BL22P14 LCD Type 8-Bit OTP MCU USER M ANU V 1 . 0 ( 2010-4-15) 上海贝岭股份有限公司 Shanghai Belling Co., Ltd. 上海贝岭股份有限公司 上海贝岭股份有限公司 Shanghai Belling Co., Ltd. BL22P14BM22P14 USER MANUAL 用户手册 LCD Type 8-bit OTP MCU BL22P14 1. General Description BL22P14 is an 8-bit high performance single chip microcontroller. It provides two group configurable I/O ports, two timers and multiple LCD for household appliances. 2. Features 8-bit CISC core(compatible with Motorola HC05) Low power(1uA@5V in stop mode) Operating Voltage: 2.5-5.5V(<=4MHz), 3.5-5.5V(<=8MHz) Operating temperature: -40℃~85℃ 4K*8bit ROM 128byte RAM LCD diver with 18*4, 19*3, 19*2 and 19*1 14 bidirectional I/O PA as keyboard interrupt source Two external interrupt An 8-bit Timer A 16-bit Timer Watch dog Buzzer output LVD(typical 3.3V) LVR(typical 3.0V) 3. .Pin Assignments TEL:86-21-64850700 WEB: www.belling.com.cn Page 1 of 33 上海贝岭股份有限公司 上海贝岭股份有限公司 Shanghai Belling Co., Ltd. TEL:86-21-64850700 WEB: www.belling.com.cn BL22P14BM22P14 USER MANUAL 用户手册 Page 2 of 33 上海贝岭股份有限公司 上海贝岭股份有限公司 Shanghai Belling Co., Ltd. BL22P14BM22P14 USER MANUAL 用户手册 4. Pin Descriptions SSOP48/LQFP48/SOP28/SOP24 Pin name In/Out Share Description PA0 I/O BZ0-buzzer output(+) PA1 I/O BZ1-buzzer output(-) PA2 I/O PA3 I/O PA4 I/O PA5 I/O PA6 I/O PA7 I/O PB0 I/O INT0 PB1 I/O INT1 PB2 I/O TMR0-TIMER0 input PB3 I/O TMR1-TIMER1 input PB4 I/O PB5 I/O PFD output VSS Pin Description Bit-programmable I/O port for Schmitt trigger input or push-pull, each bit can be configured as a input with pull-high resistor or keyboard interrupt input Bit-programmable I/O port for Schmitt trigger input or push-pull, each bit can be configured as a input with pull-high resistor Ground VLCD LCD voltage supply V1 LCD filter capacitor V2 COM0 O COM1 O COM2 O COM3/SEG18 O COM or SEG of LCD SEG17~SEG0 O SEG output of LCD OSC4 O OSC3 I TEL:86-21-64850700 COM output of LCD 32768Hz crystal oscillator WEB: www.belling.com.cn Page 3 of 33 上海贝岭股份有限公司 上海贝岭股份有限公司 BL22P14BM22P14 USER MANUAL 用户手册 Shanghai Belling Co., Ltd. VDD Power supply OSC2 O Crystal oscillator or RC OSC1 I clock RSTB I VPP System reset input 5. Function Descriptions 5.1 Block Diagram 5.2 Address Spaces $0000-$006F: Control registers $0070-$007F: LCD data $0080-$00FF: RAM $0100-$0FFF: Reserved $1000-$1FFF: OTP ROM 5.3 Control Registers Register name PA TEL:86-21-64850700 Address R/W Reset Value $00 R/W 0000 0000 WEB: www.belling.com.cn Page 4 of 33 上海贝岭股份有限公司 上海贝岭股份有限公司 BL22P14BM22P14 USER MANUAL 用户手册 Shanghai Belling Co., Ltd. DDRA $01 R/W 0000 0000 PB $02 R/W --00 0000 DDRB $03 R/W --00 0000 KBIM $04 R/W 0000 1000 PBPR $05 R/W --00 0000 T0D $06 R/W 0000 0000 T0C $07 R/W 00-0 0000 T1DH $08 R/W 0000 0000 T1DL $09 R/W 0000 0000 T1C $0A R/W 0000 0000 INTC0 $0B R/W --00 0000 INTC1 $0C R/W 0000 0000 BZCR $0D R/W 0000 --00 MCR1 $0E R/W 00u- --00 MCR2 $0F R/W 0000 0000 RSTFR $10 R/W ---- rrrr LCDD[9:0] $79-$70 W xxxx xxxx LCDCON $7A R/W 0000 0000 NOTE: - : Not used; x: Undefined; u: Determined by OPBIT[4]; r: Determined by reset type 5.4 Clock Device supplies four clock sources: Crystal oscillator, external RC, RTC and WDT. First three clock sources can be as system clock Fsys and all can be as internal clock Fs. 5.4.1 System Clock: Fsys System clock is main operate clock for device. It is configured by OTP OPTION BIT (FSYS1, FSYS0)to select a clock source. FSYS1、FSYS0 00 / 11:Fsys=Fosc/2 01: Fsys=Frc/2 10: Fsys=Frtc/2 5.4.2 Internal Clock: Fs Fs is the clock of Buzzer, RTC interrupt, Time Base interrupt, LCD and Watchdog. It is configured by OTP OPTION BIT(FS1, FS0)to select a clock source. If RTC or WDT is selected, device will still operate in stop mode. FS1、FS0 00 / 11:Fs=Fsys TEL:86-21-64850700 WEB: www.belling.com.cn Page 5 of 33 上海贝岭股份有限公司 上海贝岭股份有限公司 BL22P14BM22P14 USER MANUAL 用户手册 Shanghai Belling Co., Ltd. 01: 10: Fs=Frtc Fs=Fwdt 5.4.3 Crystal Oscillator Crystal oscillator provides the clock of 455KHz-8MHz. A crystal should be connected between the pin of OSC1 and OSC2. Frequency of crystal Value of C1/C2 8MHz 0/10p 4MHz 0/10p/20p 455KHz 100p/200p 5.4.4 External RC Oscillator Using external RC oscillator, a resistor between OSC1 and VSS is required. The value of resistor 800KΩ~40KΩ, the frequency of clock will be 400KHz~8MHz. OSC2 can output clock of Fsys if connecting a resistor from OSC2 to VDD. However, the frequency of oscillator may vary with VDD, temperature and chip itself due to process variations. It is therefore, not suitable for timing sensitive operations where accurate frequency is desired. 