® ispGDX 240VA In-System Programmable 3.3V Generic Digital Crosspoint Features Functional Block Diagram ISP Control I/O Pins A I/O Pins D • HIGH PERFORMANCE E2CMOS® TECHNOLOGY — 3.3V Core Power Supply — 4.5ns Input-to-Output/4.0ns Clock-to-Output Delay — 200MHz Maximum Clock Frequency — TTL/3.3V/2.5V Compatible Input Thresholds and Output Levels (Individually Programmable) — Low-Power: 20.0mA Quiescent Icc — 24mA IOL Drive with Programmable Slew Rate Control Option — PCI Compatible Drive Capability — Schmitt Trigger Inputs for Noise Immunity — Electrically Erasable and Reprogrammable — Non-Volatile E2CMOS Technology I/O Cells Boundary Scan Control Global Routing Pool (GRP) I/O Cells I/O Pins C • IN-SYSTEM PROGRAMMABLE GENERIC DIGITAL CROSSPOINT FAMILY — 240 I/O, “Any Input to Any Output” Routing — Advanced Architecture Addresses Programmable PCB Interconnect, Bus Interface Integration and Jumper/Switch Replacement — Fixed HIGH or LOW Output Option for Jumper/DIP Switch Emulation — Space-Saving Fine Pitch BGA Packaging — Dedicated IEEE 1149.1-Compliant Boundary Scan Test I/O Pins B Description • ispGDXVA OFFERS THE FOLLOWING ADVANTAGES — 3.3V In-System Programmable Using Boundary Scan Test Access Port (TAP) — Change Interconnects in Seconds • FLEXIBLE ARCHITECTURE — Combinatorial/Latched/Registered Inputs or Outputs — Individual I/O Tri-state Control with Polarity Control — Dedicated Clock/Clock Enable Input Pins (four) or Programmable Clocks/Clock Enables from I/O Pins (60) — Single Level 4:1 Dynamic Path Selection (Tpd = 4.5ns) — Programmable Wide-MUX Cascade Feature Supports up to 16:1 MUX — Programmable Pull-ups, Bus Hold Latch and Open Drain on I/O Pins — Outputs Tri-state During Power-up (“Live Insertion” Friendly) The ispGDXVA architecture provides a family of fast, flexible programmable devices to address a variety of system-level digital signal routing and interface requirements including: • Multi-Port Multiprocessor Interfaces • Wide Data and Address Bus Multiplexing (e.g. 16:1 High-Speed Bus MUX) • Programmable Control Signal Routing (e.g. Interrupts, DMAREQs, etc.) • Board-Level PCB Signal Routing for Prototyping or Programmable Bus Interfaces The ispGDX240VA device features fast operation, with input-to-output signal delays (Tpd) of 4.5ns and clock-tooutput delays of 4.0ns. The architecture of the devices consists of a series of programmable I/O cells interconnected by a Global Routing Pool (GRP). All I/O pin inputs enter the GRP directly or are registered or latched so they can be routed to the required I/O outputs. I/O pin inputs are defined as four sets (A,B,C,D) which have access to the four MUX inputs Copyright © 2002 Lattice Semiconductor Corporation. All brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. LATTICE SEMICONDUCTOR CORP., 5555 Northeast Moore Ct., Hillsboro, Oregon 97124, U.S.A. Tel. (503) 268-8000; 1-800-LATTICE; FAX (503) 268-8556; http://www.latticesemi.com gdx240va_05 1 February 2002 Specifications ispGDX240VA Description (Continued) found in each I/O cell. Each output has individual, programmable I/O tri-state control (OE), output latch clock (CLK), clock enable (CLKEN), and two multiplexer control (MUX0 and MUX1) inputs. Polarity for these signals is programmable for each I/O cell. The MUX0 and MUX1 inputs control a fast 4:1 MUX, allowing dynamic selection of up to four signal sources for a given output. A wider 16:1 MUX can be implemented with the MUX expander feature of each I/O and a propagation delay increase of 2.0ns. OE, CLK, CLKEN, and MUX0 and MUX1 inputs can be driven directly from selected sets of I/O pins. Optional dedicated clock input pins give minimum clockto-output delays. CLK and CLKEN share the same set of I/O pins. CLKEN disables the register clock when CLKEN = 0. In addition, there are no pin-to-pin routing constraints for 1:1 or 1:n signal routing. That is, any I/O pin configured as an input can drive one or more I/O pins configured as outputs. Through in-system programming, connections between I/O pins and architectural features (latched or registered inputs or outputs, output enable control, etc.) can be defined. In keeping with its data path application focus, the ispGDXVA devices contain no programmable logic arrays. All input pins include Schmitt trigger buffers for noise immunity. These connections are programmed into the device using non-volatile E2CMOS technology. Non-volatile technology means the device configuration is saved even when the power is removed from the device. All I/O pins are equipped with IEEE1149.1-compliant Boundary Scan Test circuitry for enhanced testability. In addition, in-system programming is supported through the Test Access Port via a special set of private commands. The device pins also have the ability to set outputs to fixed HIGH or LOW logic levels (Jumper or DIP Switch mode). Device outputs are specified for 24mA sink and 12mA source current (at JEDEC LVTTL levels) and can be tied together in parallel for greater drive. On the ispGDXVA, each I/O pin is individually programmable for 3.3V or 2.5V output levels as described later. Programmable output slew rate control can be defined independently for each I/O pin to reduce overall ground bounce and switching noise. The ispGDXVA I/Os are designed to withstand “live insertion” system environments. The I/O buffers are disabled during power-up and power-down cycles. When designing for “live insertion,” absolute maximum rating conditions for the Vcc and I/O pins must still be met. Table 1. ispGDXVA Family Members ispGDXVA Device ispGDX80VA ispGDX160VA ispGDX240VA I/O Pins 80 160 240 I/O-OE Inputs* 20 40 60 I/O-CLK / CLKEN Inputs* 20 40 60 I/O-MUXsel1 Inputs* I/O-MUXsel2 Inputs* 20 20 40 40 60 60 Dedicated Clock Pins** 2 4 4 EPEN 1 1 1 TOE 1 4 1 1 4 1 1 4 1 BSCAN Interface RESET Pin Count/Package 100-Pin TQFP 208-Pin PQFP 388-Ball fpBGA 208-Ball fpBGA 272-Ball BGA * The CLK/CLK_EN, OE, MUX0 and MUX1 terminals on each I/O cell can each be assigned to 25% of the I/Os. ** Global clock pins Y0, Y1, Y2 and Y3 are multiplexed with CLKEN0, CLKEN1, CLKEN2 and CLKEN3 respectively in all devices. 