v3.0 ProASIC™ 500K Family I/O Fe a t ur es an d B e ne f i ts • Mixed 2.5V/3.3V Support with Individually-Selectable Voltage and Slew Rate • 3.3V, PCI Compliance (PCI Revision 2.2) High C apaci t y • 100,000 to 475,000 System Gates • 14k to 63k Bits of Two-Port SRAM • 106 to 440 User I/Os S ecur e Pr og ram m i ng P erf orm a nce The Industry’s Most Effective Security Key Prevents Read Back of Programming Bit Stream • 33 MHz PCI 32-bit PCI • Internal System Performance up to 250 MHz S ta ndar d FP GA and AS IC De si gn F low • Flexibility with Choice of Industry-Standard Front-End Tools • Efficient Design Through Front-End Timing and Gate Optimization • External System Performance up to 100 MHz Low P ower • Low Impedance Flash Switches • Segmented Hierarchical Routing Structure • Small, Efficient Logic Cells IS P S uppo rt • In-System Programming (ISP) with Silicon Sculptor and Flash Pro H ig h P er f o r m ance R out ing H i era rc hy • • • • S RA Ms and FIFO s Ultra Fast Local Network Efficient Long Line Network High Speed Very Long Line Network High Performance Global Network • Up to 150 MHz Synchronous and Asynchronous Operation • Netlist Generator Ensures Optimal Usage of Embedded Memory Blocks Bo undar y S can T es t Nonv ola ti le and R epr ogr am m abl e F las h T echno log y IEEE Std. 1149.1 (JTAG) Compliant • Live at Power Up • No Configuration Device Required • Retains Programmed Design During Power-Down/ Power-Up Cycles Pr oA S I C Pr o d uc t P r of i l e Device Maximum System Gates Typical Gates Maximum Flip-Flops Embedded RAM Bits Embedded RAM Blocks (256 X 9) Logic Tiles Global Routing Resources Maximum User I/Os JTAG PCI Package (by Pin Count) PQFP PBGA FBGA F eb r u a r y 2 0 0 2 © 2002 Actel Corporation A500K050 A500K130 A500K180 A500K270 100,000 43,000 5,376 14k 6 5,376 4 204 Yes Yes 290,000 105,000 12,800 45k 20 12,800 4 306 Yes Yes 370,000 150,000 18,432 54k 24 18,432 4 362 Yes Yes 475,000 215,000 26,880 63k 28 26,880 4 440 Yes Yes 208 272 144 208 272, 456 144, 256 208 456 256 208 456 256, 676 1 P r o A S IC ™ 5 0 0 K F a m ily G en er al D e sc r i p t i on The ProASIC 500K family’s nonvolatile Flash technology combines the advantages of ASICs with the benefits of programmable devices. ProASIC 500K devices shorten time-to-production by enabling designers to create high-density systems using existing ASIC or FPGA design flows and tools. ASIC migration is not necessary for any volume because the family offers cost effective reprogrammable solutions, ideal for applications in the networking, telecom, computer, and consumer markets. The ProASIC 500K family consists of four devices ranging from 100k to 475k system gates and with up to 63k bits of embedded two-port memory. These memory blocks include hardwired FIFO circuitry as well as circuits to generate or check parity. This minimizes external logic gate count and complexity while maximizing flexibility and utility. P r oces s T echn olog y The ProASIC 500K family achieves its nonvolatile and reprogrammability through an advanced 0.25µ, four-level metal LVCMOS process enhanced with Flash technology. The use of standard CMOS design techniques to implement logic and control functions results in highly predictable performance and gate array compatibility. O r d e r i n g I nf o r m a t i o n A500K130 PQ 208 Application (Ambient Temperature Range) Blank = Commercial (0 to +70˚ C) I = Industrial (-40 to +85˚ C) PP = Pre-production ES = Engineering Silicon (Room Temperature Only) Package Lead Count Package Type BG = Plastic Ball Grid Array PQ = Plastic Quad Flat Pack FG = Fine Ball Grid Array Part Number A500K050 = A500K130 = A500K180 = A500K270 = 2 100,000 Equivalent System Gates 290,000 Equivalent System Gates 370,000 Equivalent System Gates 475,000 Equivalent System Gates v3.0 Pr o A SI C ™ 5 0 0 K F a m il y Pr od uc t P l a n Application C I 144-Pin Fine Ball Grid Array (FBGA) ✔ ✔ 208-Pin Plastic Quad Flat Pack (PQFP) ✔ ✔ 272-Pin Plastic Ball Grid Array (PBGA) ✔ ✔ 144-Pin Fine Ball Grid Array (FBGA) ✔ ✔ 208-Pin Plastic Quad Flat Pack (PQFP) ✔ ✔ 272-Pin Plastic Ball Grid Array (PBGA) ✔ ✔ 256-Pin Plastic Ball Grid Array (PBGA) ✔ ✔ 456-Pin Plastic Ball Grid Array (PBGA) ✔ ✔ 208-Pin Plastic Quad Flat Pack (PQFP) ✔ ✔ 256-Pin Plastic Ball Grid Array (PBGA) ✔ ✔ 456-Pin Plastic Ball Grid Array (PBGA) ✔ ✔ 208-Pin Plastic Quad Flat Pack (PQFP) ✔ ✔ 256-Pin Plastic Ball Grid Array (PBGA) ✔ ✔ 456-Pin Plastic Ball Grid Array (PBGA) ✔ ✔ 676-Pin Fine Ball Grid Array (FBGA) ✔ ✔ A500K050 Device A500K130 Device A500K180 Device A500K270 Device Contact your Actel sales representative for package availability. Applications: C = Commercial Availability: ✔ = Available – Contact your Actel Sale’s representative for the latest I = Industrial availability information. Pl a s t i c D e vi c e Re so u r ce s User I/Os PQFP 208-Pin PBGA 272-Pin PBGA 456-Pin FBGA 144-Pin FBGA 256-Pin FBGA 676-Pin A500K050 164 204 — 106 — — A500K130 164 204 306 106 192 — A500K180 164 — 362 — 192 — A500K270 164 — 362 — 192 440 Device Package Definitions PQFP = Plastic Quad Flat Pack, PBGA = Plastic Ball Grid Array, FBGA = Fine Ball Grid Array v3.0 3 P r o A S IC ™ 5 0 0 K F a m ily Pr oA S I C 50 0K A r c hi t ec tu re The ProASIC 500K family’s proprietary architecture provides granularity comparable to gate arrays. Unlike SRAM-based FPGAs that utilize look-up tables or architectural mapping during design, ProASIC device designs are directly synthesized to gates. That streamlines the design flow, increases design productivity, and eliminates dependencies on vendor-specific design tools. The ProASIC 500K device core consists of a Sea-of-Tiles™(Figure 1), each of which can be configured as a 3-input logic function (e.g., NAND gate, D-Flip-Flop, etc.) by programming the appropriate Flash switch interconnections (See Figure 2 on page 5 and Figure 3 on page 5). Gates and larger functions are connected with four levels of routing hierarchy. Flash memory bits are distributed throughout the device to provide nonvolatile, reconfigurable interconnect programming. Flash switches are programmed to connect signal lines to the appropriate logic cell inputs and outputs. Dedicated high-performance lines are connected as needed for fast, low-skew global signal distribution throughout the core. Maximum core utilization is possible for virtually any design. Programming options include synchronous or asynchronous operation, two-port RAM configurations, user defined depth and width, and parity generation or checking. Table 3 on page 12 lists the 24 basic memory configurations. Fl as h S wi t ch In the ProASIC Flash switch, two transistors share the floating gate which stores the programming information. One is the Flash transistor which stores programming information and in which erasing is performed. The second transistor connects/separates routing elements or configuration signal lines (Figure 2 on page 5). L o gic T il e The logic tile cell, Figure 3 on page 5, has three inputs (any or all of which can be inverted) and one output (which can connect to both ultra fast local and efficient long line routing resources). Any three-input one-output logic function, except a three input XOR, can be configured as one tile. Two multiplexers with feedback paths through the NAND gates allow the tile to be configured as a latch with clear or set, or as a flip-flop with clear or set. Thus, the tiles can flexibly map logic and sequential gates of a design. The ProASIC 500K devices also contain embedded two-port SRAM blocks with built-in FIFO/RAM control logic. 256x9 Two-Port SRAM or FIFO Block Logic Tile Figure 1 • The ProASIC Device Architecture 4 v3.0 Pr o A SI C ™ 5 0 0 K F a m il y Sel 1 Sel 2 Floating Gate Switch In Word Switch Out Figure 2 • Flash Switch Local Routing In 1 Efficient Long Line Routing In 2 (CLK) In 3 (Reset) Figure 3 • Core Logic Tile Rou ti ng Res our ces The routing structure of the ProASIC 500K devices is designed to provide high performance through a flexible four-level hierarchy of routing resources: ultra fast local resources, efficient long line resources, high speed very long line resources, and high performance global networks. The ultra fast local resources are dedicated lines that allow the output of each tile to connect directly to every input of the eight surrounding tiles (Figure 4 on page 6). The efficient long line resources provide routing for longer distances and higher fanout connections. These resources vary in length (spanning 1, 2, or 4 tiles), run both vertically and horizontally, and cover the entire ProASIC device (Figure 5 on page 6). Each tile can drive signals onto the efficient long line resources, while the resources can also access every input of any tile. The routing software automatically inserts active buffers to limit loading effects due to distance and fanout. and horizontally, providing multiple access to each group of tiles throughout the device (Figure 6 on page 7). The high performance global networks’ clock trees are low skew, high fanout nets that are accessible from four dedicated pins or from internal logic (Figure 7 on page 8). These nets are typically used to distribute clocks, resets, and other high fanout nets requiring a minimum skew. The global networks are implemented as clock trees, and signals can be introduced at any junction. These can be employed hierarchically, with signals accessing every input on all tiles. Cl ock Re sou rce s ProASIC’s high-drive routing structure provides four global networks, each accessible from either a dedicated global pad or a logic tile. Global lines provide optimized worst-case clock skew of 0.3ns. The high speed very long line resources, spanning across the entire device with minimal delay, are used to route very long or very high fanout nets. These resources run vertically v3.0 5 P r o A S IC ™ 5 0 0 K F a m ily L Inputs L L L Ultra Fast Local Lines (connect a tile to the adjacent tile, I/O buffer, or memory block) Output L L L L L Figure 4 • Ultra Fast Local Resources 4 Tiles Long 1 Tile Long 2 Tiles Long Logic Tile L L L L L L L L L L L L L L L L L L L L L L L L 1 Tile Long 2 Tiles Long 4 Tiles Long Logic Cell L L L L L Figure 5 • Efficient Long Line Resources 6 v3.0 L Pr o A SI C ™ 5 0 0 K F a m il y High Speed Very Long Line Resouces I/O RING I/O RING PAD RING PAD RING PAD RING Figure 6 • High Speed Very Long Line Resources v3.0 7 P r o A S IC ™ 5 0 0 K F a m ily Cl ock T ree s One of the main architectural benefits of ProASIC is the set of power and delay friendly global networks. The ProASIC family offers 4 global trees. Each of these trees is based on a network of spines and ribs that reach all the tiles in their regions (Figure 7). This flexible clock tree architecture allows users to map up to 56 different internal/external clocks in an A500K270 device (Table 1). The flexible use of the ProASIC clock spine allows the designer to cope with several design requirements. Users implementing clock resource intensive applications can easily route external or gated internal clocks using global routing spines. Users can also drastically reduce delay penalties and save buffering resources by mapping critical high fanout nets to spines. For design hints on using these features, refer to the Efficient Use of ProASIC Clock Trees application note. High Performace Global Network I/O RING PAD RING PAD RING Low Skew Global Networks Global Pads Global Pads Global Spine I/O RING Global Ribs Scope of Spine PAD RING Figure 7 • A500K130 Global Routing Resources Table 1 • Number of Clock Spines A500K050 A500K130 A500K180 A500K270 Top Spine Height 24 32 40 56 Tiles in Each Top Spine 768 1,024 1,280 1,792 Bottom Spine Height 32 40 56 64 1,024 1,280 1,792 2,048 Global Clock Networks (Trees) 4 4 4 4 Clock Spines/Tree 6 10 12 14 Total Spines 24 40 48 56 5,376 12,800 18,432 26,880 Tiles in Each Bottom Spine Total Tiles 8 v3.0 Pr o A SI C ™ 5 0 0 K F a m il y Inpu t/ Out put Blo cks To meet complex system design needs, the ProASIC 500K family offers devices with a large number of I/O pins, up to 440 user I/O pins on the A500K270. If the I/O pad is powered at 3.3V, each I/O can be selectively configured at 2.5V and 3.3V threshold levels. Table 2 shows the available supply voltage configurations. Figure 8 illustrates I/O interfaces with other devices. All I/Os also include an ESD protection circuit. Each I/O is tested according to the following model: • Human Body Model (HBM) 2.5V 3.3V Input Tolerance 2.5V 3.3V, 2.5V Output Drive 2.5V 3.3V, 2.5V Note: 2.5V Device 2.5V Device 2.5V Device ProASIC VDDL = 2.5V VDDP = 3.3V VDDL is always 2.5V. The I/O pads are