AK8140A Data Sheet

[AK8140A]
AK8140A
Programmable Multi Clock Generator with XO
1. General Description
The AK8140A is a member of AKM’s High-performance programmable clock generator.
The AK8140A generates up to four output clocks from a single input frequency with two fractional-N PLLs.
Each output can be programmed for any frequency up to 230MHz. PLLs in AK8140A are derived from
AKM’s long-term-experienced clock device technology, and enable clock output to perform low jitter and to
operate with very low current consumption.
The AK8140A is available in a 24-pin HTSSOP package.
2. Features
In-System Programmability
- Serial Programmable Register via SDA/SCL pin
High Accuracy Clock Generator
Flexible Input Clock Source
- Crystal Unit : 16MHz - 60MHz
- External Clock : 4MHz - 100MHz
Free Programmable Clock Frequencies
- LVCMOS : up to 160MHz (CLK1-4)
- LVDS : up to 230MHz (CLK4p/n)
Low Jitter Performance by using PLL2
- Period Jitter (1σ) : 8.3ps Max.
- Cycle to Cycle Jitter (1σ) : 12.8ps Max.
- Long Term Jitter (1000 cycle, 1σ) : 41.7ps Max.
Supply Voltage
- Device Power Supply : VDD1-4 : 3.0 – 3.6V
- Output Buffer Power Supply : VDDO1-2 : 1.7 – 3.6V
Operating Temperature Range
- -40 to +85C
Package
- 24-pin HTSSOP (Lead free)
Application
- Automotive Ethernet AVB System, Automotive Video System, Car Navigation and Display Audio
- Audio Amplifier System, AV Receiver, DTV System, STB, IP-STB, DVD Player and DVD Recorder
MS1441-E-02
2013/09
-1-
[AK8140A]
3. Table of Contents
1. General Description........................................................................................................................................1
2. Features ..........................................................................................................................................................1
3. Table of Contents ...........................................................................................................................................2
4. Block Diagram and Functions ........................................................................................................................3
5. Pin Configurations and Functions ..................................................................................................................4
6. Absolute Maximum Ratings ...........................................................................................................................6
7. Recommended Operating Conditions ............................................................................................................6
8. Electrical Characteristics................................................................................................................................7
9. Functional Descriptions ...............................................................................................................................14
10. Recommended External Circuits ................................................................................................................48
11. Package .......................................................................................................................................................50
12. Important Notice.........................................................................................................................................52
MS1441-E-02
2013/09
-2-
[AK8140A]
4. Block Diagram and Functions
VDD1
VDD2
VDD3
VDD4
VSSO1 VDDO1
Ext-IN
XIN
XOUT
M
U
X
0
Crystal
OSC
M
U
X
1
M
U
X
5
Fractional-N
ODIV
1
CLK1
ODIV
2
CLK2
ODIV
3
CLK3
1/2
Divider
PLL1
M
U
X
2
M
U
X
3
PD_N
S0
Register
Fractional-N
S1/SCL
M
PLL2
U
S2/SDA
X
4
ODIV
4
CLK4n
CLK4p
GND
VSS1
VSS2
VSS3
VSS4
VSSO2 VDDO2
Figure 1. AK8140A Programmable Multi Clock Generator with XO
MS1441-E-02
2013/09
-3-
[AK8140A]
5. Pin Configurations and Functions
XIN
1
24
S1/SCL
XOUT
2
23
S2/SDA
VDD1
3
22
CLK3
VSS1
4
21
VSSO2
GND
5
20
VDDO2
S0
6
19
CLK4n
VSS2
7
18
CLK4p
VDD2
8
17
PD_N
VDD3
9
16
CLK2
VSS3
10
15
VDDO1
VSS4
11
14
VSSO1
VDD4
12
13
CLK1
Figure 2. AK8140A Package: 24-Pin HTSSOP (Top View)
Pin No.
Pin Name
Pin Type
1
XIN
AI
2
XOUT
AO
3
4
5
VDD1
VSS1
GND
PWR
PWR
AI
6
S0
DI
7
8
9
10
11
12
VSS2
VDD2
VDD3
VSS3
VSS4
VDD4
PWR
PWR
PWR
PWR
PWR
PWR
13
CLK1
DO
14
VSSO1
PWR
Description
Crystal connection (Default) or External clock input
When Crystal connection is selected, OSC_DIS bit should be set ‘0’.
When External clock input is selected, OSC_DIS bit should be set ‘1’.
Crystal connection
Open when an external clock input is used.
Device Power Supply 1
Connect to Ground
Connect to Ground
Programmable control pin 0
Connect to Ground when S0 pin isn’t used.
Connect to Ground
Device Power Supply 2
Device Power Supply 3
Connect to Ground
Connect to Ground
Device Power Supply 4
LVCMOS Output pin1
When VDDO1 = 1.8V, CLK1MOD bit should be set ‘0’ (Default).
When VDDO1 = 3.3V, CLK1MOD bit should be set ‘1’.
Connect to Ground for Output Buffer
MS1441-E-02
2013/09
-4-
[AK8140A]
Pin No.
Pin Name
Pin Type
15
VDDO1
PWR
Description
Power Supply1 for Output Buffer CLK1 and CLK2
16
CLK2
DO
LVCMOS Output pin2
When VDDO1 = 1.8V, CLK1MOD bit should be set ‘0’ (Default).
When VDDO1 = 3.3V, CLK1MOD bit should be set ‘1’.
17
PD_N
DI
Power Down Control pin
L : Device is powered down, all outputs are low.
H : PLLs and all outputs are normal operation.
18
CLK4p
DO
19
CLK4n
DO
20
21
VDDO2
VSSO2
PWR
PWR
22
CLK3
DO
LVCMOS Output pin3
When VDDO1 = 1.8V, CLK1MOD bit should be set ‘0’ (Default).
When VDDO1 = 3.3V, CLK1MOD bit should be set ‘1’.
DIO
Dual function pin
S2 : Programmable control pin2, SDA : Serial Data Input / Output (Default)
Internal Pull Up Resistance : 500 kΩ
When SPICON bit = SPICON_SET bit = ‘1’, Pin 23 becomes S2 pin for
Programmable control pin. Refer to Page 29.
DI
Dual function pin
S1 : Programmable control pin1, SCL : Serial Clock Input (Default)
Internal Pull Down Resistance : 500 kΩ
When SPICON bit = SPICON_SET bit = ‘1’, Pin 24 becomes S1 pin for
Programmable control pin. Refer to Page 29.
23
24
S2/SDA
S1/SCL
LVDS (Default) / LVCMOS Output pin4
Output Interface is changed by CLK4_CMOS bit (Address: 03h).
When LVDS is selected, CLK4_CMOS bit should be set ‘0’.
When LVCMOS is selected, CLK4_CMOS bit should be set ‘1’.
CLK4p and CLK4n Output is Opposite when LVCMOS Output.
When VDDO2 = 1.8V, CLK4MOD bit should be set ‘0’ (Default).
When VDDO2 = 3.3V, CLK4MOD bit should be set ‘1’.
Power Supply2 for Output Buffer CLK3 and CLK4
Connect to Ground for Output Buffer
Note:
(1) AI : Analog Input pin, AO : Analog Output pin, DI : Digital Input pin, DO : Digital Output pin
DIO : Digital Input and Output pin, PWR : Power Supply pin
(2) The Heat sink pad on the bottom surface of the package is recommended to solder to the PCB.
MS1441-E-02
2013/09
-5-
[AK8140A]
6. Absolute Maximum Ratings
Over operating free-air temperature range unless otherwise noted (1)
Items
Symbol
Ratings
Unit
Supply voltage
VDD
-0.3 to 4.6
V
Input voltage
Vin
VSS-0.3 to VDD+0.3
V
Input current (any pins except supplies)
IIN
±10
mA
Storage temperature
Tstg
-55 to 130
C
Note
(1) Stress beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the
device. These are stress ratings only. Functional operation of the device at these or any other
conditions beyond those indicated under “Recommended Operating Conditions” is not implied.
Exposure to absolute-maximum-rating conditions for extended periods may affect device reliability.
Electrical parameters are guaranteed only over the recommended operating temperature range.
This device is manufactured on a CMOS process, therefore,
generically susceptible to damage by excessive static voltage.
Failure to observe proper handling and installation procedures can cause damage. AKM
recommends that this device is handled with appropriate precautions.
ESD Sensitive Device
7. Recommended Operating Conditions
Parameter
Operating temperature
Symbol
Ta
VDD
VDDO1
Supply voltage (1)
VDDO2
Output Load Capacitance
(2)
Cplclk
Conditions
Min
-40
3.0
Typ
3.3
Max
85
3.6
Pin: VDDO1
Power Supply for CLK1 and CLK2
Output Buffers
1.7
3.0
1.8
3.3
1.9
3.6
Pin: VDDO2
Power Supply for CLK3 and CLK4
Output Buffers
1.7
2.3
3.0
1.8
2.5
3.3
1.9
2.7
3.6
Pin: VDD1-4
Pin: CLK1-3
Output Frequency : up to 50MHz
25
Pin: CLK1-3
Output Frequency : up to 120MHz
15
Pin: CLK1-3
Output Frequency : up to 160MHz
10
Pin: CLK4p/n LVCMOS output
Output Frequency : up to 160MHz
10
Unit
C
V
pF
Note:
(1) Power to VDD1-4 requires to be supplied from a single source. A decoupling capacitor for power
supply line should be installed close to each VDD pins.
(2) Output load for CLK4p/n pins at LVDS output is descripted on page 11 for details.
