDOG error.
4. Block Writes can start anywhere in the page of Flash
memory, but cannot cross half page or full page boundaries.
5. The user must ensure that a page erase or a mass
erase is executed between two consecutive writes to
www.national.com
0x98
the same location in Flash memory. Two writes to
the same location without an intervening erase will
produce unpredicatable results including possible
disturbance of unassociated locations.
11.10 FLASH MEMORY DURABILITY CONSIDERATIONS
The endurance of the Flash Memory (number of possible
Erase/Write cycles) is a function of the erase time and the
lowest temperature at which the erasure occurs. If the device
is to be used at low temperature, additional erase operations
can be used to extend the erase time. The user can determine how many times to erase a page based on what
endurance is desired for the application (e.g. four page
erase cycles, each time a page erase is done, may be
required to achieve the typical 100k Erase/Write cycles in an
application which may be operating down to 0˚C). Also, the
customer can verify that the entire page is erased, with
software, and request additional erase operations if desired.
TABLE 13. Typical Flash Memory Endurance
Low End of Operating Temp Range
34
Erase
Time
−40˚C
−20˚C
0˚C
25˚C
> 25˚C
1 ms
60k
60k
60k
100k
100k
2 ms
60k
60k
60k
100k
100k
3 ms
60k
60k
60k
100k
100k
4 ms
60k
60k
100k
100k
100k
5 ms
70k
70k
100k
100k
100k
6 ms
80k
80k
100k
100k
100k
7 ms
90k
90k
100k
100k
100k
8 ms
100k
100k
100k
100k
100k
The device contains a very versatile set of timers (T0, T1, T2
and T3). Timers T1, T2 and T3 and associated autoreload/
capture registers power up containing random data.
12.1 TIMER T0 (IDLE TIMER)
The device supports applications that require maintaining
real time and low power with the IDLE mode. This IDLE
mode support is furnished by the IDLE Timer T0, which is a
16-bit timer. The user cannot read or write to the IDLE Timer
T0, which is a count down timer.
As described in 13.0 Power Saving Features, the clock to the
IDLE Timer depends on which mode the device is in. If the
device is in High Speed mode, the clock to the IDLE Timer is
the instruction cycle clock (one-fifth of the CKI frequency). If
the device is in Dual Clock mode or Low Speed mode, the
clock to the IDLE Timer is the 32 kHz clock. For the remainder of this section, the term “selected clock” will refer to the
clock selected by the Power Save mode of the device.
During Dual Clock and Low Speed modes, the divide by 10
that creates the instruction cycle clock is disabled, to minimize power consumption.
In addition to its time base function, the Timer T0 supports
the following functions:
• Exit out of the Idle Mode (See Idle Mode description)
10137418
FIGURE 15. Functional Block Diagram for Idle Timer T0
TABLE 14. Idle Timer Window Length
Idle Timer Period
Idle Timer Period
ITSEL2
ITSEL1
ITSEL0
High Speed
Mode
Dual Clock
or
Low Speed
Mode
0
0
0
4,096 inst.
cycles
0.125
seconds
0
0
1
8,192 inst.
cycles
0.25 seconds
0
1
0
16,384 inst.
cycles
0.5 seconds
0
1
1
32,768 inst.
cycles
1 second
1
0
0
65,536 inst.
cycles
2 seconds
Dual Clock
or
Low Speed
Mode
ITSEL2
ITSEL1
ITSEL0
1
0
1
Reserved - Undefined
1
1
0
Reserved - Undefined
1
1
1
Reserved - Undefined
High Speed
Mode
The ITSEL bits of the ITMR register are cleared on Reset
and the Idle Timer period is reset to 4,096 instruction cycles.
35
www.national.com
COP8CBR9/COP8CCR9/COP8CDR9
• WATCHDOG logic (See WATCHDOG description)
• Start up delay out of the HALT mode
• Start up delay from BOR
Figure 15 is a functional block diagram showing the structure
of the IDLE Timer and its associated interrupt logic.
Bits 11 through 15 of the ITMR register can be selected for
triggering the IDLE Timer interrupt. Each time the selected
bit underflows (every 4k, 8k, 16k, 32k or 64k selected
clocks), the IDLE Timer interrupt pending bit T0PND is set,
thus generating an interrupt (if enabled), and bit 6 of the Port
G data register is reset, thus causing an exit from the IDLE
mode if the device is in that mode.
In order for an interrupt to be generated, the IDLE Timer
interrupt enable bit T0EN must be set, and the GIE (Global
Interrupt Enable) bit must also be set. The T0PND flag and
T0EN bit are bits 5 and 4 of the ICNTRL register, respectively. The interrupt can be used for any purpose. Typically, it
is used to perform a task upon exit from the IDLE mode. For
more information on the IDLE mode, refer to 13.0 Power
Saving Features.
The Idle Timer period is selected by bits 0–2 of the ITMR
register Bit 3 of the ITMR Register is reserved and should
not be used as a software flag. Bits 4 through 7 of the ITMR
Register are used by the dual clock and are described in
13.0 Power Saving Features.
12.0 Timers
COP8CBR9/COP8CCR9/COP8CDR9
12.0 Timers
throughput. The user software services the timer block only
when the PWM parameters require updating. This capability
is provided by the fact that the timer has two separate 16-bit
reload registers. One of the reload registers contains the
“ON” time while the other holds the “OFF” time. By contrast,
a microcontroller that has only a single reload register requires an additional software to update the reload value
(alternate between the on-time/off-time).
The timer can generate the PWM output with the width and
duty cycle controlled by the values stored in the reload
registers. The reload registers control the countdown values
and the reload values are automatically written into the timer
when it counts down through 0, generating interrupt on each
reload. Under software control and with minimal overhead,
the PWM outputs are useful in controlling motors, triacs, the
intensity of displays, and in providing inputs for data acquisition and sine wave generators.
(Continued)
12.1.1 ITMR Register
LSON HSON
Bit 7
Bit 6
DCEN
CCK
SEL
Bit 5
Bit 4
RSVD ITSEL2 ITSEL1 ITSEL0
Bit 3
Bit 2
Bit 1
Bit 0
Bits 7–4: Described in 13.0 Power Saving Features.
Note: Documentation for previous COP8 devices, which included the Programmable Idle Timer, recommended the user
write zero to the high order bits of the ITMR Register. If
existing programs are updated to use this device, writing
zero to these bits will cause the device to reset (see 13.0
Power Saving Features).
RSVD: This bit is reserved and must be set to 0.
ITSEL2:0: Selects the Idle Timer period as described in
Table 14, Idle Timer Window Length.
In this mode, the timer Tx counts down at a fixed rate of tC
(T2 and T3 may be selected to operate from MCLK). Upon
every underflow the timer is alternately reloaded with the
contents of supporting registers, RxA and RxB. The very first
underflow of the timer causes the timer to reload from the
register RxA. Subsequent underflows cause the timer to be
reloaded from the registers alternately beginning with the
register RxB.
Figure 16 shows a block diagram of the timer in PWM mode.
The underflows can be programmed to toggle the TxA output
pin. The underflows can also be programmed to generate
interrupts.
Underflows from the timer are alternately latched into two
pending flags, TxPNDA and TxPNDB. The user must reset
these pending flags under software control. Two control
enable flags, TxENA and TxENB, allow the interrupts from
the timer underflow to be enabled or disabled. Setting the
timer enable flag TxENA will cause an interrupt when a timer
underflow causes the RxA register to be reloaded into the
timer. Setting the timer enable flag TxENB will cause an
interrupt when a timer underflow causes the RxB register to
be reloaded into the timer. Resetting the timer enable flags
will disable the associated interrupts.
Either or both of the timer underflow interrupts may be
enabled. This gives the user the flexibility of interrupting
once per PWM period on either the rising or falling edge of
the PWM output. Alternatively, the user may choose to interrupt on both edges of the PWM output.
Any time the IDLE Timer period is changed there is the
possibility of generating a spurious IDLE Timer interrupt by
setting the T0PND bit. The user is advised to disable IDLE
Timer interrupts prior to changing the value of the ITSEL bits
of the ITMR Register and then clear the T0PND bit before
attempting to synchronize operation to the IDLE Timer.
12.2 TIMER T1, TIMER T2, AND TIMER T3
The device has a set of three powerful timer/counter blocks,
T1, T2, and T3. Since T1, T2 and T3 are identical, except for
the high speed operation of T2 and T3, all comments are
equally applicable to any of the three timer blocks which will
be referred to as Tx. Differences between the timers will be
specifically noted.
Each timer block consists of a 16-bit timer, Tx, and two
supporting 16-bit autoreload/capture registers, RxA and
RxB. Each timer block has two pins associated with it, TxA
and TxB. The pin TxA supports I/O required by the timer
block, while the pin TxB is an input to the timer block. The
timer block has three operating modes: Processor Independent PWM mode, External Event Counter mode, and Input
Capture mode.
The control bits TxC3, TxC2, and TxC1 allow selection of the
different modes of operation.
12.2.1 Timer Operating Speeds
Each of the Tx timers, except T1, have the ability to operate
at either the instruction cycle frequency (low speed) or the
internal clock frequency (MCLK). For 10 MHz CKI, the instruction cycle frequency is 2 MHz and the internal clock
frequency is 20 MHz. This feature is controlled by the High
Speed Timer Control Register, HSTCR. Its format is shown
below. To place a timer, Tx, in high speed mode, set the
appropriate TxHS bit to 1. For low speed operation, clear the
appropriate TxHS bit to 0. This register is cleared to 00 on
Reset.
HSTCR
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit
1
Bit
0
0
0
0
0
0
0
T3HS
T2HS
12.2.2 Mode 1. Processor Independent PWM Mode
One of the timer’s operating modes is the Processor Independent PWM mode. In this mode, the timers generate a
“Processor Independent” PWM signal because once the
timer is set up, no more action is required from the CPU
which translates to less software overhead and greater
www.national.com
36
(Continued)
12.2.4 Mode 3. Input Capture Mode
The device can precisely measure external frequencies or
time external events by placing the timer block, Tx, in the
input capture mode. In this mode, the reload registers serve
as independent capture registers, capturing the contents of
the timer when an external event occurs (transition on the
timer input pin). The capture registers can be read while
maintaining count, a feature that lets the user measure
elapsed time and time between events. By saving the timer
value when the external event occurs, the time of the external event is recorded. Most microcontrollers have a latency
time because they cannot determine the timer value when
the external event occurs. The capture register eliminates
the latency time, thereby allowing the applications program
to retrieve the timer value stored in the capture register.
In this mode, the timer Tx is constantly running at the fixed tC
or MCLK rate. The two registers, RxA and RxB, act as
capture registers. Each register also acts in conjunction with
a pin. The register RxA acts in conjunction with the TxA pin
and the register RxB acts in conjunction with the TxB pin.
The timer value gets copied over into the register when a
trigger event occurs on its corresponding pin after synchronization to the appropriate internal clock (tC or MCLK). Control bits, TxC3, TxC2 and TxC1, allow the trigger events to be
specified either as a positive or a negative edge. The trigger
condition for each input pin can be specified independently.
10137419
FIGURE 16. Timer in PWM Mode
12.2.3 Mode 2. External Event Counter Mode
This mode is quite similar to the processor independent
PWM mode described above. The main difference is that the
timer, Tx, is clocked by the input signal from the TxA pin after
synchronization to the appropriate internal clock (tC or
MCLK). The Tx timer control bits, TxC3, TxC2 and TxC1
allow the timer to be clocked either on a positive or negative
edge from the TxA pin. Underflows from the timer are latched
into the TxPNDA pending flag. Setting the TxENA control flag
will cause an interrupt when the timer underflows.
In this mode the input pin TxB can be used as an independent positive edge sensitive interrupt input if the TxENB
control flag is set. The occurrence of a positive edge on the
TxB input pin is latched into the TxPNDB flag.
Figure 17 shows a block diagram of the timer in External
Event Counter mode.
The trigger conditions can also be programmed to generate
interrupts. The occurrence of the specified trigger condition
on the TxA and TxB pins will be respectively latched into the
pending flags, TxPNDA and TxPNDB. The control flag
TxENA allows the interrupt on TxA to be either enabled or
disabled. Setting the TxENA flag enables interrupts to be
generated when the selected trigger condition occurs on the
TxA pin. Similarly, the flag TxENB controls the interrupts
from the TxB pin.
Underflows from the timer can also be programmed to generate interrupts. Underflows are latched into the timer TxC0
pending flag (the TxC0 control bit serves as the timer underflow interrupt pending flag in the Input Capture mode). Consequently, the TxC0 control bit should be reset when entering the Input Capture mode. The timer underflow interrupt is
enabled with the TxENA control flag. When a TxA interrupt
occurs in the Input Capture mode, the user must check both
the TxPNDA and TxC0 pending flags in order to determine
whether a TxA input capture or a timer underflow (or both)
caused the interrupt.
Figure 18 shows a block diagram of the timer T1 in Input
Capture mode. T2 and T3 are identical to T1.
Note: The PWM output is not available in this mode since the
TxA pin is being used as the counter input clock.
10137420
FIGURE 17. Timer in External Event Counter Mode
37
www.national.com
COP8CBR9/COP8CCR9/COP8CDR9
12.0 Timers
COP8CBR9/COP8CCR9/COP8CDR9
12.0 Timers
cessor Independent PWM and External Event
Counter), where 1 = Start, 0 = Stop
(Continued)
Timer Underflow Interrupt Pending Flag in Mode
3 (Input Capture)
TxPNDA Timer Interrupt Pending Flag
TxENA
Timer Interrupt Enable Flag
1 = Timer Interrupt Enabled
0 = Timer Interrupt Disabled
TxPNDB Timer Interrupt Pending Flag
TxENB Timer Interrupt Enable Flag
1 = Timer Interrupt Enabled
0 = Timer Interrupt Disabled
The timer mode control bits (TxC3, TxC2 and TxC1) are
detailed in Table 15, Timer Operating Modes.
When the high speed timers are counting in high speed
mode, directly altering the contents of the timer upper or
lower registers, the PWM outputs or the reload registers is
not recommended. Bit operations can be particularly problematic. Since any of these six registers or the PWM outputs
can change as many as ten times in a single instruction
cycle, performing an SBIT or RBIT operation with the timer
running can produce unpredictable results. The recommended procedure is to stop the timer, perform any changes
to the timer, the PWM outputs or reload register values, and
then re-start the timer. This warning does not apply to the
timer control register. Any type of read/write operation, including SBIT and RBIT may be performed on this register in
any operating mode.
10137421
FIGURE 18. Timer in Input Capture Mode
12.3 TIMER CONTROL FLAGS
The control
TxC3
TxC2
TxC1
TxC0
bits and their functions are summarized below.
Timer mode control
Timer mode control
Timer mode control
Timer Start/Stop control in Modes 1 and 2 (Pro-
TABLE 15. Timer Operating Modes
1
0
1
PWM: TxA Toggle
Autoreload RA
Autoreload RB
tC or MCLK
1
0
0
PWM: No TxA
Toggle
Autoreload RA
Autoreload RB
tC or MCLK
0
0
0
External Event
Counter
Timer Underflow
Pos. TxB Edge
TxA Pos.
Edge
0
0
1
External Event
Counter
Timer Underflow
Pos. TxB Edge
TxA Neg.
Edge
0
1
0
Captures:
Pos. TxA Edge
Pos. TxB Edge
tC or MCLK
TxA Pos. Edge
or Timer
tC or MCLK
3
0
1
1
1
1
0
1
1
Description
Timer
Counts On
1
1
TxC1
Interrupt B
Source
TxC3
2
TxC2
Interrupt A
Source
Mode
TxB Pos. Edge
Underflow
Captures:
Pos. TxA
Neg. TxB
TxA Pos. Edge
Edge or Timer
Edge
TxB Neg. Edge
Underflow
Captures:
Neg. TxA
Pos. TxB
TxA Neg. Edge
Edge or Timer
Edge
TxB Pos. Edge
Underflow
Captures:
Neg. TxA
Neg. TxB
TxA Neg. Edge
Edge or Timer
Edge
TxB Neg. Edge
Underflow
tC or MCLK
applications demanding low power. The power budget constraints are also imposed on those consumer/industrial applications where well regulated and expensive power supply
costs cannot be tolerated. Such applications rely on low cost
and low power supply voltage derived directly from the
13.0 Power Saving Features
Today, the proliferation of battery-operated applications has
placed new demands on designers to drive power consumption down. Battery operated systems are not the only type of
www.national.com
tC or MCLK
38
controller activities are stopped and power consumption is
reduced to a very low level. In this device, the HALT mode is
enabled and disabled by a bit in the Option register. The
IDLE mode is similar to the HALT mode, except that certain
sections of the device continue to operate, such as: the
on-board oscillator, the IDLE Timer (Timer T0), and the Clock
Monitor. This allows real time to be maintained. During
power save modes of operation, all on board RAM, registers,
I/O states and timers (with the exception of T0) are unaltered.
(Continued)
“mains” by using voltage rectifier and passive components.
Low power is demanded even in automotive applications,
due to increased vehicle electronics content. This is required
to ease the burden from the car battery. Low power 8-bit
microcontrollers supply the smarts to control batteryoperated, consumer/industrial, and automotive applications.
The device offers system designers a variety of low-power
consumption features that enable them to meet the demanding requirements of today’s increasing range of low-power
applications. These features include low voltage operation,
low current drain, and power saving features such as HALT,
IDLE, and Multi-Input Wake-Up (MIWU).
This device supports three operating modes, each of which
have two power save modes of operation. The three operating modes are: High Speed, Dual Clock, and Low Speed.
Within each operating mode, the two power save modes are:
HALT and IDLE. In the HALT mode of operation, all micro-
Two oscillators are used to support the three different operating modes. The high speed oscillator refers to the oscillator
connected to CKI and the low speed oscillator refers to the
32 kHz oscillator connected to pins L0 & L1. When using L0
and L1 for the low speed oscillator, the user must ensure that
the L0 and L1 pins are configured for hi-Z input, L1 is not
using CKX on the USART, and Multi-Input Wake-up for these
pins is disabled.
A diagram of the three modes is shown in Figure 19.
10137422
FIGURE 19. Diagram of Power Save Modes
oscillator. See the startup time table in the Oscillator Circuits section.
DCEN:
This bit selects the clock source for the Idle
Timer. If this bit = 0, then the high speed clock is
the clock source for the Idle Timer. If this bit = 1,
then the low speed clock is the clock source for
the Idle Timer. The low speed oscillator must be
started and stabilized before setting this bit to a
1.
CCKSEL: This bit selects whether the high speed clock or
low speed clock is gated to the microcontroller
core. When this bit = 0, the Core clock will be the
high speed clock. When this bit = 1, then the
Core clock will be the low speed clock. Before
switching this bit to either state, the appropriate
clock should be turned on and stabilized.
13.1 POWER SAVE MODE CONTROL REGISTER
The ITMR control register allows for navigation between the
three different modes of operation. It is also used for the Idle
Timer. The register bit assignments are shown below. This
register is cleared to 40 (hex) by Reset as shown below.
LSON
HSON
DCEN
CCK
SEL
RSVD
ITSEL2
ITSEL1
ITSEL0
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
LSON:
HSON:
This bit is used to turn-on the low-speed oscillator. When LSON = 0, the low speed oscillator is
off. When LSON = 1, the low speed oscillator is
on. There is a startup time associated with this
oscillator. See the Oscillator Circuits section.
This bit is used to turn-on the high speed oscillator. When HSON = 0, the high speed oscillator
is off. When HSON = 1, the high speed oscillator
is on. There is a startup time associated with this
39
www.national.com
COP8CBR9/COP8CCR9/COP8CDR9
13.0 Power Saving Features
COP8CBR9/COP8CCR9/COP8CDR9
13.0 Power Saving Features
mode. The controller also stops the CKI pin from oscillating
during the HALT mode. The processor can be forced to exit
the HALT mode and resume normal operation at any time.
(Continued)
During normal operation, the actual power consumption depends heavily on the clock speed and operating voltage
used in an application and is shown in the Electrical Specifications. In the HALT mode, the device only draws a small
leakage current, plus current for the BOR feature (if enabled), plus any current necessary for driving the outputs.
Since total power consumption is affected by the amount of
current required to drive the outputs, all I/Os should be
configured to draw minimal current prior to entering the
HALT mode, if possible. In order to reduce power consumption even further, the power supply (VCC) can be reduced to
a very low level during the HALT mode, just high enough to
guarantee retention of data stored in RAM. The allowed
lower voltage level (VR) is specified in the Electrical Specs
section.
DCEN CCKSEL
0
0
High Speed Mode. Core and Idle Timer
Clock = High Speed
1
0
Dual Clock Mode. Core clock = High
Speed; Idle Timer = Low Speed
1
1
Low Speed Mode. Core and Idle Timer
Clock = Low Speed
0
1
Invalid. If this is detected, the Low
Speed Mode will be forced.
