NJRC NJM41031

NJM41031
VIDEO AMPLIFIER WITH LPF
QGENERAL DESCRIPTION
The NJM41031 is a Video Amplifier contained LPF circuit.
Internal 75Ω driver is easy to connect TV monitor directly.
Corresponds to the AC coupling and DC coupling.
The NJM41031 features low power and small package, and is
suitable for low power design on downsizing.
* When coupled DC, 0.4V typ. output is always.
QFEATURES
O Operating Voltage
O Internal LPF
O 6dB Amplifier
O 75Ω Driver Circuit
O Power Save Circuit
O CMOS Technology
O Package Outline
QPACKAGE OUTLINE
NJM41031F1
4.5 to 5.5V
-40dB at 108MHz typ.
SOT-23-6
QPIN CONFIGURATION
1
6
2
5
3
4
SOT-23-6
1. Power Save
2. Vout
3. Vsag
4. Vin
5. GND
6. V+
QBLOCK DIAGRAM
V+
6
75W Driver
Vin
LPF
4
6dB
2
Vout
3
Vsag
CLAMP
5
GND
1
Power Save
Ver.3
-1-
NJM41031
QABSOLUTE MAXIMUM RATINGS (Ta=25°C)
PARAMETER
SYMBOL
RATINGS
UNIT
+
Supply Voltage
V
7.0
V
Power Dissipation
PD
405(SOT23-6) Note1
mW
Operating Temperature Range
Topr
-40 to +85
°C
Storage Temperature Range
Tstg
-40 to +125
°C
(Note1) At on a board of EIA/JEDEC specification. (114.3 x 76.2 x 1.6mm 2 layers, FR-4)
Q RECOMMENDED OPEARATING CONDITION (Ta=25°C)
PARAMETER
Operating Voltage
SYMBOL
TEST CONDITION
MIN.
TYP.
MAX.
UNIT
4.5
5.0
5.5
V
MIN.
TYP.
MAX.
UNIT
No Signal
-
20
25
mA
-
45
70
µA
2.2
2.5
-
Vp-p
dB
Vopr
QELECTRICAL CHARACTERISTICS (V+=5.0V,RL=150Ω,Ta=25°C)
PARAMETER
Operating Current
SYMBOL
ICC
TEST CONDITION
Operating Current at Power Save
Isave
No Signal, Power Save Mode
Maximum Output Voltage Swing
Vom
f=100kHz,THD=1%
Voltage Gain
Low Pass Filter Characteristic
5.6
6.0
6.4
Gfy6.75M
Vin=100kHz, 1.0Vp-p,
Input Sine Signal
Vin=6.75MHz/100kHz, 1.0Vp-p
-1.0
0
1.0
Gfy108M
Vin=108MHz/100kHz, 1.0Vp-p
-
-40
-23
Gv
dB
Differential Gain
DG
Vin=1.0Vp-p, 10step Video Signal
-
0.5
-
%
Differential Phase
DP
Vin=1.0Vp-p, 10step Video Signal
-
0.5
-
deg
S/N Ratio
SNv
Vin=1.0Vp-p, RL=75Ω
100% White Video Signal,
100KHz to 6MHz
-
75
-
dB
1.8
-
V+
0
-
0.3
SW Change Voltage High Level
VthPH
Active
SW Change Voltage Low Level
VthPL
Non-active
QCONTROL TERMINAL
PARAMETER
Power Save
-2-
STATUS
NOTE
H
Power Save: OFF
L
Power Save: ON (Mute)
OPEN
Power Save: ON (Mute)
V
NJM41031
QTEST CIRCUIT
Input
10uF 0.1uF
0.1u
+
75Ω
+
6
5
4
GND
V+
VIN
Power
Save
Vout
Vsag
1
2
3
100uF
+
22uF
+
75Ω
Output
-3-
NJM41031
Q APPLICATION CIRCUIT
(1) Standard circuit
Input
10uF 0.1uF
0.1u
+
75Ω
+
6
5
4
GND
V+
VIN
Power
Save
Vout
Vsag
1
2
3
+
100uF
10uF 0.1uF
0.1u
+
+
75Ω
6
5
4
V+
GND
VIN
Power
Save
1
+
22uF
Input
(2) SAG correction unused circuit
Vsag
Vout
2
3
C1
75Ω
470uF
75Ω
Output
Output
Input
(3) Two-line driving circuit
+
10uF 0.1uF
0.1u
+
+
75Ω
6
5
4
V+
GND
VIN
Power
Save
Vsag
Vout
1
2
3
470uF
75Ω
+
75Ω
Output 1
Output 2
(1) Standard circuit
This circuit is for a portable equipment of small mounting space.
