[AK8140A] AK8140A Programmable Multi Clock Generator with XO 1. General Description The AK8140A is a member of AKM’s High-performance programmable clock generator. The AK8140A generates up to four output clocks from a single input frequency with two fractional-N PLLs. Each output can be programmed for any frequency up to 230MHz. PLLs in AK8140A are derived from AKM’s long-term-experienced clock device technology, and enable clock output to perform low jitter and to operate with very low current consumption. The AK8140A is available in a 24-pin HTSSOP package. 2. Features In-System Programmability - Serial Programmable Register via SDA/SCL pin High Accuracy Clock Generator Flexible Input Clock Source - Crystal Unit : 16MHz - 60MHz - External Clock : 4MHz - 100MHz Free Programmable Clock Frequencies - LVCMOS : up to 160MHz (CLK1-4) - LVDS : up to 230MHz (CLK4p/n) Low Jitter Performance by using PLL2 - Period Jitter (1σ) : 8.3ps Max. - Cycle to Cycle Jitter (1σ) : 12.8ps Max. - Long Term Jitter (1000 cycle, 1σ) : 41.7ps Max. Supply Voltage - Device Power Supply : VDD1-4 : 3.0 – 3.6V - Output Buffer Power Supply : VDDO1-2 : 1.7 – 3.6V Operating Temperature Range - -40 to +85C Package - 24-pin HTSSOP (Lead free) Application - Automotive Ethernet AVB System, Automotive Video System, Car Navigation and Display Audio - Audio Amplifier System, AV Receiver, DTV System, STB, IP-STB, DVD Player and DVD Recorder MS1441-E-02 2013/09 -1- [AK8140A] 3. Table of Contents 1. General Description........................................................................................................................................1 2. Features ..........................................................................................................................................................1 3. Table of Contents ...........................................................................................................................................2 4. Block Diagram and Functions ........................................................................................................................3 5. Pin Configurations and Functions ..................................................................................................................4 6. Absolute Maximum Ratings ...........................................................................................................................6 7. Recommended Operating Conditions ............................................................................................................6 8. Electrical Characteristics................................................................................................................................7 9. Functional Descriptions ...............................................................................................................................14 10. Recommended External Circuits ................................................................................................................48 11. Package .......................................................................................................................................................50 12. Important Notice.........................................................................................................................................52 MS1441-E-02 2013/09 -2- [AK8140A] 4. Block Diagram and Functions VDD1 VDD2 VDD3 VDD4 VSSO1 VDDO1 Ext-IN XIN XOUT M U X 0 Crystal OSC M U X 1 M U X 5 Fractional-N ODIV 1 CLK1 ODIV 2 CLK2 ODIV 3 CLK3 1/2 Divider PLL1 M U X 2 M U X 3 PD_N S0 Register Fractional-N S1/SCL M PLL2 U S2/SDA X 4 ODIV 4 CLK4n CLK4p GND VSS1 VSS2 VSS3 VSS4 VSSO2 VDDO2 Figure 1. AK8140A Programmable Multi Clock Generator with XO MS1441-E-02 2013/09 -3- [AK8140A] 5. Pin Configurations and Functions XIN 1 24 S1/SCL XOUT 2 23 S2/SDA VDD1 3 22 CLK3 VSS1 4 21 VSSO2 GND 5 20 VDDO2 S0 6 19 CLK4n VSS2 7 18 CLK4p VDD2 8 17 PD_N VDD3 9 16 CLK2 VSS3 10 15 VDDO1 VSS4 11 14 VSSO1 VDD4 12 13 CLK1 Figure 2. AK8140A Package: 24-Pin HTSSOP (Top View) Pin No. Pin Name Pin Type 1 XIN AI 2 XOUT AO 3 4 5 VDD1 VSS1 GND PWR PWR AI 6 S0 DI 7 8 9 10 11 12 VSS2 VDD2 VDD3 VSS3 VSS4 VDD4 PWR PWR PWR PWR PWR PWR 13 CLK1 DO 14 VSSO1 PWR Description Crystal connection (Default) or External clock input When Crystal connection is selected, OSC_DIS bit should be set ‘0’. When External clock input is selected, OSC_DIS bit should be set ‘1’. Crystal connection Open when an external clock input is used. Device Power Supply 1 Connect to Ground Connect to Ground Programmable control pin 0 Connect to Ground when S0 pin isn’t used. Connect to Ground Device Power Supply 2 Device Power Supply 3 Connect to Ground Connect to Ground Device Power Supply 4 LVCMOS Output pin1 When VDDO1 = 1.8V, CLK1MOD bit should be set ‘0’ (Default). When VDDO1 = 3.3V, CLK1MOD bit should be set ‘1’. Connect to Ground for Output Buffer MS1441-E-02 2013/09 -4- [AK8140A] Pin No. Pin Name Pin Type 15 VDDO1 PWR Description Power Supply1 for Output Buffer CLK1 and CLK2 16 CLK2 DO LVCMOS Output pin2 When VDDO1 = 1.8V, CLK1MOD bit should be set ‘0’ (Default). When VDDO1 = 3.3V, CLK1MOD bit should be set ‘1’. 17 PD_N DI Power Down Control pin L : Device is powered down, all outputs are low. H : PLLs and all outputs are normal operation. 18 CLK4p DO 19 CLK4n DO 20 21 VDDO2 VSSO2 PWR PWR 22 CLK3 DO LVCMOS Output pin3 When VDDO1 = 1.8V, CLK1MOD bit should be set ‘0’ (Default). When VDDO1 = 3.3V, CLK1MOD bit should be set ‘1’. DIO Dual function pin S2 : Programmable control pin2, SDA : Serial Data Input / Output (Default) Internal Pull Up Resistance : 500 kΩ When SPICON bit = SPICON_SET bit = ‘1’, Pin 23 becomes S2 pin for Programmable control pin. Refer to Page 29. DI Dual function pin S1 : Programmable control pin1, SCL : Serial Clock Input (Default) Internal Pull Down Resistance : 500 kΩ When SPICON bit = SPICON_SET bit = ‘1’, Pin 24 becomes S1 pin for Programmable control pin. Refer to Page 29. 23 24 S2/SDA S1/SCL LVDS (Default) / LVCMOS Output pin4 Output Interface is changed by CLK4_CMOS bit (Address: 03h). When LVDS is selected, CLK4_CMOS bit should be set ‘0’. When LVCMOS is selected, CLK4_CMOS bit should be set ‘1’. CLK4p and CLK4n Output is Opposite when LVCMOS Output. When VDDO2 = 1.8V, CLK4MOD bit should be set ‘0’ (Default). When VDDO2 = 3.3V, CLK4MOD bit should be set ‘1’. Power Supply2 for Output Buffer CLK3 and CLK4 Connect to Ground for Output Buffer Note: (1) AI : Analog Input pin, AO : Analog Output pin, DI : Digital Input pin, DO : Digital Output pin DIO : Digital Input and Output pin, PWR : Power Supply pin (2) The Heat sink pad on the bottom surface of the package is recommended to solder to the PCB. MS1441-E-02 2013/09 -5- [AK8140A] 6. Absolute Maximum Ratings Over operating free-air temperature range unless otherwise noted (1) Items Symbol Ratings Unit Supply voltage VDD -0.3 to 4.6 V Input voltage Vin VSS-0.3 to VDD+0.3 V Input current (any pins except supplies) IIN ±10 mA Storage temperature Tstg -55 to 130 C Note (1) Stress beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated under “Recommended Operating Conditions” is not implied. Exposure to