RSVD:
This bit is reserved and must be 0.
Bits 2–0: These are bits used to control the Idle Timer. See
12.1 TIMER T0 (IDLE TIMER) for the description
of these bits.
13.3.1.1 Entering The High Speed Halt Mode
The device enters the HALT mode under software control
when the Port G data register bit 7 is set to 1. All processor
action stops in the middle of the next instruction cycle, and
power consumption is reduced to a very low level.
Table 16 lists the valid contents of the four most significant
bits of the ITMR Register. Any other value is illegal. States
are presented in the only valid sequence. Any attempt to
make a transition to any state other than an adjacent valid
state will be ignored by the logic and the ITMR Register will
not be changed.
13.3.1.2 Exiting The High Speed Halt Mode
There is a choice of methods for exiting the HALT mode: a
chip Reset using the RESET pin or a Multi-Input Wake-up.
TABLE 16. Valid Contents of Dual Clock Control Bits
LSON HSON DCEN CCKSEL
Mode
0
1
0
0
High Speed
1
1
0
0
High Speed/Dual
Clock Transition
1
1
1
0
Dual Clock
1
1
1
1
Dual Clock/Low
Speed Transition
1
0
1
1
Low Speed
13.3.1.3 HALT Exit Using Reset
A device Reset, which is invoked by a low-level signal on the
RESET input pin, takes the device out of the HALT mode
and starts execution from address 0000H. The initialization
software should determine what special action is needed, if
any, upon start-up of the device from HALT. The initialization
of all registers following a RESET exit from HALT is described in the Reset section of this manual.
13.3.1.4 HALT Exit Using Multi-Input Wake-up
The device can be brought out of the HALT mode by a
transition received on one of the available Wake-up pins.
The pins used and the types of transitions sensed on the
Multi-input pins are software programmable. For information
on programming and using the Multi-Input Wake-up feature,
refer to the Multi-Input Wake-up section.
A start-up delay is required between the device wake-up and
the execution of program instructions, depending on the type
of chip clock. The start-up delay is mandatory, and is implemented whether or not the CLKDLY bit is set. This is because all crystal oscillators and resonators require some
time to reach a stable frequency and full operating amplitude.
The IDLE Timer (Timer T0) provides a fixed delay from the
time the clock is enabled to the time the program execution
begins. Upon exit from the HALT mode, the IDLE Timer is
enabled with a starting value of 256 and is decremented with
each instruction cycle. (The instruction clock runs at one-fifth
the frequency of the high speed oscillator.) An internal
Schmitt trigger connected to the on-chip CKI inverter ensures that the IDLE Timer is clocked only when the oscillator
has a large enough amplitude. (The Schmitt trigger is not
part of the oscillator closed loop.) When the IDLE Timer
underflows, the clock signals are enabled on the chip, allowing program execution to proceed. Thus, the delay is equal
to 256 instruction cycles.
13.2 OSCILLATOR STABILIZATION
Both the high speed oscillator and low speed oscillator have
a startup delay associated with them. When switching between the modes, the software must ensure that the appropriate oscillator is started up and stabilized before switching
to the new mode. See Table 3, Startup Times for approximate startup times for both oscillators.
13.3 HIGH SPEED MODE OPERATION
This mode of operation allows high speed operation for both
the main Core clock and also for the Idle Timer. This is the
default mode of the device and will always be entered upon
any of the Reset conditions described in the Reset section. It
can also be entered from Dual Clock mode. It cannot be
directly entered from the Low Speed mode without passing
through the Dual Clock mode first.
To enter from the Dual Clock mode, the following sequence
must be followed using two separate instructions:
1. Software clears DCEN to 0.
2. Software clears LSON to 0.
13.3.1 High Speed Halt Mode
The fully static architecture of this device allows the state of
the microcontroller to be frozen. This is accomplished by
stopping the internal clock of the device during the HALT
www.national.com
40
disable HALT mode option will cause the microcontroller to
ignore any attempts to HALT the device under software
control. Note that this device can still be placed in the HALT
mode by stopping the clock input to the microcontroller, if the
program memory is masked ROM. See the Option section
for more details on this option bit.
(Continued)
Note: To ensure accurate operation upon start-up of the
device using Multi-input Wake-up, the instruction in the application program used for entering the HALT mode should
be followed by two consecutive NOP (no-operation) instructions.
13.3.1.5 Options
This device has two options associated with the HALT mode.
The first option enables the HALT mode feature, while the
second option disables HALT mode operation. Selecting the
10137423
FIGURE 20. Wake-up from HALT
13.3.2 High Speed Idle Mode
In the IDLE mode, program execution stops and power
consumption is reduced to a very low level as with the HALT
mode. However, the high speed oscillator, IDLE Timer (Timer
T0), and Clock Monitor continue to operate, allowing real
time to be maintained. The device remains idle for a selected
amount of time up to 65,536 instruction cycles, or 32.768
milliseconds with a 2 MHz instruction clock frequency, and
then automatically exits the IDLE mode and returns to normal program execution.
The device is placed in the IDLE mode under software
control by setting the IDLE bit (bit 6 of the Port G data
register).
The IDLE Timer window is selectable from one of five values,
4k, 8k, 16k, 32k or 64k instruction cycles. Selection of this
value is made through the ITMR register.
The IDLE mode uses the on-chip IDLE Timer (Timer T0) to
keep track of elapsed time in the IDLE state. The IDLE Timer
runs continuously at the instruction clock rate, whether or not
the device is in the IDLE mode. Each time the bit of the timer
associated with the selected window toggles, the T0PND bit
is set, an interrupt is generated (if enabled), and the device
exits the IDLE mode if in that mode. If the IDLE Timer
interrupt is enabled, the interrupt is serviced before execution of the main program resumes. (However, the instruction
which was started as the part entered the IDLE mode is
completed before the interrupt is serviced. This instruction
should be a NOP which should follow the enter IDLE instruction.) The user must reset the IDLE Timer pending flag
(T0PND) before entering the IDLE mode.
As with the HALT mode, this device can also be returned to
normal operation with a reset, or with a Multi-Input Wake-up
input. Upon reset the ITMR register is cleared and the ITMR
register selects the 4,096 instruction cycle tap of the Idle
Timer.
The IDLE Timer cannot be started or stopped under software
control, and it is not memory mapped, so it cannot be read or
written by the software. Its state upon Reset is unknown.
Therefore, if the device is put into the IDLE mode at an
arbitrary time, it will stay in the IDLE mode for somewhere
between 1 and the selected number of instruction cycles.
In order to precisely time the duration of the IDLE state, entry
into the IDLE mode must be synchronized to the state of the
IDLE Timer. The best way to do this is to use the IDLE Timer
interrupt, which occurs on every underflow of the bit of the
IDLE Timer which is associated with the selected window.
Another method is to poll the state of the IDLE Timer pending
bit T0PND, which is set on the same occurrence. The Idle
Timer interrupt is enabled by setting bit T0EN in the ICNTRL
register.
Any time the IDLE Timer window length is changed there is
the possibility of generating a spurious IDLE Timer interrupt
by setting the T0PND bit. The user is advised to disable
IDLE Timer interrupts prior to changing the value of the
ITSEL bits of the ITMR Register and then clear the TOPND
bit before attempting to synchronize operation to the IDLE
Timer.
Note: As with the HALT mode, it is necessary to program two
NOP’s to allow clock resynchronization upon return from the
41
www.national.com
COP8CBR9/COP8CCR9/COP8CDR9
13.0 Power Saving Features
COP8CBR9/COP8CCR9/COP8CDR9
13.0 Power Saving Features
13.4.1.3 HALT Exit Using Reset
A device Reset, which is invoked by a low-level signal on the
RESET input pin, takes the device out of the Dual Clock
mode and puts it into the High Speed mode.
(Continued)
IDLE mode. The NOP’s are placed either at the beginning of
the IDLE Timer interrupt routine or immediately following the
“enter IDLE mode” instruction.
For more information on the IDLE Timer and its associated
interrupt, see the description in the Timers section.
13.4.1.4 HALT Exit Using Multi-Input Wake-up
The device can be brought out of the HALT mode by a
transition received on one of the available Wake-up pins.
The pins used and the types of transitions sensed on the
Multi-input pins are software programmable. For information
on programming and using the Multi-Input Wake-up feature,
refer to 13.6 MULTI-INPUT WAKE-UP.
13.4 DUAL CLOCK MODE OPERATION
This mode of operation allows for high speed operation of
the Core clock and low speed operation of the Idle Timer.
This mode can be entered from either the High Speed mode
or the Low Speed mode.
A start-up delay is required between the device wake-up and
the execution of program instructions. The start-up delay is
mandatory, and is implemented whether or not the CLKDLY
bit is set. This is because all crystal oscillators and resonators require some time to reach a stable frequency and full
operating amplitude.
If the start-up delay is used, the IDLE Timer (Timer T0)
provides a fixed delay from the time the clock is enabled to
the time the program execution begins. Upon exit from the
HALT mode, the IDLE Timer is enabled with a starting value
of 256 and is decremented with each instruction cycle using
the high speed clock. (The instruction clock runs at one-fifth
the frequency of the high speed oscillatory.) An internal
Schmitt trigger connected to the on-chip CKI inverter ensures that the IDLE Timer is clocked only when the high
speed oscillator has a large enough amplitude. (The Schmitt
trigger is not part of the oscillator closed loop.) When the
IDLE Timer underflows, the clock signals are enabled on the
chip, allowing program execution to proceed. Thus, the delay
is equal to 256 instruction cycles. After exiting HALT, the Idle
Timer will return to being clocked by the low speed clock.
Note: To ensure accurate operation upon start-up of the
device using Multi-input Wake-up, the instruction in the application program used for entering the HALT mode should
be followed by two consecutive NOP (no-operation) instructions.
To enter from the High Speed mode, the following sequence
must be followed:
1. Software sets the LSON bit to 1.
2.
Software waits until the low speed oscillator has stabilized. See Table 3.
3. Software sets the DCEN bit to 1.
To enter from the Low Speed mode, the following sequence
must be followed:
1. Software sets the HSON bit to 1.
2.
Software waits until the high speed oscillator has stabilized. See Table 3, Startup Times.
3. Software clears the CCKSEL bit to 0.
13.4.1 Dual Clock HALT Mode
The fully static architecture of this device allows the state of
the microcontroller to be frozen. This is accomplished by
stopping the high speed clock of the device during the HALT
mode. The processor can be forced to exit the HALT mode
and resume normal operation at any time. The low speed
clock remains on during HALT in the Dual Clock mode.
During normal operation, the actual power consumption depends heavily on the clock speed and operating voltage
used in an application and is shown in the Electrical Specifications. In the HALT mode, the device only draws a small
leakage current, plus current for the BOR feature (if enabled), plus the 32 kHz oscillator current, plus any current
necessary for driving the outputs. Since total power consumption is affected by the amount of current required to
drive the outputs, all I/Os should be configured to draw
minimal current prior to entering the HALT mode, if possible.
13.4.1.5 Options
This device has two options associated with the HALT mode.
The first option enables the HALT mode feature, while the
second option disables HALT mode operation. Selecting the
disable HALT mode option will cause the microcontroller to
ignore any attempts to HALT the device under software
control. See 10.5 OPTION REGISTER for more details on
this option bit.
13.4.1.1 Entering The Dual Clock Halt Mode
The device enters the HALT mode under software control
when the Port G data register bit 7 is set to 1. All processor
action stops in the middle of the next instruction cycle, and
power consumption is reduced to a very low level. In order to
expedite exit from HALT, the low speed oscillator is left
running when the device is Halted in the Dual Clock mode.
However, the Idle Timer will not be clocked.
13.4.2 Dual Clock Idle Mode
In the IDLE mode, program execution stops and power
consumption is reduced to a very low level as with the HALT
mode. However, both oscillators, IDLE Timer (Timer T0), and
Clock Monitor continue to operate, allowing real time to be
maintained. The Idle Timer is clocked by the low speed
clock. The device remains idle for a selected amount of time
up to 1 second, and then automatically exits the IDLE mode
and returns to normal program execution using the high
speed clock.
The device is placed in the IDLE mode under software
control by setting the IDLE bit (bit 6 of the Port G data
register).
The IDLE Timer window is selectable from one of five values,
0.125 seconds, 0.25 seconds, 0.5 seconds, 1 second and
2 seconds. Selection of this value is made through the ITMR
register.
13.4.1.2 Exiting The Dual Clock Halt Mode
When the HALT mode is entered by setting bit 7 of the Port
G data register, there is a choice of methods for exiting the
HALT mode: a chip Reset using the RESET pin or a MultiInput Wake-up. The Reset method and Multi-Input Wake-up
method can be used with any clock option.
www.national.com
42
13.5.1 Low Speed HALT Mode
The fully static architecture of this device allows the state of
the microcontroller to be frozen. Because the low speed
oscillator draws very minimal operating current, it will be left
running in the low speed halt mode. However, the Idle Timer
will not be running. This also allows for a faster exit from
HALT. The processor can be forced to exit the HALT mode
and resume normal operation at any time.
During normal operation, the actual power consumption depends heavily on the clock speed and operating voltage
used in an application and is shown in the Electrical Specifications. In the HALT mode, the device only draws a small
leakage current, plus current for the BOR feature (if enabled), plus the 32 kHz oscillator current, plus any current
necessary for driving the outputs. Since total power consumption is affected by the amount of current required to
drive the outputs, all I/Os should be configured to draw
minimal current prior to entering the HALT mode, if possible.
(Continued)
The IDLE mode uses the on-chip IDLE Timer (Timer T0) to
keep track of elapsed time in the IDLE state. The IDLE Timer
runs continuously at the low speed clock rate, whether or not
the device is in the IDLE mode. Each time the bit of the timer
associated with the selected window toggles, the T0PND bit
is set, an interrupt is generated (if enabled), and the device
exits the IDLE mode if in that mode. If the IDLE Timer
interrupt is enabled, the interrupt is serviced before execution of the main program resumes. (However, the instruction
which was started as the part entered the IDLE mode is
completed before the interrupt is serviced. This instruction
should be a NOP which should follow the enter IDLE instruction.) The user must reset the IDLE Timer pending flag
(T0PND) before entering the IDLE mode.
As with the HALT mode, this device can also be returned to
normal operation with a Multi-Input Wake-up input.
13.5.1.1 Entering The Low Speed Halt Mode
The device enters the HALT mode under software control
when the Port G data register bit 7 is set to 1. All processor
action stops in the middle of the next instruction cycle, and
power consumption is reduced to a very low level. In order to
expedite exit from HALT, the low speed oscillator is left
running when the device is Halted in the Low Speed mode.
However, the Idle Timer will not be clocked.
The IDLE Timer cannot be started or stopped under software
control, and it is not memory mapped, so it cannot be read or
written by the software. Its state upon Reset is unknown.
Therefore, if the device is put into the IDLE mode at an
arbitrary time, it will stay in the IDLE mode for somewhere
between 30 µs and the selected time period.
In order to precisely time the duration of the IDLE state, entry
into the IDLE mode must be ”synchronized to the state of the
IDLE Timer. The best way to do this is to use the IDLE Timer
interrupt, which occurs on every underflow of the bit of the
IDLE Timer which is associated with the selected window.
Another method is to poll the state of the IDLE Timer pending
bit T0PND, which is set on the same occurrence. The Idle
Timer interrupt is enabled by setting bit T0EN in the ICNTRL
register.
Any time the IDLE Timer window length is changed there is
the possibility of generating a spurious IDLE Timer interrupt
by setting the T0PND bit. The user is advised to disable
IDLE Timer interrupts prior to changing the value of the
ITSEL bits of the ITMR Register and then clear the T0PND
bit before attempting to synchronize operation to the IDLE
Timer.
Note: As with the HALT mode, it is necessary to program two
NOP’s to allow clock resynchronization upon return from the
IDLE mode. The NOP’s are placed either at the beginning of
the IDLE Timer interrupt routine or immediately following the
“enter IDLE mode” instruction.
For more information on the IDLE Timer and its associated
interrupt, see the description in the Timers section.
13.5.1.2 Exiting The Low Speed Halt Mode
When the HALT mode is entered by setting bit 7 of the Port
G data register, there is a choice of methods for exiting the
HALT mode: a chip Reset using the RESET pin or a MultiInput Wake-up. The Reset method and Multi-Input Wake-up
method can be used with any clock option, but the availability of the G7 input is dependent on the clock option.
13.5.1.3 HALT Exit Using Reset
A device Reset, which is invoked by a low-level signal on the
RESET input pin, takes the device out of the Low Speed
mode and puts it into the High Speed mode.
13.5.1.4 HALT Exit Using Multi-Input Wake-up
The device can be brought out of the HALT mode by a
transition received on one of the available Wake-up pins.
The pins used and the types of transitions sensed on the
Multi-input pins are software programmable. For information
on programming and using the Multi-Input Wake-up feature,
refer to the Multi-Input Wake-up section.
As the low speed oscillator is left running, there is no start up
delay when exiting the low speed halt mode, regardless of
the state of the CLKDLY bit.
Note: To ensure accurate operation upon start-up of the
device using Multi-input Wake-up, the instruction in the application program used for entering the HALT mode should
be followed by two consecutive NOP (no-operation) instructions.
13.5 LOW SPEED MODE OPERATION
This mode of operation allows for low speed operation of the
core clock and low speed operation of the Idle Timer. Because the low speed oscillator draws very little operating
current, and also to expedite restarting from HALT mode, the
low speed oscillator is left on at all times in this mode,
including HALT mode. This is the lowest power mode of
operation on the device. This mode can only be entered from
the Dual Clock mode.
To enter the Low Speed mode, the following sequence must
be followed using two separate instructions:
1. Software sets the CCKSEL bit to 1.
2. Software clears the HSON bit to 0.
Since the low speed oscillator is already running, there is no
clock startup delay.
13.5.1.5 Options
This device has two options associated with the HALT mode.
The first option enables the HALT mode feature, while the
second option disables HALT mode operation. Selecting the
disable HALT mode option will cause the microcontroller to
ignore any attempts to HALT the device under software
control. See the Option section for more details on this
option bit.
43
www.national.com
COP8CBR9/COP8CCR9/COP8CDR9
13.0 Power Saving Features
COP8CBR9/COP8CCR9/COP8CDR9
13.0 Power Saving Features
As with the HALT mode, this device can also be returned to
normal operation with a Multi-Input Wake-up input.
The IDLE Timer cannot be started or stopped under software
control, and it is not memory mapped, so it cannot be read or
written by the software. Its state upon Reset is unknown.
Therefore, if the device is put into the IDLE mode at an
arbitrary time, it will stay in the IDLE mode for somewhere
between 30 µs and the selected time period.
(Continued)
13.5.2 Low Speed Idle Mode
In the IDLE mode, program execution stops and power
consumption is reduced to a very low level as with the HALT
mode. However, the low speed oscillator, IDLE Timer (Timer
T0), and Clock Monitor continue to operate, allowing real
time to be maintained. The device remains idle for a selected
amount of time up to 2 seconds, and then automatically exits
the IDLE mode and returns to normal program execution
using the low speed clock.
In order to precisely time the duration of the IDLE state, entry
into the IDLE mode must be synchronized to the state of the
IDLE Timer. The best way to do this is to use the IDLE Timer
interrupt, which occurs on every underflow of the bit of the
IDLE Timer which is associated with the selected window.
Another method is to poll the state of the IDLE Timer pending
bit T0PND, which is set on the same occurrence. The Idle
Timer interrupt is enabled by setting bit T0EN in the ICNTRL
register.
Any time the IDLE Timer window length is changed there is
the possibility of generating a spurious IDLE Timer interrupt
by setting the T0PND bit. The user is advised to disable
IDLE Timer interrupts prior to changing the value of the
ITSEL bits of the ITMR Register and then clear the T0PND
bit before attempting to synchronize operation to the IDLE
Timer.
As with the HALT mode, it is necessary to program two
NOP’s to allow clock resynchronization upon return from the
IDLE mode. The NOP’s are placed either at the beginning of
the IDLE Timer interrupt routine or immediately following the
“enter IDLE mode” instruction.
For more information on the IDLE Timer and its associated
interrupt, see the description in the Section 6.1, Timer T0
(IDLE Timer).
The device is placed in the IDLE mode under software
control by setting the IDLE bit (bit 6 of the Port G data
register).
The IDLE Timer window is selectable from one of five values,
0.125 seconds, 0.25 seconds, 0.5 seconds, 1 second, and
2 seconds. Selection of this value is made through the ITMR
register.
