AK8140A -Preliminary- AK8140A Programmable Clock Generator Description AK8140A is AKM’s High-performance programmable clock generator. AK8140A generates up to four output clocks from a single input frequency with two fractional-N PLLs. Each output can be programmed for any frequency up to 230MHz. AK8140A is available in a 24-pin ETSSOP package. Features In-system programmability serial programmable Register via I2C interface Supply Voltage: - Device power supply VDD1-4: 3.0 - 3.6V High accuracy Clock Generator - Output buffer supply VDDO1, 2:1.7 - 3.6V Flexible Input Clock Source - Crystal Unit: 16M-60MHz - External Clock: 4M-100MHz Operating Temperature Range: -40 to +85℃ Free Programmable Clock Frequencies - LVCMOS: - LVDS: Package: up to 160MHz (CLK1-3) up to 230MHz (CLK4) 24-pin ETSSOP (Lead free) Low Jitter Performance - Period Jitter (1): 8.3 ps(max.) - Cycle to Cycle jitter (1): 12.8 ps(max.) - Long Term Jitter (1000cycle, 1): 41.7 ps(max.) draft-E-06 Sep -12 -1- AK8140A Block Diagram VDD1 VDD2 VDD3 VDD4 VSSO1 VDDO1 Ext-IN XIN XOUT M U X 0 Crystal OSC M U X 1 M U X 5 ODIV 1 CLK1 ODIV 2 CLK2 ODIV 3 CLK3 Fractional-N PLL1 M U X 2 M U X 3 PD_N S0 Register Fractional-N S1/SCL M PLL2 U S2/SDA X 4 ODIV 4 CLK4n CLK4p GND VSS1 VSS2 VSS3 VSS4 VSSO2 VDDO2 Figure 1: AK8140A Programmable Clock Generator Sep -12 draft-E-06 -2- AK8140A Pin Descriptions XIN 1 24 S1/SCL XOUT 2 23 S2/SDA VDD1 3 22 CLK3 VSS1 4 21 VSSO2 GND 5 20 VDDO2 S0 6 19 CLK4n VSS2 7 18 CLK4p VDD2 8 17 PD_N VDD3 9 16 CLK2 VSS3 10 15 VDDO1 VSS4 11 14 VSSO1 VDD4 12 13 CLK1 Figure 2: AK8140A Programmable Clock Generator 24-Pin ETSSOP (Top View) Pin No. Pin Name Pin Type 1 XIN 2 XOUT AI AO Description 3 4 5 6 7 VDD1 VSS1 GND S0 VSS2 PWR PWR AI AO PWR Device power supply Ground Connect to Ground Programmable Control Pin0 Ground 8 VDD2 PWR Device power supply 9 VDD3 PWR Device power supply 10 VSS3 PWR 11 VSS4 PWR Ground Ground 12 VDD4 PWR Device power supply 13 CLK1 DIO LVCMOS output pin1 14 VSSO1 PWR 15 VDDO1 PWR 16 CLK2 DO 17 PD_N DI Ground for output buffer. Output Buffer power supply1 Voltage supply for CLK1 and CLK2 LVCMOS output pin2 Power Down control pin L:Device is powered down, all outputs are low. H:output Clock and PLL is normal operation. Crystal connection or External Clock signal input Crystal connection Please leave open when external clock signal input. draft-E-06 Sep -12 -3- AK8140A Pin No. Pin Name Pin Type 18 CLK4p DO 19 CLK4n DO 20 VDDO2 PWR 21 VSSO2 PWR 22 CLK3 DO 23 S2/SDA DIO 24 S1/SCL DI Description LVCMOS/LVDS output pin4 Output level programmed Register(Address:) CLK4p and CLK4n output is opposite when LVCMOS output. Output buffer power supply2 Voltage supply for CLK3 and CLK4 Ground for output buffer. LVCMOS output pin3 Dual function pin -S2:Programmable control pin2 -SDA: Serial Data input/output Internal pull-up 500k Dual function pin -S1:Programmable control pin1 -SCL: Serial Clock input Internal pull-down 500k Ordering Information Part Number Marking Shipping Packaging Package Temperature Range AK8140A AK8140A TBD 24-pin ETSSOP -40 to 85℃ Sep -12 draft-E-06 -4- AK8140A Absolute Maximum Rating Over operating free-air temperature range unless otherwise noted Items (1) Symbol Ratings Unit Supply voltage VDD -0.3 to 4.6 V Input voltage VIN VSS-0.3 to VDD+0.3 V Input current (any pins except supplies) IIN ±10 mA Tstg -55 to 130 C Storage temperature Note (1) Stress beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated under “Recommended Operating Conditions” is not implied. Exposure to absolute-maximum-rating conditions for extended periods may affect device reliability. Electrical parameters are guaranteed only over the recommended operating temperature range. ESD Sensitive Device This device is manufactured on a CMOS process, therefore, generically susceptible to damage by excessive static voltage. Failure to observe proper handling and installation procedures can cause damage. AKM recommends that this device is handled with appropriate precautions. Recommended Operation Conditions Parameter Symbol Operating temperature Conditions Ta VDD Supply voltage (1) VDDO2 Typ -40 Pin: VDD1-4 C 1.7 1.8 1.9 3.0 3.3 3.6 Pin:VDDO2 1.7 1.8 1.9 Supply voltage for CLK3/4 output buffer 2.3 2.5 2.7 3.0 3.3 3.6 Supply voltage for CLK1/2 output buffer Pin:CLK1,2,3 Cplclk 85 3.6 Output frequency: up to 50MHz (2) Unit 3.3 Pin:CLK1,2,3 Output Load Capacitance Max 3.0 Pin:VDDO1 VDDO1 Min Output frequency: 50M to 120MHz Pin:CLK1,2,3 Output frequency: 120M to 160MHz Pin:CLK4 LVCMOS output Output frequency: up to 160MHz V 25 15 pF 10 10 Note: (1) Power to VDD1-4 requires to be supplied from a single source. A decoupling capacitor for power supply line should be installed close to each VDD pin. (2) Output load capacitance for CLK4p/n pin at LVDS output is descripted on page 9 for details. draft-E-06 Sep -12 -5- AK8140A Device Characteristics over VDD1-4: 3.0 to 3.6V, VDDO1-2:1.7 to 3.6V, Ta: -40 to +85℃, unless otherwise noted Parameter Symbol Conditions MIN TYP MAX Unit Overall Parameter High Level Input Voltage VIH Pin:S0, PD_N, S1/SCL, S2/SDA, XIN 0.7*VDD VDD V Low Level Input Voltage VIL Pin:S0, PD_N, S1/SCL, S2/SDA, XIN VSS 0.3*VDD V Input Leak Current 1 IL 1 Pin:S0, PD_N, VIN -1 +1 A Input Leak Current 2 IL 2 Pin:S2/SCL -1 +20 A IL 3 Pin:S1/SDA -20 +1 A Input Leak Current 3 No load, all outputs on, with setting: Current Consumption 1 IDD1 XIN input freq:100MHz 58 mA 15 mA 0.5 A CLK1-3:160MHz CLK4: 230MHz No load, all outputs OFF, with setting: Current Consumption 2 IDD2 XIN input freq:100MHz CLK1, 2, 3: “L” output CLK4: “L” output No load, Power Down mode, Power Down mode Current Consumption SIDD Crystal Clock Frequency Fosc Pin: XI, XO 16 60 MHz External Clock Input Frequency Fin Pin: XI When input external input. 