NCP802 Highly Integrated Lithium Battery Protection Circuit for One Cell Battery Packs The NCP802 resides in a lithium battery pack where the battery cell continuously powers it. This circuit senses cell voltage, charge current, and discharge current, and correspondingly controls the state of two, N−channel MOSFET switches. These switches reside in series with the negative terminal of the cell and the negative terminal of the battery pack. During a fault condition, the NCP802 open circuits the pack by turning off one of these MOSFET switches, which disconnects the current path. Internal delay circuitry minimizes external component count. http://onsemi.com MARKING DIAGRAMS SOT23−6 SUFFIX CASE 1262 6 1 Features KNxx • Highly Accurate Overvoltage Detector • • • • • • • 25 mV at Room Temperature 30 mV from −5 to 55°C Fault Detection Thresholds Overvoltage Threshold: SN1/SAN1=4.35 V, SAN5=4.275 V Undervoltage Threshold: SN1/SAN1=2.4 V, SAN5=2.3 V Discharge Current Threshold: SN1/SAN1=0.2 V, SAN5=0.1 V Charge Current Threshold: 0.1 V Internal Output Delays Overvoltage Output Delay: SN1/SAN1=250 ms, SAN5=1 ms Undervoltage Output Delay: 20 ms Discharge Current Output Delay: SN1/SAN1=12 ms, SAN5=6 ms Charge Current Output Delay: SN1/SAN1=16 ms, SAN5=8 ms Absolute Maximum Rating of 28 V for the Charger Input Low Quiescent Current Normal Operating Current: 3.0 A Standby Current when Cells are Discharged: 0.1 A Zero Volt Charging Available in a Low Profile Surface Mount Package Pb−Free Package May be Available.* The G−Suffix Denotes a Pb−Free Lead Finish KN xx SON−6 SAN SUFFIX CASE 494 6 1 KN = Specific Device Code xx = Date Code PIN CONNECTIONS DO 1 6 Gnd P− 2 5 Vcell CO 3 4 DS SOT23−6 (Top View) DO 1 6 P− Vcell 2 5 CO Gnd 3 4 DS SON−6 (Top View) ORDERING INFORMATION Vcell Gnd NCP802 DO Package Shipping† NCP802SN1T1 SOT23−6 3000 Tape & Reel NCP802SAN1T1 SON−6 3000 Tape & Reel SON−6 (Pb−Free) 3000 Tape & Reel SON−6 3000 Tape & Reel Device CO P− NCP802SAN1T1G NCP802SAN5T1 Figure 1. Typical One Cell Lithium Ion Battery Pack *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. Semiconductor Components Industries, LLC, 2004 January, 2004 − Rev. 8 1 †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D. Publication Order Number: NCP802/D NCP802 4 DS 5 Vcell Counter Oscillator Logic Circuit Level Shift VD1 Short Detector Delay VD4 Logic Circuit VD2 VD3 6 1 Gnd 3 DO 2 CO P− Figure 2. Detailed Block Diagram PIN FUNCTION DESCRIPTION ÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Pin # SOT23−6 Pin # SON−6 Symbol 1 1 DO This output connects to the gate of the discharge MOSFET allowing it to enable or disable battery pack discharging. 2 6 P− This is the charger negative input pin. It connects to the excess current detectors and serves as the common node for the CO pin during turn−off. 3 5 CO This output connects to the gate of the charge MOSFET switch allowing it to enable or disable battery pack charging. 4 4 DS This is the delay time reduction pin. 5 2 Vcell This input connects to the positive terminal of the cell for voltage monitoring and provides operating bias for the integrated circuit. 