The IDLE mode uses the on-chip IDLE Timer (Timer T0) to
keep track of elapsed time in the IDLE state. The IDLE Timer
runs continuously at the low speed clock rate, whether or not
the device is in the IDLE mode. Each time the bit of the timer
associated with the selected window toggles, the T0PND bit
is set, an interrupt is generated (if enabled), and the device
exits the IDLE mode if in that mode. If the IDLE Timer
interrupt is enabled, the interrupt is serviced before execution of the main program resumes. (However, the instruction
which was started as the part entered the IDLE mode is
completed before the interrupt is serviced. This instruction
should be a NOP which should follow the enter IDLE instruction.) The user must reset the IDLE Timer pending flag
(T0PND) before entering the IDLE mode.
10137424
FIGURE 21. Multi-Input Wake-Up Logic
www.national.com
44
be set or reset for the desired edge selects, followed by the
associated WKPND bits being cleared.
(Continued)
This same procedure should be used following reset, since
the L port inputs are left floating as a result of reset.
The occurrence of the selected trigger condition for MultiInput Wake-up is latched into a pending register called
WKPND. The respective bits of the WKPND register will be
set on the occurrence of the selected trigger edge on the
corresponding Port L pin. The user has the responsibility of
clearing these pending flags. Since WKPND is a pending
register for the occurrence of selected wake-up conditions,
the device will not enter the HALT mode if any Wake-up bit is
both enabled and pending. Consequently, the user must
clear the pending flags before attempting to enter the HALT
mode.
13.6 MULTI-INPUT WAKE-UP
The Multi-Input Wake-up feature is used to return (wake-up)
the device from either the HALT or IDLE modes. Alternately
Multi-Input Wake-up/Interrupt feature may also be used to
generate up to 8 edge selectable external interrupts.
Figure 21 shows the Multi-Input Wake-up logic.
The Multi-Input Wake-up feature utilizes the L Port. The user
selects which particular L port bit (or combination of L Port
bits) will cause the device to exit the HALT or IDLE modes.
The selection is done through the register WKEN. The register WKEN is an 8-bit read/write register, which contains a
control bit for every L port bit. Setting a particular WKEN bit
enables a Wake-up from the associated L port pin.
The user can select whether the trigger condition on the
selected L Port pin is going to be either a positive edge (low
to high transition) or a negative edge (high to low transition).
This selection is made via the register WKEDG, which is an
8-bit control register with a bit assigned to each L Port pin.
Setting the control bit will select the trigger condition to be a
negative edge on that particular L Port pin. Resetting the bit
selects the trigger condition to be a positive edge. Changing
an edge select entails several steps in order to avoid a
Wake-up condition as a result of the edge change. First, the
associated WKEN bit should be reset, followed by the edge
select change in WKEDG. Next, the associated WKPND bit
should be cleared, followed by the associated WKEN bit
being re-enabled.
An example may serve to clarify this procedure. Suppose we
wish to change the edge select from positive (low going high)
to negative (high going low) for L Port bit 5, where bit 5 has
previously been enabled for an input interrupt. The program
would be as follows:
RBIT 5, WKEN
; Disable MIWU
SBIT 5, WKEDG ; Change edge polarity
RBIT 5, WKPND ; Reset pending flag
SBIT 5, WKEN
; Enable MIWU
If the L port bits have been used as outputs and then
changed to inputs with Multi-Input Wake-up/Interrupt, a
safety procedure should also be followed to avoid wake-up
conditions. After the selected L port bits have been changed
from output to input but before the associated WKEN bits are
enabled, the associated edge select bits in WKEDG should
WKEN and WKEDG are all read/write registers, and are
cleared at reset. WKPND register contains random value
after reset.
14.0 USART
The device contains a full-duplex software programmable
USART. The USART (Figure 22) consists of a transmit shift
register, a receive shift register and seven addressable registers, as follows: a transmit buffer register (TBUF), a receiver buffer register (RBUF), a USART control and status
register (ENU), a USART receive control and status register
(ENUR), a USART interrupt and clock source register
(ENUI), a prescaler select register (PSR) and baud (BAUD)
register. The ENU register contains flags for transmit and
receive functions; this register also determines the length of
the data frame (7, 8 or 9 bits), the value of the ninth bit in
transmission, and parity selection bits. The ENUR register
flags framing, data overrun, parity errors and line breaks
while the USART is receiving.
Other functions of the ENUR register include saving the
ninth bit received in the data frame, enabling or disabling the
USART’s attention mode of operation and providing additional receiver/transmitter status information via RCVG and
XMTG bits. The determination of an internal or external clock
source is done by the ENUI register, as well as selecting the
number of stop bits and enabling or disabling transmit and
receive interrupts. A control flag in this register can also
select the USART mode of operation: asynchronous or
synchronous.
45
www.national.com
COP8CBR9/COP8CCR9/COP8CDR9
13.0 Power Saving Features
COP8CBR9/COP8CCR9/COP8CDR9
14.0 USART
(Continued)
10137425
FIGURE 22. USART Block Diagram
PEN: This bit enables/disables Parity (7- and 8-bit modes
only). Read/Write, cleared on reset.
PEN = 0
Parity disabled.
PEN = 1
Parity enabled.
14.1 USART CONTROL AND STATUS REGISTERS
The operation of the USART is programmed through three
registers: ENU, ENUR and ENUI.
14.2 DESCRIPTION OF USART REGISTER BITS
ENU — USART CONTROL AND STATUS REGISTER (Address at 0BA)
PEN
PSEL1 XBIT9/
CHL1
CHL0
ERR
RBFL
PSEL1, PSEL0: Parity select bits. Read/Write, cleared on
reset.
PSEL1 = 0, PSEL0 = 0
Odd Parity (if Parity enabled)
PSEL1 = 0, PSEL1 = 1
Even Parity (if Parity enabled)
PSEL1 = 1, PSEL0 = 0
Mark(1) (if Parity enabled)
PSEL1 = 1, PSEL1 = 1
Space(0) (if Parity enabled)
TBMT
PSEL0
Bit 7
www.national.com
Bit 0
46
XMTG: This bit is set to indicate that the USART is transmitting. It gets reset at the end of the last frame (end of last Stop
bit). Read only, cleared on reset.
(Continued)
XBIT9/PSEL0: Programs the ninth bit for transmission when
the USART is operating with nine data bits per frame. For
seven or eight data bits per frame, this bit in conjunction with
PSEL1 selects parity. Read/Write, cleared on reset.
CHL1, CHL0: These bits select the character frame format.
Parity is not included and is generated/verified by hardware.
Read/Write, cleared on reset.
CHL1 = 0, CHL0 = 0
The frame contains eight data bits.
CHL1 = 0, CHL0 = 1
CHL1 = 1, CHL0 = 0
The frame contains seven data bits.
The frame contains nine data bits.
CHL1 = 1, CHL0 = 1
Loopback Mode selected. Transmitter output internally looped back
to receiver input. Nine bit framing
format is used.
RCVG: This bit is set high whenever a framing error or a
break detect occurs and goes low when RDX goes high.
Read only, cleared on reset.
ENUI — USART INTERRUPT AND CLOCK SOURCE REGISTER (Address at 0BC)
STP2
PE
BD
RBIT9
ATTN
XRCLK XTCLK
ERI
ETI
Bit 0
ETDX: TDX (USART Transmit Pin) is the alternate function
assigned to Port L pin L2; it is selected by setting ETDX bit.
SSEL: USART mode select. Read only, cleared on reset.
SSEL = 0
Asynchronous Mode.
SSEL = 1
Synchronous Mode.
TBMT: This bit is set when the USART transfers a byte of
data from the TBUF register into the TSFT register for transmission. It is automatically reset when software writes into
the TBUF register. Read only, bit is set to “one” on reset; it
cannot be written by software.
ENUR — USART RECEIVE CONTROL AND STATUS REGISTER (Address at 0BB)
FE
SSEL
BRK: Holds TDX (USART Transmit Pin) low to generate a
Line Break. Timing of the Line Break is under software
control.
RBFL: This bit is set when the USART has received a
complete character and has copied it into the RBUF register.
It is automatically reset when software reads the character
from RBUF. Read only; it cannot be written by software,
cleared on reset.
DOE
ETDX
STP2: This bit programs the number of Stop bits to be
transmitted. Read/Write, cleared on reset.
STP2 = 0
One Stop bit transmitted.
STP2 = 1
Two Stop bits transmitted.
ERR: This bit is a global USART error flag which gets set if
any or a combination of the errors (DOE, FE, PE, BD) occur.
Read only; it cannot be written by software, cleared on reset.
Bit 7
BRK
Bit 7
XRCLK: This bit selects the clock source for the receiver
section. Read/Write, cleared on reset.
XRCLK = 0
The clock source is selected through the
PSR and BAUD registers.
XRCLK = 1
Signal on CKX (L1) pin is used as the clock.
XTCLK: This bit selects the clock source for the transmitter
section. Read/Write, cleared on reset.
XTCLK = 0
The clock source is selected through the PSR
and BAUD registers.
XMTG RCVG
Bit 0
XTCLK = 1
DOE: Flags a Data Overrun Error. Read only, cleared on
read, cleared on reset.
DOE = 0
Indicates no Data Overrun Error has been detected since the last time the ENUR register
was read.
DOE = 1
Indicates the occurrence of a Data Overrun
Error.
Signal on CKX (L1) pin is used as the clock.
ERI: This bit enables/disables interrupt from the receiver
section. Read/Write, cleared on reset.
ERI = 0
Interrupt from the receiver is disabled.
ERI = 1
Interrupt from the receiver is enabled.
ETI: This bit enables/disables interrupt from the transmitter
section. Read/Write, cleared on reset.
ETI = 0
Interrupt from the transmitter is disabled.
ETI = 1
Interrupt from the transmitter is enabled.
FE: Flags a Framing Error. Read only, cleared on read,
cleared on reset.
FE = 0
Indicates no Framing Error has been detected
since the last time the ENUR register was read.
FE = 1
Indicates the occurrence of a Framing Error.
14.3 ASSOCIATED I/O PINS
Data is transmitted on the TDX pin and received on the RDX
pin. TDX is the alternate function assigned to Port L pin L2;
it is selected by setting ETDX (in the ENUI register) to one.
RDX is an inherent function Port L pin L3, requiring no setup.
Port L pin L2 must be configured as an output in the Port L
Configuration Register in order to be used as the TDX pin.
The baud rate clock for the USART can be generated onchip, or can be taken from an external source. Port L pin L1
(CKX) is the external clock I/O pin. The CKX pin can be
either an input or an output, as determined by Port L Configuration and Data registers (Bit 1). As an input, it accepts a
clock signal which may be selected to drive the transmitter
and/or receiver. As an output, it presents the internal Baud
Rate Generator output.
Note: The CKX pin is unavailable if Port L1 is used for the
Low Speed Oscillator.
PE: Flags a Parity Error. Read only, cleared on read, cleared
on reset.
PE = 0
Indicates no Parity Error has been detected since
the last time the ENUR register was read.
PE = 1
Indicates the occurrence of a Parity Error.
BD: Flags a line break.
BD = 0 Indicates no Line Break has been detected since
the last time the ENUR register was read.
BD = 1 Indicates the occurrence of a Line Break.
RBIT9: Contains the ninth data bit received when the
USART is operating with nine data bits per frame. Read only,
cleared on reset.
ATTN: ATTENTION Mode is enabled while this bit is set.
This bit is cleared automatically on receiving a character with
data bit nine set. Read/Write, cleared on reset.
47
www.national.com
COP8CBR9/COP8CCR9/COP8CDR9
14.0 USART
COP8CBR9/COP8CCR9/COP8CDR9
14.0 USART
The USART has two modes of operation: asynchronous
mode and synchronous mode.
If data transmit and receive are selected with the CKX pin as
clock output, the device generates the synchronous clock
output at the CKX pin. The internal baud rate generator is
used to produce the synchronous clock. Data transmit and
receive are performed synchronously with this clock.
14.4.1 Asynchronous Mode
14.5 FRAMING FORMATS
This mode is selected by resetting the SSEL (in the ENUI
register) bit to zero. The input frequency to the USART is
16 times the baud rate.
The USART supports several serial framing formats (Figure
23). The format is selected using control bits in the ENU,
ENUR and ENUI registers.
The TSFT and TBUF registers double-buffer data for transmission. While TSFT is shifting out the current character on
the TDX pin, the TBUF register may be loaded by software
with the next byte to be transmitted. When TSFT finishes
transmitting the current character the contents of TBUF are
transferred to the TSFT register and the Transmit Buffer
Empty Flag (TBMT in the ENU register) is set. The TBMT
flag is automatically reset by the USART when software
loads a new character into the TBUF register. There is also
the XMTG bit which is set to indicate that the USART is
transmitting. This bit gets reset at the end of the last frame
(end of last Stop bit). TBUF is a read/write register.
The first format (1, 1a, 1b, 1c) for data transmission (CHL0 =
1, CHL1 = 0) consists of Start bit, seven Data bits (excluding
parity) and one or two Stop bits. In applications using parity,
the parity bit is generated and verified by hardware.
(Continued)
14.4 USART OPERATION
The second format (CHL0 = 0, CHL1 = 0) consists of one
Start bit, eight Data bits (excluding parity) and 7/8, one or
two Stop bits. Parity bit is generated and verified by hardware.
The third format for transmission (CHL0 = 0, CHL1 = 1)
consists of one Start bit, nine Data bits and one or two Stop
bits. This format also supports the USART “ATTENTION”
feature. When operating in this format, all eight bits of TBUF
and RBUF are used for data. The ninth data bit is transmitted
and received using two bits in the ENU and ENUR registers,
called XBIT9 and RBIT9. RBIT9 is a read only bit. Parity is
not generated or verified in this mode.
The parity is enabled/disabled by PEN bit located in the ENU
register. Parity is selected for 7- and 8-bit modes only. If
parity is enabled (PEN = 1), the parity selection is then
performed by PSEL0 and PSEL1 bits located in the ENU
register.
Note that the XBIT9/PSEL0 bit located in the ENU register
serves two mutually exclusive functions. This bit programs
the ninth bit for transmission when the USART is operating
with nine data bits per frame. There is no parity selection in
this framing format. For other framing formats XBIT9 is not
needed and the bit is PSEL0 used in conjunction with PSEL1
to select parity.
The frame formats for the receiver differ from the transmitter
in the number of Stop bits required. The receiver only requires one Stop bit in a frame, regardless of the setting of the
Stop bit selection bits in the control register. Note that an
implicit assumption is made for full duplex USART operation
that the framing formats are the same for the transmitter and
receiver.
The RSFT and RBUF registers double-buffer data being
received. The USART receiver continually monitors the signal on the RDX pin for a low level to detect the beginning of
a Start bit. Upon sensing this low level, it waits for half a bit
time and samples again. If the RDX pin is still low, the
receiver considers this to be a valid Start bit, and the remaining bits in the character frame are each sampled a three
times around the center of the bit time. Serial data input on
the RDX pin is shifted into the RSFT register. Upon receiving
the complete character, the contents of the RSFT register
are copied into the RBUF register and the Received Buffer
Full Flag (RBFL) is set. RBFL is automatically reset when
software reads the character from the RBUF register. RBUF
is a read only register. There is also the RCVG bit which is
set high when a framing error or a break detect occurs and
goes low once RDX goes high.
14.4.2 Synchronous Mode
In this mode data is transferred synchronously with the
clock. Data is transmitted on the rising edge and received on
the falling edge of the synchronous clock.
This mode is selected by setting SSEL bit in the ENUI
register. The input frequency to the USART is the same as
the baud rate.
When an external clock input is selected at the CKX pin, data
transmit and receive are performed synchronously with this
clock through TDX/RDX pins.
www.national.com
48
COP8CBR9/COP8CCR9/COP8CDR9
14.0 USART
(Continued)
10137426
FIGURE 23. Framing Formats
14.6 USART INTERRUPTS
The USART is capable of generating interrupts. Interrupts
are generated on Receive Buffer Full and Transmit Buffer
Empty. Both interrupts have individual interrupt vectors. Two
bytes of program memory space are reserved for each interrupt vector. The two vectors are located at addresses
0xEC to 0xEF Hex in the program memory space. The
interrupts can be individually enabled or disabled using Enable Transmit Interrupt (ETI) and Enable Receive Interrupt
(ERI) bits in the ENUI register.
The interrupt from the Transmitter is set pending, and remains pending, as long as both the TBMT and ETI bits are
set. To remove this interrupt, software must either clear the
ETI bit or write to the TBUF register (thus clearing the TBMT
bit).
The interrupt from the receiver is set pending, and remains
pending, as long as both the RBFL and ERI bits are set. To
remove this interrupt, software must either clear the ERI bit
or read from the RBUF register (thus clearing the RBFL bit).
14.7 BAUD CLOCK GENERATION
The clock inputs to the transmitter and receiver sections of
the USART can be individually selected to come either from
an external source at the CKX pin (port L, pin L1) or from a
source selected in the PSR and BAUD registers. Internally,
the basic baud clock is created from the MCLK through a
two-stage divider chain consisting of a 1-16 (increments of
0.5) prescaler and an 11-bit binary counter (Figure 24). The
divide factors are specified through two read/write registers
shown in Figure 25. Note that the 11-bit Baud Rate Divisor
spills over into the Prescaler Select Register (PSR). PSR is
cleared upon reset.
As shown in Table 18, a Prescaler Factor of 0 corresponds to
NO CLOCK. This condition is the USART power down mode
where the USART clock is turned off for power saving purpose. The user must also turn the USART clock off when a
different baud rate is chosen.
The correspondences between the 5-bit Prescaler Select
and Prescaler factors are shown in Table 18. There are
49
www.national.com
COP8CBR9/COP8CCR9/COP8CDR9
14.0 USART
(Continued)
many ways to calculate the two divisor factors, but one
particularly effective method would be to achieve a 1.8432
MHz frequency coming out of the first stage. The 1.8432
MHz prescaler output is then used to drive the software
programmable baud rate counter to create a 16x clock for
the following baud rates: 110, 134.5, 150, 300, 600, 1200,
1800, 2400, 3600, 4800, 7200, 9600, 19200 and 38400
(Table 17). Other baud rates may be created by using appropriate divisors. The 16x clock is then divided by 16 to
provide the rate for the serial shift registers of the transmitter
and receiver.
TABLE 17. Baud Rate Divisors
(1.8432 MHz Prescaler Output)
Prescaler
Prescaler
Select
Factor
01000
4.5
01001
5
01010
5.5
01011
6
01100
6.5
01101
7
01110
7.5
01111
8
10000
8.5
10001
9
10010
9.5
Baud Rate
10011
10
Divisor − 1 (N-1)
10100
10.5
110 (110.03)
1046
10101
11
134.5 (134.58)
855
10110
11.5
150
767
10111
12
300
383
11000
12.5
600
191
11001
13
1200
95
11010
13.5
1800
63
11011
14
2400
47
11100
14.5
3600
31
11101
15
4800
23
11110
15.5
7200
15
11111
16
9600
11
19200
5
38400
2
Baud Rate
As an example, considering Asynchronous Mode and a crystal frequency of 4.608 MHz, the prescaler factor selected is:
(4.608 x 2)/1.8432 = 5
The 5 entry is available in Table 18. The 1.8432 MHz prescaler output is then used with proper Baud Rate Divisor
(Table 17) to obtain different baud rates. For a baud rate of
19200 e.g., the entry in Table 17 is 5.
N − 1 = 5 (N − 1 is the value from Table 17)
Note: The entries in Table 17 assume a prescaler output of 1.8432 MHz. In
asynchronous mode the baud rate could be as high as 1250k.
N = 6 (N is the Baud Rate Divisor)
Baud Rate = 1.8432 MHz/(16 x 6) = 19200
The divide by 16 is performed because in the asynchronous
mode, the input frequency to the USART is 16 times the
baud rate. The equation to calculate baud rates is given
below.
The actual Baud Rate may be found from:
BR = (FC x 2)/(16 x N x P)
10137427
FIGURE 24. USART BAUD Clock Generation
TABLE 18. Prescaler Factors
Prescaler
www.national.com
Where:
BR is the Baud Rate
FC is the crystal frequency
N is the Baud Rate Divisor (Table 17)
P is the Prescaler Divide Factor selected by the value in the
Prescaler Select Register (Table 18)
Note: In the Synchronous Mode, the divisor 16 is replaced
by two.
Example:
Asynchronous Mode:
Crystal Frequency = 5 MHz
Desired baud rate = 19200
Prescaler
Select
Factor
00000
NO CLOCK
00001
1
00010
1.5
00011
2
00100
2.5
00101
3
00110
3.5
00111
4
50
N = 32.552/6.5 = 5.008 (N = 5)
The programmed value (from Table 17) should be 4 (N - 1).
(Continued)
Using the above equation N x P can be calculated first.
