NJM2575 LOW VOLTAGE VIDEO AMPLIFIER WITH LPF QGENERAL DESCRIPTION The NJM2575 is a Low Voltage Video Amplifier contained LPF circuit. Internal 75Ω driver is easy to connect TV monitor directly. The NJM2575 features low power and small package, and is suitable for low power design on downsizing of DSC and DVC. QPACKAGE OUTLINE NJM2575F1 QFEATURES O Operating Voltage 2.8 to 5.5V O Composite Video Signal Input 1.0Vp-p O 6dB Amplifier O 75Ω Driver O 2nd order Low Pass Filter O Operating Current 7.0mA typ. at V+ = 3.0V O Operating Current 60µA typ.at V+ = 3.0V (Power Save Mode) O Bipolar Technology O Package Outline SOT23-6 (MTP6) QBLOCK DIAGRAM V+ 6 75Ω Driver Vin LPF 4 6dB 2 Vout 3 Vsag CLAMP 5 GND 1 Power Save Ver.10.1 -1- NJM2575 (Ta=25°C) QABSOLUTE MAXIMUM RATINGS PARAMETER Supply Voltage Power Dissipation Operating Temperature Range Storage Temperature Range SYMBOL V+ PD Topr Tstg RATINGS 7.0 200 -40 to +85 -40 to +125 UNIT V mW °C °C QELECTRICAL CHARACTERISTICS ( V+=3.0V,RL=150Ω,Ta=25°C) PARAMETER SYMBOL Operating Voltage Vopr Operating Current ICC TEST CONDITION MIN. TYP. MAX. UNIT 2.8 3.0 5.5 V No Signal - 7.0 10.0 mA - 60 90 µA 2.2 2.4 - Vp-p 6.1 6.5 6.9 dB -0.5 0.0 +0.5 Operating Current at Power Save Isave Power Save Mode Maximum Output Voltage Swing Vom f=1kHz,THD=1% Vin=100kHz,1.0Vp-p, Input Sine Signal Vin=4.5MHz/100kHz,1.0Vp-p Voltage Gain Gv Gfy4.5M Low Pass Filter Characteristic Vin=8MHz/100kHz,1.0Vp-p - -2.0 - Gfy16M - -12.0 - - 0.2 - % - 0.2 - deg - +60 - dB - -40 - dB 1.8 - V+ 0 - 0.3 SW Change Voltage High Level VthPH Vin=16MHz/100kHz,1.0Vp-p Vin=1.0Vp-p, Input 10step Video Signal Vin=1.0Vp-p, Input 10step Video Signal Vin=1.0Vp-p, 100% White Video Signal, RL=75Ω Vin=1.0Vp-p,3.58MHz, Sine Video Signal, RL=75Ω active SW Change Voltage Low Level VthPL non-active Differential Gain DG Differential Phase DP S/N Ratio SNv 2nd. Distortion Hv QCONTROL TERMINAL PARAMETER Power Save -2- dB Gfy8M STATUS NOTE H Power Save : OFF L Power Save : ON (Mute) OPEN Power Save : ON (Mute) V NJM2575 QTEST CIRCUIT input 0.1µF 10µF 75Ω 6 V+ 0.1µF 5 4 GND Vin NJM2575 Power Save Vout Vsag 1 2 3 33µF 33µF 75Ω output 75Ω -3- NJM2575 QAPPLICATION CIRCUIT (1) Standard circuit input (2) SAG correction unused circuit input 0.1µF 0.1µF 10µF 75Ω 0.1µF 10µF 75Ω 0.1µF 6 5 4 6 5 4 V+ GND Vin V+ GND Vin NJM2575 NJM2575 Power Save Vout Vsag Power Save Vout Vsag 1 2 3 1 2 3 33µF C1 33µF + 75Ω 470µF 75Ω output output (3) Two-line driving circuit input 0.1µF 10µF 75Ω 0.1µF 6 5 4 V+ GND Vin NJM2575 Power Save Vout Vsag 1 2 3 + 75Ω output 1 470µF 75Ω output 2 (1) Standard circuit This circuit is for a portable equipment of small mounting space. The SAG correction reduces output coupling capacitor values. However, this circuit may cause to SAG deterioration, and lose synchronization by luminance fluctuation. Adjust the C1 value, checking the waveform containing a lot of low frequency components like a bounce waveform (Worst condition waveform of SAG). Change the capacitor of C1 into a large value to improve SAG. (2) SAG correction unused circuit We recommend this circuit when there is no space limitation. Connect the coupling capacitor