5.4.5 RTC Oscillator RTC oscillator provides the clock of 32768Hz. A crystal should be connected between the pin of OSC3 and OSC4. If it is the clock source of Fs, RTC oscillator will still work in stop mode. The RTC Oscillator circuit can be controlled to oscillate quickly by setting the “QOSC” bit (bit 3 of register of MCR2). It is recommend to turn on the quick oscillating function upon power on and then turn it off after 2 seconds. TEL:86-21-64850700 WEB: www.belling.com.cn Page 6 of 33 上海贝岭股份有限公司 上海贝岭股份有限公司 Shanghai Belling Co., Ltd. BL22P14BM22P14 USER MANUAL 用户手册 5.4.6 WDT oscillator WDT is a dedicated RC oscillator and output clock of T=65us@5V. If it is the source of Fs, RTC oscillator will still work in stop mode. The power is only 3uA@5V. 5.5 Low Power Mode There are two low power modes: STOP and WAIT. In stop mode, Fsys is turn off and can be waked up by : Keyboard interrupt. External interrupt. Interrupt from module whose clock source is from RTC oscillator or WDT. In wait mode, only turn off clock of CPU and all interrupt can wake it up. 5.6 RESET BL22P14 can be reset in four ways: 1) by external power-on-reset 2) by the external reset input pin(P12) pulled low 3) by the digital watchdog peripheral timing out 4) by Low Voltage reset (LVR) There is a dedicated register to write reset type. RSTFR ($10): Reset Flag Register .7-.4 Not used .3 RSTF3 0: no WDT reset 1: WDT reset Write “0” to clear the bit, write “1” is null. .2 RSTF2 0: no LVR reset 1: LVR reset Write “0” to clear the bit, write “1” is null. .1 RSTF1 0: no RES reset 1: RES reset TEL:86-21-64850700 WEB: www.belling.com.cn Page 7 of 33 上海贝岭股份有限公司 上海贝岭股份有限公司 Shanghai Belling Co., Ltd. BL22P14BM22P14 USER MANUAL 用户手册 Write “0” to clear the bit, write “1” is null. .0 RSTF0 0: no power on reset 1: power on reset Write “0” to clear the bit, write “1” is null. 5.7 I/O PORTS There are two group I/O ports: PA and PB. PA has 8 I/O ports and PB has 6 I/O ports. All ports have pull up resistors. PA has the function of keyboard interrupt. The control registers are PA, PB, DDRA, DDRB, KBIM and PBPR. PA ($00): Data register of PORT A .7-.0 PA[7:0] PA is the data register for Port A. DDRA($01): Data direction register of PORT A .7-.0 DDRA[7:0] 00000000 DDRA is used to select data direction of PA. When DDRAi is “0”, PAi is input; When DDRAi is “1”, PAi is output. PB ($02): Data register of PORT B .5-.0 PB[5:0] PB is the data register for Port B. DDRB($03): Data direction register of PORT B .5-.0 DDRB[5:0] DDRB is used to select data direction of PB. When DDRBi is “0”, PBi is input; When DDRBi is “1”, PBi is output. KBIM($04): Keyboard interrupt mask register .7-.0 KBE[7:0] KBIM is configured to enable keyboard interrupt. When KBEi is “1”, keyboard interrupt of PAi is turn on, PAi keeps input and its pull up resistor is effective. Besides, if needing keyboard interrupt active, KBIE (bit 3 of register of INTC0) should be “1”. When KBEi is “0”, keyboard interrupt of PAi is turn off. PBPR($05): PORTB pull-up register .5-.0 PBP[5:0] PBPR is configured to enable pull up resistors of PB. When PBPi is “0”, resistor of PBi is ineffective. When PBPi is “1”, resistor of PBi is effective. When PB is output, PBPR is no effect. 5.8 LCD LCD drives 4*18 at most. When the clock of LCD comes from RTC oscillator or WDT oscillator, LCD will still operate in stop mode. LCD memory The memory of LCD is located at 70H-79H. Any data written into 70H-79H will affect LCD TEL:86-21-64850700 WEB: www.belling.com.cn Page 8 of 33 上海贝岭股份有限公司 上海贝岭股份有限公司 Shanghai Belling Co., Ltd. BL22P14BM22P14 USER MANUAL 用户手册 display. When written “1”, the corresponding bit is turn display on; When written “0”, the corresponding bit is turn display off. Before writing data to memory, the memory is inconstant. LCD register- LCDCON LCDCON($7A): LCD Control Register .7-.4 PS[3:0] 0000 Dividing frequency of clock source 0000:1/25 0001:1/26 0010:1/27 0011:1/28 0100:1/29 0101:1/210 0110:1/211 0111:1/212 1000:1/213 1001:1/214 1010:1/215 .3-.1 DBS [2:0] 000 Duty/Bias select 000: 1/4 Duty 1/3 Bias(COM0-COM3,SEG0-SEG17) 001: 1/3 Duty 1/3 Bias(COM0-COM2,SEG0-SEG18) 010: 1/2 Duty 1/2Bias(COM0-COM1,SEG0-SEG18) 011: 1/3 Duty 1/2Bias(COM0-COM2,SEG0-SEG18) others: static(COM0-COM2,SEG0-SEG18) .1 Not used .0 LCDON 0 0: all COM/SEG output high 1: LCD can display Clock of LCD The clock source of LCD is Fs, and dividing frequency is set by bit 4-7 of LCDCON. Usually, the frame frequency is set at 25Hz to 250Hz. If WDT is the clock source, dividing frequency should be1/25~1/28. THE FRAME FREQUENCY WHEN WDT IS CLCOK SOURCE (Hz) TEL:86-21-64850700 WEB: www.belling.com.cn Page 9 of 33 上海贝岭股份有限公司 上海贝岭股份有限公司 BL22P14BM22P14 USER MANUAL 用户手册 Shanghai Belling Co., Ltd. LCD frequency Static 1/2Duty 1/3Duty 1/4Duty 5 512 256 171 128 6 256 128 85 64 7 128 64 43 32 8 64 32 21 16 Fs/2 =512 Hz Fs/2 =256 Hz Fs/2 =128 Hz Fs/2 =64 Hz If RTC oscillator is the clock source, dividing frequency should be1/26~1/29. THE FRAME FREQUENCY WHEN RTC IS CLCOK SOURCE(Hz) LCD frequency Static 1/2Duty 1/3Duty 1/4Duty 6 512 256 171 128 7 256 128 85 64 8 128 64 43 32 9 64 32 21 16 Fs/2 =512 Hz Fs/2 =256 Hz Fs/2 =128 Hz Fs/2 =64 Hz Other dividing frequency (1/210~1/215) is used when OSC or RC is clock source. LCD drive voltage VLCD is the voltage source of LCD and divided to four voltage level by internal resistors. VLCD may connect to VDD or other voltage. Two capacitors connecting to V1 and V2 will improve