ETC A500K180

v3.0
ProASIC™ 500K Family
I/O
Fe a t ur es an d B e ne f i ts
• Mixed 2.5V/3.3V Support with Individually-Selectable
Voltage and Slew Rate
• 3.3V, PCI Compliance (PCI Revision 2.2)
High C apaci t y
• 100,000 to 475,000 System Gates
• 14k to 63k Bits of Two-Port SRAM
• 106 to 440 User I/Os
S ecur e Pr og ram m i ng
P erf orm a nce
The Industry’s Most Effective Security Key Prevents Read
Back of Programming Bit Stream
• 33 MHz PCI 32-bit PCI
• Internal System Performance up to 250 MHz
S ta ndar d FP GA and AS IC De si gn F low
• Flexibility with Choice of Industry-Standard Front-End
Tools
• Efficient Design Through Front-End Timing and Gate
Optimization
• External System Performance up to 100 MHz
Low P ower
• Low Impedance Flash Switches
• Segmented Hierarchical Routing Structure
• Small, Efficient Logic Cells
IS P S uppo rt
• In-System Programming (ISP) with Silicon Sculptor and
Flash Pro
H ig h P er f o r m ance R out ing H i era rc hy
•
•
•
•
S RA Ms and FIFO s
Ultra Fast Local Network
Efficient Long Line Network
High Speed Very Long Line Network
High Performance Global Network
• Up to 150 MHz Synchronous and Asynchronous Operation
• Netlist Generator Ensures Optimal Usage of Embedded
Memory Blocks
Bo undar y S can T es t
Nonv ola ti le and R epr ogr am m abl e F las h
T echno log y
IEEE Std. 1149.1 (JTAG) Compliant
• Live at Power Up
• No Configuration Device Required
• Retains Programmed Design During Power-Down/
Power-Up Cycles
Pr oA S I C Pr o d uc t P r of i l e
Device
Maximum System Gates
Typical Gates
Maximum Flip-Flops
Embedded RAM Bits
Embedded RAM Blocks (256 X 9)
Logic Tiles
Global Routing Resources
Maximum User I/Os
JTAG
PCI
Package (by Pin Count)
PQFP
PBGA
FBGA
F eb r u a r y 2 0 0 2
© 2002 Actel Corporation
A500K050
A500K130
A500K180
A500K270
100,000
43,000
5,376
14k
6
5,376
4
204
Yes
Yes
290,000
105,000
12,800
45k
20
12,800
4
306
Yes
Yes
370,000
150,000
18,432
54k
24
18,432
4
362
Yes
Yes
475,000
215,000
26,880
63k
28
26,880
4
440
Yes
Yes
208
272
144
208
272, 456
144, 256
208
456
256
208
456
256, 676
1
P r o A S IC ™ 5 0 0 K F a m ily
G en er al D e sc r i p t i on
The ProASIC 500K family’s nonvolatile Flash technology
combines the advantages of ASICs with the benefits of
programmable devices. ProASIC 500K devices shorten
time-to-production by enabling designers to create
high-density systems using existing ASIC or FPGA design
flows and tools. ASIC migration is not necessary for any
volume because the family offers cost effective
reprogrammable solutions, ideal for applications in the
networking, telecom, computer, and consumer markets.
The ProASIC 500K family consists of four devices ranging
from 100k to 475k system gates and with up to 63k bits of
embedded two-port memory. These memory blocks include
hardwired FIFO circuitry as well as circuits to generate or
check parity. This minimizes external logic gate count and
complexity while maximizing flexibility and utility.
P r oces s T echn olog y
The ProASIC 500K family achieves its nonvolatile and
reprogrammability through an advanced 0.25µ, four-level
metal LVCMOS process enhanced with Flash technology.
The use of standard CMOS design techniques to implement
logic and control functions results in highly predictable
performance and gate array compatibility.
O r d e r i n g I nf o r m a t i o n
A500K130
PQ
208
Application (Ambient Temperature Range)
Blank = Commercial (0 to +70˚ C)
I = Industrial (-40 to +85˚ C)
PP = Pre-production
ES = Engineering Silicon (Room Temperature Only)
Package Lead Count
Package Type
BG = Plastic Ball Grid Array
PQ = Plastic Quad Flat Pack
FG = Fine Ball Grid Array
Part Number
A500K050 =
A500K130 =
A500K180 =
A500K270 =
2
100,000 Equivalent System Gates
290,000 Equivalent System Gates
370,000 Equivalent System Gates
475,000 Equivalent System Gates
v3.0
Pr o A SI C ™ 5 0 0 K F a m il y
Pr od uc t P l a n
Application
C
I
144-Pin Fine Ball Grid Array (FBGA)
✔
✔
208-Pin Plastic Quad Flat Pack (PQFP)
✔
✔
272-Pin Plastic Ball Grid Array (PBGA)
✔
✔
144-Pin Fine Ball Grid Array (FBGA)
✔
✔
208-Pin Plastic Quad Flat Pack (PQFP)
✔
✔
272-Pin Plastic Ball Grid Array (PBGA)
✔
✔
256-Pin Plastic Ball Grid Array (PBGA)
✔
✔
456-Pin Plastic Ball Grid Array (PBGA)
✔
✔
208-Pin Plastic Quad Flat Pack (PQFP)
✔
✔
256-Pin Plastic Ball Grid Array (PBGA)
✔
✔
456-Pin Plastic Ball Grid Array (PBGA)
✔
✔
208-Pin Plastic Quad Flat Pack (PQFP)
✔
✔
256-Pin Plastic Ball Grid Array (PBGA)
✔
✔
456-Pin Plastic Ball Grid Array (PBGA)
✔
✔
676-Pin Fine Ball Grid Array (FBGA)
✔
✔
A500K050 Device
A500K130 Device
A500K180 Device
A500K270 Device
Contact your Actel sales representative for package availability.
Applications: C = Commercial
Availability: ✔ = Available – Contact your Actel Sale’s representative for the latest
I = Industrial
availability information.
Pl a s t i c D e vi c e Re so u r ce s
User I/Os
PQFP
208-Pin
PBGA
272-Pin
PBGA
456-Pin
FBGA
144-Pin
FBGA
256-Pin
FBGA
676-Pin
A500K050
164
204
—
106
—
—
A500K130
164
204
306
106
192
—
A500K180
164
—
362
—
192
—
A500K270
164
—
362
—
192
440
Device
Package Definitions
PQFP = Plastic Quad Flat Pack, PBGA = Plastic Ball Grid Array, FBGA = Fine Ball Grid Array
v3.0
3
P r o A S IC ™ 5 0 0 K F a m ily
Pr oA S I C 50 0K A r c hi t ec tu re
The ProASIC 500K family’s proprietary architecture
provides granularity comparable to gate arrays. Unlike
SRAM-based FPGAs that utilize look-up tables or
architectural mapping during design, ProASIC device
designs are directly synthesized to gates. That streamlines
the design flow, increases design productivity, and
eliminates dependencies on vendor-specific design tools.
The ProASIC 500K device core
consists of a
Sea-of-Tiles™(Figure 1), each of which can be configured as
a 3-input logic function (e.g., NAND gate, D-Flip-Flop, etc.)
by programming the appropriate Flash switch
interconnections (See Figure 2 on page 5 and Figure 3 on
page 5). Gates and larger functions are connected with four
levels of routing hierarchy. Flash memory bits are
distributed throughout the device to provide nonvolatile,
reconfigurable interconnect programming. Flash switches
are programmed to connect signal lines to the appropriate
logic cell inputs and outputs. Dedicated high-performance
lines are connected as needed for fast, low-skew global
signal distribution throughout the core. Maximum core
utilization is possible for virtually any design.
Programming options include synchronous or asynchronous
operation, two-port RAM configurations, user defined depth
and width, and parity generation or checking. Table 3 on
page 12 lists the 24 basic memory configurations.
Fl as h S wi t ch
In the ProASIC Flash switch, two transistors share the
floating gate which stores the programming information.
One is the Flash transistor which stores programming
information and in which erasing is performed. The second
transistor connects/separates routing elements or
configuration signal lines (Figure 2 on page 5).
L o gic T il e
The logic tile cell, Figure 3 on page 5, has three inputs (any
or all of which can be inverted) and one output (which can
connect to both ultra fast local and efficient long line
routing resources). Any three-input one-output logic
function, except a three input XOR, can be configured as
one tile. Two multiplexers with feedback paths through the
NAND gates allow the tile to be configured as a latch with
clear or set, or as a flip-flop with clear or set. Thus, the tiles
can flexibly map logic and sequential gates of a design.
The ProASIC 500K devices also contain embedded two-port
SRAM blocks with built-in FIFO/RAM control logic.
256x9 Two-Port SRAM
or FIFO Block
Logic Tile
Figure 1 • The ProASIC Device Architecture
4
v3.0
Pr o A SI C ™ 5 0 0 K F a m il y
Sel 1
Sel 2
Floating Gate
Switch In
Word
Switch Out
Figure 2 • Flash Switch
Local Routing
In 1
Efficient Long
Line Routing
In 2 (CLK)
In 3 (Reset)
Figure 3 • Core Logic Tile
Rou ti ng Res our ces
The routing structure of the ProASIC 500K devices is
designed to provide high performance through a flexible
four-level hierarchy of routing resources: ultra fast local
resources, efficient long line resources, high speed very long
line resources, and high performance global networks.
The ultra fast local resources are dedicated lines that allow
the output of each tile to connect directly to every input of
the eight surrounding tiles (Figure 4 on page 6).
The efficient long line resources provide routing for longer
distances and higher fanout connections. These resources
vary in length (spanning 1, 2, or 4 tiles), run both vertically
and horizontally, and cover the entire ProASIC device
(Figure 5 on page 6). Each tile can drive signals onto the
efficient long line resources, while the resources can also
access every input of any tile. The routing software
automatically inserts active buffers to limit loading effects
due to distance and fanout.
and horizontally, providing multiple access to each group of
tiles throughout the device (Figure 6 on page 7).
The high performance global networks’ clock trees are low
skew, high fanout nets that are accessible from four
dedicated pins or from internal logic (Figure 7 on page 8).
These nets are typically used to distribute clocks, resets,
and other high fanout nets requiring a minimum skew. The
global networks are implemented as clock trees, and signals
can be introduced at any junction. These can be employed
hierarchically, with signals accessing every input on all
tiles.
Cl ock Re sou rce s
ProASIC’s high-drive routing structure provides four global
networks, each accessible from either a dedicated global
pad or a logic tile. Global lines provide optimized worst-case
clock skew of 0.3ns.
The high speed very long line resources, spanning across
the entire device with minimal delay, are used to route very
long or very high fanout nets. These resources run vertically
v3.0
5
P r o A S IC ™ 5 0 0 K F a m ily
L
Inputs
L
L
L
Ultra Fast
Local Lines
(connect a tile to the
adjacent tile, I/O buffer,
or memory block)
Output
L
L
L
L
L
Figure 4 • Ultra Fast Local Resources
4 Tiles Long
1 Tile Long
2 Tiles Long
Logic Tile
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
1 Tile Long
2 Tiles Long
4 Tiles Long
Logic Cell
L
L
L
L
L
Figure 5 • Efficient Long Line Resources
6
v3.0
L
Pr o A SI C ™ 5 0 0 K F a m il y
High Speed Very Long Line Resouces
I/O RING
I/O RING
PAD RING
PAD RING
PAD RING
Figure 6 • High Speed Very Long Line Resources
v3.0
7
P r o A S IC ™ 5 0 0 K F a m ily
Cl ock T ree s
One of the main architectural benefits of ProASIC is the set
of power and delay friendly global networks. The ProASIC
family offers 4 global trees. Each of these trees is based on a
network of spines and ribs that reach all the tiles in their
regions (Figure 7). This flexible clock tree architecture
allows users to map up to 56 different internal/external
clocks in an A500K270 device (Table 1).
The flexible use of the ProASIC clock spine allows the
designer to cope with several design requirements. Users
implementing clock resource intensive applications can
easily route external or gated internal clocks using global
routing spines. Users can also drastically reduce delay
penalties and save buffering resources by mapping critical
high fanout nets to spines. For design hints on using these
features, refer to the Efficient Use of ProASIC Clock Trees
application note.
High Performace
Global Network
I/O RING
PAD RING
PAD RING
Low Skew
Global Networks
Global
Pads
Global
Pads
Global Spine
I/O RING
Global Ribs
Scope of Spine
PAD RING
Figure 7 • A500K130 Global Routing Resources
Table 1 • Number of Clock Spines
A500K050
A500K130
A500K180
A500K270
Top Spine Height
24
32
40
56
Tiles in Each Top Spine
768
1,024
1,280
1,792
Bottom Spine Height
32
40
56
64
1,024
1,280
1,792
2,048
Global Clock Networks (Trees)
4
4
4
4
Clock Spines/Tree
6
10
12
14
Total Spines
24
40
48
56
5,376
12,800
18,432
26,880
Tiles in Each Bottom Spine
Total Tiles
8
v3.0
Pr o A SI C ™ 5 0 0 K F a m il y
Inpu t/ Out put Blo cks
To meet complex system design needs, the ProASIC 500K
family offers devices with a large number of I/O pins, up to
440 user I/O pins on the A500K270. If the I/O pad is powered
at 3.3V, each I/O can be selectively configured at 2.5V and
3.3V threshold levels. Table 2 shows the available supply
voltage configurations. Figure 8 illustrates I/O interfaces
with other devices.
All I/Os also include an ESD protection circuit. Each I/O is
tested according to the following model:
• Human Body Model (HBM)
2.5V
3.3V
Input Tolerance
2.5V
3.3V, 2.5V
Output Drive
2.5V
3.3V, 2.5V
Note:
2.5V
Device
2.5V
Device
2.5V
Device
ProASIC
VDDL = 2.5V
VDDP = 3.3V
VDDL is always 2.5V.
The I/O pads are fully configurable to provide the maximum
flexibility and speed. Each pad can be configured as an
input, an output, a three-state driver, or a bidirectional
buffer (Figure 9). I/O pads configured as inputs have the
following features:
ProASIC
VDDL = 2.5V
VDDP = 2.5V
2.5V
Device
Table 2 • ProASIC Power Supply Voltages
VDDP
2000V
(Per Mil Std 883 Method 3015)
3.3V
Device
3.3V
Device
Figure 8 • I/O Interfaces
• Individually selectable 2.5V or 3.3V threshold levels1
3.3V/2.5V
Signal Control
• Optional pull-up resistor
I/O pads configured as outputs have the following features:
Pull-up
Control
Y
• Individually selectable 2.5V or 3.3V compliant output
signals1
EN
• 3.3V PCI compliant
Pad
• Ability to drive LVTTL and LVCMOS levels
A
• Selectable drive strengths
• Selectable slew rates
3.3V/2.5V Signal Control
Drive Strength and Slew
Rate Control
• Tristate
I/O pads configured as bidirectional buffers have the
following features:
• Individually selectable 2.5V or 3.3V compliant output
signals and threshold levels1
• 3.3V PCI compliant
• Optional pull-up resistor
• Selectable drive strengths
• Selectable slew rates
• Tristate
1. If pads are configured for 2.5V operation, they are compliant with 2.5V level
signals as defined by JEDEC JESD 8-5. If pads are configured for 3.3V operation,
they are compliant to the standard as defined by JEDEC JESD 8-A (LVTTL and
LVCMOS).
Figure 9 • I/O Block Schematic Representation
Bo undar y S can
ProASIC devices are compatible with IEEE Standard 1149.1,
which defines a set of hardware architecture and
mechanisms for cost-effective board-level testing. The basic
ProASIC boundary-scan logic circuit is composed of the TAP
(test access port), TAP controller, test data registers, and
instruction register (Figure 10 on page 10). This circuit
supports all mandatory IEEE 1149.1 instructions (EXTEST,
SAMPLE/PRELOAD and BYPASS), the optional IDCODE
instructions and private instructions used for device
programming and factory testing.
Each test section is accessed through the TAP, which has
five associated pins: TCK (test clock input), TDI and TDO
(test data input and output), TMS (test mode selector) and
TRST (test reset input). TMS, TDI, and TRST are equipped
v3.0
9
P r o A S IC ™ 5 0 0 K F a m ily
register is selected when no other register needs to be
accessed in a device; this speeds up test data transfer to
other devices in a test data path. The 32-bit device
identification register is a shift register with four fields
(LSB, ID number, part number and version). The
boundary-scan register observes and controls the state of
each I/O pin.
with pull-up resistors to ensure proper operation when no
input data is supplied to them. These pins are dedicated for
boundary-scan test usage.
The TAP controller is a four-bit state machine (16 states)
that operates as shown in Figure 11 on page 11. The ‘1’s and
‘0’s represent the values that must be present at TMS at a
rising edge of TCK for the given state transition to occur. IR
and DR indicate that the instruction register or the data
register is operating in that state.
Each I/O cell has three boundary-scan register cells, each
with a serial-in, serial-out, parallel-in, and parallel-out pin.
The serial pins are used to serially connect all the
boundary-scan register cells in a device into a boundary
scan register chain which starts at the TDI pin and ends at
the TDO pin. The parallel ports are connected to the
internal core logic tile and the input, output, and control
ports of an I/O buffer to capture and load data into the
register to control or observe the logic state of each I/O.
The TAP controller receives two control inputs (TMS and
TCK) and generates control and clock signals for the rest of
the test logic architecture. On power up, the TAP controller
enters the Test-Logic-Reset state. To guarantee a reset of
the controller from any of the possible states, TMS must
remain high for five TCK cycles. The TRST pin may also be
used to asynchronously place the TAP controller in the
Test-Logic-Reset state.
Details on the implementation of boundary-scan testing on
ProASIC devices can be found in the Actel application note,
Using JTAG Boundary-Scan with ProASIC Devices.
ProASIC devices support three types of test data registers:
bypass, device identification, and boundary scan. The bypass
I/O
I/O
I/O
I/O
I/O
TDI
Test Data
Registers
TAP
Controller
Instruction
Register
Device
Logic
TDO
I/O
TRST
I/O
TMS
I/O
TCK
I/O
Bypass Register
I/O
I/O
I/O
Figure 10 • ProASIC JTAG Boundary Scan Test Logic Circuit
10
v3.0
I/O
I/O
Pr o A SI C ™ 5 0 0 K F a m il y
1
Test-Logic
Reset
0
0
Run-Test/
Idle
1
1
Select-DRScan
0
Scan
0
Capture-DR
1
Capture-IR
1
0
0
0
Shift-DR
0
0
1
1
0
0
Pause-IR
1
1
Exit2-DR
0
Exit2-IR
1
Update-DR
0
1
1
Exit-IR
Pause-DR
0
0
Shift-IR
1
Exit-DR
1
Select-IR-
1
Update-IR
1
0
Figure 11 • TAP Controller State Diagram
U se r S e c u r it y
E m bedde d M em or y Con f igu rat i ons
The ProASIC 500K devices have read-protect bits that, once
programmed, lock the entire programmed contents from
being read externally. The user can only reprogram the
device using the security key. This protects it from being
read back and duplicated. Since programmed data is stored
in nonvolatile Flash cells (which act like very small
capacitors), rather than in the wiring, physical
deconstruction cannot be used to compromise data. That
approach would be further hampered by the placement of
the flash cells, beneath the four metal layers (whose
removal could not be accomplished without disturbing the
charge on the floating gate). This is the highest security
provided in the industry. For more information, refer to the
Design Security for Nonvolatile Flash and Antifuse FPGAs
white paper for more information.