absolute-maximum-rating conditions for extended periods may affect device reliability. Electrical parameters are guaranteed only over the recommended operating temperature range. This device is manufactured on a CMOS process, therefore, generically susceptible to damage by excessive static voltage. Failure to observe proper handling and installation procedures can cause damage. AKM recommends that this device is handled with appropriate precautions. ESD Sensitive Device 7. Recommended Operating Conditions Parameter Operating temperature Symbol Ta VDD VDDO1 Supply voltage (1) VDDO2 Output Load Capacitance (2) Cplclk Conditions Min -40 3.0 Typ 3.3 Max 85 3.6 Pin: VDDO1 Power Supply for CLK1 and CLK2 Output Buffers 1.7 3.0 1.8 3.3 1.9 3.6 Pin: VDDO2 Power Supply for CLK3 and CLK4 Output Buffers 1.7 2.3 3.0 1.8 2.5 3.3 1.9 2.7 3.6 Pin: VDD1-4 Pin: CLK1-3 Output Frequency : up to 50MHz 25 Pin: CLK1-3 Output Frequency : up to 120MHz 15 Pin: CLK1-3 Output Frequency : up to 160MHz 10 Pin: CLK4p/n LVCMOS output Output Frequency : up to 160MHz 10 Unit C V pF Note: (1) Power to VDD1-4 requires to be supplied from a single source. A decoupling capacitor for power supply line should be installed close to each VDD pins. (2) Output load for CLK4p/n pins at LVDS output is descripted on page 11 for details. MS1441-E-02 2013/09 -6- [AK8140A] 8. Electrical Characteristics DC Characteristics All specifications at VDD1-4: over 3.0 to 3.6V, VDDO1-2: over 1.7 to 3.6V, Ta: -40 to +85C, unless otherwise noted Parameter Symbol Conditions Min Typ High Level Input Voltage VIH Pin: S0, PD_N, S1/SCL, S2/SDL, XIN Low Level Input Voltage VIL Pin: S0, PD_N, S1/SCL, S2/SDL, XIN Input Current 1 IL1 Pin: S0, PD_N VDD or VSS force Input Current 2 IL2 Input Current 3 Low Level Output Voltage Max Unit 0.7*VDD V 0.3*VDD V -1 +1 A Pin: S1/SCL VDD or VSS force -1 +20 A IL3 Pin: S2/SDA VDD or VSS force -20 +1 A VOL Pin: SDA IOL = +3mA, Open Drain 0.2*VDD V IDD1 All outputs ‘ON’, No load Input / Output frequency XIN: 100MHz CLK1-3: 160MHz CLK4p/n LVDS: 230MHz 58 70 mA Current Consumption 2 IDD2 All outputs ‘OFF’ Input / Output frequency XIN: 100MHz CLK1-3: ‘L’/ ‘H’/‘Hi-Z’ output CLK4p/n : ‘L’/ ‘H’/‘Hi-Z’ output 15 20 mA Power Down Mode Current Consumption SIDD No load, Power Down Mode PD_N = ‘L’ 0.5 50 A Current Consumption 1 MS1441-E-02 2013/09 -7- [AK8140A] AC Characteristics All specifications at VDD1-4: over 3.0 to 3.6V, VDDO1-2: over 1.7 to 3.6V, Ta: -40 to +85C, unless otherwise noted Parameter Symbol Conditions Min Typ Max Unit Crystal Clock Frequency Fosc Pin: XIN, XOUT 16 60 MHz External Clock Input Frequency Fin Pin: XIN When External Input is selected. OSC_DIS = ‘1’ 4 100 MHz Findc Pin: XIN When External Input is selected Measurement point: 0.5VDD 30 70 % Faccuracy Pin: CLK1-3, CLK4p/n -30 +30 ppm Tlock Pin: CLK1-3, CLK4p/n External Clock Input Duty Cycle Output Clock Frequency Accuracy (1)(2) Output Lock Time (3) 50 1 ms Note: (1) Specification of Frequency Accuracy is measured by connecting the standard crystal unit for DSX321G of DAISHINKU Corp. on page 49. (2) This Output Clock Frequency Accuracy does not include accuracy of crystal unit. Total output clock frequency accuracy could be up to “Output Clock Frequency Accuracy” + “Crystal unit accuracy”. (3) Settling time that output frequency reaches within the accuracy 0.1 % of the target frequency after registers “20h to 2Bh” or “30h to 38h” are set through SCA/SCL pins. MS1441-E-02 2013/09 -8- [AK8140A] PLL Characteristics All specifications at VDD1-4: over 3.0 to 3.6V, VDDO1-2: over 1.7 to 3.6V, Ta: -40 to +85C, unless otherwise noted Parameter Symbol Conditions Min Typ Max Unit 230 460 MHz 6.75 13.5 MHz PLL1 Characteristics VCO frequency range of PLL1 VCO Frequency 1 fVCO1 Phase Comparison Frequency 1 fcmp1 Period Jitter 1 (1)(2)(3)(6) Jit_period Jitter of Output Clock from PLL1, 1σ 8.3 ps Cycle to Cycle Jitter 1 (1)(2)(4)(6) Jit_c2c Jitter of Output Clock from PLL1, 1σ 12.8 ps Long Term Jitter 1 (1)(2)(5)(6) Jit_long Jitter of Output Clock from PLL1, 1000 cycle delay, 1σ 40 ps VCO Frequency 2 fVCO2 VCO frequency range of PLL2 Phase Comparison Frequency 2 fcmp2 Period Jitter 2 (1)(2)(3)(6) Jit_period Cycle to Cycle Jitter 2 (1)(2)(4)(6) Jit_c2c PLL2 Characteristics 80 230 MHz 2.5 14.375 MHz Jitter of Output Clock from PLL2, 1σ 8.3 ps Jitter of Output Clock from PLL2, 1σ 12.8 ps Long Term Jitter of Output Clock from Jit_long 41.7 ps Jitter 2 (1)(2)(5)(6) PLL2, 1000 cycle delay, 1σ Note: (1) The load conditions are described on page 6. (2) CLK1 or CLK2 is enabled or CLK1 and CLK2 output the same frequency. Similarly, CLK3 or CLK4p/n is enabled or CLK3 and CLK4p/n output the same frequency. (3) Jitter depends on configuration. Jitter data is for input frequency = 48MHz, output frequency = 27MHz/48MHz/50MHz. (4) Jitter depends on configuration. Jitter data is for input frequency = 25MHz/30MHz/50MHz, output frequency = 27MHz/50MHz. (5) Jitter depends on configuration. Jitter data is for input frequency = 27MHz, output frequency = 25M/148.5MHz. (6) 10,000 sampling or more MS1441-E-02 2013/09 -9- [AK8140A] LVCMOS Characteristics All specifications at VDD1-4: over 3.0 to 3.6V, VDDO1-2: over 1.7 to 3.6V, Ta: -40 to +85C, unless otherwise noted Parameter Symbol Output Frequency fout High Level Output Voltage Low Level Output Voltage Output Clock Rise Time (1)(2)(3) Output Clock Fall Time (1)(2)(3) Output Clock Duty Cycle (1) VOH VOL T_rise T_fall T_outdc Conditions Min Typ Pin: CLK1-3, CLK4p/n Pin: CLK1-3, CLK4p/n IOH = -4mA Pin: CLK1-3, CLK4p/n IOH = +4mA Max Unit 160 MHz 0.8VDDO1-2 V 0.2VDDO1-2 V Pin: CLK1-3 Load Cplclk = 10pF 0.2VDDO1-2 → 0.8VDDO1-2 0.7 ns Pin: CLK1-3 Load Cplclk = 25pF 0.2VDDO1-2 → 0.8VDDO1-2 1.2 ns Pin: CLK4p/n, VDDO2 = 3.3V Load Cplclk = 10pF 0.2VDDO2 → 0.8VDDO2 0.3 ns Pin: CLK1-3 Load Cplclk = 10pF 0.8VDDO1-2 → 0.2VDDO1-2 0.7 ns Pin: CLK1-3 Load Cplclk = 25pF 0.8VDDO1-2 → 0.2VDDO1-2 1.2 ns Pin: CLK4p/n, VDDO2 = 3.3V Load Cplclk = 10pF 0.8VDDO2 → 0.2VDDO2 0.3 ns Pin: CLK1-3, CLK4p/n (4) Pin: CLK1-3, CLK4p/n (5) Pin: CLK1-3, CLK4p/n (6) 45 45 20 50 50 55 55 80 % % % Note: (1) The load conditions are described on page 6 (2) When VDDO1-2 = 1.8V: CLKnMOD (n = 1-3) = “0”, when VDDO1-2 = 3.3V: CLKnMOD (n = 1-3) = “1”. (3) When VDDO1-2 = 3.3V: CLK4MOD = “1”. (4) When ODIVn divides the PLL1/2 Clock. (5) When ODIVn divides the Input Bypass Clock by even dividing value. (6) When ODIVn divides the Input Bypass Clock by odd dividing value. MS1441-E-02 2013/09 - 10 - [AK8140A] CLK4p/n LVDS Characteristics All specifications at VDD1-4: over 3.0 to 3.6V, VDDO1-2: over 1.7 to 3.6V, Ta: -40 to +85C, unless otherwise noted Parameter Symbol Output Frequency fout Single Output Voltage (1) VOD Offset Voltage (1) VOS Conditions Min Typ Max Unit 230 MHz 250 350 450 mVpp VDDO2 = 2.3 to 3.6V, CLK4MOD = “1” 1.125 1.240 1.375 V VDDO2 = 1.7 to 1.9V, CLK4MOD = “0” 0.685 0.800 0.935 V Output Clock Rise Time (1) T_rise 0.2VDDO1-2 → 0.8VDDO1-2 0.2 ns Output Clock Fall Time (1) T_fall 0.8VDDO1-2 → 0.2VDDO1-2 0.2 ns (2) Output Clock Duty Cycle (1) T_outdc 45 45 20 (3) (4) 50 50 55 55 80 % % % Note: (1) LVDS clock measured at the circuit shown in Figure 3. (2) When