fully configurable to provide the maximum flexibility and speed. Each pad can be configured as an input, an output, a three-state driver, or a bidirectional buffer (Figure 9). I/O pads configured as inputs have the following features: ProASIC VDDL = 2.5V VDDP = 2.5V 2.5V Device Table 2 • ProASIC Power Supply Voltages VDDP 2000V (Per Mil Std 883 Method 3015) 3.3V Device 3.3V Device Figure 8 • I/O Interfaces • Individually selectable 2.5V or 3.3V threshold levels1 3.3V/2.5V Signal Control • Optional pull-up resistor I/O pads configured as outputs have the following features: Pull-up Control Y • Individually selectable 2.5V or 3.3V compliant output signals1 EN • 3.3V PCI compliant Pad • Ability to drive LVTTL and LVCMOS levels A • Selectable drive strengths • Selectable slew rates 3.3V/2.5V Signal Control Drive Strength and Slew Rate Control • Tristate I/O pads configured as bidirectional buffers have the following features: • Individually selectable 2.5V or 3.3V compliant output signals and threshold levels1 • 3.3V PCI compliant • Optional pull-up resistor • Selectable drive strengths • Selectable slew rates • Tristate 1. If pads are configured for 2.5V operation, they are compliant with 2.5V level signals as defined by JEDEC JESD 8-5. If pads are configured for 3.3V operation, they are compliant to the standard as defined by JEDEC JESD 8-A (LVTTL and LVCMOS). Figure 9 • I/O Block Schematic Representation Bo undar y S can ProASIC devices are compatible with IEEE Standard 1149.1, which defines a set of hardware architecture and mechanisms for cost-effective board-level testing. The basic ProASIC boundary-scan logic circuit is composed of the TAP (test access port), TAP controller, test data registers, and instruction register (Figure 10 on page 10). This circuit supports all mandatory IEEE 1149.1 instructions (EXTEST, SAMPLE/PRELOAD and BYPASS), the optional IDCODE instructions and private instructions used for device programming and factory testing. Each test section is accessed through the TAP, which has five associated pins: TCK (test clock input), TDI and TDO (test data input and output), TMS (test mode selector) and TRST (test reset input). TMS, TDI, and TRST are equipped v3.0 9 P r o A S IC ™ 5 0 0 K F a m ily register is selected when no other register needs to be accessed in a device; this speeds up test data transfer to other devices in a test data path. The 32-bit device identification register is a shift register with four fields (LSB, ID number, part number and version). The boundary-scan register observes and controls the state of each I/O pin. with pull-up resistors to ensure proper operation when no input data is supplied to them. These pins are dedicated for boundary-scan test usage. The TAP controller is a four-bit state machine (16 states) that operates as shown in Figure 11 on page 11. The ‘1’s and ‘0’s represent the values that must be present at TMS at a rising edge of TCK for the given state transition to occur. IR and DR indicate that the instruction register or the data register is operating in that state. Each I/O cell has three boundary-scan register cells, each with a serial-in, serial-out, parallel-in, and parallel-out pin. The serial pins are used to serially connect all the boundary-scan register cells in a device into a boundary scan register chain which starts at the TDI pin and ends at the TDO pin. The parallel ports are connected to the internal core logic tile and the input, output, and control ports of an I/O buffer to capture and load data into the register to control or observe the logic state of each I/O. The TAP controller receives two control inputs (TMS and TCK) and generates control and clock signals for the rest of the test logic architecture. On power up, the TAP controller enters the Test-Logic-Reset state. To guarantee a reset of the controller from any of the possible states, TMS must remain high for five TCK cycles. The TRST pin may also be used to asynchronously place the TAP controller in the Test-Logic-Reset state. Details on the implementation of boundary-scan testing on ProASIC devices can be found in the Actel application note, Using JTAG Boundary-Scan with ProASIC Devices. ProASIC devices support three types of test data registers: bypass, device identification, and boundary scan. The bypass I/O I/O I/O I/O I/O TDI Test Data Registers TAP Controller Instruction Register Device Logic TDO I/O TRST I/O TMS I/O TCK I/O Bypass Register I/O I/O I/O Figure 10 • ProASIC JTAG Boundary Scan Test Logic Circuit 10 v3.0 I/O I/O Pr o A SI C ™ 5 0 0 K F a m il y 1 Test-Logic Reset 0 0 Run-Test/ Idle 1 1 Select-DRScan 0 Scan 0 Capture-DR 1 Capture-IR 1 0 0 0 Shift-DR 0 0 1 1 0 0 Pause-IR 1 1 Exit2-DR 0 Exit2-IR 1 Update-DR 0 1 1 Exit-IR Pause-DR 0 0 Shift-IR 1 Exit-DR 1 Select-IR- 1 Update-IR 1 0 Figure 11 • TAP Controller State Diagram U se r S e c u r it y E m bedde d M em or y Con f igu rat i ons The ProASIC 500K devices have read-protect bits that, once programmed, lock the entire programmed contents from being read externally. The user can only reprogram the device using the security key. This protects it from being read back and duplicated. Since programmed data is stored in nonvolatile Flash cells (which act like very small capacitors), rather than in the wiring, physical deconstruction cannot be used to compromise data. That approach would be further hampered by the placement of the flash cells, beneath the four metal layers (whose removal could not be accomplished without disturbing the charge on the floating gate). This is the highest security provided in the industry. For more information, refer to the Design Security for Nonvolatile Flash and Antifuse FPGAs white paper for more information. The embedded memory in the ProASIC 500K family provides great configuration flexibility. While other programmable vendors typically use single port memories that can only be transformed into two-port memories by sacrificing half the memory, each ProASIC block is designed and optimized as a two-port memory (1 read, 1 write). This provides 63k bits of total memory for two-port and single port usage in the A500K270 device. E m bedde d M em or y Flo orp lan The embedded memory is located across the top of the device (see Figure 1 on page 4) in 256x9 blocks. Depending upon the device, 6 to 28 blocks are available to support a variety of memory configurations. Each block can be programmed as an independent memory or combined (using dedicated memory routing resources) to form larger, more complex memories. Each memory can be configured as FIFO or SRAM, with independent selection of synchronous or asynchronous read and write ports (Table 3 on page 12). Multiple write ports are not supported. Additional characteristics include programmable flags as well as parity check and generation. Figure 12 and Figure 13 on page 13 show the block diagrams of the basic SRAM and FIFO blocks. These memories are designed to operate up to 133 MHz when operated individually. Each block contains a 256 word deep by 9-bit wide (1 read, 1 write) memory. The memory blocks may be combined in parallel to form wider memories or stacked to form deeper memories (Figure 14 on page 14). This provides optimal bit widths of 9 (1 block), 18, 36, and 72, and optimal depths of 256, 512, 768, and 1024. Refer to the Macro Library Guide for more information. v3.0 11 P r o A S IC ™ 5 0 0 K F a m ily Figure 15 on page 14 gives an example of optimal memory usage. Ten blocks with 23,040 bits have been used to generate three memories of various widths and depths. Figure 16 on page 14 shows how memory can be doubled up to create extra read ports. In this example, 10 out of 28 blocks of the A500K270 yield an effective 6,912 bits of multiple port memories. The ACTgen™ software facilitates building wider and deeper memories for optimal memory usage. Table 3 • Basic Memory Configurations Type Write Access Read Access Parity Library Cell Name RAM RAM RAM RAM RAM RAM RAM RAM RAM RAM RAM RAM FIFO FIFO FIFO FIFO FIFO FIFO FIFO FIFO FIFO FIFO FIFO FIFO Asynchronous Asynchronous Asynchronous Asynchronous Asynchronous Asynchronous Synchronous Synchronous Synchronous Synchronous Synchronous Synchronous Asynchronous Asynchronous Asynchronous Asynchronous Asynchronous Asynchronous Synchronous Synchronous Synchronous Synchronous Synchronous Synchronous Asynchronous Asynchronous Synchronous Transparent Synchronous Transparent Synchronous Pipelined Synchronous Pipelined Asynchronous Asynchronous Synchronous Transparent Synchronous Transparent Synchronous Pipelined Synchronous Pipelined Asynchronous Asynchronous Synchronous Transparent Synchronous Transparent Synchronous Pipelined Synchronous Pipelined Asynchronous Asynchronous Synchronous Transparent Synchronous Transparent Synchronous Pipelined Synchronous Pipelined Checked Generated Checked Generated Checked Generated Checked Generated Checked Generated Checked Generated Checked Generated Checked Generated Checked Generated Checked Generated Checked Generated Checked Generated RAM256x9AA RAM256x9AAP RAM256xAST RAM256xASTP RAM256x9ASR RAM256x9ASRP RAM256x9SA RAM256xSAP RAM256x9SST RAM256x9SSTP RAM256x9SSR RAM256x9SSRP FIFO256xAA FIFO256x9AAP FIFO256xAST FIFO256x9ASTP FIFO256x9ASR FIFO256x9ASRP FIFO256x9SA FIFO256xSAP FIFO256x9SST FIFO256x9SSTP FIFO256x9SSR FIFO256x9SSRP 12 v3.0 Pr o A SI C ™ 5 0 0 K F a m il y DI <0:8> WADDR <0:7> WRB WBLKB WCLKS SRAM (256 X 9) Sync Write & Sync Read Ports DO <0:8> RADDR <0:7> WRB RDB RBLKB RCLKS WBLKB PARODD DI <0:8> WADDR <0:7> WRB WBLKB WCLKS Sync Write & Async Read Ports DI <0:8> WADDR <0:7> RADDR <0:7> RDB WRB WBLKB RBLKB RPE WPE RDB RBLKB RPE DO <0:8> SRAM (256 X 9) Async Write & Sync Read Ports RADDR <0:7> RDB RBLKB RCLKS RPE WPE PARODD Note: RADDR <0:7> PARODD DO <0:8> SRAM (256 X 9) SRAM (256 X 9) Async Write & Async Read Ports WPE RPE WPE DO <0:8> DI <0:8> WADDR <0:7> PARODD For memory block interface signal definitions, see Table 4 on page 28. Figure 12 • Example SRAM Block Diagrams D1<0:8> LEVEL<0:7> D1 <0:8> LEVEL <0:7> LGDEP<0:2> WRB WBLKB D0 <0:8> LGDEP<0:2> WRB WBLKB RDB FIFO (256 X 9) Sync Write & Sync Read Ports RBLKB WPE RPE FULL RDB EMPTY RBLKB EQTH PARODD D0 <0:8> FIFO (256 X 9) Sync Write & Async Read Ports RPE FULL EMPTY EQTH PARODD GEQTH WPE GEQTH WCLKS WCLKS RESET RCLKS D1 <0:8> LEVEL <0:7> LGDEP<0:2> WRB WBLKB RDB RBLKB D1 <0:8> D0 <0:8> FIFO (256 X 9) Async Write & Sync Read Ports PARODD LEVEL <0:7> LGDEP<0:2> WRB WBLKB WPE RPE FULL EMPTY RDB EQTH D0 <0:8> FIFO (256 X 9) Async Write & Async.Read Ports WPE RPE FULL EMPTY EQTH RBLKB GEQTH GEQTH PARODD RCLKS Note: For memory block FIFO signal definitions, see Table 5 on page 34. Figure 13 • Basic FIFO Block Diagrams v3.0 13 P r o A S IC ™ 5 0 0 K F a m ily 9 Word Width 9 9 9 9 9 9 9 256 9 256 256 … 256 256 256 256 256 Word 256 Depth 88 blocks Figure 14 • A500K270 Memory Block Architecture Word Width 9 9 Word 256 Depth 256 256 256 9 9 9 256 256 words x 18bits, 1 read, 1 write 512 words x 18bits, 1 read, 1 write 256 256 1,024 words x 9bits, 1 read, 1 write Total Memory Blocks Used = 10 Total Memory Bits = 23,040 Figure 15 • Example Showing Memories with Different Width and Depth Word Width 9 Write Port 9 9 Word Depth 9 Write Port 256 256 Read Ports 256 words x 9bits, 2 read, 1 write Read Ports 512 words x 9bits, 4 read, 1 write Total Memory Blocks Used = 10 Total Memory Bits = 6,912 Figure 16 • Multiport Memory Usage 14 v3.0 Pr o A SI C ™ 5 0 0 K F a m il y D es i gn E nv i r on m e nt design into the selected device/package, and provides postlayout timing information for backannotated simulation or static timing analysis. The Designer software also contains very powerful layout capabilities for the experienced user. A very comprehensive set of floor planning, timing, and routing constraints gives users optimal control over the tools’ capabilities, enabling them to meet their tight design requirements. Users have access to constraints that allow them full control of the resources management. See the Designer User’s Guide for various constraints and their uses. ProASIC devices are supported by Actel’s Designer Series software, as well as all of the industry standard third party CAE tools. Unlike other FPGA vendors, no special HDL instantiation or device related attributes are needed when using the standard VHDL or Verilog HDL design flow with ProASIC. As a result, designers can utilize the technology independent of HDL code for ProASIC devices. This feature and the ASIC-like design flow ensure a seamless transition to an ASIC implementation, if production volumes warrant a migration to a gate array or a