NUMONYX 800FT

M29F 200FT, 400FT, 800FT, 160FT
M29F 200FB, 400FB, 800FB, 160FB
Top / Bottom Boot Block
5 V Supply Flash Memory
Features
„ Supply voltage
– VCC = 5 V
„ Access time: 55 ns
„ Program / Erase controller
– Embedded byte/word program algorithms
TSOP48 (N)
12 x 20 mm
„ Erase Suspend and Resume modes
„ Low power consumption
– Standby and Automatic Standby
„ 100,000 Program/Erase cycles per block
„ Electronic signature
– Manufacturer code: 0x01
– Top Device codes:
–
M29F200FT: 0x2251
–
M29F400FT: 0x2223
–
M29F800FT: 0x22D6
SO44 (M)
–
M29F160FT: 0x22D2
– Bottom Device codes:
–
M29F200FB: 0x2257
–
M29F400FB: 0x22AB
–
M29F800FB: 0x2258
–
M29F160FB: 0x22D8
„ RoHS packages available
– SO44
– TSOP48
– TFBGA
FBGA
TFBGA48 (ZA)
6 x 8 mm
„ Automotive device grade 3:
– Temperature: –40 to 125 °C
„ Automotive device grade 6:
– Temperature: –40 to 85 °C
„ Automotive grade certified (AEC-Q100)
July 2010
Rev 9
1/67
www.numonyx.com
1
Contents
M29FxxxFT, M29FxxxFB
Contents
1
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2
Signal Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3
4
2/67
2.1
Address Inputs (A0-A19) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2
Data Inputs/Outputs (DQ0-DQ7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3
Data Inputs/Outputs (DQ8-DQ14) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4
Data Input/Output or Address Input (DQ15A-1) . . . . . . . . . . . . . . . . . . . . 20
2.5
Chip Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.6
Output Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.7
Write Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.8
Reset/Block Temporary Unprotect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.9
Ready/Busy Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.10
Byte/Word Organization Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.11
VCC Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.12
VSS Ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Bus Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1
Bus Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2
Bus Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3
Output Disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4
Standby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.5
Automatic Standby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.6
Special Bus Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.7
Electronic Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.8
Block Protection and Block Unprotection . . . . . . . . . . . . . . . . . . . . . . . . . 24
Command Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.1
Read/Reset Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2
Auto Select Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3
Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.4
Unlock Bypass Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.5
Unlock Bypass Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
M29FxxxFT, M29FxxxFB
5
Contents
4.6
Unlock Bypass Reset Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.7
Chip Erase Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.8
Block Erase Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.9
Erase Suspend Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.10
Erase Resume Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.11
Read CFI Query Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.1
Data Polling Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.2
Toggle Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.3
Error Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.4
Erase Timer Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.5
Alternative Toggle Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6
Maximum Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
7
DC and AC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
8
Package Mechanical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
9
Part Numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Appendix A Block Address Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Appendix B Common Flash Interface (CFI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Appendix C Block protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
C.1
Programmer Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
C.2
In-System Technique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Appendix D Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3/67
List of tables
M29FxxxFT, M29FxxxFB
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
4/67
Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Bus Operations, BYTE = VIL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Bus Operations, BYTE = VIH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Commands, 16-bit mode, BYTE = VIH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Commands, 8-bit mode, BYTE = VIL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Program/Erase Times and Program/Erase Endurance Cycles, M29F160F . . . . . . . . . . . . 32
Program/Erase Times and Program/Erase Endurance Cycles, M29F800F . . . . . . . . . . . . 32
Program/Erase Times and Program/Erase Endurance Cycles, M29F400F . . . . . . . . . . . . 33
Program/Erase Times and Program/Erase Endurance Cycles, M29F200F . . . . . . . . . . . . 33
Status Register Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Operating and AC Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Device Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Read AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Write AC Characteristics, Write Enable Controlled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Write AC Characteristics, Chip Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Reset/Block Temporary Unprotect AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
TSOP48 – 48 lead Plastic Thin Small Outline, 12 x 20mm, Package Mechanical Data. . . 45
SO44 - 44 lead Plastic Small Outline, 500 mils body width, package mechanical data . . . 46
TFBGA48 6 x 8 mm - 6 x 8 ball array, 0.80 mm pitch, package mechanical data . . . . . . . 47
Information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Top Boot Block Addresses, M29F160FT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Bottom Boot Block Addresses, M29F160FB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Top Boot Block Addresses, M29F800FT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Bottom Boot Block Addresses, M29F800FB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Top Boot Block Addresses, M29F400FT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Bottom Boot Block Addresses, M29F400FB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Top Boot Block Addresses, M29F200FT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Bottom Boot Block Addresses, M29F200FB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Query Structure Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
CFI Query Identification String . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
CFI Query System Interface Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Device Geometry Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Primary Algorithm-Specific Extended Query Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Security Code Area. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Programmer Technique Bus Operations, BYTE = VIH or VIL . . . . . . . . . . . . . . . . . . . . . . . 61
Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
M29FxxxFT, M29FxxxFB
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Logic Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
TSOP Connections, M29F160F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
TSOP Connections, M29F800F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
TSOP Connections, M29F400F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
TSOP Connections, M29F200F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
SO Connections, M29F800 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
SO Connections, M29F400 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
SO Connections, M29F200 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
TFBGA connections (top view through package) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Block Addresses, M29F160 (x8). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Block Addresses, M29F160 (x16). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Block Addresses, M29F800 (x8). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Block Addresses, M29F800 (x16). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Block Addresses, M29F400 (x8). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Block Addresses, M29F400 (x16). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Block Addresses, M29F200 (x8). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Block Addresses, M29F200 (x16). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
AC Measurement I/O Waveform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
AC Measurement Load Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Read Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Write AC Waveforms, Write Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Write AC Waveforms, Chip Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Reset/Block Temporary Unprotect AC Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
TSOP48 – 48 lead Plastic Thin Small Outline, 12 x 20mm, Package Outline, top view . . . 45
SO44 – 44 lead plastic small outline, 500 mils body width, package outline . . . . . . . . . . . 46
TFBGA48 6 x 8 mm - 6 x 8 ball array, 0.80 mm pitch, package outline . . . . . . . . . . . . . . . 47
Programmer Equipment Block Protect Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Programmer Equipment Chip Unprotect Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
In-System Equipment Block Protect Flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
In-System Equipment Chip Unprotect Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5/67
Description
1
M29FxxxFT, M29FxxxFB
Description
The following overview of the Numonyx® Axcell™ M29F 5 V Flash Memory device
(M29W160F) refers to the 16-Mbit device. However, the information can also apply to lower
densities of the M29F device.
The M29F160F is a 16 Mbit (2 Mbit x8 or 1 Mbit x16) non-volatile memory that can be read,
erased and reprogrammed. These operations can be performed using a single low voltage
(4.5 to 5.5 V) supply. On power-up the memory defaults to its Read mode where it can be
read in the same way as a ROM or EPROM.
The memory is divided into blocks that can be erased independently so it is possible to
preserve valid data while old data is erased. Each block can be protected independently to
prevent accidental Program or Erase commands from modifying the memory. Program and
Erase commands are written to the Command Interface of the memory. An on-chip
Program/Erase Controller simplifies the process of programming or erasing the memory by
taking care of all of the special operations that are required to update the memory contents.
The end of a program or erase operation can be detected and any error conditions
identified. The command set required to control the memory is consistent with JEDEC
standards.
The blocks in the memory are asymmetrically arranged, as shown in Figure 10.: Block
Addresses, M29F160 (x8) and Figure 11.: Block Addresses, M29F160 (x16). The first or last
64 KBytes have been divided into four additional blocks. The 16 KByte Boot Block can be
used for small initialization code to start the microprocessor, the two 8 KByte Parameter
Blocks can be used for parameter storage and the remaining 32K is a small Main Block
where the application may be stored.
Chip Enable, Output Enable and Write Enable signals control the bus operation of the
memory. They allow simple connection to most microprocessors, often without additional
logic.
The memory is offered in TSOP48 (12 x 20mm), SO44 , and TFBGA48 (0.8 mm pitch)
packages. The memory is supplied with all the bits erased (set to ’1’).
6/67
M29FxxxFT, M29FxxxFB
Figure 1.
Description
Logic Diagram
VCC
20
15
DQ0-DQ07
DQ8-DQ15
A0-A19
W
DQ15A–1
E
G
RB
RP
BYTE
VSS
AI06849B
Table 1.
Signal Names
A0-A19
Address Inputs
DQ0-DQ7
Data Inputs/Outputs
DQ8-DQ14
Data Inputs/Outputs
DQ15A–1
Data Input/Output or Address Input
E
Chip Enable
G
Output Enable
W
Write Enable
RP
Reset/Block Temporary Unprotect
RB
Ready/Busy Output
BYTE
Byte/Word Organization Select
VCC
Supply Voltage
VSS
Ground
NC
Not Connected Internally
7/67
Description
M29FxxxFT, M29FxxxFB
Figure 2.
TSOP Connections, M29F160F
A15
A14
A13
A12
A11
A10
A9
A8
A19
NC
W
RP
NC
NC
RB
A18
A17
A7
A6
A5
A4
A3
A2
A1
1
48
12
13
37
36
24
25
A16
BYTE
VSS
DQ15A–1
DQ7
DQ14
DQ6
DQ13
DQ5
DQ12
DQ4
VCC
DQ11
DQ3
DQ10
DQ2
DQ9
DQ1
DQ8
DQ0
G
VSS
E
A0
AI06850_160
8/67
M29FxxxFT, M29FxxxFB
Figure 3.
Description
TSOP Connections, M29F800F
A15
A14
A13
A12
A11
A10
A9
A8
NC
NC
W
RP
NC
NC
RB
A18
A17
A7
A6
A5
A4
A3
A2
A1
1
48
12
13
37
36
24
25
A16
BYTE
VSS
DQ15A–1
DQ7
DQ14
DQ6
DQ13
DQ5
DQ12
DQ4
VCC
DQ11
DQ3
DQ10
DQ2
DQ9
DQ1
DQ8
DQ0
G
VSS
E
A0
AI06850_800
9/67
Description
M29FxxxFT, M29FxxxFB
Figure 4.
TSOP Connections, M29F400F
A15
A14
A13
A12
A11
A10
A9
A8
NC
NC
W
RP
NC
NC
RB
NC
A17
A7
A6
A5
A4
A3
A2
A1
1
48
12
13
37
36
24
25
A16
BYTE
VSS
DQ15A–1
DQ7
DQ14
DQ6
DQ13
DQ5
DQ12
DQ4
VCC
DQ11
DQ3
DQ10
DQ2
DQ9
DQ1
DQ8
DQ0
G
VSS
E
A0
AI06850_400
10/67
M29FxxxFT, M29FxxxFB
Figure 5.
Description
TSOP Connections, M29F200F
A15
A14
A13
A12
A11
A10
A9
A8
NC
NC
W
RP
NC
NC
RB
NC
NC
A7
A6
A5
A4
A3
A2
A1
1
48
12
13
37
36
24
25
A16
BYTE
VSS
DQ15A–1
DQ7
DQ14
DQ6
DQ13
DQ5
DQ12
DQ4
VCC
DQ11
DQ3
DQ10
DQ2
DQ9
DQ1
DQ8
DQ0
G
VSS
E
A0
AI06850_400
11/67
Description
M29FxxxFT, M29FxxxFB
Figure 6.
SO Connections, M29F800
RB
A18
A17
A7
A6
A5
A4
A3
A2
A1
A0
E
VSS
G
DQ0
DQ8
DQ1
DQ9
DQ2
DQ10
DQ3
DQ11
1
44
11
12
34
33
RP
W
A8
A9
A10
A11
A12
A13
A14
A15
A16
BYTE
VSS
DQ15A–1
DQ7
DQ14
DQ6
DQ13
22
23
DQ5
DQ12
DQ4
VCC
AI02906_400
12/67
M29FxxxFT, M29FxxxFB
Figure 7.
Description
SO Connections, M29F400
NC
RB
A17
A7
A6
A5
A4
A3
A2
A1
A0
E
VSS
G
DQ0
DQ8
DQ1
DQ9
DQ2
DQ10
DQ3
DQ11
1
44
11
12
34
33
RP
W
A8
A9
A10
A11
A12
A13
A14
A15
A16
BYTE
VSS
DQ15A–1
DQ7
DQ14
DQ6
DQ13
22
23
DQ5
DQ12
DQ4
VCC
AI02906_400
13/67
Description
M29FxxxFT, M29FxxxFB
Figure 8.