2 Specifications ispGDX240VA Architecture The ispGDXVA architecture is different from traditional PLD architectures, in keeping with its unique application focus. The block diagram is shown below. The programmable interconnect consists of a single Global Routing Pool (GRP). Unlike ispLSI® devices, there are no programmable logic arrays on the device. Control signals for OEs, Clocks/Clock Enables and MUX Controls must come from designated sets of I/O pins. The polarity of these signals can be independently programmed in each I/O cell. The various I/O pin sets are also shown in the block diagram below. The A, B, C, and D I/O pins are grouped together with one group per side. I/O Architecture Each I/O cell contains a 4:1 dynamic MUX controlled by two select lines as well as a 4x4 crossbar switch controlled by software for increased routing flexiability (Figure 1). The four data inputs to the MUX (called M0, M1, M2, and M3) come from I/O signals in the GRP and/or adjacent I/O cells. Each MUX data input can access one quarter of the total I/Os. For example, in a 240-I/O ispGDXVA, each data input can connect to one of 60 I/O pins. MUX0 and MUX1 can be driven by designated I/O pins called MUXsel1 and MUXsel2. Each MUXsel input covers 25% of the total I/O pins (e.g. 60 out of 240). MUX0 and MUX1 can be driven from either MUXsel1 or MUXsel2. Each I/O cell drives a unique pin. The OE control for each I/O pin is independent and may be driven via the GRP by one of the designated I/O pins (I/O-OE set). The I/O-OE set consists of 25% of the total I/O pins. Boundary Scan test is supported by dedicated registers at each I/O pin. In-system programming is accomplished through the standard Boundary Scan protocol. Figure 1. ispGDXVA I/O Cell and GRP Detail (240 I/O Device) Logic “0” Logic “1” 240 I/O Inputs I/OCell 0 I/O Cell 239 I/O Cell 1 I/O Cell 238 •• • E2CMOS Programmable Interconnect To 2 Adjacent I/O Cells above From MUX Outputs of 2 Adjacent I/O Cells 4-to-1 MUX N+2 I/O Group A I/O Group B I/O Group C I/O Group D N+1 N-1 • • • • • • Register or Latch M0 M1 M2 M3 MUX0 MUX1 4x4 Crossbar Switch N-2 From MUX Outputs of 2 Adjacent I/O Cells Prog. Prog. Pull-up Bus Hold Latch (VCCIO) Bypass Option A B D Q I/O Pin C R CLK To 2 Adjacent I/O Cells below CLK_EN Reset Prog. Open Drain 2.5V/3.3V Output Prog. Slew Rate Boundary Scan Cell I/O Cell N •• • I/O Cell 118 I/O Cell 121 •••••• I/O Cell 119 120 I/O Cells I/O Cell 120 120 I/O Cells 240 Input GRP Inputs Vertical Outputs Horizontal Global Y0-Y3 Reset Global Clocks / Clock_Enables ispGDXVA architecture enhancements over ispGDX (5V) 3 Specifications ispGDX240VA allow adjacent I/O cell outputs to be directly connected without passing through the global routing pool. The relationship between the [N+i] adjacent cells and A, B, C and D inputs will vary depending on where the I/O cell is located on the physical die. The I/O cells can be grouped into “normal” and “reflected” I/O cells or I/O “hemispheres.” These are defined as: I/O MUX Operation 0 0 M0 0 1 M1 1 1 M2 1 0 M3 Device Flexible mapping of MUXselx to MUXx allows the user to change the MUX select assignment after the ispGDXVA device has been soldered to the board. Figure 1 shows that the I/O cell can accept (by programming the appropriate fuses) inputs from the MUX outputs of four adjacent I/O cells, two above and two below. This enables cascading of the MUXes to enable wider (up to 16:1) MUX implementations. Normal I/O Cells Reflected I/O Cells ispGDX80VA B9-B0, A19-A0, D19-D10 B10-B19, C0-C19, D0-D9 ispGDX160VA B19-B0, A39-A0, D39-D20 B20-B39, C0-C39, D0-D19 ispGDX240VA B29-B0, A59-A0, D59-D30 B30-B59, C0-C59, D0-D29 Table 2 shows the relationship between adjacent I/O cells as well as their relationship to direct MUX inputs. Note that the MUX expansion is circular and that I/O cell B30, for example, draws on I/Os B29 and B28, as well as B31 and B32, even though they are in different hemispheres of the physical die. Table 2 shows some typical cases and all boundary cases. All other cells can be extrapolated from the pattern shown in the table. The I/O cell also includes a programmable flow-through latch or register that can be placed in the input or output path and bypassed for combinatorial outputs. As shown in Figure 1, when the input control MUX of the register/ latch selects the “A” path, the register/latch gets its inputs from the 4:1 MUX and drives the I/O output. When selecting the “B” path, the register/latch is directly driven by the I/O input while its output feeds the GRP. The programmable polarity Clock to the latch or register can be connected to any I/O in the I/O-CLK/CLKEN set (onequarter of total I/Os) or to one of the dedicated clock input pins (Yx). The programmable polarity Clock Enable input to the register can be programmed to connect to any of the I/O-CLK/CLKEN input pin set or to the global clock enable inputs (CLKENx). Use of the dedicated clock inputs gives minimum clock-to-output delays and minimizes delay variation with fanout. Combinatorial output mode may be implemented by a dedicated architecture bit and bypass MUX. I/O cell output polarity can be programmed as active high or active low. Figure 2. I/O Hemisphere Configuration of ispGDX240VA MUX Expander Using Adjacent I/O Cells D59 D30 D29 D0 B0 B29 B30 B59 A59 The ispGDXVA allows adjacent I/O cell MUXes to be cascaded to form wider input MUXes (up to 16 x 1) without incurring an additional full Tpd penalty. However, there are certain dependencies on the locality of the adjacent MUXes when used along with direct MUX inputs. I/O cell 239 A0 I/O cell index increases in this direction I/O cell 0 I/O cell index increases in this direction Data Input Selected C59 MUX0 C0 MUX1 I/O cell 119 I/O cell 120 Adjacent I/O Cells Direct and Expander Input Routing Expansion inputs MUXOUT[n-2], MUXOUT[n-1], MUXOUT[n+1], and MUXOUT[n+2] are fuse-selectable for each I/O cell MUX. These expansion inputs share the same path as the standard A, B, C and D MUX inputs, and Table 2 also illustrates the routing of MUX direct inputs that are accessible when using adjacent I/O cells as inputs. Take I/O cell D33 as an example, which is also shown in Figure 3. 