ACTEL APA075

v5.9
®
ProASICPLUS® Flash Family FPGAs
Features and Benefits
High Performance Routing Hierarchy
•
•
•
•
High Capacity
Commercial and Industrial
•
•
•
I/O
75,000 to 1 Million System Gates
27 K to 198 Kbits of Two-Port SRAM
66 to 712 User I/Os
•
•
Military
•
•
•
•
•
•
•
300, 000 to 1 Million System Gates
72 K to 198 Kbits of Two Port SRAM
158 to 712 User I/Os
Reprogrammable Flash Technology
•
•
•
•
•
•
•
•
•
•
•
•
•
3.3 V, 32-Bit PCI, up to 50 MHz (33 MHz over military
temperature)
Two Integrated PLLs
External System Performance up to 150 MHz
Flexibility with Choice of Industry-Standard Front-End Tools
Efficient Design through Front-End Timing and Gate
Optimization
ISP Support
•
In-System Programming (ISP) via JTAG Port
SRAMs and FIFOs
•
The Industry’s Most Effective Security Key (FlashLock®)
•
Low Power
•
•
•
PLL with Flexible Phase, Multiply/Divide, and Delay
Capabilities
Internal and/or External Dynamic PLL Configuration
Two LVPECL Differential Pairs for Clock or Data Inputs
Standard FPGA and ASIC Design Flow
Secure Programming
•
Schmitt-Trigger Option on Every Input
2.5 V / 3.3 V Support with Individually-Selectable Voltage
and Slew Rate
Bidirectional Global I/Os
Compliance with PCI Specification Revision 2.2
Boundary-Scan Test IEEE Std. 1149.1 (JTAG) Compliant
Pin-Compatible Packages across the ProASICPLUS Family
Unique Clock Conditioning Circuitry
0.22 µm 4 LM Flash-Based CMOS Process
Live At Power-Up (LAPU) Level 0 Support
Single-Chip Solution
No Configuration Device Required
Retains Programmed Design during Power-Down/Up Cycles
Mil/Aero Devices Operate over Full Military Temperature
Range
Performance
•
Ultra-Fast Local and Long-Line Network
High-Speed Very Long-Line Network
High-Performance, Low Skew, Splittable Global Network
100% Routability and Utilization
Low Impedance Flash Switches
Segmented Hierarchical Routing Structure
Small, Efficient, Configurable (Combinatorial or Sequential)
Logic Cells
SmartGen Netlist Generation Ensures Optimal Usage of
Embedded Memory Blocks
24 SRAM and FIFO Configurations with Synchronous and
Asynchronous Operation up to 150 MHz (typical)
Table 1 • ProASICPLUS Product Profile
Device
Maximum System Gates
Tiles (Registers)
Embedded RAM Bits (k=1,024 bits)
Embedded RAM Blocks (256x9)
LVPECL
PLL
Global Networks
Maximum Clocks
Maximum User I/Os
JTAG ISP
PCI
Package (by pin count)
TQFP
PQFP
PBGA
FBGA
CQFP2
CCGA/LGA2
Notes:
APA075
75,000
3,072
27 k
12
2
2
4
24
158
Yes
Yes
APA150
150,000
6,144
36k
16
2
2
4
32
242
Yes
Yes
APA3001
300,000
8,192
72 k
32
2
2
4
32
290
Yes
Yes
APA450
450,000
12,288
108 k
48
2
2
4
48
344
Yes
Yes
APA6001
600,000
21,504
126 k
56
2
2
4
56
454
Yes
Yes
APA750
750,000
32,768
144 k
64
2
2
4
64
562
Yes
Yes
APA10001
1,000,000
56,320
198 k
88
2
2
4
88
712
Yes
Yes
100, 144
208
–
144
100
208
456
144, 256
–
208
456
144, 256
208, 352
–
208
456
144, 256, 484
–
208
456
256, 484, 676
208, 352
624
–
208
456
676, 896
–
208
456
896, 1152
208, 352
624
1. Available as Commercial/Industrial and Military/MIL-STD-883B devices.
2. These packages are available only for Military/MIL-STD-883B devices.
D e c e m b er 2 0 0 9
© 2009 Actel Corporation
i
See the Actel website for the latest version of the datasheet.
ProASICPLUS Flash Family FPGAs
Ordering Information
APA1000
_
FG
G
1152
I
Application (Ambient Temperature Range)
Blank = Commercial (0°C to +70°C)
I = Industrial (–40°C to +85°C)
PP = Pre-production
ES = Engineering Silicon (room temperature only)
M = Military (–55°C to 125°C)
B = MIL-STD-883 Class B
Package Lead Count
Lead-free packaging
Blank = Standard Packaging
G = RoHS Compliant Packaging
Package Type
TQ = Thin Quad Flat Pack (0.5 mm pitch)
PQ = Plastic Quad Flat Pack (0.5 mm pitch)
FG = Fine Pitch Ball Grid Array (1.0 mm pitch)
BG = Plastic Ball Grid Array (1.27 mm pitch)
CQ = Ceramic Quad Flat Pack (1.05 mm pitch)
CG = Ceramic Column Grid Array (1.27 mm pitch)
LG = Land Grid Array (1.27 mm pitch)
Speed Grade
Blank = Standard Speed
Part Number
APA075
APA150
APA300
APA450
APA600
APA750
APA1000
ii
=
=
=
=
=
=
=
75,000 Equivalent System Gates
150,000 Equivalent System Gates
300,000 Equivalent System Gates
450,000 Equivalent System Gates
600,000 Equivalent System Gates
750,000 Equivalent System Gates
1,000,000 Equivalent System Gates
v5.9
ProASICPLUS Flash Family FPGAs
Device Resources
User I/Os2
Military/MIL-STD-883B
Commercial/Industrial
Device
CCGA/
LGA
CQFP
CQFP
TQFP3 TQFP3 PQFP3 PBGA3 FBGA3 FBGA3 FBGA3 FBGA3 FBGA3 FBGA3
100-Pin 144-Pin 208-Pin 456-Pin 144-Pin 256-Pin 484-Pin 676-Pin 896-Pin 1152-Pin 208-Pin 352-Pin 624-Pin
APA075
66
APA150
66
APA300
APA450
APA600
107
158
100
158
242
100
186 4
158 5
290 5
100 5
186 4, 5
158
158
5
344
356
100
5
APA750
158
356
APA1000
158 5
356 5
186
186
4
344
4, 5
158
248
158
248
440
158
248
440
4
370 4
454
454
562 6
642 5, 6
712 6
Notes:
1. Package Definitions: TQFP = Thin Quad Flat Pack, PQFP = Plastic Quad Flat Pack, PBGA = Plastic Ball Grid Array, FBGA = Fine Pitch Ball Grid
Array, CQFP = Ceramic Quad Flat Pack, CCGA = Ceramic Column Grid Array, LGA = Land Grid Array
2. Each pair of PECL I/Os is counted as one user I/O.
3. Available in RoHS compatible packages. Ordering code is "G."
4. FG256 and FG484 are footprint-compatible packages.
5. Military Temperature Plastic Package Offering
6. FG896 and FG1152 are footprint-compatible packages.
General Guideline
Maximum performance numbers in this datasheet are based on characterized data. Actel does not guarantee
performance beyond the limits specified within the datasheet.
v5.9
iii
ProASICPLUS Flash Family FPGAs
Temperature Grade Offerings
Package
APA075
APA150
TQ100
C, I
C, I
TQ144
C, I
PQ208
C, I
BG456
FG144
FG256
C, I
APA300
APA450
APA600
APA750
APA1000
C, I
C, I, M
C, I
C, I, M
C, I
C, I, M
C, I
C, I, M
C, I
C, I, M
C, I
C, I, M
C, I
C, I, M
C, I
C, I
C, I, M
C, I
C, I, M
C, I
C, I, M
FG484
FG676
C, I, M
C, I
FG896
C, I
FG1152
C, I, M
C, I
CQ208
M, B
M, B
M, B
CQ352
M, B
M, B
M, B
M, B
M, B
CG624
Note: C = Commercial
I = Industrial
M = Military
B = MIL-STD-883
Speed Grade and Temperature Matrix
Std.