standard cell product (Figure 17). The ProASIC devices are also fully supported by Actel’s Libero design tool suite. Libero is a design management environment that integrates the needed design tools, streamlines the design flow, manages all design and log files, and passes the necessary design data between tools. Libero includes Synplify, ViewDraw, Actel’s Designer Series, ModelSim HDL Simulator, and WaveFormer Lite. ACTgen automatically generates memories and FIFOs with all the various options (width, depth, access mode, parity checking or generation, flags, etc.). For a synchronous read port, the user can choose whether the output is pipelined or transparent. ACTgen allows any bit width up to 252 (for the A500K270 device). ACTgen also enables optimal memory stacking in 256-word increments. However, any word depth may be combined for up to 7,168 words. ACTgen allows the user to generate distributed memory. Once the design is finalized, the programming bitstream is downloaded into the device programmer for ProASIC part programming. ProASIC 500K devices can be programmed with the Silicon Sculptor II and Flash Pro programmers. On-board programming is also available. Refer to the In-System Programming ProASIC 500K with Silicon Sculptor application note for more information. Place and route is performed by Actel’s Designer software. Available for UNIX workstations and PC platforms, Designer software accepts standard netlists in Verilog, VHDL, and in EDIF format, performs timing driven place and route of the Design Creation/Verification High-Level Design (Verilog or VHDL) Verilog or VHDL Simulator Synthesis Tool Synthesis Library Forward Constraints Simulation Library Structural Netlist Design Implementation P&R User Constraints Designer ACTgen (P&R Tool) Backannotation Programming Programming Data Silicon Sculptor II Flash Pro Timing and Simulation SDF Timing File Simulation Library Timing Libraries Verilog or VHDL Simulator Timing Analyzer Figure 17 • ProASIC Design Flow v3.0 15 P r o A S IC ™ 5 0 0 K F a m ily Pa c ka ge T he r m a l C ha r a ct e r i s t i c s The ProASIC 500K family is available in a number of package types. Actel has selected packages based on high pin count, reliability factors, and superior thermal characteristics. Thermal resistance indicates the ability of a package to conduct heat away from the silicon, through the package, to the surrounding air. Junction-to-ambient thermal resistance is measured in degrees Celsius/Watt and is represented as Theta ja (Θja). The lower the thermal resistance, the more efficiently a package will dissipate heat. A package’s maximum allowed power (P) is a function of maximum junction temperature (TJ), maximum ambient operating temperature (TA), and junction-to-ambient thermal resistance Θja. Maximum junction temperature is the maximum allowable temperature on the active surface of the IC and is 110° C. P is defined as: TJ – TA P = ---------------Θ ja Θja is a function of the rate (in linear feet per minute – lfpm) of airflow in contact with the package. When the estimated power consumption exceeds the maximum allowed power, other means of cooling, such as increasing the airflow rate, must be used. Pin Count Θjc Θja Still Air Θja 300 ft/min Units Plastic Quad Flat Pack (PQFP) 208 8 30 23 °C/W PQFP with Heatspreader 208 3.8 20 17 °C/W Plastic Ball Grid Array (PBGA) 272 3 20 16.5 °C/W Plastic Ball Grid Array (PBGA) 456 3 18 14.5 °C/W Fine Ball Grid Array (FBGA) 144 3.8 38.8 26.7 °C/W Fine Ball Grid Array (FBGA) 256 3.0 30 25 °C/W Package Type 16 v3.0 Pr o A SI C ™ 5 0 0 K F a m il y C al c ul a t i n g P o w er Di s si p a t i on Pmemory = P6 * Nmem * Fmem ProASIC device power is calculated with both a static and an active component. The active component is a function of both the number of tiles utilized and the system speed. Power dissipation can be calculated using the following formula: where: Ptotal = Pdc + Pac where: P6 = 100.0 uW/MHz is the average power consumption of a memory block normalized per MHz of the clock = the number of RAM/FIFO blocks (1 block = 256 words * 9 bits) = the clock frequency of the memory Nmem Fmem Pdc = 10 mW Pac = Pclock + Pstorage + Plogic + Pios + Pmemory Pclock = (P1 + P2 * s) * Fs where: P1 = 2500 uW/MHz the basic power consumption of the clock-tree normalized per MHz of the clock P2 = 1.0 uW/MHz the extra power consumption of the clock-tree per storage-tile normalized per MHz of the clock s = the number of storage tiles clocked by this clock Fs = the clock frequency The following is an example using a shift register design with 13,440 storage tiles and 0 logic tile. This design has one clock at 10 MHz, and 24 outputs toggling at 5 MHz for a A500K270. Fs = 10 MHz s = 13,440 => Pclock = (P1 + P2 * s) * Fs = 159.4 mW ms = 13,440 (in a shift register 100% of storage-tiles are toggling at each clock cycle and Fs = 10 MHz => Pstorage = P5 * ms * Fs = 134.4 mW mc = 0 (no logic tile in this shift-register) => Pstorage = P5 * ms * Fs where: Fp = 5 MHz P5 = 1.0 uW/MHz the average power consumption of a storage-tile normalized per MHz of its output ms = the number of storage tiles switching at each Fs cycle Fs = the clock frequency Cload = 40 pF VDDP = 3.3 V and p = 24 Plogic = 0 mW Pios = (P4 + Cload * Vddp^2) * p * Fp = 54.1 mW => Nmem = 0 (no RAM/FIFO in this shift-register) Pmemory = 0 mW => Plogic = P3 * mc * Fs where: • Pac = Pclock + Pstorage + Plogic + Pios + Pmemory = 347.9 mW P3 = 3.0 uW/MHz the average power consumption of a logic-tile normalized per MHz of its output mc = the number of logic tiles switching at each Fs cycle Fs = the clock frequency • Pdc = 10 mW • Ptotal = Pdc + Pac = 357.9 mW P ower Cons um pt io n o f a 500K De vi ce Power Consumption (mW) 1000 Pios = (P4 + Cload * Vddp^2) * p * Fp where: P4 Cload p Fp = 15.0 uW/MHz the average power consumption of an output-pad normalized per MHz of its output (internal powerload is not included) = the output load = the number of outputs = the average output frequency ProASIC SRAM 900 800 700 600 500 400 300 200 110 instances of 16-bit binary counters 100 0 20 30 40 50 60 70 80 90 100 120 Frequency (MHz) v3.0 17 P r o A S IC ™ 5 0 0 K F a m ily O pe r a t i ng C on d i t i on s Abs ol ut e M axim u m Ra ti ngs Parameter Condition Minimum Maximum Units Supply Voltage Core (VDDL) –0.3 3.0 V Supply Voltage I/O Ring (VDDP) –0.3 4.0 V DC Input Voltage –0.3 VDDP + 0.3 V PCI DC Input Voltage –0.5 VDDP + 0.5 V –10 +10 mA DC Input Clamp Current Note: VIN < 0 or VIN> VDDP Stresses beyond those listed in the Absolute Maximum Ratings table can cause permanent damage to the device. Exposure to maximum rated conditions for extended periods can adversely affect device reliability. Operation of the device at these conditions or any others beyond those listed in the Recommended Operating Conditions is not implied. P rog ra m mi ng and S to ra ge T em p er atu re LIm i ts Storage Temperature Programming Cycles Program Retention Min. Max. Commercial 50 20 years –55°C 110°C Industrial 50 20 years –55°C 110°C Product Grade S uppl y Vol t ages Mode VDDL VDDP VPP VPN Single Voltage 2.5V 2.5V 2.5V ≤ Vpp ≤ 16.5V –12V≤ VPN ≤ 0V Mixed Voltage 2.5V 3.3V 3.3V ≤ Vpp ≤ 16.5V –12V ≤VPN ≤ 0V Rec om m ende d Op era ti ng Con dit io ns Parameter Symbol Limits VDDL & VDDP VDDP VDDL TA TJ fCLOCK fRAM 2.3V to 2.7V 3.0V to 3.6V 2.3V to 2.7V 0°C to 70°C 110°C 250 MHz 150 MHz VDDL & VDDP VDDP VDDL TA TJ fCLOCK fRAM 2.3V to 2.7V 3.0V to 3.6V 2.3V to 2.7V –40°C to 85°C 110°C 250 MHz 150 MHz Commercial DC Supply Voltage (2.5V I/Os) DC Supply Voltage (Mixed 2.5V and 3.3V I/Os) Operating Ambient Temperature Range Maximum Operating Junction Temperature Maximum Clock Frequency Maximum RAM Frequency Industrial DC Supply Voltage (2.5V I/Os) DC Supply Voltage (Mixed 2.5V and 3.3V I/Os) Operating Ambient Temperature Range Maximum Operating Junction Temperature Maximum Clock Frequency Maximum RAM Frequency 18 v3.0 Pr o A SI C ™ 5 0 0 K F a m il y DC E le ct ri cal S peci fic at ions ( V D D P = 2. 5V) Symbol Parameter Conditions VDDP, VDDL Supply Voltage Output High Voltage Min. 2.3 High Drive (OB25LPH) IOH = –2.0 mA IOH = –4.0 mA IOH = –8.0 mA 2.1 2.0 1.7 Low Drive (OB25LPL) IOH = –1.0 mA IOH = –2.0 mA IOH = –4.0 mA 2.1 2.0 1.7 VOH Typ. Max. Units 2.7 V V Output Low Voltage High Drive (OB25LPH) VOL Low Drive (OB25LPL) IOL = 5.0 mA IOL = 10.0 mA IOL = 15.0 mA 0.2 0.4 0.7 IOL = 2.0 mA IOL = 3.5 mA IOL = 5.0 mA 0.2 0.4 0.7 V VIH Input High Voltage 1.7 VDDP + 0.3 V VIL Input Low Voltage –0.3 0.7 V IIN2 Input Current 25 250 µA 10 µA IDDQ Quiescent Supply Current VIN = VSS3 or VDDL 10 mA IOZ 3-State Output Leakage Current VOH = VSS or VDDL 10 µA High Drive (OB25LPH) VIN = VSS 120 Low Drive (OB25LPL) VIN = VSS 100 High Drive (OB25LPH) VIN = VDDP 100 Low Drive (OB25LPL) VIN = VDDP 30 with pull-up without pull-up 4.0 Output Short Circuit Current High IOSH 2 mA Output Short Circuit Current Low IOSL mA CI/O I/O Pad Capacitance 10 pF CCLK Clock Input Pad Capacitance 10 pF Notes: 1. All process conditions. Junction Temperature: –40 to +110°C. 2. Current is negative. 3. No pull-up resistor. v3.0 19 P r o A S IC ™ 5 0 0 K F a m ily DC E le ct ri cal S peci fic at ions ( V D D P = 3. 3V) Symbol Parameter VDDP Supply Voltage 3.0 3.6 V VDDL Supply Voltage, Logic Array 2.3 2.7 V Output High Voltage 3.3V I/O, High Drive (OB33P) Conditions Min. IOH = –5.0 mA IOH = –10.0 mA 0.9VDDP 2.4 IOH = –2.5 mA IOH = –5.0 mA 0.9VDDP 2.4 IOH = –200µA IOH = –10.0 mA IOH = –2.0 mA 2.1 2.0 1.7 IOH = –100µA IOH = –1.0 mA IOH = –2.0 mA 2.1 2.0 1.7 Typ. Max. Units V 3.3V I/O, Low Drive (OB33L) VOH Output High Voltage 2.5V I/O, High Drive (OB25H) V 2.5V I/O, Low Drive (OB25L) Output High Voltage 3.3V I/O, High Drive (OB33P) IOL = 7.5 mA IOL = 12.0 mA 0.1VDDP 0.4 IOL = 4.0 mA IOL = 5.0 mA 0.1VDDP 0.4 IOL = 5.0 mA IOL = 12.0 mA IOL = 16.0 mA 0.2 0.4 0.7 IOL = 2.5 mA IOL = 5.0 mA IOL = 8.0 mA 0.2 0.4 0.7 V 3.3V I/O, Low Drive (OB33L) VOL Output High Voltage 2.5V I/O, High Drive (OB25H) V 2.5V I/O, Low Drive (OB25L) VIH Input High Voltage 3.3V LVTTL/LVCMOS 2.5V Mode 2 1.7 VDDP + 0.3 VDDP + 0.3 VIL Input Low Voltage 3.3V LVTTL/LVCMOS 2.5V Mode –0.3 –0.3 0.8 0.7 V IIN2 Input Current LVTTL/LVCMOS LVTTL/LVCMOS with pull-up without pull-up 30 300 10 µA µA IDDQ Quiescent Supply Current VIN = VSS3 or VDDL 4.0 10 mA IDDQI4 Incremental Quiescent Supply Current 70 400 µA IOZ 3-State Output Leakage Current 10 µA VOH = VSS or VDDL Notes: 1. All process conditions. Junction Temperature: –40 to +110°C. 2. Current is negative. 3. No pull-up resistor. 4. IDDQ is augmented by IDDQI for each 2.5V I/O when operating in a mixed voltage environment. 20 v3.0 V Pr o A SI C ™ 5 0 0 K F a m il y DC E le ct ri cal S peci fic at ions ( V D D P = 3. 3V) (Co nt inue d) Symbol IOSH Parameter 2 IOSL CI/O Conditions Min. Typ. Max. Units Output Short Circuit Current High 3.3V High Drive 3.3 Low Drive 200 140 2.5V High Drive 2.5 Low Drive 120 100 Output Short Circuit Current Low 3.3V High Drive 3.3 Low Drive 160 150 2.5V High Drive 2.5 Low Drive 160 50 I/O Pad Capacitance 10 pF 10 pF Min. Max. Units mA mA CCLK Clock Input Pad Capacitance Notes: 1. All process conditions. Junction Temperature: –40 to +110°C. 2. Current is negative. 3. No pull-up resistor. 4. IDDQ is augmented by IDDQI for each 2.5V I/O when operating in a mixed voltage environment. DC S pec if i cat ion s (3.3 V P C I Op era ti on) Symbol Parameter VDDL Supply Voltage for Core 2.3 2.7 V VDDP Supply Voltage for I/O Ring 3.0 3.6 V VIH Input High Voltage 0.5VDPP VDPP + 0.5 V VIL Input Low Voltage –0.5 0.3VDDP V IIPU Input Pull-up Condition Voltage1 IIL Input Leakage VOH VOL 0.7VDDP Current2 0 < VIN < VCCI –10 Output High Voltage IOUT = –500 µA 0.9VDPP Output Low Voltage IOUT = 1500 µA Capacitance3 CIN Input Pin CCLK CLK Pin Capacitance 5 V +10 µA V 0.1VDPP V 10 pF 12 pF Notes: 1. This specification should be guaranteed by design. It is the minimum voltage to which pull-up resistors are calculated to pull a floated network. Applications sensitive to static power utilization should assure that the input buffer is conducting minimum current at this input voltage. 2. Input leakage currents include hi-Z output leakage for all bidirectional buffers with tristate outputs. 