SO Connections, M29F200
NC
RB
NC
A7
A6
A5
A4
A3
A2
A1
A0
E
VSS
G
DQ0
DQ8
DQ1
DQ9
DQ2
DQ10
DQ3
DQ11
1
44
11
12
34
33
RP
W
A8
A9
A10
A11
A12
A13
A14
A15
A16
BYTE
VSS
DQ15A–1
DQ7
DQ14
DQ6
DQ13
22
23
DQ5
DQ12
DQ4
VCC
AI02906_400
14/67
M29FxxxFT, M29FxxxFB
Figure 9.
Description
TFBGA connections (top view through package)
1
2
3
4
5
6
A
A3
A7
RB
W
A9
A13
B
A4
A17 /
NC
NC
RP
A8
A12
C
A2
A6
A18 /
NC
NC
A10
A14
D
A1
A5
NC
A19 /
NC
A11
A15
E
A0
DQ0
DQ2
DQ5
DQ7
A16
F
E
DQ8
DQ10
DQ12
DQ14
BYTE
G
G
DQ9
DQ11
VCC
DQ13
DQ15
A–1
H
VSS
DQ1
DQ3
DQ4
DQ6
VSS
AI02985c
1. On the M29F800FT/B, A19 is NC (no connect); on the M29F400FT/B, A19-A18 are NC; on M29F200FT/B,
A19-A18-A17 are NC.
15/67
Description
M29FxxxFT, M29FxxxFB
Figure 10. Block Addresses, M29F160 (x8)
Top Boot Block Addresses (x8)
Bottom Boot Block Addresses (x8)
1FFFFFh
1FFFFFh
16 KByte
64 KByte
1FC000h
1FBFFFh
1F0000h
1EFFFFh
8 KByte
64 KByte
1FA000h
1F9FFFh
1E0000h
Total of 31
64 KByte Blocks
8 KByte
1F8000h
1F7FFFh
32 KByte
1F0000h
1EFFFFh
01FFFFh
64 KByte
64 KByte
1E0000h
010000h
00FFFFh
32 KByte
Total of 31
64 KByte Blocks
01FFFFh
008000h
007FFFh
8 KByte
006000h
005FFFh
64 KByte
8 KByte
004000h
003FFFh
010000h
00FFFFh
64 KByte
16 KByte
000000h
000000h
AI06851_x8_160
Also see Appendix Appendix A: Block Address Table for a full listing of the Block Addresses.
Figure 11.
Block Addresses, M29F160 (x16)
Top Boot Block Addresses (x16)
Bottom Boot Block Addresses (x16)
FFFFFh
FFFFFh
8 KWord
32 KWord
FE000h
FDFFFh
F8000h
F7FFFh
4 KWord
32 KWord
FD000h
FCFFFh
F0000h
Total of 31
32 KWord Blocks
4 KWord
FC000h
FBFFFh
16 KWord
F8000h
F7FFFh
0FFFFh
32 KWord
32 KWord
F0000h
08000h
07FFFh
16 KWord
Total of 31
32 KWord Blocks
0FFFFh
04000h
03FFFh
4 KWord
03000h
02FFFh
32 KWord
08000h
07FFFh
4 KWord
02000h
01FFFh
32 KWord
00000h
8 KWord
00000h
AI06852_x16_160
Also see Appendix Appendix A: Block Address Table for a full listing of the Block Addresses.
16/67
M29FxxxFT, M29FxxxFB
Description
Figure 12. Block Addresses, M29F800 (x8)
Top Boot Block Addresses (x8)
Bottom Boot Block Addresses (x8)
FFFFFh
FFFFFh
16 KByte
64 KByte
FC000h
FBFFFh
F0000h
EFFFFh
8 KByte
64 KByte
FA000h
F9FFFh
E0000h
Total of 15
64 KByte Blocks
8 KByte
F8000h
F7FFFh
32 KByte
F0000h
EFFFFh
1FFFFh
64 KByte
64 KByte
E0000h
10000h
0FFFFh
32 KByte
Total of 15
64 KByte Blocks
1FFFFh
08000h
07FFFh
8 KByte
06000h
05FFFh
64 KByte
8 KByte
04000h
03FFFh
10000h
0FFFFh
64 KByte
16 KByte
00000h
00000h
AI05463_x8_800
Also see Appendix Appendix A: Block Address Table for a full listing of the Block Addresses.
Figure 13. Block Addresses, M29F800 (x16)
Top Boot Block Addresses (x16)
Bottom Boot Block Addresses (x16)
7FFFFh
7FFFFh
8 KWord
32 KWord
7E000h
7DFFFh
78000h
77FFFh
4 KWord
32 KWord
7D000h
7CFFFh
70000h
Total of 15
32 KWord Blocks
4 KWord
7C000h
7BFFFh
16 KWord
78000h
77FFFh
0FFFFh
32 KWord
32 KWord
70000h
08000h
07FFFh
16 KWord
Total of 15
32 KWord Blocks
0FFFFh
04000h
03FFFh
4 KWord
03000h
02FFFh
32 KWord
08000h
07FFFh
4 KWord
02000h
01FFFh
32 KWord
00000h
8 KWord
00000h
AI05464_x16_800
Also see Appendix Appendix A: Block Address Table for a full listing of the Block Addresses.
17/67
Description
M29FxxxFT, M29FxxxFB
Figure 14. Block Addresses, M29F400 (x8)
Top Boot Block Addresses (x8)
Bottom Boot Block Addresses (x8)
7FFFFh
7FFFFh
16 KByte
64 KByte
7C000h
FBFFFh
70000h
6FFFFh
8 KByte
64 KByte
7A000h
79FFFh
60000h
Total of 7
64 KByte Blocks
8 KByte
78000h
77FFFh
32 KByte
70000h
6FFFFh
1FFFFh
64 KByte
64 KByte
60000h
10000h
0FFFFh
32 KByte
Total of 7
64 KByte Blocks
1FFFFh
08000h
07FFFh
8 KByte
06000h
05FFFh
64 KByte
8 KByte
04000h
03FFFh
10000h
0FFFFh
64 KByte
16 KByte
00000h
00000h
AI05463_x8_400
Also see Appendix Appendix A: Block Address Table for a full listing of the Block Addresses.
Figure 15. Block Addresses, M29F400 (x16)
Top Boot Block Addresses (x16)
Bottom Boot Block Addresses (x16)
3FFFFh
3FFFFh
8 KWord
32 KWord
3E000h
3DFFFh
38000h
37FFFh
4 KWord
32 KWord
3D000h
3CFFFh
30000h
Total of 7
32 KWord Blocks
4 KWord
3C000h
3BFFFh
16 KWord
38000h
37FFFh
0FFFFh
32 KWord
32 KWord
30000h
08000h
07FFFh
16 KWord
Total of 7
32 KWord Blocks
0FFFFh
04000h
03FFFh
4 KWord
03000h
02FFFh
32 KWord
08000h
07FFFh
4 KWord
02000h
01FFFh
32 KWord
00000h
8 KWord
00000h
AI5464_x16_400
Also see Appendix Appendix A: Block Address Table for a full listing of the Block Addresses.
18/67
M29FxxxFT, M29FxxxFB
Description
Figure 16. Block Addresses, M29F200 (x8)
Top Boot Block Addresses (x8)
Bottom Boot Block Addresses (x8)
3FFFFh
2FFFFh
16 KByte
64 KByte
3C000h
3BFFFh
20000h
2FFFFh
8 KByte
64 KByte
3A000h
39FFFh
20000h
Total of 3
64 KByte Blocks
8 KByte
38000h
37FFFh
32 KByte
30000h
3FFFFh
1FFFFh
64 KByte
64 KByte
20000h
10000h
0FFFFh
32 KByte
Total of 3
64 KByte Blocks
1FFFFh
08000h
07FFFh
8 KByte
06000h
05FFFh
64 KByte
8 KByte
10000h
0FFFFh
04000h
03FFFh
64 KByte
16 KByte
00000h
00000h
AI05463_x8_200
Also see Appendix Appendix A: Block Address Table for a full listing of the Block Addresses.
Figure 17. Block Addresses, M29F200 (x16)
Top Boot Block Addresses (x16)
Bottom Boot Block Addresses (x16)
1FFFFh
1FFFFh
8 KWord
32 KWord
1E000h
1DFFFh
18000h
17FFFh
4 KWord
32 KWord
1D000h
3CFFFh
10000h
Total of 3
32 KWord Blocks
4 KWord
1C000h
3BFFFh
16 KWord
18000h
17FFFh
0FFFFh
32 KWord
32 KWord
10000h
08000h
07FFFh
16 KWord
Total of 3
32 KWord Blocks
0FFFFh
04000h
03FFFh
4 KWord
03000h
02FFFh
32 KWord
4 KWord
02000h
01FFFh
08000h
07FFFh
32 KWord
00000h
8 KWord
00000h
AI05464_x16_200
Also see Appendix Appendix A: Block Address Table for a full listing of the Block Addresses.
19/67
Signal Descriptions
2
M29FxxxFT, M29FxxxFB
Signal Descriptions
See Figure 1.: Logic Diagram and Table 1.: Signal Names, for a brief overview of the signals
connected to this device.
2.1
Address Inputs (A0-A19)
The Address Inputs select the cells in the memory array to access during Bus Read
operations. During Bus Write operations they control the commands sent to the Command
Interface of the Program/Erase Controller.
2.2
Data Inputs/Outputs (DQ0-DQ7)
The Data Inputs/Outputs output the data stored at the selected address during a Bus Read
operation. During Bus Write operations they represent the commands sent to the Command
Interface of the Program/Erase Controller.
2.3
Data Inputs/Outputs (DQ8-DQ14)
The Data Inputs/Outputs output the data stored at the selected address during a Bus Read
operation when BYTE is High, VIH. When BYTE is Low, VIL, these pins are not used and are
high impedance. During Bus Write operations the Command Register does not use these
bits. When reading the Status Register these bits should be ignored.
2.4
Data Input/Output or Address Input (DQ15A-1)
When BYTE is High, VIH, this pin behaves as a Data Input/Output pin (as DQ8-DQ14).
When BYTE is Low, VIL, this pin behaves as an address pin; DQ15A–1 Low will select the
LSB of the Word on the other addresses, DQ15A–1 High will select the MSB. Throughout
the text consider references to the Data Input/Output to include this pin when BYTE is High
and references to the Address Inputs to include this pin when BYTE is Low except when
stated explicitly otherwise.
2.5
Chip Enable
The Chip Enable, E, activates the memory, allowing Bus Read and Bus Write operations to
be performed. When Chip Enable is High, VIH, all other pins are ignored.
2.6
Output Enable
The Output Enable, G, controls the Bus Read operation of the memory.
20/67
M29FxxxFT, M29FxxxFB
2.7
Signal Descriptions
Write Enable
The Write Enable, W, controls the Bus Write operation of the memory’s Command Interface.
2.8
Reset/Block Temporary Unprotect
The Reset/Block Temporary Unprotect pin can be used to apply a Hardware Reset to the
memory or to temporarily unprotect all Blocks that have been protected.
A Hardware Reset is achieved by holding Reset/Block Temporary Unprotect Low, VIL, for at
least tPLPX. After Reset/Block Temporary Unprotect goes High, VIH, the memory will be
ready for Bus Read and Bus Write operations after tPHEL or tRHEL, whichever occurs last.
See the Ready/Busy Output section, Table 18.: Reset/Block Temporary Unprotect AC
Characteristics and Figure 23.: Reset/Block Temporary Unprotect AC Waveforms.
Holding RP at VID will temporarily unprotect the protected Blocks in the memory. Program
and Erase operations on all blocks will be possible. The transition from VIH to VID must be
slower than tPHPHH.
2.9
Ready/Busy Output
The Ready/Busy pin is an open-drain output that can be used to identify when the device is
performing a Program or Erase operation. During Program or Erase operations Ready/Busy
is Low, VOL. Ready/Busy is high-impedance during Read mode, Auto Select mode and
Erase Suspend mode.
After a Hardware Reset, Bus Read and Bus Write operations cannot begin until Ready/Busy
becomes high-impedance. See Table 18.: Reset/Block Temporary Unprotect AC
Characteristics and Figure 23.: Reset/Block Temporary Unprotect AC Waveforms.
The use of an open-drain output allows the Ready/Busy pins from several memories to be
connected to a single pull-up resistor. A Low will then indicate that one, or more, of the
memories is busy.
2.10
Byte/Word Organization Select
The Byte/Word Organization Select pin is used to switch between the 8-bit and 16-bit Bus
modes of the memory. When Byte/Word Organization Select is Low, VIL, the memory is in 8bit mode, when it is High, VIH, the memory is in 16-bit mode.