6 3 Gnd This is the ground pin of the IC. Description http://onsemi.com 2 NCP802 CONNECT CHARGER CONNECT LOAD CONNECT CHARGER CONNECT LOAD EXCESS DISCONNECT CHARGE CHARGER + CURRENT CONNECT LOAD VDET1 VCELL t VDD −P VDET3 Gnd VDET4 t tDET1 tDET1 tDET4 VDD CO tREL1 tREL1 tREL4 P− t CHARGE CURRENT CHARGE/ DISCHARGE CURRENT 0 t DISCHARGE CURRENT Figure 3. Overvoltage/Excess Charge Current Timing Chart http://onsemi.com 3 NCP802 CONNECT LOAD CONNECT CHARGER CONNECT LOAD EXCESS DISCHARGE CONNECT CURRENT SHORT CHARGER OPEN OPEN VCELL VDET2 t VDD Vshort −P VDET3 Gnd VDET4 t tDET2 tDET2 tDET3 tshort VDD tREL2 DO tREL2 tREL3 tREL3 Gnd t CHARGE CURRENT CHARGE/ DISCHARGE CURRENT 0 t DISCHARGE CURRENT Figure 4. Undervoltage/Excess Discharge Current Timing Chart http://onsemi.com 4 NCP802 MAXIMUM RATINGS ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ Rating Symbol Value Unit Supply Voltage (Pin 5 to Pin 6) VDD −0.3 to 12 V Input Voltage P− Pin Voltage (Pin 5 to Pin 2) DS Pin Voltage (Pin 4 to Pin 6) VP− VDS VDD + 0.3 to VDD − 28 −0.3 to 12 V V Output Voltage CO Pin Voltage (Pin 3 to Pin 2) DO Pin Voltage (Pin 1 to Pin 6) VCO VDO VDD + 0.3 to VDD − 28 −0.3 to 12 V V Power Dissipation PD 150 mW Operating Junction Temperature TJ −40 to 85 °C Storage Temperature Tstg −55 to 125 °C ATTRIBUTES Characteristics ESD Protection Human Body Model (HBM) Machine Model (MM) Value (C = 100 pF, R = 1.5 k) (C = 200 pF, R = 0 ) Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1) ≤1 kV ≤150 V Level 1 ≤150 mA Latch−up Current Maximum Rating per JEDEC standard JESD78 1. For additional Moisture Sensitivity information, refer to Application Note AND8003/D. http://onsemi.com 5 NCP802 ELECTRICAL CHARACTERISTICS (TA = 25°C, for min/max values TA is the operating junction temperature that applies, unless otherwise noted.) NCP802SN1/SAN1T1 Characteristic Symbol Min Typ Max NCP802SAN5T1 Min Typ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ VDET1 Overvoltage Delay Time (VDD = 3.6 V to 4.4 V) Unit Note 2 ÁÁÁ ÁÁÁ VOLTAGE SENSING Cell Charging Cutoff (Pin 5 to Pin 6) Overvoltage Threshold, VDD Increasing (R1 = 330) TA = 25°C TA = −5°C to 55°C Max 4.325 4.32 4.35 4.35 4.375 4.38 4.25 4.245 4.275 4.275 4.30 4.305 V V A tDET1 0.175 0.250 0.325 0.7 1 1.3 s A Overvoltage Release Time (VDD = 4.0 V, VP− = 0 V to 1.0 V) tREL1 11 16 21 11 16 21 ms B Cell Discharging Cutoff (Pin 5 to Pin 6) Undervoltage Threshold, VDD Decreasing VDET2 2.34 2.4 2.46 2.24 2.3 2.36 V C Undervoltage Time (VDD = 3.6 V to 2.2 V) tDET2 14 20 26 14 20 26 ms C ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ Undervoltage Release Delay Time (VDD = 3.0 V, VP− = 3.0 V to 0 V) tREL2 0.7 1.2 1.7 0.7 1.2 1.7 ms D Excess Discharge Current Threshold, VP− Increasing VDET3 0.180 0.200 0.220 0.080 0.100 0.120 V K Excess Discharge Current Delay Time (VDD = 3.0 V, VP− = 0 V to 1.0 V) tDET3 8 12 16 4 6 8 ms K Excess Discharge Current Release Time (VDD = 3.0 V, VP− = 3.0 V to 0 V) tREL3 0.7 1.2 1.7 0.7 1.2 1.7 ms K Excess Charge Current Threshold, VP− Decreasing