3. Absolute maximum pin capacitance for a PCI input is 10 pF (except for CLK). v3.0 21 P r o A S IC ™ 5 0 0 K F a m ily AC S pec if i cat ion s (3.3 V P C I Op era ti on) Symbol Parameter Condition Min. 0 < VOUT ≤ 0.3VCCI 1 Switching Current High IOH(AC) 0.3VCCI ≤ VOUT < 0.9VCCI 1 mA (–17.1 + (VDDP – VOUT)) mA Equation A on page 23 VOUT = 0.7VCC 2 –32VCCI VCCI > VOUT ≥ 0.6VCCI 1 Switching Current Low IOL(AC) 0.6VCCI > VOUT > 0.1VCCI VOUT = 0.18VCC 2 ICL Low Clamp Current –3 < VIN ≤ –1 ICH High Clamp Current VCCI + 4 > VIN ≥ VCCI + 1 slewR slewF 1 Output Rise Slew Rate Output Fall Slew Rate mA 16VDDP mA (26.7VOUT) mA Equation B on page 23 0.18VCCI > VOUT > 0 1, 2 (Test Point) Units –12VCCI 0.7VCCI < VOUT < VCCI 1, 2 (Test Point) Max. 38VCCI mA –25 + (VIN + 1)/0.015 mA 25 + (VIN – VDDP – 1)/0.015 mA 0.2VCCI to 0.6VCCI load 3 1 4 V/ns 0.6VCCI to 0.2VCCI load 3 1 4 V/ns Notes: 1. Refer to the V/I curves in Figure 18 on page 23. Switching current characteristics for REQ# and GNT# are permitted to be one half of that specified here; i.e., half size output drivers may be used on these signals. This specification does not apply to CLK and RST#, which are system outputs. “Switching Current High” specifications are not relevant to SERR#, INTA#, INTB#, INTC#, and INTD#, which are open drain outputs. 2. Maximum current requirements must be met as drivers pull beyond the last step voltage. Equations defining these maximums (A and B) are provided with the respective diagrams in Figure 18 on page 23. The equation defined maxima should be met by design. In order to facilitate component testing, a maximum current test point is defined for each side of the output driver. 3. This parameter is to be interpreted as the cumulative edge rate across the specified range, rather than the instantaneous rate at any point within the transition range. The specified load (diagram below) is optional; i.e., the designer may elect to meet this parameter with an unloaded output per the latest revision of the PCI Local Bus Specification. However, adherence to both maximum and minimum parameters is required (the maximum is no longer simply a guideline). Rise slew rate does not apply to open drain outputs. pin 1/2 in. max. output buffer 10 pF 1k Ω pin output buffer 22 1k Ω 10 pF v3.0 Pr o A SI C ™ 5 0 0 K F a m il y Figure 18 shows the 3.3V PCI V/I curve and the minimum and maximum PCI drive characteristics of the ProASIC family. 150.0 IOL MAX Spec 100.0 Current (mA) IOL 50.0 IOL MIN Spec IOH MIN Spec 0.0 0 –50.0 0.5 1 1.5 2 2.5 3 3.5 4 IOH –100.0 IOH MAX Spec –150.0 Voltage Out (V) Figure 18 • 3.3V PCI V/I Curve for ProASIC Family Equation A Equation B IOL = (256/VCCI) * VOUT * (VCCI – VOUT) for 0V < VOUT < 0.18 VCCI IOH = (98.0/VCCI) * (VOUT – VCCI) * (VOUT + 0.4VCCI) for 0.7 VCCI < VOUT < VCCI Ti m i ng C ha r a ct e r i s t i c s Timing characteristics for ProASIC 500K devices fall into three categories: family dependent, device dependent, and design-dependent. The input and output buffer characteristics are common to all ProASIC 500K family members. Internal routing delays are device-dependent. Design dependency means that actual delays are not determined until after placement and routing of the user’s design are completed. Design timing attributes may then be determined by using Timer, the Static Analysis tool embedded into Designer software, or performing simulation with post-layout delays using ModelSim Simulator integrated into Libero design environment. Cr it ic al Net s and T ypi cal Ne ts Propagation delays are expressed only for typical nets, which are used for initial design performance evaluation. Critical net delays can then be applied to the most critical timing paths. Critical nets are determined by net property assignment prior to placement and routing. Up to 6 percent of the nets in a design may be designated as critical, while more than 90% of the nets in a design are typical. User’s can control priorities between critical nets and use routing constraints, such as set_critical to focus the routing optimization on the most critical ones. Please see the Designer User’s Guide for more information on using constraints. Ve ry Lo ng Line s Some nets in the design are very long lines marked using VLLs, which are special routing resources that span multiple rows, columns, or modules. This increases capacitance and resistance, resulting in longer net delays for macros connected to long tracks. Typically, up to 6 percent of nets in a fully utilized device require long tracks. Very long lines contribute between 4 and 8.4ns routing delay depending on the fanout. This additional delay is represented statistically in higher fanout routing delays. T im in g D er at ing Since ProASIC 500K devices are manufactured with a CMOS process, device performance will vary with temperature, voltage, and process. Minimum timing parameters reflect maximum operating voltage, minimum operating temperature, and optimal process variations. Maximum timing parameters reflect minimum operating voltage, maximum operating temperature, and worst-case process variations (within process specifications). v3.0 23 P r o A S IC ™ 5 0 0 K F a m ily T e m p er a t u r e an d Vo l t a ge D er at i n g Fa ct or s ( N or m ali z ed to W or st - Cas e Com m er ci al, T J = 70° C, V C C A = 2.3 V) Junction Temperature (TJ) VCCA –55° C –40° C 0° C 25° C 70° C 85° C 110° C 125° C 2.3V 0.84 0.86 0.91 0.94 1.00 1.02 1.05 1.07 2.5V 0.81 0.83 0.87 0.90 0.96 0.98 1.01 1.02 2.7V 0.77 0.79 0.84 0.86 0.92 0.93 0.96 0.98 S lew Ra te s Meas ur ed at C o u t = 10pF (T ot al Out put L oad), No mi nal P ow er S uppl ie s and 25° C Type Trig. Lev. Rising Edge Slew Rate Falling Edge Slew Rate pS V/nS pS V/nS OB33PH OB33PN OB33PL OB33LH OB33LN OB33LL OB25HH OB25HN OB25HL OB25LH OB25LN OB25LL OB25LPHH OB25LPHN OB25LPHL OB25LPLH OB25LPLN OB25LPLL 20%-60% 20%-60% 20%-60% 20%-60% 20%-60% 20%-60% 20%-60% 20%-60% 20%-60% 20%-60% 20%-60% 20%-60% 20%-60% 20%-60% 20%-60% 20%-60% 20%-60% 20%-60% 397 463 567 467 620 813 750 850 1310 793 870 1287 470 533 770 597 873 1153 3.33 2.85 2.33 2.83 2.13 1.62 1.33 1.18 0.76 1.26 1.15 0.78 2.13 1.81 1.30 1.68 1.15 0.87 390 450 527 700 767 1100 310 390 510 430 730 1037 433 527 753 707 760 1563 -3.38 -2.93 -2.51 -1.89 -1.72 -1.20 -3.23 -2.56 -1.96 -2.33 -1.37 -0.96 -2.31 -1.90 -1.33 -1.42 -1.32 -0.54 Tr i s t a t e B uf f e r D e l a y s EN A PAD OTBx A 50% PAD VOL EN 50% 50% 50% VCC 50% PAD tDHL EN 50% VOL tDLH 24 50% VOH tENZL 10% 50% PAD GND 50% tENZH v3.0 50% VOH 90% Pr o A SI C ™ 5 0 0 K F a m il y T ri st at e Buf f e r Del ay s ( W or st -C as e C om m er cia l C ond it ion s, V D D P = 3 .0V , V D D L = 2.3 V, T J = 7 0°C , f C L O C K = 2 5 0 M H z ) Max tDLH Max tDHL Max tENZH Max tENZL Units 3.3V, PCI Output Current, High Slew Rate 4.2 4.1 4.2 3.67 ns OTB33PN 3.3V, PCI Output Current, Nominal Slew Rate 4.7 5.9 4.8 5.3 ns OTB33PL 3.3V, PCI Output Current, Low Slew Rate 5.3 7.0 5.3 6.6 ns OTB33LH 3.3V, Low Output Current, High Slew Rate 6.0 6.6 6.0 5.9 ns OTB33LN 3.3V, Low Output Current, Nominal Slew Rate 6.7 9.2 6.7 8.9 ns OTB33LL 3.3V, Low Output Current, Low Slew Rate 7.5 12.0 7.5 11.8 ns OTB25HH 2.5V, High Output Current, High Slew Rate 6.9 3.6 6.9 3.4 ns OTB25HN 2.5V, High Output Current, Nominal Slew Rate 7.2 5.2 7.2 4.9 ns OTB25HL 2.5V, High Output Current, Low Slew Rate 8.2 6.4 8.2 6.1 ns OTB25LH 2.5V, Low Output Current, High Slew Rate 10.4 5.5 10.4 5.2 ns OTB25LN 2.5V, Low Output Current, Nominal Slew Rate 11.0 8.3 11.0 8.1 ns OTB25LL 2.5V, Low Output Current, Low Slew Rate 11.9 10.9 11.9 11.7 ns OTB25LPHH 2.5V, Low Power, High Output Current, High Slew Rate 5.1 5.1 5.1 4.4 ns OTB25LPHN 2.5V, Low Power, High Output Current, Nominal Slew Rate 6.0 7.7 6.0 7.4 ns OTB25LPHL 2.5V, Low Power, High Output Current, Low Slew Rate 6.9 9.8 6.8 9.3 ns OTB25LPLH 2.5V, Low Power, Low Output Current, High Slew Rate 7.4 8.6 7.4 7.8 ns OTB25LPLN 2.5V, Low Power, Low Output Current, Nominal Slew Rate 8.6 12.6 8.5 12.3 ns OTB25LPLL 2.5V, Low Power, Low Output Current, Low Slew Rate 9.8 17.0 9.8 16.7 ns Macro Type Description OTB33PH Notes: 1. tDLH = Data-to-Pad HIGH 2. tDHL = Data-to-Pad LOW 3. tENZH = Enable-to-Pad, Z to HIGH 4. tENZL = Enable-to-Pad, Z to LOW O ut p u t B uf f e r D e l ay s A A PAD 50% PAD VOL OBx 50% 50% tDLH v3.0 50% VOH tDHL 25 P r o A S IC ™ 5 0 0 K F a m ily O ut put B uf f er D el ays ( W or st -C as e C om m er cia l C ond it ion s, V D D P = 3 .0V , V D D L = 2.3 V, T J = 7 0°C , f C L O C K = 2 5 0 M H z ) Macro Type Description Max. tDLH Max. tDHL Units OB33PH 3.3V, PCI Output Current, High Slew Rate 4.2 4.1 ns OB33PN 3.3V, PCI Output Current, Nominal Slew Rate 4.7 5.9 ns OB33PL 3.3V, PCI Output Current, Low Slew Rate 5.3 7.1 ns OB33LH 3.3V, Low Output Current, High Slew Rate 6.0 6.6 ns OB33LN 3.3V, Low Output Current, Nominal Slew Rate 6.7 9.2 ns OB33LL 3.3V, Low Output Current, Low Slew Rate 7.5 12.1 ns OB25HH 2.5V, High Output Current, High Slew Rate 6.9 3.6 ns OB25HN 2.5V, High Output Current, Nominal Slew Rate 7.2 5.2 ns OB25HL 2.5V, High Output Current, Low Slew Rate 8.2 6.4 ns OB25LH 2.5V, Low Output Current, High Slew Rate 10.4 5.5 ns OB25LN 2.5V, Low Output Current, Nominal Slew Rate 11.0 8.3 ns OB25LL 2.5V, Low Output Current, Low Slew Rate 11.9 10.9 ns OB25LPHH 2.5V, Low Power, High Output Current, High Slew Rate 5.1 5.1 ns OB25LPHN 2.5V, Low Power, High Output Current, Nominal Slew Rate 6.0 7.7 ns OB25LPHL 2.5V, Low Power, High Output Current, Low Slew Rate 6.9 9.8 ns OB25LPLH 2.5V, Low Power, Low Output Current, High Slew Rate 7.4 8.6 ns OB25LPLN 2.5V, Low Power, Low Output Current, Nominal Slew Rate 8.6 12.6 ns OB25LPLL 2.5V, Low Power, Low Output Current, Low Slew Rate 9.8 17.0 ns Notes: 1. tDLH = Data-to-Pad HIGH 2. tDHL = Data-to-Pad LOW I n pu t B uf f er D e l ay s VCC PAD Y PAD 50% 50% VCC Y GND IBx 0V 50% 50% tINYH tINYL Inpu t Buffe r De lay s ( W or st -C as e C om m er cia l C ond it ion s, V D D P = 3 .0V , V D D L = 2.3 V, T J = 7 0°C , f C L O C K = 2 5 0 M H z ) Max. tINYH Max. tINYL Units 2.5V, CMOS Input Levels, No Pull-up Resistor 2.2 0.7 ns IB25LP 2.5V, CMOS Input Levels, Low Power 2.2 1.4 ns IB33 3.3V, CMOS Input Levels, No Pull-up Resistor 1.9 1.0 ns Macro Type Description IB25 Notes: 1. tINYH = Input Pad-to-Y HIGH 2. tINYL = Input Pad-to-Y LOW 26 v3.0 Pr o A SI C ™ 5 0 0 K F a m il y Glob al Inpu t Buff er De lay s ( W or st -C as e C om m er cia l C ond it ion s, V D D P = 3 .0V , V D D L = 2.3 V, T J = 7 0°C , f C L O C K = 2 5 0 M H z ) Max. tINYH Max. tINYL Units 2.5V, CMOS Input Levels 2.1 1.6 ns 2.5V, CMOS Input Levels 2.3 2.3 ns GL33 3.3V, CMOS Input Levels 3.8 1.2 ns GL25U 2.5V, CMOS Input Levels, with Pull-up Resistor 2.1 1.6 ns GL25LPU 2.5V, CMOS Input Levels, Low Power, with Pull-up Resistor 2.3 2.3 ns GL33U 3.3V, CMOS Input Levels, with Pull-up Resistor 3.8 1.2 ns Macro Type Description GL25 GL25LP P red ict ed Glo bal Ro ut ing De lay * ( W or st -C as e C om m er cia l C ond it ion s, V D D P = 3 .0V , V D D L = 2.3 V, T J = 7 0°C , f C L O C K = 2 5 0 M H z ) Parameter Description Max. Units tRCKH Input Low to High (fully loaded row—32 inputs) 1.2 ns tRCKL Input High to Low (fully loaded row—32 inputs) 1.1 ns tRCKH Input Low to High (minimally loaded row—1 input) 0.9 ns tRCKL Input High to Low (minimally loaded row—1 input) 0.9 ns * The timing delay difference between tile locations is less than 15ps. Glob al Rou ti ng S kew ( W or st -C as e C om m er cia l C ond it ion s, V D D P = 3 .0V , V D D L = 2.3 V, T J = 7 0°C , f C L O C K = 2 5 0 M H z ) Parameter Description Max. Units tRCKSWH Maximum Skew Low to High 0.3 ns tRCKSHH Maximum Skew High to Low 0.3 ns M od u l e D e l ay s A B C A Y 50% 50% B 50% 50% C 50% 50% Y 50% 50% 50% tDCLH tDBLH tDALH tDAHL 50% 50% 50% tDCHL tDBHL v3.0 27 P r o A S IC ™ 5 0 0 K F a m ily S am ple Ma cro cel l L ibr ar y Li st in g ( W or st -C as e C om m er cia l Cond it ion s, V D D L = 2 .3V , T J = 70 º C) Maximum Intrinsic Delay Cell Name Description NAND2 AND2 NOR3 MUX2L OA21 XOR2 LDL 2-Input NAND 2-Input AND 3-Input NOR 2-1 Mux with Active Low Select 2-Input OR into a 2-Input AND 2-Input Exclusive OR Active Low Latch (LH/HL) DFFL Negative Edge-Triggered D-type Flip-Flop (LH/HL) Note: 0.4 0.4 0.4 0.4 0.4 0.3 D: 0.3/0.2 CLK-Q: 0.4/0.4 Minimum Setup/Hold Units ns ns ns ns ns ns tsetup 0.5 thold 0.2 tsetup 0.4 thold 0.2 ns ns Assumes fanout of two. Em b e dd ed M e m or y S pe ci f i ca t i o ns This section focuses on the embedded memory of the ProASIC 500K family. It describes the SRAM and FIFO interface signals and includes timing diagrams that show the relationships of signals as they pertain to single embedded memory blocks (Table 4 and Table 5 on page 34). Refer to Table 3 on page 12 for basic RAM configurations. Simultaneous Read and Write to the same location must be done with care. On such accesses the DI bus is output to the DO bus. Note: Enclosed Timing Diagrams—SRAM Mode: • Synchronous RAM Read, Access Timed Output Strobe (Synchronous Transparent) • Synchronous RAM Read, Pipeline Mode Outputs (Synchronous Pipelined) • Asynchronous RAM Write • Asynchronous RAM Read, Address Controlled, RDB=0 • Asynchronous RAM Read, RDB Controlled • Synchronous RAM Write The difference between synchronous transparent and pipeline modes is the timing of all the output signals from the memory. In transparent mode the outputs will change within the same clock cycle to reflect the data requested by the currently valid access to the memory. However, if clock cycles are short (high clock speed), the data requires most of the clock cycle to change to valid values (stable signals). This makes processing of this data in the same clock cycle nearly impossible. Most designers solve this problem by adding registers at all outputs of the memory to push the data processing into the next clock cycle. In this setup, the whole cycle time can be used to process the data. To simplify the use of this kind of memory setup these registers have been implemented as part of the memory primitive and are available to the user in the synchronous pipeline mode. In this mode, the output signals will change shortly after the second rising edge, following the initiation of the read access. Table 4 • Memory Block SRAM Interface Signals SRAM Signal Bits In/Out WCLKS 1 IN RCLKS 1 IN RADDR<0:7> 8 IN RBLKB 1 IN RDB 1 IN WADDR<0:7> 8 IN WBLKB 1 IN DI<0:8> 9 IN WRB 1 IN DO<0:8> 9 OUT RPE 1 OUT WPE 1 OUT PARODD 1 IN Note: Not all signals shown are used in all modes. 