MS1441-E-02
2013/09
-6-
[AK8140A]
8. Electrical Characteristics
DC Characteristics
All specifications at VDD1-4: over 3.0 to 3.6V, VDDO1-2: over 1.7 to 3.6V, Ta: -40 to +85C,
unless otherwise noted
Parameter
Symbol
Conditions
Min
Typ
High Level Input Voltage
VIH
Pin: S0, PD_N, S1/SCL,
S2/SDL, XIN
Low Level Input Voltage
VIL
Pin: S0, PD_N, S1/SCL,
S2/SDL, XIN
Input Current 1
IL1
Pin: S0, PD_N
VDD or VSS force
Input Current 2
IL2
Input Current 3
Low Level Output Voltage
Max
Unit
0.7*VDD
V
0.3*VDD
V
-1
+1
A
Pin: S1/SCL
VDD or VSS force
-1
+20
A
IL3
Pin: S2/SDA
VDD or VSS force
-20
+1
A
VOL
Pin: SDA
IOL = +3mA, Open Drain
0.2*VDD
V
IDD1
All outputs ‘ON’, No load
Input / Output frequency
XIN: 100MHz
CLK1-3: 160MHz
CLK4p/n LVDS: 230MHz
58
70
mA
Current Consumption 2
IDD2
All outputs ‘OFF’
Input / Output frequency
XIN: 100MHz
CLK1-3: ‘L’/ ‘H’/‘Hi-Z’ output
CLK4p/n : ‘L’/ ‘H’/‘Hi-Z’ output
15
20
mA
Power Down Mode
Current Consumption
SIDD
No load, Power Down Mode
PD_N = ‘L’
0.5
50
A
Current Consumption 1
MS1441-E-02
2013/09
-7-
[AK8140A]
AC Characteristics
All specifications at VDD1-4: over 3.0 to 3.6V, VDDO1-2: over 1.7 to 3.6V, Ta: -40 to +85C,
unless otherwise noted
Parameter
Symbol
Conditions
Min
Typ
Max
Unit
Crystal Clock Frequency
Fosc
Pin: XIN, XOUT
16
60
MHz
External Clock Input
Frequency
Fin
Pin: XIN
When External Input is selected.
OSC_DIS = ‘1’
4
100
MHz
Findc
Pin: XIN
When External Input is selected
Measurement point: 0.5VDD
30
70
%
Faccuracy
Pin: CLK1-3, CLK4p/n
-30
+30
ppm
Tlock
Pin: CLK1-3, CLK4p/n
External Clock Input
Duty Cycle
Output Clock Frequency
Accuracy (1)(2)
Output Lock Time (3)
50
1
ms
Note:
(1) Specification of Frequency Accuracy is measured by connecting the standard crystal unit for
DSX321G of DAISHINKU Corp. on page 49.
(2) This Output Clock Frequency Accuracy does not include accuracy of crystal unit.
Total output clock frequency accuracy could be up to “Output Clock Frequency Accuracy” +
“Crystal unit accuracy”.
(3) Settling time that output frequency reaches within the accuracy 0.1 % of the target frequency after
registers “20h to 2Bh” or “30h to 38h” are set through SCA/SCL pins.
MS1441-E-02
2013/09
-8-
[AK8140A]
PLL Characteristics
All specifications at VDD1-4: over 3.0 to 3.6V, VDDO1-2: over 1.7 to 3.6V, Ta: -40 to +85C,
unless otherwise noted
Parameter
Symbol
Conditions
Min
Typ
Max
Unit
230
460
MHz
6.75
13.5
MHz
PLL1 Characteristics
VCO frequency range
of PLL1
VCO Frequency 1
fVCO1
Phase Comparison
Frequency 1
fcmp1
Period
Jitter 1 (1)(2)(3)(6)
Jit_period
Jitter of Output Clock from
PLL1, 1σ
8.3
ps
Cycle to Cycle
Jitter 1 (1)(2)(4)(6)
Jit_c2c
Jitter of Output Clock from
PLL1, 1σ
12.8
ps
Long Term
Jitter 1 (1)(2)(5)(6)
Jit_long
Jitter of Output Clock from
PLL1, 1000 cycle delay, 1σ
40
ps
VCO Frequency 2
fVCO2
VCO frequency range
of PLL2
Phase Comparison
Frequency 2
fcmp2
Period
Jitter 2 (1)(2)(3)(6)
Jit_period
Cycle to Cycle
Jitter 2 (1)(2)(4)(6)
Jit_c2c
PLL2 Characteristics
80
230
MHz
2.5
14.375
MHz
Jitter of Output Clock from
PLL2, 1σ
8.3
ps
Jitter of Output Clock from
PLL2, 1σ
12.8
ps
Long Term
Jitter of Output Clock from
Jit_long
41.7
ps
Jitter 2 (1)(2)(5)(6)
PLL2, 1000 cycle delay, 1σ
Note:
(1) The load conditions are described on page 6.
(2) CLK1 or CLK2 is enabled or CLK1 and CLK2 output the same frequency. Similarly, CLK3 or
CLK4p/n is enabled or CLK3 and CLK4p/n output the same frequency.
(3) Jitter depends on configuration. Jitter data is for input frequency = 48MHz, output frequency =
27MHz/48MHz/50MHz.
(4) Jitter depends on configuration. Jitter data is for input frequency = 25MHz/30MHz/50MHz, output
frequency = 27MHz/50MHz.
(5) Jitter depends on configuration. Jitter data is for input frequency = 27MHz, output frequency =
25M/148.5MHz.
(6) 10,000 sampling or more
MS1441-E-02
2013/09
-9-
[AK8140A]
LVCMOS Characteristics
All specifications at VDD1-4: over 3.0 to 3.6V, VDDO1-2: over 1.7 to 3.6V, Ta: -40 to +85C,
unless otherwise noted
Parameter
Symbol
Output Frequency
fout
High Level
Output Voltage
Low Level
Output Voltage
Output Clock
Rise Time (1)(2)(3)
Output Clock
Fall Time (1)(2)(3)
Output Clock
Duty Cycle (1)
VOH
VOL
T_rise
T_fall
T_outdc
Conditions
Min
Typ
Pin: CLK1-3, CLK4p/n
Pin: CLK1-3, CLK4p/n
IOH = -4mA
Pin: CLK1-3, CLK4p/n
IOH = +4mA
Max
Unit
160
MHz
0.8VDDO1-2
V
0.2VDDO1-2
V
Pin: CLK1-3
Load Cplclk = 10pF
0.2VDDO1-2 → 0.8VDDO1-2
0.7
ns
Pin: CLK1-3
Load Cplclk = 25pF
0.2VDDO1-2 → 0.8VDDO1-2
1.2
ns
Pin: CLK4p/n, VDDO2 = 3.3V
Load Cplclk = 10pF
0.2VDDO2 → 0.8VDDO2
0.3
ns
Pin: CLK1-3
Load Cplclk = 10pF
0.8VDDO1-2 → 0.2VDDO1-2
0.7
ns
Pin: CLK1-3
Load Cplclk = 25pF
0.8VDDO1-2 → 0.2VDDO1-2
1.2
ns
Pin: CLK4p/n, VDDO2 = 3.3V
Load Cplclk = 10pF
0.8VDDO2 → 0.2VDDO2
0.3
ns
Pin: CLK1-3, CLK4p/n (4)
Pin: CLK1-3, CLK4p/n (5)
Pin: CLK1-3, CLK4p/n (6)
45
45
20
50
50
55
55
80
%
%
%
Note:
(1) The load conditions are described on page 6
(2) When VDDO1-2 = 1.8V: CLKnMOD (n = 1-3) = “0”, when VDDO1-2 = 3.3V: CLKnMOD (n = 1-3)
= “1”.
(3) When VDDO1-2 = 3.3V: CLK4MOD = “1”.
(4) When ODIVn divides the PLL1/2 Clock.
(5) When ODIVn divides the Input Bypass Clock by even dividing value.
(6) When ODIVn divides the Input Bypass Clock by odd dividing value.
MS1441-E-02
2013/09
- 10 -
[AK8140A]
CLK4p/n LVDS Characteristics
All specifications at VDD1-4: over 3.0 to 3.6V, VDDO1-2: over 1.7 to 3.6V, Ta: -40 to +85C,
unless otherwise noted
Parameter
Symbol
Output Frequency
fout
Single Output
Voltage (1)
VOD
Offset Voltage
(1)
VOS
Conditions
Min
Typ
Max
Unit
230
MHz
250
350
450
mVpp
VDDO2 = 2.3 to 3.6V,
CLK4MOD = “1”
1.125
1.240
1.375
V
VDDO2 = 1.7 to 1.9V,
CLK4MOD = “0”
0.685
0.800
0.935
V
Output Clock
Rise Time (1)
T_rise
0.2VDDO1-2 → 0.8VDDO1-2
0.2
ns
Output Clock
Fall Time (1)
T_fall
0.8VDDO1-2 → 0.2VDDO1-2
0.2
ns
(2)
Output Clock
Duty Cycle (1)
T_outdc
45
45
20
(3)
(4)
50
50
55
55
80
%
%
%
Note:
(1) LVDS clock measured at the circuit shown in Figure 3.
(2) When ODIV4 divides the PLL1/2 Clock.
(3) When ODIV4 divides the Input Bypass Clock by even dividing value.
(4) When ODIV4 divides the Input Bypass Clock by odd dividing value.
CLK4p
Z0=100 Differential
CLK4n
OUTP
100
OUTN
AK8140A
Figure 3. CLK4p/n LVDS Clock measurement circuit
MS1441-E-02
2013/09
- 11 -
[AK8140A]
Serial Interface (SDA/SCL pin) AC Characteristics (1)
All specifications at VDD1-4: over 3.0 to 3.6V, VDDO1-2: over 1.7 to 3.6V, Ta: -40 to +85C,
unless otherwise noted
Parameter
Symbol
Conditions
Min
Typ
Max
400
Unit
SCL Clock Frequency
fSCL
kHz
SCL Clock Low Period
tLOW
1.3
s
SCL Clock High Period
tHIGH
0.6
s
Pulse Width of Spikes which
must be suppressed
tI
SCL Low to SDA Data Out
tAA
0.3
s
Bus free time between a STOP
and START Condition
tBUF
1.3
s
Start Condition Hold Time
tHD.SAT
0.6
s
Start Condition Setup Time
(for a Repeated Start Condition)
tSU.SAT
0.6
s
Data in Hold Time
tHD.DAT
0
s
Data in Setup Time
tSU.DAT
100
ns
50
ns
SDA and SCL Rise Time
tR
0.3
s
SDA and SCL Fall Time
tF
0.3
s
Stop Condition Setup Time
Input Capacitance at SDA/SCL
tSU.STO
s
0.6
Cb
200
pF
Note:
(1) The AK8140A operates as a slave device of the 2-wire serial SDA/SCL bus.
This serial interface can be used the I2C interface timing.
It operates in the standard-mode transfer (up to 100kbit/s) and the fast-mode transfer (up to
400kbit/s).
It doesn’t support the Clock Stretching Mode and the High Speed Mode.