ODIV4 divides the PLL1/2 Clock. (3) When ODIV4 divides the Input Bypass Clock by even dividing value. (4) When ODIV4 divides the Input Bypass Clock by odd dividing value. CLK4p Z0=100 Differential CLK4n OUTP 100 OUTN AK8140A Figure 3. CLK4p/n LVDS Clock measurement circuit MS1441-E-02 2013/09 - 11 - [AK8140A] Serial Interface (SDA/SCL pin) AC Characteristics (1) All specifications at VDD1-4: over 3.0 to 3.6V, VDDO1-2: over 1.7 to 3.6V, Ta: -40 to +85C, unless otherwise noted Parameter Symbol Conditions Min Typ Max 400 Unit SCL Clock Frequency fSCL kHz SCL Clock Low Period tLOW 1.3 s SCL Clock High Period tHIGH 0.6 s Pulse Width of Spikes which must be suppressed tI SCL Low to SDA Data Out tAA 0.3 s Bus free time between a STOP and START Condition tBUF 1.3 s Start Condition Hold Time tHD.SAT 0.6 s Start Condition Setup Time (for a Repeated Start Condition) tSU.SAT 0.6 s Data in Hold Time tHD.DAT 0 s Data in Setup Time tSU.DAT 100 ns 50 ns SDA and SCL Rise Time tR 0.3 s SDA and SCL Fall Time tF 0.3 s Stop Condition Setup Time Input Capacitance at SDA/SCL tSU.STO s 0.6 Cb 200 pF Note: (1) The AK8140A operates as a slave device of the 2-wire serial SDA/SCL bus. This serial interface can be used the I2C interface timing. It operates in the standard-mode transfer (up to 100kbit/s) and the fast-mode transfer (up to 400kbit/s). It doesn’t support the Clock Stretching Mode and the High Speed Mode. MS1441-E-02 2013/09 - 12 - [AK8140A] tF tR SCL (IN) tSU.STA tLOW tHIGH tHD.DAT tHD.STA tSU.STO tSU.DAT SDA (IN) tAA tDH tBUF SDA (OUT) Figure 4. 2-wire Serial Interface AC Timing MS1441-E-02 2013/09 - 13 - [AK8140A] 9. Functional Descriptions PLL1 setting procedure fin1 MDIV1 fcmp1 PFD/CP/LPF/VCO1 fVCO1 NDIV1 1/2 ODIVn foutn Divider (INT+FRAC) Figure 5. PLL1 Block Diagram PLL1 is Fractional-N PLL. Output frequency from PLL1 is determined by PLL1 parameter: Refclk Dividing Value (MDIV1), Fractional-N1 Dividing Value (INT + FRAC), and Output Dividing Value (ODIVn(n = 1-4)). These parameters should be set as described below. Step1. Deciding VCO1 Target Frequency. VCO1 Frequency (fVCO1) is decided from CLKn Output frequency (foutn) and Output Dividing Value (ODIVn, set by address: 0Dh ~ 13h). Set fVCO1 frequency between 230MHz to 460MHz. 230MHz ≤ fVCO1 ≤ 460MHz (fVCO1 = fount × 2 × ODIVn) Step2. Deciding Phase Comparison Frequency. Set MDIV1 Divider (MDIV, set by address: 26h or 2Bh) as fcmp1 becomes the greatest common measure of fin1 and fvco1 between 6.75MHz to 13.5MHz. 6.75MHz ≤ fcmp1 ≤ 13.5MHz (fcmp1 = fin1 / MDIV1) Step3. Deciding Feedback Dividing Value. This value is decided by VCO1 frequency (fVCO1) and Phase Comparison Frequency (fcmp1). 7 bits integral part and 18 bits fractional part (signed 2’s complement) is necessary to be set. NDIV1 N fVCO1 N INT1 FRAC1 fcomp1 218 Integral part (NINT1) : NINT1 = INT[6:0] = round [ fVCO1 / fcmp1 ] Fractional part (NFRAC1 / 218) : NFRAC1 = FRAC[17:0] = round [ ( ( fVCO1 / fcmp1 ) – NINT1 ) × 218 ] MS1441-E-02 2013/09 - 14 - [AK8140A] Example1) input frequency = 27MHz, output frequency = 123.75MHz 1. fVCO1 VCO1 Frequency: 247.5MHz ODIV = 1 fVCO1 = 123.75MHz × 2 × 1 = 247.5MHz 2. fcmp1 Phase Comparison Frequency1: 9MHz MDIV = 3 fcmp1 = 27MHz / 3 = 9MHz 3. NDIV1 Feedback Dividing Value: NDIV1 = fVCO1 / fcmp1 = 247.5 / 9 = 27.5 NINT1 = round [ 247.5 / 9 ] = round [ 27.5 ] = 28 NINT1 = 28, NFRAC1 / 218 = -0.5 FRAC[17:0] = round [ ( 27.5 – 28 ) × 218 ] = -131072 Output Frequency Error: 0ppm Example2) input frequency = 16MHz, output frequency = 24.576MHz 1. fVCO1 VCO1 Frequency: 442.368MHz ODIV = 9 fVCO1 = 24.576MHz × 2 × 9 = 442.368MHz 2. fcmp1 Phase Comparison Frequency1: 8MHz MDIV = 2 fcmp1 = 16MHz / 2 = 8MHz 3. NDIV1 Feedback Dividing Value: NDIV1 = fVCO1 / fcmp1 = 442.368 / 8 = 55.296 NINT1 = round [ 442.368 / 8 ] = round [ 55.296 ] = 55 NINT1 = 55, NFRAC1 / 218 = 0.296 FRAC[17:0] = round [ ( 55.296 – 55 ) × 218 ] = 77595 Output Frequency Error: 0.026ppm (0.64Hz) MS1441-E-02 2013/09 - 15 - [AK8140A] PLL2 setting procedure fin2 MDIV2 fcmp2 PFD/CP/LPF/VCO2 fVCO2 ODIVn foutn NDIV2 (INT+FRAC) Figure 6. PLL2 Block Diagram PLL2 is Fractional-N PLL. Output frequency from PLL2 is determined by PLL2 parameter: Refclk Dividing Value (MDIV2), Fractional-N2 Dividing Value (INT + FRAC), and Output Dividing Value (ODIVn(n = 1-4)). These parameters should be set as described below. Step1. Deciding VCO2 Target Frequency. VCO2 Frequency (fVCO2) is decided from CLKn Output frequency (foutn) and Output Dividing Value (ODIVn, set by address: 0Dh ~ 13h). Set fVCO2 frequency between 80MHz to 230MHz. 80MHz ≤ fVCO2 ≤ 230MHz (fVCO2 = fount × ODIVn) Step2. Deciding Phase Comparison Frequency. Set MDIV2 Divider (MDIV[2:0], set by address: 31h or 35h) as fcmp2 becomes the greatest common measure of fin2 and fvco2 between 2.5MHz to 14.735MHz. 2.5MHz ≤ fcmp2 ≤ 14.735MHz (fcmp2 = fin2 / MDIV2) Step3. Deciding Feedback Dividing Value. This value is decided by VCO2 frequency (fVCO2) and Phase Comparison Frequency (fcmp2). 6 bits integral part (NINT[5:0], set by address: 32h or 36h) and 9 bits fractional part (numerator: NUME0[8:0] and denominator: NDENO0[8:0], set by address: 32h ~ 34h or 36h ~ 38h) is necessary to be set. NDIV2 N fVCO2 N INT2 N FRAC2 N INT2 NUME fcomp2 N DENO Integral part = NINT2 = NINT[5:0] = round [ fVCO2 / fcmp2 ] Fractional part = NFRAC2 = NNUME / NDENO is calculated as below. First calculate optimum NDENO = NDENO[8:0]OPTIMUM. NDENO[8:0]OPTIMUM can be obtained by substituting from 1 to 511 into the NDENO[8:0] in the following formula. MS1441-E-02 2013/09 - 16 - [AK8140A] When min [abs [ ( round [ NFRAC2 × NDENO[8:0] ] ) / NDENO[8:0] ) – NFRAC2 ] ] NDENO[8:0]OPTIMUM = NDENO[8:0] NUME[8:0]OPTIMUM can be obtained by substituting NDENO[8:0]OPTIMUM in the following formula. NUME[8:0]OPTIMUM = round [ NFRAC2 × NDENO[8:0]OPTIMUM ] Example1) input frequency = 27MHz, output frequency = 54MHz 1. fVCO2 VCO2 Frequency: 216MHz ODIV = 4 fVCO2 = 54MHz × 4 = 216MHz 2. fcmp2 Phase Comparison Frequency2: 27MHz MDIV = 2 fcmp2 = 27MHz / 2 = 13.5MHz 3. NDIV2 Feedback Dividing Value: NDIV2 = fVCO2 / fcmp2 = 216 / 13.5 = 16 NINT2 = round [ 216 / 13.5 ] = round [ 16 ] = 16 NINT2 = 16, NFRAC2 = 0 NFRAC2 = NNUME / NDENO = 0 Output Frequency Error: 0ppm Example2) input frequency = 27MHz, output frequency = 24.576MHz 1. fVCO2 VCO2 Frequency: 221.184MHz ODIV = 9 fVCO2 = 24.576MHz × 9 = 221.184MHz 2. fcmp2 Phase Comparison Frequency2: 27MHz MDIV = 2 fcmp2 = 27MHz / 2 = 13.5MHz 3. NDIV2 Feedback Dividing Value: NDIV2 = fVCO2 / fcmp2 = 221.184 / 13.5 = 16.384 NINT2 = round [ 221.184 / 13.5 ] = round [ 16.384 ] = 16 NINT2 = 16, NFRAC2 = 0.384 When min [abs [ ( round [ 0.384 × 125 ] ) / 125 ) – 0.384 ] ] NDENOOPTIMUM = 125 NUMEOPTIMUM = round [ 0.384 × 125 ] = 48 NFRAC = NNUME / NDENO = 48 / 125 = 0.384 Output Frequency Error: 0ppm MS1441-E-02 2013/09 - 17 - [AK8140A] Programmable control setting AK8140A has programmable control settings which can be controlled by “Serial programming interface mode (refer to page. 26)” and “Programmable control pin mode (refer to page. 29)”. In the default setting, programmable control settings can be controlled by “Serial programming interface