stability for display. COM/SEG output The output number can be 4 COM and 18 SEG (48pin), 4 COM and 8 SEG (28pin and 24pin).COM3 and SEG18 are at common pin. COM3 is effective only at 1/4duty mode and other mode is SEG18. pin TEL:86-21-64850700 duty Drive number WEB: www.belling.com.cn bias Page 10 of 33 上海贝岭股份有限公司 上海贝岭股份有限公司 BL22P14BM22P14 USER MANUAL 用户手册 Shanghai Belling Co., Ltd. 1(static) 19×1 1/3 1/2 19×2 1/2 1/3 19×3 1/3 1/4 18×4 1/3 1(static) 9×1 1/3 1/2 9×2 1/2 1/3 9×3 1/3 1/4 8×4 1/3 48 24 or 28 COM and SEG output wave static 1/2 Duty 1/2Bias TEL:86-21-64850700 WEB: www.belling.com.cn Page 11 of 33 上海贝岭股份有限公司 上海贝岭股份有限公司 Shanghai Belling Co., Ltd. BL22P14BM22P14 USER MANUAL 用户手册 1/3 Duty 1/3Bias 5.9 Timer - TIMER0 TIMER0 is an 8bit count-up counter. The counter clock source may come from Fsys or RTC time-out signal or external source. Using external clock input from TMR0 (PB2) allows the user to count external events, measure time internals or pulse widths or generate an accurate time base. While using the internal clock allows the user to generate an accurate time base. There is a data register - T0D. Before use, a data must be written to T0D. TIMER0 will count from $00 to this data and generate an interrupt. Then counter restart from $00. TIMER0 has three operate mode: Timer mode The timer clock comes from internal selected clock source. Event mode To count external signal from TMR0, may count up when the signal is from low to high or high to low. Pulse width measure mode To measure pulse width from TMR0. When TE is “1”, TIMER0 will start counting after TMR0 receives a transient from low to high(from high to low when TE is “0”) until TMR0 returns to the original level and resets the TON. (Note: TON is the enable of TIMER0, and only automatic reset at pulse width measure mode. If other two modes, resetting TON must be finished by program.) In other words, only one cycle measurement can be made until TON is set. Then data reading from T0D is the value of pulse width. In the case of counter overflows, the counter is reload from the counter preload register and issues an interrupt request as other two modes. And the value of pulse width TEL:86-21-64850700 WEB: www.belling.com.cn Page 12 of 33 上海贝岭股份有限公司 上海贝岭股份有限公司 Shanghai Belling Co., Ltd. BL22P14BM22P14 USER MANUAL 用户手册 must add the time of generating the interrupt. It has two registers: T0D、T0C。 T0D ($06): Timer0 data register .7-.0 T0D[7:0] 00000000 The data register of Timer0 is writable and readable. When writing it, this data is the overflow data and TIMER0 will count from $00 to this data driven by internal or external signal. When reading, it is the real-time counting data. If writing to T0D, new overflow data will be effective in next counting cycle. When TON is “0”, writing to T0D will clear the counting data, and count from $00 after TON is set. But if do not writing to T0D when TON is “0”, it will count from previous data which TIMER0 stop at. T0C ($07): Timer 0 control register .7-.6 TM[1:0] 00 Mode select 00: TIMER0 not work 01: Event mode, and setting PB2 input 10: Timer mode 11: Pulse wide mode, and setting PB2 input .5 Not used .4 TS 0 Internal clock source select, ineffective in event mode. 0: Fsys as clock source 1: RTC time-out signal as clock source .3 TON 0 Counting enable bit 0: TIMER0 disable 1: TIMER0 enable .2 TE 0 Defining active edge of counting, Ineffective in timer mode. 0: active on low to high 1: active on high to low .1-.0 PS[1:0] 00 Dividing frequency select, ineffective in event mode. The clock source is select by TS. 00: 1 01: 1/4 10: 1/16 11: 1/64 The overflow of TIMER0 can be applied to a PFD output (Programmable frequency divider) TEL:86-21-64850700 WEB: www.belling.com.cn Page 13 of 33 上海贝岭股份有限公司 上海贝岭股份有限公司 Shanghai Belling Co., Ltd. BL22P14BM22P14 USER MANUAL 用户手册 at PA3 by option. 5.10 Timer – TIMER1 TIMER1 is a 16bit count-up counter. The counter clock source may come from Fsys or RTC time-out signal or external source or overflow from TIMER0. Using external clock input from TMR1 (PB3) allows the user to count external events, measure time internals or pulse widths or generate an accurate time base. There are two data register- T1DH and T1DL. Before use, data must be written to T1DH and T1DL. TIMER1 will count from $0000 to this data and generate an interrupt. Then counter restart from $0000. TIMER1 has three operate mode: Timer mode The timer clock comes from internal selected clock source. Event mode To count external signal from TMR1, may count up when the signal is from low to high or high to low. Pulse width measure mode To measure pulse width from TMR1. When TE is “1”, TIMER0 will start counting after TMR1 receives a transient from low to high(from high to low when TE is “0”) until TMR1 returns to the original level and resets the TON. (Note: TON is the enable of TIMER1, and only automatic reset at pulse width measure mode. If other two modes, resetting TON must be finished by program.) In other words, only one cycle measurement can be made until TON is set. Then data reading from T1DH and T1DL is the value of pulse width. In the case of counter overflows, the counter is reload from the counter preload register and issues an interrupt request as other two modes. And the value of pulse width must add the time of generating the interrupt. It has three registers: T1DH、T1DL、T1C。 