C
✓
I
✓
M, B
✓
Note: C = Commercial
I = Industrial
M = Military
B = MIL-STD-883
iv
v5.9
ProASICPLUS Flash Family FPGAs
Device Family Overview
The ProASICPLUS family of devices, Actel’s secondgeneration family of flash FPGAs, offers enhanced
performance over Actel’s ProASIC family. It combines the
advantages of ASICs with the benefits of programmable
devices through nonvolatile flash technology. This
enables engineers to create high-density systems using
existing ASIC or FPGA design flows and tools. In addition,
the ProASICPLUS family offers a unique clock conditioning
circuit based on two on-board phase-locked loops (PLLs).
The family offers up to one million system gates,
supported with up to 198 kbits of two-port SRAM and up
to 712 user I/Os, all providing 50 MHz PCI performance.
combination of fine granularity, flexible routing
resources, and abundant flash switches allows 100%
utilization and over 95% routability for highly congested
designs. Tiles and larger functions are interconnected
through a four-level routing hierarchy.
Embedded two-port SRAM blocks with built-in FIFO/RAM
control logic can have user-defined depths and widths.
Users can also select programming for synchronous or
asynchronous operation, as well as parity generations or
checking.
Advantages
to
the
designer
extend
beyond
performance. Unlike SRAM-based FPGAs, four levels of
routing hierarchy simplify routing, while the use of flash
technology allows all functionality to be live at powerup. No external boot PROM is required to support device
programming. While on-board security mechanisms
prevent
access
to
the
program
information,
reprogramming can be performed in-system to support
future design iterations and field upgrades. The device’s
architecture mitigates the complexity of ASIC migration
at higher user volume. This makes ProASICPLUS a costeffective solution for applications in the networking,
communications, computing, and avionics markets.
The unique clock conditioning circuitry in each device
includes two clock conditioning blocks. Each block
provides a PLL core, delay lines, phase shifts (0° and
180°), and clock multipliers/dividers, as well as the
circuitry needed to provide bidirectional access to the
PLL. The PLL block contains four programmable
frequency dividers which allow the incoming clock signal
to be divided by a wide range of factors from 1 to 64.
The clock conditioning circuit also delays or advances the
incoming reference clock up to 8 ns (in increments of
0.25 ns). The PLL can be configured internally or
externally during operation without redesigning or
reprogramming the part. In addition to the PLL, there
are two LVPECL differential input pairs to accommodate
high-speed clock and data inputs.
The ProASICPLUS family achieves its nonvolatility and
reprogrammability through an advanced flash-based
0.22 μm LVCMOS process with four layers of metal.
Standard CMOS design techniques are used to
implement logic and control functions, including the
PLLs and LVPECL inputs. This results in predictable
performance compatible with gate arrays.
To support customer needs for more comprehensive,
lower-cost, board-level testing, Actel’s ProASICPLUS
devices are fully compatible with IEEE Standard 1149.1
for test access port and boundary-scan test architecture.
For more information concerning the flash FPGA
implementation, please refer to the "Boundary Scan
(JTAG)" section on page 2-8.
The ProASICPLUS architecture provides granularity
comparable to gate arrays. The device core consists of a
Sea-of-Tiles™. Each tile can be configured as a flip-flop,
latch, or three-input/one-output logic function by
programming the appropriate Flash switches. The
ProASICPLUS devices are available in a variety of highperformance plastic packages. Those packages and the
performance features discussed above are described in
more detail in the following sections.
v5.9
1-1
ProASICPLUS Flash Family FPGAs
ProASICPLUS Architecture
The proprietary ProASICPLUS architecture
granularity comparable to gate arrays.
the appropriate logic cell inputs and outputs. Dedicated
high-performance lines are connected as needed for fast,
low-skew global signal distribution throughout the core.
Maximum core utilization is possible for virtually any
design.
provides
The ProASICPLUS device core consists of a Sea-of-Tiles
(Figure 1-1). Each tile can be configured as a three-input
logic function (e.g., NAND gate, D-Flip-Flop, etc.) by
programming
the
appropriate
flash
switch
interconnections (Figure 1-2 and Figure 1-3 on page 1-3).
Tiles and larger functions are connected with any of the
four levels of routing hierarchy. Flash switches are
distributed throughout the device to provide
nonvolatile, reconfigurable interconnect programming.
Flash switches are programmed to connect signal lines to
ProASICPLUS devices also contain embedded, two-port
SRAM blocks with built-in FIFO/RAM control logic.
Programming
options
include
synchronous
or
asynchronous operation, two-port RAM configurations,
user-defined depth and width, and parity generation or
checking.
Refer
to
the
"Embedded
Memory
Specifications" section on page 2-54 for more
information.
RAM Block
256x9 Two-Port SRAM
or FIFO Block
I/Os
Logic Tile
RAM Block
256x9 Two Port SRAM
or FIFO Block
Figure 1-1 • The ProASICPLUS Device Architecture
Floating Gate
Sensing
Switch In
Switching
Word
Switch Out
Figure 1-2 • Flash Switch
1 -2
v5.9
ProASICPLUS Flash Family FPGAs
Local Routing
In 1
Efficient Long-Line Routing
In 2 (CLK)
In 3 (Reset)
Figure 1-3 • Core Logic Tile
Live at Power-Up
Flash Switch
PLUS
Unlike SRAM FPGAs, ProASICPLUS uses a live-at-power-up
ISP flash switch as its programming element.
The Actel flash-based ProASIC
devices support
Level 0 of the live at power-up (LAPU) classification
standard. This feature helps in system component
initialization, executing critical tasks before the
processor wakes up, setting up and configuring memory
blocks, clock generation, and bus activity management.
The LAPU feature of flash-based ProASICPLUS devices
greatly simplifies total system design and reduces total
system cost, often eliminating the need for complex
programmable logic device (CPLD) and clock generation
PLLs that are used for this purpose in a system. In
addition, glitches and brownouts in system power will
not corrupt the ProASICPLUS device's flash configuration,
and unlike SRAM-based FPGAs, the device will not have
to be reloaded when system power is restored. This
enables the reduction or complete removal of the
configuration PROM, expensive voltage monitor,
brownout detection, and clock generator devices from
the PCB design. Flash-based ProASICPLUS devices simplify
total system design, and reduce cost and design risk,
while increasing system reliability and improving system
initialization time.
In the ProASICPLUS flash switch, two transistors share the
floating gate, which stores the programming
information. One is the sensing transistor, which is only
used for writing and verification of the floating gate
voltage. The other is the switching transistor. It can be
used in the architecture to connect/separate routing nets
or to configure logic. It is also used to erase the floating
gate (Figure 1-2 on page 1-2).
Logic Tile
The logic tile cell (Figure 1-3) has three inputs (any or all
of which can be inverted) and one output (which can
connect to both ultra-fast local and efficient long-line
routing resources). Any three-input, one-output logic
function (except a three-input XOR) can be configured as
one tile. The tile can be configured as a latch with clear
or set or as a flip-flop with clear or set. Thus, the tiles can
flexibly map logic and sequential gates of a design.
v5.9
1-3
ProASICPLUS Flash Family FPGAs
Data Sheet Categories
In order to provide the latest information to designers, some datasheets are published before data has been fully
characterized. Datasheets are designated as "Product Brief," "Advanced," "Production," and "Datasheet
Supplement." The definition of these categories are as follows:
Product Brief
The product brief is a summarized version of a datasheet (advanced or production) containing general product
information. This brief gives an overview of specific device and family information.
Advance
This datasheet version contains initial estimated information based on simulation, other products, devices, or speed
grades. This information can be used as estimates, but not for production.
Unmarked (production)
This datasheet version contains information that is considered to be final.
Datasheet Supplement
The datasheet supplement gives specific device information for a derivative family that differs from the general family
datasheet. The supplement is to be used in conjunction with the datasheet to obtain more detailed information and
for specifications that do not differ between the two families.
Export Administration Regulations (EAR)
The products described in this datasheet are subject to the Export Administration Regulations (EAR). They could
require an approved export license prior to export from the United States. An export includes release of product or
disclosure of technology to a foreign national inside or outside the United States.
Actel Safety Critical, Life Support, and High-Reliability Applications
Policy
The Actel products described in this advance status datasheet may not have completed Actel’s qualification process.
Actel may amend or enhance products during the product introduction and qualification process, resulting in changes
in device functionality or performance. It is the responsibility of each customer to ensure the fitness of any Actel
product (but especially a new product) for a particular purpose, including appropriateness for safety-critical, lifesupport, and other high-reliability applications. Consult Actel’s Terms and Conditions for specific liability exclusions
relating to life-support applications. A reliability report covering all of Actel’s products is available on the Actel
website at http://www.actel.com/documents/ORT_Report.pdf. Actel also offers a variety of enhanced qualification and
lot acceptance screening procedures. Contact your local Actel sales office for additional reliability information.