The embedded memory in the ProASIC 500K family provides
great configuration flexibility. While other programmable
vendors typically use single port memories that can only be
transformed into two-port memories by sacrificing half the
memory, each ProASIC block is designed and optimized as a
two-port memory (1 read, 1 write). This provides 63k bits of
total memory for two-port and single port usage in the
A500K270 device.
E m bedde d M em or y Flo orp lan
The embedded memory is located across the top of the
device (see Figure 1 on page 4) in 256x9 blocks. Depending
upon the device, 6 to 28 blocks are available to support a
variety of memory configurations. Each block can be
programmed as an independent memory or combined
(using dedicated memory routing resources) to form larger,
more complex memories.
Each memory can be configured as FIFO or SRAM, with
independent selection of synchronous or asynchronous read
and write ports (Table 3 on page 12). Multiple write ports
are not supported. Additional characteristics include
programmable flags as well as parity check and generation.
Figure 12 and Figure 13 on page 13 show the block diagrams
of the basic SRAM and FIFO blocks. These memories are
designed to operate up to 133 MHz when operated
individually. Each block contains a 256 word deep by 9-bit
wide (1 read, 1 write) memory. The memory blocks may be
combined in parallel to form wider memories or stacked to
form deeper memories (Figure 14 on page 14). This
provides optimal bit widths of 9 (1 block), 18, 36, and 72,
and optimal depths of 256, 512, 768, and 1024. Refer to the
Macro Library Guide for more information.
v3.0
11
P r o A S IC ™ 5 0 0 K F a m ily
Figure 15 on page 14 gives an example of optimal memory
usage. Ten blocks with 23,040 bits have been used to
generate three memories of various widths and depths.
Figure 16 on page 14 shows how memory can be doubled up
to create extra read ports. In this example, 10 out of 28
blocks of the A500K270 yield an effective 6,912 bits of
multiple port memories. The ACTgen™ software facilitates
building wider and deeper memories for optimal memory
usage.
Table 3 • Basic Memory Configurations
Type
Write Access
Read Access
Parity
Library Cell Name
RAM
RAM
RAM
RAM
RAM
RAM
RAM
RAM
RAM
RAM
RAM
RAM
FIFO
FIFO
FIFO
FIFO
FIFO
FIFO
FIFO
FIFO
FIFO
FIFO
FIFO
FIFO
Asynchronous
Asynchronous
Asynchronous
Asynchronous
Asynchronous
Asynchronous
Synchronous
Synchronous
Synchronous
Synchronous
Synchronous
Synchronous
Asynchronous
Asynchronous
Asynchronous
Asynchronous
Asynchronous
Asynchronous
Synchronous
Synchronous
Synchronous
Synchronous
Synchronous
Synchronous
Asynchronous
Asynchronous
Synchronous Transparent
Synchronous Transparent
Synchronous Pipelined
Synchronous Pipelined
Asynchronous
Asynchronous
Synchronous Transparent
Synchronous Transparent
Synchronous Pipelined
Synchronous Pipelined
Asynchronous
Asynchronous
Synchronous Transparent
Synchronous Transparent
Synchronous Pipelined
Synchronous Pipelined
Asynchronous
Asynchronous
Synchronous Transparent
Synchronous Transparent
Synchronous Pipelined
Synchronous Pipelined
Checked
Generated
Checked
Generated
Checked
Generated
Checked
Generated
Checked
Generated
Checked
Generated
Checked
Generated
Checked
Generated
Checked
Generated
Checked
Generated
Checked
Generated
Checked
Generated
RAM256x9AA
RAM256x9AAP
RAM256xAST
RAM256xASTP
RAM256x9ASR
RAM256x9ASRP
RAM256x9SA
RAM256xSAP
RAM256x9SST
RAM256x9SSTP
RAM256x9SSR
RAM256x9SSRP
FIFO256xAA
FIFO256x9AAP
FIFO256xAST
FIFO256x9ASTP
FIFO256x9ASR
FIFO256x9ASRP
FIFO256x9SA
FIFO256xSAP
FIFO256x9SST
FIFO256x9SSTP
FIFO256x9SSR
FIFO256x9SSRP
12
v3.0
Pr o A SI C ™ 5 0 0 K F a m il y
DI <0:8>
WADDR <0:7>
WRB
WBLKB
WCLKS
SRAM
(256 X 9)
Sync Write &
Sync Read
Ports
DO <0:8>
RADDR <0:7>
WRB
RDB
RBLKB
RCLKS
WBLKB
PARODD
DI <0:8>
WADDR <0:7>
WRB
WBLKB
WCLKS
Sync Write
&
Async Read
Ports
DI <0:8>
WADDR <0:7>
RADDR <0:7>
RDB
WRB
WBLKB
RBLKB
RPE
WPE
RDB
RBLKB
RPE
DO <0:8>
SRAM
(256 X 9)
Async Write
&
Sync Read
Ports
RADDR <0:7>
RDB
RBLKB
RCLKS
RPE
WPE
PARODD
Note:
RADDR <0:7>
PARODD
DO <0:8>
SRAM
(256 X 9)
SRAM
(256 X 9)
Async Write
&
Async Read
Ports
WPE
RPE
WPE
DO <0:8>
DI <0:8>
WADDR <0:7>
PARODD
For memory block interface signal definitions, see Table 4 on page 28.
Figure 12 • Example SRAM Block Diagrams
D1<0:8>
LEVEL<0:7>
D1 <0:8>
LEVEL <0:7>
LGDEP<0:2>
WRB
WBLKB
D0 <0:8>
LGDEP<0:2>
WRB
WBLKB
RDB
FIFO
(256 X 9)
Sync Write &
Sync Read
Ports
RBLKB
WPE
RPE
FULL
RDB
EMPTY
RBLKB
EQTH
PARODD
D0 <0:8>
FIFO
(256 X 9)
Sync Write &
Async Read
Ports
RPE
FULL
EMPTY
EQTH
PARODD
GEQTH
WPE
GEQTH
WCLKS
WCLKS
RESET
RCLKS
D1 <0:8>
LEVEL <0:7>
LGDEP<0:2>
WRB
WBLKB
RDB
RBLKB
D1 <0:8>
D0 <0:8>
FIFO
(256 X 9)
Async Write &
Sync Read
Ports
PARODD
LEVEL <0:7>
LGDEP<0:2>
WRB
WBLKB
WPE
RPE
FULL
EMPTY
RDB
EQTH
D0 <0:8>
FIFO
(256 X 9)
Async Write &
Async.Read
Ports
WPE
RPE
FULL
EMPTY
EQTH
RBLKB
GEQTH
GEQTH
PARODD
RCLKS
Note:
For memory block FIFO signal definitions, see Table 5 on page 34.
Figure 13 • Basic FIFO Block Diagrams
v3.0
13
P r o A S IC ™ 5 0 0 K F a m ily
9
Word Width
9
9
9
9
9
9
9
256
9
256
256
…
256
256
256
256
256
Word
256
Depth
88 blocks
Figure 14 • A500K270 Memory Block Architecture
Word Width
9
9
Word 256
Depth
256
256
256
9
9
9
256
256 words x 18bits, 1 read, 1 write
512 words x 18bits, 1 read, 1 write
256
256
1,024 words x 9bits, 1 read, 1 write
Total Memory Blocks Used = 10
Total Memory Bits = 23,040
Figure 15 • Example Showing Memories with Different Width and Depth
Word Width
9
Write Port
9
9
Word
Depth
9
Write Port
256
256
Read Ports
256 words x 9bits, 2 read, 1 write
Read Ports
512 words x 9bits, 4 read, 1 write
Total Memory Blocks Used = 10
Total Memory Bits = 6,912
Figure 16 • Multiport Memory Usage
14
v3.0
Pr o A SI C ™ 5 0 0 K F a m il y
D es i gn E nv i r on m e nt
design into the selected device/package, and provides
postlayout timing information for backannotated simulation
or static timing analysis. The Designer software also
contains very powerful layout capabilities for the
experienced user. A very comprehensive set of floor
planning, timing, and routing constraints gives users
optimal control over the tools’ capabilities, enabling them
to meet their tight design requirements. Users have access
to constraints that allow them full control of the resources
management. See the Designer User’s Guide for various
constraints and their uses.
ProASIC devices are supported by Actel’s Designer Series
software, as well as all of the industry standard third party
CAE tools. Unlike other FPGA vendors, no special HDL
instantiation or device related attributes are needed when
using the standard VHDL or Verilog HDL design flow with
ProASIC. As a result, designers can utilize the technology
independent of HDL code for ProASIC devices. This feature
and the ASIC-like design flow ensure a seamless transition
to an ASIC implementation, if production volumes warrant a
migration to a gate array or a standard cell product
(Figure 17).
The ProASIC devices are also fully supported by Actel’s
Libero design tool suite. Libero is a design management
environment that integrates the needed design tools,
streamlines the design flow, manages all design and log
files, and passes the necessary design data between tools.
Libero includes Synplify, ViewDraw, Actel’s Designer Series,
ModelSim HDL Simulator, and WaveFormer Lite.
ACTgen automatically generates memories and FIFOs with
all the various options (width, depth, access mode, parity
checking or generation, flags, etc.). For a synchronous read
port, the user can choose whether the output is pipelined or
transparent. ACTgen allows any bit width up to 252 (for the
A500K270 device). ACTgen also enables optimal memory
stacking in 256-word increments. However, any word depth
may be combined for up to 7,168 words. ACTgen allows the
user to generate distributed memory.
Once the design is finalized, the programming bitstream is
downloaded into the device programmer for ProASIC part
programming. ProASIC 500K devices can be programmed
with the Silicon Sculptor II and Flash Pro programmers.
On-board programming is also available. Refer to the
In-System Programming ProASIC 500K with Silicon
Sculptor application note for more information.
Place and route is performed by Actel’s Designer software.
Available for UNIX workstations and PC platforms, Designer
software accepts standard netlists in Verilog, VHDL, and in
EDIF format, performs timing driven place and route of the
Design Creation/Verification
High-Level
Design
(Verilog or VHDL)
Verilog or VHDL Simulator
Synthesis Tool
Synthesis
Library
Forward
Constraints
Simulation
Library
Structural
Netlist
Design Implementation
P&R User
Constraints
Designer
ACTgen
(P&R Tool)
Backannotation
Programming
Programming
Data
Silicon
Sculptor II
Flash
Pro
Timing and Simulation
SDF
Timing
File
Simulation
Library
Timing
Libraries
Verilog or VHDL Simulator
Timing
Analyzer
Figure 17 • ProASIC Design Flow
v3.0
15
P r o A S IC ™ 5 0 0 K F a m ily
Pa c ka ge T he r m a l C ha r a ct e r i s t i c s
The ProASIC 500K family is available in a number of
package types. Actel has selected packages based on high
pin count, reliability factors, and superior thermal
characteristics.
Thermal resistance indicates the ability of a package to
conduct heat away from the silicon, through the package, to
the surrounding air. Junction-to-ambient thermal resistance
is measured in degrees Celsius/Watt and is represented as
Theta ja (Θja). The lower the thermal resistance, the more
efficiently a package will dissipate heat.
A package’s maximum allowed power (P) is a function of
maximum junction temperature (TJ), maximum ambient
operating temperature (TA), and junction-to-ambient
thermal resistance Θja. Maximum junction temperature is
the maximum allowable temperature on the active surface
of the IC and is 110° C. P is defined as:
TJ – TA
P = ---------------Θ ja
Θja is a function of the rate (in linear feet per minute –
lfpm) of airflow in contact with the package. When the
estimated power consumption exceeds the maximum
allowed power, other means of cooling, such as increasing
the airflow rate, must be used.
Pin Count
Θjc
Θja Still Air
Θja 300 ft/min
Units
Plastic Quad Flat Pack (PQFP)
208
8
30
23
°C/W
PQFP with Heatspreader
208
3.8
20
17
°C/W
Plastic Ball Grid Array (PBGA)
272
3
20
16.5
°C/W
Plastic Ball Grid Array (PBGA)
456
3
18
14.5
°C/W
Fine Ball Grid Array (FBGA)
144
3.8
38.8
26.7
°C/W
Fine Ball Grid Array (FBGA)
256
3.0
30
25
°C/W
Package Type
16
v3.0
Pr o A SI C ™ 5 0 0 K F a m il y
C al c ul a t i n g P o w er Di s si p a t i on
Pmemory = P6 * Nmem * Fmem
ProASIC device power is calculated with both a static and
an active component. The active component is a function of
both the number of tiles utilized and the system speed.
Power dissipation can be calculated using the following
formula:
where:
Ptotal = Pdc + Pac
where:
P6
= 100.0 uW/MHz
is the average power consumption of a memory
block normalized per MHz of the clock
= the number of RAM/FIFO blocks (1 block = 256
words * 9 bits)
= the clock frequency of the memory
Nmem
Fmem
Pdc = 10 mW
Pac = Pclock + Pstorage + Plogic + Pios + Pmemory
Pclock = (P1 + P2 * s) * Fs
where:
P1 = 2500 uW/MHz
the basic power consumption of the clock-tree
normalized per MHz of the clock
P2 = 1.0 uW/MHz
the extra power consumption of the clock-tree
per storage-tile normalized per MHz of the clock
s = the number of storage tiles clocked by this clock
Fs = the clock frequency
The following is an example using a shift register design
with 13,440 storage tiles and 0 logic tile. This design has one
clock at 10 MHz, and 24 outputs toggling at 5 MHz for a
A500K270.
Fs = 10 MHz
s = 13,440
=>
Pclock = (P1 + P2 * s) * Fs = 159.4 mW
ms = 13,440 (in a shift register 100% of storage-tiles are
toggling at each clock cycle and Fs = 10 MHz
=> Pstorage = P5 * ms * Fs = 134.4 mW
mc = 0 (no logic tile in this shift-register)
=>
Pstorage = P5 * ms * Fs
where:
Fp = 5 MHz
P5 = 1.0 uW/MHz
the average power consumption of a storage-tile
normalized per MHz of its output
ms = the number of storage tiles switching at each Fs
cycle
Fs = the clock frequency
Cload = 40 pF
VDDP = 3.3 V
and p = 24
Plogic = 0 mW
Pios = (P4 + Cload * Vddp^2) * p * Fp = 54.1 mW
=>
Nmem = 0 (no RAM/FIFO in this shift-register)
Pmemory = 0 mW
=>
Plogic = P3 * mc * Fs
where:
• Pac = Pclock + Pstorage + Plogic + Pios + Pmemory = 347.9 mW
P3 = 3.0 uW/MHz
the average power consumption of a logic-tile
normalized per MHz of its output
mc = the number of logic tiles switching at each Fs
cycle
Fs = the clock frequency
• Pdc = 10 mW
• Ptotal = Pdc + Pac = 357.9 mW
P ower Cons um pt io n o f a 500K De vi ce
Power Consumption (mW)
1000
Pios = (P4 + Cload * Vddp^2) * p * Fp
where:
P4
Cload
p
Fp
= 15.0 uW/MHz
the average power consumption of an output-pad
normalized per MHz of its output (internal powerload is not included)
= the output load
= the number of outputs
= the average output frequency
ProASIC
SRAM
900
800
700
600
500
400
300
200
110 instances of 16-bit binary counters
100
0
20
30
40
50
60
70
80
90
100
120
Frequency (MHz)
v3.0
17
P r o A S IC ™ 5 0 0 K F a m ily
O pe r a t i ng C on d i t i on s
Abs ol ut e M axim u m Ra ti ngs
Parameter
Condition
Minimum
Maximum
Units
Supply Voltage Core (VDDL)
–0.3
3.0
V
Supply Voltage I/O Ring (VDDP)
–0.3
4.0
V
DC Input Voltage
–0.3
VDDP + 0.3
V
PCI DC Input Voltage
–0.5
VDDP + 0.5
V
–10
+10
mA
DC Input Clamp Current
Note:
VIN < 0 or VIN> VDDP
Stresses beyond those listed in the Absolute Maximum Ratings table can cause permanent damage to the device. Exposure to maximum
rated conditions for extended periods can adversely affect device reliability. Operation of the device at these conditions or any others
beyond those listed in the Recommended Operating Conditions is not implied.
P rog ra m mi ng and S to ra ge T em p er atu re LIm i ts
Storage Temperature
Programming
Cycles
Program
Retention
Min.
Max.
Commercial
50
20 years
–55°C
110°C
Industrial
50
20 years
–55°C
110°C
Product Grade
S uppl y Vol t ages
Mode
VDDL
VDDP
VPP
VPN
Single Voltage
2.5V
2.5V
2.5V ≤ Vpp ≤ 16.5V
–12V≤ VPN ≤ 0V
Mixed Voltage
2.5V
3.3V
3.3V ≤ Vpp ≤ 16.5V
–12V ≤VPN ≤ 0V
Rec om m ende d Op era ti ng Con dit io ns
Parameter
Symbol
Limits
VDDL & VDDP
VDDP
VDDL
TA
TJ
fCLOCK
fRAM
2.3V to 2.7V
3.0V to 3.6V
2.3V to 2.7V
0°C to 70°C
110°C
250 MHz
150 MHz
VDDL & VDDP
VDDP
VDDL
TA
TJ
fCLOCK
fRAM
2.3V to 2.7V
3.0V to 3.6V
2.3V to 2.7V
–40°C to 85°C
110°C
250 MHz
150 MHz
Commercial
DC Supply Voltage (2.5V I/Os)
DC Supply Voltage (Mixed 2.5V and 3.3V I/Os)
Operating Ambient Temperature Range
Maximum Operating Junction Temperature
Maximum Clock Frequency
Maximum RAM Frequency
Industrial
DC Supply Voltage (2.5V I/Os)
DC Supply Voltage (Mixed 2.5V and 3.3V I/Os)
Operating Ambient Temperature Range
Maximum Operating Junction Temperature
Maximum Clock Frequency
Maximum RAM Frequency
18
v3.0
Pr o A SI C ™ 5 0 0 K F a m il y
DC E le ct ri cal S peci fic at ions ( V D D P = 2. 5V)
Symbol
Parameter
Conditions
VDDP, VDDL Supply Voltage
Output High Voltage
Min.