28 Description Write clock used on synchronization on write side Read clock used on synchronization on read side Read address Negative true read block select Negative true read pulse Write address Negative true write block select Input data bits <0:8>, <8> can be used for parity in Negative true write pulse Output data bits <0:8>, <8> can be used for parity out Read parity error Write parity error Selects odd parity generation/detect when high, even when low v3.0 Pr o A SI C ™ 5 0 0 K F a m il y Synchronous RAM Read, Access Timed Output Strobe (Synchronous Transparent) RCLKS Cycle Start RB=(RBD+RBLKB) New Valid Address RADDR Old Data Out DO New Valid Data Out RPE tRACS tRDCS tRDCH tRACH tOCH tRPCH tCMH tCML tOCA tRPCA tCCYC T J = 0° C t o 11 0 ° C; V D D L = 2 .3V t o 2 .7V Symbol txxx Description Min. Max. CCYC Cycle time 7.5 ns CMH Clock high phase 3.0 ns CML Clock low phase 3.0 ns OCA New DO access from RCLKS ↑ 7.5 ns OCH Old DO valid from RCLKS ↑ RACH RADDR hold from RCLKS ↑ 0.5 ns RACS RADDR setup to RCLKS ↑ 1.0 ns RDCH RDB hold from RCLKS ↑ 0.5 ns RDCS RDB setup to RCLKS ↑ 1.0 ns RPCA New RPE access from RCLKS ↑ 9.5 ns RPCH Old RPE valid from RCLKS ↑ 3.0 3.0 v3.0 Units Notes ns ns 29 P r o A S IC ™ 5 0 0 K F a m ily Synchronous RAM Read, Pipeline Mode Outputs (Synchronous Pipelined) RCLKS Cycle Start RB=(RDB+RBLKB) RADDR New Valid Address DO New Valid Data Out Old Data Out RPE Old RPE Out New RPE Out tOCA tRACS tRACH tRPCH tRDCH tOCH tRDCS tRPCA tCMH tCML tCCYC T J = 0° C t o 11 0 ° C; V D D L = 2 .3V t o 2 .7V Symbol txxx Description Min. CCYC Cycle time 7.5 ns CMH Clock high phase 3.0 ns CML Clock low phase 3.0 ns OCA New DO access from RCLKS ↑ 2.0 ns OCH Old DO valid from RCLKS ↑ RACH RADDR hold from RCLKS ↑ 0.5 ns RACS RADDR setup to RCLKS ↑ 1.0 ns RDCH RDB hold from RCLKS ↑ 0.5 ns RDCS RDB setup to RCLKS ↑ 1.0 ns RPCA New RPE access from RCLKS ↑ 4.0 ns RPCH Old RPE valid from RCLKS ↑ 30 Max. .75 1.0 v3.0 Units ns ns Notes Pr o A SI C ™ 5 0 0 K F a m il y Asynchronous RAM Write WADDR WB=(WRB+WBLKB) DI WPE tAWRS tAWRH tDWRH tWPDA tWPDH tDWRS tWRML tWRMH tWRCYC T J = 0° C t o 11 0 ° C; V D D L = 2 .3V t o 2 .7V Symbol txxx Description Min. Max. AWRH WADDR hold from WB ↑ 1.0 ns AWRS WADDR setup to WB ↓ 0.5 ns DWRH DI hold from WB ↑ 1.5 ns DWRS DI setup to WB ↑ 0.5 ns PARGEN is inactive DWRS DI setup to WB ↑ 2.5 ns PARGEN is active WPDA WPE access from DI 3.0 ns WPE is invalid while WPDH WPE hold from DI ns PARGEN is active WRCYC Cycle time 7.5 ns WRMH WB high phase 3.0 ns Inactive WRML WB low phase 3.0 ns Active 1.0 v3.0 Units Notes 31 P r o A S IC ™ 5 0 0 K F a m ily Asynchronous RAM Read, Address Controlled, RDB=0 RADDR DO RPE tOAH tRPAH tOAA tRPAA tACYC T J = 0° C t o 11 0 ° C; V D D L = 2 .3V t o 2 .7V Symbol txxx Description Min. Max. Units ACYC Read cycle time 7.5 ns OAA New DO access from RADDR stable 7.5 ns OAH Old DO hold from RADDR stable RPAA New RPE access from RADDR stable RPAH Old RPE hold from RADDR stable 3.0 10.0 Notes ns ns 3.0 ns Asynchronous RAM Read, RDB Controlled RB=(RDB+RBLKB) DO RPE tORDH tRPRDH tORDA tRPRDA tRDML tRDMH tRDCYC T J = 0 °C t o 1 10° C; V D D L = 2 .3V t o 2.7V Symbol txxx Description Min. ORDA ORDH RDCYC RDMH RDML RPRDA RPRDH New DO access from RB ↓ Old DO valid from RB ↓ Read cycle time RB high phase RB low phase New RPE access from RB ↓ Old RPE valid from RB ↓ 7.5 32 Max. 3.0 7.5 3.0 3.0 9.5 3.0 v3.0 Units ns ns ns ns ns ns ns Notes Inactive setup to new cycle Active Pr o A SI C ™ 5 0 0 K F a m il y Synchronous RAM Write WCLKS Cycle Start WRB, WBLKB WADDR, DI WPE tWRCH, tWBCH tWRCS, tWBCS tDCS, tWDCS tWPCH tDCH, tWACH tWPCA tCMH tCML tCCYC T J = 0° C t o 11 0 ° C; V D D L = 2 .3V t o 2 .7V Symbol txxx Description Min. CCYC Cycle time 7.5 ns CMH Clock high phase 3.0 ns CML Clock low phase 3.0 ns DCH DI hold from WCLKS ↑ 0.5 ns DCS DI setup to WCLKS ↑ 1.0 ns WACH WADDR hold from WCLKS ↑ 0.5 ns WDCS WADDR setup to WCLKS ↑ 1.0 ns WPCA New WPE access from WCLKS ↑ 3.0 ns WPE is invalid while WPCH Old WPE valid from WCLKS ↑ ns PARGEN is active WRCH, WBCH WRB & WBLKB hold from WCLKS ↑ 0.5 ns WRCS, WBCS WRB & WBLKB setup to WCLKS ↑ 1.0 ns Note: Max. 0.5 Units Notes On simultaneous read and write accesses to the same location DI is output to DO. v3.0 33 P r o A S IC ™ 5 0 0 K F a m ily Asynchronous FIFO Full and Empty Transitions on page 35. For basic RAM configurations, see Table 3 on page 12. For memory block interface signals, see Table 4 on page 28, and for memory block FIFO signals, see Table 5. The asynchronous FIFO accepts writes and reads while not full or not empty. When the FIFO is full, all writes are inhibited. Conversely, when the FIFO is empty, all reads are inhibited. A problem is created if the FIFO is written during the transition out of full to not full or read during the transition out of empty to not empty. The exact time at which the write (read) operation changes from inhibited to accepted after the read (write) signal which causes the transition from full (empty) to not full (empty) is indeterminate. This indeterminate period starts 1ns after the RB (WB) transition which deactivates full (not empty). For slow cycles, the indeterminate period ends 3ns after the RB (WB) transition. For fast cycles, this period ends either 3ns or (7.5ns - tRDL (tWRL)) after the RB (WB) transition, whichever is later. Enclosed Timing Diagrams—FIFO Mode: • Asynchronous FIFO Read • Asynchronous FIFO Write • Synchronous FIFO Read, Access Timed Output Strobe (Synchronous Transparent) • Synchronous FIFO Read, Pipeline Mode Outputs (Synchronous Pipelined) • Synchronous FIFO Write • FIFO Reset The timing diagram for write is shown in Figure 19 on page 35. The timing diagram for read is shown in Figure 20 Table 5 • Memory Block FIFO Interface Signals FIFO Signal Bits In/Out Description WCLKS 1 IN Write clock used to synchronize write side RCLKS 1 IN Read clock used to synchronize read side LEVEL <0:7> 8 IN Direct configuration implements static flag logic RBLKB 1 IN Active low read block select RDB 1 IN Active low read pulse RESET 1 IN Active low reset for FIFO pointers WBLKB 1 IN Active low write block select DI<0:8> 9 IN Input data bits <0:8>, <8> can be used for parity in. WRB 1 IN Active low write pulse FULL, EMPTY 2 OUT FIFO flags. FULL prevents write and EMPTY prevents read EQTH, GEQTH 2 OUT EQTH is true when the FIFO holds (LEVEL) words. GEQTH is true when the FIFO holds (LEVEL) words or more DO<0:8> 9 OUT Output data bits <0:8>, <8> can be used for parity out. RPE 1 OUT Read parity error WPE 1 OUT Write parity error LGDEP <0:2> 3 IN Configures DEPTH of the FIFO to 2 (LGDEP+1) PARODD 1 IN Selects odd parity generation/detect when high, even when low 34 v3.0 Pr o A SI C ™ 5 0 0 K F a m il y FULL RB Write cycle Write inhibited Write accepted 1ns 3ns WB Figure 19 • Write Timing Diagram EMPTY WB Read cycle Read inhibited Read accepted 1ns 3ns RB Figure 20 • Read Timing Diagram v3.0 35 P r o A S IC ™ 5 0 0 K F a m ily Asynchronous FIFO Read Cycle Start RB=(RDB+RBLKB) (Empty inhibits read) DO RPE WB EMPTY FULL EQTH, GETH tRDWRS tERDH, tFRDH tORDH tERDA, tFRDA tRPRDH tTHRDH tORDA tTHRDA tRPRDA tRDL tRDH tRDCYC T J = 0°C to 110°C; V DDL = 2.3V to 2.7V Symbol txxx Description Min. Max. Units ERDH, FRDH, THRDH Old EMPTY, FULL, EQTH, & GETH valid hold time from RB ↑ 0.5 ns ERDA New EMPTY access from RB ↑ 3.01 ns FRDA FULL↓ access from RB ↑ 3.01 ns ORDA New DO access from RB ↓ 7.5 ns ORDH Old DO valid from RB ↓ 3.0 Read cycle time 7.5 ns RDWRS WB ↑, clearing EMPTY, setup to 3.02 ns 1.0 Empty/full/thresh are invalid from the end of hold until the new access is complete ns RDCYC RB ↓ Notes Enabling the read operation ns Inhibiting the read operation RDH RB high phase 3.0 ns Inactive RDL RB low phase 3.0 ns Active RPRDA New RPE access from RB ↓ 9.5 RPRDH Old RPE valid from RB ↓ THRDA EQTH or GETH access from RB↑ 4.5 Notes: 1. At fast cycles, ERDA & FRDA = MAX ((7.5ns – RDL), 3.0ns) 2. At fast cycles, RDWRS (for enabling read) = MAX ((7.5ns – WRL), 3.0ns) 36 ns 4.0 v3.0 ns ns Pr o A SI C ™ 5 0 0 K F a m il y Asynchronous FIFO Write Cycle Start WB=(WRB+WBLKB) DI (Full inhibits write) WPE RB FULL EMPTY EQTH, GETH tWRRDS tDWRH tWPDH tWPDA tDWRS tEWRH, tFWRH tEWRA, tFWRA tTHWRH tTHWRA tWRL tWRH tWRCYC T J = 0°C to 110°C; V DDL = 2.3V to 2.7V Symbol txxx Description Min. DWRH DI hold from WB ↑ 1.5 ns DWRS DI setup to WB ↑ 0.5 ns PARGEN is inactive DWRS DI setup to WB ↑ 2.5 ns PARGEN is active EWRH, FWRH, THWRH Old EMPTY, FULL, EQTH, & GETH valid hold time after WB ↑ ns Empty/full/thresh are invalid from the end of hold until the new access is complete EWRA EMPTY ↓ access from WB ↑ 3.01 ns FWRA New FULL access from WB ↑ 3.01 ns THWRA EQTH or GETH access from WB ↑ 4.5 ns WPDA WPE access from DI 3.0 ns WPDH WPE hold from DI WRCYC Cycle time 7.5 ns RB ↑, clearing FULL, setup to 3.02 ns Enabling the write operation ns Inactive ns Active WRRDS 0.5 1.0 WB ↓ WRH WB high phase Max. Units ns 1.0 3.0 WRL WB low phase 3.0 Notes: 1. At fast cycles, EWRA, FWRA = MAX ((7.5ns – WRL), 3.0ns) 2. At fast cycles, WRRDS (for enabling write) = MAX ((7.5ns – RDL), 3.0ns) v3.0 Notes WPE is invalid while PARGEN is active Inhibiting the write operation 37 P r o A S IC ™ 5 0 0 K F a m ily Synchronous FIFO Read, Access Timed Output Strobe (Synchronous Transparent) RCLKS Cycle Start RDB DO Old Data Out New Valid Data Out (Empty Inhibits Read) RPE EMPTY FULL EQTH, GETH tRDCH tECBH, tFCBH tECBA, tFCBA tRDCS tTHCBH tOCH tRPCH tHCBA tOCA tRPCA tCMH tCML tCCYC T J = 0°C to 110°C; V DDL = 2.3V to 2.7V Symbol txxx Description Min. CCYC Cycle time 7.5 ns CMH Clock high phase 3.0 ns CML Clock low phase 3.0 ns ECBA New EMPTY access from RCLKS ↓ 3.01 ns FCBA FULL ↓ access from RCLKS ↓ 3.01 ns ECBH, FCBH, THCBH Old EMPTY, FULL, EQTH, & GETH valid hold time from RCLKS ↓ OCA New DO access from RCLKS ↑ OCH Old DO valid from RCLKS ↑ RDCH RDB hold from RCLKS ↑ 0.5 ns RDCS RDB setup to RCLKS ↑ 1.0 ns RPCA New RPE access from RCLKS ↑ 9.5 RPCH Old RPE valid from RCLKS ↑ HCBA EQTH or GETH access from RCLKS ↓ Note: 1. At fast cycles, ECBA & FCBA = MAX ((7.5ns – CMH), 3.0ns) 38 Max. 1.0 7.5 ns ns 3.0 v3.0 ns ns 3.0 4.5 Units ns ns Notes Empty/full/thresh are invalid from the end of hold until the new access is complete Pr o A SI C ™ 5 0 0 K F a m il y Synchronous FIFO Read, Pipeline Mode Outputs (Synchronous Pipelined) RCLKS Cycle Start RDB DO Old Data Out RPE New Valid Data Out Old RPE Out New RPE Out EMPTY FULL EQTH, GETH tECBH, tFCBH tOCA tRDCH tECBA, tFCBA tTHCBH tRDCS tRPCH tOCH tHCBA tRPCA tCMH tCML tCCYC T J = 0°C to 110°C; V DDL = 2.3V to 2.7V Symbol txxx Description Min. CCYC Cycle time 7.5 ns CMH Clock high phase 3.0 ns CML Clock low phase 3.0 ns ECBA New EMPTY access from RCLKS ↓ 3.01 ns FCBA FULL ↓ access from RCLKS ↓ 3.01 ns ECBH, FCBH, THCBH Old EMPTY, FULL, EQTH, & GETH valid hold time from RCLKS ↓ OCA New DO access from RCLKS ↑ OCH Old DO valid from RCLKS ↑ RDCH RDB hold from RCLKS ↑ 0.5 ns RDCS RDB setup to RCLKS ↑ 1.0 ns RPCA New RPE access from RCLKS ↑ 4.0 RPCH Old RPE valid from RCLKS ↑ HCBA EQTH or GETH access from RCLKS ↓ Note: 1. At fast cycles, ECBA & FCBA = MAX ((7.5ns – CMS), 