VDET4 −0.13 −0.1 −0.07 −0.13 −0.1 −0.07 V E Excess Charge Current Delay Time (VDD = 3.0 V, VP− = 0 V to −1.0 V) tDET4 11 16 21 5 8 11 ms E Excess Charge Current Release Time (VDD = 3.0 V, VP− = −1.0 V to 0 V) tREL4 0.7 1.2 1.7 0.7 1.2 1.7 ms E Short Protection Voltage (VDD = 3.0 V) VSHORT VDD −1.4 VDD −1.1 VDD −0.8 VDD −1.4 VDD −1.1 VDD −0.8 V K Short Protection Delay Time (VDD = 3.0 V, VP− = 0 V to 3.0 V) tSHORT 250 400 600 250 400 600 s K Reset Resistance (VDD = 3.6 V, VP− = 1.0 V) RSHORT 15 30 45 15 30 45 k K CURRENT SENSING 2. Indicates test circuits shown on pages 15 and 16. http://onsemi.com 6 NCP802 ELECTRICAL CHARACTERISTICS (TA = 25°C, for min/max values TA is the operating junction temperature that applies, unless otherwise noted.) ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ Symbol Min Typ Max Unit Note 3 Charge Gate Drive Output Low (Pin 3 to Pin 2) (VDD = 4.5 V, Io = 50 A) Vol1 − 0.4 0.5 V G Charge Gate Drive Output High (Pin 5 to Pin 3) (VDD = 3.9 V, Io = −50 A) Voh1 3.4 3.7 − V H Discharge Gate Drive Output Low (Pin 1 to Pin 6) (VDD = 2.0 V, Io = 50 A) Vol2 − 0.2 0.5 V I Discharge Gate Drive Output High (Pin 5 to Pin 1) (VDD = 3.9 V, Io = −50 A) Voh2 3.4 3.7 − V J DS Pin High Input Voltage VIH VDD −0.5 − VDD +0.3 V F DS Pin Middle Input Voltage (VDD = 3.6 to 4.4 V) VIM 1.05 − VDD −1.1 V F DS Pin Pull−down Resistance (VDD = 3.6 V) RDS 0.5 1.3 2.5 M F − − 3.0 − 6.0 0.1 µA µA Characteristic OUTPUTS DELAY SHORTENING (DS PIN) TOTAL DEVICE Supply Current Operating (VDD = 3.9 V, VP− = 0 V) Standby (VDD = 2.0 V) Icell Operating Voltage VDD 1.5 − 5.0 V − Minimum Operating Cell Voltage for Zero Volt Charging (Pin 5 to Pin 2) (VDD − Gnd = 0 V) VST − − 1.5 V M 3. Indicates test circuits shown on pages 15 and 16. http://onsemi.com 7 L OVERVOLTAGE DELAY TIME, tDET1 (s) 4.37 4.36 4.35 4.34 4.33 4.32 4.31 4.30 −50 50 0 100 0.35 0.30 0.25 0.20 0.15 0.10 0.05 0.00 −50 0 50 100 Figure 6. Overvoltage Delay Time vs. Temperature 20 15 10 5 −40 −20 0 20 40 60 80 100 UNDERVOLTAGE THRESHOLD, VDET2 (V) Figure 5. Overvoltage Threshold vs. Temperature 25 2.43 2.42 2.41 2.40 2.39 2.38 2.37 2.36 −50 50 0 100 TA, AMBIENT TEMPERATURE (°C) TA, AMBIENT TEMPERATURE (°C) Figure 7. Overvoltage Release Time vs. Temperature Figure 8. Undervoltage Threshold vs. Temperature 35 30 25 20 15 10 5 0 −50 0.40 TA, AMBIENT TEMPERATURE (°C) 30 0 −60 0.45 TA, AMBIENT TEMPERATURE (°C) UNDERVOLTAGE RELEASE TIME, tREL2 (ms) UNDERVOLTAGE DELAY TIME tDET2 (ms) OVERVOLTAGE RELEASE TIME, tREL1 (ms) OVERVOLTAGE THRESHOLD, VDET1 (V) NCP802 0 50 100 1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0 −60 −40 −20 0 20 40 60 80 TA, AMBIENT TEMPERATURE (°C) TA, AMBIENT TEMPERATURE (°C) Figure 9. Undervoltage Delay Time vs. Temperature Figure 10. Undervoltage Release Time vs. Temperature http://onsemi.com 8 100 0.210 EXCESS DISCHARGE CURRENT DELAY TIME, tDET3 (ms) 0.200 0.195 0.190 −60 −40 −20 0 20 40 60 80 16 14 12 10 8 6 4 2 0 −60 100 −40 −20 0 20 40 60 80 TA, AMBIENT TEMPERATURE (°C) TA, AMBIENT TEMPERATURE (°C) Figure 11. Excess Discharge Current Threshold