T1DH ($08): Timer 1 data register (High byte) .7-.0 T1DH[7:0] T1DL ($09): Timer 1 data register (Low byte) .7-.0 T1DL[7:0] The data registers of Timer1 are writable and readable. When writing it, this data is the overflow data and TIMER1 will count from $0000 to this data driven by internal or external signal. When reading, it is the real-time counting data. If writing to the data registers, new overflow data will be effective in next counting cycle. When TON is “0”, writing to the data registers will clear the counting data, and count from $00 after TON is set. But if do not writing to the data registers when TON is “0”, it will count from previous data which TIMER1 stop at. One point must be note: there are two data registers, so it can not read or write TEL:86-21-64850700 WEB: www.belling.com.cn Page 14 of 33 上海贝岭股份有限公司 上海贝岭股份有限公司 BL22P14BM22P14 USER MANUAL 用户手册 Shanghai Belling Co., Ltd. data synchronously. When writing, it must write T1DL at first and then T1DH. When reading, it must read T1DH at first and then T1DL. T1C ($0A): Timer 1 control register .7-.6 TM[1:0] 00 Mode select 00: TIMER0 not work 01: Event mode, and setting PB3 input 10: Timer mode 11: Pulse wide mode, and setting PB3 input .5-.4 TS[1:0] 00 Internal clock source select, ineffective in event mode. 00: Fsys as clock source 01: RTC time-out signal as clock source 10: Ftbi(time base interrupt)as clock source 11: Ftmr0(overflow from TIMER0)as clock source .3 TON 0 Counting enable bit 0: TIMER1 disable 1: TIMER1 enable .2 TE 0 Defining active edge of counting, Ineffective in timer mode. 0: active on low to high 1: active on high to low .1-.0 PS[1:0] 00 Dividing frequency select, ineffective in event mode. The clock source is select by TS. 00: 1 01: 1/4 10: 1/16 11: 1/64 The overflow of TIMER0 can be applied to a PFD output (Programmable frequency divider) at PA3 by option. 5.11 Interrupt The device provides two external interrupts, two internal timer interrupts, an internal time base interrupt, an internal real time clock interrupt, eight keyboard interrupts, a software interrupt and an external reset. Interrupts PC address and priority are in the following table (priority is from low to high). TEL:86-21-64850700 Address Interrupt 1FE0:1FE1 Reserved 1FE2:1FE3 Reserved WEB: www.belling.com.cn Page 15 of 33 上海贝岭股份有限公司 上海贝岭股份有限公司 BL22P14BM22P14 USER MANUAL 用户手册 Shanghai Belling Co., Ltd. 1FE4:1FE5 Reserved 1FE6:1FE7 Reserved 1FE8:1FE9 Reserved 1FEA:1FEB Reserved 1FEC:1FED Reserved 1FEE:1FEF TBI 1FF0:1FF1 RTCI 1FF2:1FF3 T1I 1FF4:1FF5 T0I 1FF6:1FF7 KBI 1FF8:1FF9 INT1 1FFA:1FFB INT0 1FFC:1FFD SWI 1FFE:1FFF RESET The interrupt control registers INTC0 and INTC1 are used to set enable/disable status and interrupt request flags. Once an interrupt subroutine is serviced, other interrupts are all blocked. This scheme may prevent any further interrupt nesting. All these interrupts except software interrupt support a wake-up function. The request flags of KBI, INT0 and INT1 are “0” if relevant interrupt is turn off. But the request flags of T0I, T1I, RTCI and TBI are not affected by enable bit. INTC0 ($0B): Interrupt control register 0 .7-.6 not used .5 KBIE 0 Keyboard interrupt enable/disable 0: KBI disable 1: KBI enable .4 KBIF 0 Keyboard interrupt flag 0: KBI has not interrupt request 1: KBI has interrupt request .3 INT1E 0 External interrupt 1 enable/disable 0: INT1 disable 1: INT1 enable and setting PB1 input with pull-up resistor .2 INT1F 0 External interrupt 1 flag 0: INT1 has not interrupt request 1: INT1 has interrupt request .1 INT0E 0 External interrupt 0 enable/disable 0: INT0 disable 1: INT0 enable and setting PB0 input with pull-up resistor TEL:86-21-64850700 WEB: www.belling.com.cn Page 16 of 33 上海贝岭股份有限公司 上海贝岭股份有限公司 Shanghai Belling Co., Ltd. BL22P14BM22P14 USER MANUAL 用户手册 .0 INT0F 0 External interrupt 0 flag 0: INT0 has not interrupt request 1: INT0 has interrupt request INTC1 ($0C): Interrupt control register 1 .7 TBIE 0 Time base interrupt enable/disable 0: TBI disable 1: TBI enable .6 TBIF 0 Time base interrupt flag 0: TBI has not interrupt request 1: TBI has interrupt request .5 RTCIE 0 Real time clock (RTC) interrupt enable/disable 0: RTCI disable 1: RTCI enable .4 RTCIF 0 RTC interrupt flag 0: RTCI has not interrupt request 1: RTCI has interrupt request .3 T1IE 0 TIMER1 interrupt enable/disable 0: T1I disable 1: T1I enable .2 T1IF 0 TIMER1 interrupt flag 0: T1I has not interrupt request 1: T1I has interrupt request .1 T0IE 0 TIMER0 interrupt enable/disable 0: T0I disable 1: T0I enable .0 T0IF 0 TIMER0 interrupt flag 0: T0I has not interrupt request 1: T0I has