4 100 MHz External Clock Input Duty Cycle Findc Pin: XI When input external input. at 1/2*VDD 30 Output Clock Frequency (1) Accuracy Output Lock Time (2) PD_N pin =’L’ Faccuracy Tlock 50 -30 Pin:CLK1-4 70 +30 3 % ppm ms Note (1) Additional value through IC. This value is guaranteed only when using AKM’s suggested crystal unit on page 42. (2) Time to settle output into 0.1% of specified frequency from the point that PD_N pin is changed “0” to “1”. Sep -12 draft-E-06 -6- AK8140A over VDD1-4: 3.0 to 3.6V, VDDO1-2:1.7 to 3.6V, Ta: -40 to +85℃, unless otherwise noted Parameter Symbol Conditions MIN TYP MAX Unit 230 460 MHz 6.75 13.5 MHz PLL1 Characteristics VCO frequency1 fVCO1 Phase Comparison Frequency1 fcmp1 Period Jitter1 (1)(2)(3)(4)(7) Cycle to Cycle Jitter1 (1)(2)(3)(5)(7) (1)(2)(3)(6)(7) Long Term Jitter1 Jit_period Jit_C2C Jit_long VCO frequency range of PLL1 Jitter of Output clock from PLL1 1 Jitter of Output clock from PLL1 1 Jitter of Output clock from PLL1 1000 cycle delay, 1 8.3 ps 12.8 ps 40 ps PLL2 Characteristics VCO frequency2 fVCO2 Phase Comparison Frequency2 fcmp2 Period Jitter2 (1)(2)(3)(4)(7) Cycle to Cycle Jitter2 (1)(2)(3)(5)(7) (1)(2)(3)(6)(7) Long Term Jitter2 Jit_period Jit_C2C Jit_long VCO frequency range of PLL2 Jitter of Output clock from PLL2 1 Jitter of Output clock from PLL2 1 Jitter of Output clock from PLL2 1000 cycle delay, 1 80 230 MHz 2.5 14.375 MHz 8.3 ps 12.8 ps 41.7 ps Note (1) Design Value (2) With the load describes on page5. (3) When only one side is taking out operation or the same frequency among the output buffers which share a power supply pin (VDDO1, 2). (4) Jitter depends on configuration. Jitter data is for input frequency = 48MHz, output frequency = 27M/48M/50MHz. (5) Jitter depends on configuration. Jitter data is for input frequency = 25M/30M/50MHz, output frequency = 27M/50MHz. (6) Jitter depends on configuration. Jitter data is for input frequency = 27MHz, output frequency = 25M/148.5MHz. (7) 10000 sampling or more draft-E-06 Sep -12 -7- AK8140A over VDD1-4: 3.0 to 3.6V, VDDO1-2:1.7 to 3.6V, Ta: -40 to +85℃, unless otherwise noted Parameter Symbol Conditions MIN TYP MAX Unit LVCMOS output parameter Output Frequency fout High Level Output Voltage VOH Low level Output Voltage VOL Output Clock Rise Time Output Clock Fall Time (1)(2)(3)(4) (1)(2)(3)(4) Output Clock Duty Cycle (1) (2) (3) (4) (1)(2) T_rise T_fall Pin:CLK1-4 MHz 160 Pin: CLK1-4 0.8*VDDO1, 2 IOH=-4mA V Pin: CLK1-4 IOL=+4mA Pin:CLK1-3 with Load cplclk=10pF(upper), 25pF(lower) 0.2*VDDO1, 2 → 0.8*VDDO1, 2 Pin:CLK4, VDDO2=3.3V with Load Cplclk=10pF 0.2*VDDO2 → 0.8*VDDO2 Pin:CLK1-3 with Load Cplclk=10pF(upper), 25pF(lower) 0.2*VDDO1, 2 → 0.8*VDDO1, 2 Pin:CLK4, VDDO2=3.3V with Load Cplclk=10pF 0.2*VDDO2 → 0.8*VDDO2 Pin:CLK1, 2, 3, 4 When ODIVn divides the PLL1/2 clock. Pin:CLK1, 2, 3, 4 When ODIVn divides the Input Bypass clock by even dividing value. Pin:CLK1, 2, 3, 4 When ODIVn divides the Input Bypass clock by odd dividing value. 0.2*VDDO1, 2 V 0.7 1.2 Ns 0.3 0.7 1.2 Ns 0.3 45 50 55 45 50 55 20 % 80 Design Value With the load describes on page5. When VDDO1/2=1.8V :CLKnMOD(n=1-3)=‘0’,when VDDO1/2=3.3V, CLKnMOD(n=1-3) =‘1’. When VDDO1/2=3.3V :CLK4MOD=‘1’. Sep -12 draft-E-06 -8- AK8140A over VDD1-4: 3.0 to 3.6V, VDDO1-2:1.7 to 3.6V, Ta: -40 to +85℃, unless otherwise noted Parameter Symbol Conditions MIN TYP MAX Unit 230 MHz mVpp CLK4 LVDS Output Parameter Output Frequency fout Output Differential Voltage Offset Voltage (1)(2) (1)(2) Vos (1)(2) Output Clock Rise Time (1)(2) Output Clock Fall Time Output Clock Duty Cycle (1) (2) Vod (1)(2) T_rise T_fall VDDO2=:2.3 to 3.6V, CLK4MOD=”1” VDDO2=:1.7 to 1.9V, CLK4MOD=”0” 0.2*VDDO2 → 0.8*VDDO2 0.2*VDDO2 → 0.8*VDDO2 When ODIV4 divides the PLL1/2 clock When ODIV4 divides the Input Bypass clock by even dividing value When ODIV4 divides the Input Bypass clock by odd dividing value 250 350 450 1.125 1.240 1.375 0.685 0.800 0.935 V 0.2 0.2 ns ns 45 50 55 % 45 50 55 % 80 % 20 Design Value LVDS clock measured at the circuit shown in Figure.4 CLK4p Z0=100 Differential CLK4n OUTP 100 OUTN AK8140A Figure.4 CLK4 LVDS Clock measurement circuit draft-E-06 Sep -12 -9- AK8140A Frequency setting procedure When set the CLKn* output frequency to the same as the XIN input frequency (fin), set MUXn* to ‘XIN’ by the Register (address:0Ch). *n=1-4 -PLL1 Setting Procedure- fin1 MDIV1 fcmp1 NDIV1 PFD/CP/LPF/ VCO fvco1 ODIVn foutn (INT+FRAC) Figure.5 PLL1 Block Diagram Output frequency from PLL1 is determined by PLL1 parameter: REFCLK Dividing value (MDIV1), Fractional-N1 Dividing value (INT, FRAC), and OUTPUT Dividing value (ODIV1-4). These parameters should be set as described below. Step1. Deciding VCO1 target frequency. This frequency (fvco1) is decided from CLKn Output frequency (foutn) and Output dividing value (ODIVn, set by address: 0Dh~13h).Set fVCO1 frequency between 230MHz to 460MHz. 230MHz≦fVCO1≦460MHz (fVCO1=foutn×ODIVn) Step2. Deciding Phase comparison frequency. Set MDIV1 divider as this frequency (fcmp1) becomes between 6.75MHz to 13.5MHz. 6.75MHz≦fcmp1≦13.5MHz (fcmp1 = Fin1 / MDIV1) Step3. Deciding Feedback dividing value. This value is decided by VCO1 frequency (fvco1) and Phase comparison frequency (fcmp1). 