after connecting the Vout pin and Vsag pin. The recommended value is 470µF or more. (3) Two-line driving circuit This circuit drives two-line of 150Ω. However, it may cause to lose synchronization by an input signal of large APL change (100% white signals more than 1Vp-p). Confirm the large APL change waveform (100% white signals more than 1Vp-p) and evaluate sufficiently. Ver.10.1 -4- NJM2575 QTERMINAL FUNCTION PIN No. PIN NAME 1 Power save DC VOLTAGE - EQUIVALENT CIRCUIT 32KΩ Power save 48KΩ V+ 2 Vout 0.26V V+ Vout 750Ω 25.3KΩ V+ 3 Vsag - V+ Vsag 750Ω 25.3KΩ V+ 4 Vin 1.10V 5 GND - 6 V+ 3V V+ V+ Vin Q APPLICATION Ver.10.1 -5- NJM2575 When you use a power save terminal more than by 4.0V, please put resistance of about 20kΩ into a power save terminal. In addition, power save terminal voltage (VthH) -- in the case of below 4.0V, resistance is not required Example) O PS(VthH) ≥ 4.0V O PS(VthH) < 4.0V r Power Save VthH ≥ 4.0V r ≅ 20kΩ PS V (VthH) ♦ SAG correction circuit -6- Power Save VthH < 4.0V PS V (VthH) NJM2575 SAG correction circuit is a circuit to correct for low-frequency attenuation by high-pass filter consisting of the output coupling capacitance and load resistance. Low-frequency attenuation raises the sag in the vertical period of the video signal. Capacitor for Vsag (Csag) is connected to the negative feedback of the amplifier. This Csag increase the low frequency gain to correct for the attenuation of low frequency gain. Example SAG collection circuit Vout Cout Vsag Csag resistance:RL Vout1 Example of not using sag compensation circuit Vout Cout resistance:RL Vout1 Vsag Waveform of Vout terminal and Vout1 terminal using SAG correction circuit Waveform of Vout Waveform of Vout1 1Vertical period not using SAG correction circuit Waveform of Vout Waveform of Vout1 1Vertical period SAG correction circuit generates a low frequency component signal amplified to Vout terminal. -7- NJM2575 Changes of the luminance signal will be low-frequency components, if you want to output a large signal luminance changes. Therefore, generate correction signal of change of a luminance signal to Vout pin. At this time, signal is over the dynamic range of Vout pin. This may cause a lack of sync signal, and waveform distortion. Please see diagram below (green waveform), if you want to output large changes of a signal luminance, such as 100% white video signal and black signal. Thus, output signal exceed dynamic range of Vout pin and may be the signal lack. Input signal Waveform of Vout The sync signal is missing because exceed the dynamic range of Vout. Dynamic range of Vout Waveform of Vout1 < Countermeasure for waveform distortion > 1. Please using small value the Sag compensation capacitor (VSAG). It can ensure the dynamic range by using small value the capacitor (VSAG). It because of low-frequency variation of Vout pin is smaller. However, the output (VOUT) must be use large capacitor for this reason sag characteristics become exacerbated. 