MS1441-E-02
2013/09
- 12 -
[AK8140A]
tF
tR
SCL (IN)
tSU.STA
tLOW
tHIGH
tHD.DAT
tHD.STA
tSU.STO
tSU.DAT
SDA (IN)
tAA
tDH
tBUF
SDA (OUT)
Figure 4. 2-wire Serial Interface AC Timing
MS1441-E-02
2013/09
- 13 -
[AK8140A]
9. Functional Descriptions
PLL1 setting procedure
fin1
MDIV1
fcmp1
PFD/CP/LPF/VCO1
fVCO1
NDIV1
1/2
ODIVn
foutn
Divider
(INT+FRAC)
Figure 5. PLL1 Block Diagram
PLL1 is Fractional-N PLL.
Output frequency from PLL1 is determined by PLL1 parameter:
Refclk Dividing Value (MDIV1), Fractional-N1 Dividing Value (INT + FRAC), and Output Dividing Value
(ODIVn(n = 1-4)).
These parameters should be set as described below.
Step1. Deciding VCO1 Target Frequency.
VCO1 Frequency (fVCO1) is decided from CLKn Output frequency (foutn) and Output Dividing Value
(ODIVn, set by address: 0Dh ~ 13h). Set fVCO1 frequency between 230MHz to 460MHz.
230MHz ≤ fVCO1 ≤ 460MHz (fVCO1 = fount × 2 × ODIVn)
Step2. Deciding Phase Comparison Frequency.
Set MDIV1 Divider (MDIV, set by address: 26h or 2Bh) as fcmp1 becomes the greatest common measure
of fin1 and fvco1 between 6.75MHz to 13.5MHz.
6.75MHz ≤ fcmp1 ≤ 13.5MHz (fcmp1 = fin1 / MDIV1)
Step3. Deciding Feedback Dividing Value.
This value is decided by VCO1 frequency (fVCO1) and Phase Comparison Frequency (fcmp1).
7 bits integral part and 18 bits fractional part (signed 2’s complement) is necessary to be set.
NDIV1 
N
fVCO1
 N INT1  FRAC1
fcomp1
218
Integral part (NINT1) : NINT1 = INT[6:0] = round [ fVCO1 / fcmp1 ]
Fractional part (NFRAC1 / 218) : NFRAC1 = FRAC[17:0] = round [ ( ( fVCO1 / fcmp1 ) – NINT1 ) × 218 ]
MS1441-E-02
2013/09
- 14 -
[AK8140A]
Example1)
input frequency = 27MHz, output frequency = 123.75MHz
1. fVCO1
VCO1 Frequency:
247.5MHz
ODIV = 1
fVCO1 = 123.75MHz × 2 × 1 = 247.5MHz
2. fcmp1
Phase Comparison Frequency1: 9MHz
MDIV = 3
fcmp1 = 27MHz / 3 = 9MHz
3. NDIV1
Feedback Dividing Value:
NDIV1 = fVCO1 / fcmp1 = 247.5 / 9 = 27.5
NINT1 = round [ 247.5 / 9 ] = round [ 27.5 ] = 28
NINT1 = 28, NFRAC1 / 218 = -0.5
FRAC[17:0] = round [ ( 27.5 – 28 ) × 218 ] = -131072
Output Frequency Error: 0ppm
Example2)
input frequency = 16MHz, output frequency = 24.576MHz
1. fVCO1
VCO1 Frequency:
442.368MHz
ODIV = 9
fVCO1 = 24.576MHz × 2 × 9 = 442.368MHz
2. fcmp1
Phase Comparison Frequency1: 8MHz
MDIV = 2
fcmp1 = 16MHz / 2 = 8MHz
3. NDIV1
Feedback Dividing Value:
NDIV1 = fVCO1 / fcmp1 = 442.368 / 8 = 55.296
NINT1 = round [ 442.368 / 8 ] = round [ 55.296 ] = 55
NINT1 = 55, NFRAC1 / 218 = 0.296
FRAC[17:0] = round [ ( 55.296 – 55 ) × 218 ] = 77595
Output Frequency Error: 0.026ppm (0.64Hz)
MS1441-E-02
2013/09
- 15 -
[AK8140A]
PLL2 setting procedure
fin2
MDIV2
fcmp2
PFD/CP/LPF/VCO2
fVCO2
ODIVn
foutn
NDIV2
(INT+FRAC)
Figure 6. PLL2 Block Diagram
PLL2 is Fractional-N PLL.
Output frequency from PLL2 is determined by PLL2 parameter:
Refclk Dividing Value (MDIV2), Fractional-N2 Dividing Value (INT + FRAC), and Output Dividing Value
(ODIVn(n = 1-4)).
These parameters should be set as described below.
Step1. Deciding VCO2 Target Frequency.
VCO2 Frequency (fVCO2) is decided from CLKn Output frequency (foutn) and Output Dividing Value
(ODIVn, set by address: 0Dh ~ 13h). Set fVCO2 frequency between 80MHz to 230MHz.
80MHz ≤ fVCO2 ≤ 230MHz (fVCO2 = fount × ODIVn)
Step2. Deciding Phase Comparison Frequency.
Set MDIV2 Divider (MDIV[2:0], set by address: 31h or 35h) as fcmp2 becomes the greatest common
measure of fin2 and fvco2 between 2.5MHz to 14.735MHz.
2.5MHz ≤ fcmp2 ≤ 14.735MHz (fcmp2 = fin2 / MDIV2)
Step3. Deciding Feedback Dividing Value.
This value is decided by VCO2 frequency (fVCO2) and Phase Comparison Frequency (fcmp2).
6 bits integral part (NINT[5:0], set by address: 32h or 36h) and 9 bits fractional part (numerator:
NUME0[8:0] and denominator: NDENO0[8:0], set by address: 32h ~ 34h or 36h ~ 38h) is necessary
to be set.
NDIV2 
N
fVCO2
 N INT2  N FRAC2  N INT2  NUME
fcomp2
N DENO
Integral part = NINT2 = NINT[5:0] = round [ fVCO2 / fcmp2 ]
Fractional part = NFRAC2 = NNUME / NDENO is calculated as below.
First calculate optimum NDENO = NDENO[8:0]OPTIMUM.
NDENO[8:0]OPTIMUM can be obtained by substituting from 1 to 511 into the NDENO[8:0] in the
following formula.
MS1441-E-02
2013/09
- 16 -
[AK8140A]
When min [abs [ ( round [ NFRAC2 × NDENO[8:0] ] ) / NDENO[8:0] ) – NFRAC2 ] ]
NDENO[8:0]OPTIMUM = NDENO[8:0]
NUME[8:0]OPTIMUM can be obtained by substituting NDENO[8:0]OPTIMUM in the following formula.
NUME[8:0]OPTIMUM = round [ NFRAC2 × NDENO[8:0]OPTIMUM ]
Example1)
input frequency = 27MHz, output frequency = 54MHz
1. fVCO2
VCO2 Frequency:
216MHz
ODIV = 4
fVCO2 = 54MHz × 4 = 216MHz
2. fcmp2
Phase Comparison Frequency2: 27MHz
MDIV = 2
fcmp2 = 27MHz / 2 = 13.5MHz
3. NDIV2
Feedback Dividing Value:
NDIV2 = fVCO2 / fcmp2 = 216 / 13.5 = 16
NINT2 = round [ 216 / 13.5 ] = round [ 16 ] = 16
NINT2 = 16, NFRAC2 = 0
NFRAC2 = NNUME / NDENO = 0
Output Frequency Error: 0ppm
Example2)
input frequency = 27MHz, output frequency = 24.576MHz
1. fVCO2
VCO2 Frequency:
221.184MHz
ODIV = 9
fVCO2 = 24.576MHz × 9 = 221.184MHz
2. fcmp2
Phase Comparison Frequency2: 27MHz
MDIV = 2
fcmp2 = 27MHz / 2 = 13.5MHz
3. NDIV2
Feedback Dividing Value:
NDIV2 = fVCO2 / fcmp2 = 221.184 / 13.5 = 16.384
NINT2 = round [ 221.184 / 13.5 ] = round [ 16.384 ] = 16
NINT2 = 16, NFRAC2 = 0.384
When min [abs [ ( round [ 0.384 × 125 ] ) / 125 ) – 0.384 ] ]
NDENOOPTIMUM = 125
NUMEOPTIMUM = round [ 0.384 × 125 ] = 48
NFRAC = NNUME / NDENO = 48 / 125 = 0.384
Output Frequency Error: 0ppm
MS1441-E-02
2013/09
- 17 -
[AK8140A]
Programmable control setting
AK8140A has programmable control settings which can be controlled by “Serial programming interface mode
(refer to page. 26)” and “Programmable control pin mode (refer to page. 29)”. In the default setting,
programmable control settings can be controlled by “Serial programming interface mode”. “Programmable
control pin mode” is selected when SPICON bit = SPICON_SET bit = ‘1’.
Eight user-definable configurations are shown in following table by setting registers for address : 04h ~ 0Bh,
20h, 30h. These settings can be controlled by S0, S1, and S2 which are register setting or external control pins.
They can be programmed to any of the following functions:
- PLL1/2 frequency:
select from two variation of fVCO frequency set by the applicable register.
- CLK1-4 output state:
select from four states: enable/Hi-z/disable to L/ disable to H.
Table 1. Programmable Control Setting by S[2:0]
Programmable
Control
S2
S1
S0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
Address
0
1
0
1
0
1
0
1
PLL1
frequency
PLL2
frequency
FS1_0
FS1_1
FS1_2
FS1_3
FS1_4
FS1_5
FS1_6
FS1_7
20h
FS2_0
FS2_1
FS2_2
FS2_3
FS2_4
FS2_5
FS2_6
FS2_7
30h
Output State
CLK1
CLK2
CLK3
CLK4
CLK1_0[1:0]
CLK1_1[1:0]
CLK1_2[1:0]
CLK1_3[1:0]
CLK1_4[1:0]
CLK1_5[1:0]
CLK1_6[1:0]
CLK1_7[1:0]
04h, 05h
CLK2_0[1:0]
CLK2_1[1:0]
CLK2_2[1:0]
CLK2_3[1:0]
CLK2_4[1:0]
CLK2_5[1:0]
CLK2_6[1:0]
CLK2_7[1:0]
06h, 07h
CLK3_0[1:0]
CLK3_1[1:0]
CLK3_2[1:0]
CLK3_3[1:0]
CLK3_4[1:0]
CLK3_5[1:0]
CLK3_6[1:0]
CLK3_7[1:0]
08h, 09h
CLK4_0[1:0]
CLK4_1[1:0]
CLK4_2[1:0]
CLK4_3[1:0]
CLK4_4[1:0]
CLK4_5[1:0]
CLK4_6[1:0]
CLK4_7[1:0]
0Ah, 0Bh
The output frequency of PLL1 is chosen from two setups, PLL1_0 or PLL1_1.