vs. Temperature Figure 12. Excess Discharge Current Delay Time vs. Temperature 100 50 RESET RESISTANCE, RSHORT (kΩ) 1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0 −60 −40 −20 0 20 40 60 80 40 VDD = 3.6 V 30 20 10 0 −60 100 −40 −20 0 20 40 60 80 TA, AMBIENT TEMPERATURE (°C) TA, AMBIENT TEMPERATURE (°C) Figure 13. Excess Discharge Current Release Time vs. Temperature Figure 14. Reset Resistance vs. Temperature −0.110 −0.105 −0.100 −0.095 −0.090 −50 0 50 100 TA, AMBIENT TEMPERATURE (°C) Figure 15. Excess Charge Current Threshold vs. Temperature EXCESS CHARGE CURRENT DELAY TIME, tREL4 (ms) EXCESS CHARGE CURRENT THRESHOLD VDET4 (V) 18 0.205 EXCESS DISCHARGE CURRENT RELEASE DELAY TIME, tREL2 (ms) EXCESS DISCHARGE CURRENT THRESHOLD, VDET3 (V) NCP802 100 30 25 20 15 10 5 0 −60 −40 −20 0 20 40 60 80 100 TA, AMBIENT TEMPERATURE (°C) Figure 16. Excess Charge Current Delay Time vs. Temperature http://onsemi.com 9 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 −40 −20 0 20 40 60 80 100 2.10 2.05 VDD = 3.0 V 2.00 1.95 1.90 1.85 1.80 −50 0 50 Figure 17. Excess Charge Current Release Time vs. Temperature Figure 18. Short Protection Threshold vs. Temperature 600 500 400 300 200 100 0 50 100 100 3 2.5 2 VDD = 3.0 V 1.5 1 0.5 0 −50 0 50 100 TA, AMBIENT TEMPERATURE (°C) TA, AMBIENT TEMPERATURE (°C) Figure 19. Short Protection Delay Time vs. Temperature Figure 20. DS Pin High Input Minimum Voltage vs. Temperature 2.5 3 2.5 2 1.5 VDD = 3.6 V to 4.4 V 1 0.5 0 −50 2.15 TA, AMBIENT TEMPERATURE (°C) 700 0 −50 2.20 TA, AMBIENT TEMPERATURE (°C) DS PIN HIGH MINIMUM VOLTAGE, VIH (V) 0 −60 SHORT PROTECTION VOLTAGE, VSHORT (V) 1.8 DS PIN PULL−DOWN RESISTANCE DS PIN MIDDLE INPUT MINIMUM VOLTAGE, VIM (V) SHORT PROTECTION DELAY TIME, tSHORT (s) EXCESS CHARGE CURRENT RELEASE TIME, tREL4 (ms) NCP802 0 50 100 2 VDD = 3.6 V 1.5 1 0.5 0 −50 0 50 TA, AMBIENT TEMPERATURE (°C) TA, AMBIENT TEMPERATURE (°C) Figure 21. DS Pin Middle Input Minimum Voltage vs. Temperature Figure 22. DS Pin Pull−Down Resistance vs. Temperature http://onsemi.com 10 100 NCP802 3.9 CO PCH DRIVER OUTPUT, Voh1 (V) CO NCH DRIVER OUTPUT, Vol1 (V) 0.5 0.4 0.3 0.2 0.1 0 −60 −40 −20 0 20 40 60 80 3.6 0 50 TA, AMBIENT TEMPERATURE (°C) TA, AMBIENT TEMPERATURE (°C) Figure 23. CO NCH Driver Output vs. Temperature Figure 24. CO PCH Driver Output vs. Temperature 100 3.9 DO PCH DRIVER OUTPUT, Voh2 (V) DO NCH DRIVER OUTPUT, Vol2 (V) 3.7 3.5 −50 100 0.4 0.3 0.2 0.1 0 −60 −40 −20 0 20 40 60 80 100 3.8 3.7 3.6 3.5 −50 0 50 TA, AMBIENT TEMPERATURE (°C) TA, AMBIENT TEMPERATURE (°C) Figure 25. DO NCH Driver Output vs. Temperature Figure 26. DO PCH Driver Output vs. Temperature 100 0.1 STANDBY CURRENT Icell (A) 6 OPERATING CURRENT Icell (A) 3.8 5 4 3 2 1 0 −50 0 50 0.08 0.06 0.04 0.02 0 −50 100 0 50 TA, AMBIENT TEMPERATURE (°C) TA, AMBIENT TEMPERATURE (°C) Figure 27. Operating Current vs. Temperature Figure 28. Standby Current vs. Temperature http://onsemi.com 11 100 OVERVOLTAGE RELEASE TIME, tREL1 (s) 0.30 0.25 0.20 0.15 0.10 0.05 0.00 4.0 5.0 4.5 6.0 5.5 16 14 12 10 8 6 4 2 0 3.0 3.5 4.0 4.5 Figure 