2.3
High Drive (OB25LPH)
IOH = –2.0 mA
IOH = –4.0 mA
IOH = –8.0 mA
2.1
2.0
1.7
Low Drive (OB25LPL)
IOH = –1.0 mA
IOH = –2.0 mA
IOH = –4.0 mA
2.1
2.0
1.7
VOH
Typ.
Max.
Units
2.7
V
V
Output Low Voltage
High Drive (OB25LPH)
VOL
Low Drive (OB25LPL)
IOL = 5.0 mA
IOL = 10.0 mA
IOL = 15.0 mA
0.2
0.4
0.7
IOL = 2.0 mA
IOL = 3.5 mA
IOL = 5.0 mA
0.2
0.4
0.7
V
VIH
Input High Voltage
1.7
VDDP + 0.3
V
VIL
Input Low Voltage
–0.3
0.7
V
IIN2
Input Current
25
250
µA
10
µA
IDDQ
Quiescent Supply Current
VIN = VSS3 or VDDL
10
mA
IOZ
3-State Output Leakage Current
VOH = VSS or VDDL
10
µA
High Drive (OB25LPH)
VIN = VSS
120
Low Drive (OB25LPL)
VIN = VSS
100
High Drive (OB25LPH)
VIN = VDDP
100
Low Drive (OB25LPL)
VIN = VDDP
30
with pull-up
without pull-up
4.0
Output Short Circuit Current High
IOSH
2
mA
Output Short Circuit Current Low
IOSL
mA
CI/O
I/O Pad Capacitance
10
pF
CCLK
Clock Input Pad Capacitance
10
pF
Notes:
1. All process conditions. Junction Temperature: –40 to +110°C.
2. Current is negative.
3. No pull-up resistor.
v3.0
19
P r o A S IC ™ 5 0 0 K F a m ily
DC E le ct ri cal S peci fic at ions ( V D D P = 3. 3V)
Symbol
Parameter
VDDP
Supply Voltage
3.0
3.6
V
VDDL
Supply Voltage, Logic Array
2.3
2.7
V
Output High Voltage
3.3V I/O, High Drive (OB33P)
Conditions
Min.
IOH = –5.0 mA
IOH = –10.0 mA
0.9VDDP
2.4
IOH = –2.5 mA
IOH = –5.0 mA
0.9VDDP
2.4
IOH = –200µA
IOH = –10.0 mA
IOH = –2.0 mA
2.1
2.0
1.7
IOH = –100µA
IOH = –1.0 mA
IOH = –2.0 mA
2.1
2.0
1.7
Typ.
Max.
Units
V
3.3V I/O, Low Drive (OB33L)
VOH
Output High Voltage
2.5V I/O, High Drive (OB25H)
V
2.5V I/O, Low Drive (OB25L)
Output High Voltage
3.3V I/O, High Drive (OB33P)
IOL = 7.5 mA
IOL = 12.0 mA
0.1VDDP
0.4
IOL = 4.0 mA
IOL = 5.0 mA
0.1VDDP
0.4
IOL = 5.0 mA
IOL = 12.0 mA
IOL = 16.0 mA
0.2
0.4
0.7
IOL = 2.5 mA
IOL = 5.0 mA
IOL = 8.0 mA
0.2
0.4
0.7
V
3.3V I/O, Low Drive (OB33L)
VOL
Output High Voltage
2.5V I/O, High Drive (OB25H)
V
2.5V I/O, Low Drive (OB25L)
VIH
Input High Voltage
3.3V LVTTL/LVCMOS
2.5V Mode
2
1.7
VDDP + 0.3
VDDP + 0.3
VIL
Input Low Voltage
3.3V LVTTL/LVCMOS
2.5V Mode
–0.3
–0.3
0.8
0.7
V
IIN2
Input Current
LVTTL/LVCMOS
LVTTL/LVCMOS
with pull-up
without pull-up
30
300
10
µA
µA
IDDQ
Quiescent Supply Current
VIN = VSS3 or VDDL
4.0
10
mA
IDDQI4
Incremental Quiescent Supply
Current
70
400
µA
IOZ
3-State Output Leakage Current
10
µA
VOH = VSS or VDDL
Notes:
1. All process conditions. Junction Temperature: –40 to +110°C.
2. Current is negative.
3. No pull-up resistor.
4. IDDQ is augmented by IDDQI for each 2.5V I/O when operating in a mixed voltage environment.
20
v3.0
V
Pr o A SI C ™ 5 0 0 K F a m il y
DC E le ct ri cal S peci fic at ions ( V D D P = 3. 3V) (Co nt inue d)
Symbol
IOSH
Parameter
2
IOSL
CI/O
Conditions
Min.
Typ.
Max.
Units
Output Short Circuit Current High
3.3V High Drive
3.3 Low Drive
200
140
2.5V High Drive
2.5 Low Drive
120
100
Output Short Circuit Current Low
3.3V High Drive
3.3 Low Drive
160
150
2.5V High Drive
2.5 Low Drive
160
50
I/O Pad Capacitance
10
pF
10
pF
Min.
Max.
Units
mA
mA
CCLK
Clock Input Pad Capacitance
Notes:
1. All process conditions. Junction Temperature: –40 to +110°C.
2. Current is negative.
3. No pull-up resistor.
4. IDDQ is augmented by IDDQI for each 2.5V I/O when operating in a mixed voltage environment.
DC S pec if i cat ion s (3.3 V P C I Op era ti on)
Symbol
Parameter
VDDL
Supply Voltage for Core
2.3
2.7
V
VDDP
Supply Voltage for I/O Ring
3.0
3.6
V
VIH
Input High Voltage
0.5VDPP
VDPP + 0.5
V
VIL
Input Low Voltage
–0.5
0.3VDDP
V
IIPU
Input Pull-up
Condition
Voltage1
IIL
Input Leakage
VOH
VOL
0.7VDDP
Current2
0 < VIN < VCCI
–10
Output High Voltage
IOUT = –500 µA
0.9VDPP
Output Low Voltage
IOUT = 1500 µA
Capacitance3
CIN
Input Pin
CCLK
CLK Pin Capacitance
5
V
+10
µA
V
0.1VDPP
V
10
pF
12
pF
Notes:
1. This specification should be guaranteed by design. It is the minimum voltage to which pull-up resistors are calculated to pull a floated
network. Applications sensitive to static power utilization should assure that the input buffer is conducting minimum current at this
input voltage.
2. Input leakage currents include hi-Z output leakage for all bidirectional buffers with tristate outputs.
3. Absolute maximum pin capacitance for a PCI input is 10 pF (except for CLK).
v3.0
21
P r o A S IC ™ 5 0 0 K F a m ily
AC S pec if i cat ion s (3.3 V P C I Op era ti on)
Symbol
Parameter
Condition
Min.
0 < VOUT ≤ 0.3VCCI 1
Switching Current High
IOH(AC)
0.3VCCI ≤ VOUT < 0.9VCCI
1
mA
(–17.1 + (VDDP – VOUT))
mA
Equation A
on page 23
VOUT = 0.7VCC 2
–32VCCI
VCCI > VOUT ≥ 0.6VCCI 1
Switching Current Low
IOL(AC)
0.6VCCI > VOUT > 0.1VCCI
VOUT = 0.18VCC 2
ICL
Low Clamp Current
–3 < VIN ≤ –1
ICH
High Clamp Current
VCCI + 4 > VIN ≥ VCCI + 1
slewR
slewF
1
Output Rise Slew Rate
Output Fall Slew Rate
mA
16VDDP
mA
(26.7VOUT)
mA
Equation B
on page 23
0.18VCCI > VOUT > 0 1, 2
(Test Point)
Units
–12VCCI
0.7VCCI < VOUT < VCCI 1, 2
(Test Point)
Max.
38VCCI
mA
–25 + (VIN + 1)/0.015
mA
25 + (VIN – VDDP – 1)/0.015
mA
0.2VCCI to 0.6VCCI load
3
1
4
V/ns
0.6VCCI to 0.2VCCI load
3
1
4
V/ns
Notes:
1. Refer to the V/I curves in Figure 18 on page 23. Switching current characteristics for REQ# and GNT# are permitted to be one half of that
specified here; i.e., half size output drivers may be used on these signals. This specification does not apply to CLK and RST#, which are
system outputs. “Switching Current High” specifications are not relevant to SERR#, INTA#, INTB#, INTC#, and INTD#, which are open drain
outputs.
2. Maximum current requirements must be met as drivers pull beyond the last step voltage. Equations defining these maximums (A and B)
are provided with the respective diagrams in Figure 18 on page 23. The equation defined maxima should be met by design. In order to
facilitate component testing, a maximum current test point is defined for each side of the output driver.
3. This parameter is to be interpreted as the cumulative edge rate across the specified range, rather than the instantaneous rate at any point
within the transition range. The specified load (diagram below) is optional; i.e., the designer may elect to meet this parameter with an
unloaded output per the latest revision of the PCI Local Bus Specification. However, adherence to both maximum and minimum
parameters is required (the maximum is no longer simply a guideline). Rise slew rate does not apply to open drain outputs.
pin
1/2 in. max.
output
buffer
10 pF
1k Ω
pin
output
buffer
22
1k Ω
10 pF
v3.0
Pr o A SI C ™ 5 0 0 K F a m il y
Figure 18 shows the 3.3V PCI V/I curve and the minimum
and maximum PCI drive characteristics of the ProASIC
family.
150.0
IOL MAX Spec
100.0
Current (mA)
IOL
50.0
IOL MIN Spec
IOH MIN Spec
0.0
0
–50.0
0.5
1
1.5
2
2.5
3
3.5
4
IOH
–100.0
IOH MAX Spec
–150.0
Voltage Out (V)
Figure 18 • 3.3V PCI V/I Curve for ProASIC Family
Equation A
Equation B
IOL = (256/VCCI) * VOUT * (VCCI – VOUT)
for 0V < VOUT < 0.18 VCCI
IOH = (98.0/VCCI) * (VOUT – VCCI) * (VOUT + 0.4VCCI)
for 0.7 VCCI < VOUT < VCCI
Ti m i ng C ha r a ct e r i s t i c s
Timing characteristics for ProASIC 500K devices fall into
three categories: family dependent, device dependent, and
design-dependent. The input and output buffer
characteristics are common to all ProASIC 500K family
members. Internal routing delays are device-dependent.
Design dependency means that actual delays are not
determined until after placement and routing of the user’s
design are completed. Design timing attributes may then be
determined by using Timer, the Static Analysis tool
embedded into Designer software,
or performing
simulation with post-layout delays using ModelSim
Simulator integrated into Libero design environment.
Cr it ic al Net s and T ypi cal Ne ts
Propagation delays are expressed only for typical nets,
which are used for initial design performance evaluation.
Critical net delays can then be applied to the most critical
timing paths. Critical nets are determined by net property
assignment prior to placement and routing. Up to 6 percent
of the nets in a design may be designated as critical, while
more than 90% of the nets in a design are typical. User’s can
control priorities between critical nets and use routing
constraints, such as set_critical to focus the routing
optimization on the most critical ones. Please see the
Designer User’s Guide for more information on using
constraints.
Ve ry Lo ng Line s
Some nets in the design are very long lines marked using
VLLs, which are special routing resources that span
multiple rows, columns, or modules. This increases
capacitance and resistance, resulting in longer net delays
for macros connected to long tracks. Typically, up to 6
percent of nets in a fully utilized device require long tracks.
Very long lines contribute between 4 and 8.4ns routing delay
depending on the fanout. This additional delay is
represented statistically in higher fanout routing delays.
T im in g D er at ing
Since ProASIC 500K devices are manufactured with a CMOS
process, device performance will vary with temperature,
voltage, and process. Minimum timing parameters reflect
maximum operating voltage, minimum operating
temperature, and optimal process variations. Maximum
timing parameters reflect minimum operating voltage,
maximum operating temperature, and worst-case process
variations (within process specifications).
v3.0
23
P r o A S IC ™ 5 0 0 K F a m ily
T e m p er a t u r e an d Vo l t a ge D er at i n g Fa ct or s
( N or m ali z ed to W or st - Cas e Com m er ci al, T J = 70° C, V C C A = 2.3 V)
Junction Temperature (TJ)
VCCA
–55° C
–40° C
0° C
25° C
70° C
85° C
110° C
125° C
2.3V
0.84
0.86
0.91
0.94
1.00
1.02
1.05
1.07
2.5V
0.81
0.83
0.87
0.90
0.96
0.98
1.01
1.02
2.7V
0.77
0.79
0.84
0.86
0.92
0.93
0.96
0.98
S lew Ra te s Meas ur ed at C o u t = 10pF (T ot al Out put L oad), No mi nal P ow er S uppl ie s and 25° C
Type
Trig. Lev.
Rising Edge
Slew Rate
Falling Edge
Slew Rate
pS
V/nS
pS
V/nS
OB33PH
OB33PN
OB33PL
OB33LH
OB33LN
OB33LL
OB25HH
OB25HN
OB25HL
OB25LH
OB25LN
OB25LL
OB25LPHH
OB25LPHN
OB25LPHL
OB25LPLH
OB25LPLN
OB25LPLL
20%-60%
20%-60%
20%-60%
20%-60%
20%-60%
20%-60%
20%-60%
20%-60%
20%-60%
20%-60%
20%-60%
20%-60%
20%-60%
20%-60%
20%-60%
20%-60%
20%-60%
20%-60%
397
463
567
467
620
813
750
850
1310
793
870
1287
470
533
770
597
873
1153
3.33
2.85
2.33
2.83
2.13
1.62
1.33
1.18
0.76
1.26
1.15
0.78
2.13
1.81
1.30
1.68
1.15
0.87
390
450
527
700
767
1100
310
390
510
430
730
1037
433
527
753
707
760
1563
-3.38
-2.93
-2.51
-1.89
-1.72
-1.20
-3.23
-2.56
-1.96
-2.33
-1.37
-0.96
-2.31
-1.90
-1.33
-1.42
-1.32
-0.54
Tr i s t a t e B uf f e r D e l a y s
EN
A
PAD
OTBx
A
50%
PAD
VOL
EN
50%
50%
50%
VCC
50%
PAD
tDHL
EN
50%
VOL
tDLH
24
50%
VOH
tENZL
10%
50%
PAD
GND
50%
tENZH
v3.0
50%
VOH
90%
Pr o A SI C ™ 5 0 0 K F a m il y
T ri st at e Buf f e r Del ay s
( W or st -C as e C om m er cia l C ond it ion s, V D D P = 3 .0V , V D D L = 2.3 V, T J = 7 0°C , f C L O C K = 2 5 0 M H z )
Max
tDLH
Max
tDHL
Max
tENZH
Max
tENZL
Units
3.3V, PCI Output Current, High Slew Rate
4.2
4.1
4.2
3.67
ns
OTB33PN
3.3V, PCI Output Current, Nominal Slew Rate
4.7
5.9
4.8
5.3
ns
OTB33PL
3.3V, PCI Output Current, Low Slew Rate
5.3
7.0
5.3
6.6
ns
OTB33LH
3.3V, Low Output Current, High Slew Rate
6.0
6.6
6.0
5.9
ns
OTB33LN
3.3V, Low Output Current, Nominal Slew Rate
6.7
9.2
6.7
8.9
ns
OTB33LL
3.3V, Low Output Current, Low Slew Rate
7.5
12.0
7.5
11.8
ns
OTB25HH
2.5V, High Output Current, High Slew Rate
6.9
3.6
6.9
3.4
ns
OTB25HN
2.5V, High Output Current, Nominal Slew Rate
7.2
5.2
7.2
4.9
ns
OTB25HL
2.5V, High Output Current, Low Slew Rate
8.2
6.4
8.2
6.1
ns
OTB25LH
2.5V, Low Output Current, High Slew Rate
10.4
5.5
10.4
5.2
ns
OTB25LN
2.5V, Low Output Current, Nominal Slew Rate
11.0
8.3
11.0
8.1
ns
OTB25LL
2.5V, Low Output Current, Low Slew Rate
11.9
10.9
11.9
11.7
ns
OTB25LPHH
2.5V, Low Power, High Output Current, High Slew Rate
5.1
5.1
5.1
4.4
ns
OTB25LPHN
2.5V, Low Power, High Output Current, Nominal Slew Rate
6.0
7.7
6.0
7.4
ns
OTB25LPHL
2.5V, Low Power, High Output Current, Low Slew Rate
6.9
9.8
6.8
9.3
ns
OTB25LPLH
2.5V, Low Power, Low Output Current, High Slew Rate
7.4
8.6
7.4
7.8
ns
OTB25LPLN
2.5V, Low Power, Low Output Current, Nominal Slew Rate
8.6
12.6
8.5
12.3
ns
OTB25LPLL
2.5V, Low Power, Low Output Current, Low Slew Rate
9.8
17.0
9.8
16.7
ns
Macro Type
Description
OTB33PH
Notes:
1. tDLH = Data-to-Pad HIGH
2. tDHL = Data-to-Pad LOW
3. tENZH = Enable-to-Pad, Z to HIGH
4. tENZL = Enable-to-Pad, Z to LOW
O ut p u t B uf f e r D e l ay s
A
A
PAD
50%
PAD
VOL
OBx
50%
50%
tDLH
v3.0
50%
VOH
tDHL
25
P r o A S IC ™ 5 0 0 K F a m ily
O ut put B uf f er D el ays
( W or st -C as e C om m er cia l C ond it ion s, V D D P = 3 .0V , V D D L = 2.3 V, T J = 7 0°C , f C L O C K = 2 5 0 M H z )
Macro Type
Description
Max. tDLH
Max. tDHL
Units
OB33PH
3.3V, PCI Output Current, High Slew Rate
4.2
4.1
ns
OB33PN
3.3V, PCI Output Current, Nominal Slew Rate
4.7
5.9
ns
OB33PL
3.3V, PCI Output Current, Low Slew Rate
5.3
7.1
ns
OB33LH
3.3V, Low Output Current, High Slew Rate
6.0
6.6
ns
OB33LN
3.3V, Low Output Current, Nominal Slew Rate
6.7
9.2
ns
OB33LL
3.3V, Low Output Current, Low Slew Rate
7.5
12.1
ns
OB25HH
2.5V, High Output Current, High Slew Rate
6.9
3.6
ns
OB25HN
2.5V, High Output Current, Nominal Slew Rate
7.2
5.2
ns
OB25HL
2.5V, High Output Current, Low Slew Rate
8.2
6.4
ns
OB25LH
2.5V, Low Output Current, High Slew Rate
10.4
5.5
ns
OB25LN
2.5V, Low Output Current, Nominal Slew Rate
11.0
8.3
ns
OB25LL
2.5V, Low Output Current, Low Slew Rate
11.9
10.9
ns
OB25LPHH
2.5V, Low Power, High Output Current, High Slew Rate
5.1
5.1
ns
OB25LPHN
2.5V, Low Power, High Output Current, Nominal Slew Rate
6.0
7.7
ns
OB25LPHL
2.5V, Low Power, High Output Current, Low Slew Rate
6.9
9.8
ns
OB25LPLH
2.5V, Low Power, Low Output Current, High Slew Rate
7.4
8.6
ns
OB25LPLN
2.5V, Low Power, Low Output Current, Nominal Slew Rate
8.6
12.6
ns
OB25LPLL
2.5V, Low Power, Low Output Current, Low Slew Rate
9.8
17.0
ns
Notes:
1. tDLH = Data-to-Pad HIGH
2. tDHL = Data-to-Pad LOW
I n pu t B uf f er D e l ay s
VCC
PAD
Y
PAD
50% 50%
VCC
Y
GND
IBx
0V
50%
50%
tINYH
tINYL
Inpu t Buffe r De lay s
( W or st -C as e C om m er cia l C ond it ion s, V D D P = 3 .0V , V D D L = 2.3 V, T J = 7 0°C , f C L O C K = 2 5 0 M H z )
Max.