2. Please do not use the sag correction circuit. Signal can output within dynamic range for reason it does not change the DC level of the output terminal. However, the output (VOUT) must be use large capacitor for this reason sag characteristics become exacerbated. -8- NJM2575 < Dual drive at using SAG correction circuit > Using sag correction circuit at dual drive circuit is below. Dual drives are less load resistance. Thus, the cut-off frequency of HPF that is composed of the output capacitor and load resistance will be small. Therefore, the sag characteristics deteriorate. Please size up to the output capacitor (Vout) for not to deteriorate the sag characteristics. < Dual drive at not using SAG correction circuit > We recommended two-example dual drive circuit with not use sag correction circuit. Please change the configuration to be used according to the situation. Please configure to meet the following conditions. Then you can adjust the characteristics of each configuration. Cout = Cout 1 + Cout 2 Cout1 = Cout 2 (A) In case of using one output capacitor (B) In case of using two output capacitors -9- NJM2575 Cout=330uF Cout=220uF Cout=100uF Cout=47uF Cout=33uF < Using SAG correction circuit > Input signal: bounce signal (IRE0%, IRE100%, 30Hz), resistance=150Ω Waveform: yellow: input signal, green: Vout signal, purple: Vout1signal Csag=10uF Csag=22uF - 10 - Csag=33uF NJM2575 Csag=33uF Cout=1000uF Cout=470uF Cout=330uF Cout=220uF Cout=100uF Input signal: bounce signal (IRE0%, IRE100%, 30Hz), resistance=75Ω Waveform: yellow: input signal, green: Vout signal, purple: Vout1signal Csag=10uF Csag=22uF - 11 - NJM2575 Cout=1000uF Cout=470uF Cout=330uF Cout=220uF Cout=100uF < Not using SAG correction circuit > Input signal: bounce signal (IRE0%, IRE100%, 30Hz), resistance=150Ω Waveform: yellow: input signal, green: Vout signal, purple: Vout1signal RL=75Ω RL=150Ω - 12 - NJM2575 Csag=33uF Cout=330uF Cout=220uF Cout=100uF Cout=47uF Cout=33uF < Using SAG correction circuit > Input signal: Black to White100%, resistance150Ω Waveform: yellow: input signal, green: Vout signal, purple: Vout1signal Csag=10uF Csag=22uF - 13 - NJM2575 Cout=330uF Cout=220uF Cout=100uF Cout=47uF Cout=33uF Input signal: White100% to Black, resistance150Ω Waveform: yellow: input signal, green: Vout signal, purple: Vout1signal Csag=10uF Csag=22uF - 14 - Csag=33uF NJM2575 Csag=33uF Cout=330uF Cout=220uF Cout=100uF Cout=47uF Cout=33uF < Using SAG correction circuit > Input signal: Black to White100%, resistance=75Ω Waveform: yellow: input signal, green: Vout signal, purple: Vout1signal Csag=10uF Csag=22uF - 15 - NJM2575 Cout=330uF Cout=220uF Cout=100uF Cout=47uF Cout=33uF Input signal: White100% to Black, resistance=75Ω Waveform: yellow: input signal, green: Vout signal, purple: Vout1signal Csag=10uF Csag=22uF - 16 - Csag=33uF NJM2575 QTYPICAL CHARACTERISTICS Frequency Characteristic 10 0.0 Gain (dB) -10 -20 -30 -40 105 106 107 108 Frequency (Hz) Operating Current at Standby State vs. Supply Voltage Operating Current vs. Supply Voltage 12 Operating Current at Standby State Isave(uA) 120 Operating Current Icc(mA) 10 8 6 4 100 80 60 40 20 2 2 3 4 5 6 7 0 8 2 3 4 5 6 7 8 + Supply Voltage V (V) + Supply Voltage V (V) Voltage Gain vs. Supply Voltage 6 8 5 7.5 Voltage Gain Gv(dB) Maximum Output Voltage Swing Vom(Vpp) Maximum Output