Using the above values calculated for N and P:
BR = (5 x 106 x 2)/(16 x 5 x 6.5) = 19230.769
N x P = (5 x 106 x 2)/(16 x 19200) = 32.552
Now 32.552 is divided by each Prescaler Factor (Table 18) to
obtain a value closest to an integer. This factor happens to
be 6.5 (P = 6.5).
error = (19230.769 - 19200) x 100/19200 = 0.16%
10137428
FIGURE 25. USART BAUD Clock Divisor Registers
14.8 EFFECT OF HALT/IDLE
The USART logic is reinitialized when either the HALT or
IDLE modes are entered. This reinitialization sets the TBMT
flag and resets all read only bits in the USART control and
status registers. Read/Write bits remain unchanged. The
Transmit Buffer (TBUF) is not affected, but the Transmit Shift
register (TSFT) bits are set to one. The receiver registers
RBUF and RSFT are not affected.
The device will exit from the HALT/IDLE modes when the
Start bit of a character is detected at the RDX (L3) pin. This
feature is obtained by using the Multi-Input Wake-up scheme
provided on the device.
Before entering the HALT or IDLE modes the user program
must select the Wake-up source to be on the RDX pin. This
selection is done by setting bit 3 of WKEN (Wake-up Enable)
register. The Wake-up trigger condition is then selected to be
high to low transition. This is done via the WKEDG register
(Bit 3 is one).
If the device is halted and crystal oscillator is used, the
Wake-up signal will not start the chip running immediately
because of the finite start up time requirement of the crystal
oscillator. The idle timer (T0) generates a fixed (256 tC) delay
to ensure that the oscillator has indeed stabilized before
allowing the device to execute code. The user has to consider this delay when data transfer is expected immediately
after exiting the HALT mode.
14.10 ATTENTION MODE
The USART Receiver section supports an alternate mode of
operation, referred to as ATTENTION Mode. This mode of
operation is selected by the ATTN bit in the ENUR register.
The data format for transmission must also be selected as
having nine Data bits and either one or two Stop bits.
The ATTENTION mode of operation is intended for use in
networking the device with other processors. Typically in
such environments the messages consists of device addresses, indicating which of several destinations should receive them, and the actual data. This Mode supports a
scheme in which addresses are flagged by having the ninth
bit of the data field set to a 1. If the ninth bit is reset to a zero
the byte is a Data byte.
While in ATTENTION mode, the USART monitors the communication flow, but ignores all characters until an address
character is received. Upon receiving an address character,
the USART signals that the character is ready by setting the
RBFL flag, which in turn interrupts the processor if USART
Receiver interrupts are enabled. The ATTN bit is also cleared
automatically at this point, so that data characters as well as
address characters are recognized. Software examines the
contents of the RBUF and responds by deciding either to
accept the subsequent data stream (by leaving the ATTN bit
reset) or to wait until the next address character is seen (by
setting the ATTN bit again).
Operation of the USART Transmitter is not affected by selection of this Mode. The value of the ninth bit to be transmitted is programmed by setting XBIT9 appropriately. The
value of the ninth bit received is obtained by reading RBIT9.
Since this bit is located in ENUR register where the error
flags reside, a bit operation on it will reset the error flags.
14.9 DIAGNOSTIC
Bits CHL0 and CHL1 in the ENU register provide a loopback
feature for diagnostic testing of the USART. When both bits
are set to one, the following occurs: The receiver input pin
(RDX) is internally connected to the transmitter output pin
(TDX); the output of the Transmitter Shift Register is “looped
back” into the Receive Shift Register input. In this mode,
data that is transmitted is immediately received. This feature
allows the processor to verify the transmit and receive data
paths of the USART.
Note that the framing format for this mode is the nine bit
format; one Start bit, nine data bits, and one or two Stop bits.
Parity is not generated or verified in this mode.
14.11 BREAK GENERATION
To generate a line break, the user software should set the
BRK bit in the ENUI register. This will force the TDX pin to 0
and hold it there until the BRK bit is reset.
15.0 A/D Converter
This device contains a 16-channel, multiplexed input, successive approximation, 10 bit Analog-to-Digital Converter.
Pins AVCC and AGND are used for the voltage reference.
51
www.national.com
COP8CBR9/COP8CCR9/COP8CDR9
14.0 USART
COP8CBR9/COP8CCR9/COP8CDR9
15.0 A/D Converter
An A/D conversion is initiated by setting the ADBSY bit in the
ENAD control register. The result of the conversion is available to the user in the A/D result registers, ADRSTH and
ADRSTL, when ADBSY is cleared by the hardware on
completion of the conversion.
(Continued)
15.1 OPERATING MODES
It supports both Single Ended and Differential modes of
operation.
Two specific analog channel selection modes are supported.
These are as follows:
1. Allow any specific channel to be selected at one time.
The A/D Converter performs the specific conversion requested and stops.
2. Allow any differential channel pair to be selected at one
time. The A/D Converter performs the specific differential conversion requested and stops.
15.1.1.1 Channel Select
In both Single Ended and Differential modes, there is the
capability to connect the analog multiplexor output and A/D
converter input to external pins. This provides the ability to
externally connect a common filter/signal conditioning circuit
for the A/D Converter.
This 4-bit field selects one of sixteen channels to be the VIN+.
The mode selection and the mux output determine the VINinput. When MUX = 0, all sixteen channels are available, as
shown in Table 20. When MUX = 1, only fourteen channels
are available, as shown in Table 21.
The A/D Converter is supported by three memory mapped
registers: two result registers and the control register. When
the device is reset, the mode control register (ENAD) is
cleared, the A/D is powered down and the A/D result registers have unknown data.
All port pins which are used, in the application, in A/D operations must be configured as high-impedance inputs. If the
ports are configured as outputs or inputs with weak pull-up
there will be a conflict between the analog signal and the
digitally driven output.
TABLE 19. ENAD
Bit 7
Bit 0
Channel Select
ADCH3 ADCH2 ADCH1 ADCH0
Mode Select Mux/Out Prescale
ADMOD
MUX
PSC
Busy
ADBSY
15.1.1 A/D Control Register
The control register, ENAD, contains 4 bits for channel selection, 1 bit for mode selection, 1 bit for the multiplexor
output selection, 1 bit for prescaler selection, and a Busy bit.
TABLE 20. A/D Converter Channel Selection when the Multiplexor Output is Disabled
Select Bits
Mode Select
ADMOD = 0
Single Ended
Mode
Mode Select
ADMOD = 1
Differential
Mode
Mux Output
Disabled
ADCH3
ADCH2
ADCH1
ADCH0
Channel No.
Channel Pairs
(+, −)
MUX
0
0
0
0
0
0, 1
0
0
0
0
1
1
1, 0
0
0
0
1
0
2
2, 3
0
0
0
1
1
3
3, 2
0
0
1
0
0
4
4, 5
0
0
1
0
1
5
5, 4
0
0
1
1
0
6
6, 7
0
0
1
1
1
7
7, 6
0
1
0
0
0
8
8, 9
0
1
0
0
1
9
9, 8
0
1
0
1
0
10
10, 11
0
1
0
1
1
11
11, 10
0
1
1
0
0
12
12, 13
0
1
1
0
1
13
13, 12
0
1
1
1
0
14
14, 15
0
1
1
1
1
15
15, 14
0
www.national.com
52
(Continued)
TABLE 21. A/D Converter Channel Selection when the Multiplexor Output is Enabled
Select Bits
Mode Select
ADMOD = 0
Single Ended
Mode
Mode Select
ADMOD = 1
Differential
Mode
Mux Output
Enabled
ADCH3
ADCH2
ADCH1
ADCH0
Channel No.
Channel Pairs
(+, −)
MUX
0
0
0
0
0
0, 1
1
0
0
0
1
1
1, 0
1
0
0
1
0
2
2, 3
1
0
0
1
1
3
3, 2
1
0
1
0
0
4
4, 5
1
0
1
0
1
5
5, 4
1
0
1
1
0
6
6, 7
1
0
1
1
1
7
7, 6
1
1
0
0
0
8
8, 9
1
1
0
0
1
9
9, 8
1
1
0
1
0
10
10, 11
1
1
0
1
1
11
11, 10
1
1
1
0
0
12
Not Used (Note
19)
1
1
1
0
1
13
ADC13 is
Mux Output −
(Note 19)
1
1
1
1
0
ADCH14 is
Mux Output
(Note 18)
ADCH14 is
Mux Output +
(Note 18)
1
1
1
1
1
ADCH15 is
A/D Input (Note
18)
ADCH15 is
A/D Input (Note
18)
1
Note 18: This Input Channel Selection should not be used when the Multiplexor Output is enabled.
Note 19: This Input Channel Selection should not be used in Differential Mode when the Multiplexor Output is enabled.
15.1.1.2 Multiplexor Output Select
This 1-bit field allows the output of the A/D multiplexor and
the input to the A/D to be connected directly to external pins.
This allows for an external, common filter/signal conditioning
circuit to be applied to all channels. The output of the external conditioning circuit can then be connected directly to the
input of the Sample and Hold input on the A/D Converter.
See Figure 26 for the single ended mode diagram. The
Multiplexor output is connected to ADCH14 and the A/D
input is connected to ADCH15. For Differential mode, the
differential multiplexor outputs are available and should be
converted to a single ended voltage for connection to the A/D
Converter Input. See Figure 27.
The channel assignments for this mode are shown in Table
22.
When using the Mux Output feature, the delay though the
internal multiplexor to the pin, plus the delay of the external
filter circuit, plus the internal delay to the Sample and Hold
will exceed the three clock cycles that’s allowed in the conversion. This adds the requirement that, whenever the MUX
bit = 1, that the channel selected by ADCH3:0 bits be enabled, even when ADBSY = 0, and gated to the mux output
pin. The input path to the A/D converter is also enabled. This
allows the input channel to be selected and settled before
starting a conversion. The sequence to perform conversions
using the Mux Out feature is a multistep process and is listed
below.
1. Select the desired channel and operating modes and
load them into ENAD without setting ADBSY.
2. Wait the appropriate time until the analog input has
settled. This will depend on the application and the
response of the external circuit.
3. Select the same desired channel and operating modes
used in step 1 and load them into ENAD and also set
ADBSY or set ADBSY by using the SBIT instruction.
This will start the conversion.
4. Poll ADBSY until it is cleared by the hardware. This
indicates the completion of the conversion.
5. Obtain the results from the result registers.
The port pins used for the multiplexor output must be configured as high impedance inputs. If the port pins are configured as outputs, or as inputs with weak pull-up, there will
be a conflict between the analog signal output and the
digitally driven output.
53
www.national.com
COP8CBR9/COP8CCR9/COP8CDR9
15.0 A/D Converter
COP8CBR9/COP8CCR9/COP8CDR9
15.0 A/D Converter
(Continued)
10137429
FIGURE 26. A/D with Single Ended Mux Output Feature Enabled
10137430
FIGURE 27. A/D with Differential Mux Output Feature Enabled
values currently in the ENAD register. Normal completion of
an A/D conversion clears the ADBSY bit and turns off the A/D
Converter.
If the user wishes to restart a conversion which is already in
progress, this can be accomplished only by writing a zero to
the ADBSY bit to stop the current conversion and then by
writing a one to ADBSY to start a new conversion. This can
be done in two consecutive instructions.
15.1.1.3 Mode Select
This 1-bit field is used to select the mode of operation (single
ended or differential) as shown in the following Table 22.
TABLE 22. A/D Conversion Mode Selection
ADMOD
Mode
0
Single Ended Mode
1
Differential Mode
15.1.2 A/D Result Registers
There are two result registers for the A/D converter: the high
8 bits of the result and the low 2-bits of the result. The format
of these registers is shown in Figures 27, 28. Both registers
are read/write registers, but in normal operation, the hardware writes the value into the register when the conversion is
complete and the software reads the value. Both registers
are undefined upon Reset. They hold the previous value until
a new conversion overwrites them. When reading ADRSTL,
bits 5-0 will read as 0.
15.1.1.4 Prescaler Select
This 1-bit field is used to select one of two prescaler clocks
for the A/D Converter. The following Table 23 shows the
various prescaler options. Care must be taken, when selecting this bit, to keep the A/D clock frequency within the
specified range.
TABLE 23. A/D Converter Clock Prescale
PSC
Clock Select
0
MCLK Divide by 1
Bit 7
1
MCLK Divide by 16
Bit 9
TABLE 24. ADRSTH
15.1.1.5 Busy Bit
The ADBSY bit of the ENAD register is used to control
starting and stopping of the A/D conversion. When ADBSY is
cleared, the prescale logic is disabled and the A/D clock is
turned off, drawing minimal power. Setting the ADBSY bit
starts the A/D clock and initiates a conversion based on the
www.national.com
Bit 0
Bit 8
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
TABLE 25. ADRSTL
Bit 7
Bit 1
54
Bit 0
Bit 0
0
0
0
0
0
0
auto-zeroing the comparator, 10 cycles for converting, 1
cycle for loading the result into the result registers, for stopping and for re-initializing. The ADBSY flag provides an A/D
clock inhibit function, which saves power by powering down
the A/D when it is not in use.
Note: The A/D Converter is also powered down when the
device is in either the HALT or IDLE modes. If the A/D is
running when the device enters the HALT or IDLE modes,
the A/D powers down and then restarts the conversion from
the beginning with a corrupted sampled voltage (and thus an
invalid result) when the device comes out of the HALT or
IDLE modes.
(Continued)
15.2 A/D OPERATION
The A/D conversion is completed within fifteen A/D converter
clocks. The A/D Converter interface works as follows. Setting
the ADBSY bit in the A/D control register ENAD initiates an
A/D conversion. The conversion sequence starts at the beginning of the write to ENAD operation which sets ADBSY,
thus powering up the A/D. At the first edge of the Converter
clock following the write operation, the sample signal turns
on for three clock cycles. At the end of the conversion, the
internal conversion complete signal will clear the ADBSY bit
and power down the A/D. The A/D 10-bit result is immediately loaded into the A/D result registers (ADRSTH and
ADRSTL) upon completion.
15.3 ANALOG INPUT AND SOURCE RESISTANCE
CONSIDERATIONS
Figure 28 shows the A/D pin model in single ended mode.
The differential mode has a similar A/D pin model. The leads
to the analog inputs should be kept as short as possible.
Both noise and digital clock coupling to an A/D input can
cause conversion errors. The clock lead should be kept
away from the analog input line to reduce coupling.
Source impedances greater than 3 kΩ on the analog input
lines will adversely affect the internal RC charging time
during input sampling. As shown in Figure 28, the analog
switch to the DAC array is closed only during the 3 A/D cycle
sample time. Large source impedances on the analog inputs
may result in the DAC array not being charged to the correct
voltage levels, causing scale errors.
If large source resistance is necessary, the recommended
solution is to slow down the A/D clock speed in proportion to
the source resistance. The A/D Converter may be operated
at the maximum speed for RS less than 3 kΩ. For RS greater
than 3 kΩ, A/D clock speed needs to be reduced. For example, with RS = 6 kΩ, the A/D Converter may be operated
at half the maximum speed. A/D Converter clock speed may
be slowed down by either increasing the A/D prescaler
divide-by or decreasing the CKI clock frequency. The A/D
minimum clock speed is 65.536 kHz.
Inadvertent changes to the ENAD register during conversion
are prevented by the control logic of the A/D. Any attempt to
write any bit of the ENAD Register except ADBSY, while
ADBSY is a one, is ignored. ADBSY must be cleared either
by completion of an A/D conversion or by the user before the
prescaler, conversion mode or channel select values can be
changed. After stopping the current conversion, the user can
load different values for the prescaler, conversion mode or
channel select and start a new conversion in one instruction.
15.2.1 Prescaler
The A/D Converter (A/D) contains a prescaler option that
allows two different clock speed selections as shown in
Table 23. The A/D clock frequency is equal to MCLK divided
by the prescaler value. Note that the prescaler value must be
chosen such that the A/D clock falls within the specified
range. The maximum A/D frequency is 1.25 MHz. This
equates to a 800 ns A/D clock cycle.
The A/D Converter takes 15 A/D clock cycles to complete a
conversion. Thus the minimum A/D conversion time is 12.0
µs when a prescaler of 16 has been selected with
MCLK = 20 MHz. The 15 A/D clock cycles needed for
conversion consist of 3 cycles for sampling, 1 cycle for
10137453
*The analog switch is closed only during the sample time.
FIGURE 28. A/D Pin Model (Single Ended Mode)
55
www.national.com
COP8CBR9/COP8CCR9/COP8CDR9
15.0 A/D Converter
COP8CBR9/COP8CCR9/COP8CDR9
16.0 Interrupts
The Software trap has the highest priority while the default
VIS has the lowest priority.
16.1 INTRODUCTION
Each of the 13 maskable inputs has a fixed arbitration ranking and vector.
Figure 29 shows the Interrupt block diagram.
The device supports fourteen vectored interrupts. Interrupt
sources include Timer 1, Timer 2, Timer 3, Timer T0, Port L
Wake-up, Software Trap, MICROWIRE/PLUS, USART and
External Input.
All interrupts force a branch to location 00FF Hex in program
memory. The VIS instruction may be used to vector to the
appropriate service routine from location 00FF Hex.
10137432
FIGURE 29. Interrupt Block Diagram
16.2 MASKABLE INTERRUPTS
All interrupts other than the Software Trap are maskable.
Each maskable interrupt has an associated enable bit and
pending flag bit. The pending bit is set to 1 when the interrupt
condition occurs. The state of the interrupt enable bit, combined with the GIE bit determines whether an active pending
flag actually triggers an interrupt. All of the maskable interrupt pending and enable bits are contained in mapped control registers, and thus can be controlled by the software.
A maskable interrupt condition triggers an interrupt under the
following conditions:
1. The enable bit associated with that interrupt is set.
2. The GIE bit is set.
3. The device is not processing a non-maskable interrupt.
(If a non-maskable interrupt is being serviced, a
www.national.com
maskable interrupt must wait until that service routine is
completed.)
An interrupt is triggered only when all of these conditions are
met at the beginning of an instruction. If different maskable
interrupts meet these conditions simultaneously, the highestpriority interrupt will be serviced first, and the other pending
interrupts must wait.
Upon Reset, all pending bits, individual enable bits, and the
GIE bit are reset to zero. Thus, a maskable interrupt condition cannot trigger an interrupt until the program enables it by
setting both the GIE bit and the individual enable bit. When
enabling an interrupt, the user should consider whether or
not a previously activated (set) pending bit should be acknowledged. If, at the time an interrupt is enabled, any
previous occurrences of the interrupt should be ignored, the
associated pending bit must be reset to zero prior to enabling the interrupt. Otherwise, the interrupt may be simply
56
16.3 VIS INSTRUCTION
The general interrupt service routine, which starts at address
00FF Hex, must be capable of handling all types of interrupts. The VIS instruction, together with an interrupt vector
table, directs the device to the specific interrupt handling
routine based on the cause of the interrupt.
(Continued)
enabled; if the pending bit is already set, it will immediately
trigger an interrupt. A maskable interrupt is active if its associated enable and pending bits are set.
An interrupt is an asychronous event which may occur before, during, or after an instruction cycle. Any interrupt which
occurs during the execution of an instruction is not acknowledged until the start of the next normally executed instruction. If the next normally executed instruction is to be
skipped, the skip is performed before the pending interrupt is
acknowledged.
VIS is a single-byte instruction, typically used at the very
beginning of the general interrupt service routine at address
00FF Hex, or shortly after that point, just after the code used
for context switching. The VIS instruction determines which
enabled and pending interrupt has the highest priority, and
causes an indirect jump to the address corresponding to that
interrupt source. The jump addresses (vectors) for all possible interrupts sources are stored in a vector table.
At the start of interrupt acknowledgment, the following actions occur:
1.
The GIE bit is automatically reset to zero, preventing any
subsequent maskable interrupt from interrupting the current service routine. This feature prevents one maskable
interrupt from interrupting another one being serviced.
2. The address of the instruction about to be executed is
pushed onto the stack.
3. The program counter (PC) is loaded with 00FF Hex,
causing a jump to that program memory location.
The device requires seven instruction cycles to perform the
actions listed above.
If the user wishes to allow nested interrupts, the interrupts
service routine may set the GIE bit to 1 by writing to the PSW
register, and thus allow other maskable interrupts to interrupt
the current service routine. If nested interrupts are allowed,
caution must be exercised. The user must write the program
in such a way as to prevent stack overflow, loss of saved
context information, and other unwanted conditions.
The interrupt service routine stored at location 00FF Hex
should use the VIS instruction to determine the cause of the
interrupt, and jump to the interrupt handling routine corresponding to the highest priority enabled and active interrupt.
Alternately, the user may choose to poll all interrupt pending
and enable bits to determine the source(s) of the interrupt. If
more than one interrupt is active, the user’s program must
decide which interrupt to service.
The vector table may be as long as 32 bytes (maximum of 16
vectors) and resides at the top of the 256-byte block containing the VIS instruction. However, if the VIS instruction is
at the very top of a 256-byte block (such as at 00FF Hex),
the vector table resides at the top of the next 256-byte block.