1 -4
v5.9
ProASICPLUS Flash Family FPGAs
Table of Contents
Device Family Overview
ProASICPLUS Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2
Export Administration Regulations (EAR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4
General Description
Routing Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1
Timing Control and Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10
Sample Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-13
Adjustable Clock Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-13
Clock Skew Minimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-13
PLL Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-18
Design Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-25
ISP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-25
Related Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-26
Package Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-27
Calculating Typical Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-28
Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-31
Tristate Buffer Delays
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-42
Output Buffer Delays
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-44
Input Buffer Delays
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-46
Global Input Buffer Delays
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-48
Predicted Global Routing Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-50
Global Routing Skew
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-50
Module Delays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-51
Sample Macrocell Library Listing
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-51
Embedded Memory Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-54
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-73
Recommended Design Practice for VPN/VPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-74
Package Pin Assignments
100-Pin TQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1
144-Pin TQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3
208-Pin PQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5
208-Pin CQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-12
352-Pin CQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-16
456-Pin PBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-22
144-Pin FBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-37
256-Pin FBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-40
484-Pin FBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-45
676-Pin FBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-51
896-Pin FBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-59
1152-Pin FBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-69
624-Pin CCGA/LGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-78
Datasheet Information
List of Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Data Sheet Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Export Administration Regulations (EAR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Actel Safety Critical, Life Support, and High-Reliability Applications Policy . . . . .
v5.9
4-1
4-8
4-8
4-8
ProASICPLUS Flash Family FPGAs
General Description
Routing Resources
The routing structure of ProASICPLUS devices is designed
to provide high performance through a flexible fourlevel hierarchy of routing resources: ultra-fast local
resources, efficient long-line resources, high-speed, very
long-line resources, and high performance global
networks.
can in turn access every input of every tile. Active buffers
are inserted automatically by routing software to limit
the loading effects due to distance and fanout.
The ultra-fast local resources are dedicated lines that
allow the output of each tile to connect directly to every
input of the eight surrounding tiles (Figure 2-1).
The high-performance global networks are low-skew,
high fanout nets that are accessible from external pins or
from internal logic (Figure 2-4 on page 2-4). These nets
are typically used to distribute clocks, resets, and other
high fanout nets requiring a minimum skew. The global
networks are implemented as clock trees, and signals can
be introduced at any junction. These can be employed
hierarchically with signals accessing every input on all
tiles.
The high-speed, very long-line resources, which span the
entire device with minimal delay, are used to route very
long or very high fanout nets. (Figure 2-3 on page 2-3).
The efficient long-line resources provide routing for
longer distances and higher fanout connections. These
resources vary in length (spanning 1, 2, or 4 tiles), run
both vertically and horizontally, and cover the entire
ProASICPLUS device (Figure 2-2 on page 2-2). Each tile can
drive signals onto the efficient long-line resources, which
L
Inputs
L
L
L
Ultra-Fast
Local Lines
(connects a tile to the
adjacent tile, I/O buffer,
or memory block)
Output
L
L
L
L
L
Figure 2-1 • Ultra-Fast Local Resources
v5.9
2-1
ProASICPLUS Flash Family FPGAs
Spans 1 Tile
Spans 2 Tiles
Spans 4 Tiles
Logic Tile
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
Spans 1 Tile
Spans 2 Tiles
Spans 4 Tiles
Logic Cell
L
L
L
L
Figure 2-2 • Efficient Long-Line Resources
2 -2
v5.9
L
L
ProASICPLUS Flash Family FPGAs
High-Speed Very Long-Line Resouces
PAD RING
I/O RING
I/O RING
PAD RING
SRAM
SRAM
PAD RING
Figure 2-3 • High-Speed, Very Long-Line Resources
Clock Resources
Clock Trees
ProASICPLUS
One of the main architectural benefits of ProASICPLUS is
the set of power- and delay-friendly global networks.
ProASICPLUS offers four global trees. Each of these trees
is based on a network of spines and ribs that reach all
the tiles in their regions (Figure 2-4 on page 2-4). This
flexible clock tree architecture allows users to map up to
88 different internal/external clocks in an APA1000
device. Details on the clock spines and various numbers
of the family are given in Table 2-1 on page 2-4.
The
family offers powerful and flexible
control of circuit timing through the use of analog
circuitry. Each chip has two clock conditioning blocks
containing a phase-locked loop (PLL) core, delay lines,
phase shifter (0° and 180°), clock multiplier/dividers, and
all the circuitry needed for the selection and
interconnection of inputs to the global network (thus
providing bidirectional access to the PLL). This permits
the PLL block to drive inputs and/or outputs via the two
global lines on each side of the chip (four total lines).
This circuitry is discussed in more detail in the
"ProASICPLUS Clock Management System" section on
page 2-10.
The flexible use of the ProASICPLUS clock spine allows the
designer to cope with several design requirements. Users
implementing clock-resource intensive applications can
easily route external or gated internal clocks using global
routing spines. Users can also drastically reduce delay
penalties and save buffering resources by mapping
critical high fanout nets to spines. For design hints on
using these features, refer to Actel’s Efficient Use of
ProASIC Clock Trees application note.
v5.9
2-3
ProASICPLUS Flash Family FPGAs
High-Performance
Global Network
I/O RING
PAD RING
PAD RING
Top Spine
Global Networks
Global
Pads
Global
Pads
Global Spine
I/O RING
Global Ribs
Bottom Spine
Scope of Spine
(Shaded area
plus local RAMs
and I/Os)
PAD RING
Note: This figure shows routing for only one global path.
Figure 2-4 • High-Performance Global Network
Table 2-1 •
Clock Spines
APA075
APA150
APA300
APA450
APA600
APA750
APA1000
Global Clock Networks (Trees)
4
4
4
4
4
4
4
Clock Spines/Tree
6
8
8
12
14
16
22
Total Spines
24
32
32
48
56
64
88
Top or Bottom Spine Height (Tiles)
16
24
32
32
48
64
80
Tiles in Each Top or Bottom Spine
512
768
1,024
1,024
1,536
2,048
2,560
3,072
6,144
8,192
12,288
21,504
32,768
56,320
Total Tiles
2 -4
v5.9
ProASICPLUS Flash Family FPGAs
Array Coordinates
During many place-and-route operations in Actel’s
Designer software tool, it is possible to set constraints
that require array coordinates.
cells and core cells. In addition, the I/O coordinate system
changes depending on the die/package combination.
Core cell coordinates start at the lower left corner
(represented as (1,1)) or at (1,5) if memory blocks are
present at the bottom. Memory coordinates use the
same system and are indicated in Table 2-2. The memory
coordinates for an APA1000 are illustrated in Figure 2-5.
For more information on how to use constraints, see the
Designer User’s Guide or online help for ProASICPLUS
software tools.
Table 2-2 is provided as a reference. The array coordinates
are measured from the lower left (0,0). They can be used in
region constraints for specific groups of core cells, I/Os, and
RAM blocks. Wild cards are also allowed.
I/O and cell coordinates are used for placement
constraints. Two coordinate systems are needed because
there is not a one-to-one correspondence between I/O
Table 2-2 •
Array Coordinates
Logic Tile
Min.
Device
x
Memory Rows
Max.
y
x
Bottom
Top
y
y
y
All
Min.
Max.
APA075
1
1
96
32
–
(33,33) or (33, 35)
0,0
97, 37
APA150
1
1
128
48
–
(49,49) or (49, 51)
0,0
129, 53
APA300
1
5
128
68
(1,1) or (1,3)
(69,69) or (69, 71)
0,0
129, 73
APA450
1
5
192
68
(1,1) or (1,3)
(69,69) or (69, 71)
0,0
193, 73
APA600
1
5
224
100
(1,1) or (1,3)
(101,101) or (101, 103)
0,0
225, 105
APA750
1
5
256
132
(1,1) or (1,3)
(133,133) or (133, 135)
0,0
257, 137
APA1000
1
5
352
164
(1,1) or (1,3)
(165,165) or (165, 167)
0,0
353, 169
(1,169)
Memory
Blocks
(353,169)
(1,167)
(352,167)
(1,165)
(352,165)
(1,164)
(352,164)
Core
(1,5)
(352,5)
(1,3)
(352,3)
(1,1)
(352,1)
(0,0)
Memory
Blocks
(353,0)
Figure 2-5 • Core Cell Coordinates for the APA1000
v5.9
2-5
ProASICPLUS Flash Family FPGAs
Input/Output Blocks
Table 2-3 •
ProASICPLUS I/O Power Supply Voltages
VDDP
To meet complex system demands, the ProASICPLUS
family offers devices with a large number of user I/O
pins; up to 712 on the APA1000. Table 2-3 shows the
available supply voltage configurations (the PLL block
uses an independent 2.5 V supply on the AVDD and
AGND pins). All I/Os include ESD protection circuits. Each
I/O has been tested to 2000 V to the human body model
(per JESD22 (HBM)).