4 Specifications ispGDX240VA Figure 3. Adjacent I/O Cells vs. Direct Input Path for ispGDX240VA, I/O D33 Special Features Slew Rate Control ispGDX240VA I/O Cell All output buffers contain a programmable slew rate control that provides software-selectable slew rate options. I/O Group A D31 MUX Out S1 S0 I/O Group B .m0 4x4 Crossbar Switch D32 MUX Out I/O Group C .m1 .m2 Open Drain Control D33 All output buffers provide a programmable Open-Drain option which allows the user to drive system level reset, interrupt and enable/disable lines directly without the need for an off-chip Open-Drain or Open-Collector buffer. Wire-OR logic functions can be performed at the printed circuit board level. .m3 D34 MUX Out I/O Group D D35 MUX Out It can be seen from Figure 3 that if the D31 adjacent I/O cell is used, the I/O group “A” input is no longer available as a direct MUX input. Pull-up Resistor All pins have a programmable active pull-up. A typical resistor value for the pull-up ranges from 50kΩ to 80kΩ. The ispGDXVA can implement MUXes up to 16 bits wide in a single level of logic, but care must be taken when combining adjacent I/O cell outputs with direct MUX inputs. Any particular combination of adjacent I/O cells as MUX inputs will dictate what I/O groups (A, B, C or D) can be routed to the remaining inputs. By properly choosing the adjacent I/O cells, all of the MUX inputs can be utilized. Output Latch (Bus Hold) All pins have a programmable circuit that weakly holds the previously driven state when all drivers connected to the pin (including the pin's output driver as well as any other devices connected to the pin by external bus) are tristated. Table 2. Adjacent I/O Cells (Mapping of ispGDX240VA) User-Programmable I/Os The ispGDX240VA features user-programmable I/Os supporting either 3.3V or 2.5V output voltage level options. The ispGDX240VA uses a VCCIO pin to provide the 2.5V reference voltage when used. Data A/ Data B/ Data C/ Data D/ MUXOUT MUXOUT MUXOUT MUXOUT Reflected I/O Cells Normal I/O Cells B30 B32 B31 B29 B28 B31 B32 B33 B34 B32 B33 B30 B31 B29 B30 B33 B35 B34 B32 B31 D26 D28 D27 D25 D24 D27 D29 D28 D26 D25 D28 D30 D29 D27 D26 D29 D31 D30 D28 D27 D30 D28 D29 D31 D32 D31 D29 D30 D32 D33 D32 D30 D31 D33 D34 D33 D31 D32 D34 D35 B26 B24 B25 B27 B28 B27 B25 B26 B28 B29 B28 B26 B27 B27 B29 B30 B30 B29 B28 PCI Compatible Drive Capability The ispGDX240VA supports PCI compatible drive capability for all I/Os. B31 5 Specifications ispGDX240VA Applications Programmable Switch Replacement (PSR) The ispGDXVA Family architecture has been developed to deliver an in-system programmable signal routing solution with high speed and high flexibility. The devices are targeted for three similar but distinct classes of endsystem applications: Includes solid-state replacement and integration of mechanical DIP Switch and jumper functions. Through in-system programming, pins of the ispGDXVA devices can be driven to HIGH or LOW logic levels to emulate the traditional device outputs. PSR functions do not require any input pin connections. Programmable, Random Signal Interconnect (PRSI) These applications actually require somewhat different silicon features. PRSI functions require that the device support arbitrary signal routing on-chip between any two pins with no routing restrictions. The routing connections are static (determined at programming time) and each input-to-output path operates independently. As a result, there is little need for dynamic signal controls (OE, clocks, etc.). Because the ispGDXVA device will interface with control logic outputs from other components (such as ispLSI or ispMACH™) on the board (which frequently change late in the design process as control logic is finalized), there must be no restrictions on pin-topin signal routing for this type of application. This class includes PCB-level programmable signal routing and may be used to provide arbitrary signal swapping between chips. It opens up the possibilities of programmable system hardware. It is characterized by the need to provide a large number of 1:1 pin connections which are statically configured, i.e., the pin-to-pin paths do not need to change dynamically in response to control inputs. Programmable Data Path (PDP) This application area includes system data path transceiver, MUX and latch functions. With today’s 32- and 64-bit microprocessor buses, but standard data path glue components still relegated primarily to eight bits, PCBs are frequently crammed with a dozen or more data path glue chips that use valuable real estate. Many of these applications consist of “on-board” bus and memory interfaces that do not require the very high drive of standard glue functions but can benefit from higher integration. Therefore, there is a need for a flexible means to integrate these on-board data path functions in an analogous way to programmable logic’s solution to control logic integration. Lattice’s CPLDs make an ideal control logic complement to the ispGDXVA in-system programmable data path devices as shown below. PDP functions, on the other hand, require the ability to dynamically switch signal routing (MUXing) as well as latch and tri-state output signals. As a result, the programmable interconnect is used to define possible signal routes that are then selected dynamically by control signals from an external MPU or control logic. These functions are usually formulated early in the conceptual design of a product. The data path requirements are driven by the microprocessor, bus and memory architecture defined for the system. This part of the design is the earliest portion of the system design frozen, and will not usually change late in the design because the result would be total system and PCB redesign. As a result, the ability to accommodate arbitrary any pin-to-any pin rerouting is not a strong requirement as long as the designer has the ability to define his functions with a reasonable degree of freedom initially. Figure 4. ispGDXVA Complements Lattice CPLDs Address Inputs (from µP) Control Inputs (from µP) State Machines ispLSI/ ispMACH Device Decoders System Clock(s) Data Path Bus #1 Buffers / Registers Control Outputs As a result, the ispGDXVA architecture has been defined to support PSR and PRSI applications (including bidirectional paths) with no restrictions, while PDP applications (using dynamic MUXing) are supported with a minimal number of restrictions as described below. In this way, speed and cost can be optimized and the devices can still support the system designer’s needs. ISP/JTAG Interface ispGDXVA Device Buffers / Registers Configuration (Switch) Outputs The following diagrams illustrate several ispGDXVA applications. Data Path Bus #2 6 Specifications ispGDX240VA Applications (Continued) Figure 5. Address Demultiplex/Data Buffering Designing with the ispGDXVA As mentioned earlier, this architecture satisfies the PRSI class of applications without restrictions: any I/O pin as a single input or bidirectional can drive any other I/O pin as output. Control Bus MUXed Address Data Bus XCVR I/OA I/OB OEA OEB Buffered Data For the case of PDP applications, the designer does have to take into consideration the limitations on pins that can be used as control (MUX0, MUX1, OE, CLK) or data (MUXA-D) inputs. The restrictions on control inputs are not likely to cause any major design issues because the input possibilities span 25% of the total pins. To Memory/ Peripherals Address Latch D Address Q The MUXA-D input partitioning requires that designers consciously assign pinouts so