7 bits integral part and 18 bits fractional part (signed 2’s complement) is necessary to be set. Integral part (INT) Fractional part (FRAC) = round ( fvco1 / fcmp1 ) 18 = round ( ( fvco1 / fcmp1 ) – INT ) x 2 ) Sep -12 draft-E-06 - 10 - AK8140A Example1) input 27MHz, output 123.75MHz 1. fVCO1 VCO1 frequency: 247.5MHz 2. fcmp1 Phase comparison frequency1: 3. NDIV1 Feedback dividing value: ODIV = 2 9MHz MDIV = 3 27MHz / 3 = 9MHz 27.5 INT = 28d, FRAC =-131072d INT = round (247.5 / 9) = round(27.5) = 28d 18 FRAC = round (( 27.5 – 28 ) x 2 ) = -131072d Output frequency error: 0ppm Example2) input 16MHz, output 24.576MHz 1. fVCO1 VCO frequency: 294.912MHz 2. fcmp1 Phase comparison frequency: 3. NDIV1 Feedback dividing value: ODIV = 12 8MHz MDIV = 2 16MHz / 2 = 8MHz 36.864 INT = 37d, FRAC = -35652d INT = round (294.912/ 8 ) = round(36.864) = 37d 18 FRAC = round (( 36.864 – 37 ) x 2 ) = -35652d Output frequency error: 0.043ppm (1.06Hz) draft-E-06 Sep -12 - 11 - AK8140A -PLL2 Setting ProcedureOutput frequency from PLL2 is determined by PLL2 parameter: REFCLK Dividing value (MDIV2), Fractional-N2 Dividing value (INT, FRAC), and OUTPUT Dividing value (ODIV1-4). These parameters should be set as described below. fin2 MDIV2 fcmp2 NDIV2 PFD/CP/LPF/ VCO fvco2 ODIVn foutn (INT+FRAC) Figure.6 PLL2 Block Diagram Step1. Deciding VCO2 target frequency. This frequency (fvco2) is decided from CLKn Output frequency (foutn) and Output dividing value (ODIVn, set by address: 0Dh~13h). Set fVCO2 frequency between 80MHz to 230MHz. Where 80MHz≦fVCO2≦230MHz (fVCO2=foutn×ODIVn) Step2. Deciding MDIV2 and NDIV2 value when PLL2 is assumed to be Integer PLL. Set MDIV2 and NDIV2 divider as fcmp2 becomes the highest common measure of fin2 and fvco2. Where 6.75MHz≦fcmp2≦13.5MHz MDIV2 (M2):1 to 511 NDIV2 (N2): 1 to 4095 M2 ≦ N2 (fcmp2= fin2 / MDIV2) Step3. Calculating MDIV2 and NDIV2 values of fractional-N PLL. Calculate the dividing value of fractional divider, as follows. MDIV 2 2P NDIV 2 N INT N NUME N DENO N2 P 4 int log 2 M2 *{if P < 0 then P = 0} N 2 2P N INT int M2 N NUME N 2 2P M 2 N INT N DENO M 2 Sep -12 draft-E-06 - 12 - AK8140A Example1) input 27MHz, output 54MHz 1. fVCO2: 108MHz ODIVn = 2 2. M2: 1 N2: 4 As the highest common measure of fin2 and fvco2 is 27MHz 3. P: N INT: NNUME: NDEMO: 2 16 0 1 ={4-int(log24)} ={int(4×22)/1 } ={4×22-1×16} ={M=1} ∴MDIV = 22= 4, NDIV = 16 + (0/1) = 16 Example2) input 27MHz, output 24.576MHz 1. fVCO2: 221.184MHz ODIVn = 9 2. M2: 125 N2: 1024 As the highest common measure of fin2 and fvco2 is 0.216MHz 3. P: N INT: NNUME: NDEMO: 1 16 0 125 ={4-int(log2 (1204/125))} ={int(1024×21)/125 } ={1024×21-125×16} ={M=125} ∴MDIV = 21= 2, NDIV = 16 + (48/125) draft-E-06 Sep -12 - 13 - AK8140A Programmable control pin setting AK8140A has three user-definable control terminals (S0, S1, and S2) which allow external control of device settings. The user can define up to eight different control settings shown in Table. They can be programmed to any of the following functions: -PLL1/2 frequency: select from two variation of fVCO frequency set by the applicable register. -CLK1-4 output state: select from four states: enable/Hi-z/disable to L/ disable to H. Programmable Control Pin S2 S1 S0 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 Address Offset PLL1 PLL2 frequency frequency PLL1_0 or PLL1_1 PLL1_0 or PLL1_1 PLL1_0 or PLL1_1 PLL1_0 or PLL1_1 PLL1_0 or PLL1_1 PLL1_0 or PLL1_1 PLL1_0 or PLL1_1 PLL1_0 or CLK1 CLK2 CLK3 CLK4 Output Output Output Output State State State State PLL2_0 or Enable or Enable or Enable or Enable or PLL2_1 Disable Disable Disable Disable PLL2_0 or Enable or Enable or Enable or Enable or PLL2_1 Disable Disable Disable Disable PLL2_0 or Enable or Enable or Enable or Enable or PLL2_1 Disable Disable Disable Disable PLL2_0 or Enable or Enable or Enable or Enable or PLL2_1 Disable Disable Disable Disable PLL2_0 or Enable or Enable or Enable or Enable or PLL2_1 Disable Disable Disable Disable PLL2_0 or Enable or Enable or Enable or Enable or PLL2_1 Disable Disable Disable Disable PLL2_0 or Enable or Enable or Enable or Enable or PLL2_1 Disable Disable Disable Disable PLL2_0 or Enable or Enable or Enable or Enable or PLL1_1 PLL2_1 Disable Disable Disable Disable 20h 30h 04h, 05h 06h, 07h 08h, 09h 0Ah, 0Bh Sep -12 draft-E-06 - 14 - AK8140A Function Description Power up sequence Step1 : Supplying proper voltage to the power pins with PD_N pin =”L”. *Note: VDD1-4 must be supplied simultaneously. The assumption power start time to reach 90 % of VDD is within 20 ms. Step2 : Set the PD_N pin to “H”1 second after the point that the power supply reaches 90% of VDD. Step3 : SCL / SDA are acceptable min 2ms later. 90% of VDD1-4 VDD1-4 Max 20ms PD_N Min 1s Min 2ms SDA / SCL input acceptable SDA / SCL CLK1-3 CLK4p CLK4n draft-E-06 Sep -12 - 15 - AK8140A Serial interface (I2C:slave mode) Characteristics All specifications at VDD1: 3.3V, VDD2/VDD3: 1.8V, Ta: -30 to +85℃, unless otherwise noted. Design value. Parameter Symbol Conditions MIN Typ MAX Unit 400 kHz SCL clock frequency fSCL SCL Clock Low Period tLOW 1.3 us SCL Clock High Period tHIGH 0.6 us Pulse width of spikes which must be suppressed tI SLC Low to SDA Data Out 50 ns tAA 0.3 us tBUF 1.3 us Start Condition Hold Time tHD.STA 0.6 us Start Condition Setup Time (for a Repeated Start condition) tSU.STA 0.6 ms Data in Hold Time tHD.DAT 0 us Data in Setup Time tSU.DAT 100 ns SDA and SCL Rise Time tR - 1.0 us SDA and SCL Fall Time tF - 0.3 us tSU.STO 0.6 Cb - Bus free time between a STOP and START condition Stop Condition Setup Time Input Capacitance at SCL/SDA tF us 200 pF tR SCL (IN) tSU.STA tLOW tHIGH tHD.DAT tHD.STA tSU.STO tSU.DAT SDA (IN) tAA tDH tBUF SDA (OUT) Sep -12 draft-E-06 - 16 - AK8140A Serial interface Read/Write performance of serial interface is explained as below. The device address of AK8140A is Device Address#1:1100, Device Address#2:1 A1 0. A1 is set by the register bit “” (Address:03h). 