29. Overvoltage Delay Time vs. Operating Voltage Figure 30. Overvoltage Release Time vs. Operating Voltage UNDERVOLTAGE RELEASE TIME, tREL2 (ms) VDD, OPERATING VOLTAGE (V) 22 20 18 16 14 12 10 8 6 4 2 0 1.0 1.5 2.0 2.5 1.4 1.2 1 0.8 0.6 0.4 0.2 0 2.0 2.5 3.0 3.5 4.0 VDD, OPERATING VOLTAGE (V) VDD, OPERATING VOLTAGE (V) Figure 31. Undervoltage Delay Time vs. Operating Voltage Figure 32. Undervoltage Release Time vs. Operating Voltage 14 12 10 8 6 4 2 0 2.0 18 VDD, OPERATING VOLTAGE (V) 2.5 3.0 3.5 4.0 4.5 EXCESS DISCHARGE CURRENT RELEASE DELAY TIME tREL2 (ms) EXCESS DISCHARGE CURRENT DELAY TIME tDET3 (ms) UNDERVOLTAGE DELAY TIME, tDET2 (ms) OVERVOLTAGE DELAY TIME, tDET1 (s) NCP802 1.4 1.2 1 0.8 0.6 0.4 0.2 0 2.0 2.5 3.0 3.5 4.0 VDD, OPERATING VOLTAGE (V) VDD, OPERATING VOLTAGE (V) Figure 33. Excess Discharge Current Delay Time vs. Operating Voltage Figure 34. Excess Discharge Current Release Time vs. Operating Voltage http://onsemi.com 12 4.5 4.5 EXCESS CHARGE CURRENT RELEASE TIME, tREL4 (ms) 18 16 14 12 10 8 6 4 2 0 2.0 2.5 3.0 3.5 4.0 4.5 1.2 1 0.8 0.6 0.4 0.2 0 2.0 2.5 3.5 3.0 4.0 VDD, OPERATING VOLTAGE (V) Figure 35. Excess Charge Current Delay Time vs. Operating Voltage Figure 36. Excess Charge Current Release Time vs. Operating Voltage 4.5 2.427 700 600 500 400 300 200 100 2.426 2.425 2.424 2.423 Undervoltage Release Threshold 2.422 2.421 2.420 2.419 Undervoltage Threshold 2.418 2.417 2.416 0 2 2.5 3 3.5 0 4.5 4 100 200 300 400 500 600 700 800 900 1000 VDD, OPERATING VOLTAGE (V) R1 (Ω) Figure 37. Short Protection Delay Time vs. Operating Voltage Figure 38. Undervoltage Thresholds vs. R1 2.5 4.293 4.292 Overvoltage Threshold 4.291 Overvoltage Release Threshold 4.29 4.289 CHARGER VOLTAGE TO RELEASE FROM UNDERVOLTAGE (V) 4.294 OVERVOLTAGE THRESHOLD (V) 1.4 VDD, OPERATING VOLTAGE (V) UNDERVOLTAGE THRESHOLD (V) SHORT PROTECTION DELAY TIME, tSHORT (s) EXCESS CHARGE CURRENT DELAY TIME, tREL4 (ms) NCP802 2 VDD = 4.25 V 1.5 1 0.5 0 4.288 0 100 200 300 400 500 600 700 800 900 1000 0 50 100 150 200 250 R1 (Ω) R2 (kΩ) Figure 39. Overvoltage Thresholds vs. R1 Figure 40. Charger Voltage to Release from Undervoltage vs. R2 http://onsemi.com 13 300 MINIMUM OPERATING VOLTAGE FOR 0 V CHARGING VST (V) NCP802 2 1.8 1.6 VDD − GND = 0 1.4 1.2 1 0.8 0.6 0.4 0.2 0 −50 50 0 100 TA, AMBIENT TEMPERATURE (°C) Figure 41. Minimum Operating Voltage for 0 V Charging vs. Temperature http://onsemi.com 14 NCP802 A E VCELL V P− VCELL CO P− CO V GND GND B F VCELL VCELL DS P− CO P− DO A V GND GND G C VCELL V P− VCELL DO P− GND CO A V GND D H VCELL P− VCELL DO P− GND GND Figure 42. Test Circuits http://onsemi.com 15 CO A V NCP802 I K VCELL P− VCELL DO A P− DO A V V GND GND J L VCELL VCELL A DO A P− V P− GND GND M VCELL V V DO P− CO GND Figure 43. Test Circuits Overvoltage Detection reset from an overvoltage fault as long as a charger is connected to the battery. Rather, the excess−discharge current detector (VD3) signals the IC to reset from an overvoltage condition by detecting a load while in an overvoltage condition. When the P− pin voltage becomes equal to or