that MUX inputs are in the appropriate, disjoint groups. For example, since the MUXA group includes I/O A0-39 (240 I/O device), it is not possible to use I/O A0 and I/O A9 in the same MUX function. As previously discussed, data path functions will be assigned early in the design process and these restrictions are reasonable in order to optimize speed and cost. CLK Figure 6. Data Bus Byte Swapper XCVR I/OA D0-7 I/OB XCVR Data Bus A Control Bus OEA OEB I/OA I/OB OEA OEB XCVR D8-15 I/OA User Electronic Signature Data Bus B D0-7 The ispGDXVA Family includes dedicated User Electronic Signature (UES) E2CMOS storage to allow users to code design-specific information into the devices to identify particular manufacturing dates, code revisions, or the like. The UES information is accessible through the boundary scan programming port via a specific command. This information can be read even when the security cell is programmed. D8-15 I/OB XCVR OEA OEB I/OA I/OB OEA OEB Security The ispGDXVA Family includes a security feature that prevents reading the device program once set. Even when set, it does not inhibit reading the UES or device ID code. It can be erased only via a device bulk erase. Figure 7. Four-Port Memory Interface Bus 1 Bus 2 Bus 3 Bus 4 4-to-1 16-Bit MUX Bidirectional Port #1 OE1 Memory Port Port #2 OE2 OEM Port #3 OE3 SEL0 Port #4 OE4 SEL1 To Memory Note: All OE and SEL lines driven by external arbiter logic (not shown). 7 Specifications ispGDX240VA Absolute Maximum Ratings 1,2 Supply Voltage Vcc ................................. -0.5 to +5.4V Input Voltage Applied ............................... -0.5 to +5.6V Off-State Output Voltage Applied ............ -0.5 to +5.6V Storage Temperature ................................ -65 to 150°C Case Temp. with Power Applied .............. -55 to 125°C Max. Junction Temp. (TJ) with Power Applied ... 150°C 1. Stresses above those listed under the “Absolute Maximum Ratings” may cause permanent damage to the device. Functional operation of the device at these or at any other conditions above those indicated in the operational sections of this specification is not implied (while programming, follow the programming specifications). 2. Compliance with the Thermal Management section of the Lattice Semiconductor Data Book or CD-ROM is a requirement. DC Recommended Operating Conditions SYMBOL MIN. MAX. UNITS Commercial TA = 0°C to +70°C 3.00 3.60 V Industrial TA = -40°C to +85°C 3.00 3.60 V 2.3 3.60 PARAMETER VCC Supply Voltage VCCIO I/O Reference Voltage V Table 2-0005/gdxva Capacitance (TA=25oC, f=1.0 MHz) SYMBOL C1 C2 PARAMETER PACKAGE TYPE TYPICAL UNITS I/O Capacitance fpBGA 10 pf VCC = 3.3V, VI/O = 2.0V TEST CONDITIONS Dedicated Clock Capacitance fpBGA 10 pf VCC = 3.3V, VY = 2.0V Table 2-0006/gdxva Erase/Reprogram Specifications PARAMETER Erase/Reprogram Cycles 8 MINIMUM MAXIMUM UNITS 10,000 — Cycles Specifications ispGDX240VA Switching Test Conditions Figure 8. Test Load Input Pulse Levels GND to VCCIO(MIN) Input Rise and Fall Time VCCIO < 1.5ns 10% to 90% Input Timing Reference Levels VCCIO(MIN)/2 Output Timing Reference Levels VCCIO(MIN)/2 Output Load See Figure 8 R1 Device Output 3-state levels are measured 0.5V from steady-state active level. Test Point CL* R2 Output Load Conditions (See Figure 8) 3.3V R1 R2 R1 153Ω 134Ω 156Ω 144Ω 35pF Active High ∞ 134Ω ∞ 144Ω 35pF Active Low 153Ω ∞ 156Ω ∞ 35pF Active High to Z at VOH -0.5V ∞ 134Ω ∞ 144Ω 5pF Active Low to Z at VOL+0.5V 153Ω ∞ 156Ω ∞ 5pF ∞ ∞ ∞ ∞ 35pF TEST CONDITION A B C *CL includes Test Fixture and Probe Capacitance. 2.5V D Slow Slew R2 0213D CL Table 2-0004A/gdxva DC Electrical Characteristics for 3.3V Range Over Recommended Operating Conditions SYMBOL PARAMETER MIN. TYP. – 3.0 – VCCIO VIL VIH Input Low Voltage VOH ≤ VOUT or VOUT ≤ VOL (MAX) -0.3 Input High Voltage VOH ≤ VOUT or VOUT ≤ VOL(MAX) 2.0 VOL Output Low Voltage VCC = VCC (MIN) IOL = +100µA VOH I/O Reference Voltage Output High Voltage 1 CONDITION VCC = VCC (MIN) MAX. UNITS 3.6 V – 0.8 V – 5.25 V – – 0.2 V IOL = +24mA – – 0.55 V IOH = -100µA 2.8 – – V IOH = -12mA 2.4 – – V Table 2-0007/gdxva 1. Typical values are at VCC = 3.3V and TA = 25°C. 9 Specifications ispGDX240VA DC Electrical Characteristics for 2.5V Range Over Recommended Operating Conditions SYMBOL VCCIO VIL VIH I/O Reference Voltage VOL Output Low Voltage VOH CONDITION PARAMETER Input Low Voltage Input High Voltage – TYP. MAX. UNITS 2.3 – 2.7 V VOH(MIN) ≤ VOUT or VOUT ≤ VOL(MAX) -0.3 – 0.7 V VOH(MIN) ≤ VOUT or VOUT ≤ VOL(MAX) 1.7 – 5.25 V – – 0.2 V VCCIO=MIN, IOL = 100µA VCCIO=MIN, IOL = 8mA Output High Voltage MIN. – – 0.6 V VCCIO=MIN, IOH = -100µA 2.1 – – V VCCIO=MIN, IOH = -8mA 1.8 – – V 2.5V/gdxva DC Electrical Characteristics Over Recommended Operating Conditions SYMBOL IIL IIH IPU IBHLS IBHHS IBHLO IBHHO IBHT IOS1 ICCQ4 CONDITION PARAMETER MIN. TYP.2 MAX. UNITS 0V ≤ VIN ≤ VIL (MAX) – – -10 µA (VCCIO-0.2) ≤ VIN ≤ VCCIO – – 10 µA VCCIO ≤ VIN ≤ 5.25V – – 50 µA – – -200 µA Bus Hold Low Sustaining Current 0V ≤ VIN ≤ VIL (MAX) VIN = VIL (MAX) 40 – – µA -40 – – µA – – 550 µA Input or I/O Low Leakage Current Input or I/O High Leakage Current I/O Active Pullup Current Bus Hold High Sustaining Current VIN = VIH (MIN) Bus Hold Low Overdrive Current 0V ≤ VIN ≤ VCCIO Bus Hold High Overdrive Current Bus Hold Trip Points 0V ≤ VIN ≤ VCCIO Output Short Circuit Current VCC = 3.3V, VOUT = 0.5V, TA = 25°C Quiescent Power Supply Current VIL = 0.5V, VIH = VCC – 20 – mA One input toggling at 50% duty cycle, outputs open. – See Note 3 – mA/ MHz – – 135 mA ICC Dynamic Power Supply Current per Input Switching ICONT 5 Maximum Continuous I/O Pin Sink Current Through Any GND Pin – – – -550 µA VIL – VIH V – – -250 mA DC Char_gdxva 1. One output at a time for a maximum of one second. VOUT = 0.5V was selected to avoid test problems by tester ground degradation. Characterized, but not 100% tested. 2. Typical values are at VCC = 3.3V and TA = 25°C. 3. ICC / MHz = (0.0025 x I/O cell fanout) + 0.042. e.g. An input driving four I/O cells at 40MHz results in a dynamic ICC of approximately ((0.0025 x 4) + 0.042) x 40 = 2.08mA. 4. For a typical application with 50% of I/O pins used as inputs, 50% used as outputs or bi-directionals. 