2.11
VCC Supply Voltage
The VCC Supply Voltage supplies the power for all operations (Read, Program, Erase etc.).
The Command Interface is disabled when the VCC Supply Voltage is less than the Lockout
Voltage, VLKO. This prevents Bus Write operations from accidentally damaging the data
during power up, power down and power surges. If the Program/Erase Controller is
programming or erasing during this time then the operation aborts and the memory contents
being altered will be invalid.
21/67
Signal Descriptions
M29FxxxFT, M29FxxxFB
A 0.1µF capacitor should be connected between the VCC Supply Voltage pin and the VSS
Ground pin to decouple the current surges from the power supply. The PCB track widths
must be sufficient to carry the currents required during program and erase operations, ICC3.
2.12
VSS Ground
The VSS Ground is the reference for all voltage measurements. The two VSS pins of the
device must be connected to the system ground.
22/67
M29FxxxFT, M29FxxxFB
3
Bus Operations
Bus Operations
There are five standard bus operations that control the device. These are Bus Read, Bus
Write, Output Disable, Standby and Automatic Standby. See Table 2.: Bus Operations,
BYTE = VIL and Table 3.: Bus Operations, BYTE = VIH for a summary. Typically glitches of
less than 5ns on Chip Enable or Write Enable are ignored by the memory and do not affect
bus operations.
3.1
Bus Read
Bus Read operations read from the memory cells, or specific registers in the Command
Interface. A valid Bus Read operation involves setting the desired address on the Address
Inputs, applying a Low signal, VIL, to Chip Enable and Output Enable and keeping Write
Enable High, VIH. The Data Inputs/Outputs will output the value, see Figure 20.: Read Mode
AC Waveforms and Table 15.: Read AC Characteristics, for details of when the output
becomes valid.
3.2
Bus Write
Bus Write operations write to the Command Interface. A valid Bus Write operation begins by
setting the desired address on the Address Inputs. The Address Inputs are latched by the
Command Interface on the falling edge of Chip Enable or Write Enable, whichever occurs
last. The Data Inputs/Outputs are latched by the Command Interface on the rising edge of
Chip Enable or Write Enable, whichever occurs first. Output Enable must remain High, VIH,
during the whole Bus Write operation. See the following figures and tables:
3.3
„
Figure 21.: Write AC Waveforms, Write Enable Controlled
„
Figure 22.: Write AC Waveforms, Chip Enable Controlled,
„
Table 16.: Write AC Characteristics, Write Enable Controlled
„
Table 17.: Write AC Characteristics, Chip Enable Controlled.
Output Disable
The Data Inputs/Outputs are in the high impedance state when Output Enable is High, VIH.
3.4
Standby
When Chip Enable is High, VIH, the memory enters Standby mode and the Data
Inputs/Outputs pins are placed in the high-impedance state. To reduce the Supply Current to
the Standby Supply Current, ICC2, Chip Enable should be held within VCC ± 0.2V. For the
Standby current level see Table 14.: DC Characteristics.
During program or erase operations the memory will continue to use the Program/Erase
Supply Current, ICC3, for Program or Erase operations until the operation completes.
23/67
Bus Operations
3.5
M29FxxxFT, M29FxxxFB
Automatic Standby
If CMOS levels (VCC ± 0.2V) are used to drive the bus and the bus is inactive for 150ns or
more the memory enters Automatic Standby where the internal Supply Current is reduced to
the Standby Supply Current, ICC2. The Data Inputs/Outputs will still output data if a Bus
Read operation is in progress.
3.6
Special Bus Operations
Additional bus operations can be performed to read the Electronic Signature and also to
apply and remove Block Protection. These bus operations are intended for use by
programming equipment and are not usually used in applications. They require VID to be
applied to some pins.
3.7
Electronic Signature
The memory has two codes, the manufacturer code and the device code, that can be read
to identify the memory. These codes can be read by applying the signals listed in Table 2.:
Bus Operations, BYTE = VIL and Table 3.: Bus Operations, BYTE = VIH.
3.8
Block Protection and Block Unprotection
Each block can be separately protected against accidental Program or Erase. Protected
blocks can be unprotected to allow data to be changed.
There are two methods available for protecting and unprotecting the blocks, one for use on
programming equipment and the other for in-system use. Block Protect and Blocks
Unprotect operations are described in Appendix C: Block protection.
24/67
M29FxxxFT, M29FxxxFB
Table 2.
Bus Operations
Bus Operations, BYTE = VIL
Operation
E
G
Address Inputs
DQ15A–1, A0-A19
W
Data Inputs/Outputs
DQ14-DQ8
DQ7-DQ0
Bus Read
VIL
VIL
VIH
Cell Address
Hi-Z
Data Output
Bus Write
VIL
VIH
VIL
Command Address
Hi-Z
Data Input
VIH
VIH
X
Hi-Z
Hi-Z
X
X
Hi-Z
Hi-Z
VIH
A0 = VIL, A1 = VIL, A9 = VID,
Hi-Z
Others VIL or VIH
0x01
A0 = VIH, A1 = VIL, A9 = VID,
Hi-Z
Others VIL or VIH
0x51 (M29F200FT)
0x57 (M29F200FB)
0x23 (M29F400FT)
0xAB (M29F400FB)
0xD6 (M29F800FT)
0x58 (M29F800FB)
0xD2 (M29F160FT)
0xD8 (M29F160FB)
Output Disable X
Standby
VIH X
Read
Manufacturer
Code
VIL
Read Device
Code
VIL
VIL
VIL
VIH
X = VIL or VIH.
Table 3.
Bus Operations, BYTE = VIH
Operation
Bus Read
G
E
VIL
Address Inputs
A0-A19
W
VIL
VIH
Cell Address
Data Inputs/Outputs
DQ15A–1, DQ14-DQ0
Data Output
Bus Write
VIL
VIH
VIL
Command Address
Data Input
Output Disable
X
VIH
VIH
X
Hi-Z
Standby
VIH
X
X
X
Hi-Z
Read
Manufacturer
Code
VIL
VIL
VIH
A0 = VIL, A1 = VIL, A9 =
0x01
VID, Others VIL or VIH
VIH
0x2251 (M29F200FT)
0x2257 (M29F200FB)
0x2223 (M29F400FT)
A0 = VIH, A1 = VIL, A9 = 0x22AB (M29F400FB)
VID, Others VIL or VIH
0x22D6 (M29F800FT)
0x2258 (M29F800FB)
0x22D2 (M29F160FT)
0x22D8 (M29F160FB)
Read Device
Code
VIL
VIL
X = VIL or VIH.
25/67
Command Interface
4
M29FxxxFT, M29FxxxFB
Command Interface
All Bus Write operations to the memory are interpreted by the Command Interface.
Commands consist of one or more sequential Bus Write operations. Failure to observe a
valid sequence of Bus Write operations will result in the memory returning to Read mode.
The long command sequences are imposed to maximize data security.
The address used for the commands changes depending on whether the memory is in 16bit or 8-bit mode. See either Table 4.: Commands, 16-bit mode, BYTE = VIH, or Table 5.:
Commands, 8-bit mode, BYTE = VIL, depending on the configuration that is being used, for
a summary of the commands.
4.1
Read/Reset Command
The Read/Reset command returns the memory to its Read mode where it behaves like a
ROM or EPROM, unless otherwise stated. It also resets the errors in the Status Register.
Either one or three Bus Write operations can be used to issue the Read/Reset command.
The Read/Reset Command can be issued, between Bus Write cycles before the start of a
program or erase operation, to return the device to read mode. Once the program or erase
operation has started the Read/Reset command is no longer accepted. The Read/Reset
command will not abort an Erase operation when issued while in Erase Suspend.
4.2
Auto Select Command
The Auto Select command is used to read the Manufacturer Code, the Device Code and the
Block Protection Status. Three consecutive Bus Write operations are required to issue the
Auto Select command. Once the Auto Select command is issued the memory remains in
Auto Select mode until a Read/Reset command is issued. Read CFI Query and Read/Reset
commands are accepted in Auto Select mode, all other commands are ignored.
From the Auto Select mode the Manufacturer Code can be read using a Bus Read
operation with A0 = VIL and A1 = VIL. The other address bits may be set to either VIL or VIH.
The Manufacturer Code for Numonyx is 0001h.
The Device Code can be read using a Bus Read operation with A0 = VIH and A1 = VIL. The
other address bits may be set to either VIL or VIH.
The Block Protection Status of each block can be read using a Bus Read operation with A0
= VIL, A1 = VIH, and A12-A19 specifying the address of the block. The other address bits
may be set to either VIL or VIH. If the addressed block is protected then 01h is output on
Data Inputs/Outputs DQ0-DQ7, otherwise 00h is output.
4.3
Program Command
The Program command can be used to program a value to one address in the memory
array at a time. The command requires four Bus Write operations, the final write operation
latches the address and data, and starts the Program/Erase Controller.
If the address falls in a protected block then the Program command is ignored, the data
remains unchanged. The Status Register is never read and no error condition is given.
26/67
M29FxxxFT, M29FxxxFB
Command Interface
During the program operation the memory will ignore all commands. It is not possible to
issue any command to abort or pause the operation. Typical program times are given in
Table 6.: Program/Erase Times and Program/Erase Endurance Cycles, M29F160F. Bus
Read operations during the program operation will output the Status Register on the Data
Inputs/Outputs. See the section on the Status Register for more details.
After the program operation has completed the memory returns to the Read mode, unless
an error has occurred. When an error occurs the memory continues to output the Status
Register. A Read/Reset command must be issued to reset the error condition and return to
Read mode.
Note that the Program command cannot change a bit set at ’0’ back to ’1’. One of the Erase
Commands must be used to set all the bits in a block or in the whole memory from ’0’ to ’1’.
4.4
Unlock Bypass Command
The Unlock Bypass command is used in conjunction with the Unlock Bypass Program
command to program the memory. When the access time to the device is long (as with
some EPROM programmers) considerable time saving can be made by using these
commands. Three Bus Write operations are required to issue the Unlock Bypass command.
Once the Unlock Bypass command has been issued the memory will only accept the Unlock
Bypass Program command and the Unlock Bypass Reset command. The memory can be
read as if in Read mode.
4.5
Unlock Bypass Program Command
The Unlock Bypass Program command can be used to program one address in memory at
a time. The command requires two Bus Write operations, the final write operation latches
the address and data, and starts the Program/Erase Controller.
The Program operation using the Unlock Bypass Program command behaves identically to
the Program operation using the Program command. A protected block cannot be
programmed; the operation cannot be aborted and the Status Register is read. Errors must
be reset using the Read/Reset command, which leaves the device in Unlock Bypass Mode.
See the Program command for details on the behavior.
4.6
Unlock Bypass Reset Command
The Unlock Bypass Reset command can be used to return to Read/Reset mode from
Unlock Bypass Mode. Two Bus Write operations are required to issue the Unlock Bypass
Reset command. Read/Reset command does not exit from Unlock Bypass Mode.
4.7
Chip Erase Command
The Chip Erase command can be used to erase the entire chip. Six Bus Write operations
are required to issue the Chip Erase Command and start the Program/Erase Controller.
If any blocks are protected then these are ignored and all the other blocks are erased. If all
of the blocks are protected the Chip Erase operation appears to start but will terminate
27/67
Command Interface
M29FxxxFT, M29FxxxFB
within about 100µs, leaving the data unchanged. No error condition is given when protected
blocks are ignored.
During the erase operation the memory will ignore all commands. It is not possible to issue
any command to abort the operation. Typical chip erase times are given in Table 6.:
Program/Erase Times and Program/Erase Endurance Cycles, M29F160F. All Bus Read
operations during the Chip Erase operation will output the Status Register on the Data
Inputs/Outputs. See the section on the Status Register for more details.
After the Chip Erase operation has completed the memory will return to the Read Mode,
unless an error has occurred. When an error occurs the memory will continue to output the
Status Register. A Read/Reset command must be issued to reset the error condition and
return to Read Mode.
The Chip Erase Command sets all of the bits in unprotected blocks of the memory to ’1’. All
previous data is lost.
4.8
Block Erase Command
The Block Erase command can be used to erase a list of one or more blocks. Six Bus Write
operations are required to select the first block in the list. Each additional block in the list can
be selected by repeating the sixth Bus Write operation using the address of the additional
block. The Block Erase operation starts the Program/Erase Controller about 50µs after the
last Bus Write operation. Once the Program/Erase Controller starts it is not possible to
select any more blocks. Each additional block must therefore be selected within 50µs of the
last block. The 50µs timer restarts when an additional block is selected. The Status Register
can be read after the sixth Bus Write operation. See the Status Register section for details
on how to identify if the Program/Erase Controller has started the Block Erase operation.