tINYH
Max.
tINYL
Units
2.5V, CMOS Input Levels, No Pull-up Resistor
2.2
0.7
ns
IB25LP
2.5V, CMOS Input Levels, Low Power
2.2
1.4
ns
IB33
3.3V, CMOS Input Levels, No Pull-up Resistor
1.9
1.0
ns
Macro Type
Description
IB25
Notes:
1. tINYH = Input Pad-to-Y HIGH
2. tINYL = Input Pad-to-Y LOW
26
v3.0
Pr o A SI C ™ 5 0 0 K F a m il y
Glob al Inpu t Buff er De lay s
( W or st -C as e C om m er cia l C ond it ion s, V D D P = 3 .0V , V D D L = 2.3 V, T J = 7 0°C , f C L O C K = 2 5 0 M H z )
Max.
tINYH
Max.
tINYL
Units
2.5V, CMOS Input Levels
2.1
1.6
ns
2.5V, CMOS Input Levels
2.3
2.3
ns
GL33
3.3V, CMOS Input Levels
3.8
1.2
ns
GL25U
2.5V, CMOS Input Levels, with Pull-up Resistor
2.1
1.6
ns
GL25LPU
2.5V, CMOS Input Levels, Low Power, with Pull-up Resistor
2.3
2.3
ns
GL33U
3.3V, CMOS Input Levels, with Pull-up Resistor
3.8
1.2
ns
Macro Type
Description
GL25
GL25LP
P red ict ed Glo bal Ro ut ing De lay *
( W or st -C as e C om m er cia l C ond it ion s, V D D P = 3 .0V , V D D L = 2.3 V, T J = 7 0°C , f C L O C K = 2 5 0 M H z )
Parameter
Description
Max.
Units
tRCKH
Input Low to High (fully loaded row—32 inputs)
1.2
ns
tRCKL
Input High to Low (fully loaded row—32 inputs)
1.1
ns
tRCKH
Input Low to High (minimally loaded row—1 input)
0.9
ns
tRCKL
Input High to Low (minimally loaded row—1 input)
0.9
ns
* The timing delay difference between tile locations is less than 15ps.
Glob al Rou ti ng S kew
( W or st -C as e C om m er cia l C ond it ion s, V D D P = 3 .0V , V D D L = 2.3 V, T J = 7 0°C , f C L O C K = 2 5 0 M H z )
Parameter
Description
Max.
Units
tRCKSWH
Maximum Skew Low to High
0.3
ns
tRCKSHH
Maximum Skew High to Low
0.3
ns
M od u l e D e l ay s
A
B
C
A
Y
50% 50%
B
50% 50%
C
50% 50%
Y
50%
50%
50%
tDCLH
tDBLH
tDALH
tDAHL
50%
50%
50%
tDCHL
tDBHL
v3.0
27
P r o A S IC ™ 5 0 0 K F a m ily
S am ple Ma cro cel l L ibr ar y Li st in g
( W or st -C as e C om m er cia l Cond it ion s, V D D L = 2 .3V , T J = 70 º C)
Maximum
Intrinsic Delay
Cell Name
Description
NAND2
AND2
NOR3
MUX2L
OA21
XOR2
LDL
2-Input NAND
2-Input AND
3-Input NOR
2-1 Mux with Active Low Select
2-Input OR into a 2-Input AND
2-Input Exclusive OR
Active Low Latch (LH/HL)
DFFL
Negative Edge-Triggered D-type Flip-Flop (LH/HL)
Note:
0.4
0.4
0.4
0.4
0.4
0.3
D: 0.3/0.2
CLK-Q:
0.4/0.4
Minimum
Setup/Hold
Units
ns
ns
ns
ns
ns
ns
tsetup 0.5
thold 0.2
tsetup 0.4
thold 0.2
ns
ns
Assumes fanout of two.
Em b e dd ed M e m or y S pe ci f i ca t i o ns
This section focuses on the embedded memory of the
ProASIC 500K family. It describes the SRAM and FIFO
interface signals and includes timing diagrams that show
the relationships of signals as they pertain to single
embedded memory blocks (Table 4 and Table 5 on page 34).
Refer to Table 3 on page 12 for basic RAM configurations.
Simultaneous Read and Write to the same location must be
done with care. On such accesses the DI bus is output to the
DO bus.
Note:
Enclosed Timing Diagrams—SRAM Mode:
• Synchronous RAM Read, Access Timed Output Strobe
(Synchronous Transparent)
• Synchronous RAM Read, Pipeline Mode Outputs
(Synchronous Pipelined)
• Asynchronous RAM Write
• Asynchronous RAM Read, Address Controlled, RDB=0
• Asynchronous RAM Read, RDB Controlled
• Synchronous RAM Write
The difference between synchronous transparent
and pipeline modes is the timing of all the output
signals from the memory. In transparent mode
the outputs will change within the same clock
cycle to reflect the data requested by the currently
valid access to the memory. However, if clock
cycles are short (high clock speed), the data
requires most of the clock cycle to change to valid
values (stable signals). This makes processing of
this data in the same clock cycle nearly
impossible. Most designers solve this problem by
adding registers at all outputs of the memory to
push the data processing into the next clock cycle.
In this setup, the whole cycle time can be used to
process the data. To simplify the use of this kind of
memory setup these registers have been
implemented as part of the memory primitive
and are available to the user in the synchronous
pipeline mode. In this mode, the output signals
will change shortly after the second rising edge,
following the initiation of the read access.
Table 4 • Memory Block SRAM Interface Signals
SRAM Signal
Bits
In/Out
WCLKS
1
IN
RCLKS
1
IN
RADDR<0:7>
8
IN
RBLKB
1
IN
RDB
1
IN
WADDR<0:7>
8
IN
WBLKB
1
IN
DI<0:8>
9
IN
WRB
1
IN
DO<0:8>
9
OUT
RPE
1
OUT
WPE
1
OUT
PARODD
1
IN
Note: Not all signals shown are used in all modes.
28
Description
Write clock used on synchronization on write side
Read clock used on synchronization on read side
Read address
Negative true read block select
Negative true read pulse
Write address
Negative true write block select
Input data bits <0:8>, <8> can be used for parity in
Negative true write pulse
Output data bits <0:8>, <8> can be used for parity out
Read parity error
Write parity error
Selects odd parity generation/detect when high, even when low
v3.0
Pr o A SI C ™ 5 0 0 K F a m il y
Synchronous RAM Read, Access Timed Output Strobe (Synchronous Transparent)
RCLKS
Cycle Start
RB=(RBD+RBLKB)
New Valid
Address
RADDR
Old Data Out
DO
New Valid Data Out
RPE
tRACS
tRDCS
tRDCH
tRACH
tOCH
tRPCH
tCMH
tCML
tOCA
tRPCA
tCCYC
T J = 0° C t o 11 0 ° C; V D D L = 2 .3V t o 2 .7V
Symbol txxx
Description
Min.
Max.
CCYC
Cycle time
7.5
ns
CMH
Clock high phase
3.0
ns
CML
Clock low phase
3.0
ns
OCA
New DO access from RCLKS ↑
7.5
ns
OCH
Old DO valid from RCLKS ↑
RACH
RADDR hold from RCLKS ↑
0.5
ns
RACS
RADDR setup to RCLKS ↑
1.0
ns
RDCH
RDB hold from RCLKS ↑
0.5
ns
RDCS
RDB setup to RCLKS ↑
1.0
ns
RPCA
New RPE access from RCLKS ↑
9.5
ns
RPCH
Old RPE valid from RCLKS ↑
3.0
3.0
v3.0
Units
Notes
ns
ns
29
P r o A S IC ™ 5 0 0 K F a m ily
Synchronous RAM Read, Pipeline Mode Outputs (Synchronous Pipelined)
RCLKS
Cycle Start
RB=(RDB+RBLKB)
RADDR
New Valid
Address
DO
New Valid Data Out
Old Data Out
RPE
Old RPE Out
New RPE Out
tOCA
tRACS
tRACH
tRPCH
tRDCH
tOCH
tRDCS
tRPCA
tCMH
tCML
tCCYC
T J = 0° C t o 11 0 ° C; V D D L = 2 .3V t o 2 .7V
Symbol txxx
Description
Min.
CCYC
Cycle time
7.5
ns
CMH
Clock high phase
3.0
ns
CML
Clock low phase
3.0
ns
OCA
New DO access from RCLKS ↑
2.0
ns
OCH
Old DO valid from RCLKS ↑
RACH
RADDR hold from RCLKS ↑
0.5
ns
RACS
RADDR setup to RCLKS ↑
1.0
ns
RDCH
RDB hold from RCLKS ↑
0.5
ns
RDCS
RDB setup to RCLKS ↑
1.0
ns
RPCA
New RPE access from RCLKS ↑
4.0
ns
RPCH
Old RPE valid from RCLKS ↑
30
Max.
.75
1.0
v3.0
Units
ns
ns
Notes
Pr o A SI C ™ 5 0 0 K F a m il y
Asynchronous RAM Write
WADDR
WB=(WRB+WBLKB)
DI
WPE
tAWRS
tAWRH
tDWRH
tWPDA
tWPDH
tDWRS
tWRML
tWRMH
tWRCYC
T J = 0° C t o 11 0 ° C; V D D L = 2 .3V t o 2 .7V
Symbol txxx
Description
Min.
Max.
AWRH
WADDR hold from WB ↑
1.0
ns
AWRS
WADDR setup to WB ↓
0.5
ns
DWRH
DI hold from WB ↑
1.5
ns
DWRS
DI setup to WB ↑
0.5
ns
PARGEN is inactive
DWRS
DI setup to WB ↑
2.5
ns
PARGEN is active
WPDA
WPE access from DI
3.0
ns
WPE is invalid while
WPDH
WPE hold from DI
ns
PARGEN is active
WRCYC
Cycle time
7.5
ns
WRMH
WB high phase
3.0
ns
Inactive
WRML
WB low phase
3.0
ns
Active
1.0
v3.0
Units
Notes
31
P r o A S IC ™ 5 0 0 K F a m ily
Asynchronous RAM Read, Address Controlled, RDB=0
RADDR
DO
RPE
tOAH
tRPAH
tOAA
tRPAA
tACYC
T J = 0° C t o 11 0 ° C; V D D L = 2 .3V t o 2 .7V
Symbol txxx Description
Min.
Max.
Units
ACYC
Read cycle time
7.5
ns
OAA
New DO access from RADDR stable
7.5
ns
OAH
Old DO hold from RADDR stable
RPAA
New RPE access from RADDR stable
RPAH
Old RPE hold from RADDR stable
3.0
10.0
Notes
ns
ns
3.0
ns
Asynchronous RAM Read, RDB Controlled
RB=(RDB+RBLKB)
DO
RPE
tORDH
tRPRDH
tORDA
tRPRDA
tRDML
tRDMH
tRDCYC
T J = 0 °C t o 1 10° C; V D D L = 2 .3V t o 2.7V
Symbol txxx
Description
Min.
ORDA
ORDH
RDCYC
RDMH
RDML
RPRDA
RPRDH
New DO access from RB ↓
Old DO valid from RB ↓
Read cycle time
RB high phase
RB low phase
New RPE access from RB ↓
Old RPE valid from RB ↓
7.5
32
Max.
3.0
7.5
3.0
3.0
9.5
3.0
v3.0
Units
ns
ns
ns
ns
ns
ns
ns
Notes
Inactive setup to new cycle
Active
Pr o A SI C ™ 5 0 0 K F a m il y
Synchronous RAM Write
WCLKS
Cycle Start
WRB, WBLKB
WADDR, DI
WPE
tWRCH, tWBCH
tWRCS, tWBCS
tDCS, tWDCS
tWPCH
tDCH, tWACH
tWPCA
tCMH
tCML
tCCYC
T J = 0° C t o 11 0 ° C; V D D L = 2 .3V t o 2 .7V
Symbol txxx
Description
Min.
CCYC
Cycle time
7.5
ns
CMH
Clock high phase
3.0
ns
CML
Clock low phase
3.0
ns
DCH
DI hold from WCLKS ↑
0.5
ns
DCS
DI setup to WCLKS ↑
1.0
ns
WACH
WADDR hold from WCLKS ↑
0.5
ns
WDCS
WADDR setup to WCLKS ↑
1.0
ns
WPCA
New WPE access from WCLKS ↑
3.0
ns
WPE is invalid while
WPCH
Old WPE valid from WCLKS ↑
ns
PARGEN is active
WRCH,
WBCH
WRB & WBLKB hold from WCLKS ↑
0.5
ns
WRCS,
WBCS
WRB & WBLKB setup to WCLKS ↑
1.0
ns
Note:
Max.
0.5
Units
Notes
On simultaneous read and write accesses to the same location DI is output to DO.
v3.0
33
P r o A S IC ™ 5 0 0 K F a m ily
Asynchronous FIFO Full and Empty Transitions
on page 35. For basic RAM configurations, see Table 3 on
page 12. For memory block interface signals, see Table 4 on
page 28, and for memory block FIFO signals, see Table 5.
The asynchronous FIFO accepts writes and reads while not
full or not empty. When the FIFO is full, all writes are
inhibited. Conversely, when the FIFO is empty, all reads are
inhibited. A problem is created if the FIFO is written during
the transition out of full to not full or read during the
transition out of empty to not empty. The exact time at
which the write (read) operation changes from inhibited to
accepted after the read (write) signal which causes the
transition from full (empty) to not full (empty) is
indeterminate. This indeterminate period starts 1ns after
the RB (WB) transition which deactivates full (not empty).
For slow cycles, the indeterminate period ends 3ns after the
RB (WB) transition. For fast cycles, this period ends either
3ns or (7.5ns - tRDL (tWRL)) after the RB (WB) transition,
whichever is later.
Enclosed Timing Diagrams—FIFO Mode:
• Asynchronous FIFO Read
• Asynchronous FIFO Write
• Synchronous FIFO Read, Access Timed Output
Strobe (Synchronous Transparent)
• Synchronous FIFO Read, Pipeline Mode Outputs
(Synchronous Pipelined)
• Synchronous FIFO Write
• FIFO Reset
The timing diagram for write is shown in Figure 19 on
page 35. The timing diagram for read is shown in Figure 20
Table 5 • Memory Block FIFO Interface Signals
FIFO Signal
Bits
In/Out
Description
WCLKS
1
IN
Write clock used to synchronize write side
RCLKS
1
IN
Read clock used to synchronize read side
LEVEL <0:7>
8
IN
Direct configuration implements static flag logic
RBLKB
1
IN
Active low read block select
RDB
1
IN
Active low read pulse
RESET
1
IN
Active low reset for FIFO pointers
WBLKB
1
IN
Active low write block select
DI<0:8>
9
IN
Input data bits <0:8>, <8> can be used for parity in.
WRB
1
IN
Active low write pulse
FULL, EMPTY
2
OUT
FIFO flags. FULL prevents write and EMPTY prevents read
EQTH, GEQTH
2
OUT
EQTH is true when the FIFO holds (LEVEL) words. GEQTH is true when the
FIFO holds (LEVEL) words or more
DO<0:8>
9
OUT
Output data bits <0:8>, <8> can be used for parity out.
RPE
1
OUT
Read parity error
WPE
1
OUT
Write parity error
LGDEP <0:2>
3
IN
Configures DEPTH of the FIFO to 2 (LGDEP+1)
PARODD
1
IN
Selects odd parity generation/detect when high, even when low
34
v3.0
Pr o A SI C ™ 5 0 0 K F a m il y
FULL
RB
Write
cycle
Write inhibited
Write accepted
1ns
3ns
WB
Figure 19 • Write Timing Diagram
EMPTY
WB
Read
cycle
Read inhibited
Read accepted
1ns
3ns
RB
Figure 20 • Read Timing Diagram
v3.0
35
P r o A S IC ™ 5 0 0 K F a m ily
Asynchronous FIFO Read
Cycle Start
RB=(RDB+RBLKB)
(Empty inhibits read)
DO
RPE
WB
EMPTY
FULL
EQTH, GETH
tRDWRS
tERDH, tFRDH
tORDH
tERDA, tFRDA
tRPRDH
tTHRDH
tORDA
tTHRDA
tRPRDA
tRDL
tRDH
tRDCYC
T J = 0°C to 110°C; V DDL = 2.3V to 2.7V
Symbol txxx
Description
Min.
Max.
Units
ERDH,
FRDH,
THRDH
Old EMPTY, FULL, EQTH, & GETH valid
hold time from RB ↑
0.5
ns
ERDA
New EMPTY access from RB ↑
3.01
ns
FRDA
FULL↓ access from RB ↑
3.01
ns
ORDA
New DO access from RB ↓
7.5
ns
ORDH
Old DO valid from RB ↓
3.0
Read cycle time
7.5
ns
RDWRS
WB ↑, clearing EMPTY, setup to
3.02
ns
1.0
Empty/full/thresh are invalid
from the end of hold until the
new access is complete
ns
RDCYC
RB ↓
Notes
Enabling the read operation
ns
Inhibiting the read operation
RDH
RB high phase
3.0
ns
Inactive
RDL
RB low phase
3.0
ns
Active
RPRDA
New RPE access from RB ↓
9.5
RPRDH
Old RPE valid from RB ↓
THRDA
EQTH or GETH access from RB↑
4.5
Notes:
1. At fast cycles, ERDA & FRDA = MAX ((7.5ns – RDL), 3.0ns)
2. At fast cycles, RDWRS (for enabling read) = MAX ((7.5ns – WRL), 3.0ns)
36
ns
4.0
v3.0
ns
ns
Pr o A SI C ™ 5 0 0 K F a m il y
Asynchronous FIFO Write
Cycle Start
WB=(WRB+WBLKB)
DI
(Full inhibits write)
WPE
RB
FULL
EMPTY
EQTH, GETH
tWRRDS
tDWRH
tWPDH
tWPDA
tDWRS
tEWRH, tFWRH
tEWRA, tFWRA
tTHWRH
tTHWRA
tWRL
tWRH
tWRCYC
T J = 0°C to 110°C; V DDL = 2.3V to 2.7V
Symbol txxx
Description
Min.