mode”. “Programmable control pin mode” is selected when SPICON bit = SPICON_SET bit = ‘1’. Eight user-definable configurations are shown in following table by setting registers for address : 04h ~ 0Bh, 20h, 30h. These settings can be controlled by S0, S1, and S2 which are register setting or external control pins. They can be programmed to any of the following functions: - PLL1/2 frequency: select from two variation of fVCO frequency set by the applicable register. - CLK1-4 output state: select from four states: enable/Hi-z/disable to L/ disable to H. Table 1. Programmable Control Setting by S[2:0] Programmable Control S2 S1 S0 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 Address 0 1 0 1 0 1 0 1 PLL1 frequency PLL2 frequency FS1_0 FS1_1 FS1_2 FS1_3 FS1_4 FS1_5 FS1_6 FS1_7 20h FS2_0 FS2_1 FS2_2 FS2_3 FS2_4 FS2_5 FS2_6 FS2_7 30h Output State CLK1 CLK2 CLK3 CLK4 CLK1_0[1:0] CLK1_1[1:0] CLK1_2[1:0] CLK1_3[1:0] CLK1_4[1:0] CLK1_5[1:0] CLK1_6[1:0] CLK1_7[1:0] 04h, 05h CLK2_0[1:0] CLK2_1[1:0] CLK2_2[1:0] CLK2_3[1:0] CLK2_4[1:0] CLK2_5[1:0] CLK2_6[1:0] CLK2_7[1:0] 06h, 07h CLK3_0[1:0] CLK3_1[1:0] CLK3_2[1:0] CLK3_3[1:0] CLK3_4[1:0] CLK3_5[1:0] CLK3_6[1:0] CLK3_7[1:0] 08h, 09h CLK4_0[1:0] CLK4_1[1:0] CLK4_2[1:0] CLK4_3[1:0] CLK4_4[1:0] CLK4_5[1:0] CLK4_6[1:0] CLK4_7[1:0] 0Ah, 0Bh The output frequency of PLL1 is chosen from two setups, PLL1_0 or PLL1_1. Table 2. PLL1 Output Frequency Selection (Address: 20h) FS1_x PLL1 Frequency 0 PLL1_0 Predefined by address: 21h, 22h ~ 26h (Default) 1 PLL1_1 Predefined by address: 21h, 27h ~ 2Bh (x=0-7) MS1441-E-02 2013/09 - 18 - [AK8140A] The output frequency of PLL2 is chosen from two setups, PLL2_0 or PLL2_1. Table 3. PLL2 Output Frequency Selection (Address: 30h) FS2_x PLL2 Frequency 0 PLL2_0 Predefined by address: 31h ~ 34h (Default) 1 PLL2_1 Predefined by address: 35h ~ 38h (x = 0-7) CLKn_x [1:0] bit set output state(CLKn_x) defined in the Table 1. on page 18 can be set up. Table 4. CLK1-4 Output State Definition (Address: 04h ~ 0Bh) CLKn_x [1:0] 00 01 10 11 CLKn Output State CLK Enabled (Default) Disable to Low Disable to High Disable to Hi-z (n = 1-4, x = 0-7) MS1441-E-02 2013/09 - 19 - [AK8140A] Power up sequence Step1 : Supplying proper voltage to the power pins with PD_N pin = ‘L’. *Note: VDD1-4 must be supplied simultaneously. The assumption power start time to reach 90 % of VDD is within 20 ms. Step2 : Set the PD_N pin to ‘H’ 1 μs after the point that the power supply reaches 90% of VDD. Step3 : SCL / SDA are acceptable min 2ms later. 90% of VDD1-4 VDD1-4 Max 20ms PD_N Min 1s Min 2ms SDA / SCL input acceptable SDA / SCL CLK1-3 CLK4p CLK4n Figure 7. Power up sequence MS1441-E-02 2013/09 - 20 - [AK8140A] Serial interface Read/Write performance of serial interface is explained as below. The device address of AK8140A is Device Address#1:1100, Device Address#2:1 A1 0. A1 is set by the register ‘SLV_ADD1’ bit (Address: 03h). 1 1 0 0 1 Device Adress#1 A1 R:1 W:0 0 Device Adress#2 Figure 8. The Device Address of AK8140A Write operation Write operation is described below. Data must be sent after sending 8 bits address and receiving ACK. It is possible to write next address sequentially by sending next data instead of stop condition. The address which is written after “13h/2Bh/38h” becomes “00h/20h/30h”. S T A R T SDA Slave Address Register Address(n) Data(n) S T Data(n+x) O P Data(n+1) S P A1 W A C K A C K A C K A C K Figure 9. Write operation Current address read Current address read operation is described below. The data that is read by this operation is obtained as “last accessed address + 1”. Therefore, it is consequent to return “13h/2Bh/38h” after accessing the address “00h/20h/30h”. S T A R T SDA Slave Address Data(n) Data(n+1) S Data(n+x) T O P Data(n+2) S P A1 R A C K A C K A C K A C K Figure 10. Current address read MS1441-E-02 2013/09 - 21 - [AK8140A] Random read Random read operation is described below. It is necessary to operate “dummy write” before sending read command. Dummy write is to send the address to read. It is possible to read next address sequentially by sending ACK instead of stop condition. S T A R T SDA Slave Address S T A R T Word Address(n) S Slave Address Data(n) S Data(n+x) T O P Data(n+1) S A1 W A C K A C K P A1 R A C K A C K A C K Figure 11. Random read Change data Change data operation is described below. It is available when SCL is Low. SCL SDA DATA STABLE DATA CHANGE Figure 12. Change data Start / Stop timing Start / Stop timing is described below. The sequence is started when SDA goes from high to low during SCL is high. The sequence is stopped when SDA goes from low to high during SCL is high. SCL SDA START STOP Figure 13. Start / Stop timing MS1441-E-02 2013/09 - 22 - [AK8140A] Register Configuration AK8140A has Register can be programmed via the serial SDA/SCL interface. The following table and explanations describe the programmable functions of AK8140A. ・Default register state is all ‘0’. The default setting appears after power is supplied or after power-down/up sequence until it is reprogrammed to a different setting. ・All data transferred with the MSB first. ・When a Certain Setting is set by three Address, write the data to all Address. 22h ~ 24h, 27h ~ 29h, 32h ~ 34h, 36h ~ 38h FRACn[17:0] settings are updated after writing register 24h / 29h. Setting procedure should be (1)22h / 27h , (2)23h / 28h, and then (3)24h / 29h. NDIV2 Dividing Value settings are updated after writing register 34h / 38h. Setting procedure should be (1)32h / 36h , (2)33h / 37h, and then (3)34h / 38h. ・Write ‘0’ to Reserved bits. ・The AK8140A prohibits to write ‘1’ to address 16h ~ 1Fh, 2Ch ~ 2Fh and 39h ~ FFh. Table 5. AK8140A Register Configuration Address Register Remarks Device Setting · Device Setting (S0/S1/S2) for Serial Programming mode · Device Input clock (Crystal or Ext-in) · Slave Address A1 00h to 13h Generic Configuration Register CLK1 to 4 Setting · CLK1 to 4 Output State (CLK enabled / Disabled to L / Disabled to H / Hi-Z) · MUX1 to 4 (PLL1 fVCO1/ PLL2 fVCO2 / Input Bypass) · ODIV1 to 4 Parameter · CLK1 to 4 Output Buffer Drivability · CLK4 Output Interface LVDS or CMOS 14h to 15h Reserved Bits 20h to 2Bh PLL1 Configuration Register PLL1 Setting (Input CLK for PLL1, MDIV1, NDIV1, fVCO1 range) p. 36 to p. 42 30h to 38h PLL2 Configuration Register PLL2 Setting (MDIV2, NDIV2, fVCO2 range) p. 43 to p. 47 Reserved Bits MS1441-E-02 Page p. 24 to p. 34 p. 35 2013/09 - 23 - [AK8140A] Generic Configuration Register (Address: 00h ~ 13h) Data Addr D7 D6 D5 D4 D3 D2 D1 D0 Remarks Device Control Setting for SDA/SCL Mode Reserved Reserved Reserved Reserved Reserved S[2] S[1] S[0] 0 0 0 0 0 0 0 0 Reserved 0 Reserved 0 Reserved 0 Reserved 0 Reserved 0 Reserved 0 Reserved 0 Reserved 0 RID[1] RID[0] OSC_DIS Reserved R/W R/W R/W R/W 0 0 0 0 0 0 0 0 Reserved Reserved PWDN 0 CLK1_0 [1] 0 0 CLK1_0 [0] 0 0 CLK1_1 [1] 0 SLV _ADD1 0 CLK1_1 [0] 0 CLK1_4 [1] 0 CLK2_0 [1] 0 CLK2_4 [1] 0 CLK3_0 [1] 0 CLK3_4 [1] 0 CLK1_4 [0] 0 CLK2_0 [0] 0 CLK2_4 [0] 0 CLK3_0 [0] 0 CLK3_4 [0] 0 CLK1_5 [1] 0 CLK2_1 [1] 0 CLK2_5 [1] 0 CLK3_1 [1] 0 CLK3_5 [1] 0 CLK4_0 [1] 0 CLK4_4 [1] 0 MUX1[1] 0 CLK4_0 [0] 0 CLK4_4 [0] 0 MUX1[0] 0 CLK4_1 [1] 0 CLK4_5 [1] 0 