1 1 0 0 1 Device Adress#1 R:1 W:0 0 A1 Device Adress#2 Write operation Write operation is described below. Data must be sent after sending 8 bits address and receiving ACK. It is possible to write next address sequentially by sending next data instead of stop condition. The address which is written after “13h/15h/2Bh” becomes “14h/20h/30h”. Write operation S T A R T SDA Slave Address Register Address(n) Data(n) S T Data(n+x) O P Data(n+1) S P A1 W A C K A C K A C K A C K Current address read Current address read operation is described below. The data that is read by this operation is obtained as “last accessed address + 1”. Therefore, it is consequent to return “1111 1110” after accessing the address “1111 1111”. Current address read S T A R T SDA Slave Address Data(n) Data(n+1) S Data(n+x) T O P Data(n+2) S P A1 R A C K A C K A C K draft-E-06 A C K Sep -12 - 17 - AK8140A Random read Random read operation is described below. It is necessary to operate “dummy write” before sending read command. Dummy write is to send the address to read. It is possible to read next address sequentially by sending ACK instead of stop condition. Random read S T A R T SDA Slave Address S T A R T Word Address(n) S Slave Address Data(n) S Data(n+x) T O P Data(n+1) S A1 W A C K A C K P A1 R A C K A C K A C K Change data Change data operation is described below. It is available when SCL is Low. Change data SCL SDA DATA STABLE DATA CHANGE Start / Stop timing Start / Stop timing is described below. The sequence is started when SDA goes from high to low during SCL is high. The sequence is stopped when SDA goes from low to high during SCL is high. Start / Stop timing SCL SDA START STOP Sep -12 draft-E-06 - 18 - AK8140A ●Register Configuration AK8140A has Register can be programmed via the serial SDA/SCL interface. The following tables and explanations describe the programmable functions of Ak8140A. ・Default register state is all ‘0’. The default setting appears after power is supplied or after power-down/up sequence until it is reprogrammed to a different setting. ・All data transferred with the MSB first. ・When a Certain Setting is set by two or more Address, please write the data to all Address. ・Write ‘0’ to Reserved bits. Table AK8140A Register Configuration Address Offset Register Remarks Device Setting ・Device Setting (S0/S1/S2) for Serial Programming mode ・Device Input clock(Crystal or Ext-in) ・Slave Address A1 00h Generic Configuration Register 20h PLL1 Configuration Register 30h PLL2 Configuration Register Page p.21 CLK1 to 4 Setting ・CLK1 to 4 Output State (CLK enabled / Disabled to L /Disabled to H / Hi-Z) ・MUX1 to 4 (PLL1 fVCO1/ PLL2 fVCO2/ Input Bypass) ・ODIV1 to 4 Parameter ・CLK1 to 4 Output Buffer Drivability ・CLK4 Output Level LVDS or CMOS PLL1 Setting p.33 (Input CLK of PLL1, MDIV1, NDIV1, fVCO1 range) p.39 PLL2 Setting (MDIV2,NDIV2,fVCO2 range) draft-E-06 Sep -12 - 19 - AK8140A ■Generic Configuration Register Generic Configuration Register(Address:00h~12h) Data Addres s D7 D6 D5 D4 D3 D2 Remarks D1 D0 Reserved Reserved Reserved Reserved Reserved S[2] S[1] S[0] 00h Device Control Setting for - - - - - 0 0 0 Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved SDA/SCL mode 01h 0 0 0 0 0 0 0 0 RID[1] RID[0] OSC_DIS Reserved R/W R/W R/W R/W 0 0 0 0 - - - - 02h Device overall SLV_ PWDN 0 0 0 0 0 0 0 0 CLK1_0 CLK1_0 CLK1_1 CLK1_1 CLK1_2 CLK1_2 CLK1_3 CLK1_ [1] [0] [1] [0] [1] [0] [1] [0] 0 0 0 0 0 0 0 0 CLK1_4 CLK1_4 CLK1_5 CLK1_5 CLK1_6 CLK1_6 CLK1_7 CLK1_7 [1] [0] [1] [0] [1] [0] [1] [0] 0 0 0 0 0 0 0 0 CLK2_0 CLK2_0 CLK2_1 CLK2_1 CLK2_2 CLK2_2 CLK2_3 CLK2_3 [1] [0] [1] [0] [1] [0] [1] [0] CMOS SPICON SPICON_S Reserved ADD1 Reserved CLK4_ Reserved Setting ET 03h 04h CLK1 Output State Setting 05h 06h CLK2 Output State 0 0 0 0 0 Sep -12 0 0 0 Setting draft-E-06 - 20 - AK8140A CLK2_4 CLK2_4 CLK2_ CLK2_5 CLK2_6 CLK2_6 CLK2_ CLK2_7 [1] [0] 5[1] [0] [1] [0] 7[1] [0] 0 0 0 0 0 0 0 0 CLK3_0 CLK3_0 CLK3_1 CLK3_1 CLK3_2 CLK3_2 CLK3_3 CLK3_3 [1] [0] [1] [0] [1] [0] [1] [0] 0 0 0 0 0 0 0 0 07h 08h CLK3 Output State CLK3_4 CLK3_4 CLK3_5 CLK3_5 CLK3_6 CLK3_6 CLK3_7 CLK3_7 [1] [0] [1] [0] [1] [0] [1] [0] 0 0 0 0 0 0 0 0 CLK4_0 CLK4_0 CLK4_1 CLK4_1 CLK4_2 CLK4_2 CLK4_3 CLK4_3 [1] [0] [1] [0] [1] [0] [1] [0] 0 0 0 0 0 0 0 0 Setting 09h 0Ah CLK4 Output State CLK4_4 CLK4_4 CLK4_5 CLK4_ CLK4_6 CLK4_6 CLK4_7 CLK4_7 [1] [0] [1] 5[0] [1] [0] [1] [0] 0 0 0 0 0 0 0 0 MUX1 MUX1 MUX2 MUX2 MUX3 MUX3 MUX4 MUX4 [1] [0] [1] [0] [1] [0] [1] 0] Setting 0Bh MUX1~4 0Ch Selection 0 0 0 0 Reserved Reserved Reserved Reserved 0 0 0 0 CLK1 DIV2_ ODIV_1 ODIV_1 MOD BYPASS1 [9] [8] Output Buffer1 Drivability 0Dh - - - - 0 draft-E-06 0 0 0 ODIV1 Setting Sep -12 - 21 - AK8140A OEh ODIV_1 ODIV_1 ODIV_1 ODIV_1 ODIV_1 ODIV_1 [7] [6] [5] [4] [3] [2] ODIV_1 0 0 0 0 0 0 0 0 Reserved Reserved CLK3 CLK2 DIV2_ DIV2_ ODIV_2 ODIV_2 MOD MOD BYPASS3 BYPASS2 [9] [8] - - 0 0 0 0 0 0 [1] ODIV_1 [0] 0Fh Output Buffer2/3 Drivability ODIV_2 ODIV_2 ODIV_2 ODIV_2 ODIV_2 ODIV_2 ODIV_2 ODIV_1 [7] [6] [5] [4] [3] [2] [1] [0] 0 0 0 0 0 0 0 0 ODIV_3 ODIV_3 ODIV_3 ODIV_3 ODIV_3 ODIV_3 ODIV_3 ODIV_3 [7] [6] [5] [4] [3] [2] [1] [0] ODIV2 Setting 10h 11h ODIV3 Setting 0 0 0 0 Reserved Reserved Reserved Reserved - - - - 0 0 0 0 CLK4 DIV2_ ODIV_4 ODIV_4 MOD BYPASS4 [9] [8] 0 0 0 0 12h Output Buffer4 Drivability ODIV_4 ODIV_4 ODIV_4 ODIV_4 ODIV_4 ODIV_4 ODIV_4 ODIV_4 [7] [6] [5] [4] [3] [2] [1] [0] 0 0 0 0 0 0 0 0 ODIV4 Setting 13h Sep -12 draft-E-06 - 22 - AK8140A ■ Generic Configuration Register ●Address:00h Device Control Setting for Serial Programming mode* *Valid only when Serial Programming mode (Address:03h SPICON=’0’) Data Addres s D7 D6 D5 D4 D3 D2 00h Reserved Reserved Reserved Reserved S[2] Reserved D1 D0 S[1] S[0] S[2:0] : Device Control Setting for Serial Programming mode When SPICON bit is set to‘0’, pin23/24 has SDA/SCL function and S[2:0] bits select the Device Control Setting predefined as the table on page 14). Table below explains the corresponding Device Control Setting defined in the Table on page14. S[2:0]:Device Control Setting for Serial Programming mode Device Control Setting S[2:0] (see on page14) 000 [S2:S0]=000 001 [S2:S0]=001 010 [S2:S0]=010 011 [S2:S0]=011 100 [S2:S0]=100 101 [S2:S0]=101 110 [S2:S0]=110 111 [S2:S0]=111 ●Address : 01h Address 01h D7 D6 D5 Reserved Reserved Reserved Data D4 Reserved D3 D2 D1 D0 Reserved Reserved Reserved Reserved ●Address : 02h Address 02h Data D7 D6 D5 D4 D3 D2 D1 D0 RID[1]* RID[0]* OSC_DIS Reserved R/W R/W R/W R/W RID[1:0]: Device Identification *read only RID[1:0] Device Identification 00 AK8140A 01 10 11 draft-E-06 Sep -12 - 23 - AK8140A OSC_DIS : Crystal Oscillator Circuit Enable/Disable Setting(MUX0) Set the register followed by ICLK source, as explained in the following table. OSC_DIS Crystal Oscillator Circuit State 0 Enable(ICLK=Crystal) 1 Disable(ICLK=Ext-in) R/W : User arbitrarily programmable bits(D3~D0) User can freely program these bits if necessary. ●Address:03h Address 03h Data D7 Reserved D6 D5 D4 D3 D2 D1 D0 Reserved PWDN SLV_ADD1 Reserved CLK4_CMOS SPICON EEWRITE PWDN : Device Power Down control . When set PWDN bit to ’1’, only PLL1/2, ODIVn, is powered down. Register settings are unchanged. CLKn output state is followed by CLKn output state selection(Address:04h-0Bh) when the device is powered down by this bit. *1 PWDN Device Setting 0 Device Active 1 Device Powered down*1 *1 It becomes CLKn=L, when CLKn output state is set to ‘01’ as “CLK enabled”. SLV_ADD1 : Slave Address Bits A1 Selection SLV_ADD1 sets the A1 of the Slave Receiver Address. *The default setting SLV_ADD1= ‘0’ appears after power is supplied or after power-down/up sequence until it is reprogrammed to a different setting. * See page 25 for more information about Slave Address setting. SLV_ADD1 Device Setting 0 A1 of Slave Address :0 1 A1 of Slave Address :1 *1 * 1 Default state is A1=’0’ Sep -12 draft-E-06 - 24 - AK8140A CLK4_CMOS : CLK4 Output Level Selection LVDS/CMOS CLK4_CMOS bit sets CLK4 output level, LVDS or LVCMOS. CLK4_CMOS 0 1 CLK4 Output Setting LVDS output LVCMOS output SPICON : Operation mode selection for pin 23/24 SPICON bit selects the operational mode of a dual functional pin 23/24. If '1' is written, pin 23/24 become “Programmable Control pin S1/S2”, and impossible to use it as a serial programming terminal. *1 However, S1/S2 pins can be temporarily used as a serial programming terminal, SDA/SCL by connecting VDDO1 to VSS. These are the bits of the Control Terminal Register. The user can predefine up to eight different control settings. These settings then can be selected by the external control pins, S0, S1, and S2. *1 the setup of SPICON= "1" becomes effective by writing ’1’ to “SPICON_SET” bit. SPICON 0 1 Pin 23/24 operation Serial programming interface*2 Pin 23:SDA Pin24:SCL Programmable control pin*3 Pin 23:S2 Pin24:S1 *2 Address:00h,01h becomes effective. *3 Pin 23/24 can control the Device Setting defined in the table on page 14. SPICON_SET :SPICON Validation “SPICON_SET” validates a setup of” SPICON" bit . A setup written in SPICON by writing '1' in this bit becomes effective. * When Set “SPICON_SET” =’1’, “SPICON_SET” bit should be written last. SPICON_SET SPICON Setting 0 1 SPICON bit is Effective *1 *1 “SPICON_SET” bit should be written last. Setup of “SPICON” bit is validated by the rising edge of a “SPICON_SET” bit. draft-E-06 Sep -12 - 25 - AK8140A ●Address:04h~0Bh Address 04h 05h 06h 07h 08h 09h 0Ah 0Bh Data D7 D6 D5 D4 D3 D2 D1 D0 CLK1_0 CLK1_0 CLK1_1 CLK1_1 CLK1_2 CLK1_2 CLK1_3 CLK1_3 [1] [0] [1] [0] [1] [0] [1] [0] CLK1_4 CLK1_4 CLK1_5 CLK1_5 CLK1_6 CLK1_6 CLK1_7 CLK1_7 [1] [0] [1] [0] [1] [0] [1] [0] CLK2_0 CLK2_0 CLK2_1 CLK2_1 CLK2_2 CLK2_2 CLK2_3 CLK2_3 [1] [0] [1] [0] [1] [0] [1] [0] CLK2_4 CLK2_4 CLK2_5 CLK2_5 CLK2_6 CLK2_6 CLK2_7 CLK2_7 [1] [0] [1] [0] [1] [0] [1] [0] CLK3_0 CLK3_0 CLK3_1 CLK3_1 CLK3_2 CLK3_2 CLK3_3 CLK3_3 [1] [0] [1] [0] [1] [0] [1] [0] CLK3_4 CLK3_4 CLK3_5 CLK3_5 CLK3_6 CLK3_6 CLK3_7 CLK3_7 [1] [0] [1] [0] [1] [0] [1] [0] CLK4_0 CLK4_0 CLK4_1 CLK4_1 CLK4_2 CLK4_2 CLK4_3 CLK4_3 [1] [0] [1] [0] [1] [0] [1] [0] CLK4_4 CLK4_4 CLK4_5 CLK4_5 CLK4_6 CLK4_6 CLK4_7 CLK4_7 [1] [0] [1] [0] [1] [0] [1] [0] CLKn_x [1:0] : CLK1~4 Output State Definition CLKn_x [1:0] bit set output state(CLKn_x) defined in the table on page 15 can be set up. The output frequency at the time CLKn_x is set to “CLK Enabled” (CLKn_x[1:0] ='00') follows MUXn/ODIVn setting. * ODIVn function is stopped, when CLKn state is set to Disable (CLKn_x[1:0] ='01'/'10'/'11'). * When CLK4 state is set to Disable, CLK4p/4n each pin will be the following state. CLK4_x[1:0]=‘01’/‘10’/‘11’:CLK4p/4n = ‘L’/‘L’,‘H’/‘H’,‘Hi-Z’/‘Hi-Z CLKn_x [1:0] CLKn Output State 00 CLK Enabled 01 Disable to Low 10 Disable to High 11 Disable to Hi-z (n=1~4、x=0~7) Sep -12 draft-E-06 - 26 - AK8140A ●Address:0Ch Address 0Ch Data D7 D6 D5 D4 D3 D2 D1 D0 MUX1[1] MUX1[0] MUX2[1] MUX2[0] MUX3[1] MUX3[0] MUX4[1] MUX4[0] MUXn [1:0] : CLK1~4 Output Clock Source Selection Select output clock signal source of CLK1-4. MUXn [1:0] CLKn