5. This parameter limits the total current sinking of I/O pins surrounding the nearest GND pin. 10 Specifications ispGDX240VA External Timing Parameters Over Recommended Operating Conditions TEST1 PARAMETER COND. # tpd2 tsel2 fmax (Tog.) fmax (Ext.) tsu1 tsu2 tsu3 tsu4 tsuce1 tsuce2 tsuce3 th1 th2 th3 th4 thce1 thce2 thce3 tgco12 tgco22 tco12 tco22 ten2 tdis2 ttoeen2 ttoedis2 twh twl trst trw tsl tsk -4 DESCRIPTION -10 -7 UNITS MIN. MAX. MIN. MAX. MIN. MAX. A 1 Data Prop. Delay from Any I/O Pin to Any I/O Pin (4:1 MUX) – 4.5 – 7.0 – 10.0 ns A 2 Data Prop. Delay from MUXsel Inputs to Any Output (4:1 MUX) – 4.5 – 7.0 – 10.0 ns – 3 Clk. Frequency, Max. Toggle 200.0 – 100.0 – 71.0 – MHz – 4 Clk. Frequency with External Feedback ( 153.8 – 80.0 – 56.0 – MHz – 5 Input Latch or Reg. Setup Time Before Yx 2.5 – 5.5 – 8.0 – ns – 6 Input Latch or Reg. Setup Time Before I/O Clk. 1.5 – 4.5 – 6.5 – ns – 7 Output Latch or Reg. Setup Time Before Yx 2.5 – 5.5 – 8.0 – ns – 8 Output Latch or Reg. Setup Time Before I/O Clk. 1.5 – 4.5 – 6.5 – ns – 9 Global Clock Enable Setup Time Before Yx 2.5 – 3.5 – 5.0 – ns – 10 Global Clock Enable Setup Time Before I/O Clock 1.5 – 2.5 – 3.5 – ns – 11 I/O Clock Enable Setup Time Before Yx 3.0 – 6.5 – 9.0 – ns – 12 Input Latch or Reg. Hold Time (Yx) 0.0 – 0.0 – 0.0 – ns – 13 Input Latch or Reg. Hold Time (I/O Clock) 1.0 – 2.5 – 3.5 – ns – 14 Output Latch or Reg. Hold Time (Yx) 0.0 – 0.0 – 0.0 – ns – 15 Output Latch or Reg. Hold Time (I/O Clock) 1.0 – 2.5 – 3.5 – ns – 16 Global Clock Enable Hold Time (Yx) 0.0 – 0.0 – 0.0 – ns – 17 Global Clock Enable Hold Time (I/O Clock) 1.0 – 2.5 – 3.5 – ns – 18 I/O Clock Enable Hold Time (Yx) 0.0 – 0.0 – 0.0 – ns A 19 Output Latch or Reg. Clk (from Yx) to Output Delay – 4.0 – 7.0 – 10.0 ns A 20 Input Latch or Register Clk (from Yx) to Output Delay – 7.0 – 11.0 – 15.5 ns A 21 Output Latch or Reg. Clk. (from I/O pin) to Output Delay – 5.0 – 9.0 – 12.5 ns A 22 Input Latch or Reg. Clk. (from I/O pin) to Output Delay – 8.0 – 13.0 – 18.0 ns 1 tsu3+tgco1 ) B 23 Input to Output Enable – 5.0 – 8.5 – 12.0 ns C 24 Input to Output Disable – 5.0 – 8.5 – 12.0 ns B 25 Test OE Output Enable – 6.5 – 8.5 – 12.0 ns C 26 Test OE Output Disable – 6.5 – 8.5 – 12.0 ns – 27 Clk. Pulse Duration, High 2.5 – 5.0 – 7.0 – ns – 28 Clk. Pulse Duration, Low 2.5 – 5.0 – 7.0 – ns – 29 Reg. Reset Delay from RESET Low – 12.0 – 18.0 – 25.0 ns – 30 Reset Pulse Width 7.5 – 14.0 – 18.0 – ns D 31 Output Delay Adder for Output Timings Using Slow Slew Rate – 4.0 – 4.0 – 4.0 ns A 32 Output Skew (tgco1 Across Chip) – 0.5 – 0.5 – ns 1.0 Timing ver. 2.6 1. All timings measured with one output switching, fast output slew rate setting, except tsl. 2. The delay parameters are measured with Vcc as I/O voltage reference. An additional 0.5ns delay is incurred when Vccio is used as I/O voltage reference. 11 Specifications ispGDX240VA External Timing Parameters (Continued) ispGDX240VA timings are specified with a GRP load (fanout) of four I/O cells. The figure below shows the ∆ GRP Delay with increased GRP loads. These deltas apply to any signal path traversing the GRP (MUXA-D, OE, CLK/CLKEN, MUXsel0-1). Global Clock signals which do not use the GRP have no fanout delay adder. ispGDX240VA Maximum ∆ GRP Delay vs. I/O Cell Fanout ∆ GRP Delay (ns) 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 0 4 10 20 30 40 50 I/O Cell Fanout 12 60 70 Specifications ispGDX240VA Internal Timing Parameters1 Over Recommended Operating Conditions -4 PARAMETER Inputs tio GRP tgrp MUX tmuxd tmuxexp tmuxs tmuxsio tmuxsg tmuxselexp Register tiolat tiosu tioh tioco tior tcesu tceh Data Path tfdbk tiobp tioob tmuxcg tmuxcio tiodg tiodio Outputs tob tobs toeen toedis tgoe ttoe Clocks tioclk tgclk tgclkeng tgclkenio tioclkeng Global Reset tgr DESCRIPTION1 # -7 -10 MIN. MAX. MIN. MAX. MIN. MAX. UNITS 32 Input Buffer Delay — 0.8 — 1.4 — 2.1 ns 33 GRP Delay — 1.1 — 1.1 — 1.1 ns 34 35 36 37 38 I/O Cell MUX A/B/C/D Data Delay I/O Cell MUX A/B/C/D Expander Delay I/O Cell Data Select I/O Cell Data Select (I/O Clock) I/O Cell Data Select (Yx Clock) — — — — — 1.3 1.8 1.3 2.3 2.3 — — — — — 2.0 2.5 2.0 4.5 2.5 — — — — — 2.8 3.3 2.8 6.0 5.0 ns ns ns ns ns 39 I/O Cell MUX Data Select Expander Delay — 1.8 — 2.5 — 3.3 ns 40 41 42 43 44 45 46 I/O Latch Delay I/O Register Setup Time Before Clock I/O Register Hold Time After Clock I/O Register Clock to Output Delay I/O Reset to Output Delay I/O Clock Enable Setup Time Before Clock I/O Clock Enable Hold Time After Clock — — — — — — — 1.0 0.3 2.2 0.5 1.5 2.0 0.0 — — — — — — — 1.0 3.2 2.3 0.5 1.5 2.5 1.0 — — — — — — — 1.0 5.0 2.5 0.4 1.5 2.0 3.0 ns ns ns ns ns ns ns 47 48 49 50 51 52 53 I/O Register Feedback Delay I/O Register Bypass Delay I/O Register Output Buffer Delay I/O Register A/B/C/D Data Input MUX Delay (Yx Clock) I/O Register A/B/C/D Data Input MUX Delay (I/O Clock) I/O Register I/O MUX Delay (Yx Clock) I/O Register I/O MUX Delay (I/O Clock) — — — — — — — 0.8 0.0 0.2 2.3 2.3 4.2 4.2 — — — — — — — 1.2 0.3 0.6 2.5 4.5 5.0 7.0 — — — — — — — 1.5 0.8 0.7 5.0 6.0 8.7 9.7 ns ns ns ns ns ns ns 54 55 56 57 58 59 Output Buffer Delay Output Buffer Delay (Slow Slew Option) I/O Cell OE to Output Enable I/O Cell OE to Output Disable GRP Output Enable and Disable Delay Test OE Enable and Disable Delay — — — — — — 1.3 5.3 3.1 3.1 0.0 3.4 — — — — — — 2.2 6.2 6.0 6.0 0.0 2.5 — — — — — — 3.2 7.2 8.2 8.2 0.6 3.8 ns ns ns ns ns ns 60 61 62 63 64 I/O Clock Delay Global Clock Delay Global Clock Enable (Yx Clock) Global Clock Enable (I/O Clock) I/O Clock Enable (Yx Clock) — — — — — 1.1 2.0 2.0 2.0 1.1 — — — — — 3.2 2.7 3.7 5.7 4.2 — — — — — 5.0 5.7 8.7 9.7 8.0 ns ns ns ns ns 65 Global Reset to I/O Register Latch — 9.0 — 13.7 — 19.6 ns 1. Internal Timing Parameters are not tested and are for reference only. 2. Refer to the Timing Model in this data sheet for further details. 13 Timing ver. 2.6 Specifications ispGDX240VA Switching Waveforms DATA (I/O INPUT) VALID INPUT MUXSEL (I/O INPUT) VALID INPUT tsu tsel DATA (I/O INPUT) VALID INPUT th t gco CLK tco tpd COMBINATORIAL I/O OUTPUT REGISTERED I/O OUTPUT 1/fmax (external fdbk) Combinatorial Output t suce t ceh OE (I/O INPUT) CLKEN tdis ten Registered Output COMBINATORIAL I/O OUTPUT I/O Output Enable/Disable RESET t rw twh t rst twl REGISTERED I/O OUTPUT CLK (I/O INPUT) Clock Width Reset ispGDXVA Timing Model tgoe #58 OE MUX Expander Input tmuxd #34 tmuxs #36 tmuxio #37 tmuxg #38 tmuxcg #50 tmuxcio #51 TOE ttoe #59 A B C D tiobp #48 D MUX0 GRP MUX Expander Output tmuxexp #35 tmuxselexp #39 Q tioob #49 I/O Pin CLKEN MUX1 tob #54 tobs #55 toeen #56 toedis #57 CLK tgrp #33 tiod #52, #53 tiolat #40 tiosu #41 tioh #42 tioco #43 tior #44 tcesu #45 tceh #46 tgr #65 RESET tfdbk #47 tio #32 CLKEN CLK tioclkeg #64 tioclk #60 Y0,1,2,3 0902/gdx160v/va tgclk #61 Y0,1,2,3, Enable tgclkeng #62 tgclkenio #63 14 Specifications ispGDX240VA are fed into the on-chip programming circuitry where a state machine controls the programming. ispLEVER Development System The ispLEVER Development System supports ispGDX design