If any selected blocks are protected then these are ignored and all the other selected blocks
are erased. If all of the selected blocks are protected the Block Erase operation appears to
start but will terminate within about 100µs, leaving the data unchanged. No error condition is
given when protected blocks are ignored.
During the Block Erase operation the memory will ignore all commands except the Erase
Suspend command. Typical block erase times are given in Table 6.: Program/Erase Times
and Program/Erase Endurance Cycles, M29F160F. All Bus Read operations during the
Block Erase operation will output the Status Register on the Data Inputs/Outputs. See the
section on the Status Register for more details.
After the Block Erase operation has completed the memory will return to the Read Mode,
unless an error has occurred. When an error occurs the memory will continue to output the
Status Register. A Read/Reset command must be issued to reset the error condition and
return to Read mode.
The Block Erase Command sets all of the bits in the unprotected selected blocks to ’1’. All
previous data in the selected blocks is lost.
4.9
Erase Suspend Command
The Erase Suspend Command may be used to temporarily suspend a Block Erase
operation and return the memory to Read mode. The command requires one Bus Write
operation.
28/67
M29FxxxFT, M29FxxxFB
Command Interface
The Program/Erase Controller will suspend within the Erase Suspend Latency Time (refer to
Table 6.: Program/Erase Times and Program/Erase Endurance Cycles, M29F160F for
value) of the Erase Suspend Command being issued. Once the Program/Erase Controller
has stopped the memory will be set to Read mode and the Erase will be suspended. If the
Erase Suspend command is issued during the period when the memory is waiting for an
additional block (before the Program/Erase Controller starts) then the Erase is suspended
immediately and will start immediately when the Erase Resume Command is issued. It is
not possible to select any further blocks to erase after the Erase Resume.
During Erase Suspend it is possible to Read and Program cells in blocks that are not being
erased; both Read and Program operations behave as normal on these blocks. If any
attempt is made to program in a protected block or in the suspended block then the Program
command is ignored and the data remains unchanged. The Status Register is not read and
no error condition is given. Reading from blocks that are being erased will output the Status
Register.
It is also possible to issue the Auto Select, Read CFI Query and Unlock Bypass commands
during an Erase Suspend. The Read/Reset command must be issued to return the device to
Read Array mode before the Resume command will be accepted.
4.10
Erase Resume Command
The Erase Resume command must be used to restart the Program/Erase Controller from
Erase Suspend. An erase can be suspended and resumed more than once.
4.11
Read CFI Query Command
The Read CFI Query Command is used to read data from the Common Flash Interface
(CFI) Memory Area. This command is valid when the device is in the Read Array mode, or
when the device is in Auto Select mode.
One Bus Write cycle is required to issue the Read CFI Query Command. Once the
command is issued subsequent Bus Read operations read from the Common Flash
Interface Memory Area.
The Read/Reset command must be issued to return the device to the previous mode (the
Read Array mode or Auto Select mode). A second Read/Reset command would be needed
if the device is to be put in the Read Array mode from Auto Select mode.
See Appendix B: Common Flash Interface (CFI) and the following tables for details on the
information contained in the Common Flash Interface (CFI) memory area.
„
Table 31.: Query Structure Overview,
„
Table 32.: CFI Query Identification String,
„
Table 33.: CFI Query System Interface Information,
„
Table 34.: Device Geometry Definition,
„
Table 35.: Primary Algorithm-Specific Extended Query Table
„
Table 36.: Security Code Area
29/67
Command Interface
Table 4.
M29FxxxFT, M29FxxxFB
Commands, 16-bit mode, BYTE = VIH
Command
Length
Bus Write Operations
1st
2nd
3rd
4th
5th
6th
Addr Addr Addr Addr Addr Addr Addr Addr Addr Addr Addr Addr
1
X
F0
3
555
AA
2AA
55
X
F0
Auto Select
3
555
AA
2AA
55
555
90
Program
4
555
AA
2AA
55
555
A0
Unlock Bypass
3
555
AA
2AA
55
555
20
Unlock Bypass
Program
2
X
A0
PA
PD
Unlock Bypass Reset
2
X
90
X
00
Chip Erase
6
555
AA
2AA
55
555
Block Erase
6+ 555
AA
2AA
55
555
Erase Suspend
1
X
B0
Erase Resume
1
X
30
Read CFI Query
1
55
98
Read/Reset
PA
PD
80
555
AA
2AA
55
555
10
80
555
AA
2AA
55
BA
30
X Don’t Care, PA Program Address, PD Program Data, BA Any address in the Block. All values in the table are in hexadecimal.
Command Interface: only uses A–1, A0-A10 and DQ0-DQ7 to verify the commands; A11-A19, DQ8-DQ14 and DQ15 are Don’t
Care. DQ15A–1 is A–1 when BYTE is VIL or DQ15 when BYTE is VIH.
Read/Reset: After a Read/Reset command, read the memory as normal until another command is issued.
Auto Select: After an Auto Select command, read Manufacturer ID, Device ID or Block Protection Status.
Program, Unlock Bypass Program, Chip Erase, Block Erase: After these commands read the Status Register until the
Program/Erase Controller completes and the memory returns to Read Mode. Add additional Blocks during Block Erase
Command with additional Bus Write Operations until Timeout Bit is set.
Unlock Bypass: After the Unlock Bypass command issue Unlock Bypass Program or Unlock Bypass Reset commands.
Unlock Bypass Reset: After the Unlock Bypass Reset command read the memory as normal until another command is issued.
Erase Suspend: After the Erase Suspend command read non-erasing memory blocks as normal, issue Auto Select and
Program commands on non-erasing blocks as normal.
Erase Resume: After the Erase Resume command the suspended Erase operation resumes, read the Status Register until the
Program/Erase Controller completes and the memory returns to Read Mode.
CFI Query: Command is valid when device is ready to read array data or when device is in Auto Select mode.
30/67
M29FxxxFT, M29FxxxFB
Table 5.
Command Interface
Commands, 8-bit mode, BYTE = VIL
Command
Length
Bus Write Operations
1st
2nd
3rd
4th
5th
6th
Addr Data Addr Data Addr Data Addr Data Addr Data Addr Data
1
X
F0
3
AAA
AA
555
55
X
F0
Auto Select
3
AAA
AA
555
55
AAA
90
Program
4
AAA
AA
555
55
AAA
A0
Unlock Bypass
3
AAA
AA
555
55
AAA
20
Unlock Bypass
Program
2
X
A0
PA
PD
Unlock Bypass Reset
2
X
90
X
00
Chip Erase
6
AAA
AA
555
55
AAA
Block Erase
6+ AAA
AA
555
55
AAA
Erase Suspend
1
X
B0
Erase Resume
1
X
30
Read CFI Query
1
AA
98
Read/Reset
PA
PD
80
AAA
AA
555
55
AAA
10
80
AAA
AA
555
55
BA
30
X Don’t Care, PA Program Address, PD Program Data, BA Any address in the Block. All values in the table are in hexadecimal.
Command Interface: only uses A–1, A0-A10 and DQ0-DQ7 to verify the commands; A11-A19, DQ8-DQ14 and DQ15 are Don’t
Care. DQ15A–1 is A–1 when BYTE is VIL or DQ15 when BYTE is VIH.
Read/Reset: After a Read/Reset command, read the memory as normal until another command is issued.
Auto Select: After an Auto Select command, read Manufacturer ID, Device ID or Block Protection Status.
Program, Unlock Bypass Program, Chip Erase, Block Erase: After these commands read the Status Register until the
Program/Erase Controller completes and the memory returns to Read Mode. Add additional Blocks during Block Erase
Command with additional Bus Write Operations until Timeout Bit is set.
Unlock Bypass: After the Unlock Bypass command issue Unlock Bypass Program or Unlock Bypass Reset commands.
Unlock Bypass Reset: After the Unlock Bypass Reset command read the memory as normal until another command is issued.
Erase Suspend: After the Erase Suspend command read non-erasing memory blocks as normal, issue Auto Select and
Program commands on non-erasing blocks as normal.
Erase Resume: After the Erase Resume command the suspended Erase operation resumes, read the Status Register until the
Program/Erase Controller completes and the memory returns to Read Mode.
CFI Query: Command is valid when device is ready to read array data or when device is in Auto Select mode.
31/67
Command Interface
Table 6.
M29FxxxFT, M29FxxxFB
Program/Erase Times and Program/Erase Endurance Cycles, M29F160F
Parameter
Min
Typical
Max
Unit
Chip Erase
—
25
120
s
Block Erase (64 KBytes)
—
0.8
6
s
Erase Suspend Latency Time
—
20
25
µs
Program (Byte or Word)
—
11
200
µs
Chip Program (Byte by Byte)
—
24
120
s
Chip Program (Word by Word)
—
12
60
s
Program/Erase Cycles (per Block)
100,000
—
—
cycles
Data Retention
20
—
—
years
Typical values are measured at room temperature and nominal voltages; typical and maximum values are samples, not 100%
tested.
Chip Erase, Program, and Chip Program parameters: Maximum value measured at worst case conditions for both temperature
and VCC after 100,000 program/erase cycles.
Block Erase and Erase Suspend Latency parameters: Maximum value measured at worst case conditions for both temperature
and VCC.
Table 7.
Program/Erase Times and Program/Erase Endurance Cycles, M29F800F
Parameter
Min
Typical
Max
Unit
Chip Erase
—
12
60
s
Block Erase (64 KBytes)
—
0.8
6
s
Erase Suspend Latency Time
—
20
25
µs
Program (Byte or Word)
—
11
200
µs
Chip Program (Byte by Byte)
—
12
—
s
Chip Program (Word by Word)
—
6
30
s
Program/Erase Cycles (per Block)
100,000
—
—
cycles
Data Retention
20
—
—
years
Typical values are measured at room temperature and nominal voltages; typical and maximum values are samples, not 100%
tested.
Chip Erase, Program, and Chip Program parameters: Maximum value measured at worst case conditions for both temperature
and VCC after 100,000 program/erase cycles.
Block Erase and Erase Suspend Latency parameter: Maximum value measured at worst case conditions for both temperature
and VCC.
32/67
M29FxxxFT, M29FxxxFB
Table 8.
Command Interface
Program/Erase Times and Program/Erase Endurance Cycles, M29F400F
Parameter
Min
Typical
Max
Unit
Chip Erase
—
6
30
s
Block Erase (64 KBytes)
—
0.8
6
s
Erase Suspend Latency Time
—
20
25
µs
Program (Byte or Word)
—
11
200
µs
Chip Program (Byte by Byte)
—
6
—
s
Chip Program (Word by Word)
—
3
15
s
Program/Erase Cycles (per Block)
100,000
—
—
cycles
Data Retention
20
—
—
years
Typical values are measured at room temperature and nominal voltages; typical and maximum values are samples, not 100%
tested.
Chip Erase, Program, and Chip Program parameters: Maximum value measured at worst case conditions for both temperature
and VCC after 100,000 program/erase cycles.
Block Erase and Erase Suspend Latency parameter: Maximum value measured at worst case conditions for both temperature
and VCC.
Table 9.
Program/Erase Times and Program/Erase Endurance Cycles, M29F200F
Parameter
Min
Typical
Max
Unit
Chip Erase
—
3
15
s
Block Erase (64 KBytes)
—
0.8
6
s
Erase Suspend Latency Time
—
20
25
µs
Program (Byte or Word)
—
11
200
µs
Chip Program (Byte by Byte)
—
4
—
s
Chip Program (Word by Word)
—
2
8
s
Program/Erase Cycles (per Block)
100,000
—
—
cycles
Data Retention
20
—
—
years
Typical values are measured at room temperature and nominal voltages; typical and maximum values are samples, not 100%
tested.
Chip Erase, Program, and Chip Program parameters: Maximum value measured at worst case conditions for both temperature
and VCC after 100,000 program/erase cycles.
Block Erase and Erase Suspend Latency parameter: Maximum value measured at worst case conditions for both temperature
and VCC.
33/67
Status Register
5
M29FxxxFT, M29FxxxFB
Status Register
Bus Read operations from any address always read the Status Register during Program
and Erase operations. It is also read during Erase Suspend when an address within a block
being erased is accessed.
The bits in the Status Register are summarized in Table 10.: Status Register Bits.