Thus, if the VIS instruction is located somewhere between
00FF and 01DF Hex (the usual case), the vector table is
located between addresses 01E0 and 01FF Hex. If the VIS
instruction is located between 01FF and 02DF Hex, then the
vector table is located between addresses 02E0 and 02FF
Hex, and so on.
Each vector is 15 bits long and points to the beginning of a
specific interrupt service routine somewhere in the 32-kbyte
memory space. Each vector occupies two bytes of the vector
table, with the higher-order byte at the lower address. The
vectors are arranged in order of interrupt priority. The vector
of the maskable interrupt with the lowest rank is located to
0yE0 (higher-order byte) and 0yE1 (lower-order byte). The
next priority interrupt is located at 0yE2 and 0yE3, and so
forth in increasing rank. The Software Trap has the highest
rand and its vector is always located at 0yFE and 0yFF. The
number of interrupts which can become active defines the
size of the table.
Table 28 shows the types of interrupts, the interrupt arbitration ranking, and the locations of the corresponding vectors
in the vector table.
The vector table should be filled by the user with the memory
locations of the specific interrupt service routines. For example, if the Software Trap routine is located at 0310 Hex,
then the vector location 0yFE and -0yFF should contain the
data 03 and 10 Hex, respectively. When a Software Trap
interrupt occurs and the VIS instruction is executed, the
program jumps to the address specified in the vector table.
The interrupt sources in the vector table are listed in order of
rank, from highest to lowest priority. If two or more enabled
and pending interrupts are detected at the same time, the
one with the highest priority is serviced first. Upon return
from the interrupt service routine, the next highest-level
pending interrupt is serviced.
If the VIS instruction is executed, but no interrupts are enabled and pending, the lowest-priority interrupt vector is
used, and a jump is made to the corresponding address in
the vector table. This is an unusual occurrence and may be
the result of an error. It can legitimately result from a change
in the enable bits or pending flags prior to the execution of
the VIS instruction, such as executing a single cycle instruction which clears an enable flag at the same time that the
pending flag is set. It can also result, however, from inadvertent execution of the VIS command outside of the context
of an interrupt.
Within a specific interrupt service routine, the associated
pending bit should be cleared. This is typically done as early
as possible in the service routine in order to avoid missing
the next occurrence of the same type of interrupt event.
Thus, if the same event occurs a second time, even while the
first occurrence is still being serviced, the second occurrence will be serviced immediately upon return from the
current interrupt routine.
An interrupt service routine typically ends with an RETI
instruction. This instruction set the GIE bit back to 1, pops
the address stored on the stack, and restores that address to
the program counter. Program execution then proceeds with
the next instruction that would have been executed had
there been no interrupt. If there are any valid interrupts
pending, the highest-priority interrupt is serviced immediately upon return from the previous interrupt.
Note: While executing from the Boot ROM for ISP or virtual
E2 operations, the hardware will disable interrupts from occurring. The hardware will leave the GIE bit in its current
state, and if set, the hardware interrupts will occur when
execution is returned to Flash Memory. Subsequent interrupts, during ISP operation, from the same interrupt source
will be lost.
57
www.national.com
COP8CBR9/COP8CCR9/COP8CDR9
16.0 Interrupts
COP8CBR9/COP8CCR9/COP8CDR9
16.0 Interrupts
To ensure reliable operation, the user should always use the
VIS instruction to determine the source of an interrupt. Although it is possible to poll the pending bits to detect the
source of an interrupt, this practice is not recommended. The
use of polling allows the standard arbitration ranking to be
altered, but the reliability of the interrupt system is compromised. The polling routine must individually test the enable
and pending bits of each maskable interrupt. If a Software
Trap interrupt should occur, it will be serviced last, even
though it should have the highest priority. Under certain
conditions, a Software Trap could be triggered but not serviced, resulting in an inadvertent “locking out” of all
maskable interrupts by the Software Trap pending flag.
Problems such as this can be avoided by using VIS
instruction.
(Continued)
The default VIS interrupt vector can be useful for applications in which time critical interrupts can occur during the
servicing of another interrupt. Rather than restoring the program context (A, B, X, etc.) and executing the RETI instruction, an interrupt service routine can be terminated by returning to the VIS instruction. In this case, interrupts will be
serviced in turn until no further interrupts are pending and
the default VIS routine is started. After testing the GIE bit to
ensure that execution is not erroneous, the routine should
restore the program context and execute the RETI to return
to the interrupted program.
This technique can save up to fifty instruction cycles (tC), or
more, (25 µs at 10 MHz oscillator) of latency for pending
interrupts with a penalty of fewer than ten instruction cycles
if no further interrupts are pending.
TABLE 26. Interrupt Vector Table
Arbitration Ranking
Vector Address (Note 20)
(Hi-Low Byte)
Source Description
(1) Highest
Software
(2)
Reserved for NMI
INTR Instruction
0yFE–0yFF
(3)
External
G0
0yFA–0yFB
(4)
Timer T0
Underflow
0yF8–0yF9
(5)
Timer T1
T1A/Underflow
0yF6–0yF7
(6)
Timer T1
T1B
0yF4–0yF5
(7)
MICROWIRE/PLUS
BUSY Low
0yF2–0yF3
(8)
Reserved
(9)
USART
(10)
USART
Transmit
0yEC–0yED
(11)
Timer T2
T2A/Underflow
0yEA–0yEB
(12)
Timer T2
T2B
0yE8–0yE9
(13)
Timer T3
T3A/Underflow
0yE6–0yE7
(14)
Timer T3
T3B
0yE4–0yE5
(15)
Port L/Wake-up
Port L Edge
0yE2–0yE3
(16) Lowest
Default VIS
Reserved
0yE0–0yE1
0yFC–0yFD
0yF0–0yF1
Receive
0yEE–0yEF
Note 20: y is a variable which represents the VIS block. VIS and the vector table must be located in the same 256-byte block except if VIS is located at the last
address of a block. In this case, the table must be in the next block.
16.3.1 VIS Execution
When the VIS instruction is executed it activates the arbitration logic. The arbitration logic generates an even number
between E0 and FE (E0, E2, E4, E6 etc....) depending on
which active interrupt has the highest arbitration ranking at
the time of the 1st cycle of VIS is executed. For example, if
the software trap interrupt is active, FE is generated. If the
external interrupt is active and the software trap interrupt is
not, then FA is generated and so forth. If no active interrupt
is pending, than E0 is generated. This number replaces the
lower byte of the PC. The upper byte of the PC remains
unchanged. The new PC is therefore pointing to the vector of
www.national.com
the active interrupt with the highest arbitration ranking. This
vector is read from program memory and placed into the PC
which is now pointed to the 1st instruction of the service
routine of the active interrupt with the highest arbitration
ranking.
Figure 30 illustrates the different steps performed by the VIS
instruction. Figure 31 shows a flowchart for the VIS instruction.
The non-maskable interrupt pending flag is cleared by the
RPND (Reset Non-Maskable Pending Bit) instruction (under
certain conditions) and upon RESET.
58
COP8CBR9/COP8CCR9/COP8CDR9
16.0 Interrupts
(Continued)
10137433
FIGURE 30. VIS Operation
16.4 NON-MASKABLE INTERRUPT
The Software Trap has the highest priority of all interrupts.
When a Software Trap occurs, the STPND bit is set. The GIE
bit is not affected and the pending bit (not accessible by the
user) is used to inhibit other interrupts and to direct the
program to the ST service routine with the VIS instruction.
Nothing can interrupt a Software Trap service routine except
for another Software Trap. The STPND can be reset only by
the RPND instruction or a chip Reset.
The Software Trap indicates an unusual or unknown error
condition. Generally, returning to normal execution at the
point where the Software Trap occurred cannot be done
reliably. Therefore, the Software Trap service routine should
re-initialize the stack pointer and perform a recovery procedure that re-starts the software at some known point, similar
to a device Reset, but not necessarily performing all the
same functions as a device Reset. The routine must also
execute the RPND instruction to reset the STPND flag.
Otherwise, all other interrupts will be locked out. To the
extent possible, the interrupt routine should record or indicate the context of the device so that the cause of the
Software Trap can be determined.
If the user wishes to return to normal execution from the
point at which the Software Trap was triggered, the user
must first execute RPND, followed by RETSK rather than
RETI or RET. This is because the return address stored on
the stack is the address of the INTR instruction that triggered
the interrupt. The program must skip that instruction in order
to proceed with the next one. Otherwise, an infinite loop of
Software Traps and returns will occur.
Programming a return to normal execution requires careful
consideration. If the Software Trap routine is interrupted by
another Software Trap, the RPND instruction in the service
routine for the second Software Trap will reset the STPND
flag; upon return to the first Software Trap routine, the
16.4.1 Pending Flag
There is a pending flag bit associated with the non-maskable
Software Trap interrupt, called STPND. This pending flag is
not memory-mapped and cannot be accessed directly by the
software.
The pending flag is reset to zero when a device Reset
occurs. When the non-maskable interrupt occurs, the associated pending bit is set to 1. The interrupt service routine
should contain an RPND instruction to reset the pending flag
to zero. The RPND instruction always resets the STPND
flag.
16.4.2 Software Trap
The Software Trap is a special kind of non-maskable interrupt which occurs when the INTR instruction (used to acknowledge interrupts) is fetched from program memory and
placed in the instruction register. This can happen in a
variety of ways, usually because of an error condition. Some
examples of causes are listed below.
If the program counter incorrectly points to a memory location beyond the programmed Flash memory space, the unused memory location returns zeros which is interpreted as
the INTR instruction.
If the stack is popped beyond the allowed limit (address 06F
Hex), a 7FFF will be loaded into the PC. Since the Option
Register resides at this location, and to maintain the integrity
of the stack overpop protection, the Flash memory will return
a zero on an instruction fetch and a software trap will be
triggered.
A Software Trap can be triggered by a temporary hardware
condition such as a brownout or power supply glitch.
59
www.national.com
COP8CBR9/COP8CCR9/COP8CDR9
16.0 Interrupts
programming error or hardware condition (brownout, power
supply glitch, etc.) sets the STPND flag without providing a
way for it to be cleared, all other interrupts will be locked out.
To alleviate this condition, the user can use extra RPND
instructions in the main program and in the Watchdog service routine (if present). There is no harm in executing extra
RPND instructions in these parts of the program.
(Continued)
STPND flag will have the wrong state. This will allow
maskable interrupts to be acknowledged during the servicing
of the first Software Trap. To avoid problems such as this, the
user program should contain the Software Trap routine to
perform a recovery procedure rather than a return to normal
execution.
Under normal conditions, the STPND flag is reset by a
RPND instruction in the Software Trap service routine. If a
10137434
FIGURE 31. VIS Flow Chart
16.4.2.1 Programming Example: External Interrupt
WAIT:
PSW
CNTRL
RBIT
RBIT
SBIT
SBIT
SBIT
JP
.
.
.
.=0FF
VIS
.
.
.
.=01FA
.ADDRW SERVICE
www.national.com
=00EF
=00EE
0,PORTGC
0,PORTGD
IEDG, CNTRL
GIE, PSW
EXEN, PSW
WAIT
;
;
;
;
;
G0 pin configured Hi-Z
Ext interrupt polarity; falling edge
Set the GIE bit
Enable the external interrupt
Wait for external interrupt
;
;
;
;
The interrupt causes a
branch to address 0FF
The VIS causes a branch to
interrupt vector table
; Vector table (within 256 byte
; of VIS inst.) containing the ext
60
(Continued)
; interrupt service routine
.
.
.
SERVICE:
RBIT,EXPND,PSW
.
.
.
RET I
; Interrupt Service Routine
; Reset ext interrupt pend. bit
; Return, set the GIE bit
16.5 PORT L INTERRUPTS
state, and if set, the hardware interrupts will occur when
execution is returned to Flash Memory. Subsequent interrupts, during ISP operation, from the same interrupt
source will be lost.
Port L provides the user with an additional eight fully selectable, edge sensitive interrupts which are all vectored into the
same service subroutine.
The interrupt from Port L shares logic with the wake-up
circuitry. The register WKEN allows interrupts from Port L to
be individually enabled or disabled. The register WKEDG
specifies the trigger condition to be either a positive or a
negative edge. Finally, the register WKPND latches in the
pending trigger conditions.
The GIE (Global Interrupt Enable) bit enables the interrupt
function.
A control flag, LPEN, functions as a global interrupt enable
for Port L interrupts. Setting the LPEN flag will enable interrupts and vice versa. A separate global pending flag is not
needed since the register WKPND is adequate.
Since Port L is also used for waking the device out of the
HALT or IDLE modes, the user can elect to exit the HALT or
IDLE modes either with or without the interrupt enabled. If he
elects to disable the interrupt, then the device will restart
execution from the instruction immediately following the instruction that placed the microcontroller in the HALT or IDLE
modes. In the other case, the device will first execute the
interrupt service routine and then revert to normal operation.
(See HALT MODE for clock option wake-up information.)
17.0 WATCHDOG/Clock Monitor
The devices contain a user selectable WATCHDOG and
clock monitor. The following section is applicable only if the
WATCHDOG feature has been selected in the Option register. The WATCHDOG is designed to detect the user program
getting stuck in infinite loops resulting in loss of program
control or “runaway” programs.
The WATCHDOG logic contains two separate service windows. While the user programmable upper window selects
the WATCHDOG service time, the lower window provides
protection against an infinite program loop that contains the
WATCHDOG service instruction. The WATCHDOG uses the
Idle Timer (T0) and thus all times are measured in Idle Timer
Clocks.
The Clock Monitor is used to detect the absence of a clock or
a very slow clock below a specified rate on tC.
The WATCHDOG consists of two independent logic blocks:
WD UPPER and WD LOWER. WD UPPER establishes the
upper limit on the service window and WD LOWER defines
the lower limit of the service window.
Servicing the WATCHDOG consists of writing a specific
value to a WATCHDOG Service Register named WDSVR
which is memory mapped in the RAM. This value is composed of three fields, consisting of a 2-bit Window Select, a
5-bit Key Data field, and the 1-bit Clock Monitor Select field.
Table 27 shows the WDSVR register.
16.6 INTERRUPT SUMMARY
The device uses the following types of interrupts, listed
below in order of priority:
1. The Software Trap non-maskable interrupt, triggered by
the INTR (00 opcode) instruction. The Software Trap is
acknowledged immediately. This interrupt service routine can be interrupted only by another Software Trap.
The Software Trap should end with two RPND instructions followed by a re-start procedure.
2. Maskable interrupts, triggered by an on-chip peripheral
block or an external device connected to the device.
Under ordinary conditions, a maskable interrupt will not
interrupt any other interrupt routine in progress. A
maskable interrupt routine in progress can be interrupted by the non-maskable interrupt request. A
maskable interrupt routine should end with an RETI
instruction or, prior to restoring context, should return to
execute the VIS instruction. This is particularly useful
when exiting long interrupt service routines if the time
between interrupts is short. In this case the RETI instruction would only be executed when the default VIS routine is reached.
3. While executing from the Boot ROM for ISP or virtual E2
operations, the hardware will disable interrupts from occurring. The hardware will leave the GIE bit in its current
TABLE 27. WATCHDOG Service Register (WDSVR)
Window
Select
Clock
Monitor
Key Data
X
X
0
1
1
0
0
Y
7
6
5
4
3
2
1
0
The lower limit of the service window is fixed at 2048 Idle
Timer Clocks. Bits 7 and 6 of the WDSVR register allow the
user to pick an upper limit of the service window.
Table 28 shows the four possible combinations of lower and
upper limits for the WATCHDOG service window. This flexibility in choosing the WATCHDOG service window prevents
any undue burden on the user software.
Bits 5, 4, 3, 2 and 1 of the WDSVR register represent the
5-bit Key Data field. The key data is fixed at 01100. Bit 0 of
the WDSVR Register is the Clock Monitor Select bit.
61
www.national.com
COP8CBR9/COP8CCR9/COP8CDR9
16.0 Interrupts
COP8CBR9/COP8CCR9/COP8CDR9
17.0 WATCHDOG/Clock Monitor
(Continued)
TABLE 28. WATCHDOG Service Window Select
WDSVR
Bit 7
WDSVR
Bit 6
Clock
Monitor
Bit 0
Service Window
for High Speed Mode
(Lower-Upper Limits)
Service Window
for Dual Clock & Low Speed Modes
(Lower-Upper Limits)
0
0
X
2048-8k tC Cycles
2048-8k Cycles of 32 kHz Clk
0
1
X
2048-16k tC Cycles
2048-16k Cycles of LS 32 kHz Clk
1
0
X
2048-32k tC Cycles
2048-32k Cycles of LS 32 kHz Clk
1
1
X
2048-64k tC Cycles
2048-64k Cycles of LS 32 kHz Clk
X
X
0
Clock Monitor Disabled
Clock Monitor Disabled
X
X
1
Clock Monitor Enabled
Clock Monitor Enabled
17.1 CLOCK MONITOR
When jumping to the boot ROM for ISP and virtual E2
operations, the hardware will disable the lower window error
and perform an immediate WATCHDOG service. The ISP
routines will service the WATCHDOG within the selected
upper window. The ISP routines will service the WATCHDOG immediately prior to returning execution back to the
user’s code in flash. Therefore, after returning to flash
memory, the user can service the WATCHDOG anytime
following the return from boot ROM, but must service it within
the selected upper window to avoid a WATCHDOG error.
The WATCHDOG has an output pin associated with it. This
is the WDOUT pin, on pin 1 of the port G. WDOUT is active
low. The WDOUT pin has a weak pull-up in the inactive
state. Upon triggering the WATCHDOG, the logic will pull the
WDOUT (G1) pin low for an additional 16–32 cycles after the
signal level on WDOUT pin goes below the lower Schmitt
trigger threshold. After this delay, the device will stop forcing
the WDOUT output low. The WATCHDOG service window
will restart when the WDOUT pin goes high.
A WATCHDOG service while the WDOUT signal is active will
be ignored. The state of the WDOUT pin is not guaranteed
on reset, but if it powers up low then the WATCHDOG will
time out and WDOUT will go high.
The Clock Monitor forces the G1 pin low upon detecting a
clock frequency error. The Clock Monitor error will continue
until the clock frequency has reached the minimum specified
value, after which the G1 output will go high following 16–32
clock cycles. The Clock Monitor generates a continual Clock
Monitor error if the oscillator fails to start, or fails to reach the
minimum specified frequency. The specification for the Clock
Monitor is as follows:
1/tC > 5 kHz — No clock rejection.
1/tC < 10 Hz — Guaranteed clock rejection.
The Clock Monitor aboard the device can be selected or
deselected under program control. The Clock Monitor is
guaranteed not to reject the clock if the instruction cycle
clock (1/tC) is greater or equal to 5 kHz. This equates to a
clock input rate on the selected oscillator of greater or equal
to 25 kHz.
17.2 WATCHDOG/CLOCK MONITOR OPERATION
The WATCHDOG is enabled by bit 2 of the Option register.
When this Option bit is 0, the WATCHDOG is enabled and
pin G1 becomes the WATCHDOG output with a weak pullup.
The WATCHDOG and Clock Monitor are disabled during
reset. The device comes out of reset with the WATCHDOG
armed, the WATCHDOG Window Select bits (bits 6, 7 of the
WDSVR Register) set, and the Clock Monitor bit (bit 0 of the
WDSVR Register) enabled. Thus, a Clock Monitor error will
occur after coming out of reset, if the instruction cycle clock
frequency has not reached a minimum specified value, including the case where the oscillator fails to start.
The WDSVR register can be written to only once after reset
and the key data (bits 5 through 1 of the WDSVR Register)
must match to be a valid write. This write to the WDSVR
register involves two irrevocable choices: (i) the selection of
the WATCHDOG service window (ii) enabling or disabling of
the Clock Monitor. Hence, the first write to WDSVR Register
involves selecting or deselecting the Clock Monitor, select
the WATCHDOG service window and match the WATCHDOG key data. Subsequent writes to the WDSVR register
will compare the value being written by the user to the
WATCHDOG service window value, the key data and the
Clock Monitor Enable (all bits) in the WDSVR Register. Table
29 shows the sequence of events that can occur.
The user must service the WATCHDOG at least once before
the upper limit of the service window expires. The
WATCHDOG may not be serviced more than once in every
lower limit of the service window.
TABLE 29. WATCHDOG Service Actions
Key
Data
www.national.com
Window
Data
Clock
Monitor
Action
Match
Match
Match
Don’t Care
Mismatch
Don’t Care
Error: Generate WATCHDOG Output
Valid Service: Restart Service Window
Mismatch
Don’t Care
Don’t Care
Error: Generate WATCHDOG Output
Don’t Care
Don’t Care
Mismatch
Error: Generate WATCHDOG Output
62
lected upper window. Upon return to flash memory, the
WATCHDOG is serviced, the lower window is enabled,
and the user can service the WATCHDOG anytime following exit from Boot ROM, but must service it within the
selected upper window to avoid a WATCHDOG error.