using a VHDL or Verilog language syntax. From creation to in-system programming, the ispLEVER system is an easy-to-use, self-contained design tool. On-chip programming can be accomplished using an IEEE 1149.1 boundary scan protocol. The IEEE 1149.1compliant interface signals are Test Data In (TDI), Test Data Out (TDO), Test Clock (TCK) and Test Mode Select (TMS) control. The EPEN pin is also used to enable or disable the JTAG port. Features • VHDL and Verilog Synthesis Support Available The embedded controller port enable pin (EPEN) is used to enable the JTAG tap controller and in that regard has similar functionality to a TRST pin. When the pin is driven high, the JTAG TAP controller is enabled. This is also true when the pin is left unconnected, in which case the pin is pulled high by the permanent internal pullup. This allows ISP programming and BSCAN testing to take place as specified by the Instruction Table. • ispGDX Design Compiler - Design Rule Checker - I/O Connectivity Checker - Automatic Compiler Function • Industry Standard JEDEC File for Programming • Min/Max Timing Report • Interfaces To Popular Timing Simulators • User Electronic Signature (UES) Support When the pin is driven low, the JTAG TAP controller is driven to a reset state asynchronously. It stays there while the pin is held low. After pulling the pin high the JTAG controller becomes active. The intent of this feature is to allow the JTAG interface to be directly controlled by the data bus of an embedded controller (hence the name Embedded Port Enable). The EPEN signal is used as a “device select” to prevent spurious programming and/or testing from occurring due to random bit patterns on the data bus. Figure 5 illustrates the block diagram for the ispJTAG™ interface. • Detailed Log and Report Files For Easy Design Debug • On-line Help • Windows® XP, Windows 2000, Windows 98 and Windows NT® Compatible • Solaris® and HP-UX Versions Available In-System Programmability All necessary programming of the ispGDXVA is done via four TTL level logic interface signals. These four signals Figure 5. ispJTAG Device Programming Interface TDO TDI TMS TCK ispJTAG Programming Interface EPEN ispGDX 240VA Device ispLSI Device ispMACH Device 15 ispGDX 240VA Device ispGDX 240VA Device Specifications ispGDX240VA The ispGDXVA devices are identified by the 32-bit JTAG IDCODE register. The device ID assignments are listed in Table 3. Boundary Scan The ispGDXVA devices provide IEEE1149.1a test capability and ISP programming through a standard Boundary Scan Test Access Port (TAP) interface. The ispJTAG programming is accomplished by executing Lattice private instructions under the Boundary Scan State Machine. The boundary scan circuitry on the ispGDXVA Family operates independently of the programmed pattern. This allows customers using boundary scan test to have full test capability with only a single BSDL file. Contact Lattice Applications to obtain more detailed programming information. Table 2. I/O Shift Register Order I/O SHIFT REGISTER ORDER DEVICE ispGDX240VA TDI, TOE, Y2, Y3, RESET, Y1, Y0, I/O B30 .. B59, I/O C0 .. C59, I/O D0 .. D29, I/O B29 .. B0, I/O A59.. A0, I/O D59 .. D30, TDO I/O Shift Reg Order/ispGDX240 Table 3. ispGDX240VA Device ID Codes DEVICE ispGDX240VA 32-BIT BOUNDARY SCAN ID CODE 0001, 0000, 0011, 0101, 0100, 0000, 0100, 0011 ID Code/GDX240VA Figure 7. Boundary Scan I/O Register Cell SCANIN (from previous cell) M U X Normal Function OE D Q D Q TOE EXTEST M U X Normal Function OE D Q D Q Update DR M U X Shift DR M U X D Q SCANOUT (to next cell) Clock DR 16 M U X I/O Pin Specifications ispGDX240VA Figure 8. Boundary Scan State Machine 1 0 Test-Logic-Reset 0 1 Run-Test/Idle Select-DR-Scan 0 1 Capture-DR 0 Shift-DR 0 1 Exit1-DR 1 0 Pause-DR 1 1 Select-IR-Scan 0 1 Capture-IR 0 Shift-IR 0 1 Exit1-IR 1 0 Pause-IR 1 0 1 0 0 Exit2-DR 1 Update-DR 1 0 0 Exit2-IR 1 Update-IR 1 0 TCK t su th TMS or TDI t co TDO tsu = 0.1µs (min.) th = 0.1µs (min.) 17 tco = 0.1µs (min.) Specifications ispGDX240VA Signal Descriptions Signal Name Description I/O Input/Output Pins – These are the general purpose bidirectional data pins. When used as outputs, each may be independently latched, registered or tristated. They can also each assume one other control function (OE, CLK/CLKEN, and MUXsel as described in the text). TOE Test Output Enable Pin – This pin tristates all I/O pins when a logic low is driven. RESET Active LOW Input Pin – Resets all I/O register outputs when LOW. Yx/CLKENx Input Pins –These can be either Global Clocks or Clock Enables. EPEN Input Pin – JTAG TAP Controller Enable Pin. When high, JTAG operation is enabled. When low, JTAG TAP controller is driven to reset. TDI Input Pin – Serial data input during ISP programming or Boundary Scan mode. TCK Input Pin – Serial data clock during ISP programming or Boundary Scan mode. TMS Input Pin – Control input during ISP programming or Boundary Scan mode. TDO Output Pin – Serial data output during ISP programming or Boundary Scan mode. GND Ground (GND) VCC Vcc – Supply voltage (3.3V). VCCIO Input – This pin is used if optional 2.5V output is to be used. Every I/O can independently select either 3.3V or the optional voltage as its output level. If the optional output voltage is not required, this pin must be connected to the VCC supply. Programmable pull-up resistors and bus-hold latches only draw current from this supply. NC1 No Connect. 1. NC pins are not to be connected to any active signals, VCC or GND. Signal Locations: ispGDX240VA Signal 388-Ball fpBGA TOE L22 RESET L21 Y0/CLKEN0 M4 Y1/CLKEN1 L3 Y2/CLKEN2 M20 Y3/CLKEN3 M21 EPEN A11 TDI M1 TCK L1 TMS L2 TDO AB12 GND A1, A22, B2, B21, C3, C20, D4, D19, H9, H10, H11, H12, H13, H14, J8, J9, J10, J11, J12, J13, J14, J15, K8, K9, K10, K11, K12, K13, K14, K15, L8, L9, L10, L11, L12, L13, L14, L15, M8, M9, M10, M11, M12, M13, M14, M15, N8, N9, N10, N11, N12, N13, N14, N15, P8, P9, P10, P11, P12, P13, P14, P15, R9, R10, R11, R12, R13, R14, W4, W19, Y3, Y20, AA2, AA21, AB1, AB22 VCC D6, D9, D12, D14, D17, F4, F19, G7, G8, G15, G16, H7, H16, J4, J19, L4, M19, P4, P19, R7, R16, T7, T8, T15, T16, U4, U19, W6, W9, W11, W14, W17 M22 VCCIO NC1 G9, G10, G11, G12, G13, G14, H8, H15, J7, J16, K7, K16, L7, L16, M7. M16, N7, N16, P7, P16, R8, R15, T9, T10, T11, T12, T13, T14 1. NC pins are not to be connected to any active signals, VCC or GND. 18 Specifications ispGDX240VA 388-Ball BGA I/O Locations (Sorted by I/O) I/O # VCC I/O A0 I/O A1 I/O A2 I/O A3 I/O A4 I/O A5 I/O A6 GND I/O A7 I/O A8 I/O A9 I/O A10 I/O A11 VCC I/O A12 I/O A13 I/O A14 GND I/O A15 I/O A16 I/O A17 I/O A18 I/O A19 I/O A20 