DWRH
DI hold from WB ↑
1.5
ns
DWRS
DI setup to WB ↑
0.5
ns
PARGEN is inactive
DWRS
DI setup to WB ↑
2.5
ns
PARGEN is active
EWRH,
FWRH,
THWRH
Old EMPTY, FULL, EQTH, & GETH valid
hold time after WB ↑
ns
Empty/full/thresh are invalid
from the end of hold until the
new access is complete
EWRA
EMPTY ↓ access from WB ↑
3.01
ns
FWRA
New FULL access from WB ↑
3.01
ns
THWRA
EQTH or GETH access from WB ↑
4.5
ns
WPDA
WPE access from DI
3.0
ns
WPDH
WPE hold from DI
WRCYC
Cycle time
7.5
ns
RB ↑, clearing FULL, setup to
3.02
ns
Enabling the write operation
ns
Inactive
ns
Active
WRRDS
0.5
1.0
WB ↓
WRH
WB high phase
Max.
Units
ns
1.0
3.0
WRL
WB low phase
3.0
Notes:
1. At fast cycles, EWRA, FWRA = MAX ((7.5ns – WRL), 3.0ns)
2. At fast cycles, WRRDS (for enabling write) = MAX ((7.5ns – RDL), 3.0ns)
v3.0
Notes
WPE is invalid while
PARGEN is active
Inhibiting the write operation
37
P r o A S IC ™ 5 0 0 K F a m ily
Synchronous FIFO Read, Access Timed Output Strobe (Synchronous Transparent)
RCLKS
Cycle Start
RDB
DO
Old Data Out
New Valid Data Out (Empty Inhibits Read)
RPE
EMPTY
FULL
EQTH, GETH
tRDCH
tECBH, tFCBH
tECBA, tFCBA
tRDCS
tTHCBH
tOCH
tRPCH
tHCBA
tOCA
tRPCA
tCMH
tCML
tCCYC
T J = 0°C to 110°C; V DDL = 2.3V to 2.7V
Symbol txxx
Description
Min.
CCYC
Cycle time
7.5
ns
CMH
Clock high phase
3.0
ns
CML
Clock low phase
3.0
ns
ECBA
New EMPTY access from RCLKS ↓
3.01
ns
FCBA
FULL ↓ access from RCLKS ↓
3.01
ns
ECBH,
FCBH,
THCBH
Old EMPTY, FULL, EQTH, & GETH valid
hold time from RCLKS ↓
OCA
New DO access from RCLKS ↑
OCH
Old DO valid from RCLKS ↑
RDCH
RDB hold from RCLKS ↑
0.5
ns
RDCS
RDB setup to RCLKS ↑
1.0
ns
RPCA
New RPE access from RCLKS ↑
9.5
RPCH
Old RPE valid from RCLKS ↑
HCBA
EQTH or GETH access from RCLKS ↓
Note:
1. At fast cycles, ECBA & FCBA = MAX ((7.5ns – CMH), 3.0ns)
38
Max.
1.0
7.5
ns
ns
3.0
v3.0
ns
ns
3.0
4.5
Units
ns
ns
Notes
Empty/full/thresh are invalid
from the end of hold until the
new access is complete
Pr o A SI C ™ 5 0 0 K F a m il y
Synchronous FIFO Read, Pipeline Mode Outputs (Synchronous Pipelined)
RCLKS
Cycle Start
RDB
DO
Old Data Out
RPE
New Valid Data Out
Old RPE Out
New RPE Out
EMPTY
FULL
EQTH, GETH
tECBH, tFCBH
tOCA
tRDCH
tECBA, tFCBA
tTHCBH
tRDCS
tRPCH
tOCH
tHCBA
tRPCA
tCMH
tCML
tCCYC
T J = 0°C to 110°C; V DDL = 2.3V to 2.7V
Symbol txxx
Description
Min.
CCYC
Cycle time
7.5
ns
CMH
Clock high phase
3.0
ns
CML
Clock low phase
3.0
ns
ECBA
New EMPTY access from RCLKS ↓
3.01
ns
FCBA
FULL ↓ access from RCLKS ↓
3.01
ns
ECBH,
FCBH,
THCBH
Old EMPTY, FULL, EQTH, & GETH valid
hold time from RCLKS ↓
OCA
New DO access from RCLKS ↑
OCH
Old DO valid from RCLKS ↑
RDCH
RDB hold from RCLKS ↑
0.5
ns
RDCS
RDB setup to RCLKS ↑
1.0
ns
RPCA
New RPE access from RCLKS ↑
4.0
RPCH
Old RPE valid from RCLKS ↑
HCBA
EQTH or GETH access from RCLKS ↓
Note:
1. At fast cycles, ECBA & FCBA = MAX ((7.5ns – CMS), 3.0ns)
Max.
1.0
2.0
Empty/full/thresh are invalid
from the end of hold until the
new access is complete
ns
ns
1.0
v3.0
ns
Notes
ns
0.75
4.5
Units
ns
ns
39
P r o A S IC ™ 5 0 0 K F a m ily
Synchronous FIFO Write
WCLKS
Cycle Start
WRB, WBLKB
(Full Inhibits Write)
DI
WPE
FULL
EMPTY
EQTH, GETH
tWRCH, tWBCH
tECBH, tFCBH
tWRCS, tWBCS
tECBA, tFCBA
tDCS
tHCBH
tHCBA
tWPCH
tDCH
tWPCA
tCMH
tCML
tCCYC
T J = 0°C to 110°C; V DD L = 2.3V to 2.7V
Symbol txxx
Description
Min.
Max.
CCYC
Cycle time
CMH
Clock high phase
3.0
ns
CML
Clock low phase
3.0
ns
DCH
DI hold from WCLKS ↑
0.5
ns
DCS
DI setup to WCLKS ↑
1.0
ns
FCBA
New FULL access from WCLKS ↓
3.01
ns
ECBA
EMPTY↓ access from WCLKS ↓
3.01
ns
ECBH,
FCBH,
HCBH
Old EMPTY, FULL, EQTH, & GETH valid
hold time from WCLKS ↓
HCBA
EQTH or GETH access from WCLKS ↓
4.5
ns
WPCA
New WPE access from WCLKS ↑
3.0
ns
WPCH
Old WPE valid from WCLKS ↑
WRCH,
WBCH
WRB & WBLKB hold from WCLKS ↑
WRCS,
WRB & WBLKB setup to WCLKS ↑
WBCS
Note:
1. At fast cycles, ECBA & FCBA = MAX ((7.5ns – CMH), 3.0ns)
40
7.5
Units
ns
1.0
0.5
ns
ns
0.5
ns
1.0
ns
v3.0
Notes
Empty/full/thresh are invalid
from the end of hold until the
new access is complete
WPE is invalid while
PARGEN is active
Pr o A SI C ™ 5 0 0 K F a m il y
FIFO Reset
RESETB
Cycle Start
WRB, WBLKB
WCLKS, RCLKS
Cycle Start
FULL
EMPTY
EQTH, GETH
tCBRSS
tERSA, tFRSA
tCBRSH
tTHRSA
tWBRSH
tRSL
tWBRSS
T J = 0° C t o 11 0 ° C; V D D L = 2 .3V t o 2 .7V
Symbol txxx
Description
CBRSH
WCLKS or RCLKS ↑ hold from RESETB ↑
CBRSS
Min.
Units
Notes
1.5
ns
Synchronous mode only
WCLKS or RCLKS ↓ setup to RESETB ↑
1.5
ns
Synchronous mode only
ERSA
New EMPTY ↑ access from RESETB ↓
3.0
ns
FRSA
FULL ↓ access from RESETB ↓
3.0
ns
RSL
RESETB low phase
7.5
ns
THRSA
EQTH or GETH access from RESETB ↓
4.5
ns
WBRSH
WB ↓ hold from RESETB ↑
1.5
ns
Asynchronous mode only
WBRSS
WB ↑ setup to RESETB ↑
1.5
ns
Asynchronous mode only
v3.0
Max.
41
P r o A S IC ™ 5 0 0 K F a m ily
Pi n D es c r i pt i on
I/O
User Input/Output
The I/O pin functions as an input, output, three-state, or
bidirectional buffer. Input and output signal levels are
compatible with standard LVTTL and LVCMOS
specifications. Unused I/O pins are configured as inputs
with pull-up resistors.
N/C
No Connect
To maintain compatibility with future Actel ProASIC
products it is recommended that this pin not be connected
to the circuitry on the board.
GL
Global Input Pin
VPN
This pin must be connected to GND during normal
operation, or it can remain at –12V in an ISP application.
This pin must not float.
TMS
TCK
TDI
TRST
Logic Array Power Supply Pin
2.5V supply voltage.
V DDP
I/O Pad Power Supply Pin
2.5V or 3.3V supply voltage.
V PP
Test Data Out
Serial output for Boundary Scan.
Test Reset Input
Asynchronous, active low input pin for resetting Boundary
Scan circuitry.
RCK
Running Clock
A free running clock is needed during programming if the
programmer cannot guarantee that TCK will be
uninterrupted.
Programming Supply Pin
This pin must be connected to VDDP during normal
operation, or it can remain at 16.5V in an ISP application.
This pin must not float.
42
Test Data In
Serial input for Boundary Scan.
GND
V DDL
Test Clock
Clock input pin for Boundary Scan.
TDO
Common ground supply voltage.
Test Mode Select
The TMS pin controls the use of Boundary Scan circuitry.
Low skew input pin for clock or other global signals. Input
only. This pin can be configured with a pull-up resistor.
Ground
Programming Supply Pin
v3.0
Pr o A SI C ™ 5 0 0 K F a m il y
Pa c ka ge P i n A s si g nm e n t s
208- P in P Q FP
208
1
208-Pin PQFP
v3.0
43
P r o A S IC ™ 5 0 0 K F a m ily
208- P in P Q FP
Pin
Number
A500K050
Function
A500K130
Function
A500K180
Function
A500K270
Function
44
Pin
Number
A500K050
Function
A500K130
Function
A500K180
Function
A500K270
Function
1
GND
GND
GND
GND
53
VDDP
VDDP
VDDP
VDDP
2
3
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
54
55
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
4
I/O
I/O
I/O
I/O
56
I/O
I/O
I/O
I/O
5
6
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
57
58
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
7
I/O
I/O
I/O
I/O
59
I/O
I/O
I/O
I/O
8
9
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
60
61
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
10
I/O
I/O
I/O
I/O
62
I/O
I/O
I/O
I/O
11
12
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
63
64
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
13
I/O
I/O
I/O
I/O
65
GND
GND
GND
GND
14
I/O
I/O
I/O
I/O
66
I/O
I/O
I/O
I/O
15
I/O
I/O
I/O
I/O
67
I/O
I/O
I/O
I/O
16
VDDL
VDDL
VDDL
VDDL
68
I/O
I/O
I/O
I/O
17
18
GND
I/O
GND
I/O
GND
I/O
GND
I/O
69
70
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
19
I/O
I/O
I/O
I/O
71
VDDL
VDDL
VDDL
VDDL
20
21
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
72
73
VDDP
I/O
VDDP
I/O
VDDP
I/O
VDDP
I/O
22
VDDP
VDDP
VDDP
VDDP
74
I/O
I/O
I/O
I/O
23
24
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
75
76
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
25
GL
GL
GL
GL
77
I/O
I/O
I/O
I/O
26
27
GL
I/O
GL
I/O
GL
I/O
GL
I/O
78
79
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
28
I/O
I/O
I/O
I/O
80
I/O
I/O
I/O
I/O
29
30
GND
I/O
GND
I/O
GND
I/O
GND
I/O
81
82
GND
I/O
GND
I/O
GND
I/O
GND
I/O
31
I/O
I/O
I/O
I/O
83
I/O
I/O
I/O
I/O
32
33
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
84
85
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
34
I/O
I/O
I/O
I/O
86
I/O
I/O
I/O
I/O
35
36
I/O
VDDL
I/O
I/O
I/O
87
I/O
I/O
I/O
I/O
VDDL
VDDL
VDDL
88
VDDL
VDDL
VDDL
VDDL
37
I/O
I/O
I/O
I/O
89
VDDP
VDDP
VDDP
VDDP
38
39
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
90
91
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
40
VDDP
VDDP
VDDP
VDDP
92
I/O
I/O
I/O
I/O
41
42
GND
I/O
GND
I/O
GND
I/O
GND
I/O
93
94
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
43
I/O
I/O
I/O
I/O
95
I/O
I/O
I/O
I/O
44
45
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
96
97
I/O
GND
I/O
GND
I/O
GND
I/O
GND
46
I/O
I/O
I/O
I/O
98
I/O
I/O
I/O
I/O
47
I/O
I/O
I/O
I/O
99
I/O
I/O
I/O
I/O
48
I/O
I/O
I/O
I/O
100
I/O
I/O
I/O
I/O
49
I/O
I/O
I/O
I/O
101
TCK
TCK
TCK
TCKO
50
51
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
102
103
TDI
TMS
TDI
TMS
TDI
TMS
TDI
TMS
52
GND
GND
GND
GND
104
VDDP
VDDP
VDDP
VDDP
v3.0
Pr o A SI C ™ 5 0 0 K F a m il y
208- P in P Q FP (C ont inu ed)
Pin
Number
A500K050
Function
A500K130
Function
A500K180
Function
A500K270
Function
Pin
Number
A500K050
Function
A500K130
Function
A500K180
Function
A500K270
Function
105
GND
GND
GND
106
107
VPP
VPN
VPP
VPN
VPP
VPN
GND
157
VDDP
VDDP
VDDP
VDDP
VPP
VPN
158
159
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
108
TDO
TDO
TDO
TDO
160
I/O
I/O
I/O
I/O
109
110
TRST
RCK
TRST
RCK
TRST
RCK
TRST
RCK
161
162
I/O
GND
I/O
GND
I/O
GND
I/O
GND
111
I/O
I/O
I/O
I/O
163
I/O
I/O
I/O
I/O
112
113
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
164
165
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
114
I/O
I/O
I/O
I/O
166
I/O
I/O
I/O
I/O
115
116
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
167
168
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
117
I/O
I/O
I/O
I/O
169
I/O
I/O
I/O
I/O
118
I/O
I/O
I/O
I/O
170
VDDP
VDDP
VDDL
VDDP
VDDL
119
I/O
I/O
I/O
I/O
171
VDDL
VDDP
VDDL
120
I/O
I/O
I/O
I/O
172
I/O
I/O
I/O
I/O
121
122
I/O
GND
I/O
GND
I/O
GND
I/O
GND
173
174
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
123
VDDP
VDDP
VDDP
VDDP
175
I/O
I/O
I/O
I/O
124
125
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
176
177
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
126
VDDL
VDDL
VDDL
VDDL
178
GND
GND
GND
GND
127
128
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
179
180
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