2.5 V
3.3 V
Input Compatibility
2.5 V
3.3 V
Output Drive
2.5 V
3.3 V
3.3 V / 2.5 V
Signal Control
Six or seven standard I/O pads are grouped with a GND
pad and either a VDD (core power) or VDDP (I/O power)
pad. Two reference bias signals circle the chip. One
protects the cascaded output drivers, while the other
creates a virtual VDD supply for the I/O ring.
Y
Pull-up
Control
EN
I/O pads are fully configurable to provide the maximum
flexibility and speed. Each pad can be configured as an
input, an output, a tristate driver, or a bidirectional
buffer (Figure 2-6 and Table 2-4).
A
Pad
3.3 V / 2.5 V Signal Control Drive
Strength and Slew-Rate Control
Figure 2-6 • I/O Block Schematic Representation
Table 2-4 •
I/O Features
Function
I/O pads configured as inputs
I/O pads configured as outputs
Description
•
Selectable 2.5 V or 3.3 V threshold levels
•
Optional pull-up resistor
•
Optionally configurable as Schmitt trigger input. The Schmitt trigger input option can be
configured as an input only, not a bidirectional buffer. This input type may be slower than
a standard input under certain conditions and has a typical hysteresis of 0.35 V. I/O macros
with an "S" in the standard I/O library have added Schmitt capabilities.
•
3.3 V PCI Compliant (except Schmitt trigger inputs)
•
Selectable 2.5 V or 3.3 V compliant output signals
•
2.5 V – JEDEC JESD 8-5
•
3.3 V – JEDEC JESD 8-A (LVTTL and LVCMOS)
•
3.3 V PCI compliant
•
Ability to drive LVTTL and LVCMOS levels
•
Selectable drive strengths
•
Selectable slew rates
•
I/O pads configured as bidirectional •
buffers
•
2 -6
Tristate
Selectable 2.5 V or 3.3 V compliant output signals
2.5 V – JEDEC JESD 8-5
•
3.3 V – JEDEC JESD 8-A (LVTTL and LVCMOS)
•
3.3 V PCI compliant
•
Optional pull-up resistor
•
Selectable drive strengths
•
Selectable slew rates
•
Tristate
v5.9
ProASICPLUS Flash Family FPGAs
Power-Up Sequencing
low voltage differential amplifier) and a signal and its
complement, PPECL (I/P) (PECLN) and NPECL (PECLREF).
The LVPECL input pad cell differs from the standard I/O
cell in that it is operated from VDD only.
While ProASICPLUS devices are live at power-up, the order
of VDD and VDDP power-up is important during system
start-up. VDD should be powered up simultaneously with
VDDP on ProASICPLUS devices. Failure to follow these
guidelines may result in undesirable pin behavior during
system start-up. For more information, refer to Actel’s
Power-Up Behavior of ProASICPLUS Devices application
note.
Since it is exclusively an input, it requires no output
signal, output enable signal, or output configuration
bits. As a special high-speed differential input, it also
does not require pull-ups. Recommended termination
for LVPECL inputs is shown in Figure 2-7. The LVPECL pad
cell compares voltages on the PPECL (I/P) pad (as
illustrated in Figure 2-8) and the NPECL pad and sends
the results to the global MUX (Figure 2-11 on page 2-11).
This high-speed, low-skew output essentially controls the
clock conditioning circuit.
LVPECL Input Pads
In addition to standard I/O pads and power pads,
ProASICPLUS devices have a single LVPECL input pad on
both the east and west sides of the device, along with
AVDD and AGND pins to power the PLL block. The
LVPECL pad cell consists of an input buffer (containing a
LVPECLs are designed to meet LVPECL JEDEC receiver
standard levels (Table 2-5).
Z 0= 50 Ω
PPECL
+
R = 100 Ω
From LVPECL Driver
Z 0= 50 Ω
Data
_
NPECL
Figure 2-7 • Recommended Termination for LVPECL Inputs
Voltage
2.72
2.125
1.49
0.86
Figure 2-8 • LVPECL High and Low Threshold Values
Table 2-5 •
Symbol
LVPECL Receiver Specifications
Parameter
Minimum
Maximum
Units
VIH
Input High Voltage
1.49
2.72
V
VIL
Input Low Voltage
0.86
2.125
V
VID
Differential Input Voltage
0.3
VDD
V
v5.9
2-7
ProASICPLUS Flash Family FPGAs
Boundary Scan (JTAG)
pins are dedicated for boundary-scan test usage. Actel
recommends that a nominal 20 kΩ pull-up resistor is
added to TDO and TCK pins.
ProASICPLUS devices are compatible with IEEE Standard
1149.1, which defines a set of hardware architecture and
mechanisms for cost-effective, board-level testing. The
basic ProASICPLUS boundary-scan logic circuit is composed
of the TAP (test access port), TAP controller, test data
registers, and instruction register (Figure 2-9). This circuit
supports all mandatory IEEE 1149.1 instructions (EXTEST,
SAMPLE/PRELOAD and BYPASS) and the optional
IDCODE instruction (Table 2-6).
The TAP controller is a four-bit state machine (16 states)
that operates as shown in Figure 2-10 on page 2-9. The
1s and 0s represent the values that must be present at
TMS at a rising edge of TCK for the given state transition
to occur. IR and DR indicate that the instruction register
or the data register is operating in that state.
ProASICPLUS devices have to be programmed at least
once for complete boundary-scan functionality to be
available. Prior to being programmed, EXTEST is not
available. If boundary-scan functionality is required prior
to programming, refer to online technical support on the
Actel website and search for ProASICPLUS BSDL.
Each test section is accessed through the TAP, which has
five associated pins: TCK (test clock input), TDI and TDO
(test data input and output), TMS (test mode selector)
and TRST (test reset input). TMS, TDI and TRST are
equipped with pull-up resistors to ensure proper
operation when no input data is supplied to them. These
I/O
I/O
I/O
I/O
I/O
TDI
Test Data
Registers
Instruction
Register
TAP
Controller
Device
Logic
TDO
I/O
TRST
I/O
TMS
I/O
TCK
I/O
Bypass Register
I/O
I/O
I/O
I/O
I/O
Figure 2-9 • ProASICPLUS JTAG Boundary Scan Test Logic Circuit
Table 2-6 •
Table 2-6 •
Boundary-Scan Opcodes
Boundary-Scan Opcodes
Hex Opcode
Hex Opcode
EXTEST
00
CLAMP
05
SAMPLE/PRELOAD
01
BYPASS
FF
IDCODE
0F
2 -8
v5.9
ProASICPLUS Flash Family FPGAs
The TAP controller receives two control inputs (TMS and
TCK) and generates control and clock signals for the rest
of the test logic architecture. On power-up, the TAP
controller enters the Test-Logic-Reset state. To guarantee
a reset of the controller from any of the possible states,
TMS must remain high for five TCK cycles. The TRST pin
may also be used to asynchronously place the TAP
controller in the Test-Logic-Reset state.
with four fields (lowest significant byte (LSB), ID number,
part number and version). The boundary-scan register
observes and controls the state of each I/O pin.
Each I/O cell has three boundary-scan register cells, each
with a serial-in, serial-out, parallel-in, and parallel-out
pin. The serial pins are used to serially connect all the
boundary-scan register cells in a device into a boundaryscan register chain, which starts at the TDI pin and ends
at the TDO pin. The parallel ports are connected to the
internal core logic tile and the input, output, and control
ports of an I/O buffer to capture and load data into the
register to control or observe the logic state of each I/O.
ProASICPLUS devices support three types of test data
registers: bypass, device identification, and boundary
scan. The bypass register is selected when no other
register needs to be accessed in a device. This speeds up
test data transfer to other devices in a test data path.