Table 2. PLL1 Output Frequency Selection (Address: 20h)
FS1_x
PLL1 Frequency
0
PLL1_0
Predefined by address: 21h, 22h ~ 26h (Default)
1
PLL1_1
Predefined by address: 21h, 27h ~ 2Bh
(x=0-7)
MS1441-E-02
2013/09
- 18 -
[AK8140A]
The output frequency of PLL2 is chosen from two setups, PLL2_0 or PLL2_1.
Table 3. PLL2 Output Frequency Selection (Address: 30h)
FS2_x
PLL2 Frequency
0
PLL2_0
Predefined by address: 31h ~ 34h (Default)
1
PLL2_1
Predefined by address: 35h ~ 38h
(x = 0-7)
CLKn_x [1:0] bit set output state(CLKn_x) defined in the Table 1. on page 18 can be set up.
Table 4. CLK1-4 Output State Definition (Address: 04h ~ 0Bh)
CLKn_x [1:0]
00
01
10
11
CLKn Output State
CLK Enabled (Default)
Disable to Low
Disable to High
Disable to Hi-z
(n = 1-4, x = 0-7)
MS1441-E-02
2013/09
- 19 -
[AK8140A]
Power up sequence
Step1 : Supplying proper voltage to the power pins with PD_N pin = ‘L’.
*Note: VDD1-4 must be supplied simultaneously.
The assumption power start time to reach 90 % of VDD is within 20 ms.
Step2 : Set the PD_N pin to ‘H’ 1 μs after the point that the power supply reaches 90% of VDD.
Step3 : SCL / SDA are acceptable min 2ms later.
90% of VDD1-4
VDD1-4
Max 20ms
PD_N
Min 1s
Min 2ms
SDA / SCL input acceptable
SDA / SCL
CLK1-3
CLK4p
CLK4n
Figure 7. Power up sequence
MS1441-E-02
2013/09
- 20 -
[AK8140A]
Serial interface
Read/Write performance of serial interface is explained as below. The device address of AK8140A is Device
Address#1:1100, Device Address#2:1 A1 0. A1 is set by the register ‘SLV_ADD1’ bit (Address: 03h).
1
1
0
0
1
Device Adress#1
A1
R:1
W:0
0
Device Adress#2
Figure 8. The Device Address of AK8140A
Write operation
Write operation is described below. Data must be sent after sending 8 bits address and receiving ACK. It is
possible to write next address sequentially by sending next data instead of stop condition.
The address which is written after “13h/2Bh/38h” becomes “00h/20h/30h”.
S
T
A
R
T
SDA
Slave
Address
Register
Address(n)
Data(n)
S
T
Data(n+x) O
P
Data(n+1)
S
P
A1 W A
C
K
A
C
K
A
C
K
A
C
K
Figure 9. Write operation
Current address read
Current address read operation is described below. The data that is read by this operation is obtained as “last
accessed address + 1”. Therefore, it is consequent to return “13h/2Bh/38h” after accessing the address
“00h/20h/30h”.
S
T
A
R
T
SDA
Slave
Address
Data(n)
Data(n+1)
S
Data(n+x) T
O
P
Data(n+2)
S
P
A1 R A
C
K
A
C
K
A
C
K
A
C
K
Figure 10. Current address read
MS1441-E-02
2013/09
- 21 -
[AK8140A]
Random read
Random read operation is described below. It is necessary to operate “dummy write” before sending read
command. Dummy write is to send the address to read. It is possible to read next address sequentially by
sending ACK instead of stop condition.
S
T
A
R
T
SDA
Slave
Address
S
T
A
R
T
Word
Address(n)
S
Slave
Address
Data(n)
S
Data(n+x) T
O
P
Data(n+1)
S
A1 W A
C
K
A
C
K
P
A1 R A
C
K
A
C
K
A
C
K
Figure 11. Random read
Change data
Change data operation is described below. It is available when SCL is Low.
SCL
SDA
DATA STABLE
DATA
CHANGE
Figure 12. Change data
Start / Stop timing
Start / Stop timing is described below. The sequence is started when SDA goes from high to low during SCL is
high. The sequence is stopped when SDA goes from low to high during SCL is high.
SCL
SDA
START
STOP
Figure 13. Start / Stop timing
MS1441-E-02
2013/09
- 22 -
[AK8140A]
Register Configuration
AK8140A has Register can be programmed via the serial SDA/SCL interface.
The following table and explanations describe the programmable functions of AK8140A.
・Default register state is all ‘0’.
The default setting appears after power is supplied or after power-down/up sequence until it is
reprogrammed to a different setting.
・All data transferred with the MSB first.
・When a Certain Setting is set by three Address, write the data to all Address.
22h ~ 24h, 27h ~ 29h, 32h ~ 34h, 36h ~ 38h
FRACn[17:0] settings are updated after writing register 24h / 29h.
Setting procedure should be (1)22h / 27h , (2)23h / 28h, and then (3)24h / 29h.
NDIV2 Dividing Value settings are updated after writing register 34h / 38h.
Setting procedure should be (1)32h / 36h , (2)33h / 37h, and then (3)34h / 38h.
・Write ‘0’ to Reserved bits.
・The AK8140A prohibits to write ‘1’ to address 16h ~ 1Fh, 2Ch ~ 2Fh and 39h ~ FFh.
Table 5. AK8140A Register Configuration
Address
Register
Remarks
Device Setting
· Device Setting (S0/S1/S2) for Serial Programming mode
· Device Input clock (Crystal or Ext-in)
· Slave Address A1
00h
to
13h
Generic Configuration
Register
CLK1 to 4 Setting
· CLK1 to 4 Output State
(CLK enabled / Disabled to L / Disabled to H / Hi-Z)
· MUX1 to 4 (PLL1 fVCO1/ PLL2 fVCO2 / Input Bypass)
· ODIV1 to 4 Parameter
· CLK1 to 4 Output Buffer Drivability
· CLK4 Output Interface LVDS or CMOS
14h
to
15h
Reserved Bits
20h
to
2Bh
PLL1 Configuration
Register
PLL1 Setting
(Input CLK for PLL1, MDIV1, NDIV1, fVCO1 range)
p. 36
to
p. 42
30h
to
38h
PLL2 Configuration
Register
PLL2 Setting
(MDIV2, NDIV2, fVCO2 range)
p. 43
to
p. 47
Reserved Bits
MS1441-E-02
Page
p. 24
to
p. 34
p. 35
2013/09
- 23 -
[AK8140A]
Generic Configuration Register (Address: 00h ~ 13h)
Data
Addr
D7
D6
D5
D4
D3
D2
D1
D0
Remarks
Device
Control
Setting for
SDA/SCL
Mode
Reserved
Reserved
Reserved
Reserved
Reserved
S[2]
S[1]
S[0]
0
0
0
0
0
0
0
0
Reserved
0
Reserved
0
Reserved
0
Reserved
0
Reserved
0
Reserved
0
Reserved
0
Reserved
0
RID[1]
RID[0]
OSC_DIS
Reserved
R/W
R/W
R/W
R/W
0
0
0
0
0
0
0
0
Reserved
Reserved
PWDN
0
CLK1_0
[1]
0
0
CLK1_0
[0]
0
0
CLK1_1
[1]
0
SLV
_ADD1
0
CLK1_1
[0]
0
CLK1_4
[1]
0
CLK2_0
[1]
0
CLK2_4
[1]
0
CLK3_0
[1]
0
CLK3_4
[1]
0
CLK1_4
[0]
0
CLK2_0
[0]
0
CLK2_4
[0]
0
CLK3_0
[0]
0
CLK3_4
[0]
0
CLK1_5
[1]
0
CLK2_1
[1]
0
CLK2_5
[1]
0
CLK3_1
[1]
0
CLK3_5
[1]
0
CLK4_0
[1]
0
CLK4_4
[1]
0
MUX1[1]
0
CLK4_0
[0]
0
CLK4_4
[0]
0
MUX1[0]
0
CLK4_1
[1]
0
CLK4_5
[1]
0
MUX2[1]
0
00h
01h
02h
03h
04h
05h
06h
07h
08h
09h
0Ah
0Bh
0Ch
0
CLK1_2
[1]
0
CLK4
_CMOS
0
CLK1_2
[0]
0
CLK1_5
[0]
0
CLK2_1
[0]
0
CLK2_5
[0]
0
CLK3_1
[0]
0
CLK3_5
[0]
0
CLK1_6
[1]
0
CLK2_2
[1]
0
CLK2_6
[1]
0
CLK3_2
[1]
0
CLK3_6
[1]
0
CLK4_1
[0]
0
CLK4_5
[0]
0
MUX2[0]
0
CLK4_2
[1]
0
CLK4_6
[1]
0
MUX3[1]
0
Reserved
MS1441-E-02
0
CLK1_3
[1]
0
SPICON
_SET
0
CLK1_3
[0]
0
CLK1_6
[0]
0
CLK2_2
[0]
0
CLK2_6
[0]
0
CLK3_2
[0]
0
CLK3_6
[0]
0
CLK1_7
[1]
0
CLK2_3
[1]
0
CLK2_7
[1]
0
CLK3_3
[1]
0
CLK3_7
[1]
0
CLK1_7
[0]
0
CLK2_3
[0]
0
CLK2_7
[0]
0
CLK3_3
[0]
0
CLK3_7
[0]
0
CLK4_2
[0]
0
CLK4_6
[0]
0
MUX3[0]
0
CLK4_3
[1]
0
CLK4_7
[1]
0
MUX4[1]
0
CLK4_3
[0]
0
CLK4_7
[0]
0
MUX4[0]
0
SPICON
Reserved
Device
Overall
Setting
CLK1
Output
State
Setting
CLK2
Output
State
Setting
CLK3
Output
State
Setting
CLK4
Output
State
Setting
MUX1-4
Selection
2013/09
- 24 -
[AK8140A]
Addr
0Dh
0Eh
0Fh
10h
11h
12h
13h
Data
D7
D6
D5
D4
Reserved
Reserved
Reserved
Reserved
0
ODIV_1
[7]
0
0
ODIV_1
[6]
0
0
ODIV_1
[5]
0
0
ODIV_1
[4]
0
Reserved
Reserved
0
0
CLK3
MOD
0
CLK2
MOD
0
ODIV_2
[7]
0
ODIV_3
[7]
0
ODIV_2
[6]
0
ODIV_3
[6]
0
ODIV_2
[5]
0
ODIV_3
[5]
0
ODIV_2
[4]
0
ODIV_3
[4]
0
Reserved
Reserved
Reserved
Reserved
0
ODIV_4
[7]
0
0
ODIV_4
[6]
0
0
ODIV_4
[5]
0
0
ODIV_4
[4]
0
Remarks
D3
D2
D1
D0
CLK1
MOD
0
ODIV_1
[3]
0
DIV2_
BYPASS1
0
ODIV_1
[2]
0
ODIV_1
[9]
0
ODIV_1
[1]
0
ODIV_1
[8]
0
ODIV_1
[0]
0
Output
Buffer1
Drivability
DIV2_
DIV2_
BYPASS3 BYPASS2
0
0
ODIV_2
[9]
0
ODIV_2
[8]
0
Output
Buffer2/3
Drivability
ODIV_2
[1]
0
ODIV_3
[1]
0
ODIV_4
[9]
0
ODIV_4
[1]
0
ODIV_1
[0]
0
ODIV_3
[0]
0
ODIV_4
[8]
0
ODIV_4
[0]
0
ODIV_2
[3]
0
ODIV_3
[3]
0
CLK4
MOD
0
ODIV_4
[3]
0
MS1441-E-02
ODIV_2
[2]
0
ODIV_3
[2]
0
DIV2_
BYPASS4
0
ODIV_4
[2]
0
ODIV1
Setting
ODIV2
Setting
ODIV3
Setting
Output
Buffer4
Drivability
ODIV4
Setting
2013/09
- 25 -
[AK8140A]
Generic Configuration Register
Address:
00h Device Control Setting for Serial Programming Mode*
*Valid only when Serial Programming Mode (Address: 03h SPICON = “0”)
Data
Address
D7
D6
D5
D4
D3
D2
D1
00h
Reserved
Reserved
Reserved
Reserved
Reserved
S[2]
S[1]
D0
S[0]
S[2:0]: Device Control Setting for Serial Programming Mode
When SPICON bit is set to “0”, pin23 / 24 has SDA / SCL function and S[2:0] bits select the Device
Control Setting predefined as the Table 1. on page 18.