The SAG correction reduces output coupling capacitor values.
However, this circuit may cause to SAG deterioration, and lose synchronization by luminance fluctuation.
Adjust the C1 value, checking the waveform containing a lot of low frequency components like a bounce waveform (Worst
condition waveform of SAG). Change the capacitor of C1 into a large value to improve SAG.
(2) SAG correction unused circuit
We recommend this circuit when there is no space limitation.
Connect the coupling capacitor after connecting the Vout pin and Vsag pin. The recommended value is 470µF or more.
(3) Two-line driving circuit
This circuit drives two-line of 150Ω. However, it may cause to lose synchronization by an input signal of large APL change
(100% white signals more than 1Vp-p). Confirm the large APL change waveform (100% white signals more than 1Vp-p) and
evaluate sufficiently.
-4-
NJM41031
Q APPLICATION CIRCUIT 1 (in case DC-coupling, 1-drive circuit)
Input
10uF 0.1uF
0.1u
+
75Ω
+
6
5
4
GND
V+
VIN
Power
Save
Vout
Vsag
1
2
3
75Ω
Output
Q APPLICATION CIRCUIT 2 (in case DC-coupling, 2-drive circuit)
Input
10uF 0.1uF
0.1u
+
+
6
5
4
V+
GND
VIN
Power
Save
Vout
1
Vsag
2
75Ω
Note)
0.4V typ. is always output from Vout.
75Ω
3
75Ω
Output 1
Output 2
-5-
NJM41031
Q TERMINAL DESCRIPTION
PIN No.
SYMBOL
VOLTAGE
EQUIVALENT CIRCUIT
32Kohm
1
Power Save
-
48Kohm
V+
2
Vout
0.4V
V+
3
Vsag
Vin
V+
0.4V
V+
4
V+
V+
1.7V
V+
-6-
5
GND
-
6
V+
-
NJM41031
QTYPICAL CHARACTERISTICS
Gain vs. Freqency
Operating Current vs. Supply Voltage
o
V+=5V Ta=25 C Vin=1.0Vpp Sine Signal Input
10
30
Operating Current [mA]
0
-20
-30
RL=150ohm
RL=75ohm
-40
DC
-50
0.1
1
10
100
20
10
0
0
Freqency [MHz]
1
20
0
5.0
5.5
6.0
Maximam Output Voltage Swing [V]
Operating Current at Power Save Mode [uA]
40
4.5
6
3.00
2.50
2.00
4.0
4.5
5.0
5.5
6.0
Supply Voltage [V]
Low Pass Filter Charactrestic vs. Supply
Voltage
6.50
6.00
5.50
5.5
Supply Voltage [V]
6.0
Low Pass Filter Charactrestic [dB]
1.0Vpp, 100kHz, Sine Signal Input
5.0
5
3.50
Voltage Gain vs. Supply Voltage
4.5
4
Total Harmonic Distotion=1%, 100KHz
4.00
Supply Voltage [V]
4.0
3
Maximam Output Voltage Swing vs.
Supply Voltage
60
4.0
2
Supply Voltage [V]
Operating Current at Power Save Mode
vs. Supply Voltage
Voltage Gain [dB]
Gain [dB]
-10
1.0Vpp, 6.75M/100kHz, Sine Signal Input
1.0
0.5
0.0
-0.5
-1.0
4.0
4.5
5.0
5.5
6.0
Supply Voltage [V]
Ver.2
-7-
NJM41031
QTYPICAL CHARACTERISTICS
Differential Gain vs. Supply Voltage
1.0Vpp, 10step Video Signal Input
1.0Vpp, 108M/100kHz, Sine Signal Input
-20
3.00
Differential Gain [%]
Low Pass Filter Charactrestic [dB]
Low Pass Filter Charactrestic vs. Supply
Voltage
-30
-40
-50
2.00
1.00
0.00
4.0
4.5
5.0
5.5
6.0
4.0
4.5
Differential Phase vs. Supply Voltage
90
Signal to Noise Ratio [dB]
Differential Phase [deg]
6.0
1.0Vpp, White 100%Video Signal Input
3.00
2.00
1.00
0.00
80
70
60
4.0
4.5
5.0
5.5
6.0
4.0
4.5
5.0
5.5
6.0
Supply Voltage [V]
Supply Voltage [V]
Switching Voltage Level (High Level) vs.