The 32-bit device identification register is a shift register
1
Test-Logic
Reset
0
0
Run-Test/
Idle
1
1
Select-DRScan
0
Capture-DR
1
Capture-IR
1
0
0
0
Shift-DR
0
0
1
1
Exit-IR
0
1
Update-DR
0
1
0
1
1
Exit2-DR
1
Pause-IR
Pause-DR
0
0
Shift-IR
1
Exit-DR
1
Select-IRScan
0
0
Exit2-IR
1
Update-IR
0
1
Figure 2-10 • TAP Controller State Diagram
v5.9
2-9
ProASICPLUS Flash Family FPGAs
Timing Control and
Characteristics
ProASICPLUS
follows (Figure 2-12 on page 2-12, Table 2-7 on page 212, and Table 2-8 on page 2-13):
Global A (secondary clock)
Clock Management System
ProASICPLUS devices provide designers with very flexible
clock conditioning capabilities. Each member of the
ProASICPLUS family contains two phase-locked loop (PLL)
blocks which perform the following functions:
•
Clock Phase Adjustment via Programmable Delay
(250 ps steps from –7 ns to +8 ns)
•
Clock Skew Minimization
•
Clock Frequency Synthesis
•
•
•
•
Global B
•
•
•
•
Each PLL has the following key features:
Output from Global MUX A
Conditioned version of PLL output (fOUT) – delayed
or advanced
Divided version of either of the above
Further delayed version of either of the above
(0.25 ns, 0.50 ns, or 4.00 ns delay)1
Output from Global MUX B
Delayed or advanced version of fOUT
Divided version of either of the above
Further delayed version of either of the above
(0.25 ns, 0.50 ns, or 4.00 ns delay)2
•
Input Frequency Range (fIN) = 1.5 to 180 MHz
•
Feedback Frequency Range (fVCO) = 24 to 180 MHz
•
Output Frequency Range (fOUT) = 8 to 180 MHz
Functional Description
•
Output Phase Shift = 0 ° and 180 °
•
Output Duty Cycle = 50%
•
Low Output Jitter (maximum at 25°C)
Each PLL block contains four programmable dividers as
shown in Figure 2-11 on page 2-11. These allow
frequency scaling of the input clock signal as follows:
–
fVCO <10 MHz. Jitter ±1% or better
–
10 MHz < fVCO < 60 MHz. Jitter ±2% or better
–
fVCO > 60 MHz. Jitter ±1% or better
•
•
Note: Jitter (ps) = Jitter (%) × period
•
For Example:
Jitter in picoseconds at 100 MHz = 0.01 × (1/100E6) = 100 ps
•
•
Maximum Acquisition = 80 µs for fVCO > 40 MHz
Time
= 30 µs for fVCO < 40 MHz
•
Low Power Consumption – 6.9 mW (max. – analog
supply) + 7.0 µW/MHz (max. – digital supply)
The n divider divides the input clock by integer
factors from 1 to 32.
The m divider in the feedback path allows
multiplication of the input clock by integer factors
ranging from 1 to 64.
The two dividers together can implement any
combination of multiplication and division
resulting in a clock frequency between 24 and 180
MHz exiting the PLL core. This clock has a fixed
50% duty cycle.
The output frequency of the PLL core is given by
the formula in EQ 2-1 (fREF is the reference clock
frequency):
fOUT = fREF × m ÷ n
EQ 2-1
Physical Implementation
•
Each side of the chip contains a clock conditioning circuit
based on a 180 MHz PLL block (Figure 2-11 on page
2-11). Two global multiplexed lines extend along each
side of the chip to provide bidirectional access to the PLL
on that side (neither MUX can be connected to the
opposite side's PLL). Each global line has optional LVPECL
input pads (described below). The global lines may be
driven by either the LVPECL global input pad or the
outputs from the PLL block, or both. Each global line can
be driven by a different output from the PLL. Unused
global pins can be configured as regular I/Os or left
unconnected. They default to an input with pull-up. The
two signals available to drive the global networks are as
The third and fourth dividers (u and v) permit the
signals applied to the global network to each be
further divided by integer factors ranging from 1
to 4.
The implementations shown in EQ 2-2 and EQ 2-3 enable
the user to define a wide range of frequency multiplier
and divisors.
1. This mode is available through the delay feature of the global MUX driver.
2 -1 0
v5.9
m
f GLB = ----------------(n × u)
EQ 2-2
f GLA
m = ---------------(n × v)
EQ 2-3
ProASICPLUS Flash Family FPGAs
The clock conditioning circuit can advance or delay the
clock up to 8 ns (in increments of 0.25 ns) relative to the
positive edge of the incoming reference clock. The system
also allows for the selection of output frequency clock
phases of 0° and 180°.
signals relative to other signals to assist in the control of
input set-up times. Not all possible combinations of input
and output modes can be used. The degrees of freedom
available in the bidirectional global pad system and in
the clock conditioning circuit have been restricted. This
avoids unnecessary and unwieldy design kit and software
work.
Prior to the application of signals to the rib drivers, they
pass through programmable delay units, one per global
network. These units permit the delaying of global
AVDD
AGND
VDD
GND
GLA
Global MUX B OUT
Input Pins to the PLL
See Figure 2-15
+ 2-15
on page
-
External Feedback Signal
Clock Conditioning
Circuitry
(Top level view)
GLB
27
4
Global MUX A OUT
8
Flash
Configuration Bits
Dynamic
Configuration Bits
Clock Conditioning Circuitry Detailed Block Diagram
CLK
Bypass Primary
1
P+
FIVDIV[4:0]
P-
7
÷n
180°
PLL Core
÷m
0°
FBDIV[5:0]
Clock from Core
(GLINT mode)
6
5
4
0
÷u
DLYB[1:0]
Delay Line 0.0 ns, 0.25 ns,
0.50 ns and 4.00 ns
GLB
OBDIV[1:0]
2
1
Delay Line
0.25 ns to
4.00 ns,
16 steps,
0.25 ns
increments
0
1
EXTFB
OBMUX[2:0]
XDLYSEL
Deskew
Delay
2.95 ns
2
3
FBDLY[3:0]
FBSEL[1:0]
3
OADIV[1:0]
2
÷v
DLYA[1:0]
Delay Line 0.0 ns, 0.25 ns,
0.50 ns and 4.00 ns
GLA
1
OAMUX[1:0]
CLKA
Bypass Secondary
Clock from Core
(GLINT mode)
Notes:
1. FBDLY is a programmable delay line from 0 to 4 ns in 250 ps increments.
2. DLYA and DLYB are programmable delay lines, each with selectable values 0 ps, 250 ps, 500 ps, and 4 ns.
3. OBDIV will also divide the phase-shift since it takes place after the PLL Core.
Figure 2-11 • PLL Block – Top-Level View and Detailed PLL Block Diagram
v5.9
2-11
ProASICPLUS Flash Family FPGAs
Package Pins
GL
Physical I/O
Buffers
Global MUX
Configuration Tile
Std. Pad Cell
Global MUX B
OUT
NPECL
PECL Pad Cell
PPECL
External
Feedback
GLMX
Std. Pad Cell
GL
Std. Pad Cell
Global MUX A
OUT
Configuration Tile
CORE
Legend
Physical Pin
DATA Signals to the Global MUX
DATA Signals to the Core
Control Signals to the Global MUX
DATA Signals to the PLL Block
Note: When a signal from an I/O tile is connected to the core, it cannot be connected to the global MUX at the same time.
Figure 2-12 • Input Connectors to ProASICPLUS Clock Conditioning Circuitry
Table 2-7 •
Clock-Conditioning Circuitry MUX Settings
MUX
FBSEL
Datapath
Comments
1
Internal Feedback
2
Internal Feedback and Advance Clock Using FBDLY
3
External Feedback (EXTFB)
–0.25 to –4 ns in 0.25 ns increments
XDLYSEL
0
Feedback Unchanged
1
Deskew feedback by advancing clock by system delay
OBMUX
GLB
0
Primary bypass, no divider
1
Primary bypass, use divider
2
Delay Clock Using FBDLY
4
Phase Shift Clock by 0°
5
Reserved
6
Phase Shift Clock by +180°
7
Reserved
OAMUX
+0.25 to +4 ns in 0.25 ns increments
GLA
0
Secondary bypass, no divider
1
Secondary bypass, use divider
2
Delay Clock Using FBDLY
3
Phase Shift Clock by 0°
2 -1 2
Fixed delay of –2.95 ns
+0.25 to +4 ns in 0.25 ns increments
v5.9
ProASICPLUS Flash Family FPGAs
Table 2-8 •
Sample Implementations
Clock Conditioning Circuitry Delay-Line
Settings
Delay Line
Delay Value (ns)
Frequency Synthesis
DLYB
0
0
1
+0.25
2
+0.50
3
+4.0
Figure 2-13 on page 2-14 illustrates an example where
the PLL is used to multiply a 33 MHz external clock up to
133 MHz. Figure 2-14 on page 2-14 uses two dividers to
synthesize a 50 MHz output clock from a 40 MHz input
reference clock. The input frequency of 40 MHz is
multiplied by five and divided by four, giving an output
clock (GLB) frequency of 50 MHz. When dividers are
used, a given ratio can be generated in multiple ways,
allowing the user to stay within the operating frequency
ranges of the PLL. For example, in this case the input
divider could have been two and the output divider also
two, giving us a division of the input frequency by four
to go with the feedback loop division (effective
multiplication) by five.