5.1
Data Polling Bit
The Data Polling Bit (DQ7) can be used to identify whether the Program/Erase Controller
has successfully completed its operation or if it has responded to an Erase Suspend. The
Data Polling Bit is output on DQ7 when the Status Register is read.
During Program operations the Data Polling Bit outputs the complement of the bit being
programmed to DQ7. After successful completion of the Program operation the memory
returns to Read mode and Bus Read operations from the address just programmed output
DQ7, not its complement.
During Erase operations the Data Polling Bit outputs ’0’, the complement of the erased state
of DQ7. After successful completion of the Erase operation the memory returns to Read
Mode.
In Erase Suspend mode the Data Polling Bit will output a ’1’ during a Bus Read operation
within a block being erased. The Data Polling Bit will change from a ’0’ to a ’1’ when the
Program/Erase Controller has suspended the Erase operation.
Figure 1. Data Polling Flowchart, gives an example of how to use the Data Polling Bit. A
Valid Address is the address being programmed or an address within the block being
erased.
5.2
Toggle Bit
The Toggle Bit (DQ6) can be used to identify whether the Program/Erase Controller has
successfully completed its operation or if it has responded to an Erase Suspend. The Toggle
Bit is output on DQ6 when the Status Register is read.
During Program and Erase operations the Toggle Bit changes from ’0’ to ’1’ to ’0’, etc., with
successive Bus Read operations at any address. After successful completion of the
operation the memory returns to Read mode.
During Erase Suspend mode the Toggle Bit will output when addressing a cell within a block
being erased. The Toggle Bit will stop toggling when the Program/Erase Controller has
suspended the Erase operation.
If any attempt is made to erase a protected block, the operation is aborted, no error is
signalled and DQ6 toggles for approximately 100µs. If any attempt is made to program a
protected block or a suspended block, the operation is aborted, no error is signalled and
DQ6 toggles for approximately 1µs.
Figure 2. Data Toggle Flowchart, gives an example of how to use the Data Toggle Bit.
34/67
M29FxxxFT, M29FxxxFB
5.3
Status Register
Error Bit
The Error Bit (DQ5) can be used to identify errors detected by the Program/Erase Controller.
The Error Bit is set to ’1’ when a Program, Block Erase or Chip Erase operation fails to write
the correct data to the memory. If the Error Bit is set a Read/Reset command must be
issued before other commands are issued. The Error bit is output on DQ5 when the Status
Register is read.
Note that the Program command cannot change a bit set to ’0’ back to ’1’ and attempting to
do so will set DQ5 to ‘1’. A Bus Read operation to that address will show the bit is still ‘0’.
One of the Erase commands must be used to set all the bits in a block or in the whole
memory from ’0’ to ’1’
5.4
Erase Timer Bit
The Erase Timer Bit (DQ3) can be used to identify the start of Program/Erase Controller
operation during a Block Erase command. Once the Program/Erase Controller starts
erasing the Erase Timer Bit is set to ’1’. Before the Program/Erase Controller starts the
Erase Timer Bit is set to ’0’ and additional blocks to be erased may be written to the
Command Interface. The Erase Timer Bit is output on DQ3 when the Status Register is
read.
5.5
Alternative Toggle Bit
The Alternative Toggle Bit (DQ2) can be used to monitor the Program/Erase controller
during Erase operations. The Alternative Toggle Bit is output on DQ2 when the Status
Register is read.
During Chip Erase and Block Erase operations the Toggle Bit changes from ’0’ to ’1’ to ’0’,
etc., with successive Bus Read operations from addresses within the blocks being erased.
A protected block is treated the same as a block not being erased. Once the operation
completes the memory returns to Read mode.
During Erase Suspend the Alternative Toggle Bit changes from ’0’ to ’1’ to ’0’, etc. with
successive Bus Read operations from addresses within the blocks being erased. Bus Read
operations to addresses within blocks not being erased will output the memory cell data as if
in Read mode.
After an Erase operation that causes the Error Bit to be set the Alternative Toggle Bit can be
used to identify which block or blocks have caused the error. The Alternative Toggle Bit
changes from ’0’ to ’1’ to ’0’, etc. with successive Bus Read Operations from addresses
within blocks that have not erased correctly. The Alternative Toggle Bit does not change if
the addressed block has erased correctly.
35/67
Status Register
M29FxxxFT, M29FxxxFB
Table 10.
Status Register Bits
Operation
Address
DQ7
DQ6
DQ5
DQ3
DQ2
Program
Any Address
DQ7
Toggle
0
–
–
0
Program During
Erase Suspend
Any Address
DQ7
Toggle
0
–
–
0
Program Error
Any Address
DQ7
Toggle
1
–
–
0
Chip Erase
Any Address
0
Toggle
0
1
Toggle
0
Erasing Block
0
Toggle
0
0
Toggle
0
Non-Erasing Block 0
Toggle
0
0
No
Toggle
0
Erasing Block
0
Toggle
0
1
Toggle
0
Non-Erasing Block 0
Toggle
0
1
No
Toggle
0
Erasing Block
No
Toggle
0
–
Toggle
1
Block Erase before
timeout
Block Erase
Erase Suspend
1
Non-Erasing Block Data read as normal
Erase Error
1
Good Block
Address
0
Toggle
1
1
No
Toggle
0
Faulty Block
Address
0
Toggle
1
1
Toggle
0
Unspecified data bits should be ignored.
Figure 1. Data Polling Flowchart
START
READ DQ5 & DQ7
at VALID ADDRESS
DQ7
=
DATA
YES
NO
NO
DQ5
=1
YES
READ DQ7
at VALID ADDRESS
DQ7
=
DATA
YES
NO
FAIL
PASS
AI03598
36/67
RB
M29FxxxFT, M29FxxxFB
Status Register
Figure 2. Data Toggle Flowchart
START
READ DQ6
READ
DQ5 & DQ6
DQ6
=
TOGGLE
NO
YES
NO
DQ5
=1
YES
READ DQ6
TWICE
DQ6
=
TOGGLE
NO
YES
FAIL
PASS
AI01370C
37/67
Maximum Rating
6
M29FxxxFT, M29FxxxFB
Maximum Rating
Stressing the device above the rating listed in the Absolute Maximum Ratings table may
cause permanent damage to the device. Exposure to Absolute Maximum Rating conditions
for extended periods may affect device reliability. These are stress ratings only and
operation of the device at these or any other conditions above those indicated in the
Operating sections of this specification is not implied. Refer also to the Numonyx SURE
Program and other relevant quality documents.
Table 11.
Absolute Maximum Ratings
Symbol
Parameter
Min
Max
Unit
TBIAS
Temperature Under Bias
–50
125
°C
TSTG
Storage Temperature
–65
150
°C
VIO
Input or Output Voltage
–0.6
VCC +0.6
V
VCC
Supply Voltage
–0.6
6
V
VID
Identification Voltage
–0.6
13.5
V
Input or Output Voltage parameter: Minimum voltage may undershoot to –2V during transition and for less than
20ns during transitions.
Input or Output Voltage parameter: Maximum voltage may overshoot to VCC +2V during transition and for less
than 20ns during transitions.
38/67
M29FxxxFT, M29FxxxFB
7
DC and AC Parameters
DC and AC Parameters
This section summarizes the operating measurement conditions, and the DC and AC
characteristics of the device. The parameters in the DC and AC characteristics Tables that
follow, are derived from tests performed under the Measurement Conditions shown here.
Designers should check that the operating conditions in their circuit match the operating
conditions when relying on the quoted parameters.
Table 12.
Operating and AC Measurement Conditions
Parameter
Min
Max
Unit
VCC Supply Voltage
4.5
5.5
V
Ambient Operating Temperature
–40
125
°C
Load Capacitance (CL)
30
30
pF
Input Rise and Fall Times
—
5
ns
Input Pulse Voltages
0 to VCC
Input and Output Timing Ref. Voltages
VCC/2
0 to VCC
V
VCC/2
V
Figure 18. AC Measurement I/O Waveform
VCC
VCC/2
0V
AI04498
Figure 19. AC Measurement Load Circuit
VCC
VCC
25kΩ
DEVICE
UNDER
TEST
0.1µF
CL includes JIG capacitance
CL
25kΩ
AI04499
39/67
DC and AC Parameters
Table 13.
M29FxxxFT, M29FxxxFB
Device Capacitance
Symbol
Parameter
Test Condition
Min
Max
Unit
CIN
Input Capacitance
VIN = 0V
6
pF
COUT
Output Capacitance
VOUT = 0V
12
pF
Sampled only, not 100% tested.
Table 14.
DC Characteristics
Symbol
Parameter
Test Condition
Min
Typ
Max
Unit
ILI
Input Leakage Current 0V ≤ VIN ≤ VCC
—
—
±1
µA
ILO
Output Leakage
Current
0V ≤ VOUT ≤ VCC
—
—
±1
µA
ICC1
Supply Current (Read)
E = VIL, G = VIH,
f = 6MHz
—
7
20
mA
ICC2
Supply Current
(Standby)
E = VCC ±0.2V,
RP = VCC ±0.2V
—
60
120
µA
ICC3
Supply Current
(Program/Erase)
Program/Erase
Controller active
—
—
30
mA
VIL
Input Low Voltage
—
–0.5
—
0.8
V
VIH
Input High Voltage
—
0.7VCC
—
VCC +0.3
V
VOL
Output Low Voltage
IOL = 1.8mA
—
—
0.45
V
VOH
Output High Voltage
IOH = –100µA
VCC –0.4
—
—
V
VID
Identification Voltage
11.5
—
12.5
V
IID
Identification Current
A9 = VID
—
—
100
µA
VLKO
Program/Erase
Lockout Supply
Voltage
—
1.8
—
2.3
V
Supply Current (Program/Erase) parameter: Sampled only, not 100% tested.
Figure 20. Read Mode AC Waveforms
tAVAV
A0-A19/
A–1
VALID
tAVQV
tAXQX
E
tELQV
tEHQX
tELQX
tEHQZ
G
tGLQX
tGHQX
tGHQZ
tGLQV
DQ0-DQ7/
DQ8-DQ15
VALID
tBHQV
BYTE
tELBL/tELBH
40/67
tBLQZ
AI02922
M29FxxxFT, M29FxxxFB
Table 15.
DC and AC Parameters
Read AC Characteristics
M29F160F
Symbol
Alt
Parameter
Test Condition
Unit
55/5A
tAVAV
tRC
Address Valid to Next Address
Valid
E = VIL,
G = VIL
Min
55
ns
tAVQV
tACC
Address Valid to Output Valid
E = VIL,
G = VIL
Max
55
ns
tELQX
tLZ
Chip Enable Low to Output
Transition
G = VIL
Min
0
ns
tELQV
tCE
Chip Enable Low to Output Valid
G = VIL
Max
55
ns
tGLQX
tOLZ
Output Enable Low to Output
Transition
E = VIL
Min
0
ns
tGLQV
tOE
Output Enable Low to Output Valid E = VIL
Max
20
ns
tEHQZ
tHZ
Chip Enable High to Output Hi-Z
G = VIL
Max
15
ns
tGHQZ
tDF
Output Enable High to Output Hi-Z E = VIL
Max
15
ns
tEHQX
tGHQX
tAXQX
tOH
Chip Enable, Output Enable or
Address Transition to Output
Transition
—
Min
0
ns
tELBL
tELBH
tELFL
tELFH
Chip Enable to BYTE Low or High
—
Max
3
ns
tBLQZ
tFLQZ
BYTE Low to Output Hi-Z
—
Max
15
ns
tBHQV
tFHQV
BYTE High to Output Valid
—
Max
20
ns
tELQX tGLQX tEHQZ and tGHQZ parameters: Sampled only, not 100% tested.
Figure 21. Write AC Waveforms, Write Enable Controlled
tAVAV
A0-A19/
A–1
VALID
tWLAX
tAVWL
tWHEH
E
tELWL
tWHGL
G
tGHWL
tWLWH
W
tWHWL
tDVWH
DQ0-DQ7/
DQ8-DQ15
tWHDX
VALID
VCC
tVCHEL
RB
tWHRL
AI02923
41/67
DC and AC Parameters
Table 16.