greater than than the excess discharge−current detector threshold (VDET3) during an overvoltage fault, the NCP802 senses the voltage drop across the charge MOSFET’s body diode induced by the load current. It then resets from the overvoltage state. There are internal, fixed delay times for both the detection and release from an overvoltage condition. If the fault or reset conditions are shorter than their respective delay times, the NCP802 ignores that condition and stays in its previous state. The overvoltage detector (VD1) monitors the VCELL pin voltage. When the VCELL voltage crosses the overvoltage detector threshold (VDET1) from a low value to a value higher than VDET1, VD1 detects an over−charging condition. The NCP802 then turns off an external, charge control, N−channel, MOSFET by driving the CO pin to its low level. A level shifter, incorporated in a buffer driver for the CO pin, drives the low level of the CO pin to the P− pin voltage, which is connected to the source of the charge control MOSFET by a resistor. The high level of the CO pin is driven to the VCELL voltage with a CMOS buffer. To reset the CO pin to its high level, the voltage at the VCELL pin must decrease to a level lower than VDET1. The overvoltage detector does not reset after the battery voltage falls below some hysteresis voltage. The NCP802 will not http://onsemi.com 16 NCP802 Undervoltage Detection short circuit detector has activated; removing the cause of that activation turns the discharge MOSFET back on. This occurs because RSHORT pulls the P− pin, voltage level down to the GND pin, voltage level. The NCP802 internally disconnects RSHORT during a normal, fault−free, state. The NCP802 only connects RSHORT if it has detected an excess discharge−current or short circuit fault. In other words, VD3 is automatically released from excess discharge−current and short circuit faults when the user removes the load. The output delay time of excess discharge−current detection is set shorter than the delay time for undervoltage detection. Therefore, if VCELL voltage drops below VDET2 during an excess discharge−current or short circuit fault, the NCP802 detects the current fault first. This prevents large discharge current faults from activating the undervoltage detector and putting the NCP802 into standby mode. Standby mode requires the charger to reset the NCP802, while excess discharge−current and short circuit faults only require that the fault be removed. The undervoltage detector (VD2) monitors the VCELL pin voltage. When the VCELL voltage crosses the undervoltage threshold (VDET2) from a high value to a value lower than VDET2, VD2 senses an undervoltage condition, and an external, discharge control, N−channel MOSFET turns off by driving the DO pin to its low level. The low level of DO is set to GND and the high level to VCELL. To reset the DO pin to its high level, one must connect a charger to the battery pack. While the VCELL voltage remains under VDET2, charge−current can flow through the parasitic diode of the external discharge control MOSFET. Once