Table 6. S[2:0]: Device Control Setting for Serial Programming Mode
Address:
Device Control Setting
(see on page 18)
000
001
010
011
100
101
110
111
[S2:S0]=000 (Default)
[S2:S0]=001
[S2:S0]=010
[S2:S0]=011
[S2:S0]=100
[S2:S0]=101
[S2:S0]=110
[S2:S0]=111
01h Reserved
Data
Address
01h
S[2:0]
D7
D6
D5
D4
D3
D2
D1
D0
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
MS1441-E-02
2013/09
- 26 -
[AK8140A]
Address:
02h
Address
02h
Data
D7
D6
RID[1]*
RID[0]*
RID[1:0]: Device Identification
D5
D4
OSC_DIS Reserved
D3
D2
D1
D0
R/W
R/W
R/W
R/W
*read only
Table 7. RID[1:0]: Device Identification
RID[1:0]
Device Identification
00
01
10
11
AK8140A (Default)
OSC_DIS: Crystal Oscillator Circuit Enable/Disable Setting (MUX0)
Set the register followed by clock source, as explained in the following table.
Table 8. OSC_DIS: Crystal Oscillator Circuit Enable/Disable Setting
OSC_DIS
Crystal Oscillator Circuit State
0
1
Enable (Crystal Connection) (Default)
Disable (Ext-in : External Clock Signal Input)
R/W: User arbitrarily programmable bits (D3 ~ D0)
User can freely program these bits if necessary.
MS1441-E-02
2013/09
- 27 -
[AK8140A]
Address:
03h
Address
03h
Data
D7
D6
D5
D4
D3
D2
D1
D0
Reserved
Reserved
PWDN
SLV
_ADD1
Reserved
CLK4
_CMOS
SPICON
SPICON
_SET
PWDN: Device Power Down control
When set PWDN bit to “1”, only PLL1/2, ODIVn and Output Buffers is powered down. Register
settings are unchanged.
CLKn output state is followed by CLKn output state selection (Address: 04h ~ 0Bh, CLKn_x[1:0])
when the device is powered down by this bit. *1
Table 9. PWDN: Device Power Down control
PWDN
Device Setting
0
Device Active (Default)
1
Device Powered down*1
*1 It becomes CLKn = ‘L’, when CLKn output state is set to
CLKn_x[1:0] = “00” as “CLK enabled”.
SLV_ADD1: Slave Address Bits A1 Selection
SLV_ADD1 sets the A1 of the Slave Receiver Address.
The default setting SLV_ADD1= ‘0’ appears after power is supplied or after power-down/up
sequence until it is reprogrammed to a different setting.
See page 21 for more information about Slave Address setting.
Table 10. SLV_ADD1: Slave Address Bits A1 Selection
SLV_ADD1
Device Setting
0
1
A1 of Slave Address : 0 (Default)
A1 of Slave Address : 1
CLK4_CMOS: CLK4 Output Interface Selection LVDS/CMOS
CLK4_CMOS bit sets CLK4 output Interface, LVDS or LVCMOS.
Table 11. CLK4_CMOS: CLK4 Output Interface Selection LVDS/CMOS
CLK4_CMOS
CLK4 Output Setting
0
1
LVDS output (Default)
LVCMOS output
MS1441-E-02
2013/09
- 28 -
[AK8140A]
SPICON: Operation mode selection for pin 23/24
SPICON bit selects the operational mode of a dual functional pin 23/24.
When SPICON = “1”, pin 23/24 become S1/S2 pin for “Programmable Control pin”. The setup of
SPICON = "1" becomes effective by writing ’1’ to “SPICON_SET” bit additionally, and impossible
to use it as “Serial programming interface”. However, Once pin 23/24 play the role of S1/S2 pin,
S1/S2 pin can be temporarily used as SDA/SCL pin for “Serial programming interface” to change the
register setting by shorting VDDO1 to VSS.
The user can predefine up to eight device control settings by setting registers for address: 04h ~ 0Bh,
20h, 30h. These settings then can be selected by the external control pins, S0, S1, and S2.
Table 12. SPICON: Operation mode selection for pin 23/24
SPICON
Pin 23/24 operation
0
Serial programming interface*1 (Default)
Pin 23:SDA
Pin 24:SCL
1
Programmable control pin*2
Pin 23:S2
Pin 24:S1
*1 Address:00h becomes effective.
*2 S0/S1/S2 pin can control the Device Setting defined in the table on page 18.
SPICON_SET: SPICON Validation
“SPICON_SET” validates a setup of “SPICON” bit.
A setup written in SPICON by writing ‘1’ in this bit becomes effective.
When Set “SPICON_SET” = ‘1’, “SPICON_SET” bit should be written last.
Table 13. SPICON_SET: SPICON Validation
SPICON_SET
SPICON Setting
0
- (Default)
1
SPICON bit is Effective *1
*1 “SPICON_SET” bit should be written last.
Setup of “SPICON” bit is validated by the rising edge of a “SPICON_SET” bit.
MS1441-E-02
2013/09
- 29 -
[AK8140A]
Address:
04h ~ 0Bh
Address
Data
D7
D6
D5
D4
D3
D2
D1
D0
04h
CLK1_0
[1]
CLK1_0
[0]
CLK1_1
[1]
CLK1_1
[0]
CLK1_2
[1]
CLK1_2
[0]
CLK1_3
[1]
CLK1_3
[0]
05h
CLK1_4
[1]
CLK1_4
[0]
CLK1_5
[1]
CLK1_5
[0]
CLK1_6
[1]
CLK1_6
[0]
CLK1_7
[1]
CLK1_7
[0]
06h
CLK2_0
[1]
CLK2_0
[0]
CLK2_1
[1]
CLK2_1
[0]
CLK2_2
[1]
CLK2_2
[0]
CLK2_3
[1]
CLK2_3
[0]
07h
CLK2_4
[1]
CLK2_4
[0]
CLK2_5
[1]
CLK2_5
[0]
CLK2_6
[1]
CLK2_6
[0]
CLK2_7
[1]
CLK2_7
[0]
08h
CLK3_0
[1]
CLK3_0
[0]
CLK3_1
[1]
CLK3_1
[0]
CLK3_2
[1]
CLK3_2
[0]
CLK3_3
[1]
CLK3_3
[0]
09h
CLK3_4
[1]
CLK3_4
[0]
CLK3_5
[1]
CLK3_5
[0]
CLK3_6
[1]
CLK3_6
[0]
CLK3_7
[1]
CLK3_7
[0]
0Ah
CLK4_0
[1]
CLK4_0
[0]
CLK4_1
[1]
CLK4_1
[0]
CLK4_2
[1]
CLK4_2
[0]
CLK4_3
[1]
CLK4_3
[0]
0Bh
CLK4_4
[1]
CLK4_4
[0]
CLK4_5
[1]
CLK4_5
[0]
CLK4_6
[1]
CLK4_6
[0]
CLK4_7
[1]
CLK4_7
[0]
CLKn_x[1:0]
:
CLK1-4
Output State Definition
CLKn_x[1:0] bit set output state (CLKn_x) defined in the Table 1. on page 18 can be set up.
ODIVn function is stopped, when CLKn state is set to Disable (CLKn_x[1:0] = “01” / “10” / “11”).
When CLK4 state is set to Disable, CLK4p/4n each pin will be the following state.
CLK4_x[1:0] = “01” / “10” / “11” : CLK4p / 4n = ‘L’ / ‘L’, ‘H’ / ‘H’, ‘Hi-Z’ / ‘Hi-Z’
Table 14. CLK1-4 Output State Definition
CLKn_x[1:0]
00
01
10
11
CLKn Output State
CLK Enabled (Default)
Disable to Low
Disable to High
Disable to Hi-z
(n = 1-4, x = 0-7)
MS1441-E-02
2013/09
- 30 -
[AK8140A]
Address:
0Ch
Data
Address
0Ch
D7
D6
D5
D4
D3
D2
D1
D0
MUX1[1]
MUX1[0]
MUX2[1]
MUX2[0]
MUX3[1]
MUX3[0]
MUX4[1]
MUX4[0]
MUXn[1:0]: CLK1-4 Output Clock Source Selection
Select Output Clock Signal Source of CLK1-4.
