NJM2575 Data Sheet

NJM2575
LOW VOLTAGE VIDEO AMPLIFIER WITH LPF
QGENERAL DESCRIPTION
The NJM2575 is a Low Voltage Video Amplifier contained LPF
circuit. Internal 75Ω driver is easy to connect TV monitor directly.
The NJM2575 features low power and small package, and is
suitable for low power design on downsizing of DSC and DVC.
QPACKAGE OUTLINE
NJM2575F1
QFEATURES
O Operating Voltage
2.8 to 5.5V
O Composite Video Signal Input 1.0Vp-p
O 6dB Amplifier
O 75Ω Driver
O 2nd order Low Pass Filter
O Operating Current
7.0mA typ. at V+ = 3.0V
O Operating Current
60µA typ.at V+ = 3.0V
(Power Save Mode)
O Bipolar Technology
O Package Outline
SOT23-6 (MTP6)
QBLOCK DIAGRAM
V+
6
75Ω Driver
Vin
LPF
4
6dB
2
Vout
3
Vsag
CLAMP
5
GND
1
Power Save
Ver.10.1
-1-
NJM2575
(Ta=25°C)
QABSOLUTE MAXIMUM RATINGS
PARAMETER
Supply Voltage
Power Dissipation
Operating Temperature Range
Storage Temperature Range
SYMBOL
V+
PD
Topr
Tstg
RATINGS
7.0
200
-40 to +85
-40 to +125
UNIT
V
mW
°C
°C
QELECTRICAL CHARACTERISTICS ( V+=3.0V,RL=150Ω,Ta=25°C)
PARAMETER
SYMBOL
Operating Voltage
Vopr
Operating Current
ICC
TEST CONDITION
MIN.
TYP.
MAX.
UNIT
2.8
3.0
5.5
V
No Signal
-
7.0
10.0
mA
-
60
90
µA
2.2
2.4
-
Vp-p
6.1
6.5
6.9
dB
-0.5
0.0
+0.5
Operating Current at Power Save
Isave
Power Save Mode
Maximum Output Voltage Swing
Vom
f=1kHz,THD=1%
Vin=100kHz,1.0Vp-p,
Input Sine Signal
Vin=4.5MHz/100kHz,1.0Vp-p
Voltage Gain
Gv
Gfy4.5M
Low Pass Filter Characteristic
Vin=8MHz/100kHz,1.0Vp-p
-
-2.0
-
Gfy16M
-
-12.0
-
-
0.2
-
%
-
0.2
-
deg
-
+60
-
dB
-
-40
-
dB
1.8
-
V+
0
-
0.3
SW Change Voltage High Level
VthPH
Vin=16MHz/100kHz,1.0Vp-p
Vin=1.0Vp-p,
Input 10step Video Signal
Vin=1.0Vp-p,
Input 10step Video Signal
Vin=1.0Vp-p,
100% White Video Signal, RL=75Ω
Vin=1.0Vp-p,3.58MHz,
Sine Video Signal, RL=75Ω
active
SW Change Voltage Low Level
VthPL
non-active
Differential Gain
DG
Differential Phase
DP
S/N Ratio
SNv
2nd. Distortion
Hv
QCONTROL TERMINAL
PARAMETER
Power Save
-2-
dB
Gfy8M
STATUS
NOTE
H
Power Save : OFF
L
Power Save : ON (Mute)
OPEN
Power Save : ON (Mute)
V
NJM2575
QTEST CIRCUIT
input
0.1µF
10µF
75Ω
6
V+
0.1µF
5
4
GND
Vin
NJM2575
Power
Save
Vout
Vsag
1
2
3
33µF
33µF
75Ω
output
75Ω
-3-
NJM2575
QAPPLICATION CIRCUIT
(1) Standard circuit
input
(2) SAG correction unused circuit
input
0.1µF
0.1µF
10µF
75Ω
0.1µF
10µF
75Ω
0.1µF
6
5
4
6
5
4
V+
GND
Vin
V+
GND
Vin
NJM2575
NJM2575
Power
Save
Vout
Vsag
Power
Save
Vout
Vsag
1
2
3
1
2
3
33µF
C1
33µF
+
75Ω
470µF
75Ω
output
output
(3) Two-line driving circuit
input
0.1µF
10µF
75Ω
0.1µF
6
5
4
V+
GND
Vin
NJM2575
Power
Save
Vout
Vsag
1
2
3
+
75Ω
output 1
470µF
75Ω
output 2
(1) Standard circuit
This circuit is for a portable equipment of small mounting space.