Output Clock Source 00 - *1 01 Input Bypass 10 PLL1 output(fvco1) 11 PLL2 output (fvco2) (n=1~4) *1 This setting(MUXn=’00’) is prohibited. ●Address:0Dh~13h Address 0Dh 0Eh 0Fh 10h 11h 12h 13h Data D7 D6 D5 D4 Reserved Reserved Reserved Reserved D3 D2 D1 D0 CLK1 DIV2_ ODIV_1 ODIV_1 MOD BYPASS1 [9] [8] ODIV_1 ODIV_1 ODIV_1 ODIV_1 ODIV_1 ODIV_1 ODIV_1 ODIV_1 [7] [6] [5] [4] [3] [2] [1] [0] Reserved Reserved CLK3 CLK2 DIV2_ DIV2_ ODIV_2 ODIV_2 MOD MOD BYPASS3 BYPASS2 [9] [8] ODIV_2 ODIV_2 ODIV_2 ODIV_2 ODIV_2 ODIV_2 ODIV_2 ODIV_2 [7] [6] [5] [4] [3] [2] [1] [0] ODIV_3 ODIV_3 ODIV_3 ODIV_3 ODIV_3 ODIV_3 ODIV_3 ODIV_3 [7] [6] [5] [4] [3] [2] [1] [0] Reserved Reserved Reserved Reserved CLK4 DIV2_ ODIV_4 ODIV_4 MOD BYPASS4 [9] [8] ODIV_4 ODIV_4 ODIV_4 ODIV_4 ODIV_4 ODIV_4 ODIV_4 ODIV_4 [7] [6] [5] [4] [3] [2] [1] [0] draft-E-06 Sep -12 - 27 - AK8140A ODIVn Dividing Value Setting (ODIV_n/DIV2_BYPASSn) The Dividing value of ODIVn is decided by “Frequency setting procedure” on page 10. (1)The case ODIVn divides the clock signal of Input Bypass. (MUXn = ‘01’) Set ODIVn dividing value according to explanation below, when ODIVn divides a clock signal of Input Bypass. ODIVn configuration is as the following Figure. ODIVn -2Divider CLKn ODIV_n *ODIVn is calculated number by “Frequency setting procedure” on page 10. ・When set ODIVn dividing Value = 2 or odd number: →Bypass ODIVn_2 Divider ,ODIV_n is the same number as ODIVn Example1:ODIVn=3 Bypass ODIVn_2 Divider (DIV2_BYPASSn = ‘1’) ODIV_n = ODIVn=3 ・When set ODIVn dividing Value even number beyond 4 →Using ODIVn_2 Divider, ODIV_n = ODIVn/2 DIV2_Bypassn ODIV_n Example1:ODIVn=10 (0Dh-13h) (0Dh-13h) Bypass ODIVn_2 Divider (DIV2_BYPASSn = ‘0’) ODIV_n = ODIVn/2 =5 (2)The case ODIVn divides clock signal of PLL1 or PLL2 (MUXn =’10’ or ‘11’) Set ODIVn dividing value according to explanation below, when ODIVn divides clock signal of PLL1 or PLL2 ・When ODIVn divides fvco1 (MUXn=’10’): →ODIVn = ODIVn (calculated value )/2 ・When ODIVn divides fvco2 (MUXn=’10’): →ODIVn = ODIVn (calculated value ) Sep -12 draft-E-06 - 28 - AK8140A ODIV_n[9:0] : ODIV_n dividing value Control (n=1,2,4) Set ODIV_n(n=1,2,4)dividing value of ODIV1,2,4 as blow. ODIV_n[9:0] (n=1,2,4) Dividing Value 00 0000 0000 1 00 0000 0001 2 00 0000 0010 3 : 11 1111 1111 1024 ODIV_3[7:0] : ODIV_3 dividing value Control Set ODIV_3 dividing value of ODIV3 as blow ODIV_3[7:0] Dividing Value 0000 0000 1 0000 0001 2 0000 0010 3 : 1111 1111 256 DIV2_BYPASSn (n=1~4) DIV2_BYPASSn selects whether ODIVn_2divider used.(n=1-4) DIV2_BYPASSn ODIVn_2Divider 0 Use the 2divider 1 Bypass the 2 divider ※ Effective only when MUXn(n=1~4)=‘00’/‘01’ draft-E-06 Sep -12 - 29 - AK8140A CLKnMOD : CLKn(n=1-3) Output Buffer Drivability Setting “CLKnMOD” set the drivability of Output Buffer of CLKn as the following table. (n=1~3) CLKnMOD CLKn Drivability High 0 Recommended when VDDO1,2=1.8V Low 1 Recommended when VDDO1,2=3.3V (n=1~3) CLK4MOD : CLK4 Output Buffer Drivability Setting “CLK4MOD” set the drivability of Output Buffer of CLK4 as the following table. CLK4MOD CLK4 Drivability High 0 Recommended when VDDO2=1.8V Low 1 Recommended when VDDO2=3.3V Sep -12 draft-E-06 - 30 - AK8140A ■PLL1 Configuration Register Data Address Remarks 20h D7 D6 D5 D4 D3 D2 D1 D0 FS1_0 FS1_1 FS1_2 FS1_3 FS1_4 FS1_5 FS1_6 FS1_7 0 0 0 Reserved Reserved Reserved - - FRAC0 FRAC0 [17] [16] 0 0 0 0 0 INPUT VCO1_ VCO1_ VCO1_ VCO1_ _CK1 RANG0[1] RANG0[0] RANG1[1] RANG1[0] 0 0 0 0 0 - Reserved Reserved Reserved Reserved Reserved Reserved - - - - - - 0 0 FRAC0 FRAC0 FRAC0 FRAC0 FRAC0 FRAC0 FRAC0 FRAC0 [15] [14] [13] [12] [11] [10] [9] [8] 0 0 0 0 0 0 0 0 FRAC0 FRAC0 FRAC0 FRAC0 FRAC0 FRAC0 FRAC0 FRAC0 [7] [6] [5] [4] [3] [2] [1] [0] 0 0 0 0 0 0 0 0 Reserved INT0[6] INT0[5] INT0[4] INT0[3] INT0[2] INT0[1] INT0[0] - 0 0 0 0 0 0 0 MDIVC0 MDIVC0 MDIVC0 MDIVC0 MDIVP0 MDIVP0 MDIVP0 MDIVP0 [3] [2] [1] [0] [3] [2] [1] [0] 0 0 0 0 0 0 0 0 Reserved Reserved Reserved Reserved Reserved Reserved FRAC1 FRAC1 [17] [16] - - - - - - 0 0 FRAC1 FRAC1 FRAC1 FRAC1 FRAC1 FRAC1 FRAC1 FRAC1 [15] [14] [13] [12] [11] [10] [9] [8] 0 0 0 0 0 0 0 0 FRAC1 FRAC1 FRAC1 FRAC1 FRAC1 FRAC1 FRAC1 FRAC1 [7] [6] [5] [4] [3] [2] [1] [0] 0 0 0 0 0 0 0 0 Reserved INT1[6] INT1[5] INT1[4] INT1[3] INT1[2] INT1[1] INT1[0] - 0 0 0 0 0 0 0 MDIVC1 MDIVC1 MDIVC1 MDIVC1 MDIVP1 MDIVP1 MDIVP1 MDIVP1 [3] [2] [1] [0] [3] [1] [0] 0 0 0 0 0 0 0 21h 23h 24h 26h 27h 28h 29h 2Ah PLL1 Input Clock Selection fVCO1 Range 22h 25h PLL1 Frequency Selection 2Bh draft-E-06 [2] 0 PLL1_0 NDIV1 Fractional Part Setting PLL1_0 NDIV1 Integral Part Setting PLL1_0 MDIV1 Setting PLL1_1 NDIV1 Fractional Part Setting PLL1_1 NDIV1 Integral Part Setting PLL1_1 MDIV1 Setting Sep -12 - 31 - AK8140A PLL1 Configuration Register PLL1 Block Diagram is as the following Figure. Please set PLL1 parameter according to . PLL1 has two Frequency mode predefined as PLL1_0 or PLL1_1 and selected by S0/S1/S2 pin or S[2:0] bits (Address:00h). Refer to Programmable Control pin setting on page 14 for more information about Frequency selection. PLL1 Input CLK (21h) MDIV1 Setting NDIV1 Setting fVCO1 range (26h/28h) (22h-25h, 27h-2Ah) (21h) Figure PLL1 Block Diagram ●Address:20h Address 20h PLL1Output Frequency selection Data D7 D6 D5 D4 D3 D2 D1 D0 FS1_0 FS1_1 FS1_2 FS1_3 FS1_4 FS1_5 FS1_6 FS1_7 FS1_x(x=0~7) : PLL1Output Frequency selection The output frequency of PLL is chosen from two setups ,PLL1_0 and PLL1_1. FS1_x 0 1 PLL1 Frequency PLL1_0 Predefined by address:21h, 22h~26h PLL1_1 Predefined by address:21h, 27h~2Bh Sep -12 draft-E-06 - 32 - AK8140A ●Address:21h Address 21h PLL1 