Table 15. CLK1-4 Output Clock Source Selection
MUXn[1:0]
CLKn Output Clock Source
00
01
10
11
“L” Output (Default)
Input Bypass
PLL1 output (fvco1)
PLL2 output (fvco2)
(n = 1-4)
MS1441-E-02
2013/09
- 31 -
[AK8140A]
Address:
Address
0Dh ~ 13h
Data
D7
D6
D5
D4
D3
D2
D1
D0
0Dh
Reserved
Reserved
Reserved
Reserved
CLK1
MOD
DIV2_
BYPASS1
ODIV_1
[9]
ODIV_1
[8]
0Eh
ODIV_1
[7]
ODIV_1
[6]
ODIV_1
[5]
ODIV_1
[4]
ODIV_1
[3]
ODIV_1
[2]
ODIV_1
[1]
ODIV_1
[0]
0Fh
Reserved
Reserved
CLK3
MOD
CLK2
MOD
ODIV_2
[9]
ODIV_2
[8]
10h
ODIV_2
[7]
ODIV_2
[6]
ODIV_2
[5]
ODIV_2
[4]
ODIV_2
[3]
ODIV_2
[2]
ODIV_2
[1]
ODIV_2
[0]
11h
ODIV_3
[7]
ODIV_3
[6]
ODIV_3
[5]
ODIV_3
[4]
ODIV_3
[3]
ODIV_3
[2]
ODIV_3
[1]
ODIV_3
[0]
12h
Reserved
Reserved
Reserved
Reserved
CLK4
MOD
DIV2_
BYPASS4
ODIV_4
[9]
ODIV_4
[8]
13h
ODIV_4
[7]
ODIV_4
[6]
ODIV_4
[5]
ODIV_4
[4]
ODIV_4
[3]
ODIV_4
[2]
ODIV_4
[1]
ODIV_4
[0]
DIV2_
DIV2_
BYPASS3 BYPASS2
ODIVn Dividing Value Setting (ODIV_n / DIV2_BYPASSn)
The Dividing value of ODIVn is decided by “Frequency setting procedure” on page 14.
(1) The case ODIVn divides the clock signal of Input Bypass. (MUXn = “01”)
Set ODIVn dividing value according to explanation below, when ODIVn divides a clock signal of
Input Bypass.
ODIVn configuration is as the following Figure. ODIVn is calculated number by “Frequency setting
procedure” on page 14.
ODIVn
_2Divider
CLKn
ODIV_n
DIV2_BYPASSn
(0Dh ~ 13h)
ODIV_n
(0Dh ~ 13h)
Figure 14. ODIVn configuration
MS1441-E-02
2013/09
- 32 -
[AK8140A]
When set ODIVn dividing Value = 2 or odd number:
→ Bypass ODIVn_2 Divider, ODIV_n is the same number as ODIVn
Example1: ODIVn = 3
Bypass ODIVn_2 Divider (DIV2_BYPASSn = ‘1’)
ODIV_n = ODIVn = 3
When set ODIVn dividing Value even number beyond 4:
→ Using ODIVn_2 Divider, ODIV_n = ODIVn / 2
Example1: ODIVn = 10
Using ODIVn_2 Divider (DIV2_BYPASSn = “0”)
ODIV_n = ODIVn / 2 = 5
(2) The case ODIVn divides clock signal of PLL1 or PLL2 (MUXn = “10” or “11”)
Set ODIVn dividing value according to explanation below, when ODIVn divides clock signal of
PLL1 or PLL2
When ODIVn divides fvco1 (MUXn = “10”):
→ ODIVn = ODIVn (calculated value) / 2
When ODIVn divides fvco2 (MUXn = “11”):
→ ODIVn = ODIVn (calculated value)
ODIV_n[9:0]: ODIV_n dividing value Control (n = 1, 2, 4)
Set ODIV_n (n = 1, 2, 4) dividing value of ODIV1, 2, 4 as blow.
Table 16. ODIV_n dividing value Control (n = 1, 2, 4)
ODIV_n[9:0]
(n=1,2,4)
Dividing Value
00 0000 0000
00 0000 0001
00 0000 0010
:
11 1111 1111
1 (Default)
2
3
:
1024
MS1441-E-02
2013/09
- 33 -
[AK8140A]
ODIV_3[7:0]: ODIV_3 dividing value Control
Set ODIV_3 dividing value of ODIV3 as blow
Table 17. ODIV_3 dividing value Control
ODIV_3[7:0]
Dividing Value
0000 0000
0000 0001
0000 0010
:
1111 1111
1 (Default)
2
3
:
256
DIV2_BYPASSn (n = 1-4)
DIV2_BYPASSn selects whether ODIVn_2divider used. (n = 1-4)
Table 18. DIV2_BYPASSn (n = 1-4)
DIV2_BYPASSn
ODIVn_2Divider
0
Use the 2divider (Default)
1
Bypass the 2 divider
Effective only when MUXn (n = 1-4) = “00” / “01”
CLKnMOD: CLKn (n = 1-3) Output Buffer Drivability Setting
“CLKnMOD” set the drivability of Output Buffer of CLKn as the following table. (n = 1-3)
Table 19. CLKn (n = 1-3) Output Buffer Drivability Setting
CLKnMOD
0
1
CLKn Drivability
High when VDDO1, 2 = 1.8V (Default)
Low when VDDO1, 2 = 3.3V
(n = 1-3)
CLK4MOD: CLK4 Output Buffer Drivability Setting
“CLK4MOD” set the drivability of Output Buffer of CLK4 as the following table.
Table 20. CLK4 Output Buffer Drivability Setting
CLK4MOD
CLK4 Drivability
0
1
High when VDDO2=1.8V (Default)
Low when VDDO2=3.3V
MS1441-E-02
2013/09
- 34 -
[AK8140A]
Reserved Bits (Address: 14h ~ 15h)
Addr
14h
15h
Data
D7
Reserved
0
Reserved
0
D6
Reserved
0
Reserved
0
D5
Reserved
0
Reserved
0
D4
Reserved
0
Reserved
0
D3
Reserved
0
Reserved
0
D2
Reserved
0
Reserved
0
D1
Reserved
0
Reserved
0
D0
Reserved
0
Reserved
0
Remarks
Reserved
Reserved Bits
Address:
14h ~ 15h Reserved Bits
Address
Data
D7
D6
D5
D4
D3
D2
D1
D0
14h
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
15h
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
・Write ‘0’ to Reserved bits.
MS1441-E-02
2013/09
- 35 -
[AK8140A]
Addr
PLL1 Configuration Register (Address: 20h ~ 2Bh)
Data
Remarks
D7
D6
D5
D4
D3
D2
D1
D0
FS1_0
FS1_1
FS1_2
FS1_3
FS1_4
FS1_5
FS1_6
FS1_7
0
0
0
0
0
0
0
0
INPUT
_CK1
VCO1_
RANGE0
[1]
VCO1_
RANGE0
[0]
VCO1_
RANGE1
[1]
VCO1_
RANGE1
[0]
Reserved
Reserved
Reserved
PLL1 Input
Clock
Selection
0
0
0
0
0
0
0
0
fVCO1_
Range
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
0
0
0
0
0
0
FRAC0
[17]
0
FRAC0
[16]
0
FRAC0
[15]
0
FRAC0
[7]
0
FRAC0
[14]
0
FRAC0
[6]
0
FRAC0
[13]
0
FRAC0
[5]
0
FRAC0
[12]
0
FRAC0
[4]
0
FRAC0
[11]
0
FRAC0
[3]
0
FRAC0
[10]
0
FRAC0
[2]
0
FRAC0
[9]
0
FRAC0
[1]
0
FRAC0
[8]
0
FRAC0
[0]
0
PLL1_0
NDIV1
Fractional
Part Setting
Reserved
INT0[6]
INT0[5]
INT0[4]
INT0[3]
INT0[2]
INT0[1]
INT0[0]
0
0
0
0
0
0
0
0
PLL1_0
NDIV1
Integral
Part Setting
MDIVC0
[3]
0
MDIVC0
[2]
0
MDIVC0
[1]
0
MDIVC0
[0]
0
MDIVP0
[3]
0
MDIVP0
[2]
0
Reserved
Reserved
Reserved
Reserved
Reserved
0
0
0
0
0
0
MDIVP0
[0]
0
FRAC1
[16]
0
PLL1_0
MDIV1
Setting
Reserved
MDIVP0
[1]
0
FRAC1
[17]
0
28h
FRAC1
[15]
0
FRAC1
[14]
0
FRAC1
[13]
0
FRAC1
[12]
0
FRAC1
[11]
0
FRAC1
[10]
0
FRAC1
[9]
0
FRAC1
[8]
0
PLL1_1
NDIV1
Fractional
Part Setting
29h
FRAC1
[7]
0
FRAC1
[6]
0
FRAC1
[5]
0
FRAC1
[4]
0
FRAC1
[3]
0
FRAC1
[2]
0
FRAC1
[1]
0
FRAC1
[0]
0
Reserved
INT1[6]
INT1[5]
INT1[4]
INT1[3]
INT1[2]
INT1[1]
INT1[0]
0
0
0
0
0
0
0
0
PLL1_1
NDIV1
Integral
Part Setting
MDIVC1
[3]
0
MDIVC1
[2]
0
MDIVC1
[1]
0
MDIVC1
[0]
0
MDIVP1
[3]
0
MDIVP1
[2]
0
MDIVP1
[1]
0
MDIVP1
[0]
0
PLL1_1
MDIV1
Setting
PLL1
Frequency
Selection
20h
21h
22h
23h
24h
25h
26h
27h
2Ah
2Bh
MS1441-E-02
2013/09
- 36 -
[AK8140A]
PLL1 Configuration Register
PLL1 Block Diagram is as the following Figure.
Set PLL1 parameter according to Frequency Setting Procedure on page 14.
PLL1 has two Frequency mode predefined as PLL1_0 or PLL1_1 and selected by S[2:0] bits
(Address: 00h) or S0/S1/S2 pin.
Refer to Programmable Control pin setting on page 18 for more information about Frequency
selection.