MUX2[1] 0 00h 01h 02h 03h 04h 05h 06h 07h 08h 09h 0Ah 0Bh 0Ch 0 CLK1_2 [1] 0 CLK4 _CMOS 0 CLK1_2 [0] 0 CLK1_5 [0] 0 CLK2_1 [0] 0 CLK2_5 [0] 0 CLK3_1 [0] 0 CLK3_5 [0] 0 CLK1_6 [1] 0 CLK2_2 [1] 0 CLK2_6 [1] 0 CLK3_2 [1] 0 CLK3_6 [1] 0 CLK4_1 [0] 0 CLK4_5 [0] 0 MUX2[0] 0 CLK4_2 [1] 0 CLK4_6 [1] 0 MUX3[1] 0 Reserved MS1441-E-02 0 CLK1_3 [1] 0 SPICON _SET 0 CLK1_3 [0] 0 CLK1_6 [0] 0 CLK2_2 [0] 0 CLK2_6 [0] 0 CLK3_2 [0] 0 CLK3_6 [0] 0 CLK1_7 [1] 0 CLK2_3 [1] 0 CLK2_7 [1] 0 CLK3_3 [1] 0 CLK3_7 [1] 0 CLK1_7 [0] 0 CLK2_3 [0] 0 CLK2_7 [0] 0 CLK3_3 [0] 0 CLK3_7 [0] 0 CLK4_2 [0] 0 CLK4_6 [0] 0 MUX3[0] 0 CLK4_3 [1] 0 CLK4_7 [1] 0 MUX4[1] 0 CLK4_3 [0] 0 CLK4_7 [0] 0 MUX4[0] 0 SPICON Reserved Device Overall Setting CLK1 Output State Setting CLK2 Output State Setting CLK3 Output State Setting CLK4 Output State Setting MUX1-4 Selection 2013/09 - 24 - [AK8140A] Addr 0Dh 0Eh 0Fh 10h 11h 12h 13h Data D7 D6 D5 D4 Reserved Reserved Reserved Reserved 0 ODIV_1 [7] 0 0 ODIV_1 [6] 0 0 ODIV_1 [5] 0 0 ODIV_1 [4] 0 Reserved Reserved 0 0 CLK3 MOD 0 CLK2 MOD 0 ODIV_2 [7] 0 ODIV_3 [7] 0 ODIV_2 [6] 0 ODIV_3 [6] 0 ODIV_2 [5] 0 ODIV_3 [5] 0 ODIV_2 [4] 0 ODIV_3 [4] 0 Reserved Reserved Reserved Reserved 0 ODIV_4 [7] 0 0 ODIV_4 [6] 0 0 ODIV_4 [5] 0 0 ODIV_4 [4] 0 Remarks D3 D2 D1 D0 CLK1 MOD 0 ODIV_1 [3] 0 DIV2_ BYPASS1 0 ODIV_1 [2] 0 ODIV_1 [9] 0 ODIV_1 [1] 0 ODIV_1 [8] 0 ODIV_1 [0] 0 Output Buffer1 Drivability DIV2_ DIV2_ BYPASS3 BYPASS2 0 0 ODIV_2 [9] 0 ODIV_2 [8] 0 Output Buffer2/3 Drivability ODIV_2 [1] 0 ODIV_3 [1] 0 ODIV_4 [9] 0 ODIV_4 [1] 0 ODIV_1 [0] 0 ODIV_3 [0] 0 ODIV_4 [8] 0 ODIV_4 [0] 0 ODIV_2 [3] 0 ODIV_3 [3] 0 CLK4 MOD 0 ODIV_4 [3] 0 MS1441-E-02 ODIV_2 [2] 0 ODIV_3 [2] 0 DIV2_ BYPASS4 0 ODIV_4 [2] 0 ODIV1 Setting ODIV2 Setting ODIV3 Setting Output Buffer4 Drivability ODIV4 Setting 2013/09 - 25 - [AK8140A] Generic Configuration Register Address: 00h Device Control Setting for Serial Programming Mode* *Valid only when Serial Programming Mode (Address: 03h SPICON = “0”) Data Address D7 D6 D5 D4 D3 D2 D1 00h Reserved Reserved Reserved Reserved Reserved S[2] S[1] D0 S[0] S[2:0]: Device Control Setting for Serial Programming Mode When SPICON bit is set to “0”, pin23 / 24 has SDA / SCL function and S[2:0] bits select the Device Control Setting predefined as the Table 1. on page 18. Table 6. S[2:0]: Device Control Setting for Serial Programming Mode Address: Device Control Setting (see on page 18) 000 001 010 011 100 101 110 111 [S2:S0]=000 (Default) [S2:S0]=001 [S2:S0]=010 [S2:S0]=011 [S2:S0]=100 [S2:S0]=101 [S2:S0]=110 [S2:S0]=111 01h Reserved Data Address 01h S[2:0] D7 D6 D5 D4 D3 D2 D1 D0 Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved MS1441-E-02 2013/09 - 26 - [AK8140A] Address: 02h Address 02h Data D7 D6 RID[1]* RID[0]* RID[1:0]: Device Identification D5 D4 OSC_DIS Reserved D3 D2 D1 D0 R/W R/W R/W R/W *read only Table 7. RID[1:0]: Device Identification RID[1:0] Device Identification 00 01 10 11 AK8140A (Default) OSC_DIS: Crystal Oscillator Circuit Enable/Disable Setting (MUX0) Set the register followed by clock source, as explained in the following table. Table 8. OSC_DIS: Crystal Oscillator Circuit Enable/Disable Setting OSC_DIS Crystal Oscillator Circuit State 0 1 Enable (Crystal Connection) (Default) Disable (Ext-in : External Clock Signal Input) R/W: User arbitrarily programmable bits (D3 ~ D0) User can freely program these bits if necessary. MS1441-E-02 2013/09 - 27 - [AK8140A] Address: 03h Address 03h Data D7 D6 D5 D4 D3 D2 D1 D0 Reserved Reserved PWDN SLV _ADD1 Reserved CLK4 _CMOS SPICON SPICON _SET PWDN: Device Power Down control When set PWDN bit to “1”, only PLL1/2, ODIVn and Output Buffers is powered down. Register settings are unchanged. CLKn output state is followed by CLKn output state selection (Address: 04h ~ 0Bh, CLKn_x[1:0]) when the device is powered down by this bit. *1 Table 9. PWDN: Device Power Down control PWDN Device Setting 0 Device Active (Default) 1 Device Powered down*1 *1 It becomes CLKn = ‘L’, when CLKn output state is set to CLKn_x[1:0] = “00” as “CLK enabled”. SLV_ADD1: Slave Address Bits A1 Selection SLV_ADD1 sets the A1 of the Slave Receiver Address. The default setting SLV_ADD1= ‘0’ appears after power is supplied or after power-down/up sequence until it is reprogrammed to a different setting. See page 21 for more information about Slave Address setting. Table 10. SLV_ADD1: Slave Address Bits A1 Selection SLV_ADD1 Device Setting 0 1 A1 of Slave Address : 0 (Default) A1 of Slave Address : 1 CLK4_CMOS: CLK4 Output Interface Selection LVDS/CMOS CLK4_CMOS bit sets CLK4 output Interface, LVDS or LVCMOS. Table 11. CLK4_CMOS: CLK4 Output Interface Selection LVDS/CMOS CLK4_CMOS CLK4 Output Setting 0 1 LVDS output (Default) LVCMOS output MS1441-E-02 2013/09 - 28 - [AK8140A] SPICON: Operation mode selection for pin 23/24 SPICON bit selects the operational mode of a dual functional pin 23/24. When SPICON = “1”, pin 23/24 become S1/S2 pin for “Programmable Control pin”. The setup of SPICON = "1" becomes effective by writing ’1’ to “SPICON_SET” bit additionally, and impossible to use it as “Serial programming interface”. However, Once pin 23/24 play the role of S1/S2 pin, S1/S2 pin can be temporarily used as SDA/SCL pin for “Serial programming interface” to change the register setting by shorting VDDO1 to VSS. The user can predefine up to eight device control settings by setting registers for address: 04h ~ 0Bh, 20h, 30h. These settings then can be selected by the external control pins, S0, S1, and S2. Table 12. SPICON: Operation mode selection for pin 23/24 SPICON Pin 23/24 operation 0 Serial programming interface*1 (Default) Pin 23:SDA Pin 24:SCL 1 Programmable control pin*2 Pin 23:S2 Pin 24:S1 *1 Address:00h becomes effective. *2 S0/S1/S2 pin can control the Device Setting defined in the table on page 18. SPICON_SET: SPICON Validation “SPICON_SET” validates a setup of “SPICON” bit. A setup written in SPICON by writing ‘1’ in this bit becomes effective. When Set “SPICON_SET” = ‘1’, “SPICON_SET” bit should be written last. Table 13. SPICON_SET: SPICON Validation SPICON_SET SPICON Setting 0 - (Default) 1 SPICON bit is Effective *1 *1 “SPICON_SET” bit should be written last. Setup of “SPICON” bit is validated by the rising edge of a “SPICON_SET” bit. MS1441-E-02 2013/09 - 29 - [AK8140A] Address: 04h ~ 0Bh Address Data D7 D6 D5 D4 D3 D2 D1 D0 04h CLK1_0 [1] CLK1_0 [0] CLK1_1 [1] CLK1_1 [0] CLK1_2 [1] CLK1_2 [0] CLK1_3 [1] CLK1_3 [0] 05h CLK1_4 [1] CLK1_4 [0] CLK1_5 [1] CLK1_5 [0] CLK1_6 [1] CLK1_6 [0] CLK1_7 [1] CLK1_7 [0] 06h CLK2_0 [1] CLK2_0 [0] CLK2_1 [1] CLK2_1 [0] CLK2_2 [1] CLK2_2 [0] CLK2_3 [1] CLK2_3 [0] 07h CLK2_4 [1] CLK2_4 [0] CLK2_5 [1] CLK2_5 [0] CLK2_6 [1] CLK2_6 [0] CLK2_7 [1] CLK2_7 [0] 08h CLK3_0 [1] CLK3_0 [0] CLK3_1 [1] CLK3_1 [0] CLK3_2 [1] CLK3_2 [0] CLK3_3 [1] CLK3_3 [0] 09h CLK3_4 [1] CLK3_4 [0] CLK3_5 [1] CLK3_5 [0] CLK3_6 [1] CLK3_6 [0] CLK3_7 [1] CLK3_7 [0] 0Ah CLK4_0 [1] CLK4_0 [0] CLK4_1 [1] CLK4_1 [0] CLK4_2 [1] CLK4_2 [0] CLK4_3 [1] CLK4_3 [0] 0Bh CLK4_4 [1] CLK4_4 [0] CLK4_5 [1] CLK4_5 [0] CLK4_6 [1] CLK4_6 [0] CLK4_7 [1] CLK4_7 [0] CLKn_x[1:0] : CLK1-4 Output State Definition CLKn_x[1:0] bit set output state (CLKn_x) defined in the