129
I/O
I/O
I/O
I/O
181
I/O
I/O
I/O
I/O
130
131
GND
I/O
GND
I/O
GND
I/O
GND
I/O
182
183
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
132
I/O
I/O
I/O
I/O
184
I/O
I/O
I/O
I/O
133
134
GL
GL
GL
GL
GL
GL
GL
GL
185
186
I/O
VDDP
I/O
I/O
I/O
VDDP
VDDP
VDDP
135
I/O
I/O
I/O
I/O
187
VDDL
VDDL
VDDL
VDDL
136
137
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
188
189
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
138
VDDP
VDDP
VDDP
VDDP
190
I/O
I/O
I/O
I/O
139
140
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
191
192
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
141
GND
GND
GND
GND
193
I/O
I/O
I/O
I/O
142
VDDL
143
I/O
VDDL
I/O
VDDL
I/O
VDDL
I/O
194
195
I/O
GND
I/O
GND
I/O
GND
I/O
GND
144
I/O
I/O
I/O
I/O
196
I/O
I/O
I/O
I/O
145
I/O
I/O
I/O
I/O
197
I/O
I/O
I/O
I/O
146
I/O
I/O
I/O
I/O
198
I/O
I/O
I/O
I/O
147
I/O
I/O
I/O
I/O
199
I/O
I/O
I/O
I/O
148
149
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
200
201
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
150
I/O
I/O
I/O
I/O
202
I/O
I/O
I/O
I/O
151
152
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
203
204
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
153
I/O
I/O
I/O
I/O
205
I/O
I/O
I/O
I/O
154
155
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
206
207
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
156
GND
GND
GND
GND
208
VDDP
VDDP
VDDP
VDDP
v3.0
45
P r o A S IC ™ 5 0 0 K F a m ily
Pa c ka ge P i n A s si g nm e n t s (Continued)
272- P in P BGA (B ott om Vi ew)
20 19 18 17 16 15 14 13 12 11 10 9
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
46
v3.0
8
7
6
5
4
3
2
1
Pr o A SI C ™ 5 0 0 K F a m il y
2 7 2 - P in P BG A
Pin
Number
A500K050
Function
A500K130
Function
Pin
Number
A500K050
Function
A500K130
Function
Pin
Number
A500K050
Function
A500K130
Function
A1
I/O
I/O
C7
I/O
I/O
F17
VDDP
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15
A16
A17
A18
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
C8
C9
C10
C11
C12
C13
C14
C15
C16
C17
C18
C19
C20
D1
D2
D3
D4
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
VDDP
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
F18
F19
F20
G1
G2
G3
G4
G17
G18
G19
G20
H1
H2
H3
H4
H17
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
VDDP
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
A19
A20
B1
B2
B3
B4
B5
B6
B7
B8
B9
B10
B11
B12
B13
B14
B15
B16
B17
B18
B19
B20
C1
C2
C3
C4
C5
C6
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
D5
D6
D7
D8
D9
D10
D11
D12
D13
D14
D15
D16
D17
D18
D19
D20
E1
E2
E3
E4
E17
E18
E19
E20
F1
F2
F3
F4
VDDP
VDDP
I/O
VDDL
VDDL
VDDL
VDDL
VDDL
VDDL
I/O
VDDP
VDDP
VDDP
I/O
I/O
I/O
I/O
I/O
I/O
VDDP
VDDP
I/O
I/O
I/O
I/O
I/O
I/O
VDDP
VDDP
VDDP
VDDP
I/O
VDDL
VDDL
VDDL
VDDL
VDDL
VDDL
I/O
VDDP
VDDP
VDDP
I/O
I/O
I/O
I/O
I/O
I/O
VDDP
VDDP
I/O
I/O
I/O
I/O
I/O
I/O
VDDP
H18
H19
H20
J1
J2
J3
J4
J9
J10
J11
J12
J17
J18
J19
J20
K1
K2
K3
K4
K9
K10
K11
K12
K17
K18
K19
K20
L1
L2
I/O
I/O
GL
I/O
GL
GL
VDDL
GND
GND
GND
GND
VDDL
GL
I/O
I/O
I/O
I/O
I/O
VDDL
GND
GND
GND
GND
VDDL
I/O
I/O
I/O
I/O
I/O
I/O
I/O
GL
I/O
GL
GL
VDDL
GND
GND
GND
GND
VDDL
GL
I/O
I/O
I/O
I/O
I/O
VDDL
GND
GND
GND
GND
VDDL
I/O
I/O
I/O
I/O
I/O
v3.0
47
P r o A S IC ™ 5 0 0 K F a m ily
272- P in P BGA (C ont inu ed)
Pin
Number
A500K050
Function
A500K130
Function
Pin
Number
A500K050
Function
A500K130
Function
Pin
Number
A500K050
Function
A500K130
Function
L3
L4
L9
L10
L11
L12
L17
L18
L19
L20
M1
M2
M3
M4
I/O
VDDL
GND
GND
GND
GND
VDDL
I/O
I/O
I/O
I/O
I/O
I/O
VDDL
I/O
VDDL
GND
GND
GND
GND
VDDL
I/O
I/O
I/O
I/O
I/O
I/O
T1
T2
T3
T4
T17
T18
T19
T20
U1
U2
U3
U4
U5
I/O
I/O
I/O
VDDP
VDDP
I/O
I/O
I/O
I/O
I/O
I/O
VDDP
VDDP
I/O
I/O
I/O
VDDP
VDDP
I/O
I/O
I/O
I/O
I/O
I/O
VDDP
VDDP
V19
V20
W1
W2
W3
W4
W5
W6
W7
W8
W9
W10
W11
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
M9
M10
M11
M12
M17
M18
M19
M20
N1
N2
N3
N4
N17
N18
N19
N20
P1
P2
P3
P4
P17
P18
P19
P20
R1
R2
R3
R4
R17
R18
R19
R20
GND
GND
GND
GND
VDDL
I/O
I/O
I/O
I/O
I/O
I/O
VDDL
VDDL
I/O
I/O
I/O
I/O
I/O
I/O
VDDP
VDDP
I/O
I/O
I/O
I/O
I/O
I/O
VDDP
VDDP
I/O
I/O
I/O
VDDL
GND
GND
GND
GND
VDDL
I/O
I/O
I/O
I/O
I/O
I/O
VDDL
VDDL
I/O
I/O
I/O
I/O
I/O
I/O
VDDP
VDDP
I/O
I/O
I/O
I/O
I/O
I/O
VDDP
VDDP
I/O
I/O
I/O
U6
U7
U8
U9
U10
U11
U12
U13
U14
U15
U16
U17
U18
U19
U20
V1
V2
V3
V4
V5
V6
V7
V8
V9
V10
V11
V12
V13
V14
V15
V16
V17
V18
VDDP
I/O
VDDL
VDDL
VDDL
VDDL
VDDL
VDDL
I/O
VDDP
VDDP
VDDP
RCK
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
TMS
TDO
VDDP
I/O
VDDL
VDDL
VDDL
VDDL
VDDL
VDDL
I/O
VDDP
VDDP
VDDP
RCK
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
TMS
TDO
W12
W13
W14
W15
W16
W17
W18
W19
W20
Y1
Y2
Y3
Y4
Y5
Y6
Y7
Y8
Y9
Y10
Y11
Y12
Y13
Y14
Y15
Y16
Y17
Y18
Y19
Y20
I/O
I/O
I/O
I/O
I/O
TCK
VPP
TRST
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
TDI
VPN
I/O
I/O
I/O
I/O
I/O
I/O
TCK
VPP
TRST
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
TDI
VPN
I/O
48
v3.0
Pr o A SI C ™ 5 0 0 K F a m il y
Pa c ka ge P i n A s si g nm e n t s (Continued)
456- P in P BGA (B ott om Vi ew)
26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9
8
7
6
5
4
3
2
1
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA
AB
AC
AD
AE
AF
v3.0
49
P r o A S IC ™ 5 0 0 K F a m ily
4 5 6 - P in P BG A
Pin Number
A500K130
Function
A500K180
Function
A500K270
Function
Pin Number
A500K130
Function
A500K180
Function
A500K270
Function
A1
VDDP
VDDP
VDDP
AB11
I/O
I/O
I/O
I/O
50
A2
VDDP
VDDP
VDDP
AB12
I/O
I/O
A3
NC
I/O
I/O
AB13
I/O
I/O
I/O
A4
I/O
I/O
I/O
AB14
I/O
I/O
I/O
A5
I/O
I/O
I/O
AB15
I/O
I/O
I/O
A6
NC
I/O
I/O
AB16
I/O
I/O
I/O
A7
I/O
I/O
I/O
AB17
I/O
I/O
I/O
A8
NC
I/O
I/O
AB18
I/O
I/O
I/O
A9
NC
I/O
I/O
AB19
I/O
I/O
I/O
A10
I/O
I/O
I/O
AB20
VDDL
VDDL
VDDL
A11
NC
I/O
I/O
AB21
VDDL
VDDL
VDDL
A12
NC
I/O
I/O
AB22
VDDL
VDDL
VDDL
A13
I/O
I/O
I/O
AB23
I/O
I/O
I/O
A14
NC
I/O
I/O
AB24
I/O
I/O
I/O
A15
NC
I/O
I/O
AB25
I/O
I/O
I/O
A16
I/O
I/O
I/O
AB26
I/O
I/O
I/O
A17
NC
I/O
I/O
AC1
I/O
I/O
I/O
A18
NC
I/O
I/O
AC2
I/O
I/O
I/O
A19
I/O
I/O
I/O
AC3
I/O
I/O
I/O
A20
NC
I/O
I/O
AC4
VDDP
VDDP
VDDP
A21
NC
I/O
I/O
AC5
I/O
I/O
I/O
A22
I/O
I/O
I/O
AC6
I/O
I/O
I/O
A23
NC
I/O
I/O
AC7
I/O
I/O
I/O
A24
NC
I/O
I/O
AC8
I/O
I/O
I/O
A25
VDDP
VDDP
VDDP
AC9
I/O
I/O
I/O
A26
VDDP
VDDP
VDDP
AC10
I/O
I/O
I/O
AA1
I/O
I/O
I/O
AC11
I/O
I/O
I/O
AA2
I/O
I/O
I/O
AC12
I/O
I/O
I/O
AA3
I/O
I/O
I/O
AC13
I/O
I/O
I/O
AA4
I/O
I/O
I/O
AC14
I/O
I/O
I/O
AA5
VDDL
VDDL
VDDL
AC15
I/O
I/O
I/O
AA22
VDDL
VDDL
VDDL
AC16
I/O
I/O
I/O
AA23
I/O
I/O
I/O
AC17
I/O
I/O
I/O
AA24
I/O
I/O
I/O
AC18
I/O
I/O
I/O
AA25
I/O
I/O
I/O
AC19
I/O
I/O
I/O
AA26
NC
I/O
I/O
AC20
I/O
I/O
I/O
AB1
NC
I/O
I/O
AC21
TMS
TMS
TMS
AB2
I/O
I/O
I/O
AC22
TDO
TDO
TDO
AB3
I/O
I/O
I/O
AC23
VDDP
VDDP
VDDP
AB4
I/O
I/O
I/O
AC24
RCK
RCK
RCK
AB5
VDDL
VDDL
VDDL
AC25
I/O
I/O
I/O
AB6
VDDL
VDDL
VDDL
AC26
NC
I/O
I/O
AB7
VDDL
VDDL
VDDL
AD1
NC
I/O
I/O
AB8
I/O
I/O
I/O
AD2
I/O
I/O
I/O
AB9
I/O
I/O
I/O
AD3
VDDP
VDDP
VDDP
AB10
I/O
I/O
I/O
AD4
I/O
I/O
I/O
v3.0
Pr o A SI C ™ 5 0 0 K F a m il y
456- P in P BGA (C ont inu ed)
Pin Number
A500K130
Function
A500K180
Function
A500K270
Function
Pin Number
A500K130
Function
A500K180
Function
A500K270
Function
AD5
I/O
I/O
I/O
AE25
VDDP
VDDP
VDDP
AD6
I/O
I/O
I/O
AE26
VDDP
VDDP
VDDP
AD7
I/O
I/O
I/O
AF1
VDDP
VDDP
VDDP
AD8
I/O
I/O
I/O
AF2
VDDP
VDDP
VDDP
AD9
I/O
I/O
I/O
AF3
NC
I/O
I/O
AD10
I/O
I/O
I/O
AF4
NC
I/O
I/O
AD11
I/O
I/O
I/O
AF5
I/O
I/O
I/O
AD12
I/O
I/O
I/O
AF6
NC
I/O
I/O
AD13
I/O
I/O
I/O
AF7
NC
I/O
I/O
AD14
I/O
I/O
I/O
AF8
I/O
I/O
I/O
AD15
I/O
I/O
I/O
AF9
NC
I/O
I/O
AD16
I/O
I/O
I/O
AF10
NC
I/O
I/O
AD17
I/O
I/O
I/O
AF11
I/O
I/O
I/O
AD18
I/O
I/O
I/O
AF12
NC
I/O
I/O
AD19
I/O
I/O
I/O
AF13
NC
I/O
I/O
AD20
I/O
I/O
I/O
AF14
I/O
I/O
I/O
AD21
TCK
TCK
TCK
AF15
NC
I/O
I/O
AD22
VPP
VPP
VPP
AF16
NC
I/O
I/O
I/O
AD23
I/O
I/O
I/O
AF17
I/O
I/O
AD24
VDDP
VDDP
VDDP
AF18
NC
I/O
I/O
AD25
I/O
I/O
I/O
AF19
NC
I/O
I/O
I/O
AD26
NC
I/O
I/O
AF20
I/O
I/O
AE1
VDDP
VDDP
VDDP
AF21
NC
I/O
I/O
AE2
VDDP
VDDP
VDDP
AF22
I/O
I/O
I/O
AE3
I/O
I/O
I/O
AF23
TDI
TDI
TDI
AE4
I/O
I/O
I/O
AF24
NC
I/O
I/O
AE5
I/O
I/O
I/O
AF25
VDDP
VDDP
VDDP
AE6
I/O
I/O
I/O
AF26
VDDP
VDDP
VDDP
AE7
I/O
I/O
I/O
B1
VDDP
VDDP
VDDP
AE8
I/O
I/O
I/O
B2
VDDP
VDDP
VDDP
AE9
I/O
I/O
I/O
B3
I/O
I/O
I/O
AE10
I/O
I/O
I/O
B4
I/O
I/O
I/O
AE11
I/O
I/O
I/O
B5
I/O
I/O
I/O
AE12
I/O
I/O
I/O
B6
I/O
I/O
I/O
AE13
I/O
I/O
I/O
B7
I/O
I/O
I/O
AE14
I/O
I/O
I/O
B8
I/O
I/O
I/O
AE15
I/O
I/O
I/O
B9
I/O
I/O
I/O
AE16
I/O
I/O
I/O
B10
I/O
I/O
I/O
AE17
I/O
I/O
I/O
B11
I/O
I/O
I/O
AE18
I/O
I/O
I/O
B12
I/O
I/O
I/O
AE19
I/O
I/O
I/O
B13
I/O
I/O
I/O
AE20
I/O
I/O
I/O
B14
I/O
I/O
I/O
AE21
I/O
I/O
I/O
B15
I/O
I/O
I/O
AE22
I/O
I/O
I/O
B16
I/O
I/O
I/O
AE23
VPN
VPN
VPN
B17
I/O
I/O
I/O
AE24
TRST
TRST
TRST
B18
I/O
I/O
I/O
v3.0
51
P r o A S IC ™ 5 0 0 K F a m ily
456- P in P BGA (C ont inu ed)
Pin Number
A500K130
Function
A500K180
Function
A500K270
Function
Pin Number
A500K130
Function
A500K180
Function
A500K270
Function
B19
I/O
I/O
I/O
D13
I/O
I/O
I/O
B20
I/O
I/O
I/O
D14
I/O
I/O
I/O
B21
I/O
I/O
I/O
D15
I/O
I/O
I/O
B22
I/O
I/O
I/O
D16
I/O
I/O
I/O
B23
I/O
I/O
I/O
D17
I/O
I/O
I/O
B24
I/O
I/O
I/O
D18
I/O
I/O
I/O
B25
VDDP
VDDP
VDDP
D19
I/O
I/O
I/O
B26
VDDP
VDDP
VDDP
D20
I/O
I/O
I/O
C1
VDDP
VDDP
VDDP
D21
I/O
I/O
I/O
C2
I/O
I/O
I/O
D22
I/O
I/O
I/O
C3
VDDP
VDDP
VDDP
D23
VDDP
VDDP
VDDP
C4
I/O
I/O
I/O
D24
I/O
I/O
I/O
C5
I/O
I/O
I/O
D25
I/O
I/O
I/O
C6
I/O
I/O
I/O
D26
I/O
I/O
I/O
C7
I/O
I/O
I/O
E1
NC
I/O
I/O
C8
I/O
I/O
I/O
E2
I/O
I/O
I/O
C9
I/O
I/O
I/O
E3
I/O
I/O
I/O
C10
I/O
I/O
I/O
E4
I/O
I/O
I/O
52
C11
I/O
I/O
I/O
E5
VDDL
VDDL
VDDL
C12
I/O
I/O
I/O
E6
VDDL
VDDL
VDDL
C13
I/O
I/O
I/O
E7
VDDL
VDDL
VDDL
C14
I/O
I/O
I/O
E8
VDDL
VDDL
VDDL
C15
I/O
I/O
I/O
E9
I/O
I/O
I/O
C16
I/O
I/O
I/O
E10
I/O
I/O
I/O
C17
I/O
I/O
I/O
E11
I/O
I/O
I/O
C18
I/O
I/O
I/O
E12
I/O
I/O
I/O
C19
I/O
I/O
I/O
E13
I/O
I/O
I/O
C20
I/O
I/O
I/O
E14
I/O
I/O
I/O
C21
I/O
I/O
I/O
E15
I/O
I/O
I/O
C22
I/O
I/O
I/O
E16
I/O
I/O
I/O
C23
I/O
I/O
I/O
E17
I/O
I/O
I/O
I/O
C24
VDDP
VDDP
VDDP
E18
I/O
I/O
C25
I/O
I/O
I/O
E19
I/O
I/O
I/O
C26
NC
I/O
I/O
E20
VDDL
VDDL
VDDL
D1
NC
I/O
I/O
E21
VDDL
VDDL
VDDL
D2
I/O
I/O
I/O
E22
VDDL
VDDL
VDDL
D3
I/O
I/O
I/O
E23
I/O
I/O
I/O
D4
VDDP
VDDP
VDDP
E24
I/O
I/O
I/O
D5
I/O
I/O
I/O
E25
I/O
I/O
I/O
D6
I/O
I/O
I/O
E26
I/O
I/O
I/O
D7
I/O
I/O
I/O
F1
I/O
I/O
I/O
D8
I/O
I/O
I/O
F2
I/O
I/O
I/O
D9
I/O
I/O
I/O
F3
I/O
I/O
I/O
D10
I/O
I/O
I/O
F4
I/O
I/O
I/O
D11
I/O
I/O
I/O
F5
VDDL
VDDL
VDDL
D12
I/O
I/O
I/O
F22
VDDL
VDDL
VDDL
v3.0
Pr o A SI C ™ 5 0 0 K F a m il y
456- P in P BGA (C ont inu ed)
Pin Number
A500K130
Function
A500K180
Function
A500K270
Function
Pin Number
A500K130
Function
A500K180
Function
A500K270
Function
F23
I/O
I/O
I/O
L3
I/O
I/O
I/O
F24
I/O
I/O
I/O
L4