DLYA
0
0
1
+0.25
2
+0.50
3
+4.0
Lock Signal
An active high Lock signal (added via the SmartGen PLL
development tool) indicates that the PLL has locked to
the incoming clock signal. The PLL will acquire and
maintain a lock even when there is jitter on the incoming
clock signal. The PLL will maintain lock with an input
jitter up to 5% of the input period, with a maximum of
5 ns. Users can employ the Lock signal as a soft reset of
the logic driven by GLB and/or GLA. Note if FIN is not
within specified frequencies, then both the FOUT and lock
signal are indeterminate.
Adjustable Clock Delay
Figure 2-15 on page 2-15 illustrates the delay of the
input clock by employing one of the adjustable delay
lines. This is easily done in ProASICPLUS by bypassing the
PLL core entirely and using the output delay line. Notice
also that the output clock can be effectively advanced
relative to the input clock by using the delay line in the
feedback path. This is shown in Figure 2-16 on page 2-15.
PLL Configuration Options
Clock Skew Minimization
The PLL can be configured during design (via flashconfiguration bits set in the programming bitstream) or
dynamically during device operation, thus eliminating
the need to reprogram the device. The dynamic
configuration bits are loaded into a serial-in/parallel-out
shift register provided in the clock conditioning circuit.
The shift register can be accessed either from user logic
within the device or via the JTAG port. Another option is
internal dynamic configuration via user-designed
hardware. Refer to Actel's ProASICPLUS PLL Dynamic
Reconfiguration Using JTAG application note for more
information.
Figure 2-17 on page 2-16 indicates how feedback from
the clock network can be used to create minimal skew
between the distributed clock network and the input
clock. The input clock is fed to the reference clock input
of the PLL. The output clock (GLA) feeds a clock network.
The feedback input to the PLL uses a clock input delayed
by a routing network. The PLL then adjusts the phase of
the input clock to match the delayed clock, thus
providing nearly zero effective skew between the two
clocks. Refer to Actel's Using ProASICPLUS Clock
Conditioning Circuits application note for more
information.
For information on the clock conditioning circuit, refer
to Actel’s Using ProASICPLUS Clock Conditioning Circuits
application note.
v5.9
2-13
ProASICPLUS Flash Family FPGAs
Global MUX B OUT
33 MHz
÷1
÷n
180˚
PLL Core
0˚
÷m
÷4
÷u
÷1
D
GLB
133 MHz
D
D
External Feedback
÷v
D
GLA
Global MUX A OUT
Figure 2-13 • Using the PLL 33 MHz In, 133 MHz Out
Global MUX B OUT
40 MHz
÷4
÷n
180˚
PLL Core
÷m
0˚
÷u
÷1
GLB
D
50 MHz
÷5
D
D
External Feedback
÷v
Global MUX A OUT
Figure 2-14 • Using the PLL 40 MHz In, 50 MHz Out
2 -1 4
v5.9
D
GLA
ProASICPLUS Flash Family FPGAs
Global MUX B OUT
133 MHz
÷1
÷n
180˚
PLL Core
÷m
0˚
÷1
÷u
÷1
GLB
D
133 MHz
D
D
External Feedback
÷v
D
GLA
Global MUX A OUT
Figure 2-15 • Using the PLL to Delay the Input Clock
Global MUX B OUT
133 MHz
÷1
÷n
180˚
PLL Core
0˚
÷m
÷u
÷1
GLB
D
133 MHz
÷1
D
D
External Feedback
÷v
D
GLA
Global MUX A OUT
Figure 2-16 • Using the PLL to Advance the Input Clock
v5.9
2-15
ProASICPLUS Flash Family FPGAs
Off-Chip
Global MUX B
OUT
On-Chip
/1
180°
÷n
PLL Core
133 MHz
0°
÷m
÷u
D
GL
B
/1
D
External
Feedback
D
133 MHz
÷v
Global MUX A
OUT
Reference
Clock
Q
SET
D
Q CLR
Figure 2-17 • Using the PLL for Clock Deskewing
2 -1 6
v5.9
D
GL
A
ProASICPLUS Flash Family FPGAs
Logic Tile Timing Characteristics
Timing Derating
ProASICPLUS
Timing characteristics for
devices fall into
three categories: family dependent, device dependent,
and design dependent. The input and output buffer
characteristics are common to all ProASICPLUS family
members. Internal routing delays are device dependent.
Design dependency means that actual delays are not
determined until after placement and routing of the
user’s design are complete. Delay values may then be
determined by using the Timer utility or by performing
simulation with post-layout delays.
Since ProASICPLUS devices are manufactured with a
CMOS process, device performance will vary with
temperature, voltage, and process. Minimum timing
parameters reflect maximum operating voltage,
minimum operating temperature, and optimal process
variations. Maximum timing parameters reflect minimum
operating voltage, maximum operating temperature,
and worst-case process variations (within process
specifications). The derating factors shown in Table 2-9
should be applied to all timing data contained within
this datasheet.
Critical Nets and Typical Nets
All timing numbers listed in this datasheet represent
sample timing characteristics of ProASICPLUS devices.
Actual timing delay values are design-specific and can be
derived from the Timer tool in Actel’s Designer software
after place-and-route.
Propagation delays are expressed only for typical nets,
which are used for initial design performance evaluation.
Critical net delays can then be applied to the most
timing-critical paths. Critical nets are determined by net
property assignment prior to place-and-route. Refer to
the Actel Designer User’s Guide or online help for details
on using constraints.
Table 2-9 •
Temperature and Voltage Derating Factors
(Normalized to Worst-Case Commercial, TJ = 70°C, VDD = 2.3 V)
–55°C
–40°C
0°C
25°C
70°C
85°C
110°C
125°C
135°C
150°C
2.3 V
0.84
0.86
0.91
0.94
1.00
1.02
1.05
1.13
1.18
1.27
2.5 V
0.81
0.82
0.87
0.90
0.95
0.98
1.01
1.09
1.13
1.21
2.7 V
0.77
0.79
0.83
0.86
0.91
0.93
0.96
1.04
1.08
1.16
Notes:
1. The user can set the junction temperature in Designer software to be any integer value in the range of –55°C to 175°C.
2. The user can set the core voltage in Designer software to be any value between 1.4 V and 1.6 V.
v5.9
2-17
ProASICPLUS Flash Family FPGAs
PLL Electrical Specifications
Parameter
Value TJ ≤ –40°C
Value TJ > –40°C
Notes
Frequency Ranges
Reference Frequency fIN (min.)
2.0 MHz
1.5 MHz
Clock conditioning circuitry (min.) lowest input
frequency
Reference Frequency fIN (max.)
180 MHz
180 MHz
Clock conditioning circuitry (max.) highest input
frequency
OSC Frequency fVCO (min.)
60
24 MHz
Lowest output frequency voltage controlled
oscillator
OSC Frequency fVCO (max.)
180
180 MHz
Highest output frequency voltage controlled
oscillator
Clock Conditioning Circuitry fOUT (min.)
fIN ≤ 40 = 18 MHz
fIN > 40 = 16 MHz
6 MHz
Lowest output frequency clock conditioning
circuitry
Clock Conditioning Circuitry fOUT (max.)
180
180 MHz
Highest output frequency clock conditioning
circuitry
Acquisition Time from Cold Start
Acquisition Time (max.)
80 μs
30 μs
fVCO ≤ 40 MHz
Acquisition Time (max.)