VCO1
PLL1
Input CLK
(21h)
MDIV1 Setting
NDIV1 Setting
(26h / 2Bh) (22h ~ 25h, 27h ~ 2Ah)
fVCO1 range
(21h)
Figure 15. PLL1 Block Diagram
Address:
20h PLL1 Output Frequency selection
Data
Address
20h
D7
D6
D5
D4
D3
D2
D1
D0
FS1_0
FS1_1
FS1_2
FS1_3
FS1_4
FS1_5
FS1_6
FS1_7
FS1_x (x = 0-7): PLL1 Output Frequency selection
The output frequency of PLL1 is chosen from two setups, PLL1_0 and PLL1_1.
Table 21. PLL1 Output Frequency selection
FS1_x
PLL1 Frequency
0
PLL1_0
Predefined by address:21h, 22h ~ 26h (Default)
1
PLL1_1
Predefined by address:21h, 27h ~ 2Bh
(x=0-7)
MS1441-E-02
2013/09
- 37 -
[AK8140A]
Address:
Address
21h
21h PLL1 Input Clock Selection / fVCO1 range
Data
D7
D6
D5
D4
VCO1_
RANGE0
[1]
INPUT
_CK1
VCO1_
RANGE0
[0]
VCO1_
RANGE1
[1]
D3
D2
D1
D0
VCO1_
RANGE1
[0]
Reserved
Reserved
Reserved
INPUT_CK1: PLL1Input Clock Selection (MUX5)
Table 22. PLL1Input Clock Selection (MUX5)
INPUT_CK1
PLL1Input Clock
0
Input Clock
(Crystal Oscillation or External Clock Signal Input) (Default)
1
fvco2
PLL2 output clock
VCO1_RANGEn[1:0]: fVCO1 range selection (n = 0, 1)
“VCO1_RANGEn[1:0]” selects the fVCO1 frequency range. fVCO1 frequency can be set according
to Frequency Setting Procedure on page 14.
Table 23. fVCO1 range selection (n = 0, 1)
VCO1_RANGEn[1:0]
fVCO1 range
00
01
10
11
fVCO1 < 300MHz (Default)
300MHz ≤ fvco1 < 370MHz
370MHz ≤ fvco1
370MHz ≤ fvco1
MS1441-E-02
2013/09
- 38 -
[AK8140A]
Address:
Address
22h
27h
23h
28h
24h
29h
22h ~ 24h, 27h ~ 29h NDIV1 fractional part setting
Data
D7
D6
D5
D4
D3
D2
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
FRACn
[15]
FRACn
[7]
FRACn
[14]
FRACn
[6]
FRACn
[13]
FRACn
[5]
FRACn
[12]
FRACn
[4]
FRACn
[11]
FRACn
[3]
FRACn
[10]
FRACn
[2]
D1
D0
FRACn
FRACn
[17]
[16]
FRACn
FRACn
[9]
[8]
FRACn
FRACn
[1]
[0]
(n = 0, 1)
FRACn [17:0] : NDIV1 fractional part setting (n = 0, 1)
When a Certain Setting is set by three Address, write the data to all Address.
FRACn[17:0] settings are updated after writing register 24h / 29h.
Setting procedure should be (1)22h / 27h , (2)23h / 28h, and then (3)24h / 29h.
NDIV1 fractional part can be set according to Frequency Setting Procedure on page 14.
Fractional part of N is expressed by A/218. Here, the numerator A is defined by FRAC bits. FRAC is
treated as 2’s Complement which is able to set from -217 up to +217. Consequently, it is possible to set
from -0.5 to +0.5 for fractional part of N.
Table 24. NDIV1 fractional part setting (n = 0, 1)
FRACn [17:0]
A
Fractional Part
01 1111 1111 1111 1111
01 1111 1111 1111 1110
+131071
+131070
0.49999619..
0.49999237..
:
01 0000 0000 0000 0000
:
:
+65536
:
:
0.25
:
00 0000 0000 0000 0001
00 0000 0000 0000 0000
11 1111 1111 1111 1111
11 1111 1111 1111 1110
+1
0 (Default)
-1
-2
0.00000381..
0 (Default)
-0.00000381..
:
11 0000 0000 0000 0000
:
:
-65536
:
:
-0.25
:
10 0000 0000 0000 0001
10 0000 0000 0000 0000
-131071
-131072
-0.49999619..
-0.5
MS1441-E-02
2013/09
- 39 -
[AK8140A]
Address:
25h / 2Ah NDIV1 integral part settings
Data
Address
25h
2Ah
D7
D6
D5
D4
D3
D2
D1
D0
Reserved
INTn[6]
INTn[5]
INTn[4]
INTn[3]
INTn[2]
INTn[1]
INTn[0]
(n = 0, 1)
INTn [6:0]: NDIV1 integral part setting (n = 0, 1)
NDIV1 Integral part can be set according to Frequency Setting Procedure on page 14.
INTn[6:0] must be set from “0010001” to “1000100”, when PLL1 is used.
Table 25. NDIV1 integral part setting (n = 0, 1)
INTn [6:0]
integral part
000 0000
000 0001 ~ 001 0000
001 0001
001 0010
:
100 0011
100 0100
100 0101 ~ 111 1111
(Default)
Prohibited
17
18
:
67
68
Prohibited
MS1441-E-02
2013/09
- 40 -
[AK8140A]
Address:
26h / 2B MDIV1 Setting
Data
Address
26h
2Bh
D7
D6
D5
D4
D3
D2
MDIVCn
[3]
MDIVCn
[2]
MDIVCn
[1]
MDIVCn
[0]
MDIVPn
[3]
MDIVPn
[2]
D1
D0
MDIVPn MDIVPn
[1]
[0]
(n = 0, 1)
MDIV1 Dividing Value Settings (MDIVCn, MDIVPn)
MDIV1Configuration is as the following Figure.
MDIV1 Dividing Value can be set according to Frequency Setting Procedure on page 14.
MDIVCn[2]
MDIV1
PLL1 Input CLK
SEL
1/2
1/3 or 1/4
SEL
1/2
1/2
MDIVCn[3]
Phase
Comparator
Programmable Div.
MDIVPn[3:0]
MDIVCn[1:0]
Figure 16. MDIV1 Configuration
MDIVCn[3]: Programmable divider input selection (n = 0, 1)
Table 26. Programmable divider input selection (n = 0, 1)
MDIVCn[3]
Input of Programmable divide
0
1
PLL1 Input CLK (Default)
PLL1 Input CLK 1/2
MDIVCn[2]: 3 or 4 divider selection (n = 0, 1)
Table 27. 3 or 4 divider selection (n = 0, 1)
MDIVCn[2]
Selected divider
0
1
3 divider (Default)
4 divider
MS1441-E-02
2013/09
- 41 -
[AK8140A]
MDIVCn[1:0]: Input of Phase comparator selection (n = 0, 1)
Set MDIVCn[1:0] = “11”, when INPUT_CK1 is set to “1” (Address = 21h).
Table 28. Input of Phase comparator selection (n = 0, 1)
MDIVCn[1:0]
Input of Phase comparator
00
01
10
11
PLL1 Input CLK (Default)
PLL1 Input CLK 1/2
3 or4 divider output
Programmable divider Output
MDIVPn[3:0]: Programmable divider control (n = 0, 1)
MDIVPn[3:0] must be set from “0001” to “1111”, when PLL1 is used.
Table 29. MDIVPn Programmable divider control (n = 0, 1)
MDIVPn[3:0]
Programmable Divider dividing value
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
(Default)
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
MS1441-E-02
2013/09
- 42 -
[AK8140A]
PLL2 Configuration Register (Address: 30h ~ 38h)
Data
Addr
D7
D6
D5
D4
D3
D2
D1
D0
Remarks
PLL2
Frequency
Selection
FS2_0
FS2_1
FS2_2
FS2_3
FS2_4
FS2_5
FS2_6
FS2_7
0
0
0
0
0
0
0
0
VCO2_
RANGE0
[1]
VCO2_
RANGE0
[0]
Reserved
PLL2_0
MDIV2
Setting
30h
Reserved
Reserved
MDIV0[2] MDIV0[1] MDIV0[0]
0
0
0
0
0
0
0
0
fVCO2_
Range0
NINT0
[5]
0
NUME0
[6]
0
DENO0
[7]
0
NINT0
[4]
0
NUME0
[5]
0
DENO0
[6]
0
NINT0
[3]
0
NUME0
[4]
0
DENO0
[5]
0
NINT0
[2]
0
NUME0
[3]
0
DENO0
[4]
0
NINT0
[1]
0
NUME0
[2]
0
DENO0
[3]
0
NINT0
[0]
0
NUME0
[1]
0
DENO0
[2]
0
NUME0
[8]
0
NUME0
[0]
0
DENO0
[1]
0
NUME0
[7]
0
DENO0
[8]
0
DENO0
[0]
0
PLL2_0
NDIV2
Setting
VCO2_
RANGE1
[1]
VCO2_
RANGE1
[0]
Reserved
PLL2_1
MDIV2
Setting
31h
32h
33h
34h
Reserved
Reserved
MDIV1[2] MDIV1[1] MDIV1[0]
0
0
0
0
0
0
0
0
fVCO2_
Range1
NINT1
[5]
0
NUME1
[6]
0
NINT1
[4]
0
NUME1
[5]
0
NINT1
[3]
0
NUME1
[4]
0
NINT1
[2]
0
NUME1
[3]
0
NINT1
[1]
0
NUME1
[2]
0
NINT1
[0]
0
NUME1
[1]
0
NUME1
[8]
0
NUME1
[0]
0
NUME1
[7]
0
DENO1
[8]
0
PLL2_1
NDIV2
Setting
DENO1
[7]
0
DENO1
[6]
0
DENO1
[5]
0
DENO1
[4]
0
DENO1
[3]
0
DENO1
[2]
0
DENO1
[1]
0
DENO1
[0]
0
35h
36h
37h
38h
MS1441-E-02
2013/09
- 43 -
[AK8140A]
PLL2 Configuration Register
PLL2 Block Diagram is as the following Figure.
Set PLL2 parameter according to. Frequency Setting Procedure on page 16.
PLL2 has two Frequency mode predefined as PLL2_0 or PLL2_1 and selected by S[2:0] bits
(Address: 00h) or S0/S1/S2 pin.