Input Clock Selection/ fVCO1 range Data D7 D6 D5 D4 D3 INPUT VCO1 VCO1 VCO1 VCO1 _CK1 _RANG0[1] _RANG0[0] _RANG1[1] _RANG1[0] D2 D1 D0 - - - INPUT_CK1 : PLL1Input Clock Selection (MUX5) INPUT_CK1 PLL1Input Clock Input Clock (Crystal Oscillation or External clock input) fvco2 PLL2 output clock 0 1 VCO1_RANGEn[1:0] : fVCO1 range selection n=0/1 “VCO1_RANGEn[1:0]” selects the fVCO1 frequency range. fVCO1 frequency can be set according to Frequency Setting Procedure on page 10. VCO1_RANGEn[1:0] 00 01 10 11 fVCO1 range fVCO1 < 300MHz 300MHz <= fvco1 < 370MHz 370MHz <= fvco1 370MHz <= fvco1 ●Address:22h/28h、23h/29h、24h/2Ah Address 22h 27h 23h 28h 24h 29h D7 D6 NDIV1 fractional part setting Data D5 D4 D3 D2 D1 D0 FRACn[17] FRACn[16] FRACn[15] FRACn[14] FRACn[13] FRACn[12] FRACn[11] FRACn[10] FRACn[9] FRACn[8] FRACn[7] FRACn[6] FRACn[5] FRACn[4] FRACn[3] FRACn[2] FRACn[1] FRACn[0] FRACn[17:0] settings are updated after writing register 24h/20h. Setting procedure should be (1)22h/27h ,( 2)23h/28h, and then (3)24h/29h FRACn [17:0] : NDIV1 fractional part setting n=0/1 NDIV1 fractional part can be set according to Frequency Setting Procedure on page 10. Fractional part of N is expressed by A/218. Here, the numerator A is defined by FRAC bits. FRAC is treated as 2’s Complement which is able to set from -217 up to +217. Consequently, it is possible to set from -0.5 to +0.5 for fractional part of N. draft-E-06 Sep -12 - 33 - AK8140A FRACn [17:0] ●Address:25h/2Ah Address 25h 2Ah A Fractional Part 01 1111 1111 1111 1111 01 1111 1111 1111 1110 +131071 +131070 0.49999619.. 01 0000 0000 0000 0000 +65536 0.25 00 0000 0000 0000 0001 00 0000 0000 0000 0000 11 1111 1111 1111 1111 11 1111 1111 1111 1110 +1 0 -1 -2 0.00000381.. 0 -0.00000381.. 11 0000 0000 0000 0000 -65536 -0.25 10 0000 0000 0000 0001 10 0000 0000 0000 0000 -131071 -131072 -0.49999619.. -0.5 NDIV1 integral part settings *n=0/1 Data D7 D6 D5 D4 D3 D2 D1 D0 - INTn[6] INTn[5] INTn[4] INTn[3] INTn[2] INTn[1] INTn[0] INTn [6:0] : NDIV1 integral part settings n=0/1 NDIV1 Integral part can be set according to Frequency Setting Procedure on page 10. * Do not set any value except ”17”~”68” INTn [6:0] integral part Prohibited 17 18 000 0000~001 0000 001 0001 001 0010 100 0011 100 0100 100 0101~111 1111 67 68 -*1 Sep -12 draft-E-06 - 34 - AK8140A ●Address:26h/2C MDIV1 Setting Address 26h 2Bh *n=0/1 Data D7 D6 D5 D4 D3 D2 D1 D0 MDIVCn[3] MDIVCn[2] MDIVCn[1] MDIVCn[0] MDIVPn[3] MDIVPn[2] MDIVPn[1] MDIVPn[0] MDIV1 Dividing Value Settings(MDIVCn, MDIVPn) MDIV1Configuration is as the following Figure. MDIV1 Dividing Value can be set according to Frequency Setting Procedure on page 10. MDIVCn[2] MDIV1 PLL1 Input CLK SEL 1/2 1/2 1/3 or 1/4 SEL 1/2 Phase Comparator Programmable Div. MDIVCn[3:0] MDIVPn[3:0] MDIVCn[1:0] Figure MDIV1Configuration *n=0/1 MDIVCn[3] : Programmable divider input selection MDIVCn[3] Input of Programmable divide 0 PLL1 Input CLK 1 PLL1 Input CLK 1/2 MDIVCn[2] : 3or4 divider selection MDIVCn[2] 0 1 *n=0/1 Selected divider 3 divider 4 divider *n=0/1 MDIVCn[1:0] : Input of Phase comparator selection MDIVCn[1:0] Input of Phase comparator 00 PLL1 Input CLK 01 PLL1 Input CLK 1/2 10 3 or4 divider output 11 Programmable divider Output ※Set MDIVCn[1:0]=‘11’, when INPUT_CK1 is set to‘1’(Address=21h) draft-E-06 Sep -12 - 35 - AK8140A *n=0/1 MDIVPn[3:0] : Programmable divider control MDIVPn[3:0] Programmable Divider dividing value 0000 prohibited 0001 2 0010 3 0011 4 0100 5 0101 6 0110 7 0111 8 1000 9 1001 10 1010 11 1011 12 1100 13 1101 14 1110 15 1111 16 Sep -12 draft-E-06 - 36 - AK8140A PLL2 Configuration Register Data Address 30h Remarks D7 D6 D5 D4 D3 D2 D1 D0 FS2_0 FS2_1 FS2_2 FS2_3 FS2_4 FS2_5 FS2_6 FS2_7 0 0 0 0 0 0 0 0 VCO2_RA VCO2_RA Reserved Reserved MDIV0[2] MDIV0[1] MDIV0[0] 31h Reserved NGE0[1] NGE0[0] PLL2 Frequency Selection PLL2_0 MDIV2Setting fVCO2 Range 32h 33h 34h 35h 0 0 0 0 0 0 0 0 NINT0[5] NINT0[4] NINT0[3] NINT0[2] NINT0[1] NINT0[0] NUME0[8] NUME0[7] 0 0 0 0 0 0 0 0 NUME0[6] NUME0[5] NUME0[4] NUME0[3] NUME0[2] NUME0[1] NUME0[0] DENO0[8] 0 0 0 0 0 0 0 0 DENO0[7] DENO0[6] DENO0[5] DENO0[4] DENO0[3] DENO0[2] DENO0[1] DENO0[0] 0 0 0 0 0 0 0 0 VCO2_RA VCO2_RA Reserved Reserved MDIV1[2] MDIV1[1] MDIV1[0] Reserved NGE1[1] NGE1[0] PLL2_0 NDIV2 Setting PLL2_1 MDIV2Setting fVCO2 Range 36h 0 0 0 0 0 0 0 0 NINT1[5] NINT1[4] NINT1[3] NINT1[2] NINT1[1] NINT1[0] NUME1[8] NUME1[7] 0 0 0 0 0 0 0 0 NUME1[6] NUME1[5] NUME1[4] NUME1[3] NUME1[2] NUME1[1] NUME1[0] DENO1[8] 0 0 0 0 0 0 0 0 DENO1[7] DENO1[6] DENO1[5] DENO1[4] DENO1[3] DENO1[2] DENO1[1] DENO1[0] 0 0 0 0 0 0 0 0 37h PLL2_1 NDIV2 Setting 38h draft-E-06 Sep -12 - 37 - AK8140A PLL2 Configuration Register PLL2 Block Diagram is as the following Figure. Please set PLL2 parameter according to. Frequency Setting Procedure on page 10. PLL2 has two Frequency mode predefined as PLL2_0 or PLL2_1 and selected by S0/S1/S2 pin or S[2:0] bits (Address:00h). see on page 10more information about Frequency selection. fin2 MDIV2 Setting NDIV2 Setting fVCO2 range (31h/35h) (32h-34h/36h-38h) (31h/35h) Figure PLL2 Block Diagram ●Address:30h Address 30h PLL2 Output Frequency selection Data D7 D6 D5 D4 D3 FS2_0 FS2_1 FS2_2 FS2_3 FS2_4 D2 D1 D0 FS2_5 FS2_6 FS2_7 FS2_x (x=0~7): PLL1Output Frequency selection The output frequency of PLL2 is chosen from two setups,PLL2_0 or PLL2_1. FS2_x 0 1 PLL2 Frequency PLL2_0 Predefined by address:31h~34h PLL2_1 Predefined by address:35h~38h Sep -12 draft-E-06 - 38 - AK8140A ●Address:31h/35h Address 31h 35h MDIV2 and fVCO2 frequency range Setting Data D6 D5 D4 D3 D2 D7 Reserved Reserved