(Continued)
17.3 WATCHDOG AND CLOCK MONITOR SUMMARY
The following salient points regarding the WATCHDOG and
CLOCK MONITOR should be noted:
17.4 DETECTION OF ILLEGAL CONDITIONS
The device can detect various illegal conditions resulting
from coding errors, transient noise, power supply voltage
drops, runaway programs, etc.
• Both the WATCHDOG and CLOCK MONITOR detector
circuits are inhibited during RESET.
• Following RESET, the WATCHDOG and CLOCK MONITOR are both enabled, with the WATCHDOG having the
maximum service window selected.
• The WATCHDOG service window and CLOCK MONITOR enable/disable option can only be changed once,
during the initial WATCHDOG service following RESET.
• The initial WATCHDOG service must match the key data
value in the WATCHDOG Service register WDSVR in
order to avoid a WATCHDOG error.
• Subsequent WATCHDOG services must match all three
data fields in WDSVR in order to avoid WATCHDOG
errors.
• The correct key data value cannot be read from the
WATCHDOG Service register WDSVR. Any attempt to
read this key data value of 01100 from WDSVR will read
as key data value of all 0’s.
• The WATCHDOG detector circuit is inhibited during both
the HALT and IDLE modes.
• The CLOCK MONITOR detector circuit is active during
both the HALT and IDLE modes. Consequently, the device inadvertently entering the HALT mode will be detected as a CLOCK MONITOR error (provided that the
CLOCK MONITOR enable option has been selected by
the program). Likewise, a device with WATCHDOG enabled in the Option but with the WATCHDOG output not
connected to RESET, will draw excessive HALT current if
placed in the HALT mode. The clock Monitor will pull the
WATCHDOG output low and sink current through the
on-chip pull-up resistor.
• The WATCHDOG service window will be set to its selected value from WDSVR following HALT. Consequently,
the WATCHDOG should not be serviced for at least 2048
Idle Timer clocks following HALT, but must be serviced
within the selected window to avoid a WATCHDOG error.
• The IDLE timer T0 is not initialized with external RESET.
• The user can sync in to the IDLE counter cycle with an
IDLE counter (T0) interrupt or by monitoring the T0PND
flag. The T0PND flag is set whenever the selected bit of
the IDLE counter toggles (every 4, 8, 16, 32 or 64k Idle
Timer clocks). The user is responsible for resetting the
T0PND flag.
• A hardware WATCHDOG service occurs just as the device exits the IDLE mode. Consequently, the
WATCHDOG should not be serviced for at least 2048 Idle
Timer clocks following IDLE, but must be serviced within
the selected window to avoid a WATCHDOG error.
• Following RESET, the initial WATCHDOG service (where
the service window and the CLOCK MONITOR enable/
disable must be selected) may be programmed anywhere within the maximum service window (65,536 instruction cycles) initialized by RESET. Note that this initial
WATCHDOG service may be programmed within the initial 2048 instruction cycles without causing a
WATCHDOG error.
• When using any of the ISP functions in Boot ROM, the
ISP routines will service the WATCHDOG within the se-
Reading of unprogrammed ROM gets zeros. The opcode for
software interrupt is 00. If the program fetches instructions
from unprogrammed ROM, this will force a software interrupt, thus signaling that an illegal condition has occurred.
The subroutine stack grows down for each call (jump to
subroutine), interrupt, or PUSH, and grows up for each
return or POP. The stack pointer is initialized to RAM location
06F Hex during reset. Consequently, if there are more returns than calls, the stack pointer will point to addresses 070
and 071 Hex (which are undefined RAM). Undefined RAM
from addresses 070 to 07F (Segment 0), and all other segments (i.e., Segments 4... etc.) is read as all 1’s, which in
turn will cause the program to return to address 7FFF Hex.
The Option Register is located at this location and, when
accessed by an instruction fetch, will respond with an INTR
instruction (all 0’s) to generate a software interrupt, signalling
an illegal condition on overpop of the stack.
Thus, the chip can detect the following illegal conditions:
1. Executing from undefined Program Memory
2. Over “POP”ing the stack by having more returns than
calls.
When the software interrupt occurs, the user can re-initialize
the stack pointer and do a recovery procedure before restarting (this recovery program is probably similar to that following reset, but might not contain the same program initialization procedures). The recovery program should reset the
software interrupt pending bit using the RPND instruction.
18.0 MICROWIRE/PLUS
MICROWIRE/PLUS is a serial SPI compatible synchronous
communications interface. The MICROWIRE/PLUS capability enables the device to interface with MICROWIRE/PLUS
or SPI peripherals (i.e. A/D converters, display drivers,
EEPROMs etc.) and with other microcontrollers which support the MICROWIRE/PLUS or SPI interface. It consists of
an 8-bit serial shift register (SIO) with serial data input (SI),
serial data output (SO) and serial shift clock (SK). Figure 32
shows a block diagram of the MICROWIRE/PLUS logic.
The shift clock can be selected from either an internal source
or an external source. Operating the MICROWIRE/PLUS
arrangement with the internal clock source is called the
Master mode of operation. Similarly, operating the
MICROWIRE/PLUS arrangement with an external shift clock
is called the Slave mode of operation.
The CNTRL register is used to configure and control the
MICROWIRE/PLUS mode. To use the MICROWIRE/PLUS,
the MSEL bit in the CNTRL register is set to one. In the
master mode, the SK clock rate is selected by the two bits,
SL0 and SL1, in the CNTRL register. Table 30 details the
different clock rates that may be selected.
63
www.national.com
COP8CBR9/COP8CCR9/COP8CDR9
17.0 WATCHDOG/Clock Monitor
COP8CBR9/COP8CCR9/COP8CDR9
18.0 MICROWIRE/PLUS
SK functions onto the G Port. The SO and SK pins must also
be selected as outputs by setting appropriate bits in the Port
G configuration register. In the slave mode, the shift clock
stops after 8 clock pulses. Table 31 summarizes the bit
settings required for Master mode of operation.
(Continued)
TABLE 30. MICROWIRE/PLUS
Master Mode Clock Select
SL1
SL0
SK Period
0
0
2 x tC
0
1
4 x tC
1
x
8 x tC
18.1.2 MICROWIRE/PLUS Slave Mode Operation
In the MICROWIRE/PLUS Slave mode of operation the SK
clock is generated by an external source. Setting the MSEL
bit in the CNTRL register enables the SO and SK functions
onto the G Port. The SK pin must be selected as an input
and the SO pin is selected as an output pin by setting and
resetting the appropriate bits in the Port G configuration
register. Table 31 summarizes the settings required to enter
the Slave mode of operation.
Where tC is the instruction cycle clock
18.1 MICROWIRE/PLUS OPERATION
Setting the BUSY bit in the PSW register causes the
MICROWIRE/PLUS to start shifting the data. It gets reset
when eight data bits have been shifted. The user may reset
the BUSY bit by software to allow less than 8 bits to shift. If
enabled, an interrupt is generated when eight data bits have
been shifted. The device may enter the MICROWIRE/PLUS
mode either as a Master or as a Slave. Figure 32 shows how
two microcontroller devices and several peripherals may be
interconnected using the MICROWIRE/PLUS arrangements.
TABLE 31. MICROWIRE/PLUS Mode Settings
This table assumes that the control flag MSEL is set.
Warning:
The SIO register should only be loaded when the SK clock is
in the idle phase. Loading the SIO register while the SK clock
is in the active phase, will result in undefined data in the SIO
register.
Setting the BUSY flag when the input SK clock is in the
active phase while in the MICROWIRE/PLUS is in the slave
mode may cause the current SK clock for the SIO shift
register to be narrow. For safety, the BUSY flag should only
be set when the input SK clock is in the idle phase.
G4 (SO)
G5 (SK)
G4
G5
Config. Bit
Config. Bit
Fun.
Fun.
1
1
SO
Int.
0
1
1
0
0
0
Operation
MICROWIRE/PLUS
SK
Master
Int.
MICROWIRE/PLUS
STATE
SK
Master
SO
Ext.
MICROWIRE/PLUS
SK
Slave
TRI-
Ext.
MICROWIRE/PLUS
STATE
SK
Slave
TRI-
The user must set the BUSY flag immediately upon entering
the Slave mode. This ensures that all data bits sent by the
Master is shifted properly. After eight clock pulses the BUSY
flag is clear, the shift clock is stopped, and the sequence
may be repeated.
18.1.1 MICROWIRE/PLUS Master Mode Operation
In the MICROWIRE/PLUS Master mode of operation the
shift clock (SK) is generated internally. The MICROWIRE/
PLUS Master always initiates all data exchanges. The MSEL
bit in the CNTRL register must be set to enable the SO and
10137435
FIGURE 32. MICROWIRE/PLUS Application
www.national.com
64
SK clock. In the alternate SK phase operation, data is shifted
in on the falling edge of the SK clock and shifted out on the
rising edge of the SK clock. Bit 6 of Port G configuration
register selects the SK edge.
(Continued)
18.1.2.1 Alternate SK Phase Operation and SK Idle
Polarity
The device allows either the normal SK clock or an alternate
phase SK clock to shift data in and out of the SIO register. In
both the modes the SK idle polarity can be either high or low.
The polarity is selected by bit 5 of Port G data register. In the
normal mode data is shifted in on the rising edge of the SK
clock and the data is shifted out on the falling edge of the SK
clock. The SIO register is shifted on each falling edge of the
A control flag, SKSEL, allows either the normal SK clock or
the alternate SK clock to be selected. Refer to Table 32 for
the appropriate setting of the SKSEL bit. The SKSEL is
mapped into the G6 configuration bit. The SKSEL flag will
power up in the reset condition, selecting the normal SK
signal provided the SK Idle Polarity remains LOW.
TABLE 32. MICROWIRE/PLUS Shift Clock Polarity and Sample/Shift Phase
Port G
SK Phase
G6 (SKSEL)
Config. Bit
G5 Data
Bit
SO Clocked Out On:
SI Sampled On:
SK Idle
Phase
Normal
0
0
SK Falling Edge
SK Rising Edge
Low
Alternate
1
0
SK Rising Edge
SK Falling Edge
Low
Alternate
0
1
SK Rising Edge
SK Falling Edge
High
Normal
1
1
SK Falling Edge
SK Rising Edge
High
10137436
FIGURE 33. MICROWIRE/PLUS SPI Mode Interface Timing, Normal SK Mode, SK Idle Phase being Low
10137437
FIGURE 34. MICROWIRE/PLUS SPI Mode Interface Timing, Alternate SK Mode, SK Idle Phase being Low
65
www.national.com
COP8CBR9/COP8CCR9/COP8CDR9
18.0 MICROWIRE/PLUS
COP8CBR9/COP8CCR9/COP8CDR9
18.0 MICROWIRE/PLUS
(Continued)
10137438
FIGURE 35. MICROWIRE/PLUS SPI Mode Interface Timing, Normal SK Mode, SK Idle Phase being High
10137439
FIGURE 36. MICROWIRE/PLUS SPI Mode Interface Timing, Alternate SK Mode, SK Idle Phase being High
19.0 Memory Map
Address
Address
Contents
S/ADD REG
Contents
S/ADD REG
All RAM, ports and registers (except A and PC) are mapped
into data memory address space.
xxA7
Reserved for Port B
xxA8
ISP Address Register Low Byte
(ISPADLO)
0000 to 006F
On-Chip RAM bytes (112 bytes)
xxA9
0070 to 007F
Unused RAM Address Space (Reads As
All Ones)
ISP Address Register High Byte
(ISPADHI)
xxAA
ISP Read Data Register (ISPRD)
Unused RAM Address Space (Reads
Undefined Data)
xxAB
ISP Write Data Register (ISPWR)
xxAC
Reserved
xx90
Port E Data Register
xxAD
Reserved
xx91
Port E Configuration Register
xxAE
Reserved
xx92
Port E Input Pins (Read Only)
xxAF
xx93
Reserved for Port E
High Speed Timers Control Register
(HSTCR)
xx94
Port F Data Register
xxB0
Timer T3 Lower Byte
xx95
Port F Configuration Register
xxB1
Timer T3 Upper Byte
xx96
Port F Input Pins (Read Only)
xxB2
xx97
Reserved for Port F
Timer T3 Autoload Register T3RA Lower
Byte
xx98 to xx9F
Reserved
xxB3
xxA0
Port A Data Register
Timer T3 Autoload Register T3RA Upper
Byte
xxA1
Port A Configuration Register
xxB4
xxA2
Port A Input Pins (Read Only)
Timer T3 Autoload Register T3RB Lower
Byte
xxA3
Reserved for Port A
xxB5
xxA4
Port B Data Register
Timer T3 Autoload Register T3RB Upper
Byte
xxA5
Port B Configuration Register
xxB6
Timer T3 Control Register
xxA6
Port B Input Pins (Read Only)
xxB7
Reserved
xx80 to xx90
www.national.com
66
(Continued)
Address
Contents
S/ADD REG
Address
Contents
S/ADD REG
xxB8
USART Transmit Buffer (TBUF)
xxB9
USART Receive Buffer (RBUF)
xxBA
USART Control and Status Register
(ENU)
xxBB
USART Receive Control and Status
Register (ENUR)
xxBC
USART Interrupt and Clock Source
Register (ENUI)
xxBD
USART Baud Register (BAUD)
xxBE
USART Prescale Select Register (PSR)
xxBF
Reserved for USART
xxC0
Timer T2 Lower Byte
xxC1
Timer T2 Upper Byte
xxC2
xxC3
xxE0
Reserved
xxE1
Flash Memory Write Timing Register
(PGMTIM)
xxE2
ISP Key Register (ISPKEY)
xxE3 to xxE5
Reserved
xxE6
Timer T1 Autoload Register T1RB Lower
Byte
xxE7
Timer T1 Autoload Register T1RB Upper
Byte
xxE8
ICNTRL Register
xxE9
MICROWIRE/PLUS Shift Register
xxEA
Timer T1 Lower Byte
xxEB
Timer T1 Upper Byte
xxEC
Timer T1 Autoload Register T1RA Lower
Byte
Timer T2 Autoload Register T2RA Lower
Byte
xxED
Timer T1 Autoload Register T1RA Upper
Byte
Timer T2 Autoload Register T2RA Upper
Byte
xxEE
CNTRL Control Register
Timer T2 Autoload Register T2RB Lower
Byte
xxEF
PSW Register
xxF0 to FB
On-Chip RAM Mapped as Registers
xxFC
X Register
xxFD
SP Register
xxFE
B Register
xxFF
S Register
0100 to 017F
On-Chip 128 RAM Bytes
MIWU Edge Select Register
(Reg:WKEDG)
0200 to 027F
On-Chip 128 RAM Bytes
0300 to 037F
On-Chip 128 RAM Bytes
xxC9
MIWU Enable Register (Reg:WKEN)
0400 to 0047F On-Chip 128 RAM Bytes
xxCA
MIWU Pending Register (Reg:WKPND)
0500 to 057F
On-Chip 128 RAM Bytes
A/D Converter Control Register (ENAD)
0600 to 067F
On-Chip 128 RAM Bytes
xxCC
A/D Converter Result Register High Byte
(ADRSTH)
0700 to 077F
On-Chip 128 RAM Bytes
xxCD
A/D Converter Result Register Low Byte
(ADRSTL)
xxCE
Reserved
xxCF
Idle Timer Control Register (ITMR)
xxD0
Port L Data Register
xxD1
Port L Configuration Register
xxD2
Port L Input Pins (Read Only)
xxD3
Reserved for Port L
xxD4
Port G Data Register
xxD5
Port G Configuration Register
xxD6
Port G Input Pins (Read Only)
xxD7
Reserved
xxD8
Port C Data Register
xxD9
Port C Configuration Register
xxDA
Port C Input Pins (Read Only)
xxDB
Reserved for Port C
xxC4
xxC5
xxC6
xxC7
xxC8
xxCB
Timer T2 Autoload Register T2RB Upper
Byte
Timer T2 Control Register
WATCHDOG Service Register
(Reg:WDSVR)
xxDC
Port D
xxDD to xxDF
Reserved for Port D
Note: Reading memory locations 0070H–007FH (Segment 0) will return all
ones. Reading unused memory locations 0080H–0093H (Segment 0)
will return undefined data. Reading memory locations from other Segments (i.e., Segment 8, Segment 9, … etc.) will return undefined data.
20.0 Instruction Set
20.1 INTRODUCTION
This section defines the instruction set of the COP8 Family
members. It contains information about the instruction set
features, addressing modes and types.
20.2 INSTRUCTION FEATURES
The strength of the instruction set is based on the following
features:
• Mostly single-byte opcode instructions minimize program
size.
• One instruction cycle for the majority of single-byte instructions to minimize program execution time.
• Many single-byte, multiple function instructions such as
DRSZ.
• Three memory mapped pointers: two for register indirect
addressing, and one for the software stack.
67
www.national.com
COP8CBR9/COP8CCR9/COP8CDR9
19.0 Memory Map
COP8CBR9/COP8CCR9/COP8CDR9
20.0 Instruction Set
(Continued)
Reg/Data
• Sixteen memory mapped registers that allow an optimized implementation of certain instructions.
• Ability to set, reset, and test any individual bit in data
memory address space, including the memory-mapped
I/O ports and registers.
• Register-Indirect LOAD and EXCHANGE instructions
with optional automatic post-incrementing or decrementing of the register pointer. This allows for greater efficiency (both in cycle time and program code) in loading,
walking across and processing fields in data memory.
• Unique instructions to optimize program size and
throughput efficiency. Some of these instructions are:
DRSZ, IFBNE, DCOR, RETSK, VIS and RRC.
Contents
Memory
Before
After
Accumulator
XX Hex
A6 Hex
A6 Hex
A6 Hex
Memory Location
0005 Hex
Register B or X Indirect. The memory address is specified
by the contents of the B Register or X register (pointer
register). In assembly language, the notation [B] or [X] specifies which register serves as the pointer.
Example: Exchange Memory with Accumulator, B Indirect
X A,[B]
20.3 ADDRESSING MODES
The instruction set offers a variety of methods for specifying
memory addresses. Each method is called an addressing
mode. These modes are classified into two categories: operand addressing modes and transfer-of-control addressing
modes. Operand addressing modes are the various methods of specifying an address for accessing (reading or writing) data. Transfer-of-control addressing modes are used in
conjunction with jump instructions to control the execution
sequence of the software program.
Reg/Data
Contents
Contents
Memory
Before
After
Accumulator
01 Hex
87 Hex
87 Hex
01 Hex
05 Hex
05 Hex
Memory Location
0005 Hex
B Pointer
Register B or X Indirect with Post-Incrementing/
Decrementing. The relevant memory address is specified
by the contents of the B Register or X register (pointer
register). The pointer register is automatically incremented
or decremented after execution, allowing easy manipulation
of memory blocks with software loops. In assembly language, the notation [B+], [B−], [X+], or [X−] specifies which
register serves as the pointer, and whether the pointer is to
be incremented or decremented.
Example: Exchange Memory with Accumulator, B Indirect
with Post-Increment
X A,[B+]
20.3.1 Operand Addressing Modes
The operand of an instruction specifies what memory location is to be affected by that instruction. Several different
operand addressing modes are available, allowing memory
locations to be specified in a variety of ways. An instruction
can specify an address directly by supplying the specific
address, or indirectly by specifying a register pointer. The
contents of the register (or in some cases, two registers)
point to the desired memory location. In the immediate
mode, the data byte to be used is contained in the instruction
itself.
Each addressing mode has its own advantages and disadvantages with respect to flexibility, execution speed, and
program compactness. Not all modes are available with all
instructions. The Load (LD) instruction offers the largest
number of addressing modes.
The available addressing modes are:
• Direct
Reg/Data
Contents
Contents
Memory
Before
After
Accumulator
03 Hex
62 Hex
62 Hex
03 Hex
05 Hex
06 Hex
Memory Location
0005 Hex
B Pointer
Intermediate. The data for the operation follows the instruction opcode in program memory. In assembly language, the
number sign character (#) indicates an immediate operand.
Example: Load Accumulator Immediate
LD A,#05
• Register B or X Indirect
• Register B or X Indirect with Post-Incrementing/
Decrementing
• Immediate
• Immediate Short
• Indirect from Program Memory
The addressing modes are described below. Each description includes an example of an assembly language instruction using the described addressing mode.
Direct. The memory address is specified directly as a byte in
the instruction. In assembly language, the direct address is
written as a numerical value (or a label that has been defined
elsewhere in the program as a numerical value).