I/O A21 GND I/O A22 I/O A23 VCC I/O A24 I/O A25 I/O A26 I/O A27 I/O A28 GND I/O A29 I/O A30 I/O A31 I/O A32 I/O A33 I/O A34 I/O A35 VCC I/O A36 I/O A37 GND I/O A38 I/O A39 I/O A40 I/O A41 I/O A42 I/O A43 I/O A44 GND I/O A45 I/O A46 I/O A47 VCC I/O A48 Control Signal Ball CLK/CLKEN OE MUXsel1 MUXsel2 CLK/CLKEN OE MUXsel1 A2 B1 C2 D3 C1 D2 D1 MUXsel2 CLK/CLKEN OE MUXsel1 MUXsel2 E3 E4 E2 E1 F3 CLK/CLKEN OE MUXsel1 F2 F1 G3 MUXsel2 CLK/CLKEN OE MUXsel1 MUXsel2 CLK/CLKEN OE G4 G2 G1 H3 H4 H2 H1 MUXsel1 MUXsel2 J3 J2 CLK/CLKEN OE MUXsel1 MUXsel2 CLK/CLKEN J1 K3 K2 K4 K1 OE MUXsel1 MUXsel2 CLK/CLKEN OE MUXsel1 MUXsel2 M2 M3 N1 N4 N2 N3 P1 CLK/CLKEN OE P2 P3 MUXsel1 MUXsel2 CLK/CLKEN OE MUXsel1 MUXsel2 CLK/CLKEN R1 R2 R4 R3 T1 T2 T4 OE MUXsel1 MUXsel2 T3 U1 U2 CLK/CLKEN U3 I/O # I/O A49 I/O A50 I/O A51 I/O A52 GND I/O A53 I/O A54 I/O A55 I/O A56 I/O A57 I/O A58 I/O A59 GND VCC I/O B0 I/O B1 I/O B2 I/O B3 I/O B4 I/O B5 I/O B6 I/O B7 I/O B8 GND I/O B9 I/O B10 I/O B11 VCC I/O B12 I/O B13 I/O B14 I/O B15 I/O B16 GND I/O B17 I/O B18 I/O B19 I/O B20 I/O B21 I/O B22 I/O B23 VCC I/O B24 GND I/O B25 I/O B26 I/O B27 I/O B28 I/O B29 I/O B30 I/O B31 I/O B32 I/O B33 I/O B34 GND I/O B35 VCC I/O B36 I/O B37 I/O B38 Control Signal Ball OE MUXsel1 MUXsel2 CLK/CLKEN V1 V2 V4 V3 OE MUXsel1 MUXsel2 CLK/CLKEN OE MUXsel1 MUXsel2 W1 W2 Y1 W3 Y2 AA1 AB2 CLK/CLKEN OE MUXsel1 MUXsel2 CLK/CLKEN OE MUXsel1 MUXsel2 CLK/CLKEN AA3 W5 AB3 Y4 AB4 AA4 AA5 Y5 W7 OE MUXsel1 MUXsel2 AB5 Y6 AA6 CLK/CLKEN OE MUXsel1 MUXsel2 CLK/CLKEN AB6 Y7 W8 AA7 AB7 OE MUXsel1 MUXsel2 CLK/CLKEN OE MUXsel1 MUXsel2 Y8 AA8 AB8 Y9 AA9 AB9 W10 CLK/CLKEN Y10 OE MUXsel1 MUXsel2 CLK/CLKEN OE MUXsel1 MUXsel2 CLK/CLKEN OE MUXsel1 AA10 AB10 W12 Y11 AA11 AB11 AA12 Y12 AB13 AA13 MUXsel2 Y13 CLK/CLKEN AB14 OE AA14 MUXsel1 W13 19 I/O # I/O B39 I/O B40 I/O B41 I/O B42 GND I/O B43 I/O B44 I/O B45 I/O B46 I/O B47 VCC I/O B48 I/O B49 I/O B50 GND I/O B51 I/O B52 I/O B53 I/O B54 I/O B55 I/O B56 I/O B57 I/O B58 I/O B59 GND VCC I/O C0 I/O C1 I/O C2 I/O C3 I/O C4 I/O C5 I/O C6 GND I/O C7 I/O C8 I/O C9 I/O C10 I/O C11 VCC I/O C12 I/O C13 I/O C14 GND I/O C15 I/O C16 I/O C17 I/O C18 I/O C19 I/O C20 I/O C21 GND I/O C22 I/O C23 VCC I/O C24 I/O C25 I/O C26 I/O C27 I/O C28 Control Signal MUXsel2 CLK/CLKEN OE MUXsel1 Ball Y14 AB15 AA15 Y15 MUXsel2 AB16 CLK/CLKEN AA16 OE W15 MUXsel1 Y16 MUXsel2 AB17 CLK/CLKEN AA17 OE Y17 MUXsel1 AB18 MUXsel2 CLK/CLKEN OE MUXsel1 MUXsel2 CLK/CLKEN OE MUXsel1 MUXsel2 W16 Y18 AA18 AB19 W18 AA20 AB20 Y19 AA19 CLK/CLKEN AB21 OE AA22 MUXsel1 Y21 MUXsel2 W20 CLK/CLKEN Y22 OE W21 MUXsel1 W22 MUXsel2 CLK/CLKEN OE MUXsel1 MUXsel2 V20 V19 V21 V22 U20 CLK/CLKEN OE MUXsel1 U21 U22 T20 MUXsel2 CLK/CLKEN OE MUXsel1 MUXsel2 CLK/CLKEN OE T19 T21 T22 R20 R19 R21 R22 MUXsel1 MUXsel2 P20 P21 CLK/CLKEN OE MUXsel1 MUXsel2 CLK/CLKEN P22 N20 N21 N19 L19 I/O # I/O C29 GND I/O C30 I/O C31 I/O C32 I/O C33 I/O C34 I/O C35 VCC I/O C36 I/O C37 GND I/O C38 I/O C39 I/O C40 I/O C41 I/O C42 I/O C43 I/O C44 GND I/O C45 I/O C46 I/O C47 VCC I/O C48 I/O C49 I/O C50 I/O C51 I/O C52 GND I/O C53 I/O C54 I/O C55 I/O C56 I/O C57 I/O C58 I/O C59 GND VCC I/O D0 I/O D1 I/O D2 I/O D3 I/O D4 I/O D5 I/O D6 I/O D7 I/O D8 GND I/O D9 I/O D10 I/O D11 VCC I/O D12 I/O D13 I/O D14 I/O D15 I/O D16 GND I/O D17 Control Signal Ball OE N22 MUXsel1 MUXsel2 CLK/CLKEN OE MUXsel1 MUXsel2 L20 K22 K19 K21 K20 J22 CLK/CLKEN OE J21 J20 MUXsel1 MUXsel2 CLK/CLKEN OE MUXsel1 MUXsel2 CLK/CLKEN H22 H21 H19 H20 G22 G21 G19 OE MUXsel1 MUXsel2 G20 F22 F21 CLK/CLKEN OE MUXsel1 MUXsel2 CLK/CLKEN F20 E22 E21 E19 E20 OE MUXsel1 MUXsel2 CLK/CLKEN OE MUXsel1 MUXsel2 D22 D21 C22 D20 C21 B22 A21 CLK/CLKEN OE MUXsel1 MUXsel2 CLK/CLKEN OE MUXsel1 MUXsel2 CLK/CLKEN B20 D18 A20 C19 A19 B19 B18 C18 D16 OE MUXsel1 MUXsel2 A18 C17 B17 CLK/CLKEN OE MUXsel1 MUXsel2 CLK/CLKEN A17 C16 D15 B16 A16 OE C15 Specifications ispGDX240VA 388-Ball BGA I/O Locations (Sorted by I/O), continued I/O # I/O D18 I/O D19 I/O D20 I/O D21 I/O D22 I/O D23 VCC I/O D24 GND I/O D25 I/O D26 I/O D27 I/O D28 Control Signal Ball I/O # MUXsel1 MUXsel2 CLK/CLKEN OE MUXsel1 MUXsel2 B15 A15 C14 B14 A14 D13 CLK/CLKEN C13 OE MUXsel1 MUXsel2 CLK/CLKEN B13 A13 D11 C12 I/O D29 I/O D30 I/O D31 I/O D32 I/O D33 I/O D34 GND I/O D35 VCC I/O D36 I/O D37 I/O D38 I/O D39 Control Signal Ball I/O # OE MUXsel1 MUXsel2 CLK/CLKEN OE MUXsel1 B12 A12 B11 C11 A10 B10 MUXsel2 C10 CLK/CLKEN OE MUXsel1 MUXsel2 A9 B9 D10 C9 I/O D40 I/O D41 I/O D42 GND I/O D43 I/O D44 I/O D45 I/O D46 I/O D47 VCC I/O D48 I/O D49 I/O D50 20 Control Signal Ball CLK/CLKEN OE MUXsel1 A8 B8 C8 MUXsel2 CLK/CLKEN OE MUXsel1 MUXsel2 A7 B7 D8 C7 A6 CLK/CLKEN OE MUXsel1 B6 C6 A5 I/O # GND I/O D51 I/O D52 I/O D53 I/O D54 I/O D55 I/O D56 I/O D57 I/O D58 I/O D59 GND Control Signal MUXsel2 CLK/CLKEN OE MUXsel1 MUXsel2 CLK/CLKEN OE MUXsel1 MUXsel2 Ball D7 C5 B5 B4 A4 C4 A3 D5 B3 Specifications ispGDX240VA 388-Ball BGA I/O Locations (Sorted by Ball) I/O # I/O A0 I/O D57 I/O D55 I/O D50 I/O D47 I/O D43 I/O D40 I/O D36 I/O D33 I/O D30 I/O D26 I/O D22 I/O D19 I/O D16 I/O D12 I/O D9 I/O D4 I/O D2 I/O C59 I/O A1 I/O D59 I/O D54 I/O D53 I/O D48 I/O D44 I/O D41 I/O D37 I/O D34 I/O D31 I/O D29 I/O D25 I/O D21 I/O D18 I/O D15 I/O D11 I/O D6 I/O D5 I/O D0 I/O C58 I/O A4 I/O A2 I/O D56 I/O D52 I/O D49 I/O D46 I/O D42 I/O D39 I/O D35 I/O D32 I/O D28 I/O D24 I/O D20 I/O D17 I/O D13 I/O D10 I/O D7 I/O D3 I/O C57 I/O C55 I/O A6 Control Signal Ball CLK/CLKEN OE MUXsel2 MUXsel1 MUXsel2 MUXsel2 CLK/CLKEN CLK/CLKEN OE MUXsel1 MUXsel1 MUXsel1 MUXsel2 CLK/CLKEN CLK/CLKEN OE CLK/CLKEN MUXsel1 MUXsel2 OE MUXsel2 MUXsel1 OE CLK/CLKEN CLK/CLKEN OE OE MUXsel1 MUXsel2 OE OE OE MUXsel1 MUXsel2 MUXsel2 MUXsel1 OE CLK/CLKEN MUXsel1 CLK/CLKEN MUXsel1 CLK/CLKEN CLK/CLKEN OE MUXsel1 MUXsel1 MUXsel2 MUXsel2 CLK/CLKEN CLK/CLKEN CLK/CLKEN CLK/CLKEN OE OE MUXsel1 MUXsel2 MUXsel2 OE MUXsel2 MUXsel1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A12 A13 A14 A15 A16 A17 A18 A19 A20 A21 B1 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16 B17 B18 B19 B20 B22 C1 C2 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C21 C22 D1 Control Signal Ball OE MUXsel2 MUXsel1 MUXsel2 OE MUXsel1 MUXsel2 MUXsel2 MUXsel1 CLK/CLKEN OE CLK/CLKEN MUXsel1 OE MUXsel1 OE MUXsel2 CLK/CLKEN MUXsel2 CLK/CLKEN MUXsel1 OE OE CLK/CLKEN MUXsel2 CLK/CLKEN MUXsel2 MUXsel1 OE CLK/CLKEN MUXsel1 MUXsel2 CLK/CLKEN OE MUXsel2 MUXsel1 OE CLK/CLKEN MUXsel1 MUXsel2 CLK/CLKEN OE MUXsel2 MUXsel1 CLK/CLKEN MUXsel2 MUXsel1 OE CLK/CLKEN MUXsel2 CLK/CLKEN MUXsel1 OE MUXsel2 CLK/CLKEN MUXsel1 OE MUXsel2 CLK/CLKEN MUXsel1 D2 D3 D5 D7 D8 D10 D11 D13 D15 D16 D18 D20 D21 D22 E1 E2 E3 E4 E19 E20 E21 E22 F1 F2 F3 F20 F21 F22 G1 G2 G3 G4 G19 