Table 1. on page 18 can be set up. ODIVn function is stopped, when CLKn state is set to Disable (CLKn_x[1:0] = “01” / “10” / “11”). When CLK4 state is set to Disable, CLK4p/4n each pin will be the following state. CLK4_x[1:0] = “01” / “10” / “11” : CLK4p / 4n = ‘L’ / ‘L’, ‘H’ / ‘H’, ‘Hi-Z’ / ‘Hi-Z’ Table 14. CLK1-4 Output State Definition CLKn_x[1:0] 00 01 10 11 CLKn Output State CLK Enabled (Default) Disable to Low Disable to High Disable to Hi-z (n = 1-4, x = 0-7) MS1441-E-02 2013/09 - 30 - [AK8140A] Address: 0Ch Data Address 0Ch D7 D6 D5 D4 D3 D2 D1 D0 MUX1[1] MUX1[0] MUX2[1] MUX2[0] MUX3[1] MUX3[0] MUX4[1] MUX4[0] MUXn[1:0]: CLK1-4 Output Clock Source Selection Select Output Clock Signal Source of CLK1-4. Table 15. CLK1-4 Output Clock Source Selection MUXn[1:0] CLKn Output Clock Source 00 01 10 11 “L” Output (Default) Input Bypass PLL1 output (fvco1) PLL2 output (fvco2) (n = 1-4) MS1441-E-02 2013/09 - 31 - [AK8140A] Address: Address 0Dh ~ 13h Data D7 D6 D5 D4 D3 D2 D1 D0 0Dh Reserved Reserved Reserved Reserved CLK1 MOD DIV2_ BYPASS1 ODIV_1 [9] ODIV_1 [8] 0Eh ODIV_1 [7] ODIV_1 [6] ODIV_1 [5] ODIV_1 [4] ODIV_1 [3] ODIV_1 [2] ODIV_1 [1] ODIV_1 [0] 0Fh Reserved Reserved CLK3 MOD CLK2 MOD ODIV_2 [9] ODIV_2 [8] 10h ODIV_2 [7] ODIV_2 [6] ODIV_2 [5] ODIV_2 [4] ODIV_2 [3] ODIV_2 [2] ODIV_2 [1] ODIV_2 [0] 11h ODIV_3 [7] ODIV_3 [6] ODIV_3 [5] ODIV_3 [4] ODIV_3 [3] ODIV_3 [2] ODIV_3 [1] ODIV_3 [0] 12h Reserved Reserved Reserved Reserved CLK4 MOD DIV2_ BYPASS4 ODIV_4 [9] ODIV_4 [8] 13h ODIV_4 [7] ODIV_4 [6] ODIV_4 [5] ODIV_4 [4] ODIV_4 [3] ODIV_4 [2] ODIV_4 [1] ODIV_4 [0] DIV2_ DIV2_ BYPASS3 BYPASS2 ODIVn Dividing Value Setting (ODIV_n / DIV2_BYPASSn) The Dividing value of ODIVn is decided by “Frequency setting procedure” on page 14. (1) The case ODIVn divides the clock signal of Input Bypass. (MUXn = “01”) Set ODIVn dividing value according to explanation below, when ODIVn divides a clock signal of Input Bypass. ODIVn configuration is as the following Figure. ODIVn is calculated number by “Frequency setting procedure” on page 14. ODIVn _2Divider CLKn ODIV_n DIV2_BYPASSn (0Dh ~ 13h) ODIV_n (0Dh ~ 13h) Figure 14. ODIVn configuration MS1441-E-02 2013/09 - 32 - [AK8140A] When set ODIVn dividing Value = 2 or odd number: → Bypass ODIVn_2 Divider, ODIV_n is the same number as ODIVn Example1: ODIVn = 3 Bypass ODIVn_2 Divider (DIV2_BYPASSn = ‘1’) ODIV_n = ODIVn = 3 When set ODIVn dividing Value even number beyond 4: → Using ODIVn_2 Divider, ODIV_n = ODIVn / 2 Example1: ODIVn = 10 Using ODIVn_2 Divider (DIV2_BYPASSn = “0”) ODIV_n = ODIVn / 2 = 5 (2) The case ODIVn divides clock signal of PLL1 or PLL2 (MUXn = “10” or “11”) Set ODIVn dividing value according to explanation below, when ODIVn divides clock signal of PLL1 or PLL2 When ODIVn divides fvco1 (MUXn = “10”): → ODIVn = ODIVn (calculated value) / 2 When ODIVn divides fvco2 (MUXn = “11”): → ODIVn = ODIVn (calculated value) ODIV_n[9:0]: ODIV_n dividing value Control (n = 1, 2, 4) Set ODIV_n (n = 1, 2, 4) dividing value of ODIV1, 2, 4 as blow. Table 16. ODIV_n dividing value Control (n = 1, 2, 4) ODIV_n[9:0] (n=1,2,4) Dividing Value 00 0000 0000 00 0000 0001 00 0000 0010 : 11 1111 1111 1 (Default) 2 3 : 1024 MS1441-E-02 2013/09 - 33 - [AK8140A] ODIV_3[7:0]: ODIV_3 dividing value Control Set ODIV_3 dividing value of ODIV3 as blow Table 17. ODIV_3 dividing value Control ODIV_3[7:0] Dividing Value 0000 0000 0000 0001 0000 0010 : 1111 1111 1 (Default) 2 3 : 256 DIV2_BYPASSn (n = 1-4) DIV2_BYPASSn selects whether ODIVn_2divider used. (n = 1-4) Table 18. DIV2_BYPASSn (n = 1-4) DIV2_BYPASSn ODIVn_2Divider 0 Use the 2divider (Default) 1 Bypass the 2 divider Effective only when MUXn (n = 1-4) = “00” / “01” CLKnMOD: CLKn (n = 1-3) Output Buffer Drivability Setting “CLKnMOD” set the drivability of Output Buffer of CLKn as the following table. (n = 1-3) Table 19. CLKn (n = 1-3) Output Buffer Drivability Setting CLKnMOD 0 1 CLKn Drivability High when VDDO1, 2 = 1.8V (Default) Low when VDDO1, 2 = 3.3V (n = 1-3) CLK4MOD: CLK4 Output Buffer Drivability Setting “CLK4MOD” set the drivability of Output Buffer of CLK4 as the following table. Table 20. CLK4 Output Buffer Drivability Setting CLK4MOD CLK4 Drivability 0 1 High when VDDO2=1.8V (Default) Low when VDDO2=3.3V MS1441-E-02 2013/09 - 34 - [AK8140A] Reserved Bits (Address: 14h ~ 15h) Addr 14h 15h Data D7 Reserved 0 Reserved 0 D6 Reserved 0 Reserved 0 D5 Reserved 0 Reserved 0 D4 Reserved 0 Reserved 0 D3 Reserved 0 Reserved 0 D2 Reserved 0 Reserved 0 D1 Reserved 0 Reserved 0 D0 Reserved 0 Reserved 0 Remarks Reserved Reserved Bits Address: 14h ~ 15h Reserved Bits Address Data D7 D6 D5 D4 D3 D2 D1 D0 14h Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved 15h Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved ・Write ‘0’ to Reserved bits. MS1441-E-02 2013/09 - 35 - [AK8140A] Addr PLL1 Configuration Register (Address: 20h ~ 2Bh) Data Remarks D7 D6 D5 D4 D3 D2 D1 D0 FS1_0 FS1_1 FS1_2 FS1_3 FS1_4 FS1_5 FS1_6 FS1_7 0 0 0 0 0 0 0 0 INPUT _CK1 VCO1_ RANGE0 [1] VCO1_ RANGE0 [0] VCO1_ RANGE1 [1] VCO1_ RANGE1 [0] Reserved Reserved Reserved PLL1 Input Clock Selection 0 0 0 0 0 0 0 0 fVCO1_ Range Reserved Reserved Reserved Reserved Reserved Reserved 0 0 0 0 0 0 FRAC0 [17] 0 FRAC0 [16] 0 FRAC0 [15] 0 FRAC0 [7] 0 FRAC0 [14] 0 FRAC0 [6] 0 FRAC0 [13] 0 FRAC0 [5] 0 FRAC0 [12] 0 FRAC0 [4] 0 FRAC0 [11] 0 FRAC0 [3] 0 FRAC0 [10] 0 FRAC0 [2] 0 FRAC0 [9] 0 FRAC0 [1] 0 FRAC0 [8] 0 FRAC0 [0] 0 PLL1_0 NDIV1 Fractional Part Setting Reserved INT0[6] INT0[5] INT0[4] INT0[3] INT0[2] INT0[1] INT0[0] 0 0 0 0 0 0 0 0 PLL1_0 NDIV1 Integral Part Setting MDIVC0 [3] 0 MDIVC0 [2] 0 MDIVC0 [1] 0 MDIVC0 [0] 0 MDIVP0 [3] 0 MDIVP0 [2] 0 Reserved Reserved Reserved Reserved Reserved 0 0 0 0 0 0 MDIVP0 [0] 0 FRAC1 [16] 0 PLL1_0 MDIV1 Setting Reserved MDIVP0 [1] 0 FRAC1 [17] 0 28h FRAC1 [15] 0 FRAC1 [14] 0 FRAC1 [13] 0 FRAC1 [12] 0 FRAC1 [11] 0 FRAC1 [10] 0 FRAC1 [9] 0 FRAC1 [8] 0 PLL1_1 NDIV1 Fractional Part Setting 29h FRAC1 [7] 0 FRAC1 [6] 0 FRAC1 [5] 0 FRAC1 [4] 0 FRAC1 [3] 0 FRAC1 [2] 0 FRAC1 [1] 0 FRAC1 [0] 0 Reserved INT1[6] INT1[5] INT1[4] INT1[3] INT1[2] INT1[1] INT1[0] 0 0 0 0 0 0 0 0 PLL1_1 NDIV1 Integral Part Setting MDIVC1 [3] 0 MDIVC1 [2] 0 MDIVC1 [1] 0 MDIVC1 [0] 0 MDIVP1 [3] 0 MDIVP1 [2] 0 MDIVP1 [1] 0 MDIVP1 [0] 0 PLL1_1 MDIV1 Setting PLL1 Frequency Selection 20h 21h 22h 23h 24h 25h 26h 27h 2Ah 2Bh MS1441-E-02 2013/09 - 36 - [AK8140A] PLL1 Configuration Register PLL1 Block Diagram is as the following Figure. Set PLL1 parameter according to Frequency Setting Procedure on page 14. PLL1 has two Frequency mode predefined as PLL1_0 or PLL1_1 and selected by S[2:0] bits (Address: 00h) or S0/S1/S2 pin. Refer to Programmable Control pin setting on page 18 for more information about Frequency selection. VCO1 PLL1 Input CLK (21h) MDIV1 Setting NDIV1 Setting (26h / 2Bh) (22h ~ 25h, 27h ~ 2Ah) fVCO1 range (21h) Figure 15. PLL1 Block Diagram Address: 20h PLL1 Output Frequency selection Data Address 20h D7 D6 D5 D4 D3 D2 D1 D0 FS1_0 FS1_1 FS1_2 FS1_3 FS1_4 FS1_5 FS1_6 FS1_7 FS1_x (x = 0-7): PLL1 Output Frequency selection The output frequency of PLL1 is chosen from two setups, PLL1_0 and PLL1_1. Table 21. PLL1 Output Frequency selection