The SAG correction reduces output coupling capacitor values.
However, this circuit may cause to SAG deterioration, and lose synchronization by luminance fluctuation.
Adjust the C1 value, checking the waveform containing a lot of low frequency components like a bounce waveform (Worst
condition waveform of SAG). Change the capacitor of C1 into a large value to improve SAG.
(2) SAG correction unused circuit
We recommend this circuit when there is no space limitation.
Connect the coupling capacitor after connecting the Vout pin and Vsag pin. The recommended value is 470µF or more.
(3) Two-line driving circuit
This circuit drives two-line of 150Ω. However, it may cause to lose synchronization by an input signal of large APL change
(100% white signals more than 1Vp-p). Confirm the large APL change waveform (100% white signals more than 1Vp-p) and
evaluate sufficiently.
Ver.10.1
-4-
NJM2575
QTERMINAL FUNCTION
PIN No.
PIN NAME
1
Power
save
DC VOLTAGE
-
EQUIVALENT CIRCUIT
32KΩ
Power
save
48KΩ
V+
2
Vout
0.26V
V+
Vout
750Ω 25.3KΩ
V+
3
Vsag
-
V+
Vsag
750Ω 25.3KΩ
V+
4
Vin
1.10V
5
GND
-
6
V+
3V
V+
V+
Vin
Q APPLICATION
Ver.10.1
-5-
NJM2575
When you use a power save terminal more than by 4.0V, please put resistance of about 20kΩ into a power
save terminal.
In addition, power save terminal voltage (VthH) -- in the case of below 4.0V, resistance is not required
Example)
O PS(VthH) ≥ 4.0V
O PS(VthH) < 4.0V
r
Power
Save
VthH ≥ 4.0V
r ≅ 20kΩ
PS
V (VthH)
♦ SAG correction circuit
-6-
Power
Save
VthH < 4.0V
PS
V (VthH)
NJM2575
SAG correction circuit is a circuit to correct for low-frequency attenuation by high-pass filter consisting of the
output coupling capacitance and load resistance. Low-frequency attenuation raises the sag in the vertical period of
the video signal.
Capacitor for Vsag (Csag) is connected to the negative feedback of the amplifier. This Csag increase the low
frequency gain to correct for the attenuation of low frequency gain.
Example SAG collection circuit
Vout
Cout
Vsag
Csag
resistance:RL
Vout1
Example of not using sag compensation circuit
Vout
Cout
resistance:RL
Vout1
Vsag
Waveform of Vout terminal and Vout1 terminal
using SAG correction circuit
Waveform of Vout
Waveform of Vout1
1Vertical period
not using SAG correction circuit
Waveform of Vout
Waveform of Vout1
1Vertical period
SAG correction circuit generates a low frequency component signal amplified to Vout terminal.
-7-
NJM2575
Changes of the luminance signal will be low-frequency components, if you want to output a large signal luminance
changes. Therefore, generate correction signal of change of a luminance signal to Vout pin.
At this time, signal is over the dynamic range of Vout pin. This may cause a lack of sync signal, and waveform
distortion.
Please see diagram below (green waveform), if you want to output large changes of a signal luminance, such as
100% white video signal and black signal. Thus, output signal exceed dynamic range of Vout pin and may be the
signal lack.
Input signal
Waveform of Vout
The sync signal is missing because exceed the
dynamic range of Vout.
Dynamic range of Vout
Waveform of Vout1
< Countermeasure for waveform distortion >
1. Please using small value the Sag compensation capacitor (VSAG).
It can ensure the dynamic range by using small value the capacitor (VSAG). It because of low-frequency
variation of Vout pin is smaller. However, the output (VOUT) must be use large capacitor for this reason sag
characteristics become exacerbated.
2. Please do not use the sag correction circuit.
Signal can output within dynamic range for reason it does not change the DC level of the output terminal.
However, the output (VOUT) must be use large capacitor for this reason sag characteristics become
exacerbated.
-8-
NJM2575
< Dual drive at using SAG correction circuit >
Using sag correction circuit at dual drive circuit is below. Dual drives are less load resistance. Thus, the cut-off
frequency of HPF that is composed of the output capacitor and load resistance will be small. Therefore, the sag
characteristics deteriorate.
Please size up to the output capacitor (Vout) for not to deteriorate the sag characteristics.