G20 G21 G22 H1 H2 H3 H4 H19 H20 H21 H22 J1 J2 J3 J20 J21 J22 K1 K2 K3 K4 K19 K20 K21 K22 L19 L20 I/O # I/O A5 I/O A3 I/O D58 I/O D51 I/O D45 I/O D38 I/O D27 I/O D23 I/O D14 I/O D8 I/O D1 I/O C56 I/O C54 I/O C53 I/O A10 I/O A9 I/O A7 I/O A8 I/O C51 I/O C52 I/O C50 I/O C49 I/O A13 I/O A12 I/O A11 I/O C48 I/O C47 I/O C46 I/O A17 I/O A16 I/O A14 I/O A15 I/O C44 I/O C45 I/O C43 I/O C42 I/O A21 I/O A20 I/O A18 I/O A19 I/O C40 I/O C41 I/O C39 I/O C38 I/O A24 I/O A23 I/O A22 I/O C37 I/O C36 I/O C35 I/O A28 I/O A26 I/O A25 I/O A27 I/O C32 I/O C34 I/O C33 I/O C31 I/O C28 I/O C30 I/O # I/O A29 I/O A30 I/O A31 I/O A33 I/O A34 I/O A32 I/O C27 I/O C25 I/O C26 I/O C29 I/O A35 I/O A36 I/O A37 I/O C22 I/O C23 I/O C24 I/O A38 I/O A39 I/O A41 I/O A40 I/O C19 I/O C18 I/O C20 I/O C21 I/O A42 I/O A43 I/O A45 I/O A44 I/O C15 I/O C14 I/O C16 I/O C17 I/O A46 I/O A47 I/O A48 I/O C11 I/O C12 I/O C13 I/O A49 I/O A50 I/O A52 I/O A51 I/O C8 I/O C7 I/O C9 I/O C10 I/O A53 I/O A54 I/O A56 I/O B1 I/O B8 I/O B14 I/O B23 I/O B27 I/O B38 I/O B45 I/O B51 I/O B55 I/O C3 I/O C5 NOTE: VCC and GND Pads Shown for Reference 21 Control Signal Ball I/O # Control Signal Ball OE MUXsel1 MUXsel2 OE MUXsel1 CLK/CLKEN MUXsel2 OE MUXsel1 OE MUXsel2 CLK/CLKEN OE MUXsel1 MUXsel2 CLK/CLKEN MUXsel1 MUXsel2 OE CLK/CLKEN MUXsel2 MUXsel1 CLK/CLKEN OE MUXsel1 MUXsel2 OE CLK/CLKEN MUXsel2 MUXsel1 CLK/CLKEN OE MUXsel1 MUXsel2 CLK/CLKEN MUXsel2 CLK/CLKEN OE OE MUXsel1 CLK/CLKEN MUXsel2 CLK/CLKEN MUXsel2 OE MUXsel1 OE MUXsel1 CLK/CLKEN OE CLK/CLKEN MUXsel1 MUXsel2 MUXsel2 MUXsel1 OE MUXsel2 MUXsel2 MUXsel2 OE M2 M3 N1 N2 N3 N4 N19 N20 N21 N22 P1 P2 P3 P20 P21 P22 R1 R2 R3 R4 R19 R20 R21 R22 T1 T2 T3 T4 T19 T20 T21 T22 U1 U2 U3 U20 U21 U22 V1 V2 V3 V4 V19 V20 V21 V22 W1 W2 W3 W5 W7 W8 W10 W12 W13 W15 W16 W18 W20 W21 I/O C6 I/O A55 I/O A57 I/O B3 I/O B7 I/O B10 I/O B13 I/O B17 I/O B20 I/O B24 I/O B28 I/O B32 I/O B35 I/O B39 I/O B42 I/O B46 I/O B49 I/O B52 I/O B58 I/O C2 I/O C4 I/O A58 I/O B0 I/O B5 I/O B6 I/O B11 I/O B15 I/O B18 I/O B21 I/O B25 I/O B29 I/O B31 I/O B34 I/O B37 I/O B41 I/O B44 I/O B48 I/O B53 I/O B59 I/O B56 I/O C1 I/O A59 I/O B2 I/O B4 I/O B9 I/O B12 I/O B16 I/O B19 I/O B22 I/O B26 I/O B30 I/O B33 I/O B36 I/O B40 I/O B43 I/O B47 I/O B50 I/O B54 I/O B57 I/O C0 MUXsel1 MUXsel2 OE MUXsel2 MUXsel2 MUXsel1 OE OE CLK/CLKEN CLK/CLKEN CLK/CLKEN CLK/CLKEN MUXsel2 MUXsel2 MUXsel1 MUXsel1 OE CLK/CLKEN MUXsel1 MUXsel1 CLK/CLKEN MUXsel1 CLK/CLKEN OE MUXsel1 MUXsel2 MUXsel2 MUXsel1 OE OE OE MUXsel2 MUXsel1 OE OE CLK/CLKEN CLK/CLKEN OE MUXsel2 CLK/CLKEN OE MUXsel2 MUXsel1 CLK/CLKEN OE CLK/CLKEN CLK/CLKEN MUXsel2 MUXsel1 MUXsel1 MUXsel1 OE CLK/CLKEN CLK/CLKEN MUXsel2 MUXsel2 MUXsel1 MUXsel1 OE CLK/CLKEN W22 Y1 Y2 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12 Y13 Y14 Y15 Y16 Y17 Y18 Y19 Y21 Y22 AA1 AA3 AA4 AA5 AA6 AA7 AA8 AA9 AA10 AA11 AA12 AA13 AA14 AA15 AA16 AA17 AA18 AA19 AA20 AA22 AB2 AB3 AB4 AB5 AB6 AB7 AB8 AB9 AB10 AB11 AB13 AB14 AB15 AB16 AB17 AB18 AB19 AB20 AB21 Specifications ispGDX240VA Signal Configuration: ispGDX240VA ispGDX240VA 388-Ball fpBGA (1.0mm Ball Pitch / 23.0mm x 23.0mm Body Size) 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 A GND I/O C59 I/O D2 I/O D4 I/O D9 I/O D12 I/O D16 I/O D19 I/O D22 I/O D26 I/O D30 EPEN I/O D33 I/O D36 I/O D40 I/O D43 I/O D47 I/O D50 I/O D55 I/O D57 I/O A0 GND A B I/O C58 GND I/O D0 I/O D5 I/O D6 I/O D11 I/O D15 I/O D18 I/O D21 I/O D25 I/O D29 I/O D31 I/O D34 I/O D37 I/O D41 I/O D44 I/O D48 I/O D53 I/O D54 I/O D59 GND I/O A1 B C I/O C55 I/O C57 GND I/O D3 I/O D7 I/O D10 I/O D13 I/O D17 I/O D20 I/O D24 I/O D28 I/O D32 I/O D35 I/O D39 I/O D42 I/O D46 I/O D49 I/O D52 I/O D56 GND I/O A2 I/O A4 C D I/O C53 I/O C54 I/O C56 GND I/O D8 I/O D14 VCC I/O D23 VCC I/O D27 I/O D38 VCC I/O D45 I/O VCC D51 I/O D58 GND I/O A3 I/O A5 I/O A6 D E I/O C49 I/O C50 I/O C52 I/O C51 I/O A8 I/O A7 I/O A9 I/O A10 E F I/O C46 I/O C47 I/O C48 VCC VCC I/O A11 I/O A12 I/O A13 F G I/O C42 I/O C43 I/O C45 I/O C44 VCC VCC NC1 NC1 NC1 NC1 NC1 NC1 VCC VCC I/O A15 I/O A14 I/O A16 I/O A17 G H I/O C38 I/O C39 I/O C41 I/O C40 VCC NC1 GND GND GND GND GND GND NC1 VCC I/O A19 I/O A18 I/O A20 I/O A21 H J I/O C35 I/O C36 I/O C37 VCC NC1 GND GND GND GND GND GND GND GND NC1 VCC I/O A22 I/O A23 I/O A24 J K I/O C31 I/O C33 I/O C34 I/O C32 NC1 GND GND GND GND GND GND GND GND NC1 I/O A27 I/O A25 I/O A26 I/O A28 K L TOE RESET I/O C30 I/O C28 NC1 GND GND GND GND GND GND GND GND NC1 VCC Y1 TMS TCK L Y3 Y2 VCC NC1 GND GND GND GND GND GND GND GND NC1 Y0 I/O A30 I/O A29 TDI M M VCCIO I/O VCC D1 N I/O C29 I/O C26 I/O C25 I/O C27 NC1 GND GND GND GND GND GND GND GND NC1 I/O A32 I/O A34 I/O A33 I/O A31 N P I/O C24 I/O C23 I/O C22 VCC NC1 GND GND GND GND GND GND GND GND NC1 VCC I/O A37 I/O A36 I/O A35 P R I/O C21 I/O C20 I/O C18 I/O C19 VCC NC1 GND GND GND GND GND GND NC1 VCC I/O A40 I/O A41 I/O A39 I/O A38 R T I/O C17 I/O C16 I/O C14 I/O C15 VCC VCC NC1 NC1 NC1 NC1 NC1 VCC VCC I/O A44 I/O A45 I/O A43 I/O A42 T U I/O C13 I/O C12 I/O C11 VCC ispGDX240VA VCC I/O A48 I/O A47 I/O A46 U V I/O C10 I/O C9 I/O C7 I/O C8 Bottom View I/O A51 I/O A52 I/O A50 I/O A49 V W I/O C6 I/O C5 I/O C3 GND I/O VCC B55 I/O B51 I/O B45 VCC I/O B38 I/O B27 VCC I/O B23 VCC I/O B14 I/O B8 I/O B1 GND I/O A56 I/O A54 I/O A53 W Y I/O C4 I/O C2 GND I/O B58 I/O B52 I/O B49 I/O B46 I/O B42 I/O B39 I/O B35 I/O B32 I/O B28 I/O B24 I/O B20 I/O B17 I/O B13 I/O B10 I/O B7 I/O B3 GND I/O A57 I/O A55 Y AA I/O C1 GND I/O B56 I/O B59 I/O B53 I/O B48 I/O B44 I/O B41 I/O B37 I/O B34 I/O B31 I/O B29 I/O B25 I/O B21 I/O B18 I/O B15 I/O B11 I/O B6 I/O B5 I/O B0 GND I/O A58 AA I/O C0 I/O B57 I/O B54 I/O B50 I/O B47 I/O B43 I/O B40 I/O B36 I/O TDO B33 I/O B30 I/O B26 I/O B22 I/O B19 I/O B16 I/O B12 I/O B9 I/O B4 I/O B2 I/O A59 GND AB 21 20 19 18 17 16 15 14 13 11 10 9 8 7 6 5 4 3 2 AB GND 22 NC1 12 1. NCs are not to be connected to any active signals, VCC or GND. Note: Ball A1 indicator dot on top side of package. 22 VCC 1 Specifications ispGDX240VA Part Number Description ispGDX 240VA X XXXX X Device Family Grade Blank = Commercial I = Industrial Device Number Package B388 = 388-Ball fpBGA Speed 4 = 4.5ns Tpd 7 = 7.0ns Tpd 10 = 10.0ns Tpd 0212/gdx240va Ordering Information COMMERCIAL FAMILY ispGDXVA tpd (ns) ORDERING NUMBER PACKAGE 4.5 ispGDX240VA-4B388 388-Ball fpBGA 7 ispGDX240VA-7B388 388-Ball fpBGA Table 2-0041A/gdx240va INDUSTRIAL FAMILY ispGDXVA tpd (ns) 7 ORDERING NUMBER ispGDX240VA-7B388I PACKAGE 388-Ball fpBGA 10 ispGDX240VA-10B388I 388-Ball fpBGA Note: The ispGDX240VA devices are dual-marked with both Commercial and Industrial grades. The Commercial speed grade is faster, e.g. ispGDX240VA-4B388-7I. 23 Table 2-0041/gdx240va