A-POWER AP40G120W

AP40G120W
RoHS-compliant Product
Advanced Power
Electronics Corp.
N-CHANNEL INSULATED GATE
BIPOLAR TRANSISTOR
Features
C
VCES
1200V
IC
▼ Advanced IGBT Technology
▼ Low Saturation Voltage
VCE(sat)=3.15V@IC=40A
▼ Industry Standard TO-3P Package
40A
C
G
G
TO-3P
C
E
E
Absolute Maximum Ratings
Parameter
Symbol
Rating
Units
VCES
Collector-Emitter Voltage
1200
V
VGE
Gate-Emitter Voltage
+20
V
IC@TC=25℃
Continuous Collector Current
80
A
IC@TC=100℃
Continuous Collector Current
40
A
ICM
Pulsed Collector Current1
160
A
W
PD@TC=25℃
Maximum Power Dissipation
208
TSTG
Storage Temperature Range
-55 to 150
℃
TJ
Operating Junction Temperature Range
-55 to 150
℃
TL
Maximum Lead Temp. for Soldering Purposes
300
℃
, 1/8" from case for 10 seconds .
Notes:
1.Pulse width limited by max. junction temperature .
Thermal Data
Symbol
Value
Units
Rthj-c
Thermal Resistance Junction-Case
Parameter
0.6
℃/W
Rthj-a
Thermal Resistance Junction-Ambient
40
℃/W
Electrical Characteristics@T j=25oC(unless otherwise specified)
Symbol
Test Conditions
VGE=+20V, VCE=0V
IGES
Parameter
Gate-to-Emitter Leakage Current
ICES
Collector-Emitter Leakage Current
VCE=1200V, VGE=0V
VCE(sat)
Collector-Emitter Saturation Voltage
VGE=15V, IC=40A
Min.
-
Typ.
-
Max.
+100
Units
nA
-
-
500
uA
-
3.15
3.4
V
VGE=15V, IC=50A
-
3.2
3.71
V
VGE(th)
Gate Threshold Voltage
VCE=VGE, IC=250uA
3
-
7
V
Qg
Total Gate Charge
IC=40A
-
160
260
nC
Qge
Gate-Emitter Charge
VCC=500V
-
25
-
nC
Qgc
Gate-Collector Charge
-
90
-
nC
td(on)
Turn-on Delay Time
-
35
-
ns
tr
Rise Time
-
30
-
ns
td(off)
Turn-off Delay Time
-
150
-
ns
tf
Fall Time
VGE=15V
VCC=600V,
Ic=40A,
VGE=15V,
RG=5Ω,
Inductive Load
-
260
520
ns
Eon
Turn-On Switching Loss
-
1.7
-
mJ
Eoff
Turn-Off Switching Loss
-
3
-
mJ
Cies
Input Capacitance
VGE=0V
-
3030
4800
pF
Coes
Output Capacitance
VCE=30V
-
205
-
pF
Cres
Reverse Transfer Capacitance
f=1.0MHz
-
15
-
pF
Data and specifications subject to change without notice
1
201104072
AP40G120W
300
160
20V
18V
15V
IC , Collector Current (A)
250
12V
200
20V
18V
15V
12V
o
T C =150 C
IC , Collector Current (A)
o
T C =25 C
150
V GE =10V
100
120
V GE =10V
80
40
50
0
0
0
3
6
9
0
12
6
9
12
V CE , Collector-Emitter Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
160
6
V GE = 15 V
V GE =15V
T C =25 ℃
120
T C =150 ℃
VCE(sat) ,Saturation Voltage(V)
140
IC , Collector Current(A)
3
V CE , Collector-Emitter Voltage (V)
100
80
60
40
5
I C = 80 A
4
I C =40A
3
2
20
0
1
0
2
4
6
8
0
40
80
120
160
Junction Temperature ( o C)
V CE , Collector-Emitter Voltage (V)
Fig 3. Typical Saturation Voltage
Characteristics
Fig 4. Typical Collector- Emitter Voltage
v.s. Junction Temperature
1.4
f=1.0MHz
10000
Capacitance (pF)
Normalized VGE(th) (V)
C ies
1.1
C oes
100
0.8
C res
1
0.5
-50
0
50
100
Junction Temperature ( o C )
Fig 5. Gate Threshold Voltage
150
1
10
100
V CE , Collector-Emitter Voltage (V)
Fig 6. Typical Capacitance Characterisitics
v.s. Junction Temperature
2
AP40G120W
1
Normalized Thermal Response (Rthjc)
IC, Peak Collector Current(A)
1000
100
10
V GE =15V
T j =150 o C
Duty factor=0.5
0.2
0.1
0.1
0.05
PDM
t
T
0.02
Duty factor = t/T
Peak Tj = PDM x Rthjc + T C
0.01
Single Pulse
1
0.01
10
100
1000
10000
0.00001
0.0001
0.001
V CE , Collector-Emitter Voltage(V)
0.01
0.1
1
t , Pulse Width (s)
Fig 7. Rever Bias SOA
Fig 8. Effective Transient Thermal
Impedance
20
20
TC=150oC
I C = 80 A
40 A
20 A
15
VCE , Collector-Emitter Voltage(V)
VCE , Collector-Emitter Voltage(V)
T C =25 o C
10
5
0
IC=80A
40A
20 A
15
10
5
0
0
4
8
12
16
20
0
8
12
16
20
V GE , Gate-Emitter Voltage(V)
V GE , Gate-Emitter Voltage(V)
Fig 9. Saturation Voltage vs. VGE
Fig 10. Saturation Voltage vs. VGE
250
VGE , Gate -Emitter Voltage (V)
16
200
Power Dissipation (W)
4
150
100
50
I C = 4 0A
V CC =300V
V CC =400V
V CC =500V
12
8
4
0
0
0
50
100
150
200
Junction Temperature ( ℃ )
Fig11. Power Dissipation vs. Junction
Temperature
0
40
80
120
160
Q G , Gate Charge (nC)
Fig 12. Gate Charge Characterisitics
3