Example: Load Accumulator Memory Direct
LD A,05
www.national.com
Contents
Reg/Data
Contents
Memory
Before
Contents
After
Accumulator
XX Hex
05 Hex
Immediate Short. This is a special case of an immediate
instruction. In the “Load B immediate” instruction, the 4-bit
immediate value in the instruction is loaded into the lower
nibble of the B register. The upper nibble of the B register is
reset to 0000 binary.
Example: Load B Register Immediate Short
LD B,#7
Reg/Data
68
Contents
Contents
Memory
Before
After
B Pointer
12 Hex
07 Hex
Jump Absolute. In this 2-byte instruction, 12 bits of the
instruction opcode specify the new contents of the Program
Counter. The upper three bits of the Program Counter remain unchanged, restricting the new Program Counter address to the same 4-kbyte address space as the current
instruction. (This restriction is relevant only in devices using
more than one 4-kbyte program memory space.)
Example: Jump Absolute
JMP 0125
(Continued)
Indirect from Program Memory. This is a special case of
an indirect instruction that allows access to data tables
stored in program memory. In the “Load Accumulator Indirect” (LAID) instruction, the upper and lower bytes of the
Program Counter (PCU and PCL) are used temporarily as a
pointer to program memory. For purposes of accessing program memory, the contents of the Accumulator and PCL are
exchanged. The data pointed to by the Program Counter is
loaded into the Accumulator, and simultaneously, the original
contents of PCL are restored so that the program can resume normal execution.
Example: Load Accumulator Indirect
LAID
Reg/Data
Contents
Before
After
PCU
04 Hex
04 Hex
PCL
35 Hex
36 Hex
Accumulator
1F Hex
25 Hex
25 Hex
25 Hex
Memory Location
041F Hex
After
02 Hex
02 Hex
PCL
05 Hex
0F Hex
01 Hex
77 Hex
25 Hex
Reg/
Contents
Memory
Before
Contents
After
PCU
42 Hex
36 Hex
PCL
36 Hex
25 Hex
Contents
Contents
Memory
Before
After
PCU
01 Hex
01 Hex
PCL
C4 Hex
32 Hex
Accumulator
26 Hex
26 Hex
32 Hex
32 Hex
Memory
Location
0126 Hex
The VIS instruction is a special case of the Indirect Transfer
of Control addressing mode, where the double-byte vector
associated with the interrupt is transferred from adjacent
addresses in program memory into the Program Counter in
order to jump to the associated interrupt service routine.
20.4 INSTRUCTION TYPES
The instruction set contains a wide variety of instructions.
The available instructions are listed below, organized into
related groups.
Some instructions test a condition and skip the next instruction if the condition is not true. Skipped instructions are
executed as no-operation (NOP) instructions.
Contents
PCU
0C Hex
PCL
Reg/
• Jump Absolute Long
• Jump Indirect
The transfer-of-control addressing modes are described below. Each description includes an example of a Jump instruction using a particular addressing mode, and the effect
on the Program Counter bytes of executing that instruction.
Jump Relative. In this 1-byte instruction, six bits of the
instruction opcode specify the distance of the jump from the
current program memory location. The distance of the jump
can range from −31 to +32. A JP+1 instruction is not allowed.
The programmer should use a NOP instead.
Example: Jump Relative
JP 0A
Before
PCU
Jump Indirect. In this 1-byte instruction, the lower byte of
the jump address is obtained from a table stored in program
memory, with the Accumulator serving as the low order byte
of a pointer into program memory. For purposes of accessing program memory, the contents of the Accumulator are
written to PCL (temporarily). The data pointed to by the
Program Counter (PCH/PCL) is loaded into PCL, while PCH
remains unchanged.
Example: Jump Indirect
JID
Program instructions are usually executed in sequential order. However, Jump instructions can be used to change the
normal execution sequence. Several transfer-of-control addressing modes are available to specify jump addresses.
A change in program flow requires a non-incremental
change in the Program Counter contents. The Program
Counter consists of two bytes, designated the upper byte
(PCU) and lower byte (PCL). The most significant bit of PCU
is not used, leaving 15 bits to address the program memory.
Different addressing modes are used to specify the new
address for the Program Counter. The choice of addressing
mode depends primarily on the distance of the jump. Farther
jumps sometimes require more instruction bytes in order to
completely specify the new Program Counter contents.
The available transfer-of-control addressing modes are:
• Jump Relative
• Jump Absolute
Contents
After
JMP 03625
20.3.2 Tranfer-of-Control Addressing Modes
Reg
Contents
Before
Jump Absolute Long. In this 3-byte instruction, 15 bits of
the instruction opcode specify the new contents of the Program Counter.
Example: Jump Absolute Long
Contents
Memory
Contents
Reg
69
www.national.com
COP8CBR9/COP8CCR9/COP8CDR9
20.0 Instruction Set
COP8CBR9/COP8CCR9/COP8CDR9
20.0 Instruction Set
20.4.6 Stack Control Instructions
(Continued)
Push Data onto Stack (PUSH)
Pop Data off of Stack (POP)
20.4.1 Arithmetic Instructions
The arithmetic instructions perform binary arithmetic such as
addition and subtraction, with or without the Carry bit.
Add (ADD)
20.4.7 Memory Bit Manipulation Instructions
The memory bit manipulation instructions allow the user to
set and reset individual bits in memory.
Set Bit (SBIT)
Add with Carry (ADC)
Subtract with Carry (SUBC)
Reset Bit (RBIT)
Reset Pending Bit (RPND)
Increment (INC)
Decrement (DEC)
Decimal Correct (DCOR)
20.4.8 Conditional Instructions
Clear Accumulator (CLR)
Set Carry (SC)
The conditional instruction test a condition. If the condition is
true, the next instruction is executed in the normal manner; if
the condition is false, the next instruction is skipped.
If Equal (IFEQ)
Reset Carry (RC)
20.4.2 Transfer-of-Control Instructions
The transfer-of-control instructions change the usual sequential program flow by altering the contents of the Program Counter. The Jump to Subroutine instructions save the
Program Counter contents on the stack before jumping; the
Return instructions pop the top of the stack back into the
Program Counter.
If Not Equal (IFNE)
If Greater Than (IFGT)
If Carry (IFC)
If Not Carry (IFNC)
If Bit (IFBIT)
If B Pointer Not Equal (IFBNE)
And Skip if Zero (ANDSZ)
Decrement Register and Skip if Zero (DRSZ)
Jump Relative (JP)
Jump Absolute (JMP)
Jump Absolute Long (JMPL)
Jump Indirect (JID)
20.4.9 No-Operation Instruction
The no-operation instruction does nothing, except to occupy
space in the program memory and time in execution.
No-Operation (NOP)
Note: The VIS is a special case of the Indirect Transfer of
Control addressing mode, where the double byte vector
associated with the interrupt is transferred from adjacent
addresses in the program memory into the program counter
(PC) in order to jump to the associated interrupt service
routine.
Jump to Subroutine (JSR)
Jump to Subroutine Long (JSRL)
Jump to Boot ROM Subroutine (JSRB)
Return from Subroutine (RET)
Return from Subroutine and Skip (RETSK)
Return from Interrupt (RETI)
Software Trap Interrupt (INTR)
Vector Interrupt Select (VIS)
20.5 REGISTER AND SYMBOL DEFINITION
The following abbreviations represent the nomenclature
used in the instruction description and the COP8 crossassembler.
20.4.3 Load and Exchange Instructions
The load and exchange instructions write byte values in
registers or memory. The addressing mode determines the
source of the data.
Load (LD)
Load Accumulator Indirect (LAID)
Exchange (X)
Registers
20.4.4 Logical Instructions
The logical instructions perform the operations AND, OR,
and XOR (Exclusive OR). Other logical operations can be
performed by combining these basic operations. For example, complementing is accomplished by exclusive-ORing
the Accumulator with FF Hex.
Logical AND (AND)
Logical OR (OR)
Exclusive OR (XOR)
20.4.5 Accumulator Bit Manipulation Instructions
The Accumulator bit manipulation instructions allow the user
to shift the Accumulator bits and to swap its two nibbles.
Rotate Right Through Carry (RRC)
Rotate Left Through Carry (RLC)
Swap Nibbles of Accumulator (SWAP)
www.national.com
70
A
8-Bit Accumulator Register
B
8-Bit Address Register
X
8-Bit Address Register
S
8-Bit Segment Register
SP
8-Bit Stack Pointer Register
PC
15-Bit Program Counter Register
PU
Upper 7 Bits of PC
PL
Lower 8 Bits of PC
C
1 Bit of PSW Register for Carry
HC
1 Bit of PSW Register for Half Carry
GIE
1 Bit of PSW Register for Global Interrupt
Enable
VU
Interrupt Vector Upper Byte
VL
Interrupt Vector Lower Byte
(Continued)
Symbols
Symbols
[B]
Memory Indirectly Addressed by B Register
Imm
8-Bit Immediate Data
Reg
Register Memory: Addresses F0 to FF
(Includes B, X and SP)
Bit Number (0 to 7)
[X]
Memory Indirectly Addressed by X Register
MD
Direct Addressed Memory
Bit
←
Loaded with
Mem
Direct Addressed Memory or [B]
Exchanged with
Meml
Direct Addressed Memory or [B] or
Immediate Data
↔
71
www.national.com
COP8CBR9/COP8CCR9/COP8CDR9
20.0 Instruction Set
COP8CBR9/COP8CCR9/COP8CDR9
20.0 Instruction Set
(Continued)
20.6 INSTRUCTION SET SUMMARY
A←A + Meml
A←A + Meml + C, C←Carry,
HC←Half Carry
ADD
A,Meml
ADD
ADC
A,Meml
ADD with Carry
SUBC
A,Meml
Subtract with Carry
A←A − MemI + C, C←Carry,
HC←Half Carry
AND
A,Meml
Logical AND
A←A and Meml
ANDSZ
A,Imm
Logical AND Immed., Skip if Zero
Skip next if (A and Imm) = 0
OR
A,Meml
Logical OR
XOR
A,Meml
Logical EXclusive OR
A←A or Meml
A←A xor Meml
IFEQ
MD,Imm
IF EQual
Compare MD and Imm, Do next if MD = Imm
IFEQ
A,Meml
IF EQual
Compare A and Meml, Do next if A = Meml
Compare A and Meml, Do next if A ≠ Meml
IFNE
A,Meml
IF Not Equal
IFGT
A,Meml
IF Greater Than
IFBNE
#
If B Not Equal
Compare A and Meml, Do next if A > Meml
Do next if lower 4 bits of B ≠ Imm
DRSZ
Reg
Decrement Reg., Skip if Zero
Reg←Reg − 1, Skip if Reg = 0
SBIT
#,Mem
Set BIT
1 to bit, Mem (bit = 0 to 7 immediate)
RBIT
#,Mem
Reset BIT
0 to bit, Mem
IFBIT
#,Mem
IF BIT
If bit #,A or Mem is true do next instruction
Reset PeNDing Flag
Reset Software Interrupt Pending Flag
X
A,Mem
EXchange A with Memory
A↔Mem
X
A,[X]
EXchange A with Memory [X]
A↔[X]
LD
A,Meml
LoaD A with Memory
A←Meml
A←[X]
RPND
LD
A,[X]
LoaD A with Memory [X]
LD
B,Imm
LoaD B with Immed.
B←Imm
LD
Mem,Imm
LoaD Memory Immed.
LD
Reg,Imm
LoaD Register Memory Immed.
Mem←Imm
Reg←Imm
X
A, [B ± ]
EXchange A with Memory [B]
X
A, [X ± ]
EXchange A with Memory [X]
LD
A, [B ± ]
LoaD A with Memory [B]
LD
A, [X ± ]
LoaD A with Memory [X]
LD
[B ± ],Imm
LoaD Memory [B] Immed.
CLR
A
CLeaR A
INC
A
INCrement A
DEC
A
LAID
A↔[B], (B←B ± 1)
A↔[X], (X←X ± 1)
A←[B], (B←B ± 1)
A←[X], (X←X ± 1)
[B]←Imm, (B←B ± 1)
A←0
A←A + 1
A←A − 1
DECrement A
A←ROM (PU,A)
A←BCD correction of A (follows ADC, SUBC)
C→A7→…→A0→C
Load A InDirect from ROM
DCOR
A
RRC
A
Decimal CORrect A
Rotate A Right thru C
RLC
A
Rotate A Left thru C
C←A7←…←A0←C, HC←A0
SWAP
A
SWAP nibbles of A
SC
Set C
A7…A4↔A3…A0
C←1, HC←1
RC
Reset C
C←0, HC←0
IFC
IF C
IF C is true, do next instruction
IF Not C
If C is not true, do next instruction
SP←SP + 1, A←[SP]
[SP]←A, SP←SP − 1
IFNC
POP
A
POP the stack into A
PUSH
A
PUSH A onto the stack
JMPL
Addr.
Jump absolute Long
JMP
Addr.
Jump absolute
PU←[VU], PL←[VL]
PC←ii (ii = 15 bits, 0 to 32k)
PC9…0←i (i = 12 bits)
JP
Disp.
Jump relative short
PC←PC + r (r is −31 to +32, except 1)
VIS
www.national.com
Vector to Interrupt Service Routine
72
JSRL
(Continued)
Addr.
Jump SubRoutine Long
JSR
Addr.
Jump SubRoutine
JSRB
Addr
Jump SubRoutine Boot ROM
[SP] ←PL, [SP−1]←PU,SP−2, PC←ii
[SP]←PL, [SP−1]←PU,SP−2, PC9…0←i
[SP]←PL, [SP−1]←PU,SP−2,
PL←Addr,PU←00, switch to flash
RET
RETurn from subroutine
RETSK
RETurn and SKip
PL←ROM (PU,A)
SP + 2, PL←[SP], PU←[SP−1]
SP + 2, PL←[SP],PU←[SP−1],
skip next instruction
SP + 2, PL←[SP],PU←[SP−1],GIE←1
JID
Jump InDirect
RETI
RETurn from Interrupt
INTR
Generate an Interrupt
NOP
No OPeration
[SP]←PL, [SP−1]←PU, SP−2, PC←0FF
PC←PC + 1
20.7 INSTRUCTION EXECUTION TIME
Most instructions are single byte (with immediate addressing
mode instructions taking two bytes).
Instructions Using A & C
Most single byte instructions take one cycle time to execute.
Skipped instructions require x number of cycles to be
skipped, where x equals the number of bytes in the skipped
instruction opcode.
See the BYTES and CYCLES per INSTRUCTION table for
details.
Bytes and Cycles per Instruction
The following table shows the number of bytes and cycles for
each instruction in the format of byte/cycle.
Arithmetic and Logic Instructions
CLRA
1/1
INCA
1/1
DECA
1/1
LAID
1/3
DCORA
1/1
RRCA
1/1
RLCA
1/1
SWAPA
1/1
SC
1/1
RC
1/1
IFC
1/1
[B]
Direct
Immed.
ADD
1/1
3/4
2/2
ADC
1/1
3/4
2/2
SUBC
1/1
3/4
2/2
AND
1/1
3/4
2/2
OR
1/1
3/4
2/2
XOR
1/1
3/4
2/2
JMPL
3/4
2/3
IFNC
1/1
PUSHA
1/3
POPA
1/3
ANDSZ
2/2
Transfer of Control Instructions
IFEQ
1/1
3/4
2/2
JMP
IFGT
1/1
3/4
2/2
JP
1/3
IFBNE
1/1
JSRL
3/5
1/3
JSR
2/5
2/5
DRSZ
SBIT
1/1
3/4
JSRB
RBIT
1/1
3/4
JID
1/3
3/4
VIS
1/5
RET
1/5
RETSK
1/5
RETI
1/5
IFBIT
1/1
RPND
COP8CBR9/COP8CCR9/COP8CDR9
20.0 Instruction Set
1/1
73
INTR
1/7
NOP
1/1
www.national.com
COP8CBR9/COP8CCR9/COP8CDR9
20.0 Instruction Set
(Continued)
Memory Transfer Instructions
Register
Indirect
[B]
Register Indirect
Direct
Immed.
[X]
X A, (Note 21)
1/1
1/3
2/3
LD A, (Note 21)
1/1
1/3
2/3
2/2
Auto Incr. & Decr.
[B+, B−]
[X+, X−]
1/2
1/3
1/2
1/3
LD B,Imm
1/1
(If B < 16)
LD B,Imm
2/2
(If B > 15)
LD Mem,Imm
2/2
3/3
LD Reg,Imm
2/3
IFEQ MD,Imm
3/3
2/2
Note 21: = > Memory location addressed by B or X or directly.
www.national.com
74
www.national.com
JP−18 LD 0FD,#i
JP−17 LD 0FE,#i
JP−2
JP−1
* is an unused opcode
JP−16
JP−19 LD 0FC,#i
JP−3
JP−0
JP−20 LD 0FB,#i
LD 0FF,#i
LD 0F9,#i
LD 0F8,#i
JP−4
LD 0F7,#i
LD 0F6,#i
JP−21 LD 0FA,#i
JP−25
JP−9
LD 0F5,#i
JP−5
JP−26
JP−10
LD 0F4,#i
JP−22
JP−27
JP−11
LD 0F3,#i
JP−6
JP−28
JP−12
LD 0F2,#i
JP−23
JP−29
JP−13
LD 0F1,#i
JP−7
JP−30
JP−14
LD 0F0,#i
JP−24
JP−31
JP−15
D
JP−8
E
F
20.0 Instruction Set
*
LD A,[X]
DIR
LD Md,#i
LD
A,[X−]
LD
A,[X+]
IFNE
A,[B]
NOP
*
X A,[X]
RPND
VIS
X A,[X−]
X A,[X+]
*
RRCA
B
i is the immediate data
DRSZ
0FF
DRSZ
0FE
DRSZ
0FD
DRSZ
0FC
DRSZ
0FB
DRSZ
0FA
DRSZ
0F9
DRSZ
0F8
DRSZ
0F7
DRSZ
0F6
DRSZ
0F5
DRSZ
0F4
DRSZ
0F3
DRSZ
0F2
DRSZ
0F1
DRSZ
0F0
C
(Continued)
*
LD
A,[B]
JSRL
JMPL
LD
A,[B−]
LD
A,[B+]
IFEQ
Md,#i
RLCA
*
X A,[B]
JID
LAID
X
A,[B−]
X
A,[B+]
SC
RC
A
POPA
DECA
INCA
IFNC
IFC
OR
A,[B]
XOR
A,[B]
AND
A,[B]
ADD
A,[B]
IFGT
A,[B]
IFEQ
A,[B]
SUBC
A,[B]
ADC
A,[B]
8
RETI
RET
SBIT
7,[B]
SBIT
6,[B]
SBIT
5,[B]
SBIT
4,[B]
SBIT
3,[B]
SBIT
2,[B]
SBIT
1,[B]
SBIT
0,[B]
IFBIT
7,[B]
IFBIT
6,[B]
IFBIT
5,[B]
IFBIT
4,[B]
IFBIT
3,[B]
IFBIT
2,[B]
IFBIT
1,[B]
IFBIT
0,[B]
7
RBIT
7,[B]
RBIT
6,[B]
RBIT
5,[B]
RBIT
4,[B]
RBIT
3,[B]
RBIT
2,[B]
RBIT
1,[B]
RBIT
0,[B]
PUSHA
DCORA
SWAPA
CLRA
Reserved
Reserved
JSRB
ANDSZ
A,#i
6
Upper Nibble
Md is a directly addressed memory location
LD B,#i
LD [B],#i
LD A,Md RETSK
X A,Md
LD
[B−],#i
LD
[B+],#i
IFNE
A,#i
LD A,#i
OR A,#i
XOR
A,#i
AND
A,#i
ADD
A,#i
IFGT
A,#i
IFEQ
A,#i
SUBC
A,#i
ADC
A,#i
9
OPCODE TABLE
5
LD
B,#00
LD
B,#01
LD
B,#02
LD
B,#03
LD
B,#04
LD
B,#05
LD
B,#06
LD
B,#07
LD
B,#08
LD
B,#09
LD
B,#0A
LD
B,#0B
LD
B,#0C
LD
B,#0D
LD
B,#0E
LD
B,#0F
4
3
JSR
xF00–xFFF
JSR
xE00–xEFF
JSR
xD00–xDFF
JSR
xC00–xCFF
JSR
xB00–xBFF
JSR
xA00–xAFF
JSR
x900–x9FF
JSR
x800–x8FF
JSR
x700–x7FF
JSR
x600–x6FF
JSR
x500–x5FF
JSR
x400–x4FF
JSR
x300–x3FF
JSR
x200–x2FF
JSR
x100–x1FF
JSR
x000–x0FF
2
JMP
xF00–xFFF
JMP
xE00–xEFF
JMP
xD00–xDFF
JMP
xC00–xCFF
JMP
xB00–xBFF
JMP
xA00–xAFF
JMP
x900–x9FF
JMP
x800–x8FF
JMP
x700–x7FF
JMP
x600–x6FF
JMP
x500–x5FF
JMP
x400–x4FF
JMP
x300–x3FF
JMP
x200–x2FF
JMP
x100–x1FF
JMP
x000–x0FF
1
JP+32
JP+31
JP+30
JP+29
JP+28
JP+27
JP+26
JP+25
JP+24
JP+23
JP+22
JP+21
JP+20
JP+19
JP+18
JP+17
The opcode 60 Hex is also the opcode for IFBIT #i,A
IFBNE 0F
IFBNE 0E
IFBNE 0D
IFBNE 0C
IFBNE 0B
IFBNE 0A
IFBNE 9
IFBNE 8
IFBNE 7
IFBNE 6
IFBNE 5
IFBNE 4
IFBNE 3
IFBNE 2
IFBNE 1
IFBNE 0
0
JP+16
JP+15
JP+14
JP+13
JP+12
JP+11
JP+10
JP+9
JP+8
JP+7
JP+6
JP+5
JP+4
JP+3
JP+2
INTR
F
E
D
C
B
A
9
8
7
6
5
4
3
2
1
0
Lower Nibble
COP8CBR9/COP8CCR9/COP8CDR9
75
COP8CBR9/COP8CCR9/COP8CDR9
21.0 Development Support
21.1 TOOLS ORDERING NUMBERS FOR THE COP8 FLASH FAMILY DEVICES
This section provides specific tools ordering information for the devices in this datasheet, followed by a summary of the tools and
development kits available at print time. Up-to-date information, device selection guides, demos, updates, and purchase
information can be obtained at our web site at: www.national.com/cop8.