Refer to Programmable Control pin setting on page 18 for more information about Frequency
selection.
fin2
MDIV2 Setting
NDIV2 Setting
(31h / 35h)
(32h ~ 34h, 36h ~ 38h)
fVCO2 range
(31h /35h)
Figure 17. PLL2 Block Diagram
Address:
30h PLL2 Output Frequency selection
Data
Address
30h
D7
D6
D5
D4
D3
D2
D1
D0
FS2_0
FS2_1
FS2_2
FS2_3
FS2_4
FS2_5
FS2_6
FS2_7
FS2_x (x = 0-7): PLL2 Output Frequency selection
The output frequency of PLL2 is chosen from two setups, PLL2_0 or PLL2_1.
Table 30. PLL2 Output Frequency selection
FS2_x
PLL2 Frequency
0
PLL2_0
Predefined by address: 31h ~ 34h (Default)
1
PLL2_1
Predefined by address: 35h ~ 38h
(x=0-7)
MS1441-E-02
2013/09
- 44 -
[AK8140A]
Address:
Address
31h
35h
31h / 35h MDIV2 and fVCO2 frequency range Setting
Data
D7
D6
D5
D4
D3
D2
D1
D0
VCO2_
VCO2_
Reserved Reserved MDIVn[2] MDIVn[1] MDIVn[0] RANGEn RANGEn
[1]
[0]
Reserved
(n = 0, 1)
MDIVn[2:0]: MDIV2 Dividing Value Setting (n = 0, 1)
MDIV2Configuration is as the following Figure.
MDIV2 Dividing Value can be set according to Frequency Setting Procedure on page 16.
MDIV2
SEL
MUX0
Phase
Comparator
MDIVn[2:0]
Figure 18. MDIV2 configuration
Table 31. MDIVn Programmable divider control (n = 0, 1)
MDIVn[2:0]
MDIV2 Dividing Value
000
001
010
011
100
Except the above
1 (Default)
2
4
8
16
Prohibited (Device is Reset)
VCO2_RANGEn[1:0]: fVCO2 range selection (n = 0, 1)
“VCO2_RANGEn[1:0]” selects the fVCO2 frequency range. fVCO2 frequency can be set according
to Frequency Setting Procedure on page 16.
Table 32. fVCO2 range selection (n = 0, 1)
VCO2_RANGEn[1:0]
fVCO2 range
00
01
10
11
fVCO2 < 117.5MHz (Default)
117.5MHz ≤ fVCO2 < 155MHz
155MHz ≤ fVCO2 < 192.5MHz
192.5MHz ≤ fVCO2
MS1441-E-02
2013/09
- 45 -
[AK8140A]
Address:
Address
32h ~ 34h, 36h ~ 38h NDIV2 Dividing Value (n = 0, 1)
Data
D7
D6
D5
D4
D3
D2
D1
D0
32h
36h
NINTn
[5]
NINTn
[4]
NINTn
[3]
NINTn
[2]
NINTn
[1]
NINTn
[0]
NUMEn
[8]
NUMEn
[7]
33h
37h
NUMEn
[6]
NUMEn
[5]
NUMEn
[4]
NUMEn
[3]
NUMEn
[2]
NUMEn
[1]
NUMEn
[0]
DENOn
[8]
34h
38h
DENOn
[7]
DENOn
[6]
DENOn
[5]
DENOn
[4]
DENOn
[3]
DENOn
[2]
DENOn
[1]
DENOn
[0]
(n = 0, 1)
When a Certain Setting is set by three Address, write the data to all Address.
NDIV2 Dividing Value settings are updated after writing register 34h / 38h.
Setting procedure should be (1)32h / 36h , (2)33h / 37h, and then (3)34h / 38h.
NDIV2 dividing value can be set according to Frequency Setting Procedure on page 16.
NDIV2 Dividing Value is decided by setting NINTn, NUMEn and DENOn.
NINTn[5:0]: NDIV2 integral part setting (n = 0, 1)
NINTn[5:0] must be set from “010000” to “111001”, when PLL2 is used.
Table 33. NDIV2 integral part setting (n = 0, 1)
NINTn[5:0]
NDIV2 Integral Part
000000
000001 ~ 001111
010000
:
100011
100100
100101
:
111001
111010 ~ 111111
(Default)
prohibited
16
:
35
36
37
:
57
prohibited
MS1441-E-02
2013/09
- 46 -
[AK8140A]
NUMEn[8:0]: NDIV2 Numerator of fractional part setting (n = 0, 1)
Table 34. NDIV2 Numerator of fractional part setting (n = 0, 1)
NUMEn[8:0]
NDIV2 Numerator of fractional part setting
000000000
000000001
:
111111110
111111111
0 (Default) (Integer-N Mode)
1
:
510
511
DENOn[8:0]: NDIV2 Denominator of fractional part setting (n = 0, 1)
DENOn[8:0] must be set from “000000001” to “111111111”, when PLL2 is used.
Table 35. NDIV2 Denominator of fractional part setting (n = 0, 1)
DENOn[8:0]
NDIV2 Denominator of fractional part setting
000000000
000000001
:
111111110
111111111
(Default)
1
:
510
511
MS1441-E-02
2013/09
- 47 -
[AK8140A]
10. Recommended External Circuits
Typical Connection Diagram
VDDO1
VDDO2
VDD
C9
+
+
C8
+
C7
GND
Cext1
GND
GND
1:XIN
24:S1/SCL
2:XOUT
23:S2/SDA
3:VDD1
22:CLK3
4:VSS1
21:VSSO2
5:GND
20:VDDO2
6:S0
19:CLK4n
CLK4n output*
7:VSS2
18:CLK4p
CLK4p output*
8:VDD2
17:PD_N
9:VDD3
16:CLK2
10:VSS3
15:VDDO1
11:VSS4
14:VSSO1
12:VDD4
13:CLK1
I2C
Control
Crystal
Cext2
CLK3 output
C1
C6
SW1
C2
SW2
CLK2 output
C3
C5
C4
CLK1 output
GND
Figure 19. Typical Connection Diagram
C1, C2, C3, C4, C5, C6:
C7, C8, C9:
Cext1, Cext2:
SW1:
SW2:
0.1μF Ceramic Capacitor
Electrolytic capacitor
Depends on crystal characteristics. Refer to the specification of the crystal.
This switch controls ‘H’ and ‘L’ of S0 control pin. Refer to the datasheet about S0
control.
This switch that controls ‘H’ and ‘L’ of PD_N pin. Refer to the datasheet about
PD_N control.
*1: When CLK4n and CLK4p pin output LVDS clock, refer to the LVDS Clock measurement circuit shown
on this datasheet page 11.
*2: No. 23 SDA/S2 pin has the internal pull-up 500kΩ resister.
*3: No. 24 SCL/S1 pin has the internal pull-down 500kΩ resister.
MS1441-E-02
2013/09
- 48 -
[AK8140A]
Crystal Unit
Table 36. DAISHINKU Corp. DSX321G
Parameter
Symbol
Nominal frequency
Equivalent resistance
Shunt capacitance
Motional capacitance
Motional inductance
Drive Level
MIN.
f0
R1
C0
C1
L1
TYP.
25.000
18.2
1.22
4.724
8.585
30
MAX.
60
L1
R1
Unit
Remark
MHz
Ω
pF
fF
mH
W
CL = 8pF
±2 W
C1
Crystal unit
C0
Load capacitance CL
CL
Figure 20. Equivalent parameter and load
MS1441-E-02
2013/09
- 49 -
[AK8140A]
11. Package
Outline Dimensions
24pin HTSSOP (Unit : mm)
7.8±0.10
0.15±0.05
13
1
6.40±0.15
4.40±0.10
0.6±0.15
24
12
0.25±0.05
0.65
0°~8°
S
0.10±0.05
0.10
S
12
(2.74)
1
1.10 MAX
0.90±0.05
24
13
(4.54)
Note:
(1) The Heat sink pad on the bottom surface of the package is recommended to solder to the PCB.
MS1441-E-02
2013/09
- 50 -
[AK8140A]
Marking
a: #1 Pin Index
b: Part number
c: Date code (6 digits)
24
13
b
8140A
xxxxxx
c
a
12
1
MS1441-E-02
2013/09
- 51 -
[AK8140A]
12. Important Notice
IMPORTANT NOTICE
0. Asahi Kasei Microdevices Corporation (“AKM”) reserves the right to make changes to the information
contained in this document without notice. When you consider any use or application of AKM product
stipulated in this document (“Product”), please make inquiries the sales office of AKM or authorized
distributors as to current status of the Products.
1. All information included in this document are provided only to illustrate the operation and application
examples of AKM Products. AKM neither makes warranties or representations with respect to the
accuracy or completeness of the information contained in this document nor grants any license to any
intellectual property rights or any other rights of AKM or any third party with respect to the information in
this document. You are fully responsible for use of such information contained in this document in your
product design or applications. AKM ASSUMES NO LIABILITY FOR ANY LOSSES INCURRED BY
YOU OR THIRD PARTIES ARISING FROM THE USE OF SUCH INFORMATION IN YOUR
PRODUCT DESIGN OR APPLICATIONS.
2. The Product is neither intended nor warranted for use in equipment or systems that require extraordinarily
high levels of quality and/or reliability and/or a malfunction or failure of which may cause loss of human
life, bodily injury, serious property damage or serious public impact, including but not limited to,
equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment,
equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment,
equipment used to control combustions or explosions, safety devices, elevators and escalators, devices
related to electric power, and equipment used in finance-related fields. Do not use Product for the above
use unless specifically agreed by AKM in writing.
3. Though AKM works continually to improve the Product’s quality and reliability, you are responsible for
complying with safety standards and for providing adequate designs and safeguards for your hardware,
software and systems which minimize risk and avoid situations in which a malfunction or failure of the
Product could cause loss of human life, bodily injury or damage to property, including data loss or
corruption.
4. Do not use or otherwise make available the Product or related technology or any information contained in
this document for any military purposes, including without limitation, for the design, development, use,
stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products
(mass destruction weapons). When exporting the Products or related technology or any information
contained in this document, you should comply with the applicable export control laws and regulations and
follow the procedures required by such laws and regulations. The Products and related technology may not
be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.
5. Please contact AKM sales representative for details as to environmental matters such as the RoHS
compatibility of the Product. Please use the Product in compliance with all applicable laws and regulations
that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. AKM assumes no liability for damages or losses occurring as a result of noncompliance with
applicable laws and regulations.
6. Resale of the Product with provisions different from the statement and/or technical features set forth in this
document shall immediately void any warranty granted by AKM for the Product and shall not create or
extend in any manner whatsoever, any liability of AKM.
7. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written
consent of AKM.
MS1441-E-02
2013/09
- 52 -