ispGDXV, ispGDX and ispGDS Architectural Description

®
®
ispGDXV, ispGDX and ispGDS
Architectural Description
®
January 2002
The ispGDX Family
Introduction
The ispGDX Family is available in core voltages of 5V and 3.3V. The 3.3V ispGDXV Family is a functional superset
of the 5V ispGDX, adding new features, greater I/O options, a core voltage of 3.3V and individual programmable
3.3V or 2.5V output levels.
Architecture
The architecture of the ispGDX device families consists of a series of programmable I/O cells interconnected by a
Global Routing Pool (GRP). The GRP is a proprietary interconnect structure from Lattice Semiconductor, pioneered in the ispLSI® Family, that allows any input to be connected to any one or more outputs on the device.
Unlike ispLSI devices, there are no programmable logic arrays on ispGDX devices. Control signals for Output
Enables (OE), Clocks and MUX Controls must come from designated sets of I/O pins.
Control
Data
VCC
I/O A 0
I/O A 1
I/O A 2
I/O A 3
GND
I/O A 4
I/O A 5
I/O A 6
I/O A 7
I/O A 8
I/O A 9
I/O A 10
I/O A 11
GND
I/O A 12
VCC
I/O A 13
I/O A 14
I/O A 15
I/O A 16
I/O A 17
I/O A 18
I/O A 19
GND
I/O A 20
I/O A 21
I/O A 22
I/O A 23
I/O A 24
I/O A 25
I/O A 26
VCC
I/O A 27
GND
I/O A 28
I/O A 29
I/O A 30
I/O A 31
I/O A 32
I/O A 33
I/O A 34
I/O A 35
GND
I/O A 36
I/O A 37
I/O A 38
I/O A 39
VCC
I/O B 0
I/O B 1
I/O B 2
208
207
206
205
204
203
202
201
200
199
198
197
196
195
194
193
192
191
190
189
188
187
186
185
184
183
182
181
180
179
178
177
176
175
174
173
172
171
170
169
168
167
166
165
164
163
162
161
160
159
158
157
Data
—
CLK/CLKEN
OE
MUXsel1
MUXsel2
—
CLK/CLKEN
OE
MUXsel1
MUXsel2
CLK/CLKEN
OE
MUXsel1
MUXsel2
—
CLK/CLKEN
—
OE
MUXsel1
MUXsel2
CLK/CLKEN
OE
MUXsel1
MUXsel2
—
CLK/CLKEN
OE
MUXsel1
MUXsel2
CLK/CLKEN
OE
MUXsel1
—
MUXsel2
—
CLK/CLKEN
OE
MUXsel1
MUXsel2
CLK/CLKEN
OE
MUXsel1
MUXsel2
—
CLK/CLKEN
OE
MUXsel1
MUXsel2
—
CLK/CLKEN
OE
MUXsel1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
ispGDX160V/VA
Top View
156
155
154
153
152
151
150
149
148
147
146
145
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
Data
Control
VCCIO/VCC2
I/O D1
I/O D 0
VCC
I/O C 39
I/O C 38
I/O C 37
I/O C 36
GND
I/O C 35
I/O C 34
I/O C 33
I/O C 32
I/O C 31
I/O C 30
I/O C 29
I/O C 28
GND
I/O C 27
VCC
I/O C 26
I/O C 25
I/O C 24
I/O C 23
I/O C 22
I/O C 21
I/O C 20
GND
I/O C 19
I/O C 18
I/O C 17
I/O C 16
I/O C 15
I/O C 14
I/O C 13
VCC
I/O C 12
GND
I/O C 11
I/O C 10
I/O C 9
I/O C 8
I/O C 7
I/O C 6
I/O C 5
I/O C 4
GND
I/O C 3
I/O C 2
I/O C 1
I/O C 0
VCC
—
OE
CLK/CLKEN
—
MUXsel2
MUXsel1
OE
CLK/CLKEN
—
MUXsel2
MUXsel1
OE
CLK/CLKEN
MUXsel2
MUXsel1
OE
CLK/CLKEN
—
MUXsel2
—
MUXsel1
OE
CLK/CLKEN
MUXsel2
MUXsel1
OE
CLK/CLKEN
—
MUXsel2
MUXsel1
OE
CLK/CLKEN
MUXsel2
MUXsel1
OE
—
CLK/CLKEN
—
MUXsel2
MUXsel1
OE
CLK/CLKEN
MUXsel2
MUXsel1
OE
CLK/CLKEN
—
MUXsel2
MUXsel1
OE
CLK/CLKEN
—
Data
Control
www.latticesemi.com
I/O B 3
MUXsel2
GND
—
I/O B 4
CLK/CLKEN
I/O B 5
OE
I/O B 6
MUXsel1
I/O B 7
MUXsel2
I/O B 8
CLK/CLKEN
I/O B 9
OE