3.0ns) Max. 1.0 2.0 Empty/full/thresh are invalid from the end of hold until the new access is complete ns ns 1.0 v3.0 ns Notes ns 0.75 4.5 Units ns ns 39 P r o A S IC ™ 5 0 0 K F a m ily Synchronous FIFO Write WCLKS Cycle Start WRB, WBLKB (Full Inhibits Write) DI WPE FULL EMPTY EQTH, GETH tWRCH, tWBCH tECBH, tFCBH tWRCS, tWBCS tECBA, tFCBA tDCS tHCBH tHCBA tWPCH tDCH tWPCA tCMH tCML tCCYC T J = 0°C to 110°C; V DD L = 2.3V to 2.7V Symbol txxx Description Min. Max. CCYC Cycle time CMH Clock high phase 3.0 ns CML Clock low phase 3.0 ns DCH DI hold from WCLKS ↑ 0.5 ns DCS DI setup to WCLKS ↑ 1.0 ns FCBA New FULL access from WCLKS ↓ 3.01 ns ECBA EMPTY↓ access from WCLKS ↓ 3.01 ns ECBH, FCBH, HCBH Old EMPTY, FULL, EQTH, & GETH valid hold time from WCLKS ↓ HCBA EQTH or GETH access from WCLKS ↓ 4.5 ns WPCA New WPE access from WCLKS ↑ 3.0 ns WPCH Old WPE valid from WCLKS ↑ WRCH, WBCH WRB & WBLKB hold from WCLKS ↑ WRCS, WRB & WBLKB setup to WCLKS ↑ WBCS Note: 1. At fast cycles, ECBA & FCBA = MAX ((7.5ns – CMH), 3.0ns) 40 7.5 Units ns 1.0 0.5 ns ns 0.5 ns 1.0 ns v3.0 Notes Empty/full/thresh are invalid from the end of hold until the new access is complete WPE is invalid while PARGEN is active Pr o A SI C ™ 5 0 0 K F a m il y FIFO Reset RESETB Cycle Start WRB, WBLKB WCLKS, RCLKS Cycle Start FULL EMPTY EQTH, GETH tCBRSS tERSA, tFRSA tCBRSH tTHRSA tWBRSH tRSL tWBRSS T J = 0° C t o 11 0 ° C; V D D L = 2 .3V t o 2 .7V Symbol txxx Description CBRSH WCLKS or RCLKS ↑ hold from RESETB ↑ CBRSS Min. Units Notes 1.5 ns Synchronous mode only WCLKS or RCLKS ↓ setup to RESETB ↑ 1.5 ns Synchronous mode only ERSA New EMPTY ↑ access from RESETB ↓ 3.0 ns FRSA FULL ↓ access from RESETB ↓ 3.0 ns RSL RESETB low phase 7.5 ns THRSA EQTH or GETH access from RESETB ↓ 4.5 ns WBRSH WB ↓ hold from RESETB ↑ 1.5 ns Asynchronous mode only WBRSS WB ↑ setup to RESETB ↑ 1.5 ns Asynchronous mode only v3.0 Max. 41 P r o A S IC ™ 5 0 0 K F a m ily Pi n D es c r i pt i on I/O User Input/Output The I/O pin functions as an input, output, three-state, or bidirectional buffer. Input and output signal levels are compatible with standard LVTTL and LVCMOS specifications. Unused I/O pins are configured as inputs with pull-up resistors. N/C No Connect To maintain compatibility with future Actel ProASIC products it is recommended that this pin not be connected to the circuitry on the board. GL Global Input Pin VPN This pin must be connected to GND during normal operation, or it can remain at –12V in an ISP application. This pin must not float. TMS TCK TDI TRST Logic Array Power Supply Pin 2.5V supply voltage. V DDP I/O Pad Power Supply Pin 2.5V or 3.3V supply voltage. V PP Test Data Out Serial output for Boundary Scan. Test Reset Input Asynchronous, active low input pin for resetting Boundary Scan circuitry. RCK Running Clock A free running clock is needed during programming if the programmer cannot guarantee that TCK will be uninterrupted. Programming Supply Pin This pin must be connected to VDDP during normal operation, or it can remain at 16.5V in an ISP application. This pin must not float. 42 Test Data In Serial input for Boundary Scan. GND V DDL Test Clock Clock input pin for Boundary Scan. TDO Common ground supply voltage. Test Mode Select The TMS pin controls the use of Boundary Scan circuitry. Low skew input pin for clock or other global signals. Input only. This pin can be configured with a pull-up resistor. Ground Programming Supply Pin v3.0 Pr o A SI C ™ 5 0 0 K F a m il y Pa c ka ge P i n A s si g nm e n t s 208- P in P Q FP 208 1 208-Pin PQFP v3.0 43 P r o A S IC ™ 5 0 0 K F a m ily 208- P in P Q FP Pin Number A500K050 Function A500K130 Function A500K180 Function A500K270 Function 44 Pin Number A500K050 Function A500K130 Function A500K180 Function A500K270 Function 1 GND GND GND GND 53 VDDP VDDP VDDP VDDP 2 3 I/O I/O I/O I/O I/O I/O I/O I/O 54 55 I/O I/O I/O I/O I/O I/O I/O I/O 4 I/O I/O I/O I/O 56 I/O I/O I/O I/O 5 6 I/O I/O I/O I/O I/O I/O I/O I/O 57 58 I/O I/O I/O I/O I/O I/O I/O I/O 7 I/O I/O I/O I/O 59 I/O I/O I/O I/O 8 9 I/O I/O I/O I/O I/O I/O I/O I/O 60 61 I/O I/O I/O I/O I/O I/O I/O I/O 10 I/O I/O I/O I/O 62 I/O I/O I/O I/O 11 12 I/O I/O I/O I/O I/O I/O I/O I/O 63 64 I/O I/O I/O I/O I/O I/O I/O I/O 13 I/O I/O I/O I/O 65 GND GND GND GND 14 I/O I/O I/O I/O 66 I/O I/O I/O I/O 15 I/O I/O I/O I/O 67 I/O I/O I/O I/O 16 VDDL VDDL VDDL VDDL 68 I/O I/O I/O I/O 17 18 GND I/O GND I/O GND I/O GND I/O 69 70 I/O I/O I/O I/O I/O I/O I/O I/O 19 I/O I/O I/O I/O 71 VDDL VDDL VDDL VDDL 20 21 I/O I/O I/O I/O I/O I/O I/O I/O 72 73 VDDP I/O VDDP I/O VDDP I/O VDDP I/O 22 VDDP VDDP VDDP VDDP 74 I/O I/O I/O I/O 23 24 I/O I/O I/O I/O I/O I/O I/O I/O 75 76 I/O I/O I/O I/O I/O I/O I/O I/O 25 GL GL GL GL 77 I/O I/O I/O I/O 26 27 GL I/O GL I/O GL I/O GL I/O 78 79 I/O I/O I/O I/O I/O I/O I/O I/O 28 I/O I/O I/O I/O 80 I/O I/O I/O I/O 29 30 GND I/O GND I/O GND I/O GND I/O 81 82 GND I/O GND I/O GND I/O GND I/O 31 I/O I/O I/O I/O 83 I/O I/O I/O I/O 32 33 I/O I/O I/O I/O I/O I/O I/O I/O 84 85 I/O I/O I/O I/O I/O I/O I/O I/O 34 I/O I/O I/O I/O 86 I/O I/O I/O I/O 35 36 I/O VDDL I/O I/O I/O 87 I/O I/O I/O I/O VDDL VDDL VDDL 88 VDDL VDDL VDDL VDDL 37 I/O I/O I/O I/O 89 VDDP VDDP VDDP VDDP 38 39 I/O I/O I/O I/O I/O I/O I/O I/O 90 91 I/O I/O I/O I/O I/O I/O I/O I/O 40 VDDP VDDP VDDP VDDP 92 I/O I/O I/O I/O 41 42 GND I/O GND I/O GND I/O GND I/O 93 94 I/O I/O I/O I/O I/O I/O I/O I/O 43 I/O I/O I/O I/O 95 I/O I/O I/O I/O 44 45 I/O I/O I/O I/O I/O I/O I/O I/O 96 97 I/O GND I/O GND I/O GND I/O GND 46 I/O I/O I/O I/O 98 I/O I/O I/O I/O 47 I/O I/O I/O I/O 99 I/O I/O I/O I/O 48 I/O I/O I/O I/O 100 I/O I/O I/O I/O 49 I/O I/O I/O I/O 101 TCK TCK TCK TCKO 50 51 I/O I/O I/O I/O I/O I/O I/O I/O 102 103 TDI TMS TDI TMS TDI TMS TDI TMS 52 GND GND GND GND 104 VDDP VDDP VDDP VDDP v3.0 Pr o A SI C ™ 5 0 0 K F a m il y 208- P in P Q FP (C ont inu ed) Pin Number A500K050 Function A500K130 Function A500K180 Function A500K270 Function Pin Number A500K050 Function A500K130 Function A500K180 Function A500K270 Function 105 GND GND GND 106 107 VPP VPN VPP VPN VPP VPN GND 157 VDDP VDDP VDDP VDDP VPP VPN 158 159 I/O I/O I/O I/O I/O I/O I/O I/O 108 TDO TDO TDO TDO 160 I/O I/O I/O I/O 109 110 TRST RCK TRST RCK TRST RCK TRST RCK 161 162 I/O GND I/O GND I/O GND I/O GND 111 I/O I/O I/O I/O 163 I/O I/O I/O I/O 112 113 I/O I/O I/O I/O I/O I/O I/O I/O 164 165 I/O I/O I/O I/O I/O I/O I/O I/O 114 I/O I/O I/O I/O 166 I/O I/O I/O I/O 115 116 I/O I/O I/O I/O I/O I/O I/O I/O 167 168 I/O I/O I/O I/O I/O I/O I/O I/O 117 I/O I/O I/O I/O 169 I/O I/O I/O I/O 118 I/O I/O I/O I/O 170 VDDP VDDP VDDL VDDP VDDL 119 I/O I/O I/O I/O 171 VDDL VDDP VDDL 120 I/O I/O I/O I/O 172 I/O I/O I/O I/O 121 122 I/O GND I/O GND I/O GND I/O GND 173 174 I/O I/O I/O I/O I/O I/O I/O I/O 123 VDDP VDDP VDDP VDDP 175 I/O I/O I/O I/O 124 125 I/O I/O I/O I/O I/O I/O I/O I/O 176 177 I/O I/O I/O I/O I/O I/O I/O I/O 126 VDDL VDDL VDDL VDDL 178 GND GND GND GND 127 128 I/O I/O I/O I/O I/O I/O I/O I/O 179 180 I/O I/O I/O I/O I/O I/O I/O I/O 129 I/O I/O I/O I/O 181 I/O I/O I/O I/O 130 131 GND I/O GND I/O GND I/O GND I/O 182 183 I/O I/O I/O I/O I/O I/O I/O I/O 132 I/O I/O I/O I/O 184 I/O I/O I/O I/O 133 134 GL GL GL GL GL GL GL GL 185 186 I/O VDDP I/O I/O I/O VDDP VDDP VDDP 135 I/O I/O I/O I/O 187 VDDL VDDL VDDL VDDL 136 137 I/O I/O I/O I/O I/O I/O I/O I/O 188 189 I/O I/O I/O I/O I/O I/O I/O I/O 138 VDDP VDDP VDDP VDDP 190 I/O I/O I/O I/O 139 140 I/O I/O I/O I/O I/O I/O I/O I/O 191 192 I/O I/O I/O I/O I/O I/O I/O I/O 141 GND GND GND GND 193 I/O I/O I/O I/O 142 VDDL 143 I/O VDDL I/O VDDL I/O VDDL I/O 194 195 I/O GND I/O GND I/O GND I/O GND 144 I/O I/O I/O I/O 196 I/O I/O I/O I/O 145 I/O I/O I/O I/O 197 I/O I/O I/O I/O 146 I/O I/O I/O I/O 198 I/O I/O I/O I/O 147 I/O I/O I/O I/O 199 I/O I/O I/O I/O 148 149 I/O I/O I/O I/O I/O I/O I/O I/O 200 201 I/O I/O I/O I/O I/O I/O I/O I/O 150 I/O I/O I/O I/O 202 I/O I/O I/O I/O 151 152 I/O I/O I/O I/O I/O I/O I/O I/O 203 204 I/O I/O I/O I/O I/O I/O I/O I/O 153 I/O I/O I/O I/O 205 I/O I/O I/O I/O 154 155 I/O I/O I/O I/O I/O I/O I/O I/O 206 207 I/O I/O I/O I/O I/O I/O I/O I/O 156 GND GND GND GND 208 VDDP VDDP VDDP VDDP v3.0 45 P r o A S IC ™ 5 0 0 K F a m ily Pa c ka ge P i n A s si g nm e n t s (Continued) 272- P in P BGA (B ott om Vi ew) 20 19 18 17 16 15 14 13 12 11 10 9 A B C D E F G H J K L M N P R T U V W Y 46 v3.0 8 7 6 5 4 3 2 1 Pr o A SI C ™ 5 0 0 K F a m il y 2 7 2 - P in P BG A Pin Number A500K050 Function A500K130 Function Pin Number A500K050 Function A500K130 Function Pin Number A500K050 Function A500K130 Function A1 I/O I/O C7 I/O I/O F17 VDDP A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 D1 D2 D3 D4 I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VDDP I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O F18 F19 F20 G1 G2 G3 G4 G17 G18 G19 G20 H1 H2 H3 H4 H17 I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VDDP I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O A19 A20 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16 B17 B18 B19 B20 C1 C2 C3 C4 C5 C6 I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20 E1 E2 E3 E4 E17 E18 E19 E20 F1 F2 F3 F4 VDDP VDDP I/O VDDL VDDL VDDL VDDL VDDL VDDL I/O VDDP VDDP VDDP I/O I/O I/O I/O I/O I/O VDDP VDDP I/O I/O I/O I/O I/O I/O VDDP VDDP VDDP VDDP I/O VDDL VDDL VDDL VDDL VDDL VDDL I/O VDDP VDDP VDDP I/O I/O I/O I/O I/O I/O VDDP VDDP I/O I/O I/O I/O I/O I/O VDDP H18 H19 H20 J1 J2 J3 J4 J9 J10 J11 J12 J17 J18 J19 J20 K1 K2 K3 K4 K9 K10 K11 K12 K17 K18 K19 K20 L1 L2 I/O I/O GL I/O GL GL VDDL GND GND GND GND VDDL GL I/O I/O I/O I/O I/O VDDL GND GND GND GND VDDL I/O I/O I/O I/O I/O I/O I/O GL I/O GL GL VDDL GND GND GND GND VDDL GL I/O I/O I/O I/O I/O VDDL GND GND GND GND VDDL I/O I/O I/O I/O I/O v3.0 47 P r o A S IC ™ 5 0 0 K F a m ily 272- P in P BGA (C ont inu ed) Pin Number A500K050 Function A500K130 Function Pin Number A500K050 Function A500K130 Function Pin Number A500K050 Function A500K130 Function L3 L4 L9 L10 L11 L12 L17 L18 L19 L20 M1 M2 M3 M4 I/O VDDL GND GND GND GND VDDL I/O I/O I/O I/O I/O I/O VDDL I/O VDDL GND GND GND GND VDDL I/O I/O I/O I/O I/O I/O T1 T2 T3 T4 T17 T18 T19 T20 U1 U2 U3 U4 U5 I/O I/O I/O VDDP VDDP I/O I/O I/O I/O I/O I/O VDDP VDDP I/O I/O I/O VDDP VDDP I/O I/O I/O I/O I/O I/O VDDP VDDP V19 V20 W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O M9 M10 M11 M12 M17 M18 M19 M20 N1 N2 N3 N4 N17 N18 N19 N20 P1 P2 P3 P4 P17 P18 P19 P20 R1 R2 R3 R4 R17 R18 R19 R20 GND GND GND GND VDDL I/O I/O I/O I/O I/O I/O VDDL VDDL I/O I/O I/O I/O I/O I/O VDDP VDDP I/O I/O I/O I/O I/O I/O VDDP VDDP I/O I/O I/O VDDL GND GND GND GND VDDL I/O I/O I/O I/O I/O I/O VDDL VDDL I/O I/O I/O I/O I/O I/O VDDP VDDP I/O I/O I/O I/O I/O I/O VDDP VDDP I/O I/O I/O U6 U7 U8 U9 U10 U11 U12 U13 U14 U15 U16 U17 U18 U19 U20 V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18 VDDP I/O VDDL VDDL VDDL VDDL VDDL VDDL I/O VDDP VDDP VDDP RCK I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O TMS TDO VDDP I/O VDDL VDDL VDDL VDDL VDDL VDDL I/O VDDP VDDP VDDP RCK I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O TMS TDO W12 W13 W14 W15 W16 W17 W18 W19 W20 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12 Y13 Y14 Y15 Y16 Y17 Y18 Y19 Y20 I/O I/O I/O I/O I/O TCK VPP TRST I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O TDI VPN I/O I/O I/O I/O I/O I/O TCK VPP TRST I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O TDI VPN I/O 48 v3.0 Pr o A SI C ™ 5 0 0 K F a m il y Pa c ka ge P i n A s si g nm e n t s (Continued) 456- P in P BGA (B ott om Vi ew) 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 A B C D E F G H J K L M N P R T U V W Y AA AB AC AD AE AF v3.0 49 P r o A S IC ™ 5 0 0 K F a m ily 4 5 6 - P in P BG A Pin Number A500K130 Function A500K180 Function A500K270 Function Pin Number A500K130 Function A500K180 Function A500K270 Function A1 VDDP VDDP VDDP AB11 I/O I/O I/O I/O 50 A2 VDDP VDDP VDDP AB12 I/O I/O A3 NC I/O I/O AB13 I/O I/O I/O A4 I/O I/O I/O AB14 I/O I/O I/O A5 I/O I/O I/O AB15 I/O I/O I/O A6 NC I/O I/O AB16 I/O I/O I/O A7 I/O I/O I/O AB17 I/O I/O I/O A8 NC I/O I/O AB18 I/O I/O I/O A9 NC I/O I/O AB19 I/O I/O I/O A10 I/O I/O I/O AB20 VDDL VDDL VDDL A11 NC I/O I/O AB21 VDDL VDDL VDDL A12 NC I/O I/O AB22 VDDL VDDL VDDL A13 I/O I/O I/O AB23 I/O I/O I/O A14 NC I/O I/O AB24 I/O I/O I/O A15 NC I/O I/O AB25 I/O I/O I/O A16 I/O I/O I/O AB26 I/O I/O I/O A17 NC I/O I/O AC1 I/O I/O I/O A18 NC I/O I/O AC2 I/O I/O I/O A19 I/O I/O I/O AC3 I/O I/O I/O A20 NC I/O I/O AC4 VDDP VDDP VDDP A21 NC I/O I/O AC5 I/O I/O I/O A22 I/O I/O I/O AC6 I/O I/O I/O A23 NC I/O I/O AC7 I/O I/O I/O A24 NC I/O I/O AC8 I/O I/O I/O A25 VDDP VDDP VDDP AC9 I/O I/O I/O A26 VDDP VDDP VDDP