Unless otherwise noted, tools can be purchased for worldwide delivery from National’s e-store: http://www.national.com/
store/
Tool
Order Number
Cost*
Notes/Includes
Free
Assembler/ Linker/ Simulators/ Library Manager/
Compiler Demos/ Flash ISP and NiceMon Debugger
Utilities/ Example Code/ etc.
(Flash Emulator support requires licensed COP8-NSDEV
CD-ROM).
Hardware
COP8-REF-FL1
Reference Designs
VL
For COP8Flash Sx/Cx - Demo Board and Software;
44PLCC Socket; Stand-alone, or use as development target
board with Flash ISP and/or COP8Flash Emulator. Does not
include COP8 development software.
COP8-REF-AM
VL
For COP8Flash Ax - Demo Board and Software; 28DIP
Socket. Stand alone, or use as development target board
with Flash ISP and/or COP8Flash Emulator. Does not
include COP8 development software.
COP8-SKFLASH-01
VL
Supports COP8Sx/Cx/Ax - Target board with 68PLCC
COP8CDR9, 44PLCC and 28DIP sockets, LEDs, Test
Points, and Breadboard Area. Development CD, ISP Cable,
Debug Software and Source Code. No p/s. Also supports
COP8Flash Emulators and Kanda ISP Tool.
COP8-REF-FL1 or
COP8-REF-AM
VL
COP8Flash Hardware Reference Design boards can also be
used as Development Target boards, with ISP and Emulator
onboard connectors.
Evaluation Software and Reference Designs
Software and
Utilities
Web Downloads:
www.national.com/cop8
Starter Kits and Hardware Target Boards
Starter
Development Kits
Software Development Languages, and Integrated Development Environments
National’s WCOP8 COP8-NSDEV
IDE and Assembler
on CD
$3
Fully Licensed IDE with Assembler and
Emulator/Debugger Support. Assembler/ Linker/ Simulator/
Utilities/ Documentation. Updates from web. Included with
SKFlash, COP8 Emulators, COP8-PM.
COP8 Library
www.kkd.dk/libman.htm
Manager from KKD
Eval
The ultimate information source for COP8 developers Integrates with WCOP8 IDE. Organize and manage code,
notes, datasheets, etc.
WEBENCH Online www.national.com
Graphical
/webench
Application Builder
With Unis
Processor Expert
COP8-SW-PE2
Free
Online Graphical IDE, featuring UNIS Processor Expert(
Code Development Tool with Simulator - Develop
applications, simulate and debug, download working code.
Online project manager.
L
Graphical IDE and Code Development Tool with
Simulator - Stand-alone, enhanced PC version of our
WEBENCH tools on CD.
Byte Craft C
Compiler
COP8-SW-COP8C
COP8-SW-COP8CW
M
H
DOS/16bit Version - No IDE.
Win 32 Version with IDE.
IAR Embedded
Workbench Tool
Set.
COP8-SW-EWCOP8
EWCOP8-BL
Assembler-Only Version
H
M
Free
Complete tool set, with COP8 Emulator/Debugger support.
Baseline version - Purchase from IAR only.
Assembler only; No COP8 Emulator/Debugger support.
www.national.com
76
(Continued)
Hardware Emulation and Debug Tools
Hardware
Emulators
COP8-EMFlash-00
COP8-DMFlash-00
COP8-IMFlash-00
L
M
H
Includes 110v/220v p/s, target cable with 2x7 connector, 68
pin COP8CDR9 Null Target, manuals and software on CD.
- COP8AME/ANE9 uses optional 28 pin Null Target
(COP8-EMFA-28N).
- Add PLCC Target Package Adapter if needed.
Emulator Null
Target
COP8-EMFA-68N
COP8-EMFA-28N
VL
VL
68 pin PLCC COP8CDR9; Included in COP8-EM/DM/IM
Flash.
28pin DIP COP8AME9; Must order seperately.
Emulator Target
Package Adapters
COP8-EMFA-44P
VL
44 pin PLCC target package adapter. (Use instead of 2x7
emulator header)
COP8-EMFA-68P
VL
68 pin PLCC target package adapter. (Use instead of 2x7
emulator header)
COP8-SW-NMON
Free
Download code and Monitor S/W for single-step debugging
via Microwire. Includes PC control/debugger software and
monitor program.
NiceMon Debug
Monitor Utility
Development and Production Programming Tools
National’s
Engineering
Programmer
COP8-PM-02
(Available late 2004)
L
Board with 40DIP ZIF base socket for optional COP8FLASH
programming adapters; Includes 110v/220v p/s, manuals
and software on CD; (Requires optional -PGMA
programming adapters for flash)
Programming
Adapters
(For any
programmer
supporting flash
adapter base
pinout)
COP8-PGMA-28DF1
L
For programming 28DIP COP8AM/AN only.
COP8-PGMA-28SF1
L
For programming 28SOIC COP8AM/AN only.
COP8-PGMA-44PF1
L
For programming all 44PLCC COP8FLASH.
COP8-PGMA-44CSF
L
For programming all 44LLP COP8FLASH.
COP8-PGMA-48TF1
L
For programming all 48TSSOP COP8 FLASH.
COP8-PGMA-68PF1
L
For programming all 68PLCC COP8FLASH
COP8-PGMA-56TF1
L
For programming all 56TSSOP COP8FLASH.
KANDA’s Flash
ISP Programmer
COP8ISP
www.kanda.com
L
Parallel/Serial connected Dongle, with target cable and
Control Software; Updateable from the web; Purchase from
www.kanda.com
Softec Flash ISP
Programmer
www.softecmicro.com
L
Serial connected cable, with control software; Purchase
from www.softecmicro.com
Development
Devices
COP8CBR9/CCR9/CDR9
COP8CBE9/CCE9
COP8SBR9/SCR9/SDR9
COP8SBE9/SCE9
COP8AME9/ANE9
Free
All packages. Obtain samples from: www.national.com
*Cost: Free; VL= < $100; L=$100-$300; M=$300-$1k; H=$1k-$3k; VH=$3k-$5k
77
www.national.com
COP8CBR9/COP8CCR9/COP8CDR9
21.0 Development Support
COP8CBR9/COP8CCR9/COP8CDR9
21.0 Development Support
(Continued)
21.2 COP8 TOOLS OVERVIEW
COP8 Evaluation Software and Reference Designs Software and Hardware for: Evaluation of COP8 Development Environments; Learning about COP8 Architecture and
Features; Demonstrating Application Specific Capabilities.
Product
Description
Source
WCOP8 IDE and
Software
Downloads
Software Evaluation downloads for Windows. Includes WCOP8 IDE evaluation
version, Full COP8 Assembler/Linker, COP8-SIM Instruction Level Simulator or Unis
Simulator, Byte Craft COP8C Compiler Demo, IAR Embedded Workbench
(Assembler version), Manuals, Applications Software, and other COP8 technical
information.
www.cop8.com
FREE Download
COP8 Hardware
Reference
Designs
Reference Designs for COP8 Families. Realtime hardware environments with a
variety of functions for demonstrating the various capabilities and features of specific
COP8 device families. Run Windows demo reference software, and exercise
specific device capabilities. Also can be used as a realtime target board for code
development, with our flash development tools.
(Add our COP8Flash Emulator, or our COP8-NSDEV CD with your ISP cable for a
complete low-cost development system.)
NSC Distributor,
or Order from:
www.cop8.com
COP8 Starter Kits and Hardware Target Solutions Hardware Kits for: In-depth Evaluation and Testing of COP8 capabilities; Developing and Testing Code; Implementing
Target Design.
Product
Description
Source
COP8 Flash
Starter Kits
Flash Starter Kit - A complete Code Development Tool for COP8Flash Families. A
Windows IDE with Assembler, Simulator, and Debug Monitor, combined with a
simple realtime target environment. Quickly design and simulate your code, then
download to the target COP8flash device for execution and simple debugging.
Includes a library of software routines, and source code. No power supply.
(Add a COP8-EMFlash Emulator for advanced emulation and debugging)
NSC Distributor,
or Order from:
www.cop8.com
COP8 Hardware
Reference
Designs
Preconfigured realtime hardware environments with a variety of onboard I/O and
display functions. Modify the reference software, or develop your own code. Boards
support our COP8 ISP Utility, NiceMon Flash Debug Monitor, and our COP8Flash
Emulators.
NSC Distributor,
or Order from:
www.cop8.com
COP8 Software Development Languages and Integrated Environments Integrated Software for: Project Management; Code Development; Simulation and Debug.
Product
Description
WCOP8 IDE
from National on
CD-ROM
National’s COP8 Software Development package for Windows on CD. Fully licensed
versions of our WCOP8 IDE and Emulator Debugger, with Assembler/ Linker/
Simulators/ Library Manager/ Compiler Demos/ Flash ISP and NiceMon Debugger
Utilities/ Example Code/ etc. Includes all COP8 datasheets and documentation.
Included with most tools from National.
NSC Distributor,
or Order from:
www.cop8.com
Unis Processor
Expert
Processor Expert( from Unis Corporation - COP8 Code Generation and Simulation
tool with Graphical and Traditional user interfaces. Automatically generates
customized source code "Beans" (modules) containing working code for all on-chip
features and peripherals, then integrates them into a fully functional application code
design, with all documentation.
Unis, or Order
from:
www.cop8.com
Byte Craft
COP8C Compiler
ByteCraft COP8C- C Cross-Compiler and Code Development System. Includes
BCLIDE (Integrated Development Environment) for Win32, editor, optimizing C
Cross-Compiler, macro cross assembler, BC-Linker, and MetaLinktools support.
(DOS/SUN versions available; Compiler is linkable under WCOP8 IDE)
ByteCraft
Distributor,
or Order from:
www.cop8.com
IAR Embedded
Workbench
IAR EWCOP8 - ANSI C-Compiler and Embedded Workbench. A fully integrated
Win32 IDE, ANSI C-Compiler, macro assembler, editor, linker, librarian, and C-Spy
high-level simulator/debugger. (EWCOP8-M version includes COP8Flash Emulator
support) (EWCOP8-BL version is limited to 4k code limit; no FP).
IAR Distributor,
or Order from:
www.cop8.com
www.national.com
78
Source
(Continued)
COP8 Hardware Emulation/Debug Tools Hardware Tools for: Real-time Emulation; Target Hardware Debug; Target Design Test.
Product
Description
Source
COP8Flash
Emulators COP8-EMFlash
COP8-DMFlash
COP8-IMFlash
COP8 In-Circuit Emulator for Flash Families. Windows based development and
real-time in-circuit emulation tool, with trace (EM=None; DM/IM=32k), s/w
breakpoints (DM=16, EM/IM=32K), source/symbolic debugger, and device
programming. Includes COP8-NDEV CD, 68pin Null Target, emulation cable with
2x7 connector, and power supply.
NSC Distributor,
or Order from:
www.cop8.com
NiceMon Debug
Monitor Utility
A simple, single-step debug monitor with one breadpoint. MICROWIRE interface.
Download from:
www.cop8.com
Development and Production Programming Tools Programmers for: Design Development; Hardware Test; Pre-Production; Full Production.
Product
Description
Source
COP8 Flash
Emulators
COP8 Flash Emulators include in-circuit device programming capability during
development.
NSC Distributor, or
Order from:
www.cop8.com
NiceMon
Debugger,
KANDAFlash
National’s software Utilities "KANDAFlash" and "NiceMon" provide development
In-System-Programming for our Flash Starter Kit, our Prototype Development
Board, or any other target board with appropriate connectors.
Download from:
www.cop8.com
KANDA
COP8-ISP
The COP8-ISP programmer from KANDA is available for engineering, and small
volume production use. PC parallel or serial interface.
www.kanda.com
SofTec Micro
inDart COP8
The inDart COP8 programmer from KANDA is available for engineering and
small volume production use. PC serial interface only.
www.softecmicro.com
COP8
Programming
Module
COP8-PM Development Programming Module. Windows programming tool for
COP8 OTP and Flash Families. Includes on-board 40 DIP programming socket,
control software, RS232 cable, and power supply. (Requires optional
COP8-PGMA programming adapters for COP8FLASH devices)
NSC Distributor, or
Order from web.
Third-Party
Programmers
A variety of third-party programmers and automatic handling equipment are
approved for non-ISP engineering and production use.
Various Vendors
Factory
Programming
Factory programming available for high-volume requirements.
National
Representative
21.3 WHERE TO GET TOOLS
Tools can be ordered directly from National, National’s e-store (Worldwide delivery: http://www.national.com/store/) , a National
Distributor, or from the tool vendor. Go to the vendor’s web site for current listings of distributors.
Vendor
Byte Craft Limited
Home Office
Electronic Sites
421 King Street North
www.bytecraft.com
Waterloo, Ontario
[email protected]
Other Main Offices
Distributors Worldwide
Canada N2J 4E4
Tel: 1-(519) 888-6911
Fax: (519) 746-6751
IAR Systems AB
PO Box 23051
www.iar.se
USA:: San Francisco
S-750 23 Uppsala
[email protected]
Tel: +1-415-765-5500
Sweden
[email protected]
Fax: +1-415-765-5503
Tel: +46 18 16 78 00
[email protected]
UK: London
Fax +46 18 16 78 38
[email protected]
Tel: +44 171 924 33 34
Fax: +44 171 924 53 41
Germany: Munich
Tel: +49 89 470 6022
Fax: +49 89 470 956
79
www.national.com
COP8CBR9/COP8CCR9/COP8CDR9
21.0 Development Support
COP8CBR9/COP8CCR9/COP8CDR9
21.0 Development Support
Vendor
(Continued)
Home Office
Electronic Sites
Other Main Offices
KANDA Systems
LTD.
Unit 17 -18
Glanyrafon Enterprise Park,
Aberystwyth, Ceredigion,
SY23 3JQ, UK
Tel: +44 1970 621041
Fax: +44 1970 621040
www.kanda.com
[email protected]
K and K
Development ApS
Kaergaardsvej 42 DK-8355
Solbjerg Denmark
Fax: +45-8692-8500
www.kkd.dk [email protected]
National
2900 Semiconductor Dr.
www.national.com/cop8
Semiconductor
Santa Clara, CA 95051
support @nsc.com
Tel: 49(0) 180 530 8585
USA
[email protected]
Fax: 49(0) 180 530 8586
Tel: 1-800-272-9959
USA:
Tel: 303-456-2060
Fax: 303-456-2404
[email protected]
www.logicaldevices.net
Europe:
Hong Kong:
Fax: 1-800-737-7018
Distributors Worldwide
SofTec Microsystems Via Roma, 1
33082 Azzano Decimo (PN)
Italy
Tel: +39 0434 640113
Fax: +39 0434 631598
[email protected]
www.softecmicro.com
[email protected]
Germany:
Tel.:+49 (0) 8761 63705
France:
Tel: +33 (0) 562 072 954
UK:
Tel: +44 (0) 1970 621033
The following companies have approved COP8 programmers in a variety of configurations. Contact your vendor’s local office
or distributor and request a COP8FLASH update. You can link to their web sites and get the latest listing of approved
programmers at: www.national.com/cop8.
Advantech; BP Microsystems; Data I/O; Dataman; Hi-Lo Systems; KANDA, Lloyd Research; MQP; Needhams; Phyton; SofTec
Microsystems; System General; and Tribal Microsystems.
22.0 Revision History
Date
Section
October 2000
April 2001
Summary of Changes
Base revision for this history.
Throughout
Various typographical errors.
Electrical Specifications
Reduced dynamic supply current specification.
Reduced input leakage current.
Added general statement regarding specification limits.
Added temp range 7 (−40˚C to +125˚C)
In-System Programming
Clarified use of high voltage on G6 pin to force execution from Boot ROM.
Sept., 2001
Development Support
Updated with the latest support information.
January 2002
Forced Execution from
Boot ROM
Added Figure.
April 2002
Pin Descriptions
Caution on GND connection on LLP package.
May 2001
August 2003
www.national.com
Added LLP and TSSOP Packages
Timers
Clarification on high speed PWM Timer use.
Development Support
Updated with the latest support information.
Pin Descriptions
Clarification of the functions of L4 and L6 for T2 and T3 PWM Output.
Reset
Addition of caution regarding rising edge on RESET with low VCC.
Power Saving Features
Description of modified function of ITMR Register.
A/D Converter
Specifications
Updated specifications to reflect final product and test specifications.
Development Support
Updated with the latest support information.
Released as final.
80
COP8CBR9/COP8CCR9/COP8CDR9
23.0 Physical Dimensions
inches (millimeters) unless otherwise noted
LLP Package (LQA)
Order Number COP8CBR9HLQ8 or COP8CCR9HLQ7 or COP8CDR9HLQ7
or COP8CCR9HLQ8 or COP8CDR9HLQ8
NS Package Number LQA44A
81
www.national.com
COP8CBR9/COP8CCR9/COP8CDR9
23.0 Physical Dimensions
inches (millimeters) unless otherwise noted (Continued)
TSSOP Package (MTD)
Order Number COP8CBR9IMT8 or COP8CCR9IMT7 or COP8CDR9IMT7
or COP8CCR9IMT8 or COP8CDR9IMTA8
NS Package Number MTD48
TSSOP Package (MTD)
Order Number COP8CBR9KMT8 or COP8CCR9KMT7 or COP8CCR9KMT8
or COP8CDR9KMT7 or COP8CDR9KMTA8
NS Package Number MTD56
www.national.com
82
COP8CBR9/COP8CCR9/COP8CDR9
23.0 Physical Dimensions
inches (millimeters) unless otherwise noted (Continued)
Plastic Leaded Chip Carrier (VA)
Order Number COP8CBR9HVA8 or COP8CCR9HVA7 or COP8CCR9HVA8
or COP8CDR9HVA7 or COP8CDR9HVA8
NS Package Number V44A
Plastic Leaded Chip Carrier (VA)
Order Number COP8CBR9LVA8 or COP8CCR9LVA7 or COP8CCR9LVA8
or COP8CDR9LVA7 or COP8CDR9LVA8
NS Package Number V68A
83
www.national.com
COP8CBR9/COP8CCR9/COP8CDR9 8-Bit CMOS Flash Based Microcontroller with 32k Memory,
Virtual EEPROM, 10-Bit A/D and Brownout
Notes
LIFE SUPPORT POLICY
NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL
COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:
1. Life support devices or systems are devices or
systems which, (a) are intended for surgical implant
into the body, or (b) support or sustain life, and
whose failure to perform when properly used in
accordance with instructions for use provided in the
labeling, can be reasonably expected to result in a
significant injury to the user.
National Semiconductor
Americas Customer
Support Center
Email: [email protected]
Tel: 1-800-272-9959
www.national.com
National Semiconductor
Europe Customer Support Center
Fax: +49 (0) 180-530 85 86
Email: [email protected]
Deutsch Tel: +49 (0) 69 9508 6208
English Tel: +44 (0) 870 24 0 2171
Français Tel: +33 (0) 1 41 91 8790
2. A critical component is any component of a life
support device or system whose failure to perform
can be reasonably expected to cause the failure of
the life support device or system, or to affect its
safety or effectiveness.
National Semiconductor
Asia Pacific Customer
Support Center
Email: [email protected]
National Semiconductor
Japan Customer Support Center
Fax: 81-3-5639-7507
Email: [email protected]
Tel: 81-3-5639-7560
National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.