< Dual drive at not using SAG correction circuit >
We recommended two-example dual drive circuit with not use sag correction circuit. Please change the
configuration to be used according to the situation. Please configure to meet the following conditions. Then you can
adjust the characteristics of each configuration.
Cout = Cout 1 + Cout 2
Cout1 = Cout 2
(A) In case of using one output capacitor
(B) In case of using two output capacitors
-9-
NJM2575
Cout=330uF
Cout=220uF
Cout=100uF
Cout=47uF
Cout=33uF
< Using SAG correction circuit >
Input signal: bounce signal (IRE0%, IRE100%, 30Hz), resistance=150Ω
Waveform: yellow: input signal, green: Vout signal, purple: Vout1signal
Csag=10uF
Csag=22uF
- 10 -
Csag=33uF
NJM2575
Csag=33uF
Cout=1000uF
Cout=470uF
Cout=330uF
Cout=220uF
Cout=100uF
Input signal: bounce signal (IRE0%, IRE100%, 30Hz), resistance=75Ω
Waveform: yellow: input signal, green: Vout signal, purple: Vout1signal
Csag=10uF
Csag=22uF
- 11 -
NJM2575
Cout=1000uF
Cout=470uF
Cout=330uF
Cout=220uF
Cout=100uF
< Not using SAG correction circuit >
Input signal: bounce signal (IRE0%, IRE100%, 30Hz), resistance=150Ω
Waveform: yellow: input signal, green: Vout signal, purple: Vout1signal
RL=75Ω
RL=150Ω
- 12 -
NJM2575
Csag=33uF
Cout=330uF
Cout=220uF
Cout=100uF
Cout=47uF
Cout=33uF
< Using SAG correction circuit >
Input signal: Black to White100%, resistance150Ω
Waveform: yellow: input signal, green: Vout signal, purple: Vout1signal
Csag=10uF
Csag=22uF
- 13 -
NJM2575
Cout=330uF
Cout=220uF
Cout=100uF
Cout=47uF
Cout=33uF
Input signal: White100% to Black, resistance150Ω
Waveform: yellow: input signal, green: Vout signal, purple: Vout1signal
Csag=10uF
Csag=22uF
- 14 -
Csag=33uF
NJM2575
Csag=33uF
Cout=330uF
Cout=220uF
Cout=100uF
Cout=47uF
Cout=33uF
< Using SAG correction circuit >
Input signal: Black to White100%, resistance=75Ω
Waveform: yellow: input signal, green: Vout signal, purple: Vout1signal
Csag=10uF
Csag=22uF
- 15 -
NJM2575
Cout=330uF
Cout=220uF
Cout=100uF
Cout=47uF
Cout=33uF
Input signal: White100% to Black, resistance=75Ω
Waveform: yellow: input signal, green: Vout signal, purple: Vout1signal
Csag=10uF
Csag=22uF
- 16 -
Csag=33uF
NJM2575
QTYPICAL CHARACTERISTICS
Frequency Characteristic
10
0.0
Gain (dB)
-10
-20
-30
-40
105
106
107
108
Frequency (Hz)
Operating Current at Standby State vs. Supply Voltage
Operating Current vs. Supply Voltage
12
Operating Current at Standby State Isave(uA)
120
Operating Current Icc(mA)
10
8
6
4
100
80
60
40
20
2
2
3
4
5
6
7
0
8
2
3
4
5
6
7
8
+
Supply Voltage V (V)
+
Supply Voltage V (V)
Voltage Gain vs. Supply Voltage
6
8
5
7.5
Voltage Gain Gv(dB)
Maximum Output Voltage Swing Vom(Vpp)
Maximum Output Voltage Swing vs. Supply Voltage
4
3
2
7
6.5
6
5.5
1
5
0
2
3
4
5
6
+
Supply Voltage V (V)
7
8
2
3
4
5
6
7
8
+
Supply Voltage V (V)
Ver.10.1
- 17 -
NJM2575
TYPICAL CHARACTERISTICS
Low Pass Filter Characteristic2 vs. Supply Voltage
(Vin=8MHz/100kHz)
Low Pass Filter Characteristic1 vs. Supply Voltage
(Vin=4.5MHz/100kHz)
1.5
2
1
LPF Characteristic2 Gfy8M(dB)
LPF Characteristic1 Gfy4.5M(dB)