M29FxxxFT, M29FxxxFB
Write AC Characteristics, Write Enable Controlled
M29F160F
Symbol
Alt
Parameter
Unit
55/5A
tAVAV
tWC
Address Valid to Next Address Valid
Min
55
ns
tELWL
tCS
Chip Enable Low to Write Enable Low
Min
0
ns
tWLWH
tWP
Write Enable Low to Write Enable High
Min
30
ns
tDVWH
tDS
Input Valid to Write Enable High
Min
20
ns
tWHDX
tDH
Write Enable High to Input Transition
Min
0
ns
tWHEH
tCH
Write Enable High to Chip Enable High
Min
0
ns
tWHWL
tWPH
Write Enable High to Write Enable Low
Min
15
ns
tAVWL
tAS
Address Valid to Write Enable Low
Min
0
ns
tWLAX
tAH
Write Enable Low to Address Transition
Min
30
ns
Output Enable High to Write Enable Low
Min
0
ns
tGHWL
tWHGL
tOEH
Write Enable High to Output Enable Low
Min
0
ns
tWHRL
tBUSY
Program/Erase Valid to RB Low
Max
20
ns
tVCHEL
tVCS
VCC High to Chip Enable Low
Min
50
µs
tWHRL parameter: Sampled only, not 100% tested.
Figure 22. Write AC Waveforms, Chip Enable Controlled
tAVAV
A0-A19/
A–1
VALID
tELAX
tAVEL
tEHWH
W
tWLEL
tEHGL
G
tGHEL
tELEH
E
tEHEL
tDVEH
DQ0-DQ7/
DQ8-DQ15
tEHDX
VALID
VCC
tVCHWL
RB
tEHRL
42/67
AI02924
M29FxxxFT, M29FxxxFB
Table 17.
DC and AC Parameters
Write AC Characteristics, Chip Enable Controlled
M29F160F
Symbol
Alt
Parameter
Unit
55/5A
tAVAV
tWC
Address Valid to Next Address Valid
Min
55
ns
tWLEL
tWS
Write Enable Low to Chip Enable Low
Min
0
ns
tELEH
tCP
Chip Enable Low to Chip Enable High
Min
30
ns
tDVEH
tDS
Input Valid to Chip Enable High
Min
20
ns
tEHDX
tDH
Chip Enable High to Input Transition
Min
0
ns
tEHWH
tWH
Chip Enable High to Write Enable High
Min
0
ns
tEHEL
tCPH
Chip Enable High to Chip Enable Low
Min
15
ns
tAVEL
tAS
Address Valid to Chip Enable Low
Min
0
ns
tELAX
tAH
Chip Enable Low to Address Transition
Min
30
ns
Output Enable High Chip Enable Low
Min
0
ns
tGHEL
tEHGL
tOEH
Chip Enable High to Output Enable Low
Min
0
ns
tEHRL
tBUSY
Program/Erase Valid to RB Low
Max
20
ns
tVCHWL
tVCS
VCC High to Write Enable Low
Min
50
µs
tEHRL parameter: Sampled only, not 100% tested.
Figure 23. Reset/Block Temporary Unprotect AC Waveforms
W, E, G
tPHWL, tPHEL, tPHGL
RB
tRHWL, tRHEL, tRHGL
RP
tPLPX
tPHPHH
tPLYH
AI02931B
43/67
DC and AC Parameters
Table 18.
M29FxxxFT, M29FxxxFB
Reset/Block Temporary Unprotect AC Characteristics
M29F160F
Symbol
Alt
Parameter
Unit
55/5A
tPHWL
tPHEL
tPHGL
tRH
RP High to Write Enable Low, Chip Enable
Low, Output Enable Low
Min
50
ns
tRHWL
tRHEL
tRHGL
tRB
RB High to Write Enable Low, Chip Enable
Low, Output Enable Low
Min
0
ns
tPLPX
tRP
RP Pulse Width
Min
500
ns
tPLYH
tREADY
RP Low to Read Mode
Max
10
µs
tPHPHH
tVIDR
RP Rise Time to VID
Min
500
ns
tPHWL tPHGL tRHWL tRHEL tRHGL tPLYH and tPHPHH parameters: Sampled only, not 100% tested.
44/67
M29FxxxFT, M29FxxxFB
8
Package Mechanical
Package Mechanical
Figure 24. TSOP48 – 48 lead Plastic Thin Small Outline, 12 x 20mm, Package
Outline, top view
1
48
e
D1
B
24
L1
25
A2
E1
E
A
A1
DIE
α
L
C
CP
TSOP-G
Drawing is not to scale.
Table 19.
TSOP48 – 48 lead Plastic Thin Small Outline, 12 x 20mm, Package
Mechanical Data
millimeters
Symbol
Typ
Min
A
Max
1.200
A1
0.100
0.050
0.150
A2
1.000
0.950
1.050
B
0.220
0.170
0.270
0.100
0.210
C
CP
0.080
D1
12.000
11.900
12.100
E
20.000
19.800
20.200
E1
18.400
18.300
18.500
e
0.500
–
–
L
0.600
0.500
0.700
L1
0.800
a
3
0
5
45/67
Package Mechanical
M29FxxxFT, M29FxxxFB
Figure 25. SO44 – 44 lead plastic small outline, 500 mils body width, package outline
D
44
23
c
E1 E
θ
1
22
A1
A2
b
A
L
L1
ddd
e
SO-F
Table 20.
SO44 - 44 lead Plastic Small Outline, 500 mils body width, package
mechanical data
millimeters
Symbol
Typ
Min
A
3.00
A1
0.10
A2
2.69
2.56
2.79
b
0.35
0.50
c
0.18
0.28
28.37
28.63
D
28.50
ddd
0.10
E
16.03
15.77
16.28
E1
12.60
12.47
12.73
e
1.27
–
–
L
0.79
L1
1.73
Θ
N
46/67
Max
8°
44
M29FxxxFT, M29FxxxFB
Package Mechanical
Figure 26. TFBGA48 6 x 8 mm - 6 x 8 ball array, 0.80 mm pitch, package outline
D
D1
FD
FE
SD
SE
E
E1
BALL "A1"
ddd
e
e
b
A
A2
A1
BGA-Z32
Table 21.
TFBGA48 6 x 8 mm - 6 x 8 ball array, 0.80 mm pitch, package mechanical
data
millimeters
inches
Symbol
Typ
Min
A
Max
Typ
Min
1.200
A1
0.0472
0.260
A2
0.0102
0.900
b
Max
0.350
0.450
0.0354
0.0138
0.0177
D
6.000
5.900
6.100
0.2362
0.2323
0.2402
D1
4.000
–
–
0.1575
–
–
ddd
0.100
0.0039
E
8.000
7.900
8.100
0.3150
0.3110
0.3189
E1
5.600
–
–
0.2205
–
–
e
0.800
–
–
0.0315
–
–
FD
1.000
–
–
0.0394
–
–
FE
1.200
–
–
0.0472
–
–
SD
0.400
–
–
0.0157
–
–
SE
0.400
–
–
0.0157
–
–
47/67
Part Numbering
9
M29FxxxFT, M29FxxxFB
Part Numbering
Table 22.
Information scheme
Example:
M29F200F T
5A
M
6
-
2
Device type
M29F = 5 V
Density
200 = 2-Mbit
400 = 4-Mbit
800 = 8-Mbit
160 = 16-Mbit (not available in SO44 package)
Technology
F = 110 nm
Configuration
T = Top Boot
B = Bottom Boot
Speed
55 = 55 ns device speed in conjunction with
temperature range = 3 denotes Auto Grade –40 to
125 °C parts
5A = 55 ns Access time (Auto Grade) only in
conjunction with the Grade 6 option
Package
M = SO 44.525 INCH CU
N = TSOP-1 48 12 x 20 AL 4
ZA(1) = TFBGA48, 6 x 8 mm, 0.80 mm pitch
Temperature range
6 = –40 to 85 °C
3 = –40 to 125 °C
Packing option
<blank> = standard packing (Tray)
T = Tape & Reel 24 mm packing
E = RoHS package, standard packing (Tray)
F = RoHS package, Tape & Reel 24 mm packing
Fab location
2 = Numonyx Fab.2 (Singapore)
1. THis package is available only in the 8-Mbit, bottom boot configuration.
Devices are shipped from the factory with the memory content bits erased to ’1’.
For a list of available options (Speed, Package, etc.) or for further information on any aspect
of this device, please contact the Numonyx Sales Office nearest to you.
48/67
M29FxxxFT, M29FxxxFB
Appendix A
Block Address Table
Block Address Table
Table 23.
Top Boot Block Addresses, M29F160FT
Size
(KBytes)
#
Address Range
(x8)
Address Range
(x16)
34
16
1FC000h-1FFFFFh
FE000h-FFFFFh
33
8
1FA000h-1FBFFFh
FD000h-FDFFFh
32
8
1F8000h-1F9FFFh
FC000h-FCFFFh
31
32
1F0000h-1F7FFFh
F8000h-FBFFFh
30
64
1E0000h-1EFFFFh
F0000h-F7FFFh
29
64
1D0000h-1DFFFFh
E8000h-EFFFFh
28
64
1C0000h-1CFFFFh
E0000h-E7FFFh
27
64
1B0000h-1BFFFFh
D8000h-DFFFFh
26
64
1A0000h-1AFFFFh
D0000h-D7FFFh
25
64
190000h-19FFFFh
C8000h-CFFFFh
24
64
180000h-18FFFFh
C0000h-C7FFFh
23
64
170000h-17FFFFh
B8000h-BFFFFh
22
64
160000h-16FFFFh
B0000h-B7FFFh
21
64
150000h-15FFFFh
A8000h-AFFFFh
20
64
140000h-14FFFFh
A0000h-A7FFFh
19
64
130000h-13FFFFh
98000h-9FFFFh
18
64
120000h-12FFFFh
90000h-97FFFh
17
64
110000h-11FFFFh
88000h-8FFFFh
16
64
100000h-10FFFFh
80000h-87FFFh
15
64
0F0000h-0FFFFFh
78000h-7FFFFh
14
64
0E0000h-0EFFFFh
70000h-77FFFh
13
64
0D0000h-0DFFFFh
68000h-6FFFFh
12
64
0C0000h-0CFFFFh
60000h-67FFFh
11
64
0B0000h-0BFFFFh
58000h-5FFFFh
10
64
0A0000h-0AFFFFh
50000h-57FFFh
9
64
090000h-09FFFFh
48000h-4FFFFh
8
64
080000h-08FFFFh
40000h-47FFFh
7
64
070000h-07FFFFh
38000h-3FFFFh
6
64
060000h-06FFFFh
30000h-37FFFh
5
64
050000h-05FFFFh
28000h-2FFFFh
4
64
040000h-04FFFFh
20000h-27FFFh
3
64
030000h-03FFFFh
18000h-1FFFFh
2
64
020000h-02FFFFh
10000h-17FFFh
1
64
010000h-01FFFFh
08000h-0FFFFh
0
64
000000h-00FFFFh
00000h-07FFFh
49/67
Block Address Table
Table 24.
Bottom Boot Block Addresses, M29F160FB
Size
(KBytes)
#
50/67
M29FxxxFT, M29FxxxFB
Address Range
(x8)
Address Range
(x16)
34
64
1F0000h-1FFFFFh
F8000h-FFFFFh
33
64
1E0000h-1EFFFFh
F0000h-F7FFFh
32
64
1D0000h-1DFFFFh
E8000h-EFFFFh
31
64
1C0000h-1CFFFFh
E0000h-E7FFFh
30
64
1B0000h-1BFFFFh
D8000h-DFFFFh
29
64
1A0000h-1AFFFFh
D0000h-D7FFFh
28
64
190000h-19FFFFh
C8000h-CFFFFh
27
64
180000h-18FFFFh
C0000h-C7FFFh
26
64
170000h-17FFFFh
B8000h-BFFFFh
25
64
160000h-16FFFFh
B0000h-B7FFFh
24
64
150000h-15FFFFh
A8000h-AFFFFh
23
64
140000h-14FFFFh
A0000h-A7FFFh
22
64
130000h-13FFFFh
98000h-9FFFFh
21
64
120000h-12FFFFh
90000h-97FFFh
20
64
110000h-11FFFFh
88000h-8FFFFh
19
64
100000h-10FFFFh
80000h-87FFFh
18
64
0F0000h-0FFFFFh
78000h-7FFFFh
17
64
0E0000h-0EFFFFh
70000h-77FFFh
16
64
0D0000h-0DFFFFh
68000h-6FFFFh
15
64
0C0000h-0CFFFFh
60000h-67FFFh
14
64
0B0000h-0BFFFFh
58000h-5FFFFh
13
64
0A0000h-0AFFFFh
50000h-57FFFh
12
64
090000h-09FFFFh
48000h-4FFFFh
11
64
080000h-08FFFFh
40000h-47FFFh
10
64
070000h-07FFFFh
38000h-3FFFFh
9
64
060000h-06FFFFh
30000h-37FFFh
8
64
050000h-05FFFFh
28000h-2FFFFh
7
64
040000h-04FFFFh
20000h-27FFFh
6
64
030000h-03FFFFh
18000h-1FFFFh
5
64
020000h-02FFFFh
10000h-17FFFh
4
64
010000h-01FFFFh
08000h-0FFFFh
3
32
008000h-00FFFFh
04000h-07FFFh
2
8
006000h-007FFFh
03000h-03FFFh
1
8
004000h-005FFFh
02000h-02FFFh
0
16
000000h-003FFFh
00000h-01FFFh
M29FxxxFT, M29FxxxFB
Table 25.