the VCELL voltage rises above VDET2, the NCP802 drives DO high. Connecting a charger to the battery pack drives the DO level high instantaneously when the VCELL voltage is higher than VDET2. VD2 has no hysteresis. After VD2 detects an undervoltage condition, the NCP802 enters a low supply current, standby mode. Maximum standby current equals 0.1 A at VCELL equal to 2.0 V. An internal pull−up disables all the device functions and thus drastically lowers quiescent current. When the charger connects to the battery, it pulls small levels of current from the P− pin. This overcomes the internal pull−up and allows the NCP802 to reset. There are internal, fixed delay times for both the detection and release from an undervoltage condition. If the fault or reset conditions are shorter than their respective delay times, the NCP802 ignores that condition and stays in its previous state. Excess Charge−Current Detection When the battery pack is chargeable and discharge is also possible, VD4 senses the P− pin voltage. For example, if the user connects the battery to an inappropriate charger, excess current can flow. Then, the P− voltage drops below the excess charge−current threshold (VDET4). Next, the output of CO becomes low. This prevents excess current flow into the circuit by turning off the external MOSFET. The output delay of the excess charge−current detector is internally fixed. If the fault condition is within the delay time window, the detector will not sense it and the MOSFET will not change state. VD4 can be released by disconnecting a charger and applying a load. Excess Discharge−Current/Short Circuit Detection The excess discharge−current detector (VD3) and the short circuit detector can function when the control MOSFET’s are on. When the P− pin voltage is below the short circuit detection voltage (VSHORT) and above the excess discharge−current threshold (VDET3), VD3 operates. When the P− pin voltage rises higher than VSHORT, the NCP802 enables the short circuit detector. When either detector activates, the NCP802 turns off an external, discharge control, N−channel, MOSFET by driving the DO pin to its low level. The output delay time for the excess discharge−current detector is internally fixed. If the P− pin, voltage level recovers from a level between VSHORT and VDET3 within the delay time, the discharge MOSFET stays in its high state. Output delay time for release from excess discharge−current detection is typically 1.2 ms. When the short circuit detector activates, DO transitions to its low state after a delay time of approximately 400 s. There is an integrated pull−down resistor (RSHORT) connected between the P− and GND pins. After VD3 or the Delay Shortening Function The output delay time of over−charge, over−discharge, excess discharge−current, excess charge−current, and the release from those detecting modes can be made shorter than the pre−set value by forcing the VCELL voltage to the DS pin. When one forces the specified middle range voltage to the DS pin, the output delay circuit becomes disabled. Therefore, under this