AP40G120W RoHS-compliant Product Advanced Power Electronics Corp. N-CHANNEL INSULATED GATE BIPOLAR TRANSISTOR Features C VCES 1200V IC ▼ Advanced IGBT Technology ▼ Low Saturation Voltage VCE(sat)=3.15V@IC=40A ▼ Industry Standard TO-3P Package 40A C G G TO-3P C E E Absolute Maximum Ratings Parameter Symbol Rating Units VCES Collector-Emitter Voltage 1200 V VGE Gate-Emitter Voltage +20 V IC@TC=25℃ Continuous Collector Current 80 A IC@TC=100℃ Continuous Collector Current 40 A ICM Pulsed Collector Current1 160 A W PD@TC=25℃ Maximum Power Dissipation 208 TSTG Storage Temperature Range -55 to 150 ℃ TJ Operating Junction Temperature Range -55 to 150 ℃ TL Maximum Lead Temp. for Soldering Purposes 300 ℃ , 1/8" from case for 10 seconds . Notes: 1.Pulse width limited by max. junction temperature . Thermal Data Symbol Value Units Rthj-c Thermal Resistance Junction-Case Parameter 0.6 ℃/W Rthj-a Thermal Resistance Junction-Ambient 40 ℃/W Electrical Characteristics@T j=25oC(unless otherwise specified) Symbol Test Conditions VGE=+20V, VCE=0V IGES Parameter Gate-to-Emitter Leakage Current ICES Collector-Emitter Leakage Current VCE=1200V, VGE=0V VCE(sat) Collector-Emitter Saturation Voltage VGE=15V, IC=40A Min. - Typ. - Max. +100 Units nA - - 500 uA - 3.15 3.4 V VGE=15V, IC=50A - 3.2 3.71 V VGE(th) Gate Threshold Voltage VCE=VGE, IC=250uA 3 - 7 V Qg Total Gate Charge IC=40A - 160 260 nC Qge Gate-Emitter Charge VCC=500V - 25 - nC Qgc Gate-Collector Charge - 90 - nC td(on) Turn-on Delay Time - 35 - ns tr Rise Time - 30 - ns td(off) Turn-off Delay Time - 150 - ns tf Fall Time VGE=15V VCC=600V, Ic=40A, VGE=15V, RG=5Ω, Inductive Load - 260 520 ns Eon Turn-On Switching Loss - 1.7 - mJ Eoff Turn-Off Switching Loss - 3 - mJ Cies Input Capacitance VGE=0V - 3030 4800 pF Coes Output Capacitance VCE=30V - 205 - pF Cres Reverse Transfer Capacitance f=1.0MHz - 15 - pF Data and specifications subject to change without notice 1 201104072 AP40G120W 300 160 20V 18V 15V IC , Collector Current (A) 250 12V 200 20V 18V 15V 12V o T C =150 C IC , Collector Current (A) o T C =25 C 150 V GE =10V 100 120 V GE =10V 80 40 50 0 0 0 3 6 9 0 12 6 9 12 V CE , Collector-Emitter Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 160 6 V GE = 15 V V GE =15V T C =25 ℃ 120 T C =150 ℃ VCE(sat) ,Saturation Voltage(V) 140 IC , Collector Current(A) 3 V CE , Collector-Emitter Voltage (V) 100 80 60 40 5 I C = 80 A 4 I C =40A 3 2 20 0 1 0 2 4 6 8 0 40 80 120 160 Junction Temperature ( o C) V CE , Collector-Emitter Voltage (V) Fig 3. Typical Saturation Voltage Characteristics Fig 4. Typical Collector- Emitter Voltage v.s. Junction Temperature 1.4 f=1.0MHz 10000 Capacitance (pF) Normalized VGE(th) (V) C ies 1.1 C oes 100 0.8 C res 1 0.5 -50 0 50 100 Junction Temperature ( o C ) Fig 5. Gate Threshold Voltage 150 1 10 100 V CE , Collector-Emitter Voltage (V) Fig 6. Typical Capacitance Characterisitics v.s. Junction Temperature 2 AP40G120W 1 Normalized Thermal Response (Rthjc) IC, Peak Collector Current(A) 1000 100 10 V GE =15V T j =150 o C Duty factor=0.5 0.2 0.1 0.1 0.05 PDM t T 0.02 Duty factor = t/T Peak Tj = PDM x Rthjc + T C 0.01 Single Pulse 1 0.01 10 100 1000 10000 0.00001 0.0001 0.001 V CE , Collector-Emitter Voltage(V) 0.01 0.1 1 t , Pulse Width (s) Fig 7. Rever Bias SOA Fig 8. Effective Transient Thermal Impedance 20 20 TC=150oC I C = 80 A 40 A 20 A 15 VCE , Collector-Emitter Voltage(V) VCE , Collector-Emitter Voltage(V) T C =25 o C 10 5 0 IC=80A 40A 20 A 15 10 5 0 0 4 8 12 16 20 0 8 12 16 20 V GE , Gate-Emitter Voltage(V) V GE , Gate-Emitter Voltage(V) Fig 9. Saturation Voltage vs. VGE Fig 10. Saturation Voltage vs. VGE 250 VGE , Gate -Emitter Voltage (V) 16 200 Power Dissipation (W) 4 150 100 50 I C = 4 0A V CC =300V V CC =400V V CC =500V 12 8 4 0 0 0 50 100 150 200 Junction Temperature ( ℃ ) Fig11. Power Dissipation vs. Junction Temperature 0 40 80 120 160 Q G , Gate Charge (nC) Fig 12. Gate Charge Characterisitics 3