interrupt request 5.12 Low Voltage Detect - LVD LVD provides the function to monitor voltage supply of chip. The typical LVD voltage is 3.3V. LVDE (bit 7 of MCR1) is enable bit and makes LVD active if it is set. LVDF (bit 5 of MCR1) is flag of LVD and is “1” when VDD is lower than 3.3V. TEL:86-21-64850700 WEB: www.belling.com.cn Page 17 of 33 上海贝岭股份有限公司 上海贝岭股份有限公司 Shanghai Belling Co., Ltd. 5.13 BL22P14BM22P14 USER MANUAL 用户手册 Watch Dog Timer - WDT The WDT clock source is implemented by Fs. The timer is designed to prevent a software malfunction or sequence from jumping to an unknown location with unpredictable results. WDT can be disabled by clearing WDTE (bit 7 of MCR2) and be cleared by WDTC (bit 5 of MCR2). WDT is a 16bit timer and will make the device reset when counting to 216. Overflow time is: 65536*65us=4.2s (Fs=Fwdt) 65536*30.5us=2s (Fs=Frtc) 65536*0.5us=32.7ms(4MHz crystal, Fs=Fosc/2) 5.14 Buzzer BZ0 and BZ1 are buzzer driving output pair. If willing to use the function, the related PA port should be set as an output. The clock source is from Fs. The buzzer is controlled by register BZCR. BZCR ($0D): Buzzer control register .7-.5 PS[3:0] 0000 Dividing frequency of Fs 0000: Fs/212 0001: Fs/211 0010: Fs/210 0011: Fs/29 0100: Fs/28 0101: Fs/27 0110: Fs/26 0111: Fs/25 1000: Fs/24 1001: Fs/23 1010: Fs/22 Others: Fs/2 .3-.2 not used .1 BZ1E 0 0: BZ1 disable 1: BZ1 enable .0 BZ0E 0 0: BZ0 disable 1: BZ0 enable 5.15 Timer Base Timer base offers a periodic time out period to generate a regular internal interrupt. Its time out period ranges from Fs/212 to Fs/215 selected by bit 5 and bit 4 of MCR2. If time TEL:86-21-64850700 WEB: www.belling.com.cn Page 18 of 33 上海贝岭股份有限公司 上海贝岭股份有限公司 Shanghai Belling Co., Ltd. BL22P14BM22P14 USER MANUAL 用户手册 base time out occurs, the related interrupt request flag is set. 5.16 Real Time Clock - RTC RTC is operated in the same manner as time base that is used to supply a regular internal interrupt. Its time out period ranges from Fs/28 to Fs/215 selected by bit 2 and bit 0 of MCR2. If RTC time out occurs, the related interrupt request flag is set. RTC time out signal also can be applied to be a clock source of timer for getting a longer time out period. RTC and time base use the same 15bit counter which is cleared only by system reset. So the first time out period of RTC or time base is uncertain. 5.17 Miscellaneous Control Register There are two miscellaneous control registers to control some functions. MCR1 ($0E): Miscellaneous control register 1 .7 LVDE 0 0: LVD disable 1: LVD enable .6 LVDF 0 0: VDD is higher than VLVD 1: VDD is lower than VLVD .5 LVRE 0: LVR disable 1: LVR enable .4-.2 not used .1 PFDE 0 0: PFD disable 1: PFD enable .0 PFDC 0 0: PFD clock is from time out of TIMER0 1: PFD clock is from time out of TIMER1 Note: PFD is share with PA3. If outputting PFD, PA3 should be output and data register of PA3 must be written “0”. MCR2 ($0F): Miscellaneous control register 2 .7 WDTE 0 0: WDT disable 1: WDT enable .6 WDTC 0 0: useless 1: clear WDT Note: when read this bit, it is always “0”. .5-.4 TBPS[1:0] 00 Time base interrupt period select 00: 215*Fs 01: 214*Fs TEL:86-21-64850700 WEB: www.belling.com.cn Page 19 of 33 上海贝岭股份有限公司 上海贝岭股份有限公司 Shanghai Belling Co., Ltd. BL22P14BM22P14 USER MANUAL 用户手册 10: 213*Fs 11: 212*Fs .3 QOSC 0 Quickly oscillating select 0: Quickly oscillating enable 1: Quickly oscillating disable .2-.0 RT[2:0] 000 RTC interrupt period select 000: 215*Fs 001: 214*Fs 010: 213*Fs 011: 212*Fs 100: 211*Fs 101: 210*Fs 110: 29*Fs 111: 28*Fs 5.18 OPBIT OPBIT is a special byte in OTP ROM and used to configure some initial functions for the device. OPBIT is set when OTP written. .7 ENCR 0: OTP read protection 1: OTP can be read .6 Not used .5 LCD control in stop mode 0:LCD on in stop mode 1:LCD off in stop mode .4 LVREO 0: LVR off 1: LVR on .3-.2 FS[1:0] 00、11:Fs=Fsys 01: Fs=Frtc 10: Fs=Fwdt .1-.0 FSYS[1:0] 00、11:Fsys=Fosc/2 01: Fsys=Frc/2 10: Fsys=Frtc/2 6. ELECTRICAL DATA 6.1 Absolute Maximum Ratings (TA=25℃) TEL:86-21-64850700 WEB: www.belling.com.cn Page 20 of 33 上海贝岭股份有限公司 上海贝岭股份有限公司 BL22P14BM22P14 USER MANUAL 用户手册 Shanghai Belling Co., Ltd. Parameter Symbol Condition Rating Unit Supply voltage VDD - VSS-0.3 to VSS+6.5 V Input voltage VI All ports VSS-0.3 to VDD+0.3 V Operating temperature TA - -40 to +85 ℃ Storage temperature TS - -65 to +150 ℃ 6.2 DC Electrical Characteristics (TA=25℃ VDD=2.7-5.5V) Parameter Sym. Condition Min Typ Max Unit Oscillator Frequency <=4MHz 2.5 - 5.5 V Oscillator Frequency <=8MHz 3.5 5.5 V Operate voltage VDD LCD operate voltage VLCD - 2.5 - 5.5 V Input high voltage VIH1 All ports 0.7VDD - VDD V Input low voltage VIL1 All ports 0 - 0.3VDD V I/O ports source current IOH VOH=0.9VDD 5 12 - mA I/O ports sink current IOL VOL=0.1VDD 10 20 - mA Pull-up resistors RPH PA, PB 10 25 40 kΩ LVR VLVR - 2.7 3.0 3.3 V LVD VLVD - 3.0 3.3 3.6 V Dynamic working current IDD 4MHz clock - 3 5 mA STOP mode, LVR off, LCD off - - 1 uA STOP mode, LVR