80 μs
80 μs
fVCO > 40 MHz
Long Term Jitter Peak-to-Peak Max.*
Temperature
Frequency MHz
fVCO< 10<fV fVCO
10
CO<60 >60
25°C (or higher)
±1%
±2%
±1% Jitter(ps) = Jitter(%)*period
For example:
Jitter in picoseconds at 100 MHz
= 0.01 * (1/100E6) = 100 ps
0°C
±1.5% ±2.5% ±1%
–40°C
±2.5% ±3.5% ±1%
–55°C
±2.5% ±3.5% ±1%
Power Consumption
Analog Supply Power (max.*)
6.9 mW per PLL
Digital Supply Current (max.)
7 μW/MHz
Duty Cycle
Input Jitter Tolerance
50% ±0.5%
5% input period (max. Maximum jitter allowable on an input
5 ns)
clock to acquire and maintain lock.
Note: *High clock frequencies (>60 MHz) under typical setup conditions
2 -1 8
v5.9
ProASICPLUS Flash Family FPGAs
PLL I/O Constraints
PLL locking is guaranteed only when the following constraints are followed:
Table 2-10 • PLL I/O Constraints
TJ ≤ –40°C
Value TJ > –40°C
I/O Type
PLL locking is guaranteed only when using low drive strength and
low slew rate I/O. PLL locking may be inconsistent when using high
drive strength or high slew rate I/Os
No Constraints
SSO
APA300
Hermetic packages ≤ 8 SSO
Plastic packages ≤ 16 SSO
APA600
With FIN ≤ 180 MHz and
outputs
switching
simultaneously
Hermetic packages ≤ 16 SSO
Plastic packages ≤ 32 SSO
APA1000
Hermetic packages ≤ 16 SSO
Plastic packages ≤ 32 SSO
APA300
Hermetic packages ≤ 12 SSO
Plastic packages ≤ 20 SSO
APA600
Hermetic packages ≤ 32 SSO
Plastic packages ≤ 64 SSO
APA1000
With FIN ≤ 50 MHz and half
outputs switching on positive
clock edge, half switching on
the negative clock edge no less
than 10 ns later
Hermetic packages ≤ 32 SSO
Plastic packages ≤ 64 SSO
v5.9
2-19
ProASICPLUS Flash Family FPGAs
®User
Security
Embedded Memory Configurations
ProASICPLUS
The embedded memory in the ProASICPLUS family
provides great configuration flexibility (Table 2-12). Each
ProASICPLUS block is designed and optimized as a twoport memory (one read, one write). This provides 198
kbits of two-port and/or single port memory in the
APA1000 device.
devices have FlashLock protection bits that,
once programmed, block the entire programmed
contents from being read externally. Refer to Table 2-11
for details on the number of bits in the key for each
device. If locked, the user can only reprogram the device
employing the user-defined security key. This protects
the device from being read back and duplicated. Since
programmed data is stored in nonvolatile memory cells
(actually very small capacitors) rather than in the wiring,
physical deconstruction cannot be used to compromise
data. This type of security breach is further discouraged
by the placement of the memory cells beneath the four
metal layers (whose removal cannot be accomplished
without disturbing the charge in the capacitor). This is
the highest security provided in the industry. For more
information, refer to Actel’s Design Security in
Nonvolatile Flash and Antifuse FPGAs white paper.
Each memory block can be configured as FIFO or SRAM,
with independent selection of synchronous or
asynchronous read and write ports (Table 2-13).
Additional characteristics include programmable flags as
well as parity checking and generation. Figure 2-18 on
page 2-22 and Figure 2-19 on page 2-23 show the block
diagrams of the basic SRAM and FIFO blocks. Table 2-14
on page 2-22 and Table 2-15 on page 2-23 describe
memory block SRAM and FIFO interface signals,
respectively. A single memory block is designed to
operate at up to 150 MHz (standard speed grade typical
conditions). Each block is comprised of 256 9-bit words
(one read port, one write port). The memory blocks may
be cascaded in width and/or depth to create the desired
memory organization. (Figure 2-20 on page 2-24). This
provides optimal bit widths of 9 (one block), 18, 36, and
72, and optimal depths of 256, 512, 768, and 1,024. Refer
to Actel’s SmartGen User’s Guide for more information.
Table 2-11 • Flashlock Key Size by Device
Device
Key Size
APA075
79 bits
APA150
79 bits
APA300
79 bits
APA450
119 bits
APA600
167 bits
APA750
191 bits
APA1000
263 bits
Figure 2-21 on page 2-24 gives an example of optimal
memory usage. Ten blocks with 23,040 bits have been
used to generate three arrays of various widths and
depths. Figure 2-22 on page 2-24 shows how RAM blocks
can be used in parallel to create extra read ports. In this
example, using only 10 of the 88 available blocks of the
APA1000 yields an effective 6,912 bits of multiple port
RAM. The Actel SmartGen software facilitates building
wider and deeper memory configurations for optimal
memory usage.
Embedded Memory Floorplan
The embedded memory is located across the top and
bottom of the device in 256x9 blocks (Figure 1-1 on page
1-2). Depending on the device, up to 88 blocks are
available to support a variety of memory configurations.
Each block can be programmed as an independent
memory array or combined (using dedicated memory
routing resources) to form larger, more complex memory
configurations. A single memory configuration could
include blocks from both the top and bottom memory
locations.
Table 2-12 • ProASICPLUS Memory Configurations by Device
Maximum Width
Maximum Depth
Device
Bottom
Top
D
W
D
W
APA075
APA150
APA300
APA450
APA600
APA750
APA1000
0
0
16
24
28
32
44
12
16
16
24
28
32
44
256
256
256
256
256
256
256
108
144
144
216
252
288
396
1,536
2,048
2,048
3,072
3,584
4,096
5,632
9
9
9
9
9
9
9
2 -2 0
v5.9
ProASICPLUS Flash Family FPGAs
Table 2-13 • Basic Memory Configurations
Type
Write Access
Read Access
Parity
Library Cell Name
RAM
Asynchronous
Asynchronous
Checked
RAM256x9AA
RAM
Asynchronous
Asynchronous
Generated
RAM256x9AAP
RAM
Asynchronous
Synchronous Transparent
Checked
RAM256x9AST
RAM
Asynchronous
Synchronous Transparent
Generated
RAM256x9ASTP
RAM
Asynchronous
Synchronous Pipelined
Checked
RAM256x9ASR
RAM
Asynchronous
Synchronous Pipelined
Generated
RAM256x9ASRP
RAM
Synchronous
Asynchronous
Checked
RAM256x9SA
RAM
Synchronous
Asynchronous
Generated
RAM256xSAP
RAM
Synchronous
Synchronous Transparent
Checked
RAM256x9SST
RAM
Synchronous
Synchronous Transparent
Generated
RAM256x9SSTP
RAM
Synchronous
Synchronous Pipelined
Checked
RAM256x9SSR
RAM
Synchronous
Synchronous Pipelined
Generated
RAM256x9SSRP
FIFO
Asynchronous
Asynchronous
Checked
FIFO256x9AA
FIFO
Asynchronous
Asynchronous
Generated
FIFO256x9AAP
FIFO
Asynchronous
Synchronous Transparent
Checked
FIFO256x9AST
FIFO
Asynchronous
Synchronous Transparent
Generated
FIFO256x9ASTP
FIFO
Asynchronous
Synchronous Pipelined
Checked
FIFO256x9ASR
FIFO
Asynchronous
Synchronous Pipelined
Generated
FIFO256x9ASRP
FIFO
Synchronous
Asynchronous
Checked
FIFO256x9SA
FIFO
Synchronous
Asynchronous
Generated
FIFO256x9SAP
FIFO
Synchronous
Synchronous Transparent
Checked
FIFO256x9SST
FIFO
Synchronous
Synchronous Transparent
Generated
FIFO256x9SSTP
FIFO
Synchronous
Synchronous Pipelined
Checked
FIFO256x9SSR
FIFO
Synchronous
Synchronous Pipelined
Generated
FIFO256x9SSRP
v5.9
2-21
ProASICPLUS Flash Family FPGAs
DI <0:8>
WADDR <0:7>
DO <0:8>
RADDR <0:7>
SRAM
(256x9)
WRB
WBLKB
RDB
RBLKB
RCLKS
Sync Write
and
Sync Read
Ports
WCLKS
WPE
DI <0:8>
WADDR <0:7>
WRB
WBLKB
WPE
RPE
PARODD
DI <0:8>
WADDR <0:7>
DO <0:8>
RADDR <0:7>
WPE
DI <0:8>
WADDR <0:7>
WRB
WBLKB
RDB
RBLKB
Sync Write
and
Async Read
Ports
WCLKS
Async Write
and
Async Read
Ports
DO <0:8>
RADDR <0:7>
RDB
RBLKB
RCLKS
RPE
PARODD
SRAM
(256x9)
WRB
WBLKB
SRAM
(256x9)
RPE
WPE
PARODD
SRAM
(256x9)
Async Write
and
Sync Read
Ports
DO <0:8>
RADDR <0:7>
RDB
RBLKB
RCLKS
RPE
PARODD
Note: Each RAM block contains a multiplexer (called DMUX) for each output signal, increasing design efficiency. These DMUX cells do not
consume any core logic tiles and connect directly to high-speed routing resources between the RAM blocks. They are used when
RAM blocks are cascaded and are automatically inserted by the software tools.