AC10 I/O I/O I/O AA1 I/O I/O I/O AC11 I/O I/O I/O AA2 I/O I/O I/O AC12 I/O I/O I/O AA3 I/O I/O I/O AC13 I/O I/O I/O AA4 I/O I/O I/O AC14 I/O I/O I/O AA5 VDDL VDDL VDDL AC15 I/O I/O I/O AA22 VDDL VDDL VDDL AC16 I/O I/O I/O AA23 I/O I/O I/O AC17 I/O I/O I/O AA24 I/O I/O I/O AC18 I/O I/O I/O AA25 I/O I/O I/O AC19 I/O I/O I/O AA26 NC I/O I/O AC20 I/O I/O I/O AB1 NC I/O I/O AC21 TMS TMS TMS AB2 I/O I/O I/O AC22 TDO TDO TDO AB3 I/O I/O I/O AC23 VDDP VDDP VDDP AB4 I/O I/O I/O AC24 RCK RCK RCK AB5 VDDL VDDL VDDL AC25 I/O I/O I/O AB6 VDDL VDDL VDDL AC26 NC I/O I/O AB7 VDDL VDDL VDDL AD1 NC I/O I/O AB8 I/O I/O I/O AD2 I/O I/O I/O AB9 I/O I/O I/O AD3 VDDP VDDP VDDP AB10 I/O I/O I/O AD4 I/O I/O I/O v3.0 Pr o A SI C ™ 5 0 0 K F a m il y 456- P in P BGA (C ont inu ed) Pin Number A500K130 Function A500K180 Function A500K270 Function Pin Number A500K130 Function A500K180 Function A500K270 Function AD5 I/O I/O I/O AE25 VDDP VDDP VDDP AD6 I/O I/O I/O AE26 VDDP VDDP VDDP AD7 I/O I/O I/O AF1 VDDP VDDP VDDP AD8 I/O I/O I/O AF2 VDDP VDDP VDDP AD9 I/O I/O I/O AF3 NC I/O I/O AD10 I/O I/O I/O AF4 NC I/O I/O AD11 I/O I/O I/O AF5 I/O I/O I/O AD12 I/O I/O I/O AF6 NC I/O I/O AD13 I/O I/O I/O AF7 NC I/O I/O AD14 I/O I/O I/O AF8 I/O I/O I/O AD15 I/O I/O I/O AF9 NC I/O I/O AD16 I/O I/O I/O AF10 NC I/O I/O AD17 I/O I/O I/O AF11 I/O I/O I/O AD18 I/O I/O I/O AF12 NC I/O I/O AD19 I/O I/O I/O AF13 NC I/O I/O AD20 I/O I/O I/O AF14 I/O I/O I/O AD21 TCK TCK TCK AF15 NC I/O I/O AD22 VPP VPP VPP AF16 NC I/O I/O I/O AD23 I/O I/O I/O AF17 I/O I/O AD24 VDDP VDDP VDDP AF18 NC I/O I/O AD25 I/O I/O I/O AF19 NC I/O I/O I/O AD26 NC I/O I/O AF20 I/O I/O AE1 VDDP VDDP VDDP AF21 NC I/O I/O AE2 VDDP VDDP VDDP AF22 I/O I/O I/O AE3 I/O I/O I/O AF23 TDI TDI TDI AE4 I/O I/O I/O AF24 NC I/O I/O AE5 I/O I/O I/O AF25 VDDP VDDP VDDP AE6 I/O I/O I/O AF26 VDDP VDDP VDDP AE7 I/O I/O I/O B1 VDDP VDDP VDDP AE8 I/O I/O I/O B2 VDDP VDDP VDDP AE9 I/O I/O I/O B3 I/O I/O I/O AE10 I/O I/O I/O B4 I/O I/O I/O AE11 I/O I/O I/O B5 I/O I/O I/O AE12 I/O I/O I/O B6 I/O I/O I/O AE13 I/O I/O I/O B7 I/O I/O I/O AE14 I/O I/O I/O B8 I/O I/O I/O AE15 I/O I/O I/O B9 I/O I/O I/O AE16 I/O I/O I/O B10 I/O I/O I/O AE17 I/O I/O I/O B11 I/O I/O I/O AE18 I/O I/O I/O B12 I/O I/O I/O AE19 I/O I/O I/O B13 I/O I/O I/O AE20 I/O I/O I/O B14 I/O I/O I/O AE21 I/O I/O I/O B15 I/O I/O I/O AE22 I/O I/O I/O B16 I/O I/O I/O AE23 VPN VPN VPN B17 I/O I/O I/O AE24 TRST TRST TRST B18 I/O I/O I/O v3.0 51 P r o A S IC ™ 5 0 0 K F a m ily 456- P in P BGA (C ont inu ed) Pin Number A500K130 Function A500K180 Function A500K270 Function Pin Number A500K130 Function A500K180 Function A500K270 Function B19 I/O I/O I/O D13 I/O I/O I/O B20 I/O I/O I/O D14 I/O I/O I/O B21 I/O I/O I/O D15 I/O I/O I/O B22 I/O I/O I/O D16 I/O I/O I/O B23 I/O I/O I/O D17 I/O I/O I/O B24 I/O I/O I/O D18 I/O I/O I/O B25 VDDP VDDP VDDP D19 I/O I/O I/O B26 VDDP VDDP VDDP D20 I/O I/O I/O C1 VDDP VDDP VDDP D21 I/O I/O I/O C2 I/O I/O I/O D22 I/O I/O I/O C3 VDDP VDDP VDDP D23 VDDP VDDP VDDP C4 I/O I/O I/O D24 I/O I/O I/O C5 I/O I/O I/O D25 I/O I/O I/O C6 I/O I/O I/O D26 I/O I/O I/O C7 I/O I/O I/O E1 NC I/O I/O C8 I/O I/O I/O E2 I/O I/O I/O C9 I/O I/O I/O E3 I/O I/O I/O C10 I/O I/O I/O E4 I/O I/O I/O 52 C11 I/O I/O I/O E5 VDDL VDDL VDDL C12 I/O I/O I/O E6 VDDL VDDL VDDL C13 I/O I/O I/O E7 VDDL VDDL VDDL C14 I/O I/O I/O E8 VDDL VDDL VDDL C15 I/O I/O I/O E9 I/O I/O I/O C16 I/O I/O I/O E10 I/O I/O I/O C17 I/O I/O I/O E11 I/O I/O I/O C18 I/O I/O I/O E12 I/O I/O I/O C19 I/O I/O I/O E13 I/O I/O I/O C20 I/O I/O I/O E14 I/O I/O I/O C21 I/O I/O I/O E15 I/O I/O I/O C22 I/O I/O I/O E16 I/O I/O I/O C23 I/O I/O I/O E17 I/O I/O I/O I/O C24 VDDP VDDP VDDP E18 I/O I/O C25 I/O I/O I/O E19 I/O I/O I/O C26 NC I/O I/O E20 VDDL VDDL VDDL D1 NC I/O I/O E21 VDDL VDDL VDDL D2 I/O I/O I/O E22 VDDL VDDL VDDL D3 I/O I/O I/O E23 I/O I/O I/O D4 VDDP VDDP VDDP E24 I/O I/O I/O D5 I/O I/O I/O E25 I/O I/O I/O D6 I/O I/O I/O E26 I/O I/O I/O D7 I/O I/O I/O F1 I/O I/O I/O D8 I/O I/O I/O F2 I/O I/O I/O D9 I/O I/O I/O F3 I/O I/O I/O D10 I/O I/O I/O F4 I/O I/O I/O D11 I/O I/O I/O F5 VDDL VDDL VDDL D12 I/O I/O I/O F22 VDDL VDDL VDDL v3.0 Pr o A SI C ™ 5 0 0 K F a m il y 456- P in P BGA (C ont inu ed) Pin Number A500K130 Function A500K180 Function A500K270 Function Pin Number A500K130 Function A500K180 Function A500K270 Function F23 I/O I/O I/O L3 I/O I/O I/O F24 I/O I/O I/O L4 I/O I/O I/O F25 I/O I/O I/O L5 I/O I/O I/O F26 NC I/O I/O L11 GND GND GND G1 NC I/O I/O L12 GND GND GND G2 I/O I/O I/O L13 GND GND GND G3 I/O I/O I/O L14 GND GND GND G4 I/O I/O I/O L15 GND GND GND G5 VDDL VDDL VDDL L16 GND GND GND G22 VDDL VDDL VDDL L22 I/O I/O I/O G23 I/O I/O I/O L23 I/O I/O I/O G24 I/O I/O I/O L24 I/O I/O I/O G25 I/O I/O I/O L25 I/O I/O I/O G26 I/O I/O I/O L26 NC I/O I/O H1 NC I/O I/O M1 GL GL GL H2 I/O I/O I/O M2 GL GL GL H3 I/O I/O I/O M3 I/O I/O I/O H4 I/O I/O I/O M4 I/O I/O I/O H5 VDDL VDDL VDDL M5 I/O I/O I/O H22 VDDL VDDL VDDL M11 GND GND GND H23 I/O I/O I/O M12 GND GND GND H24 I/O I/O I/O M13 GND GND GND H25 I/O I/O I/O M14 GND GND GND H26 NC I/O I/O M15 GND GND GND J1 I/O I/O I/O M16 GND GND GND J2 I/O I/O I/O M22 GL GL GL J3 I/O I/O I/O M23 I/O I/O I/O J4 I/O I/O I/O M24 I/O I/O I/O J5 I/O I/O I/O M25 I/O I/O I/O J22 I/O I/O I/O M26 NC I/O I/O J23 I/O I/O I/O N1 NC I/O I/O J24 I/O I/O I/O N2 I/O I/O I/O J25 I/O I/O I/O N3 I/O I/O I/O J26 NC I/O I/O N4 I/O I/O I/O K1 NC I/O I/O N5 I/O I/O I/O K2 I/O I/O I/O N11 GND GND GND K3 I/O I/O I/O N12 GND GND GND K4 I/O I/O I/O N13 GND GND GND K5 I/O I/O I/O N14 GND GND GND K22 I/O I/O I/O N15 GND GND GND K23 I/O I/O I/O N16 GND GND GND K24 I/O I/O I/O N22 I/O I/O I/O K25 I/O I/O I/O N23 GL GL GL K26 I/O I/O I/O N24 I/O I/O I/O L1 NC I/O I/O N25 I/O I/O I/O L2 I/O I/O I/O N26 I/O I/O I/O v3.0 53 P r o A S IC ™ 5 0 0 K F a m ily 456- P in P BGA (C ont inu ed) Pin Number A500K130 Function A500K180 Function A500K270 Function Pin Number A500K130 Function A500K180 Function A500K270 Function P1 NC I/O I/O T23 I/O I/O I/O P2 I/O I/O I/O T24 I/O I/O I/O P3 I/O I/O I/O T25 I/O I/O I/O P4 I/O I/O I/O T26 I/O I/O I/O 54 P5 I/O I/O I/O U1 NC I/O I/O P11 GND GND GND U2 I/O I/O I/O P12 GND GND GND U3 I/O I/O I/O P13 GND GND GND U4 I/O I/O I/O P14 GND GND GND U5 I/O I/O I/O P15 GND GND GND U22 I/O I/O I/O P16 GND GND GND U23 I/O I/O I/O P22 I/O I/O I/O U24 I/O I/O I/O P23 I/O I/O I/O U25 I/O I/O I/O P24 I/O I/O I/O U26 NC I/O I/O P25 I/O I/O I/O V1 I/O I/O I/O P26 NC I/O I/O V2 I/O I/O I/O R1 I/O I/O I/O V3 I/O I/O I/O R2 I/O I/O I/O V4 I/O I/O I/O R3 I/O I/O I/O V5 I/O I/O I/O R4 I/O I/O I/O V22 I/O I/O I/O R5 I/O I/O I/O V23 I/O I/O I/O R11 GND GND GND V24 I/O I/O I/O R12 GND GND GND V25 I/O I/O I/O R13 GND GND GND V26 NC I/O I/O R14 GND GND GND W1 NC I/O I/O R15 GND GND GND W2 I/O I/O I/O R16 GND GND GND W3 I/O I/O I/O R22 I/O I/O I/O W4 I/O I/O I/O R23 I/O I/O I/O W5 VDDL VDDL VDDL R24 I/O I/O I/O W22 VDDL VDDL VDDL R25 I/O I/O I/O W23 I/O I/O I/O I/O R26 NC I/O I/O W24 I/O I/O T1 NC I/O I/O W25 I/O I/O I/O T2 I/O I/O I/O W26 I/O I/O I/O T3 I/O I/O I/O Y1 NC I/O I/O T4 I/O I/O I/O Y2 I/O I/O I/O T5 I/O I/O I/O Y3 I/O I/O I/O T11 GND GND GND Y4 I/O I/O I/O T12 GND GND GND Y5 VDDL VDDL VDDL T13 GND GND GND Y22 VDDL VDDL VDDL T14 GND GND GND Y23 I/O I/O I/O T15 GND GND GND Y24 I/O I/O I/O T16 GND GND GND Y25 I/O I/O I/O T22 I/O I/O I/O Y26 NC I/O I/O v3.0 Pr o A SI C ™ 5 0 0 K F a m il y Pa c ka ge A ss i gn m e nt s (Continued) 144- FB GA (Bot t om V iew ) 12 11 10 9 8 7 6 5 4 3 2 1 A B C D E F G H J K L M v3.0 55 P r o A S IC ™ 5 0 0 K F a m ily 144- pi n FB GA Pin Number A500K050 Function A500K130 Function Pin Number A500K050 Function A500K130 Function Pin Number A500K050 Function A500K130 Function A1 I/O I/O D1 I/O I/O G1 I/O I/O A2 I/O I/O D2 I/O I/O G2 GND GND A3 I/O I/O D3 I/O I/O G3 I/O I/O A4 I/O I/O D4 I/O I/O G4 I/O I/O A5 I/O I/O D5 I/O I/O G5 GND GND A6 GND GND D6 I/O I/O G6 GND GND A7 I/O I/O D7 I/O I/O G7 GND GND A8 VDDL VDDL D8 I/O I/O G8 I/O I/O A9 I/O I/O D9 I/O I/O G9 I/O I/O A10 I/O I/O D10 I/O I/O G10 I/O I/O A11 I/O I/O D11 I/O I/O G11 I/O I/O A12 I/O I/O D12 I/O I/O G12 I/O I/O B1 I/O I/O E1 VDDL VDDL H1 VDDL VDDL B2 GND GND E2 I/O I/O H2 I/O I/O B3 I/O I/O E3 I/O I/O H3 I/O I/O B4 I/O I/O E4 VDDP VDDP H4 I/O I/O B5 I/O I/O E5 I/O I/O H5 VDDL VDDL B6 I/O I/O E6 VDDP VDDP H6 I/O I/O B7 I/O I/O E7 VDDP VDDP H7 I/O I/O B8 I/O I/O E8 I/O I/O H8 I/O I/O B9 I/O I/O E9 VDDP VDDP H9 I/O I/O B10 I/O I/O E10 VDDL VDDL H10 VDDP VDDP B11 GND GND E11 I/O I/O H11 I/O I/O B12 I/O I/O E12 I/O I/O H12 VDDL VDDL C1 I/O I/O F1 GL GL J1 I/O I/O C2 GL GL F2 I/O I/O J2 I/O I/O C3 I/O I/O F3 I/O I/O J3 VDDP VDDP C4 VDDL VDDL F4 I/O I/O J4 I/O I/O C5 I/O I/O F5 GND GND J5 I/O I/O C6 I/O I/O F6 GND GND J6 I/O I/O C7 I/O I/O F7 GND GND J7 VDDL VDDL C8 I/O I/O F8 I/O I/O J8 TCK TCK C9 I/O I/O F9 GL GL J9 I/O I/O C10 I/O I/O F10 GND GND J10 TDO TDO C11 I/O I/O F11 I/O I/O J11 I/O I/O C12 I/O I/O F12 GL GL J12 I/O I/O 56 v3.0 Pr o A SI C ™ 5 0 0 K F a m il y 144- pi n FB GA (Co nti nue d) Pin Number A500K050 Function A500K130 Function Pin Number A500K050 Function A500K130 Function Pin Number A500K050 Function A500K130 Function K1 I/O I/O L1 GND GND M1 I/O I/O K2 I/O I/O L2 I/O I/O M2 I/O I/O K3 I/O I/O L3 I/O I/O M3 I/O I/O K4 I/O I/O L4 I/O I/O M4 I/O I/O K5 I/O I/O L5 VDDP VDDP M5 I/O I/O K6 I/O I/O L6 I/O I/O M6 I/O I/O K7 GND GND L7 I/O I/O M7 I/O I/O K8 I/O I/O L8 I/O I/O M8 I/O I/O K9 I/O I/O L9 TMS TMS M9 TDI TDI K10 GND GND L10 RCK RCK M10 VDDP VDDP K11 I/O I/O L11 I/O I/O M11 VPP VPP K12 I/O I/O L12 TRST TRST M12 VPN VPN v3.0 57 P r o A S IC ™ 5 0 0 K F a m ily Pa c ka ge A ss i gn m e nt s (Continued) 256- FB GA ( Bot t om V iew ) Pin one corner 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 A B C D E F G H J K L M N P R T 58 v3.0 Pr o A SI C ™ 5 0 0 K F a m il y 256- pi n FB GA Pin Number A500K130 Function A500K180 Function A500K270 Function Pin Number A500K130 Function A500K180 Function A500K270 Function A1 GND GND GND C8 I/O I/O I/O A2 I/O I/O I/O C9 I/O I/O I/O A3 I/O I/O I/O C10 I/O I/O I/O A4 I/O I/O I/O C11 I/O I/O I/O A5 I/O I/O I/O C12 I/O I/O I/O A6 I/O I/O I/O C13 I/O I/O I/O A7 I/O I/O I/O C14 I/O I/O I/O A8 I/O I/O I/O C15 I/O I/O I/O A9 I/O I/O I/O C16 I/O I/O I/O A10 I/O I/O I/O D1 I/O I/O I/O A11 I/O I/O I/O D2 I/O I/O I/O A12 I/O I/O I/O D3 I/O I/O I/O A13 I/O I/O I/O D4 I/O I/O I/O A14 I/O I/O I/O D5 I/O I/O I/O A15 I/O I/O I/O D6 I/O I/O I/O A16 GND GND GND D7 I/O I/O I/O B1 I/O I/O I/O D8 I/O I/O I/O B2 I/O I/O I/O D9 I/O I/O I/O B3 I/O I/O I/O D10 I/O I/O I/O B4 I/O I/O I/O D11 I/O I/O I/O B5 I/O I/O I/O D12 I/O I/O I/O B6 I/O I/O I/O D13 I/O I/O I/O B7 I/O I/O I/O D14 I/O I/O I/O B8 I/O I/O I/O D15 I/O I/O I/O B9 I/O I/O I/O D16 I/O I/O I/O B10 I/O I/O I/O E1 I/O I/O I/O B11 I/O I/O I/O E2 I/O I/O I/O B12 I/O I/O I/O E3 I/O I/O I/O B13 I/O I/O I/O E4 I/O I/O I/O B14 I/O I/O I/O E5 I/O I/O I/O B15 I/O I/O I/O E6 VDDP VDDP VDDP B16 I/O I/O I/O E7 VDDP VDDP VDDP C1 I/O I/O I/O E8 I/O I/O I/O C2 I/O I/O I/O E9 I/O I/O I/O C3 I/O I/O I/O E10 VDDP VDDP VDDP C4 I/O I/O I/O E11 VDDP VDDP VDDP C5 I/O I/O I/O E12 I/O I/O I/O C6 I/O I/O I/O E13 I/O I/O I/O C7 I/O I/O I/O E14 I/O I/O I/O v3.0 59 P r o A S IC ™ 5 0 0 K F a m ily 256- pi n FB GA (Co nti nue d) 60 Pin Number A500K130 Function A500K180 Function A500K270 Function Pin Number A500K130 Function A500K180 Function A500K270 Function E15 I/O I/O I/O H6 VDDL VDDL VDDL E16 I/O I/O I/O H7 GND GND GND F1 I/O I/O I/O H8 GND GND GND F2 I/O I/O I/O H9 GND GND GND F3 I/O I/O I/O H10 GND GND GND F4 I/O I/O I/O H11 VDDL VDDL VDDL F5 VDDP VDDP VDDP H12 I/O I/O I/O F6 GND GND GND H13 I/O I/O I/O F7 VDDL VDDL VDDL H14 I/O I/O I/O F8 VDDL VDDL VDDL H15 I/O I/O I/O F9 VDDL VDDL VDDL H16 GL GL GL F10 VDDL VDDL VDDL J1 GL GL GL F11 GND GND GND J2 I/O I/O I/O F12 VDDP VDDP VDDP J3 I/O I/O I/O F13 I/O I/O I/O J4 I/O I/O I/O F14 I/O I/O I/O J5 I/O I/O I/O F15 I/O I/O I/O J6 VDDL VDDL VDDL F16 I/O I/O I/O J7 GND GND GND G1 I/O I/O I/O J8 GND GND GND G2 I/O I/O I/O J9 GND GND GND G3 I/O I/O I/O J10 GND GND GND G4 I/O I/O I/O J11 VDDL VDDL VDDL G5 VDDP VDDP VDDP J12 I/O I/O I/O G6 VDDL VDDL VDDL J13 I/O I/O I/O G7 GND GND GND J14 I/O I/O I/O G8 GND GND GND J15 I/O I/O I/O G9 GND GND GND J16 GL GL GL G10 GND GND GND K1 I/O I/O I/O G11 VDDL VDDL VDDL K2 I/O I/O I/O G12 VDDP VDDP VDDP K3 I/O I/O I/O G13 I/O I/O I/O K4 I/O I/O I/O G14 I/O I/O I/O K5 VDDP VDDP VDDP G15 I/O I/O I/O K6 VDDL VDDL VDDL G16 I/O I/O I/O K7 GND GND GND H1 GL GL GL K8 GND GND GND H2 I/O I/O I/O K9 GND GND GND H3 I/O I/O I/O K10 GND GND GND H4 I/O I/O I/O K11 VDDL VDDL VDDL H5 I/O I/O I/O K12 VDDP VDDP VDDP v3.0 Pr o A SI C ™ 5 0 0 K F a m il y 256- pi n FB GA (Co nti