I/O
I/O
I/O
F25
I/O
I/O
I/O
L5
I/O
I/O
I/O
F26
NC
I/O
I/O
L11
GND
GND
GND
G1
NC
I/O
I/O
L12
GND
GND
GND
G2
I/O
I/O
I/O
L13
GND
GND
GND
G3
I/O
I/O
I/O
L14
GND
GND
GND
G4
I/O
I/O
I/O
L15
GND
GND
GND
G5
VDDL
VDDL
VDDL
L16
GND
GND
GND
G22
VDDL
VDDL
VDDL
L22
I/O
I/O
I/O
G23
I/O
I/O
I/O
L23
I/O
I/O
I/O
G24
I/O
I/O
I/O
L24
I/O
I/O
I/O
G25
I/O
I/O
I/O
L25
I/O
I/O
I/O
G26
I/O
I/O
I/O
L26
NC
I/O
I/O
H1
NC
I/O
I/O
M1
GL
GL
GL
H2
I/O
I/O
I/O
M2
GL
GL
GL
H3
I/O
I/O
I/O
M3
I/O
I/O
I/O
H4
I/O
I/O
I/O
M4
I/O
I/O
I/O
H5
VDDL
VDDL
VDDL
M5
I/O
I/O
I/O
H22
VDDL
VDDL
VDDL
M11
GND
GND
GND
H23
I/O
I/O
I/O
M12
GND
GND
GND
H24
I/O
I/O
I/O
M13
GND
GND
GND
H25
I/O
I/O
I/O
M14
GND
GND
GND
H26
NC
I/O
I/O
M15
GND
GND
GND
J1
I/O
I/O
I/O
M16
GND
GND
GND
J2
I/O
I/O
I/O
M22
GL
GL
GL
J3
I/O
I/O
I/O
M23
I/O
I/O
I/O
J4
I/O
I/O
I/O
M24
I/O
I/O
I/O
J5
I/O
I/O
I/O
M25
I/O
I/O
I/O
J22
I/O
I/O
I/O
M26
NC
I/O
I/O
J23
I/O
I/O
I/O
N1
NC
I/O
I/O
J24
I/O
I/O
I/O
N2
I/O
I/O
I/O
J25
I/O
I/O
I/O
N3
I/O
I/O
I/O
J26
NC
I/O
I/O
N4
I/O
I/O
I/O
K1
NC
I/O
I/O
N5
I/O
I/O
I/O
K2
I/O
I/O
I/O
N11
GND
GND
GND
K3
I/O
I/O
I/O
N12
GND
GND
GND
K4
I/O
I/O
I/O
N13
GND
GND
GND
K5
I/O
I/O
I/O
N14
GND
GND
GND
K22
I/O
I/O
I/O
N15
GND
GND
GND
K23
I/O
I/O
I/O
N16
GND
GND
GND
K24
I/O
I/O
I/O
N22
I/O
I/O
I/O
K25
I/O
I/O
I/O
N23
GL
GL
GL
K26
I/O
I/O
I/O
N24
I/O
I/O
I/O
L1
NC
I/O
I/O
N25
I/O
I/O
I/O
L2
I/O
I/O
I/O
N26
I/O
I/O
I/O
v3.0
53
P r o A S IC ™ 5 0 0 K F a m ily
456- P in P BGA (C ont inu ed)
Pin Number
A500K130
Function
A500K180
Function
A500K270
Function
Pin Number
A500K130
Function
A500K180
Function
A500K270
Function
P1
NC
I/O
I/O
T23
I/O
I/O
I/O
P2
I/O
I/O
I/O
T24
I/O
I/O
I/O
P3
I/O
I/O
I/O
T25
I/O
I/O
I/O
P4
I/O
I/O
I/O
T26
I/O
I/O
I/O
54
P5
I/O
I/O
I/O
U1
NC
I/O
I/O
P11
GND
GND
GND
U2
I/O
I/O
I/O
P12
GND
GND
GND
U3
I/O
I/O
I/O
P13
GND
GND
GND
U4
I/O
I/O
I/O
P14
GND
GND
GND
U5
I/O
I/O
I/O
P15
GND
GND
GND
U22
I/O
I/O
I/O
P16
GND
GND
GND
U23
I/O
I/O
I/O
P22
I/O
I/O
I/O
U24
I/O
I/O
I/O
P23
I/O
I/O
I/O
U25
I/O
I/O
I/O
P24
I/O
I/O
I/O
U26
NC
I/O
I/O
P25
I/O
I/O
I/O
V1
I/O
I/O
I/O
P26
NC
I/O
I/O
V2
I/O
I/O
I/O
R1
I/O
I/O
I/O
V3
I/O
I/O
I/O
R2
I/O
I/O
I/O
V4
I/O
I/O
I/O
R3
I/O
I/O
I/O
V5
I/O
I/O
I/O
R4
I/O
I/O
I/O
V22
I/O
I/O
I/O
R5
I/O
I/O
I/O
V23
I/O
I/O
I/O
R11
GND
GND
GND
V24
I/O
I/O
I/O
R12
GND
GND
GND
V25
I/O
I/O
I/O
R13
GND
GND
GND
V26
NC
I/O
I/O
R14
GND
GND
GND
W1
NC
I/O
I/O
R15
GND
GND
GND
W2
I/O
I/O
I/O
R16
GND
GND
GND
W3
I/O
I/O
I/O
R22
I/O
I/O
I/O
W4
I/O
I/O
I/O
R23
I/O
I/O
I/O
W5
VDDL
VDDL
VDDL
R24
I/O
I/O
I/O
W22
VDDL
VDDL
VDDL
R25
I/O
I/O
I/O
W23
I/O
I/O
I/O
I/O
R26
NC
I/O
I/O
W24
I/O
I/O
T1
NC
I/O
I/O
W25
I/O
I/O
I/O
T2
I/O
I/O
I/O
W26
I/O
I/O
I/O
T3
I/O
I/O
I/O
Y1
NC
I/O
I/O
T4
I/O
I/O
I/O
Y2
I/O
I/O
I/O
T5
I/O
I/O
I/O
Y3
I/O
I/O
I/O
T11
GND
GND
GND
Y4
I/O
I/O
I/O
T12
GND
GND
GND
Y5
VDDL
VDDL
VDDL
T13
GND
GND
GND
Y22
VDDL
VDDL
VDDL
T14
GND
GND
GND
Y23
I/O
I/O
I/O
T15
GND
GND
GND
Y24
I/O
I/O
I/O
T16
GND
GND
GND
Y25
I/O
I/O
I/O
T22
I/O
I/O
I/O
Y26
NC
I/O
I/O
v3.0
Pr o A SI C ™ 5 0 0 K F a m il y
Pa c ka ge A ss i gn m e nt s (Continued)
144- FB GA (Bot t om V iew )
12
11
10
9
8
7
6
5
4
3
2
1
A
B
C
D
E
F
G
H
J
K
L
M
v3.0
55
P r o A S IC ™ 5 0 0 K F a m ily
144- pi n FB GA
Pin
Number
A500K050
Function
A500K130
Function
Pin
Number
A500K050
Function
A500K130
Function
Pin
Number
A500K050
Function
A500K130
Function
A1
I/O
I/O
D1
I/O
I/O
G1
I/O
I/O
A2
I/O
I/O
D2
I/O
I/O
G2
GND
GND
A3
I/O
I/O
D3
I/O
I/O
G3
I/O
I/O
A4
I/O
I/O
D4
I/O
I/O
G4
I/O
I/O
A5
I/O
I/O
D5
I/O
I/O
G5
GND
GND
A6
GND
GND
D6
I/O
I/O
G6
GND
GND
A7
I/O
I/O
D7
I/O
I/O
G7
GND
GND
A8
VDDL
VDDL
D8
I/O
I/O
G8
I/O
I/O
A9
I/O
I/O
D9
I/O
I/O
G9
I/O
I/O
A10
I/O
I/O
D10
I/O
I/O
G10
I/O
I/O
A11
I/O
I/O
D11
I/O
I/O
G11
I/O
I/O
A12
I/O
I/O
D12
I/O
I/O
G12
I/O
I/O
B1
I/O
I/O
E1
VDDL
VDDL
H1
VDDL
VDDL
B2
GND
GND
E2
I/O
I/O
H2
I/O
I/O
B3
I/O
I/O
E3
I/O
I/O
H3
I/O
I/O
B4
I/O
I/O
E4
VDDP
VDDP
H4
I/O
I/O
B5
I/O
I/O
E5
I/O
I/O
H5
VDDL
VDDL
B6
I/O
I/O
E6
VDDP
VDDP
H6
I/O
I/O
B7
I/O
I/O
E7
VDDP
VDDP
H7
I/O
I/O
B8
I/O
I/O
E8
I/O
I/O
H8
I/O
I/O
B9
I/O
I/O
E9
VDDP
VDDP
H9
I/O
I/O
B10
I/O
I/O
E10
VDDL
VDDL
H10
VDDP
VDDP
B11
GND
GND
E11
I/O
I/O
H11
I/O
I/O
B12
I/O
I/O
E12
I/O
I/O
H12
VDDL
VDDL
C1
I/O
I/O
F1
GL
GL
J1
I/O
I/O
C2
GL
GL
F2
I/O
I/O
J2
I/O
I/O
C3
I/O
I/O
F3
I/O
I/O
J3
VDDP
VDDP
C4
VDDL
VDDL
F4
I/O
I/O
J4
I/O
I/O
C5
I/O
I/O
F5
GND
GND
J5
I/O
I/O
C6
I/O
I/O
F6
GND
GND
J6
I/O
I/O
C7
I/O
I/O
F7
GND
GND
J7
VDDL
VDDL
C8
I/O
I/O
F8
I/O
I/O
J8
TCK
TCK
C9
I/O
I/O
F9
GL
GL
J9
I/O
I/O
C10
I/O
I/O
F10
GND
GND
J10
TDO
TDO
C11
I/O
I/O
F11
I/O
I/O
J11
I/O
I/O
C12
I/O
I/O
F12
GL
GL
J12
I/O
I/O
56
v3.0
Pr o A SI C ™ 5 0 0 K F a m il y
144- pi n FB GA (Co nti nue d)
Pin
Number
A500K050
Function
A500K130
Function
Pin
Number
A500K050
Function
A500K130
Function
Pin
Number
A500K050
Function
A500K130
Function
K1
I/O
I/O
L1
GND
GND
M1
I/O
I/O
K2
I/O
I/O
L2
I/O
I/O
M2
I/O
I/O
K3
I/O
I/O
L3
I/O
I/O
M3
I/O
I/O
K4
I/O
I/O
L4
I/O
I/O
M4
I/O
I/O
K5
I/O
I/O
L5
VDDP
VDDP
M5
I/O
I/O
K6
I/O
I/O
L6
I/O
I/O
M6
I/O
I/O
K7
GND
GND
L7
I/O
I/O
M7
I/O
I/O
K8
I/O
I/O
L8
I/O
I/O
M8
I/O
I/O
K9
I/O
I/O
L9
TMS
TMS
M9
TDI
TDI
K10
GND
GND
L10
RCK
RCK
M10
VDDP
VDDP
K11
I/O
I/O
L11
I/O
I/O
M11
VPP
VPP
K12
I/O
I/O
L12
TRST
TRST
M12
VPN
VPN
v3.0
57
P r o A S IC ™ 5 0 0 K F a m ily
Pa c ka ge A ss i gn m e nt s (Continued)
256- FB GA ( Bot t om V iew )
Pin one corner
16 15 14 13 12 11 10 9 8
7 6 5 4
3 2 1
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
58
v3.0
Pr o A SI C ™ 5 0 0 K F a m il y
256- pi n FB GA
Pin
Number
A500K130
Function
A500K180
Function
A500K270
Function
Pin
Number
A500K130
Function
A500K180
Function
A500K270
Function
A1
GND
GND
GND
C8
I/O
I/O
I/O
A2
I/O
I/O
I/O
C9
I/O
I/O
I/O
A3
I/O
I/O
I/O
C10
I/O
I/O
I/O
A4
I/O
I/O
I/O
C11
I/O
I/O
I/O
A5
I/O
I/O
I/O
C12
I/O
I/O
I/O
A6
I/O
I/O
I/O
C13
I/O
I/O
I/O
A7
I/O
I/O
I/O
C14
I/O
I/O
I/O
A8
I/O
I/O
I/O
C15
I/O
I/O
I/O
A9
I/O
I/O
I/O
C16
I/O
I/O
I/O
A10
I/O
I/O
I/O
D1
I/O
I/O
I/O
A11
I/O
I/O
I/O
D2
I/O
I/O
I/O
A12
I/O
I/O
I/O
D3
I/O
I/O
I/O
A13
I/O
I/O
I/O
D4
I/O
I/O
I/O
A14
I/O
I/O
I/O
D5
I/O
I/O
I/O
A15
I/O
I/O
I/O
D6
I/O
I/O
I/O
A16
GND
GND
GND
D7
I/O
I/O
I/O
B1
I/O
I/O
I/O
D8
I/O
I/O
I/O
B2
I/O
I/O
I/O
D9
I/O
I/O
I/O
B3
I/O
I/O
I/O
D10
I/O
I/O
I/O
B4
I/O
I/O
I/O
D11
I/O
I/O
I/O
B5
I/O
I/O
I/O
D12
I/O
I/O
I/O
B6
I/O
I/O
I/O
D13
I/O
I/O
I/O
B7
I/O
I/O
I/O
D14
I/O
I/O
I/O
B8
I/O
I/O
I/O
D15
I/O
I/O
I/O
B9
I/O
I/O
I/O
D16
I/O
I/O
I/O
B10
I/O
I/O
I/O
E1
I/O
I/O
I/O
B11
I/O
I/O
I/O
E2
I/O
I/O
I/O
B12
I/O
I/O
I/O
E3
I/O
I/O
I/O
B13
I/O
I/O
I/O
E4
I/O
I/O
I/O
B14
I/O
I/O
I/O
E5
I/O
I/O
I/O
B15
I/O
I/O
I/O
E6
VDDP
VDDP
VDDP
B16
I/O
I/O
I/O
E7
VDDP
VDDP
VDDP
C1
I/O
I/O
I/O
E8
I/O
I/O
I/O
C2
I/O
I/O
I/O
E9
I/O
I/O
I/O
C3
I/O
I/O
I/O
E10
VDDP
VDDP
VDDP
C4
I/O
I/O
I/O
E11
VDDP
VDDP
VDDP
C5
I/O
I/O
I/O
E12
I/O
I/O
I/O
C6
I/O
I/O
I/O
E13
I/O
I/O
I/O
C7
I/O
I/O
I/O
E14
I/O
I/O
I/O
v3.0
59
P r o A S IC ™ 5 0 0 K F a m ily
256- pi n FB GA (Co nti nue d)
60
Pin
Number
A500K130
Function
A500K180
Function
A500K270
Function
Pin
Number
A500K130
Function
A500K180
Function
A500K270
Function
E15
I/O
I/O
I/O
H6
VDDL
VDDL
VDDL
E16
I/O
I/O
I/O
H7
GND
GND
GND
F1
I/O
I/O
I/O
H8
GND
GND
GND
F2
I/O
I/O
I/O
H9
GND
GND
GND
F3
I/O
I/O
I/O
H10
GND
GND
GND
F4
I/O
I/O
I/O
H11
VDDL
VDDL
VDDL
F5
VDDP
VDDP
VDDP
H12
I/O
I/O
I/O
F6
GND
GND
GND
H13
I/O
I/O
I/O
F7
VDDL
VDDL
VDDL
H14
I/O
I/O
I/O
F8
VDDL
VDDL
VDDL
H15
I/O
I/O
I/O
F9
VDDL
VDDL
VDDL
H16
GL
GL
GL
F10
VDDL
VDDL
VDDL
J1
GL
GL
GL
F11
GND
GND
GND
J2
I/O
I/O
I/O
F12
VDDP
VDDP
VDDP
J3
I/O
I/O
I/O
F13
I/O
I/O
I/O
J4
I/O
I/O
I/O
F14
I/O
I/O
I/O
J5
I/O
I/O
I/O
F15
I/O
I/O
I/O
J6
VDDL
VDDL
VDDL
F16
I/O
I/O
I/O
J7
GND
GND
GND
G1
I/O
I/O
I/O
J8
GND
GND
GND
G2
I/O
I/O
I/O
J9
GND
GND
GND
G3
I/O
I/O
I/O
J10
GND
GND
GND
G4
I/O
I/O
I/O
J11
VDDL
VDDL
VDDL
G5
VDDP
VDDP
VDDP
J12
I/O
I/O
I/O
G6
VDDL
VDDL
VDDL
J13
I/O
I/O
I/O
G7
GND
GND
GND
J14
I/O
I/O
I/O
G8
GND
GND
GND
J15
I/O
I/O
I/O
G9
GND
GND
GND
J16
GL
GL
GL
G10
GND
GND
GND
K1
I/O
I/O
I/O
G11
VDDL
VDDL
VDDL
K2
I/O
I/O
I/O
G12
VDDP
VDDP
VDDP
K3
I/O
I/O
I/O
G13
I/O
I/O
I/O
K4
I/O
I/O
I/O
G14
I/O
I/O
I/O
K5
VDDP
VDDP
VDDP
G15
I/O
I/O
I/O
K6
VDDL
VDDL
VDDL
G16
I/O
I/O
I/O
K7
GND
GND
GND
H1
GL
GL
GL
K8
GND
GND
GND
H2
I/O
I/O
I/O
K9
GND
GND
GND
H3
I/O
I/O
I/O
K10
GND
GND
GND
H4
I/O
I/O
I/O
K11
VDDL
VDDL
VDDL
H5
I/O
I/O
I/O
K12
VDDP
VDDP
VDDP
v3.0
Pr o A SI C ™ 5 0 0 K F a m il y
256- pi n FB GA (Co nti nue d)
Pin
Number
A500K130
Function
A500K180
Function
A500K270
Function
Pin
Number
A500K130
Function
A500K180
Function
A500K270
Function
K13
I/O
I/O
I/O
N4
I/O
I/O
I/O
K14
I/O
I/O
I/O
N5
I/O
I/O
I/O
K15
I/O
I/O
I/O
N6
I/O
I/O
I/O
K16
I/O
I/O
I/O
N7
I/O
I/O
I/O
L1
I/O
I/O
I/O
N8
I/O
I/O
I/O
L2
I/O
I/O
I/O
N9
I/O
I/O
I/O
L3
I/O
I/O
I/O
N10
I/O
I/O
I/O
L4
I/O
I/O
I/O
N11
I/O
I/O
I/O
L5
VDDP
VDDP
VDDP
N12
I/O
I/O
I/O
L6
GND
GND
GND
N13
I/O
I/O
I/O
L7
VDDL
VDDL
VDDL
N14
RCK
RCK
RCK
L8
VDDL
VDDL
VDDL
N15
I/O
I/O
I/O
L9
VDDL
VDDL
VDDL
N16
I/O
I/O
I/O
L10
VDDL
VDDL
VDDL
P1
I/O
I/O
I/O
L11
GND
GND
GND
P2
I/O
I/O
I/O
L12
VDDP
VDDP
VDDP
P3
I/O
I/O
I/O
L13
I/O
I/O
I/O
P4
I/O
I/O
I/O
L14
I/O
I/O
I/O
P5
I/O
I/O
I/O
L15
I/O
I/O
I/O
P6
I/O
I/O
I/O
L16
I/O
I/O
I/O
P7
I/O
I/O
I/O
M1
I/O
I/O
I/O
P8
I/O
I/O
I/O
M2
I/O
I/O
I/O
P9
I/O
I/O
I/O
M3
I/O
I/O
I/O
P10
I/O
I/O
I/O
M4
I/O
I/O
I/O
P11
I/O
I/O
I/O
M5
I/O
I/O
I/O
P12
I/O
I/O
I/O
M6
VDDP
VDDP
VDDP
P13
TCK
TCK
TCK
M7
VDDP
VDDP
VDDP
P14
VPP
VPP
VPP
M8
I/O
I/O
I/O
P15
TRST
TRST
TRST
M9
I/O
I/O
I/O
P16
I/O
I/O
I/O
M10
VDDP
VDDP
VDDP
R1
I/O
I/O
I/O
M11
VDDP
VDDP
VDDP
R2
I/O
I/O
I/O
M12
I/O
I/O
I/O
R3
I/O
I/O
I/O
M13
I/O
I/O
I/O
R4
I/O
I/O
I/O
M14
I/O
I/O
I/O
R5
I/O
I/O
I/O
M15
I/O
I/O
I/O
R6
I/O
I/O
I/O
M16
I/O
I/O
I/O
R7
I/O
I/O
I/O
N1
I/O
I/O
I/O
R8
I/O
I/O
I/O
N2
I/O
I/O
I/O
R9
I/O
I/O
I/O
N3
I/O
I/O
I/O
R10
I/O
I/O
I/O
v3.0
61
P r o A S IC ™ 5 0 0 K F a m ily
256- pi n FB GA (Co nti nue d)
62
Pin
Number
A500K130
Function
A500K180
Function
A500K270
Function
Pin
Number
A500K130
Function
A500K180
Function
A500K270
Function
R11
I/O
I/O
I/O
T6
I/O
I/O
I/O
R12
I/O
I/O
I/O
T7
I/O
I/O
I/O
R13
I/O
I/O
I/O
T8
I/O
I/O
I/O
R14
TDI
TDI
TDI
T9
I/O
I/O
I/O
R15
VPN
VPN
VPN
T10
I/O
I/O
I/O
R16
TDO
TDO
TDO
T11
I/O
I/O
I/O
T1
GND
GND
GND
T12
I/O
I/O
I/O
T2
I/O
I/O
I/O
T13
I/O
I/O
I/O
T3
I/O
I/O
I/O
T14
I/O
I/O
I/O
T4
I/O
I/O
I/O
T15
TMS
TMS
TMS
T5
I/O
I/O
I/O
T16
GND
GND
GND
v3.0
Pr o A SI C ™ 5 0 0 K F a m il y
Pa c ka ge A ss i gn m e nt s (Continued)
676- pi n FB GA (Bo tt om Vie w)
26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9
8
7
6
5
4
3
2
1
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA
AB
AC
AD
AE
AF
v3.0
63