FS1_x PLL1 Frequency 0 PLL1_0 Predefined by address:21h, 22h ~ 26h (Default) 1 PLL1_1 Predefined by address:21h, 27h ~ 2Bh (x=0-7) MS1441-E-02 2013/09 - 37 - [AK8140A] Address: Address 21h 21h PLL1 Input Clock Selection / fVCO1 range Data D7 D6 D5 D4 VCO1_ RANGE0 [1] INPUT _CK1 VCO1_ RANGE0 [0] VCO1_ RANGE1 [1] D3 D2 D1 D0 VCO1_ RANGE1 [0] Reserved Reserved Reserved INPUT_CK1: PLL1Input Clock Selection (MUX5) Table 22. PLL1Input Clock Selection (MUX5) INPUT_CK1 PLL1Input Clock 0 Input Clock (Crystal Oscillation or External Clock Signal Input) (Default) 1 fvco2 PLL2 output clock VCO1_RANGEn[1:0]: fVCO1 range selection (n = 0, 1) “VCO1_RANGEn[1:0]” selects the fVCO1 frequency range. fVCO1 frequency can be set according to Frequency Setting Procedure on page 14. Table 23. fVCO1 range selection (n = 0, 1) VCO1_RANGEn[1:0] fVCO1 range 00 01 10 11 fVCO1 < 300MHz (Default) 300MHz ≤ fvco1 < 370MHz 370MHz ≤ fvco1 370MHz ≤ fvco1 MS1441-E-02 2013/09 - 38 - [AK8140A] Address: Address 22h 27h 23h 28h 24h 29h 22h ~ 24h, 27h ~ 29h NDIV1 fractional part setting Data D7 D6 D5 D4 D3 D2 Reserved Reserved Reserved Reserved Reserved Reserved FRACn [15] FRACn [7] FRACn [14] FRACn [6] FRACn [13] FRACn [5] FRACn [12] FRACn [4] FRACn [11] FRACn [3] FRACn [10] FRACn [2] D1 D0 FRACn FRACn [17] [16] FRACn FRACn [9] [8] FRACn FRACn [1] [0] (n = 0, 1) FRACn [17:0] : NDIV1 fractional part setting (n = 0, 1) When a Certain Setting is set by three Address, write the data to all Address. FRACn[17:0] settings are updated after writing register 24h / 29h. Setting procedure should be (1)22h / 27h , (2)23h / 28h, and then (3)24h / 29h. NDIV1 fractional part can be set according to Frequency Setting Procedure on page 14. Fractional part of N is expressed by A/218. Here, the numerator A is defined by FRAC bits. FRAC is treated as 2’s Complement which is able to set from -217 up to +217. Consequently, it is possible to set from -0.5 to +0.5 for fractional part of N. Table 24. NDIV1 fractional part setting (n = 0, 1) FRACn [17:0] A Fractional Part 01 1111 1111 1111 1111 01 1111 1111 1111 1110 +131071 +131070 0.49999619.. 0.49999237.. : 01 0000 0000 0000 0000 : : +65536 : : 0.25 : 00 0000 0000 0000 0001 00 0000 0000 0000 0000 11 1111 1111 1111 1111 11 1111 1111 1111 1110 +1 0 (Default) -1 -2 0.00000381.. 0 (Default) -0.00000381.. : 11 0000 0000 0000 0000 : : -65536 : : -0.25 : 10 0000 0000 0000 0001 10 0000 0000 0000 0000 -131071 -131072 -0.49999619.. -0.5 MS1441-E-02 2013/09 - 39 - [AK8140A] Address: 25h / 2Ah NDIV1 integral part settings Data Address 25h 2Ah D7 D6 D5 D4 D3 D2 D1 D0 Reserved INTn[6] INTn[5] INTn[4] INTn[3] INTn[2] INTn[1] INTn[0] (n = 0, 1) INTn [6:0]: NDIV1 integral part setting (n = 0, 1) NDIV1 Integral part can be set according to Frequency Setting Procedure on page 14. INTn[6:0] must be set from “0010001” to “1000100”, when PLL1 is used. Table 25. NDIV1 integral part setting (n = 0, 1) INTn [6:0] integral part 000 0000 000 0001 ~ 001 0000 001 0001 001 0010 : 100 0011 100 0100 100 0101 ~ 111 1111 (Default) Prohibited 17 18 : 67 68 Prohibited MS1441-E-02 2013/09 - 40 - [AK8140A] Address: 26h / 2B MDIV1 Setting Data Address 26h 2Bh D7 D6 D5 D4 D3 D2 MDIVCn [3] MDIVCn [2] MDIVCn [1] MDIVCn [0] MDIVPn [3] MDIVPn [2] D1 D0 MDIVPn MDIVPn [1] [0] (n = 0, 1) MDIV1 Dividing Value Settings (MDIVCn, MDIVPn) MDIV1Configuration is as the following Figure. MDIV1 Dividing Value can be set according to Frequency Setting Procedure on page 14. MDIVCn[2] MDIV1 PLL1 Input CLK SEL 1/2 1/3 or 1/4 SEL 1/2 1/2 MDIVCn[3] Phase Comparator Programmable Div. MDIVPn[3:0] MDIVCn[1:0] Figure 16. MDIV1 Configuration MDIVCn[3]: Programmable divider input selection (n = 0, 1) Table 26. Programmable divider input selection (n = 0, 1) MDIVCn[3] Input of Programmable divide 0 1 PLL1 Input CLK (Default) PLL1 Input CLK 1/2 MDIVCn[2]: 3 or 4 divider selection (n = 0, 1) Table 27. 3 or 4 divider selection (n = 0, 1) MDIVCn[2] Selected divider 0 1 3 divider (Default) 4 divider MS1441-E-02 2013/09 - 41 - [AK8140A] MDIVCn[1:0]: Input of Phase comparator selection (n = 0, 1) Set MDIVCn[1:0] = “11”, when INPUT_CK1 is set to “1” (Address = 21h). Table 28. Input of Phase comparator selection (n = 0, 1) MDIVCn[1:0] Input of Phase comparator 00 01 10 11 PLL1 Input CLK (Default) PLL1 Input CLK 1/2 3 or4 divider output Programmable divider Output MDIVPn[3:0]: Programmable divider control (n = 0, 1) MDIVPn[3:0] must be set from “0001” to “1111”, when PLL1 is used. Table 29. MDIVPn Programmable divider control (n = 0, 1) MDIVPn[3:0] Programmable Divider dividing value 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 (Default) 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 MS1441-E-02 2013/09 - 42 - [AK8140A] PLL2 Configuration Register (Address: 30h ~ 38h) Data Addr D7 D6 D5 D4 D3 D2 D1 D0 Remarks PLL2 Frequency Selection FS2_0 FS2_1 FS2_2 FS2_3 FS2_4 FS2_5 FS2_6 FS2_7 0 0 0 0 0 0 0 0 VCO2_ RANGE0 [1] VCO2_ RANGE0 [0] Reserved PLL2_0 MDIV2 Setting 30h Reserved Reserved MDIV0[2] MDIV0[1] MDIV0[0] 0 0 0 0 0 0 0 0 fVCO2_ Range0 NINT0 [5] 0 NUME0 [6] 0 DENO0 [7] 0 NINT0 [4] 0 NUME0 [5] 0 DENO0 [6] 0 NINT0 [3] 0 NUME0 [4] 0 DENO0 [5] 0 NINT0 [2] 0 NUME0 [3] 0 DENO0 [4] 0 NINT0 [1] 0 NUME0 [2] 0 DENO0 [3] 0 NINT0 [0] 0 NUME0 [1] 0 DENO0 [2] 0 NUME0 [8] 0 NUME0 [0] 0 DENO0 [1] 0 NUME0 [7] 0 DENO0 [8] 0 DENO0 [0] 0 PLL2_0 NDIV2 Setting VCO2_ RANGE1 [1] VCO2_ RANGE1 [0] Reserved PLL2_1 MDIV2 Setting 31h 32h 33h 34h Reserved Reserved MDIV1[2] MDIV1[1] MDIV1[0] 0 0 0 0 0 0 0 0 fVCO2_ Range1 NINT1 [5] 0 NUME1 [6] 0 NINT1 [4] 0 NUME1 [5] 0 NINT1 [3] 0 NUME1 [4] 0 NINT1 [2] 0 NUME1 [3] 0 NINT1 [1] 0 NUME1 [2] 0 NINT1 [0] 0 NUME1 [1] 0 NUME1 [8] 0 NUME1 [0] 0 NUME1 [7] 0 DENO1 [8] 0 PLL2_1 NDIV2 Setting DENO1 [7] 0 DENO1 [6] 0 DENO1 [5] 0 DENO1 [4] 0 DENO1 [3] 0 DENO1 [2] 0 DENO1 [1] 0 DENO1 [0] 0 35h 36h 37h 38h MS1441-E-02 2013/09 - 43 - [AK8140A] PLL2 Configuration Register PLL2 Block Diagram is as the following Figure. Set PLL2 parameter according to. Frequency Setting Procedure on page 16. PLL2 has two Frequency mode predefined as PLL2_0 or PLL2_1 and selected by S[2:0] bits (Address: 00h) or S0/S1/S2 pin. Refer to Programmable Control pin setting on page 18 for more information about Frequency selection. fin2 MDIV2 Setting NDIV2 Setting (31h / 35h) (32h ~ 34h, 36h ~ 38h) fVCO2 range (31h /35h) Figure 17. PLL2 Block Diagram Address: 30h PLL2 Output Frequency selection Data Address 30h D7 D6 D5 D4 D3 D2 D1 D0 FS2_0 FS2_1 FS2_2 FS2_3 FS2_4 FS2_5 FS2_6 FS2_7 FS2_x (x = 0-7): PLL2 Output Frequency selection The output frequency of PLL2 is chosen from two setups, PLL2_0 or PLL2_1. Table 30. PLL2 Output Frequency selection FS2_x PLL2 Frequency 0 PLL2_0 Predefined by address: 31h ~ 34h (Default) 1 PLL2_1 Predefined by address: 35h ~ 38h (x=0-7) MS1441-E-02 2013/09 - 44 - [AK8140A] Address: Address 31h 35h 31h / 35h MDIV2 and fVCO2 frequency range Setting Data D7 D6 D5 D4 D3 D2 D1 D0 VCO2_ VCO2_ Reserved Reserved MDIVn[2] MDIVn[1] MDIVn[0] RANGEn RANGEn [1] [0] Reserved (n = 0, 1) MDIVn[2:0]: MDIV2 Dividing Value Setting (n = 0, 1) MDIV2Configuration is as the following Figure. MDIV2 Dividing Value can be set according to Frequency Setting Procedure