I/O B 10
MUXsel1
I/O B 11
MUXsel2
GND
—
I/O B 12
CLK/CLKEN
VCC
—
I/O B 13
OE
I/O B 14
MUXsel1
I/O B 15
MUXsel2
I/O B 16
CLK/CLKEN
I/O B 17
OE
I/O B 18
MUXsel1
I/O B 19
MUXsel2
1NC
—
1NC
—
CLK_EN0/Y0
—
CLK_EN1/Y1
—
GND
—
TDO
—
TMS
—
TCK
—
TDI
—
I/O B 20
CLK/CLKEN
I/O B 21
OE
I/O B 22
MUXsel1
I/O B 23
MUXsel2
I/O B 24
CLK/CLKEN
I/O B 25
OE
I/O B 26
MUXsel1
VCC
—
I/O B 27
MUXsel2
GND
—
I/O B 28
CLK/CLKEN
I/O B 29
OE
I/O B 30
MUXsel1
I/O B 31
MUXsel2
I/O B 32
CLK/CLKEN
I/O B 33
OE
I/O B 34
MUXsel1
I/O B 35
MUXsel2
GND
—
I/O B 36
CLK/CLKEN
I/O B 37
OE
I/O B 38
MUXsel1
I/O B 39
MUXsel2
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
Control
I/O D 39
MUXsel2
I/O D 38
MUXsel1
I/O D 37
OE
I/O D 36
CLK/CLKEN
GND
—
I/O D 35
MUXsel2
I/O D 34
MUXsel1
I/O D 33
OE
I/O D 32
CLK/CLKEN
I/O D 31
MUXsel2
I/O D 30
MUXsel1
I/O D 29
OE
I/O D 28
CLK/CLKEN
GND
—
I/O D 27
MUXsel2
VCC
—
I/O D 26
MUXsel1
I/O D 25
OE
I/O D 24
CLK/CLKEN
I/O D 23
MUXsel2
I/O D 22
MUXsel1
I/O D 21
OE
I/O D 20
CLK/CLKEN
RESET
—
VCC
—
EPEN
—
GND
—
Y3/CLK_EN3
—
Y2/CLK_EN2
—
NC1
—
TOE
—
I/O D 19
MUXsel2
I/O D 18
MUXsel1
I/O D 17
OE
I/O D 16
CLK/CLKEN
I/O D 15
MUXsel2
I/O D 14
MUXsel1
I/O D 13
OE
VCC
—
I/O D 12
CLK/CLKEN
GND
—
I/O D 11
MUXsel2
I/O D 10
MUXsel1
I/O D 9
OE
I/O D 8
CLK/CLKEN
I/O D 7
MUXsel2
I/O D 6
MUXsel1
I/O D 5
OE
I/O D 4
CLK/CLKEN
GND
—
I/O D 3
MUXsel2
I/O D 2
MUXsel1
Figure 1. ispGDX160V/VA Pinout
1
gdxarch_08
ispGDXV, ispGDX and ispGDS
Architectural Description
Lattice Semiconductor
Each I/O cell drives a unique pin. The I/O cells include a programmable flow-through latch or register that can be
placed in the input or output path and bypassed for combinatorial outputs. Each I/O cell has individual, programmable tri-state control (OE), register or latch clock (CLK) and programmable polarity. The OE control for each I/O pin is
independent and may be driven via the GRP by one of the designated I/O-OE pins. Using the individual tri-state
control, it is possible to emulate open-drain output functionality for wired-OR bus applications.
Each I/O cell also contains a 4:1 dynamic MUX controlled by two select lines called MUX0 and MUX1. As shown in
Figure 2, when both register/latch control muxes select the “A” path, the register/latch gets its inputs from the 4:1
mux and drives the I/O output. When selecting the “B” path the register/latch is directly driven by the I/O input while
its output feeds the GRP. The programmable polarity clock to the latch or register can be connected to any I/O in
the I/O clock set (one-quarter of total I/Os) or to one of the dedicated clock input pins (Yx). Use of the dedicated
clock inputs gives minimum clock-to-output delays and minimizes delay variation with fanout. Combinatorial output
mode may be implemented by a dedicated architecture bit and bypass MUX. I/O cell polarity can be programmed
as active high or active low. Finally, outputs may be set to fixed HIGH or LOW logic levels to simulate Jumper or DIP
Switch functions.