on, LCD off - 10 15 uA STOP mode, LVR off, LCD on - 20 30 uA Standby working current ISTB 7. Instruction Set 7.1 Addressing Modes The addressing modes define the manner in which an instruction is to obtain the data TEL:86-21-64850700 WEB: www.belling.com.cn Page 21 of 33 上海贝岭股份有限公司 上海贝岭股份有限公司 Shanghai Belling Co., Ltd. BL22P14BM22P14 USER MANUAL 用户手册 required for its execution. There are 8 modes: 1) Inherent 2) Immediate 3) Direct 4) Extended 5) Indexed, no offset 6) Indexed, 8-bit offset 7) Indexed, 16-bit offset 8) Relative 7.1.1 Inherent Addressing Mode In inherent addressing mode, all information required for the operation is already inherently known to the CPU, and no external operand from memory or from the program is needed. The operands, if any, are only the index register and accumulator, and are always 1-byte instructions. 7.1.2 Immediate Addressing Mode In the immediate addressing mode, the operand is contained in the byte immediately following the opcode. This mode is used to hold a value or constant which is known at the time the program is written and which is not changed during program execution. These are 2-byte instructions, one for the opcode and one for the immediate data byte. 7.1.3 Direct Addressing Mode The direct addressing mode is similar to the extended addressing mode except the upper byte of the operand address is assumed to be $00. Thus, only the lower byte of the operand address needs to be included in the instruction. Direct addressing allows you to efficiently address the lowest 256 bytes in memory. This area of memory is called the direct page and includes on-chip RAM and I/O registers. Direct addressing is efficient in both memory and time. Direct addressing mode instructions are usually two bytes, one for the opcode and one for the low-order byte of the operand address. 7.1.4 Extended Addressing Mode In the extended addressing mode, the address of the operand is contained in the two bytes following the opcode. Extended addressing references any location in the MCU memory space including I/O, RAM, ROM and EPROM. Extended addressing mode instructions are three bytes, one for the opcode and two for the address of the operand. 7.1.5 Indexed, No Offset Addressing Mode In the indexed, no-offset addressing mode, the effective address of the instruction is contained in the 8-bit index register. Thus, this addressing mode can access the first 256 memory locations. These instructions are only one byte. 7.1.6 Indexed, 8-bit Offset Addressing Mode In the indexed, 8-bit offset addressing mode, the effective address is obtained by adding TEL:86-21-64850700 WEB: www.belling.com.cn Page 22 of 33 上海贝岭股份有限公司 上海贝岭股份有限公司 BL22P14BM22P14 USER MANUAL 用户手册 Shanghai Belling Co., Ltd. the contents of the byte following the opcode to the contents of the index register. This mode of addressing is useful for selecting the kth element in an n element table. To use this mode, the table must begin in the lowest 256 memory locations and may extend through the first 511 memory locations (IFE is the last location which the instruction may access). Indexed 8-bit offset addressing can be used for ROM, RAM, or I/O. This is a 2-byte instruction with the offset contained in the byte following the opcode. The content of the index register (X) is not changed. The offset byte supplied in the instruction is an unsigned 8-bit integer. 7.1.7 Indexed, 16-bit Offset Addressing Mode In the indexed, 16-bit offset addressing mode, the effective address is the sum of the contents of the 8-bit index register and the two bytes following the opcode. The content of the index register is not changed. These instructions are three bytes, one for the opcode and two for a 16-bit offset. 7.1.8 Relative Addressing Mode The relative addressing mode is used only for branch instructions. Branch instructions, other than the branching versions of bit-manipulation instructions, generate two machine-code bytes: one for the opcode and one for the relative offset. Because it is desirable to branch in either direction, the offset byte is a signed twos-complement offset with a range of –127 to +128 bytes (with respect to the address of the instruction immediately following the branch instruction). If the branch condition is true, the contents of the 8-bit signed byte following the opcode (offset) are added to the contents of the program counter to form the effective branch address; otherwise, control proceeds to the instruction immediately following the branch instruction. 7.2 Instruction Type There are 65 instructions in CPU, and can be divided into 5 types. 