Voltage Swing vs. Supply Voltage 4 3 2 7 6.5 6 5.5 1 5 0 2 3 4 5 6 + Supply Voltage V (V) 7 8 2 3 4 5 6 7 8 + Supply Voltage V (V) Ver.10.1 - 17 - NJM2575 TYPICAL CHARACTERISTICS Low Pass Filter Characteristic2 vs. Supply Voltage (Vin=8MHz/100kHz) Low Pass Filter Characteristic1 vs. Supply Voltage (Vin=4.5MHz/100kHz) 1.5 2 1 LPF Characteristic2 Gfy8M(dB) LPF Characteristic1 Gfy4.5M(dB) 1 0.5 0 0 -1 -0.5 -2 -1 -3 2 3 4 5 6 7 8 2 3 4 + 5 6 7 8 + Supply Voltage V (V) Supply Voltage V (V) Low Pass Filter Characteristic3 vs. Supply Voltage (Vin=16MHz/100kHz) Differential Gain vs. Supply Voltage 2 1.5 -10 Differential Gain DG(%) LPF Characteristic3 Gfy16M(dB) -5 -15 1 0.5 -20 -25 0 2 3 4 5 6 7 8 2 3 4 + 5 6 7 8 + Supply Voltage V (V) Supply Voltage V (V) Signal to Noise Ratio vs. Supply Voltage Differential Phase vs. Supply Voltage 90 2 Signal to Noise Ratio SNv(dB) Differential Phase DP(deg) 85 1.5 1 0.5 80 75 70 65 60 55 50 0 2 3 4 5 6 + Supply Voltage V (V) - 18 - 7 8 2 3 4 5 6 + Supply Voltage V (V) 7 8 NJM2575 TYPICAL CHARACTERISTICS Switching Voltage vs. Supply Voltage 1.4 -30 1.3 Switching Voltage Vth(V) Second Harmonic Distortion Hv(dB) Second Harmonic Distortion vs. Supply Voltage -20 -40 -50 -60 VthPH VthPL 1.2 1.1 1 -70 0.9 -80 0.8 2 3 4 5 6 7 8 2 3 + 5 6 7 8 + Supply Voltage V (V) Supply Voltage V (V) Operating Current vs. Temperature Operating Current at Standby State vs. Temperature 40 Operating Current at Standby State Isave(uA) 10 9 Operationg Current Icc(mA) 4 8 7 6 35 30 25 20 5 -50 0 50 -50 100 0 50 100 o Ambient Temperature Ta ( C) o Ambient Temperature Ta ( C) Maximum Output Voltage Swing vs. Temperature Voltage Gain vs. Temperature 8 3.5 7.5 3 Voltage Gain Gv(dB) Maximum Output Voltage Swing Vom(Vpp) 4 2.5 2 1.5 7 6.5 6 1 5.5 0.5 0 -50 0 50 o Ambient Temperature Ta ( C) 100 5 -50 0 50 100 o Ambient Temperature Ta( C) - 19 - NJM2575 TYPICAL CHARACTERISTICS Low Pass Filter Characteristic 1 vs. Temperature (Vin=4.5MHz/100kHz) Low Pass Filter Characteristic 2 vs. Temperature (Vin=8MHz/100kHz) 2 0 -1 LPF Characteristic 2 Gfy8M(dB) LPF Characteristic 1 Gfy4.5M(dB) 1.5 1 0.5 0 -0.5 -1 -2 -3 -4 -1.5 -2 -5 -50 0 50 100 -50 0 50 100 o Ambient Temperature Ta(oC) Ambient Temperature Ta( C) Differential Gain vs. Temperature Low Pass Filter Characteristic 3 vs. Temperature (Vin=16MHz/100kHz) 1 -5 Differential Gain DG(%) LPF Characteristic 3 Gfy16M(dB) 0.8 -10 -15 0.6 0.4 0.2 0 -20 -50 0 50 -50 100 0 50 100 o Ambient Temperature Ta( C) o Ambient Temperature Ta( C) Differential Phase vs. Temperature Signal to Noise Ratio vs. Temperature 1 80 Signal to Noise Ratio SNv(dB) Differential Phase DP(deg) 0.8 0.6 0.4 0.2 75 70 65 0 -50 0 50 100 60 -50 0 50 o Ambient Temperature Ta( C) o Ambient Temperature Ta ( C) - 20 - 100 NJM2575 TYPICAL CHARACTERISTICS Switching Voltage vs. Temperature Second Harmonic Distortion vs. Temperature 2 -40 VthPH VthPL 1.5 Switching Voltage Vth(V) Second Harmonic Distortion Hv(dB) -45 -50 -55 -60 1 0.5 -65 0 -70 -50 0 50 o Ambient Temperature Ta ( C) 100 -50 0 50 100 o Ambient Temperature Ta( C) - 21 - NJM2575 [CAUTION] The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights. - 22 -