condition, when over−charge or excess charge current is detected, output level can be checked without waiting for the delay. A 1.3 M pull−down resistor is connected between DS pin and GND internally. For normal operation, the DS pin should be at no connection state. Zero Battery Voltage Charging If the charger voltage is equal or higher than the zero−volt charge, minimum voltage (VST), the NCP802 drives the CO pin high. Therefore, it allows charging for batteries as low as zero volts. http://onsemi.com 17 NCP802 + R1 330 VCELL DS C1 0.1 µF NCP802 GND DO P− CO R2 1 k − Figure 44. Typical Application Circuit Technical Notes R1 and C1 will stabilize a supply voltage to the NCP802. A recommended R1 value is less than 1.0 k A larger value of R1 leads to higher detection voltages. There may also be voltage detector errors from shoot through current into the NCP802. R1 and R2 can also help current limit the circuit against reverse charge or a charger with excess charging voltage applied to the NCP802 battery pack. Smaller R1 and R2 values may cause excessive power consumption over the specified power dissipation rating. Therefore, the total value of R1 R2 should be equal to or more than 1.0 k However, if one uses a very large value of R2, it might not be possible to release from undervoltage by connecting a charger. The recommended R2 value is equal to or less than 30 k. http://onsemi.com 18 NCP802 PACKAGE DIMENSIONS SOT23−6 SN SUFFIX PLASTIC PACKAGE CASE 1262−01 ISSUE A E 0.20 PIN 1 IDENTIFIER M C B 0.05 M NOTES: 1. DIMENSIONS ARE IN MILLIMETERS. 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994. 3. DIMENSION D DOES NOT INCLUDE FLASH OR PROTRUSIONS. FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.23 PER SIDE. 4. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 5. DIMENSIONS D AND E1 ARE TO BE DETERMINED AT DATUM PLANE H. C 6 A E1 b 4 B A M A1 A DIM A A1 b b1 c c1 D E E1 e e1 L 0.10 3 C A S 5 B 2 S e A e1 D 1 ÉÉÉÉÉ ÇÇÇÇ ÉÉÉÉÉ ÇÇÇÇ H c1 L c b b1 MILLIMETERS MIN MAX 0.90 1.45 0.00 0.15 0.35 0.50 0.35 0.45 0.09 0.20 0.09 0.15 2.80 3.00 2.60 3.00 1.50 1.75 0.95 1.90 0.25 0 0.55 10 SECTION A−A SON−6 SAN SUFFIX PLASTIC PACKAGE CASE 494−01 ISSUE 0 A 6 5 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 4 K 1 1 4 2 E B L 3 C J D 6 PL 0.10 (0.004) −T− SEATING PLANE 0.15 (0.010) M T X Y G http://onsemi.com 19 DIM A B C D E G J K L MILLIMETERS MIN MAX 1.40 1.80 2.40 2.80 −−− 0.90 0.10 0.30 1.24 1.44 0.50 BSC 0.08 0.18 0.30 BSC 2.85 3.15 INCHES MIN MAX 0.055 0.071 0.094 0.110 −−− 0.035 0.004 0.012 0.049 0.057 0.020 BSC 0.003 0.007 0.012 BSC 0.112 0.124 NCP802 ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada Email: [email protected] N. American Technical Support: 800−282−9855 Toll Free USA/Canada ON Semiconductor Website: http://onsemi.com Order Literature: http://www.onsemi.com/litorder Japan: ON Semiconductor, Japan Customer Focus Center 2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051 Phone: 81−3−5773−3850 http://onsemi.com 20 For additional information, please contact your local Sales Representative. NCP802/D