1) Register/Memory Instructions 2) Read/Modify-Write Instructions 3) Branch Instructions 4) Control Instructions 5) bit manipulate Instructions Function Status H I N Address Z C ing MODE #Cycle Operation Opdata Instruction Opcode 7.3 Instruction Set ADC #opr IMM A9 ii 2 ADC opr DIR B9 dd 3 EXT C9 hh 4 IX2 D9 ll 5 ADC opr Add with Carry A← (A)+(M)+(C) ADC opr,X TEL:86-21-64850700 WEB: www.belling.com.cn * - * * * Page 23 of 33 上海贝岭股份有限公司 上海贝岭股份有限公司 BL22P14BM22P14 USER MANUAL 用户手册 Shanghai Belling Co., Ltd. ADC opr,X IX1 E9 ee 4 ADC ,X IX F9 ff 3 ff ADD #opr IMM AB ii 2 ADD opr DIR BB dd 3 EXT CB hh 4 ADD opr,X IX2 DB ll 5 ADD opr,X IX1 EB ee 4 ADD ,X IX FB ff 3 ADD opr Add without Carry * A← (A)+(M) - * * * ff AND #opr IMM A4 ii 2 AND opr DIR B4 dd 3 EXT C4 hh 4 AND opr,X IX2 D4 ll 5 AND opr,X IX1 E4 ee 4 AND ,X IX F4 ff 3 AND opr A← (A) ∧(M) Logical AND - - * * - ff ASL opr ASLA Arithmetic Shift 38 dd 5 INH 48 3 INH 58 3 IX1 68 IX 78 DIR 37 Left ASLX 0 C (Same as LSL) b7 ASL opr,X - - * * * b0 ASL ,X ASR opr ASRA ASRX C ASR opr,X DIR Arithmetic Shift Right b7 - - * * ff 6 5 dd 5 1.1.1.1.1 47 3 57 3 * b0 67 ff 6 INH ASR ,X 77 5 IX1 IX BCC rel Branch if Carry Bit Clear PC ←(PC)+2+rel ? - - - - - REL 24 rr 3 DIR(bo) 11 dd 5 DIR(b1) 13 dd 5 DIR(b2) 15 dd 5 DIR(b3) 17 dd 5 DIR(b4) 19 dd 5 DIR(b5) 1B dd 5 C=0 BCLR n opr Clear Bit n TEL:86-21-64850700 Mn←0 WEB: www.belling.com.cn - - - - - Page 24 of 33 上海贝岭股份有限公司 上海贝岭股份有限公司 BL22P14BM22P14 USER MANUAL 用户手册 Shanghai Belling Co., Ltd. BCS rel BEQ rel Branch if Carry Bit Set PC ← (PC)+2+rel ? (Same as BLO) C=1(与 BLO 相同) Branch if Equal PC ← (PC)+2+rel ? DIR(b6) 1D dd 5 DIR(b7) 1F dd 5 - - - - - REL 25 rr 3 - - - - - REL 27 rr 3 Z=1 BHCC rel (PC)+2+rel ? - - - - - REL 28 rr 3 (PC)+2+rel ? - - - - - REL 29 rr 3 - - - - - REL 22 rr 3 - - - - - REL 24 rr 3 IMM A5 ii 2 DIR B5 dd 3 EXT C5 hh 4 BIT opr,X IX2 D5 ll 5 BIT opr,X IX1 E5 ee 4 BIT ,X IX F5 ff 3 BHCS rel BHI rel Branch PC← if Half Carry Bit Clear H=0 Branch if Half Carry Bit PC← Set H=1 Branch if Higher PC← (PC)+2+rel ? (C ∨Z )=0 BHS rel Branch if Higher or PC ← (PC)+2+rel ? C=0 Same BIT #opr BIT opr Bit BIT opr with Memory Byte Test Accumulator (A)∧(M) - - * * - ff BLO rel BLS rel - - - - - REL 25 rr 3 - - - - - REL 23 rr 3 PC← (PC)+2+rel ? I=0 - - - - - REL 2C rr 3 PC← ? - - - - - REL 2B rr 3 PC← (PC)+2+rel ? I=1 - - - - - REL 2D rr 3 PC← Branch if Lower (Same PC ← (PC)+2+rel ? as BCS) C=1 Branch if Lower or Same PC← (PC)+2+rel ? (C ∨Z )=1 BMC rel Branch if Interrupt Mask Clear BMI rel Branch if Minus (PC)+2+rel N=1 BMS rel Branch if Interrupt Mask Set BNE rel Branch if Not Equal (PC)+2+rel ? - - - - - REL 26 rr 3 (PC)+2+rel ? - - - - - REL 2A rr 3 Z=0 BPL rel Branch if Plus PC← N=0 TEL:86-21-64850700 WEB: www.belling.com.cn Page 25 of 33 上海贝岭股份有限公司 上海贝岭股份有限公司 BL22P14BM22P14 USER MANUAL 用户手册 Shanghai Belling Co., Ltd. BRA rel Branch Always PC← BRCLR n opr rel - PC← (PC)+2+rel Branch if Bit n Clear (PC)+2+rel - - - - ? - Mn=0 - - - * REL 20 rr 3 DIR(bo) 01 dd 5 DIR(b1) 03 rr 5 DIR(b2) 05 dd 5 DIR(b3) 07 rr 5 DIR(b4) 09 dd 5 DIR(b5) 0B rr 5 DIR(b6) 0D dd 5 DIR(b7) 0F rr 5 dd rr dd rr dd rr dd rr Branch Never - PC← (PC)+2 - - - - REL 21 rr 3 DIR(bo) 00 dd 5 DIR(b1) 02 rr 5 DIR(b2) 04 dd 5 DIR(b3) 06 rr 5 DIR(b4) 08 dd 5 DIR(b5) 0A rr 5 DIR(b6) 0C dd 5 DIR(b7) 0E rr 5 BRN rel PC← BRSET n opr rel Branch if Bit n Set (PC)+2+rel ? Mn=1 - - - - * dd rr dd rr dd rr dd rr DIR(bo) TEL:86-21-64850700 WEB: www.belling.com.cn 10 Page 26 of 33 dd 5 上海贝岭股份有限公司 上海贝岭股份有限公司 Shanghai Belling Co., Ltd. BSET n opr Mn←1 Set Bit n BL22P14BM22P14 USER MANUAL 用户手册 - - - - - DIR(b1) 12 dd 5 DIR(b2) 14 dd 5 DIR(b3) 16 dd 5 DIR(b4) 18 dd 5 DIR(b5) 1A dd 5 DIR(b6) 1C dd 5 DIR(b7) 1E dd 5 rr 6 PC←(PC)+2 BSR rel Branch to Subroutine push(PCL);SP←(SP)- - - - - - REL AD 1 push(PCH);SP←(SP)1 PC← (PC)+rel CLC Clear Carry Bit C←0 - - - - 0 INH 98 2 CLI Clear Interrupt Mask I ←0 - 0 - - - INH 9A 2 M←$00 DIR 3F CLRA A ←$00 INH 4F 3 INH 5F 3 CLRX X ←$00 Clear Byte - - 0 1 - dd 5 CLR opr CLR opr,X M←$00 IX1 6F CLR ,X M←$00 IX 7F IMM A1 ii 2 DIR B1 dd 3 EXT C1 hh 4 CMP opr,X IX2 D1 ll 5 CMP opr,X IX1 E1 ee 4 CMP ,X IX F1 ff 3 CMP #opr CMP opr Compare CMP opr with Memory Byte Accumulator (A) -(M) - - * * * ff 6 5 ff COM opr COMA Complement COMX (One’s Complement) Byte M←$FF-(M) DIR 33 A ←$FF-(A) INH 43 3 INH 53 3 X ←$FF-(X) - - * * 1 dd COM opr,X M←$FF-(M) IX1 63 COM ,X M←$FF-(M) IX 73 IMM A3 ii 2 DIR B3 dd 3 EXT C3 hh 4 IX2 D3 ll 5 CPX #opr CPX opr Compare Index Register CPX opr with Memory Byte (X) -(M) CPX opr,X TEL:86-21-64850700 WEB: www.belling.com.cn - - * * * Page 27 of 33 ff 5 6 5 上海贝岭股份有限公司 上海贝岭股份有限公司 BL22P14BM22P14 USER MANUAL 用户手册 Shanghai Belling Co., Ltd. CPX opr,X IX1 E3 ee 4 CPX ,X IX F3 ff 3 ff M←(M)-1 DIR 3A DECA A ←(A)-1 INH 4A 3 INH 5A 3 DECX X ←(X)-1 Decrement Byte - - * * - dd 5 DEC opr DEC opr,X M←(M)-1 IX1 6A DEC ,X M←(M)-1 IX 7A EOR #opr IMM A8 ii 2 EOR opr DIR B8 dd 3 EXT C8 hh 4 IX2 D8 ll 5 IX1 E8 ee 4 IX F8 ff 3 EOR opr EXCLUSIVE OR EOR opr,X Accumulator with EOR opr,X Memory Byte A ←(A) ⊕ (M) - - * * - EOR ,X ff 6 5 ff INC opr M←(M)+1 DIR 3C INCA A ←(A)+1 INH 4C 3 INH 5C 3 INCX X ←(X)+1 Increment Byte - - * * - dd 5 INC opr,X M←(M)+1 IX1 6C INC ,X M←(M)+1 IX 7C JMP opr DIR BC dd 2 JMP opr EXT CC hh 3 IX2 DC ll 4 JMP opr,X IX1 EC ee 3 JMP ,X IX FC ff 2 JMP opr,X PC ←Jump Address Unconditional Jump - - - - - ff 6 5 ff JSR