Supply Voltage
Switching Voltage Level (Low Level) vs.
Supply Voltage
3
3
Switching Voltage Level [V]
Switching Voltage Level [V]
5.5
Signal to Noise Ratio vs. Supply Voltage
1.0Vpp, 10step Video Signal Input
2
1
0
4.0
4.5
5.0
5.5
Supply Voltage [V]
-8-
5.0
Supply Voltage [V]
Supply Voltage [V]
6.0
2
1
0
4.0
4.5
5.0
5.5
Supply Voltage [V]
6.0
NJM41031
QTYPICAL CHARACTERISTICS
Operating Current at Power Save
Mode vs. Temperature
Operating Current vs. Temperature
60
Operating Current
at Power Save Mode [uA]
Operating Current [mA]
30
25
20
15
40
20
0
10
-50
-25
0
25
50
75
100
-50
125
-25
Ambient Temperature [ C]
Maximam Output Voltage Swing
vs. Temperature
75
100
125
1.0Vpp, 108M/100kHz, Sine Signal Input
Low Pass Filter Charactrestic [dB]
Maximam Output Voltage Swing [V]
50
-20
4
3
2
1
-30
-40
-50
0
-50
-25
0
25
50
75
100
125
-50
-25
Ambient Temperature [0C]
0
25
50
75
100
125
Ambient Temperature [0C]
Low Pass Filter Charactrestic vs. Temperature
Low Pass Filter Charactrestic vs. Temperature
1.0Vpp, 108M/100kHz, Sine Signal Input
1.0Vpp, 6.75M/100kHz, Sine Signal Input
-20
Low Pass Filter Charactrestic [dB]
1.00
Low Pass Filter Charactrestic [dB]
25
Low Pass Filter Charactrestic vs. Temperature
Total Harmonic Distotion=1%, 100kHz
5
0
Ambient Temperature [0C]
0
0.50
0.00
-0.50
-30
-40
-50
-1.00
-50
-25
0
25
50
75
0
Ambient Temperature [ C]
100
125
-50
-25
0
25
50
75
100
125
Ambient Temperature [0C]
-9-
NJM41031
QTYPICAL CHARACTERISTICS
Differential Gain vs. Temperature
Differential Phase vs. Temperature
1.0Vpp, 10step Video Signal Input
Differential Phase [deg]
Differential Gain [%]
1.0Vpp, 10step Video Signal Input
3.00
3.00
2.00
1.00
0.00
-50
-25
0
25
50
75
100
2.00
1.00
0.00
125
-50
Ambient Temperature [0C]
25
50
75
100
125
Switching Voltage Level (High Level)
vs. Temperature
1.0Vpp, White 100% Video Signal Input
Switching Voltage Level [V]
3
80
70
60
-50
-25
0
25
50
75
100
125
Ambient Temperature [0C]
2
1
0
-25
0
25
50
75
Ambient Temperature [0C]
- 10 -
1
0
-50
-25
0
25
50
75
Ambient Temperature [ C]
3
-50
2
0
Switching Voltage Level (Low Level)
vs. Temperature
Switching Voltage Level [V]
Signal to Noise Ratio [dB]
0
Ambient Temperature [0C]
Signal to Noise Ratio vs. Temperature
90
-25
100
125
100
125
NJM41031
[CAUTION]
The specifications on this databook are only
given for information , without any guarantee
as regards either mistakes or omissions. The
application circuits in this databook are
described only to show representative usages
of the product and not intended for the
guarantee or permission of any right including
the industrial rights.
- 11 -