P r o A S IC ™ 5 0 0 K F a m ily
676- P in FBG A
Pin
Number
A500K270
Function
Pin
Number
A500K270
Function
Pin
Number
A500K270
Function
Pin
Number
A500K270
Function
Pin
Number
A500K270
Function
A1
GND
AA13
I/O
AB25
I/O
AD11
I/O
AE23
I/O
A2
GND
AA14
I/O
AB26
I/O
AD12
I/O
AE24
I/O
A3
I/O
AA15
I/O
AC1
I/O
AD13
I/O
AE25
GND
A4
I/O
AA16
I/O
AC2
I/O
AD14
I/O
AE26
GND
A5
I/O
AA17
I/O
AC3
I/O
AD15
I/O
AF1
GND
A6
I/O
AA18
I/O
AC4
I/O
AD16
I/O
AF2
GND
A7
I/O
AA19
I/O
AC5
GND
AD17
I/O
AF3
GND
A8
I/O
AA20
I/O
AC6
I/O
AD18
I/O
AF4
GND
A9
I/O
AA21
TDO
AC7
I/O
AD19
I/O
AF5
I/O
A10
I/O
AA22
GND
AC8
I/O
AD20
I/O
AF6
I/O
A11
I/O
AA23
GND
AC9
GND
AD21
I/O
AF7
I/O
A12
I/O
AA24
I/O
AC10
I/O
AD22
I/O
AF8
I/O
A13
I/O
AA25
I/O
AC11
I/O
AD23
TDI
AF9
I/O
A14
I/O
AA26
I/O
AC12
I/O
AD24
VPN
AF10
I/O
A15
I/O
AB1
I/O
AC13
I/O
AD25
I/O
AF11
I/O
A16
I/O
AB2
I/O
AC14
I/O
AD26
I/O
AF12
I/O
A17
I/O
AB3
I/O
AC15
I/O
AE1
GND
AF13
I/O
A18
I/O
AB4
I/O
AC16
I/O
AE2
GND
AF14
I/O
A19
I/O
AB5
I/O
AC17
I/O
AE3
GND
AF15
I/O
A20
I/O
AB6
GND
AC18
I/O
AE4
I/O
AF16
I/O
A21
I/O
AB7
GND
AC19
I/O
AE5
I/O
AF17
I/O
A22
I/O
AB8
I/O
AC20
I/O
AE6
I/O
AF18
I/O
A23
I/O
AB9
I/O
AC21
I/O
AE7
I/O
AF19
I/O
A24
I/O
AB10
I/O
AC22
TMS
AE8
I/O
AF20
I/O
A25
GND
AB11
I/O
AC23
RCK
AE9
I/O
AF21
I/O
A26
GND
AB12
I/O
AC24
I/O
AE10
I/O
AF22
I/O
AA1
I/O
AB13
I/O
AC25
I/O
AE11
I/O
AF23
I/O
AA2
I/O
AB14
I/O
AC26
I/O
AE12
I/O
AF24
I/O
AA3
I/O
AB15
I/O
AD1
I/O
AE13
I/O
AF25
GND
AA4
I/O
AB16
I/O
AD2
I/O
AE14
I/O
AF26
GND
AA5
I/O
AB17
I/O
AD3
I/O
AE15
I/O
B1
GND
AA6
GND
AB18
I/O
AD4
I/O
AE16
I/O
B2
GND
AA7
I/O
AB19
I/O
AD5
I/O
AE17
I/O
B3
GND
AA8
I/O
AB20
I/O
AD6
I/O
AE18
I/O
B4
GND
AA9
I/O
AB21
TCK
AD7
I/O
AE19
I/O
B5
I/O
AA10
I/O
AB22
TRST
AD8
I/O
AE20
I/O
B6
I/O
AA11
I/O
AB23
I/O
AD9
I/O
AE21
I/O
B7
I/O
AA12
I/O
AB24
I/O
AD10
I/O
AE22
I/O
B8
I/O
64
v3.0
Pr o A SI C ™ 5 0 0 K F a m il y
676- P in FBG A ( Cont i nued)
Pin
Number
A500K270
Function
Pin
Number
A500K270
Function
Pin
Number
A500K270
Function
Pin
Number
A500K270
Function
Pin
Number
A500K270
Function
B9
I/O
C21
I/O
E7
I/O
F19
I/O
H5
I/O
B10
I/O
C22
I/O
E8
I/O
F20
I/O
H6
I/O
B11
I/O
C23
I/O
E9
I/O
F21
I/O
H7
VDDP
B12
I/O
C24
I/O
E10
I/O
F22
I/O
H8
VDDL
B13
I/O
C25
I/O
E11
I/O
F23
I/O
H9
VDDP
B14
I/O
C26
I/O
E12
I/O
F24
I/O
H10
VDDP
B15
I/O
D1
I/O
E13
I/O
F25
I/O
H11
VDDP
B16
I/O
D2
I/O
E14
I/O
F26
I/O
H12
VDDP
B17
I/O
D3
GND
E15
I/O
G1
I/O
H13
VDDP
B18
I/O
D4
I/O
E16
I/O
G2
I/O
H14
VDDP
B19
I/O
D5
I/O
E17
I/O
G3
I/O
H15
VDDP
B20
I/O
D6
I/O
E18
I/O
G4
I/O
H16
VDDP
B21
I/O
D7
I/O
E19
I/O
G5
I/O
H17
VDDP
B22
I/O
D8
I/O
E20
I/O
G6
I/O
H18
VDDP
B23
I/O
D9
I/O
E21
I/O
G7
I/O
H19
VDDL
B24
I/O
D10
I/O
E22
I/O
G8
VDDL
H20
VDDL
B25
GND
D11
I/O
E23
I/O
G9
NC
H21
I/O
B26
GND
D12
I/O
E24
I/O
G10
NC
H22
I/O
C1
GND
D13
I/O
E25
I/O
G11
NC
H23
I/O
C2
GND
D14
I/O
E26
I/O
G12
NC
H24
I/O
C3
GND
D15
I/O
F1
I/O
G13
NC
H25
I/O
C4
GND
D16
I/O
F2
I/O
G14
NC
H26
I/O
C5
I/O
D17
I/O
F3
I/O
G15
NC
J1
I/O
C6
I/O
D18
I/O
F4
I/O
G16
NC
J2
I/O
C7
I/O
D19
I/O
F5
GND
G17
NC
J3
I/O
C8
I/O
D20
I/O
F6
I/O
G18
NC
J4
I/O
C9
I/O
D21
I/O
F7
NC
G20
NC
J5
I/O
C10
I/O
D22
I/O
F8
I/O
G19
VDDP
J6
I/O
C11
I/O
D23
I/O
F9
I/O
G21
I/O
J7
NC
C12
I/O
D24
I/O
F10
I/O
G22
I/O
J8
VDDP
C13
I/O
D25
I/O
F11
I/O
G23
I/O
J9
VDDL
C14
I/O
D26
I/O
F12
I/O
G24
I/O
J10
VDDL
C15
I/O
E1
I/O
F13
I/O
G25
I/O
J11
VDDL
C16
I/O
E2
I/O
F14
I/O
G26
I/O
J12
VDDL
C17
I/O
E3
I/O
F15
I/O
H1
I/O
J13
VDDL
C18
I/O
E4
I/O
F16
I/O
H2
I/O
J14
VDDL
C19
I/O
E5
I/O
F17
I/O
H3
I/O
J15
VDDL
C20
I/O
E6
I/O
F18
I/O
H4
I/O
J16
VDDL
v3.0
65
P r o A S IC ™ 5 0 0 K F a m ily
676- P in FBG A ( Cont i nued)
Pin
Number
A500K270
Function
Pin
Number
A500K270
Function
Pin
Number
A500K270
Function
Pin
Number
A500K270
Function
Pin
Number
A500K270
Function
J17
VDDL
L3
I/O
M15
GND
P1
GL
R13
GND
J18
VDDL
L4
I/O
M16
GND
P2
I/O
R14
GND
J19
VDDP
L5
I/O
M17
GND
P3
I/O
R15
GND
J20
NC
L6
I/O
M18
VDDL
P4
I/O
R16
GND
J21
I/O
L7
NC
M19
VDDP
P5
I/O
R17
GND
J22
I/O
L8
VDDP
M20
NC
P6
I/O
R18
VDDL
J23
I/O
L9
VDDL
M21
I/O
P7
NC
R19
VDDP
J24
I/O
L10
GND
M22
I/O
P8
VDDP
R20
NC
J25
I/O
L11
GND
M23
I/O
P9
VDDL
R21
I/O
J26
I/O
L12
GND
M24
I/O
P10
GND
R22
I/O
K1
I/O
L13
GND
M25
I/O
P11
GND
R23
I/O
K2
I/O
L14
GND
M26
I/O
P12
GND
R24
I/O
K3
I/O
L15
GND
N1
GL
P13
GND
R25
I/O
K4
I/O
L16
GND
N2
I/O
P14
GND
R26
I/O
K5
I/O
L17
GND
N3
I/O
P15
GND
T1
I/O
K6
I/O
L18
VDDL
N4
I/O
P16
GND
T2
I/O
K7
NC
L19
VDDP
N5
I/O
P17
GND
T3
I/O
K8
VDDP
L20
NC
N6
I/O
P18
VDDL
T4
I/O
K9
VDDL
L21
I/O
N7
NC
P19
VDDP
T5
I/O
K10
GND
L22
I/O
N8
VDDP
P20
NC
T6
I/O
K11
GND
L23
I/O
N9
VDDL
P21
I/O
T7
NC
K12
GND
L24
I/O
N10
GND
P22
I/O
T8
VDDP
K13
GND
L25
I/O
N11
GND
P23
I/O
T9
VDDL
K14
GND
L26
I/O
N12
GND
P24
I/O
T10
GND
K15
GND
M1
I/O
N13
GND
P25
I/O
T11
GND
K16
GND
M2
I/O
N14
GND
P26
I/O
T12
GND
K17
GND
M3
I/O
N15
GND
R1
I/O
T13
GND
K18
VDDL
M4
I/O
N16
GND
R2
I/O
T14
GND
K19
VDDP
M5
I/O
N17
GND
R3
I/O
T15
GND
K20
NC
M6
I/O
N18
VDDL
R4
I/O
T16
GND
K21
I/O
M7
NC
N19
VDDP
R5
I/O
T17
GND
K22
I/O
M8
VDDP
N20
NC
R6
I/O
T18
VDDL
K23
I/O
M9
VDDL
N21
I/O
R7
NC
T19
VDDP
K24
I/O
M10
GND
N22
GL
R8
VDDP
T20
NC
K25
I/O
M11
GND
N23
I/O
R9
VDDL
T21
I/O
K26
I/O
M12
GND
N24
I/O
R10
GND
T22
I/O
L1
I/O
M13
GND
N25
GL
R11
GND
T23
I/O
L2
I/O
M14
GND
N26
I/O
R12
GND
T24
I/O
66
v3.0
Pr o A SI C ™ 5 0 0 K F a m il y
676- P in FBG A ( Cont i nued)
Pin
Number
A500K270
Function
Pin
Number
A500K270
Function
Pin
Number
A500K270
Function
Pin
Number
A500K270
Function
Pin
Number
A500K270
Function
T25
I/O
U20
NC
V15
VDDL
W10
VDDP
Y5
I/O
T26
I/O
U21
I/O
V16
VDDL
W11
VDDP
Y6
I/O
U1
I/O
U22
I/O
V17
VDDL
W12
VDDP
Y7
I/O
U2
I/O
U23
I/O
V18
VDDL
W13
VDDP
Y8
VDDP
U3
I/O
U24
I/O
V19
VDDP
W14
VDDP
Y9
NC
U4
I/O
U25
I/O
V20
NC
W15
VDDP
Y10
NC
U5
I/O
U26
I/O
V21
I/O
W16
VDDP
Y11
NC
U6
I/O
V1
I/O
V22
I/O
W17
VDDP
Y12
NC
U7
NC
V2
I/O
V23
I/O
W18
VDDP
Y13
NC
U8
VDDP
V3
I/O
V24
I/O
W19
VDDL
Y14
NC
U9
VDDL
V4
I/O
V25
I/O
W20
VDDP
Y15
NC
U10
GND
V5
I/O
V26
I/O
W21
I/O
Y16
NC
U11
GND
V6
I/O
W1
I/O
W22
I/O
Y17
NC
U12
GND
V7
NC
W2
I/O
W23
I/O
Y18
NC
U13
GND
V8
VDDP
W3
I/O
W24
I/O
Y19
VDDL
U14
GND
V9
VDDL
W4
I/O
W25
I/O
Y20
VPP
U15
GND
V10
VDDL
W5
I/O
W26
I/O
Y21
I/O
U16
GND
V11
VDDL
W6
I/O
Y1
I/O
Y22
I/O
U17
GND
V12
VDDL
W7
VDDL
Y2
I/O
Y23
I/O
U18
VDDL
V13
VDDL
W8
VDDL
Y3
I/O
Y24
I/O
U19
VDDP
V14
VDDL
W9
VDDP
Y4
I/O
Y25
I/O
Y26
I/O
v3.0
67
P r o A S IC ™ 5 0 0 K F a m ily
Li s t o f C ha ng e s
The following table lists critical changes that were made in
the current version of the document.
Previous version
v2.0
Preliminary v1.1
Preliminary v1.0
Advanced v.4
Changes in current version (v3.0)
Page
WDATA has been changed to DI, and RDATA has been changed to DO to make
them consistent with the signal names found in the Macro Library Guide.
The “Product Plan” on page 3 has been updated to include the 256-FBGA package.
page 3
The “Plastic Device Resources” on page 3 has been updated to include the
256-FBGA package.
page 3
Figure 12 and Figure 13 on page 13 have been updated.
page 13
The “Design Environment” on page 15 and Figure 17 on page 15 have been
updated.
page 15
Package Thermal Characteristics table on page 16 has been updated to include the
256-FBGA package.
page 16
The “Calculating Power Dissipation” on page 17 has been changed.
page 17
The “Programming and Storage Temperature LImits” on page 18 is new.
page 18
The “DC Electrical Specifications (VDDP = 2.5V)” on page 19 has been updated.
page 19
The “DC Electrical Specifications (VDDP = 3.3V)” on page 20 has been updated.
page 20
The Table 4 on page 28 has been updated.
page 28
The Table 5 on page 34 has been updated.
page 34
The “256-FBGA (Bottom View)” on page 58 is new.
page 58
In the “676-pin FBGA (Bottom View)” on page 63, the functions for pins N1, N22,
N25, and P1 have changed from I/O to GL
page 59
The section, “Clock Trees” on page 8 is new.
page 8
The table, “DC Electrical Specifications (VDDP = 3.3V)” on page 20 is new.
page 18
The table, “AC Specifications (3.3V PCI Operation)” on page 22 is new.
page 20
The table, the “Slew Rates Measured at Cout = 10pF (Total Output Load), Nominal
Power Supplies and 25°C” on page 24 is new.
page 22
The numbers found in the “Tristate Buffer Delays (Worst-Case Commercial
Conditions, VDDP = 3.0V, VDDL = 2.3V, TJ = 70°C, fCLOCK = 250 MHz)” on page 25
have changed.
page 23
The numbers found in the “Output Buffer Delays (Worst-Case Commercial
Conditions, VDDP = 3.0V, VDDL = 2.3V, TJ = 70°C, fCLOCK = 250 MHz)” on page 26
have changed.
page 24
The numbers found in the “Input Buffer Delays (Worst-Case Commercial Conditions,
VDDP = 3.0V, VDDL = 2.3V, TJ = 70°C, fCLOCK = 250 MHz)” on page 26 have
page 24
changed.
68
The numbers found in the “Global Input Buffer Delays (Worst-Case Commercial
Conditions, VDDP = 3.0V, VDDL = 2.3V, TJ = 70°C, fCLOCK = 250 MHz)” on page 27
have changed.
page 25
The “144-FBGA (Bottom View)” on page 55 for A500K050 is new.
pages 53-55
The “676-pin FBGA (Bottom View)” on page 63 for A500K130 and A500K270 are
new.
pages 56-60
v3.0
Pr o A SI C ™ 5 0 0 K F a m il y
D at a S he et Ca t e g o r i e s
In order to provide the latest information to designers, some data sheets are published before data has been fully
characterized. These data sheets are marked as “Advanced” or Preliminary” data sheets. The definition of these categories
are as follows:
Adv anc ed
The data sheet contains initial estimated information based on simulation, other products, devices, or speed grades. This
information can be used as estimates, but not for production.
P rel im i nar y
The data sheet contains information based on simulation and/or initial characterization. The information is believed to be
correct, but changes are possible.
Unm ar ked (pr odu ct ion)
The data sheet contains information that is considered to be final.
W eb- only V er si ons
Web-only versions have three numbers in the version number (example: v2.0.1). A web-only version means Actel is posting
the data sheet so customers have the latest information, but we are not printing the version because some information is
going to change shortly after posting.
v3.0
69
Actel and the Actel logo are registered trademarks of Actel Corporation.
All other trademarks are the property of their owners.
http://www.actel.com
Actel Europe Ltd.
Maxfli Court, Riverside Way
Camberley, Surrey GU15 3YL
United Kingdom
Tel: +44 (0)1276 401450
Fax: +44 (0)1276 401490
Actel Corporation
955 East Arques Avenue
Sunnyvale, California 94086
USA
Tel: (408) 739-1010
Fax: (408) 739-1540
Actel Asia-Pacific
EXOS Ebisu Bldg. 4F
1-24-14 Ebisu Shibuya-ku
Tokyo 150 Japan
Tel: +81 03-3445-7671
Fax: +81 03-3445-7668
5172140-7/2.02