opr JSR opr Jump to Subroutine PC←(PC)+n(n=1,2,or DIR BD dd 5 3) EXT CD hh 6 IX2 DD ll 7 - - - - - JSR opr,X push JSR opr,X (PCL);SP←(SP)-1 IX1 ED ee 6 JSR ,X push(PCH);SP←(SP)- IX FD ff 5 1 PC← ff Effective Address LDA #opr LDA opr Load Accumulator with TEL:86-21-64850700 WEB: www.belling.com.cn IMM A6 ii 2 DIR B6 dd 3 Page 28 of 33 上海贝岭股份有限公司 上海贝岭股份有限公司 BL22P14BM22P14 USER MANUAL 用户手册 Shanghai Belling Co., Ltd. LDA opr A ←(M) EXT C6 hh 4 LDA opr,X IX2 D6 ll 5 LDA opr,X IX1 E6 ee 4 LDA ,X IX F6 ff 3 Memory Byte - - * * - ff LDX #opr IMM AE ii 2 DIR BE dd 3 EXT CE hh 4 LDX opr,X IX2 DE ll 5 LDX opr,X IX1 EE ee 4 LDX ,X IX FE ff 3 LDX opr Load Index Register with LDX opr Memory Byte X ←(M) - - * * - ff LSL opr DIR 38 LSLA INH 48 3 INH 58 3 IX1 68 IX 78 LSR opr DIR 34 LSRA INH 44 3 INH 54 3 IX1 64 IX 74 5 INH 42 1 LSLX Logical Shift Left (Same LSL opr,X 0 C b7 as ASL) - - * * * b0 LSL ,X LSRX 0 Logical Shift Right b7 LSR opr,X C - - 0 * * b0 LSR ,X MUL X:A ← (X)X(A) Unsigned Multiply 0 - - - 0 dd ff 5 6 5 dd ff 5 6 1 NEG opr NEGA Negate NEGX Complement) Byte (Two’s M←-(M) DIR 30 A ←-(A) INH 40 3 INH 50 3 X ←-(X) - - * * * dd NEG opr,X M←-(M) IX1 60 NEG ,X M←-(M) IX 70 5 INH 9D 2 IMM AA ii 2 DIR BA dd 3 EXT CA hh 4 ORA opr,X IX2 DA ll 5 ORA opr,X IX1 EA ee 4 ORA ,X IX FA ff 3 NOP - No Operation - - - - ORA #opr ORA opr Logical OR Accumulator ORA opr with Memory TEL:86-21-64850700 A ←(A) ∨(M) WEB: www.belling.com.cn - - * * - Page 29 of 33 ff 5 6 上海贝岭股份有限公司 上海贝岭股份有限公司 BL22P14BM22P14 USER MANUAL 用户手册 Shanghai Belling Co., Ltd. ff ROL opr ROLA Rotate Byte Left through ROLX Carry Bit - C b7 ROL opr,X - * * * b0 ROL ,X ROR opr RORA Rotate RORX through Carry Bit Byte Right C b7 ROR opr,X - - * * * b0 ROR ,X RSP SP← $00FF DIR 39 dd INH 49 3 INH 59 3 IX1 69 IX 79 DIR 36 INH 46 3 INH 56 3 IX1 66 IX 76 5 ff 5 6 5 dd ff 5 6 - - - - - INH 9C 2 * * * * * INH 80 9 - - - - - INH 81 6 IMM A2 ii 2 DIR B2 dd 3 EXT C2 hh 4 IX2 D2 ll 5 SBC opr,X IX1 E2 ee 4 SBC ,X IX F2 ff 3 Reset Stack Pointer SP←(SP)+1; Pull(CCR) RTI SP← (SP)+1; Pull(A) Return from Interrupt SP← (SP)+1; Pull(X) SP←(SP)+1; Pull(PCH) SP←(SP)+1; Pull(PCL) RTS Return from Subroutine SP←(SP)+1; Pull(PCH) SP←(SP)+1; Pull(PCL) SBC #opr SBC opr SBC opr SBC opr,X Subtract Memory Byte and Carry Bit from A ← (A)-(M)-(C) - - * * * Accumulator ff SEC Set Carry Bit C←1 - - - - 1 INH 99 2 SEI Set Interrupt Mask I←1 - 1 - - - INH 9B 2 DIR B7 dd 4 EXT C7 hh 5 IX2 D7 ll 6 STA opr STA opr Store STA opr,X Memory Accumulator TEL:86-21-64850700 in M ← (A) WEB: www.belling.com.cn - - * * - Page 30 of 33 上海贝岭股份有限公司 上海贝岭股份有限公司 Shanghai Belling Co., Ltd. BL22P14BM22P14 USER MANUAL 用户手册 STA opr,X IX1 E7 ee 5 STA ,X IX F7 ff 4 ff STOP - INH 8E DIR BF dd 4 EXT CF hh 5 IX2 DF ll 6 STX opr,X IX1 EF ee 5 STX ,X IX FF ff 4 Stop Oscillator and 0 - - - 2 Enable IRQ Pin STX opr STX opr Store Index Register In STX opr,X Memory M ← (X) - - * * - ff SUC #opr IMM A0 ii 2 DIR B0 dd 3 EXT C0 hh 4 SUB opr,X IX2 D0 ll 5 SUB opr,X IX1 E0 ee 4 SUB ,X IX F0 ff 3 SUB opr Subtract Memory Byte SUB opr from Accumulator A ← (A)- (M) - - * * * ff PC←(PC)+1;Push(PC L) SP←(SP)-1;Push(PC SWI H) Software Interrupt - 1 - - - INH 83 1 0 SP← (SP)-1; Push(X) SP←(SP)-1; ush(CCR) SP← (SP)-1;I ←1 PCH←Interrupt Vector High Byte PCL ←Interrupt Vector Low Byte TAX Transfer Accumulator to X ←(A) - - - - - INH 97 2 DIR 3D INH 4D 3 INH 5D 3 IX1 6D Index Register TST opr TSTA Test Memory Byte for TSTX Negative or Zero (M)-$00 TST opr,X TEL:86-21-64850700 WEB: www.belling.com.cn - - * * - Page 31 of 33 dd ff 4 5 上海贝岭股份有限公司 上海贝岭股份有限公司 Shanghai Belling Co., Ltd. BL22P14BM22P14 USER MANUAL 用户手册 TST ,X TXA Transfer Index Register 7D 4 - - - - - INH 9F 2 - 0 - - - INH 8F 2 A ← (X) to Accumulator WAIT IX Stop CPU Clock and Enable Interrupts A Accumulator opr Operand (one or two bytes) C Carry/borrow flag PC Program counter CCR Condition code register PCH Program counter high byte dd Direct address of operand PCL Program counter low byte dd rr Direct address of operand and relative offset of branch instruction REL Relative addressing mode DIR Direct addressing mode rel Relative program counter offset byte ee ff High and low bytes of offset in indexed, 16-bit offset addressing rr Relative program counter offset byte EXT Extended addressing mode SP Stack pointer ff Offset byte in indexed, 8-bit offset addressing X Index register H Half-carry flag Z Zero flag hh ll High and low bytes of operand address in extended addressing # Immediate value I Interrupt mask ∧ Logical AND ii Immediate operand byte ∨ Logical OR IMM Immediate addressing mode ⊕ Logical EXCLUSIVE OR INH Inherent addressing mode ( ) Contents of IX Indexed, no offset addressing mode –( ) Negation (twos complement) IX1 Indexed, 8-bit offset addressing mode ← Loaded with IX2 Indexed, 16-bit offset addressing mode ? If M Memory location : Concatenated with N Negative flag ↔ Set or cleared n Any bit — Not affected — Not affected TEL:86-21-64850700 WEB: www.belling.com.cn Page 32 of 33