1
0.5
0
0
-1
-0.5
-2
-1
-3
2
3
4
5
6
7
8
2
3
4
+
5
6
7
8
+
Supply Voltage V (V)
Supply Voltage V (V)
Low Pass Filter Characteristic3 vs. Supply Voltage
(Vin=16MHz/100kHz)
Differential Gain vs. Supply Voltage
2
1.5
-10
Differential Gain DG(%)
LPF Characteristic3 Gfy16M(dB)
-5
-15
1
0.5
-20
-25
0
2
3
4
5
6
7
8
2
3
4
+
5
6
7
8
+
Supply Voltage V (V)
Supply Voltage V (V)
Signal to Noise Ratio vs. Supply Voltage
Differential Phase vs. Supply Voltage
90
2
Signal to Noise Ratio SNv(dB)
Differential Phase DP(deg)
85
1.5
1
0.5
80
75
70
65
60
55
50
0
2
3
4
5
6
+
Supply Voltage V (V)
- 18 -
7
8
2
3
4
5
6
+
Supply Voltage V (V)
7
8
NJM2575
TYPICAL CHARACTERISTICS
Switching Voltage vs. Supply Voltage
1.4
-30
1.3
Switching Voltage Vth(V)
Second Harmonic Distortion Hv(dB)
Second Harmonic Distortion vs. Supply Voltage
-20
-40
-50
-60
VthPH
VthPL
1.2
1.1
1
-70
0.9
-80
0.8
2
3
4
5
6
7
8
2
3
+
5
6
7
8
+
Supply Voltage V (V)
Supply Voltage V (V)
Operating Current vs. Temperature
Operating Current at Standby State vs. Temperature
40
Operating Current at Standby State Isave(uA)
10
9
Operationg Current Icc(mA)
4
8
7
6
35
30
25
20
5
-50
0
50
-50
100
0
50
100
o
Ambient Temperature Ta ( C)
o
Ambient Temperature Ta ( C)
Maximum Output Voltage Swing vs. Temperature
Voltage Gain vs. Temperature
8
3.5
7.5
3
Voltage Gain Gv(dB)
Maximum Output Voltage Swing Vom(Vpp)
4
2.5
2
1.5
7
6.5
6
1
5.5
0.5
0
-50
0
50
o
Ambient Temperature Ta ( C)
100
5
-50
0
50
100
o
Ambient Temperature Ta( C)
- 19 -
NJM2575
TYPICAL CHARACTERISTICS
Low Pass Filter Characteristic 1 vs. Temperature
(Vin=4.5MHz/100kHz)
Low Pass Filter Characteristic 2 vs. Temperature
(Vin=8MHz/100kHz)
2
0
-1
LPF Characteristic 2 Gfy8M(dB)
LPF Characteristic 1 Gfy4.5M(dB)
1.5
1
0.5
0
-0.5
-1
-2
-3
-4
-1.5
-2
-5
-50
0
50
100
-50
0
50
100
o
Ambient Temperature Ta(oC)
Ambient Temperature Ta( C)
Differential Gain vs. Temperature
Low Pass Filter Characteristic 3 vs. Temperature
(Vin=16MHz/100kHz)
1
-5
Differential Gain DG(%)
LPF Characteristic 3 Gfy16M(dB)
0.8
-10
-15
0.6
0.4
0.2
0
-20
-50
0
50
-50
100
0
50
100
o
Ambient Temperature Ta( C)
o
Ambient Temperature Ta( C)
Differential Phase vs. Temperature
Signal to Noise Ratio vs. Temperature
1
80
Signal to Noise Ratio SNv(dB)
Differential Phase DP(deg)
0.8
0.6
0.4
0.2
75
70
65
0
-50
0
50
100
60
-50
0
50
o
Ambient Temperature Ta( C)
o
Ambient Temperature Ta ( C)
- 20 -
100
NJM2575
TYPICAL CHARACTERISTICS
Switching Voltage vs. Temperature
Second Harmonic Distortion vs. Temperature
2
-40
VthPH
VthPL
1.5
Switching Voltage Vth(V)
Second Harmonic Distortion Hv(dB)
-45
-50
-55
-60
1
0.5
-65
0
-70
-50
0
50
o
Ambient Temperature Ta ( C)
100
-50
0
50
100
o
Ambient Temperature Ta( C)
- 21 -
NJM2575
[CAUTION]
The specifications on this databook are only
given for information , without any guarantee
as regards either mistakes or omissions. The
application circuits in this databook are
described only to show representative usages
of the product and not intended for the
guarantee or permission of any right including
the industrial rights.
- 22 -