18
Top Boot Block Addresses, M29F800FT
Size
(KBytes)
#
16
Block Address Table
Address Range
(x8)
Address Range
(x16)
FC000h-FFFFFh
7E000h-7FFFFh
17
8
FA000h-FBFFFh
7D000h-7DFFFh
16
8
F8000h-F9FFFh
7C000h-7CFFFh
15
32
F0000h-F7FFFh
78000h-7BFFFh
14
64
E0000h-EFFFFh
70000h-77FFFh
13
64
D0000h-DFFFFh
68000h-6FFFFh
12
64
C0000h-CFFFFh
60000h-67FFFh
11
64
B0000h-BFFFFh
58000h-5FFFFh
10
64
A0000h-AFFFFh
50000h-57FFFh
9
64
90000h-9FFFFh
48000h-4FFFFh
8
64
80000h-8FFFFh
40000h-47FFFh
7
64
70000h-7FFFFh
38000h-3FFFFh
6
64
60000h-6FFFFh
30000h-37FFFh
5
64
50000h-5FFFFh
28000h-2FFFFh
4
64
40000h-4FFFFh
20000h-27FFFh
3
64
30000h-3FFFFh
18000h-1FFFFh
2
64
20000h-2FFFFh
10000h-17FFFh
1
64
10000h-1FFFFh
08000h-0FFFFh
0
64
00000h-0FFFFh
00000h-07FFFh
51/67
Block Address Table
Table 26.
52/67
Bottom Boot Block Addresses, M29F800FB
Size
(KBytes)
#
18
M29FxxxFT, M29FxxxFB
64
Address Range
(x8)
Address Range
(x16)
F0000h-FFFFFh
78000h-7FFFFh
17
64
E0000h-EFFFFh
70000h-77FFFh
16
64
D0000h-DFFFFh
68000h-6FFFFh
15
64
C0000h-CFFFFh
60000h-67FFFh
14
64
B0000h-BFFFFh
58000h-5FFFFh
13
64
A0000h-AFFFFh
50000h-57FFFh
12
64
90000h-9FFFFh
48000h-4FFFFh
11
64
80000h-8FFFFh
40000h-47FFFh
10
64
70000h-7FFFFh
38000h-3FFFFh
9
64
60000h-6FFFFh
30000h-37FFFh
8
64
50000h-5FFFFh
28000h-2FFFFh
7
64
40000h-4FFFFh
20000h-27FFFh
6
64
30000h-3FFFFh
18000h-1FFFFh
5
64
20000h-2FFFFh
10000h-17FFFh
4
64
10000h-1FFFFh
08000h-0FFFFh
3
32
08000h-0FFFFh
04000h-07FFFh
2
8
06000h-07FFFh
03000h-03FFFh
1
8
04000h-05FFFh
02000h-02FFFh
0
16
00000h-03FFFh
00000h-01FFFh
M29FxxxFT, M29FxxxFB
Table 27.
Top Boot Block Addresses, M29F400FT
Size
(KBytes)
#
Block Address Table
Address Range
(x8)
Address Range
(x16)
10
16
7C000h-7FFFFh
3E000h-3FFFFh
9
8
7A000h-7BFFFh
3D000h-3DFFFh
8
8
78000h-79FFFh
3C000h-3CFFFh
7
32
70000h-77FFFh
38000h-3BFFFh
6
64
60000h-6FFFFh
30000h-37FFFh
5
64
50000h-5FFFFh
28000h-2FFFFh
4
64
40000h-4FFFFh
20000h-27FFFh
3
64
30000h-3FFFFh
18000h-1FFFFh
2
64
20000h-2FFFFh
10000h-17FFFh
1
64
10000h-1FFFFh
08000h-0FFFFh
0
64
00000h-0FFFFh
00000h-07FFFh
53/67
Block Address Table
Table 28.
Bottom Boot Block Addresses, M29F400FB
Size
(KBytes)
#
54/67
M29FxxxFT, M29FxxxFB
Address Range
(x8)
Address Range
(x16)
10
64
70000h-7FFFFh
38000h-3FFFFh
9
64
70000h-6FFFFh
30000h-37FFFh
8
64
50000h-5FFFFh
28000h-2FFFFh
7
64
40000h-4FFFFh
20000h-27FFFh
6
64
30000h-3FFFFh
18000h-1FFFFh
5
64
20000h-2FFFFh
10000h-17FFFh
4
64
10000h-1FFFFh
08000h-0FFFFh
3
32
08000h-0FFFFh
04000h-07FFFh
2
8
06000h-07FFFh
03000h-03FFFh
1
8
04000h-05FFFh
02000h-02FFFh
0
16
00000h-03FFFh
00000h-01FFFh
M29FxxxFT, M29FxxxFB
Table 29.
Top Boot Block Addresses, M29F200FT
Size
(KBytes)
#
Block Address Table
Address Range
(x8)
Address Range
(x16)
6
16
3C000h-3FFFFh
1E000h-1FFFFh
5
8
3A000h-3BFFFh
1D000h-1DFFFh
4
8
38000h-39FFFh
1C000h-1CFFFh
3
32
30000h-37FFFh
18000h-1BFFFh
2
64
20000h-2FFFFh
10000h-17FFFh
1
64
10000h-1FFFFh
08000h-0FFFFh
0
64
00000h-0FFFFh
00000h-07FFFh
Table 30.
Bottom Boot Block Addresses, M29F200FB
Size
(KBytes)
#
Address Range
(x8)
Address Range
(x16)
6
64
30000h-3FFFFh
18000h-1FFFFh
5
64
20000h-2FFFFh
10000h-17FFFh
4
64
10000h-1FFFFh
08000h-0FFFFh
3
32
08000h-0FFFFh
04000h-07FFFh
2
8
06000h-07FFFh
03000h-03FFFh
1
8
04000h-05FFFh
02000h-02FFFh
0
16
10000h-1FFFFh
00000h-01FFFh
55/67
Common Flash Interface (CFI)
Appendix B
M29FxxxFT, M29FxxxFB
Common Flash Interface (CFI)
The Common Flash Interface is a JEDEC approved, standardized data structure that can be
read from the Flash memory device. It allows a system software to query the device to
determine various electrical and timing parameters, density information and functions
supported by the memory. The system can interface easily with the device, enabling the
software to upgrade itself when necessary.
When the CFI Query Command is issued the device enters CFI Query mode and the data
structure is read from the memory. Addresses used to retrieve the data are shown in the
following tables:
„
Table 31.: Query Structure Overview,
„
Table 32.: CFI Query Identification String,
„
Table 33.: CFI Query System Interface Information,
„
Table 34.: Device Geometry Definition,
„
Table 35.: Primary Algorithm-Specific Extended Query Table
„
Table 36.: Security Code Area
The CFI data structure also contains a security area where a 64-bit unique security number
is written (see Table 36.: Security Code Area). This area can be accessed only in Read
mode by the final user. It is impossible to change the security number after it has been
written by Numonyx. Issue a Read command to return to Read mode.
Table 31.
Query Structure Overview
Address
Sub-section Name
x16
Description
x8
10h
20h
CFI Query Identification String
Command set ID and algorithm data offset
1Bh
36h
System Interface Information
Device timing & voltage information
27h
4Eh
Device Geometry Definition
Flash device layout
40h
80h
Primary Algorithm-specific Extended Additional information specific to the Primary Algorithm
Query table
(optional)
61h
C2h
Security Code Area
64 bit unique device number
Query data are always presented on the lowest order data outputs.
Table 32.
CFI Query Identification String
Address
Data
x16
10h
20h
0051h
11h
22h
0052h
12h
24h
0059h
13h
26h
0002h
14h
28h
0000h
15h
2Ah
0040h
16h
2Ch
0000h
56/67
Description
Value
x8
"Q"
Query Unique ASCII String "QRY"
"R"
"Y"
Primary Algorithm Command Set and Control Interface ID code 16 bit AMD
ID code defining a specific algorithm
Compatible
Address for Primary Algorithm extended Query table (see Table 34.)
P = 40h
M29FxxxFT, M29FxxxFB
Common Flash Interface (CFI)
Address
Data
x16
Description
Value
x8
17h
2Eh
0000h
18h
30h
0000h
19h
32h
0000h
1Ah
34h
0000h
Alternate Vendor Command Set and Control Interface ID Code
second vendor - specified algorithm supported
NA
Address for Alternate Algorithm extended Query table
NA
Query data are always presented on the lowest order data outputs (DQ7-DQ0) only. DQ8-DQ15 are ‘0’.
Table 33.
CFI Query System Interface Information
Address
Data
x16
Description
Value
x8
1Bh
36h
0045h
VCC Logic Supply Minimum Program/Erase voltage
bit 7 to 4BCD value in volts
bit 3 to 0BCD value in 100 mV
4.5 V
1Ch
38h
0055h
VCC Logic Supply Maximum Program/Erase voltage
bit 7 to 4BCD value in volts
bit 3 to 0BCD value in 100 mV
5.5 V
1Dh
3Ah
0000h
VPP [Programming] Supply Minimum Program/Erase voltage
NA
1Eh
3Ch
0000h
VPP [Programming] Supply Maximum Program/Erase voltage
NA
1Fh
3Eh
20h
40h
21h
42h
22h
44h
23h
46h
24h
48h
0003h
0000h
000Ah
0000h
0004h
0000h
n
Typical timeout per single Byte/Word program = 2 µs
Typical timeout for minimum size write buffer program =
Typical timeout per individual block erase =
2n
8 µs
2n
µs
ms
n
Typical timeout for full chip erase = 2 ms
NA
1s
NA
Maximum timeout for Byte/Word program =
2n
times typical
256 µs
Maximum timeout for write buffer program =
2n
times typical
NA
n
25h
4Ah
0003h
Maximum timeout per individual block erase = 2 times typical
8s
26h
4Ch
0000h
Maximum timeout for chip erase = 2n times typical
NA
Table 34.
Device Geometry Definition
Address
Data
x16
Description
2 MByte
0015h
27h
Value
x8
4Eh
0014h
0013h
Device Size = 2n in number of Bytes
0012h
1 MByte
512 KByte
256 KByte
28h
29h
50h
52h
0002h
0000h
Flash Device Interface Code description
x8, x16
Async.
2Ah
2Bh
54h
56h
0000h
0000h
Maximum number of Bytes in multi-Byte program or page = 2n
NA
57/67
Common Flash Interface (CFI)
M29FxxxFT, M29FxxxFB
Address
Data
x16
Description
Value
x8
2Ch
58h
0004h
Number of Erase Block Regions within the device.
It specifies the number of regions within the device containing
contiguous Erase Blocks of the same size.
4
2Dh
2Eh
5Ah
5Ch
0000h
0000h
Region 1 Information
Number of identical size erase block = 0000h+1
1
2Fh
30h
5Eh
60h
0040h
0000h
Region 1 Information
Block size in Region 1 = 0040h * 256 Byte
16 KByte
31h
32h
62h
64h
0001h
0000h
Region 2 Information
Number of identical size erase block = 0001h+1
2
33h
34h
66h
68h
0020h
0000h
Region 2 Information
Block size in Region 2 = 0020h * 256 Byte
8 KByte
35h
36h
6Ah
6Ch
0000h
0000h
Region 3 Information
Number of identical size erase block = 0000h+1
1
37h
38h
6Eh
70h
0080h
0000h
Region 3 Information
Block size in Region 3 = 0080h * 256 Byte
32 KByte
39h
3Ah
72h
74h
001Eh
0000h
Region 4 Information (2 MByte)
Number of identical-size erase block = 001Eh+1
31
39h
3Ah
72h
74h
000Eh
0000h
Region 4 Information (1 MByte)
Number of identical-size erase block = 000Eh+1
15
39h
3Ah
72h
74h
0006h
0000h
Region 4 Information (512 KByte)
Number of identical-size erase block = 0006h+1
7
39h
3Ah
72h
74h
0002h
0000h
Region 4 Information (256 KByte)
Number of identical-size erase block = 0002h+1
3
3Bh
3Ch
76h
78h
0000h
0001h
Region 4 Information
Block size in Region 4 = 0100h * 256 Byte
64 KByte
Table 35.