on page 16. MDIV2 SEL MUX0 Phase Comparator MDIVn[2:0] Figure 18. MDIV2 configuration Table 31. MDIVn Programmable divider control (n = 0, 1) MDIVn[2:0] MDIV2 Dividing Value 000 001 010 011 100 Except the above 1 (Default) 2 4 8 16 Prohibited (Device is Reset) VCO2_RANGEn[1:0]: fVCO2 range selection (n = 0, 1) “VCO2_RANGEn[1:0]” selects the fVCO2 frequency range. fVCO2 frequency can be set according to Frequency Setting Procedure on page 16. Table 32. fVCO2 range selection (n = 0, 1) VCO2_RANGEn[1:0] fVCO2 range 00 01 10 11 fVCO2 < 117.5MHz (Default) 117.5MHz ≤ fVCO2 < 155MHz 155MHz ≤ fVCO2 < 192.5MHz 192.5MHz ≤ fVCO2 MS1441-E-02 2013/09 - 45 - [AK8140A] Address: Address 32h ~ 34h, 36h ~ 38h NDIV2 Dividing Value (n = 0, 1) Data D7 D6 D5 D4 D3 D2 D1 D0 32h 36h NINTn [5] NINTn [4] NINTn [3] NINTn [2] NINTn [1] NINTn [0] NUMEn [8] NUMEn [7] 33h 37h NUMEn [6] NUMEn [5] NUMEn [4] NUMEn [3] NUMEn [2] NUMEn [1] NUMEn [0] DENOn [8] 34h 38h DENOn [7] DENOn [6] DENOn [5] DENOn [4] DENOn [3] DENOn [2] DENOn [1] DENOn [0] (n = 0, 1) When a Certain Setting is set by three Address, write the data to all Address. NDIV2 Dividing Value settings are updated after writing register 34h / 38h. Setting procedure should be (1)32h / 36h , (2)33h / 37h, and then (3)34h / 38h. NDIV2 dividing value can be set according to Frequency Setting Procedure on page 16. NDIV2 Dividing Value is decided by setting NINTn, NUMEn and DENOn. NINTn[5:0]: NDIV2 integral part setting (n = 0, 1) NINTn[5:0] must be set from “010000” to “111001”, when PLL2 is used. Table 33. NDIV2 integral part setting (n = 0, 1) NINTn[5:0] NDIV2 Integral Part 000000 000001 ~ 001111 010000 : 100011 100100 100101 : 111001 111010 ~ 111111 (Default) prohibited 16 : 35 36 37 : 57 prohibited MS1441-E-02 2013/09 - 46 - [AK8140A] NUMEn[8:0]: NDIV2 Numerator of fractional part setting (n = 0, 1) Table 34. NDIV2 Numerator of fractional part setting (n = 0, 1) NUMEn[8:0] NDIV2 Numerator of fractional part setting 000000000 000000001 : 111111110 111111111 0 (Default) (Integer-N Mode) 1 : 510 511 DENOn[8:0]: NDIV2 Denominator of fractional part setting (n = 0, 1) DENOn[8:0] must be set from “000000001” to “111111111”, when PLL2 is used. Table 35. NDIV2 Denominator of fractional part setting (n = 0, 1) DENOn[8:0] NDIV2 Denominator of fractional part setting 000000000 000000001 : 111111110 111111111 (Default) 1 : 510 511 MS1441-E-02 2013/09 - 47 - [AK8140A] 10. Recommended External Circuits Typical Connection Diagram VDDO1 VDDO2 VDD C9 + + C8 + C7 GND Cext1 GND GND 1:XIN 24:S1/SCL 2:XOUT 23:S2/SDA 3:VDD1 22:CLK3 4:VSS1 21:VSSO2 5:GND 20:VDDO2 6:S0 19:CLK4n CLK4n output* 7:VSS2 18:CLK4p CLK4p output* 8:VDD2 17:PD_N 9:VDD3 16:CLK2 10:VSS3 15:VDDO1 11:VSS4 14:VSSO1 12:VDD4 13:CLK1 I2C Control Crystal Cext2 CLK3 output C1 C6 SW1 C2 SW2 CLK2 output C3 C5 C4 CLK1 output GND Figure 19. Typical Connection Diagram C1, C2, C3, C4, C5, C6: C7, C8, C9: Cext1, Cext2: SW1: SW2: 0.1μF Ceramic Capacitor Electrolytic capacitor Depends on crystal characteristics. Refer to the specification of the crystal. This switch controls ‘H’ and ‘L’ of S0 control pin. Refer to the datasheet about S0 control. This switch that controls ‘H’ and ‘L’ of PD_N pin. Refer to the datasheet about PD_N control. *1: When CLK4n and CLK4p pin output LVDS clock, refer to the LVDS Clock measurement circuit shown on this datasheet page 11. *2: No. 23 SDA/S2 pin has the internal pull-up 500kΩ resister. *3: No. 24 SCL/S1 pin has the internal pull-down 500kΩ resister. MS1441-E-02 2013/09 - 48 - [AK8140A] Crystal Unit Table 36. DAISHINKU Corp. DSX321G Parameter Symbol Nominal frequency Equivalent resistance Shunt capacitance Motional capacitance Motional inductance Drive Level MIN. f0 R1 C0 C1 L1 TYP. 25.000 18.2 1.22 4.724 8.585 30 MAX. 60 L1 R1 Unit Remark MHz Ω pF fF mH W CL = 8pF ±2 W C1 Crystal unit C0 Load capacitance CL CL Figure 20. Equivalent parameter and load MS1441-E-02 2013/09 - 49 - [AK8140A] 11. Package Outline Dimensions 24pin HTSSOP (Unit : mm) 7.8±0.10 0.15±0.05 13 1 6.40±0.15 4.40±0.10 0.6±0.15 24 12 0.25±0.05 0.65 0°~8° S 0.10±0.05 0.10 S 12 (2.74) 1 1.10 MAX 0.90±0.05 24 13 (4.54) Note: (1) The Heat sink pad on the bottom surface of the package is recommended to solder to the PCB. MS1441-E-02 2013/09 - 50 - [AK8140A] Marking a: #1 Pin Index b: Part number c: Date code (6 digits) 24 13 b 8140A xxxxxx c a 12 1 MS1441-E-02 2013/09 - 51 - [AK8140A] 12. Important Notice IMPORTANT NOTICE 0. Asahi Kasei Microdevices Corporation (“AKM”) reserves the right to make changes to the information contained in this document without notice. When you consider any use or application of AKM product stipulated in this document (“Product”), please make inquiries the sales office of AKM or authorized distributors as to current status of the Products. 1. All information included in this document are provided only to illustrate the operation and application examples of AKM Products. AKM neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of AKM or any third party with respect to the information in this document. You are fully responsible for use of such information contained in this document in your product design or applications. AKM ASSUMES NO LIABILITY FOR ANY LOSSES INCURRED BY YOU OR THIRD PARTIES ARISING FROM THE USE OF SUCH INFORMATION IN YOUR PRODUCT DESIGN OR APPLICATIONS. 2. The Product is neither intended nor warranted for use in equipment or systems that require extraordinarily high levels of quality and/or reliability and/or a malfunction or failure of which may cause loss of human life, bodily injury, serious property damage or serious public impact, including but not limited to, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. Do not use Product for the above use unless specifically agreed by AKM in writing. 3. Though AKM works continually to improve the Product’s quality and reliability, you are responsible for complying with safety standards and for providing adequate designs and safeguards for your hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of the Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. 4. Do not use or otherwise make available the Product or related technology or any information contained in this document for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). When exporting the Products or related technology or any information contained in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. The Products and related technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. 5. Please contact AKM sales representative for details as to environmental matters such as the RoHS compatibility of the Product. Please use the Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. AKM assumes no liability for damages or losses occurring as a result of noncompliance with applicable laws and regulations. 6. Resale of the Product with provisions different from the statement and/or technical features set forth in this document shall immediately void any warranty granted by AKM for the Product and shall not create or extend in any manner whatsoever, any liability of AKM. 7. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of AKM. MS1441-E-02 2013/09 - 52 -