nue d) Pin Number A500K130 Function A500K180 Function A500K270 Function Pin Number A500K130 Function A500K180 Function A500K270 Function K13 I/O I/O I/O N4 I/O I/O I/O K14 I/O I/O I/O N5 I/O I/O I/O K15 I/O I/O I/O N6 I/O I/O I/O K16 I/O I/O I/O N7 I/O I/O I/O L1 I/O I/O I/O N8 I/O I/O I/O L2 I/O I/O I/O N9 I/O I/O I/O L3 I/O I/O I/O N10 I/O I/O I/O L4 I/O I/O I/O N11 I/O I/O I/O L5 VDDP VDDP VDDP N12 I/O I/O I/O L6 GND GND GND N13 I/O I/O I/O L7 VDDL VDDL VDDL N14 RCK RCK RCK L8 VDDL VDDL VDDL N15 I/O I/O I/O L9 VDDL VDDL VDDL N16 I/O I/O I/O L10 VDDL VDDL VDDL P1 I/O I/O I/O L11 GND GND GND P2 I/O I/O I/O L12 VDDP VDDP VDDP P3 I/O I/O I/O L13 I/O I/O I/O P4 I/O I/O I/O L14 I/O I/O I/O P5 I/O I/O I/O L15 I/O I/O I/O P6 I/O I/O I/O L16 I/O I/O I/O P7 I/O I/O I/O M1 I/O I/O I/O P8 I/O I/O I/O M2 I/O I/O I/O P9 I/O I/O I/O M3 I/O I/O I/O P10 I/O I/O I/O M4 I/O I/O I/O P11 I/O I/O I/O M5 I/O I/O I/O P12 I/O I/O I/O M6 VDDP VDDP VDDP P13 TCK TCK TCK M7 VDDP VDDP VDDP P14 VPP VPP VPP M8 I/O I/O I/O P15 TRST TRST TRST M9 I/O I/O I/O P16 I/O I/O I/O M10 VDDP VDDP VDDP R1 I/O I/O I/O M11 VDDP VDDP VDDP R2 I/O I/O I/O M12 I/O I/O I/O R3 I/O I/O I/O M13 I/O I/O I/O R4 I/O I/O I/O M14 I/O I/O I/O R5 I/O I/O I/O M15 I/O I/O I/O R6 I/O I/O I/O M16 I/O I/O I/O R7 I/O I/O I/O N1 I/O I/O I/O R8 I/O I/O I/O N2 I/O I/O I/O R9 I/O I/O I/O N3 I/O I/O I/O R10 I/O I/O I/O v3.0 61 P r o A S IC ™ 5 0 0 K F a m ily 256- pi n FB GA (Co nti nue d) 62 Pin Number A500K130 Function A500K180 Function A500K270 Function Pin Number A500K130 Function A500K180 Function A500K270 Function R11 I/O I/O I/O T6 I/O I/O I/O R12 I/O I/O I/O T7 I/O I/O I/O R13 I/O I/O I/O T8 I/O I/O I/O R14 TDI TDI TDI T9 I/O I/O I/O R15 VPN VPN VPN T10 I/O I/O I/O R16 TDO TDO TDO T11 I/O I/O I/O T1 GND GND GND T12 I/O I/O I/O T2 I/O I/O I/O T13 I/O I/O I/O T3 I/O I/O I/O T14 I/O I/O I/O T4 I/O I/O I/O T15 TMS TMS TMS T5 I/O I/O I/O T16 GND GND GND v3.0 Pr o A SI C ™ 5 0 0 K F a m il y Pa c ka ge A ss i gn m e nt s (Continued) 676- pi n FB GA (Bo tt om Vie w) 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 A B C D E F G H J K L M N P R T U V W Y AA AB AC AD AE AF v3.0 63 P r o A S IC ™ 5 0 0 K F a m ily 676- P in FBG A Pin Number A500K270 Function Pin Number A500K270 Function Pin Number A500K270 Function Pin Number A500K270 Function Pin Number A500K270 Function A1 GND AA13 I/O AB25 I/O AD11 I/O AE23 I/O A2 GND AA14 I/O AB26 I/O AD12 I/O AE24 I/O A3 I/O AA15 I/O AC1 I/O AD13 I/O AE25 GND A4 I/O AA16 I/O AC2 I/O AD14 I/O AE26 GND A5 I/O AA17 I/O AC3 I/O AD15 I/O AF1 GND A6 I/O AA18 I/O AC4 I/O AD16 I/O AF2 GND A7 I/O AA19 I/O AC5 GND AD17 I/O AF3 GND A8 I/O AA20 I/O AC6 I/O AD18 I/O AF4 GND A9 I/O AA21 TDO AC7 I/O AD19 I/O AF5 I/O A10 I/O AA22 GND AC8 I/O AD20 I/O AF6 I/O A11 I/O AA23 GND AC9 GND AD21 I/O AF7 I/O A12 I/O AA24 I/O AC10 I/O AD22 I/O AF8 I/O A13 I/O AA25 I/O AC11 I/O AD23 TDI AF9 I/O A14 I/O AA26 I/O AC12 I/O AD24 VPN AF10 I/O A15 I/O AB1 I/O AC13 I/O AD25 I/O AF11 I/O A16 I/O AB2 I/O AC14 I/O AD26 I/O AF12 I/O A17 I/O AB3 I/O AC15 I/O AE1 GND AF13 I/O A18 I/O AB4 I/O AC16 I/O AE2 GND AF14 I/O A19 I/O AB5 I/O AC17 I/O AE3 GND AF15 I/O A20 I/O AB6 GND AC18 I/O AE4 I/O AF16 I/O A21 I/O AB7 GND AC19 I/O AE5 I/O AF17 I/O A22 I/O AB8 I/O AC20 I/O AE6 I/O AF18 I/O A23 I/O AB9 I/O AC21 I/O AE7 I/O AF19 I/O A24 I/O AB10 I/O AC22 TMS AE8 I/O AF20 I/O A25 GND AB11 I/O AC23 RCK AE9 I/O AF21 I/O A26 GND AB12 I/O AC24 I/O AE10 I/O AF22 I/O AA1 I/O AB13 I/O AC25 I/O AE11 I/O AF23 I/O AA2 I/O AB14 I/O AC26 I/O AE12 I/O AF24 I/O AA3 I/O AB15 I/O AD1 I/O AE13 I/O AF25 GND AA4 I/O AB16 I/O AD2 I/O AE14 I/O AF26 GND AA5 I/O AB17 I/O AD3 I/O AE15 I/O B1 GND AA6 GND AB18 I/O AD4 I/O AE16 I/O B2 GND AA7 I/O AB19 I/O AD5 I/O AE17 I/O B3 GND AA8 I/O AB20 I/O AD6 I/O AE18 I/O B4 GND AA9 I/O AB21 TCK AD7 I/O AE19 I/O B5 I/O AA10 I/O AB22 TRST AD8 I/O AE20 I/O B6 I/O AA11 I/O AB23 I/O AD9 I/O AE21 I/O B7 I/O AA12 I/O AB24 I/O AD10 I/O AE22 I/O B8 I/O 64 v3.0 Pr o A SI C ™ 5 0 0 K F a m il y 676- P in FBG A ( Cont i nued) Pin Number A500K270 Function Pin Number A500K270 Function Pin Number A500K270 Function Pin Number A500K270 Function Pin Number A500K270 Function B9 I/O C21 I/O E7 I/O F19 I/O H5 I/O B10 I/O C22 I/O E8 I/O F20 I/O H6 I/O B11 I/O C23 I/O E9 I/O F21 I/O H7 VDDP B12 I/O C24 I/O E10 I/O F22 I/O H8 VDDL B13 I/O C25 I/O E11 I/O F23 I/O H9 VDDP B14 I/O C26 I/O E12 I/O F24 I/O H10 VDDP B15 I/O D1 I/O E13 I/O F25 I/O H11 VDDP B16 I/O D2 I/O E14 I/O F26 I/O H12 VDDP B17 I/O D3 GND E15 I/O G1 I/O H13 VDDP B18 I/O D4 I/O E16 I/O G2 I/O H14 VDDP B19 I/O D5 I/O E17 I/O G3 I/O H15 VDDP B20 I/O D6 I/O E18 I/O G4 I/O H16 VDDP B21 I/O D7 I/O E19 I/O G5 I/O H17 VDDP B22 I/O D8 I/O E20 I/O G6 I/O H18 VDDP B23 I/O D9 I/O E21 I/O G7 I/O H19 VDDL B24 I/O D10 I/O E22 I/O G8 VDDL H20 VDDL B25 GND D11 I/O E23 I/O G9 NC H21 I/O B26 GND D12 I/O E24 I/O G10 NC H22 I/O C1 GND D13 I/O E25 I/O G11 NC H23 I/O C2 GND D14 I/O E26 I/O G12 NC H24 I/O C3 GND D15 I/O F1 I/O G13 NC H25 I/O C4 GND D16 I/O F2 I/O G14 NC H26 I/O C5 I/O D17 I/O F3 I/O G15 NC J1 I/O C6 I/O D18 I/O F4 I/O G16 NC J2 I/O C7 I/O D19 I/O F5 GND G17 NC J3 I/O C8 I/O D20 I/O F6 I/O G18 NC J4 I/O C9 I/O D21 I/O F7 NC G20 NC J5 I/O C10 I/O D22 I/O F8 I/O G19 VDDP J6 I/O C11 I/O D23 I/O F9 I/O G21 I/O J7 NC C12 I/O D24 I/O F10 I/O G22 I/O J8 VDDP C13 I/O D25 I/O F11 I/O G23 I/O J9 VDDL C14 I/O D26 I/O F12 I/O G24 I/O J10 VDDL C15 I/O E1 I/O F13 I/O G25 I/O J11 VDDL C16 I/O E2 I/O F14 I/O G26 I/O J12 VDDL C17 I/O E3 I/O F15 I/O H1 I/O J13 VDDL C18 I/O E4 I/O F16 I/O H2 I/O J14 VDDL C19 I/O E5 I/O F17 I/O H3 I/O J15 VDDL C20 I/O E6 I/O F18 I/O H4 I/O J16 VDDL v3.0 65 P r o A S IC ™ 5 0 0 K F a m ily 676- P in FBG A ( Cont i nued) Pin Number A500K270 Function Pin Number A500K270 Function Pin Number A500K270 Function Pin Number A500K270 Function Pin Number A500K270 Function J17 VDDL L3 I/O M15 GND P1 GL R13 GND J18 VDDL L4 I/O M16 GND P2 I/O R14 GND J19 VDDP L5 I/O M17 GND P3 I/O R15 GND J20 NC L6 I/O M18 VDDL P4 I/O R16 GND J21 I/O L7 NC M19 VDDP P5 I/O R17 GND J22 I/O L8 VDDP M20 NC P6 I/O R18 VDDL J23 I/O L9 VDDL M21 I/O P7 NC R19 VDDP J24 I/O L10 GND M22 I/O P8 VDDP R20 NC J25 I/O L11 GND M23 I/O P9 VDDL R21 I/O J26 I/O L12 GND M24 I/O P10 GND R22 I/O K1 I/O L13 GND M25 I/O P11 GND R23 I/O K2 I/O L14 GND M26 I/O P12 GND R24 I/O K3 I/O L15 GND N1 GL P13 GND R25 I/O K4 I/O L16 GND N2 I/O P14 GND R26 I/O K5 I/O L17 GND N3 I/O P15 GND T1 I/O K6 I/O L18 VDDL N4 I/O P16 GND T2 I/O K7 NC L19 VDDP N5 I/O P17 GND T3 I/O K8 VDDP L20 NC N6 I/O P18 VDDL T4 I/O K9 VDDL L21 I/O N7 NC P19 VDDP T5 I/O K10 GND L22 I/O N8 VDDP P20 NC T6 I/O K11 GND L23 I/O N9 VDDL P21 I/O T7 NC K12 GND L24 I/O N10 GND P22 I/O T8 VDDP K13 GND L25 I/O N11 GND P23 I/O T9 VDDL K14 GND L26 I/O N12 GND P24 I/O T10 GND K15 GND M1 I/O N13 GND P25 I/O T11 GND K16 GND M2 I/O N14 GND P26 I/O T12 GND K17 GND M3 I/O N15 GND R1 I/O T13 GND K18 VDDL M4 I/O N16 GND R2 I/O T14 GND K19 VDDP M5 I/O N17 GND R3 I/O T15 GND K20 NC M6 I/O N18 VDDL R4 I/O T16 GND K21 I/O M7 NC N19 VDDP R5 I/O T17 GND K22 I/O M8 VDDP N20 NC R6 I/O T18 VDDL K23 I/O M9 VDDL N21 I/O R7 NC T19 VDDP K24 I/O M10 GND N22 GL R8 VDDP T20 NC K25 I/O M11 GND N23 I/O R9 VDDL T21 I/O K26 I/O M12 GND N24 I/O R10 GND T22 I/O L1 I/O M13 GND N25 GL R11 GND T23 I/O L2 I/O M14 GND N26 I/O R12 GND T24 I/O 66 v3.0 Pr o A SI C ™ 5 0 0 K F a m il y 676- P in FBG A ( Cont i nued) Pin Number A500K270 Function Pin Number A500K270 Function Pin Number A500K270 Function Pin Number A500K270 Function Pin Number A500K270 Function T25 I/O U20 NC V15 VDDL W10 VDDP Y5 I/O T26 I/O U21 I/O V16 VDDL W11 VDDP Y6 I/O U1 I/O U22 I/O V17 VDDL W12 VDDP Y7 I/O U2 I/O U23 I/O V18 VDDL W13 VDDP Y8 VDDP U3 I/O U24 I/O V19 VDDP W14 VDDP Y9 NC U4 I/O U25 I/O V20 NC W15 VDDP Y10 NC U5 I/O U26 I/O V21 I/O W16 VDDP Y11 NC U6 I/O V1 I/O V22 I/O W17 VDDP Y12 NC U7 NC V2 I/O V23 I/O W18 VDDP Y13 NC U8 VDDP V3 I/O V24 I/O W19 VDDL Y14 NC U9 VDDL V4 I/O V25 I/O W20 VDDP Y15 NC U10 GND V5 I/O V26 I/O W21 I/O Y16 NC U11 GND V6 I/O W1 I/O W22 I/O Y17 NC U12 GND V7 NC W2 I/O W23 I/O Y18 NC U13 GND V8 VDDP W3 I/O W24 I/O Y19 VDDL U14 GND V9 VDDL W4 I/O W25 I/O Y20 VPP U15 GND V10 VDDL W5 I/O W26 I/O Y21 I/O U16 GND V11 VDDL W6 I/O Y1 I/O Y22 I/O U17 GND V12 VDDL W7 VDDL Y2 I/O Y23 I/O U18 VDDL V13 VDDL W8 VDDL Y3 I/O Y24 I/O U19 VDDP V14 VDDL W9 VDDP Y4 I/O Y25 I/O Y26 I/O v3.0 67 P r o A S IC ™ 5 0 0 K F a m ily Li s t o f C ha ng e s The following table lists critical changes that were made in the current version of the document. Previous version v2.0 Preliminary v1.1 Preliminary v1.0 Advanced v.4 Changes in current version (v3.0) Page WDATA has been changed to DI, and RDATA has been changed to DO to make them consistent with the signal names found in the Macro Library Guide. The “Product Plan” on page 3 has been updated to include the 256-FBGA package. page 3 The “Plastic Device Resources” on page 3 has been updated to include the 256-FBGA package. page 3 Figure 12 and Figure 13 on page 13 have been updated. page 13 The “Design Environment” on page 15 and Figure 17 on page 15 have been updated. page 15 Package Thermal Characteristics table on page 16 has been updated to include the 256-FBGA package. page 16 The “Calculating Power Dissipation” on page 17 has been changed. page 17 The “Programming and Storage Temperature LImits” on page 18 is new. page 18 The “DC Electrical Specifications (VDDP = 2.5V)” on page 19 has been updated. page 19 The “DC Electrical Specifications (VDDP = 3.3V)” on page 20 has been updated. page 20 The Table 4 on page 28 has been updated. page 28 The Table 5 on page 34 has been updated. page 34 The “256-FBGA (Bottom View)” on page 58 is new. page 58 In the “676-pin FBGA (Bottom View)” on page 63, the functions for pins N1, N22, N25, and P1 have changed from I/O to GL page 59 The section, “Clock Trees” on page 8 is new. page 8 The table, “DC Electrical Specifications (VDDP = 3.3V)” on page 20 is new. page 18 The table, “AC Specifications (3.3V PCI Operation)” on page 22 is new. page 20 The table, the “Slew Rates Measured at Cout = 10pF (Total Output Load), Nominal Power Supplies and 25°C” on page 24 is new. page 22 The numbers found in the “Tristate Buffer Delays (Worst-Case Commercial Conditions, VDDP = 3.0V, VDDL = 2.3V, TJ = 70°C, fCLOCK = 250 MHz)” on page 25 have changed. page 23 The numbers found in the “Output Buffer Delays (Worst-Case Commercial Conditions, VDDP = 3.0V, VDDL = 2.3V, TJ = 70°C, fCLOCK = 250 MHz)” on page 26 have changed. page 24 The numbers found in the “Input Buffer Delays (Worst-Case Commercial Conditions, VDDP = 3.0V, VDDL = 2.3V, TJ = 70°C, fCLOCK = 250 MHz)” on page 26 have page 24 changed. 68 The numbers found in the “Global Input Buffer Delays (Worst-Case Commercial Conditions, VDDP = 3.0V, VDDL = 2.3V, TJ = 70°C, fCLOCK = 250 MHz)” on page 27 have changed. page 25 The “144-FBGA (Bottom View)” on page 55 for A500K050 is new. pages 53-55 The “676-pin FBGA (Bottom View)” on page 63 for A500K130 and A500K270 are new. pages 56-60 v3.0 Pr o A SI C ™ 5 0 0 K F a m il y D at a S he et Ca t e g o r i e s In order to provide the latest information to designers, some data sheets are published before data has been fully characterized. These data sheets are marked as “Advanced” or Preliminary” data sheets. The definition of these categories are as follows: Adv anc ed The data sheet contains initial estimated information based on simulation, other products, devices, or speed grades. This information can be used as estimates, but not for production. P rel im i nar y The data sheet contains information based on simulation and/or initial characterization. The information is believed to be correct, but changes are possible. Unm ar ked (pr odu ct ion) The data sheet contains information that is considered to be final. W eb- only V er si ons Web-only versions have three numbers in the version number (example: v2.0.1). A web-only version means Actel is posting the data sheet so customers have the latest information, but we are not printing the version because some information is going to change shortly after posting. v3.0 69 Actel and the Actel logo are registered trademarks of Actel Corporation. All other trademarks are the property of their owners. http://www.actel.com Actel Europe Ltd. Maxfli Court, Riverside Way Camberley, Surrey GU15 3YL United Kingdom Tel: +44 (0)1276 401450 Fax: +44 (0)1276 401490 Actel Corporation 955 East Arques Avenue Sunnyvale, California 94086 USA Tel: (408) 739-1010 Fax: (408) 739-1540 Actel Asia-Pacific EXOS Ebisu Bldg. 4F 1-24-14 Ebisu Shibuya-ku Tokyo 150 Japan Tel: +81 03-3445-7671 Fax: +81 03-3445-7668 5172140-7/2.02