Primary Algorithm-Specific Extended Query Table
Address
Data
x16
Description
Value
x8
40h
80h
0050h
41h
82h
0052h
42h
84h
0049h
43h
86h
0031h
Major version number, ASCII
"1"
44h
88h
0030h
Minor version number, ASCII
"0"
45h
8Ah
0000h
Address Sensitive Unlock (bits 1 to 0)
00 = required, 01= not required
Silicon Revision Number (bits 7 to 2)
Yes
46h
8Ch
0002h
Erase Suspend
00 = not supported, 01 = Read only, 02 = Read and Write
2
58/67
"P"
Primary Algorithm extended Query table unique ASCII string “PRI”
"R"
"I"
M29FxxxFT, M29FxxxFB
Common Flash Interface (CFI)
Address
Data
x16
Description
Value
x8
47h
8Eh
0001h
Block Protection
00 = not supported, x = number of blocks in per group
1
48h
90h
0001h
Temporary Block Unprotect
00 = not supported, 01 = supported
Yes
49h
92h
0002h
0004h
0008h
0160h
Block Protect /Unprotect
02 = M29F200
04 = M29F400
08 = M29F800
10 = M29F160
2
4
8
16
4Ah
94h
0000h
Simultaneous Operations, 00 = not supported
No
4Bh
96h
0000h
Burst Mode, 00 = not supported, 01 = supported
No
4Ch
98h
0000h
Page Mode, 00 = not supported, 01 = 4 page Word, 02 = 8 page Word
No
Table 36.
Security Code Area
Address
Data
x16
61h
62h
63h
64h
Description
x8
C3h, C2h
C5h, C4h
C7h, C6h
C9h, C8h
XXXX
XXXX
XXXX
XXXX
64 bit: unique device number
59/67
Block protection
Appendix C
M29FxxxFT, M29FxxxFB
Block protection
Block protection can be used to prevent any operation from modifying the data stored in the
Flash memory. Each Block can be protected individually. Once protected, Program and
Erase operations on the block fail to change the data.
There are three techniques that can be used to control Block Protection, these are the
Programmer technique, the In-System technique and Temporary Unprotection. Temporary
Unprotection is controlled by the Reset/Block Temporary Unprotection pin, RP; this is
described in the Signal Descriptions section.
Unlike the Command Interface of the Program/Erase Controller, the techniques for
protecting and unprotecting blocks could change between different Flash memory suppliers.
C.1
Programmer Technique
The Programmer technique uses high (VID) voltage levels on some of the bus pins. These
cannot be achieved using a standard microprocessor bus, therefore the technique is
recommended only for use in Programming Equipment.
To protect a block follow the flowchart in Figure 27.: Programmer Equipment Block Protect
Flowchart. During the Block Protect algorithm, the A19-A12 Address Inputs indicate the
address of the block to be protected. The block will be correctly protected only if A19-A12
remain valid and stable, and if Chip Enable is kept Low, VIL, all along the Protect and Verify
phases.
The Chip Unprotect algorithm is used to unprotect all the memory blocks at the same time.
This algorithm can only be used if all of the blocks are protected first. To unprotect the chip
follow Figure 28.: Programmer Equipment Chip Unprotect Flowchart and Table 37.:
Programmer Technique Bus Operations, BYTE = VIH or VIL, which give a summary of each
operation.
The timing on these flowcharts is critical. Care should be taken to ensure that, where a
pause is specified, it is followed as closely as possible. Do not abort the procedure before
reaching the end. Chip Unprotect can take several seconds and a user message should be
provided to show that the operation is progressing.
C.2
In-System Technique
The In-System technique requires a high voltage level on the Reset/Blocks Temporary
Unprotect pin, RP. This can be achieved without violating the maximum ratings of the
components on the microprocessor bus, therefore this technique is suitable for use after the
Flash memory has been fitted to the system.
To protect a block follow the flowchart in Figure 29.: In-System Equipment Block Protect
Flowchart. To unprotect the whole chip it is necessary to protect all of the blocks first, then
all the blocks can be unprotected at the same time. To unprotect the chip follow Figure 30.:
In-System Equipment Chip Unprotect Flowchart.
The timing on these flowcharts is critical. Care should be taken to ensure that, where a
pause is specified, it is followed as closely as possible. Do not allow the microprocessor to
service interrupts that will upset the timing and do not abort the procedure before reaching
60/67
M29FxxxFT, M29FxxxFB
Block protection
the end. Chip Unprotect can take several seconds and a user message should be provided
to show that the operation is progressing.
Table 37.
Operation
Programmer Technique Bus Operations, BYTE = VIH or VIL
W
Address Inputs
A0-A19
Data Inputs/Outputs
DQ15A–1, DQ14-DQ0
E
G
Block Protect
VIL
VID
VIL Pulse
A9 = VID, A12-A19 Block Address
Others = X
X
Chip Unprotect
VID
VID
VIL Pulse
A9 = VID, A12 = VIH, A15 = VIH
Others = X
X
Block Protection
Verify
VIL
VIL
VIH
A0 = VIL, A1 = VIH, A6 = VIL,
A9 = VID, A12-A19 Block Address
Others = X
Pass = XX01h
Retry = XX00h
Block Unprotection
Verify
VIL
VIL
VIH
A0 = VIL, A1 = VIH, A6 = VIH,
A9 = VID, A12-A19 Block Address
Others = X
Retry = XX01h
Pass = XX00h
61/67
Block protection
M29FxxxFT, M29FxxxFB
Figure 27. Programmer Equipment Block Protect Flowchart
START
Set-up
ADDRESS = BLOCK ADDRESS
W = VIH
n=0
G, A9 = VID,
E = VIL
Protect
Wait 4µs
W = VIL
Wait 100µs
W = VIH
E, G = VIH,
A0, A6 = VIL,
A1 = VIH
E = VIL
Verify
Wait 4µs
G = VIL
Wait 60ns
Read DATA
DATA
NO
=
01h
YES
A9 = VIH
E, G = VIH
++n
= 25
NO
End
YES
PASS
A9 = VIH
E, G = VIH
FAIL
AI03469b
Address Inputs A19-A12 give the address of the block that is to be protected. It is imperative that they remain
stable during the operation.
During the Protect and Verify phases of the algorithm, Chip Enable E must be kept Low, VIL.
62/67
M29FxxxFT, M29FxxxFB
Block protection
Figure 28. Programmer Equipment Chip Unprotect Flowchart
START
Set-up
PROTECT ALL BLOCKS
n=0
CURRENT BLOCK = 0
A6, A12, A15 = VIH
E, G, A9 = VID
Unprotect
Wait 4µs
W = VIL
Wait 10ms
W = VIH
E, G = VIH
ADDRESS = CURRENT BLOCK ADDRESS
A0 = VIL, A1, A6 = VIH
E = VIL
Wait 4µs
G = VIL
INCREMENT
CURRENT BLOCK
Verify
Wait 60ns
Read DATA
NO
End
NO
++n
= 1000
DATA
=
00h
YES
LAST
BLOCK
YES
YES
A9 = VIH
E, G = VIH
A9 = VIH
E, G = VIH
FAIL
PASS
NO
AI03470
63/67
Block protection
M29FxxxFT, M29FxxxFB
Figure 29. In-System Equipment Block Protect Flowchart
Set-up
START
n=0
RP = VID
Protect
WRITE 60h
ADDRESS = BLOCK ADDRESS
A0 = VIL, A1 = VIH, A6 = VIL
WRITE 60h
ADDRESS = BLOCK ADDRESS
A0 = VIL, A1 = VIH, A6 = VIL
Wait 100µs
Verify
WRITE 40h
ADDRESS = BLOCK ADDRESS
A0 = VIL, A1 = VIH, A6 = VIL
Wait 4µs
READ DATA
ADDRESS = BLOCK ADDRESS
A0 = VIL, A1 = VIH, A6 = VIL
DATA
NO
=
01h
YES
End
RP = VIH
ISSUE READ/RESET
COMMAND
PASS
++n
= 25
NO
YES
RP = VIH
ISSUE READ/RESET
COMMAND
FAIL
AI03471
64/67
M29FxxxFT, M29FxxxFB
Block protection
Figure 30. In-System Equipment Chip Unprotect Flowchart
START
Set-up
PROTECT ALL BLOCKS
n=0
CURRENT BLOCK = 0
RP = VID
WRITE 60h
ANY ADDRESS WITH
A0 = VIL, A1 = VIH, A6 = VIH
Unprotect
WRITE 60h
ANY ADDRESS WITH
A0 = VIL, A1 = VIH, A6 = VIH
Wait 10ms
Verify
WRITE 40h
ADDRESS = CURRENT BLOCK ADDRESS
A0 = VIL, A1 = VIH, A6 = VIH
Wait 4µs
READ DATA
ADDRESS = CURRENT BLOCK ADDRESS
A0 = VIL, A1 = VIH, A6 = VIH
NO
End
NO
++n
= 1000
YES
DATA
=
00h
INCREMENT
CURRENT BLOCK
YES
LAST
BLOCK
NO
YES
RP = VIH
RP = VIH
ISSUE READ/RESET
COMMAND
ISSUE READ/RESET
COMMAND
FAIL
PASS
AI03472
65/67
Revision History
Appendix D
Table 38.
Date
M29FxxxFT, M29FxxxFB
Revision History
Document Revision History
Version
Revision Details
30-March-2009 1
Initial release.
1-April-2009
2
Corrected block diagram errors;
Changed read manufacturer code and read device code to TBD.
Added 55 ns option to speed option in Ordering Information table.
3
Updated manufacturer code and device ID codes in the following locations:
– cover page,
– Table 2.: Bus Operations, BYTE = VIL
– Table 3.: Bus Operations, BYTE = VIH
– Table 34.: Device Geometry Definition
– Table 35.: Primary Algorithm-Specific Extended Query Table
Removed the following:
– “preliminary” and delivery date from cover page;
– 70 ns columns from all AC characteristics tables;
– “inches” from package manufacturing tables.
27-May-2009
4
Removed the Note in the introduction to the Appendix B: Common Flash Interface
(CFI).
Corrected the Description and Value informaiton for Address 49h (x16) and 92h (x8)
Table 35.: Primary Algorithm-Specific Extended Query Table;
Added additional speed and packing information to Ordering Information.
13-Aug-2009
5
TFBGA48 6 x 8 mm package added.
14-Oct-2009
6
Revised as follows:
– Added / revised details in Order Information table.
– Removed device code detail in 4.2: Auto Select Command
– In Table 14.: DC Characteristics, changed ICC1 Max value from 10 to 20; changed
ICC3 Max value from 20 to 30; changed VIL value from 0.5 °C to –0.5 °C
– Removed “preliminary data” statement throughout the document.
– In Figure 9.: TFBGA connections (top view through package), changed VPP/WP
to NC.
21-Oct-2009
7
Revised the following:
In Table 14.: DC Characteristics, changed VIH from 0.8 V to 0.7 V.
8-Feb-2010
8
Minor text edits.
9
Made minor text edits, and changed manufacturer code from 0020h to 0001h in
Section 4.2: Auto Select Command on page 26.
22-April-2009
19-July-2010
Devices are shipped from the factory with the memory content bits erased to ’1’.
For a list of available options (Speed, Package, etc.) or for further information on any aspect
of this device, please contact the Numonyx Sales Office nearest to you.
66/67
M29FxxxFT, M29FxxxFB
Please Read Carefully:
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH NUMONYX™ PRODUCTS. NO LICENSE, EXPRESS OR
IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT
AS PROVIDED IN NUMONYX'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NUMONYX ASSUMES NO LIABILITY
WHATSOEVER, AND NUMONYX DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF
NUMONYX PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
Numonyx products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility
applications.
Numonyx may make changes to specifications and product descriptions at any time, without notice.
Numonyx, B.V. may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the
presented subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied,
by estoppel or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights.
Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Numonyx reserves
these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.
Contact your local Numonyx sales office or your distributor to obtain the latest specifications and before placing your product order.
Copies of documents which have an order number and are referenced in this document, or other Numonyx literature may be obtained by
visiting Numonyx's website at http://www.numonyx.com.
Numonyx StrataFlash is a trademark or registered trademark of Numonyx or its subsidiaries in the United States and other countries.
*Other names and brands may be claimed as the property of others.
Copyright © 2010, Numonyx, B.V., All Rights Reserved.
67/67