MDIVn[2] MDIVn[1] MDIVn[0] VCO2_RANGEn[1] MDIVn[2:0] :MDIV2Dividing Value Settings *n=0/1 D1 D0 VCO2_RANGEn[0] - *n=0/1 MDIV1Configuration is as the following Figure. MDIV1 Dividing Value can be set according to Frequency Setting Procedure on page 10. MDIV2 SEL XIN input Phase Comparator 力 MDIVn[2:0] Figure MDIV2 configuration MDIVn[2:0] 000 001 010 011 100 Except the above MDIV2 Dividing Value 1 2 4 8 16 prohibited (Device is Reset) VCO2_RANGEn[1:0] : fVCO2 range selection *n=0/1 “VCO2_RANGEn[1:0]” selects the fVCO2 frequency range. fVCO2 frequency can be set according to Frequency Setting Procedure on page 10. VCO2_RANGEn[1:0] 00 01 10 11 fVCO2 range fvco < 117.5MHz 117.5MHz <= fvco < 155MHz 155MHz <= fvco < 192.5MHz 192.5MHz <= fvco draft-E-06 Sep -12 - 39 - AK8140A ●Address:32h~34h、36h~38h *n=0/1 Address NDIV2 Dividing Value Data D7 D6 D5 D4 D3 D2 D1 D0 NINTn[5] NINTn[4] NINTn[3] NINTn[2] NINTn[1] NINTn[0] NUMEn[8] NUMEn[7] NUMEn[6] NUMEn[5] NUMEn[4] NUMEn[3] NUMEn[2] NUMEn[1] NUMEn[0] DENOn[8] DENOn[7] DENOn[6] DENOn[5] DENOn[4] DENOn[3] DENOn[2] DENOn[1] DENOn[0] 32h 36h 33h 37h 34h 38h After writing register 34h, 32h~34h data settings are updated. After writing register 38h, 36h~38h data settings are updated. NDIV2 Dividing Value (NINTn, NUMEn, DENOn) NDIV2 dividing value can be set according to Frequency Setting Procedure on page 10. NINTn[5:0] : NDIV2 integral part settings *n=0/1 NINTn[5:0] 000000 ~ 001111 010000 NDIV2 Integral Part : : 100011 35 100100 100101 36 37 : 111001 111010 ~ 111111 : 57 prohibited 16 prohibited NUMEn[8:0] : NDIV2 Numerator of fractional part setting NUMEn[8:0] *n=0/1 NDIV2 Numerator of fractional part setting 000000000 0(fractional-part=0) 000000001 1 : : 111111110 510 111111111 511 Sep -12 draft-E-06 - 40 - AK8140A DENOn[8:0] : NDIV2 Denominator of fractional part setting DENOn[8:0] *n=0、1 NDIV2 Denominator of fractional part setting 000000000 prohibited 000000001 1 : : 111111110 510 111111111 511 draft-E-06 Sep -12 - 41 - AK8140A Crystal Unit DAISHINKU Corp. DSX321G Item Symbol MIN. TYP. MAX. Unit Remark MHz CL=8pF Nominal frequency f0 25.000 Equivalent resistance R1 18.2 Shunt capacitance C0 1.22 pF Motional capacitance C1 4.724 fF Motional inductance L1 8.585 mH 30 uW Drive Level L1 60 R1 Ω ±2 uW C1 Crystal unit C0 Load capacitance CL CL Figure Equivalent parameter and load capacitance Sep -12 draft-E-06 - 42 - AK8140A Package Information 7.8±0.10 0.15±0.05 13 1 6.40±0.15 4.40±0.10 0.6±0.10 24 12 0.25±0.05 0.65 0°~8° S 0.10±0.05 0.10 S 12 (2.74) 1 1.10 MAX 0.90±0.05 24 13 (4.54) draft-E-06 Sep -12 - 43 - AK8140A Marking a: #1 Pin Index b: Part number c: Date code (6 digits) 24 13 b AK8140A xxxxxx c a 12 1 Sep -12 draft-E-06 - 44 - AK8140A RoHS Compliance All integrated circuits form Asahi Kasei Microdevices Corporation (AKM) assembled in “lead-free” packages* are fully compliant with RoHS. (*) RoHS compliant products from AKM are identified with “Pb free” letter indication on product label posted on the anti-shield bag and boxes. IMPORTANT NOTICE These products and their specifications are subject to change without notice. When you consider any use or application of these products, please make inquiries the sales office of Asahi Kasei Microdevices Corporation (AKM) or authorized distributors as to current status of the products. Descriptions of external circuits, application circuits, software and other related information contained in this document are provided only to illustrate the operation and application examples of the semiconductor products. You are fully responsible for the incorporation of these external circuits, application circuits, software and other related information in the design of your equipments. AKM assumes no responsibility for any losses incurred by you or third parties arising from the use of these information herein. AKM assumes no liability for infringement of any patent, intellectual property, or other rights in the application or use of such information contained herein. Any export of these products, or devices or systems containing them, may require an export license or other official approval under the law and regulations of the country of export pertaining to customs and tariffs, currency exchange, or strategic materials. AKM products are neither intended nor authorized for use as critical components Note1) in any safety, life support, or other hazard related device or systemNote2), and AKM assumes no responsibility for such use, except for the use approved with the express written consent by Representative Director of AKM. As used here: Note1) A critical component is one whose failure to function or perform may reasonably be expected to result, whether directly or indirectly, in the loss of the safety or effectiveness of the device or system containing it, and which must therefore meet very high standards of performance and reliability. Note2) A hazard related device or system is one designed or intended for life support or maintenance of safety or for applications in medicine, aerospace, nuclear energy, or other fields, in which its failure to function or perform may reasonably be expected to result in loss of life or in significant injury or damage to person or property. It is the responsibility of the buyer or distributor of AKM products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the above content and conditions, and the buyer or distributor agrees to assume any and all responsibility and liability for and hold AKM harmless from any and all claims arising from the use of said product in the absence of such notification. draft-E-06 Sep -12 - 45 -