Figure 2. ispGDX/V I/O Cell and GRP Detail (160-I/O Device)
Logic “0” Logic “1”
160 I/O Inputs
I/OCell 0
I/O Cell 159
I/O Cell 1
I/O Cell 158
E2CMOS
Programmable
Interconnect
To 2 Adjacent
I/O Cells above
From MUX Outputs
of 2 Adjacent I/O Cells
I/O Group A
I/O Group B
I/O Group C
I/O Group D
N+1
N-1
Register
or Latch
M0
M1
M2
M3
MUX0 MUX1
4x4
Crossbar
Switch
N-2
From MUX Outputs
of 2 Adjacent I/O Cells
Prog.
Prog.
Pull-up Bus Hold
Latch
(VCCIO)
Bypass Option
4-to-1 MUX
N+2
A
B
D
Q
CLK
To 2 Adjacent
I/O Cells below
CLK_EN Reset
I/O
Pin
C
R
Prog. Open Drain
2.5V/3.3V Output
Prog. Slew Rate
Boundary
Scan Cell
I/O Cell N
I/O Cell 78
I/O Cell 81
I/O Cell 79
80 I/O Cells
I/O Cell 80
80 I/O Cells
160 Input GRP
Inputs Vertical
Outputs Horizontal
Global
Y0-Y3
Reset
Global
Clocks /
Clock_Enables
ispGDXV/VA architecture enhancements over ispGDX (5V)
Device output buffers have 24mA IOL drive as well as independently programmable output slew rate to reduce
overall ground bounce and switching noise. IEEE1149.1-compliant Boundary Scan test is supported by dedicated
registers at each I/O pin (Figure 3).
ispGDX in-system programming is supported through the Test Access Port (TAP) via a special set of private commands (Boundary Scan protocol) or through the Lattice ISP protocol. The programming protocol is selected by the
BSCAN/ispEN pin. ispGDXVA programming is supported through the TAP controller port. The EPEN signal, when
high, enables the TAP controller port for programming and test for ispGDXVA devices.
The ispGDXV Family offers a programmable MUX width for MUX chaining and allows up to 16:1 multiplexing. Other
features include a bus hold latch and clock enable.
2
ispGDXV, ispGDX and ispGDS
Architectural Description
Lattice Semiconductor
Figure 3. ispGDX Boundary Scan I/O Register Cell
SCANIN
(from
previous
cell)
Normal
Function
OE
M
U
X
D
Q
M
U
X
Q
D
TOE
EXTEST
Normal
Function
OE
M
U
X
D
Q
M
U
X
Q
D
I/O Pin
Update DR
M
U
X
Shift DR
D
Q
SCANOUT (to next cell)
Clock DR
The ispGDS Family
The ispGDS architecture features a programmable switch matrix surrounded by two banks of programmable I/O
macrocells. The I/O cells in each device are divided equally into two banks (Bank A and Bank B). Each I/O macrocell can be configured as an input, an inverting or non-inverting output or a fixed TTL HIGH or LOW output. The
switch matrix connects the I/O banks, allowing an I/O cell in one bank to be connected to any of the I/O cells in the
other bank. A single I/O cell configured as an input can drive one or more I/O cells in the other bank. inputs to the
MUX (called MUXA, MUXB, MUXC, and MUXD) come from I/O signals found in the GRP. Each MUX data input can
be accessed by one quarter of the total I/Os. MUX0 and MUX1 can be driven by designated I/O pins called the
MUXsel pins. MUXsel inputs can be chosen from designated pins (Figure 4).
I/O Cell
I/O Cell
I/O Cell
B1
B0
I/O Cell
B2
I/O Cell
B3
I/O Cell
I/O Cell
I/O Cell
A10
B4
I/O Cell
A9
I/O Cell
I/O Cell
A8
B5
A7
PROGRAMMABLE
SWITCH MATRIX
I/O Cell
I/O Cell
B6
I/O Cell
A6
I/O Cell
I/O Cell
A5
B7
I/O Cell
A4
I/O Cell
I/O Cell
A3
B8
I/O Cell
A2
I/O Cell
I/O Cell
A1
B9
A0
B10
Bank A
Figure 4. ispGDS22 Functional Block Diagram
Bank B
I/O Cell
Closed only when C0=1 and C1=0
4:1 MUX
Vcc
01
10
Switch
Matrix
11
C0
00
C2
3
C1