Figure 2-18 • Example SRAM Block Diagrams
Table 2-14 • Memory Block SRAM Interface Signals
SRAM Signal
Description
Bits
In/Out
WCLKS
1
In
Write clock used on synchronization on write side
RCLKS
1
In
Read clock used on synchronization on read side
RADDR<0:7>
8
In
Read address
RBLKB
1
In
Read block select (active Low)
RDB
1
In
Read pulse (active Low)
WADDR<0:7>
8
In
Write address
WBLKB
1
In
Write block select (active Low)
DI<0:8>
9
In
Input data bits <0:8>, <8> can be used for parity In
WRB
1
In
Write pulse (active Low)
DO<0:8>
9
Out
Output data bits <0:8>, <8> can be used for parity out
RPE
1
Out
Read parity error (active High)
WPE
1
Out
Write parity error (active High)
PARODD
1
In
Selects odd parity generation/detect when High, even parity when Low
Note: Not all signals shown are used in all modes.
2 -2 2
v5.9
ProASICPLUS Flash Family FPGAs
DI<0:8>
DI<0:8>
LEVEL<0:7>
LGDEP<0:2>
FIFO
(256x9)
WRB
WBLKB
WPE
RBLKB
PARODD
RDB
RBLKB
EQTH
PARODD
GEQTH
WCLKS
FIFO
(256x9)
WRB
WBLKB
RPE
FULL
EMPTY
Sync Write
and
Sync Read
Ports
RDB
DO <0:8>
LEVEL<0:7>
LGDEP<0:2>
DO <0:8>
Sync Write
and
Async Read
Ports
DI <0:8>
LEVEL <0:7>
LGDEP<0:2>
WRB
WBLKB
DO <0:8>
FIFO
(256x9)
Async Write
and
Sync Read
Ports
RBLKB
PARODD
GEQTH
RESET
RCLKS
RDB
EQTH
WCLKS
RESET
DI <0:8>
LEVEL <0:7>
LGDEP<0:2>
WRB
WBLKB
WPE
RPE
FULL
EMPTY
WPE
RPE
FULL
EMPTY
EQTH
RDB
RBLKB
GEQTH
RESET
DO <0:8>
FIFO
(256x9)
WPE
Async Write
and
Async Read
Ports
EMPTY
EQTH
GEQTH
PARODD
RCLKS
RPE
FULL
RESET
Note: Each RAM block contains a multiplexer (called DMUX) for each output signal, increasing design efficiency. These DMUX cells do not
consume any core logic tiles and connect directly to high-speed routing resources between the RAM blocks. They are used when
RAM blocks are cascaded and are automatically inserted by the software tools.
Figure 2-19 • Basic FIFO Block Diagrams
Table 2-15 • Memory Block FIFO Interface Signals
FIFO Signal
Bits
In/Out
WCLKS
1
In
Write clock used for synchronization on write side
Description
RCLKS
1
In
Read clock used for synchronization on read side
LEVEL <0:7>
8
In
Direct configuration implements static flag logic
RBLKB
1
In
Read block select (active Low)
RDB
1
In
Read pulse (active Low)
RESET
1
In
Reset for FIFO pointers (active Low)
WBLKB
1
In
Write block select (active Low)
DI<0:8>
9
In
Input data bits <0:8>, <8> will be generated parity if PARGEN is true
WRB
1
In
Write pulse (active Low)
FULL, EMPTY
2
Out
FIFO flags. FULL prevents write and EMPTY prevents read
EQTH, GEQTH
2
Out
EQTH is true when the FIFO holds the number of words specified by the LEVEL signal.
GEQTH is true when the FIFO holds (LEVEL) words or more
DO<0:8>
9
Out
Output data bits <0:8>. <8> will be parity output if PARGEN is true.
RPE
1
Out
Read parity error (active High)
WPE
1
Out
LGDEP <0:2>
3
In
Configures DEPTH of the FIFO to 2 (LGDEP+1)
PARODD
1
In
Parity generation/detect – Even when Low, odd when High
Write parity error (active High)
v5.9
2-23
ProASICPLUS Flash Family FPGAs
9
Word Width
9
9
9
9
9
Word
Depth
256
256
9
9
256
9
256
256
256
256
256
256
88 blocks
Figure 2-20 • APA1000 Memory Block Architecture
Word Width
9
9
Word
Depth
9
256
256 256
256
256 256
256
9
9
256 256
256 words x 18 bits, 1 read, 1 write
512 words x 18 bits, 1 read, 1 write
256
1,024 words x 9 bits, 1 read, 1 write
Total Memory Blocks Used = 10
Total Memory Bits = 23,040
Figure 2-21 • Example Showing Memory Arrays with Different Widths and Depths
Word Width
9
Word
Depth
99
9
9
9
Write Port
9
9
Write Port
9
256 256
256 256 256 256
Read Ports
256 256 256 256
256 words x 9 bits, 2 read, 1 write
Read Ports
512 words x 9 bits, 4 read, 1 write
Total Memory Blocks Used = 10
Total Memory Bits = 6,912
Figure 2-22 • Multi-Port Memory Usage
2 -2 4
v5.9
ProASICPLUS Flash Family FPGAs
Design Environment
The ProASICPLUS family of FPGAs is fully supported by
both Actel's Libero® Integrated Design Environment
(IDE) and Designer FPGA Development software. Actel
Libero IDE is an integrated design manager that
seamlessly integrates design tools while guiding the user
through the design flow, managing all design and log
files, and passing necessary design data among tools.
Additionally, Libero IDE allows users to integrate both
schematic and HDL synthesis into a single flow and verify
the entire design in a single environment (see Actel’s
website for more information about Libero IDE). Libero
IDE includes Synplify® AE from Synplicity®, ViewDraw®
AE from Mentor Graphics®, ModelSim® HDL Simulator
from Mentor Graphics, WaveFormer Lite™ AE from
SynaptiCAD®, PALACE™ AE Physical Synthesis from
Magma, and Designer software from Actel.
With the Designer software, a user can lock the design
pins before layout while minimally impacting the results
of place-and-route. Additionally, Actel’s back-annotation
flow is compatible with all the major simulators. Another
tool included in the Designer software is the SmartGen
macro builder, which easily creates popular and
commonly used logic functions for implementation into
your schematic or HDL design.
PALACE is an effective tool when designing with
ProASICPLUS. PALACE AE Physical Synthesis from Magma
takes an EDIF netlist and optimizes the performance of
ProASICPLUS devices through a physical placement-driven
process, ensuring that timing closure is easily achieved.
ISP
Actel's Designer software is compatible with the most
popular FPGA design entry and verification tools from
EDA vendors, such as Mentor Graphics, Synplicity,
Synopsys, and Cadence Design Systems. The Designer
software is available for both the Windows and UNIX
operating systems.
The user can generate *.bit or *.stp programming files
from the Designer software and can use these files to
program a device.
ProASICPLUS devices can be programmed in-system. For
more information on ISP of ProASICPLUS devices, refer to
the In-System Programming ProASICPLUS Devices and
Performing Internal In-System Programming Using Actel’s
ProASICPLUS Devices application notes. Prior to being
programmed for the first time, the ProASICPLUS device I/Os
are in a tristate condition with the pull-up resistor option
enabled.
Actel's Designer software is a place-and-route tool that
provides a comprehensive suite of backend support tools
for FPGA development. The Designer software includes
the following:
•
Timer – A world-class integrated static timing
analyzer and constraints editor that supports
timing-driven place-and-route
•
NetlistViewer – A design netlist schematic viewer
•
ChipPlanner – A graphical floorplanner viewer and
editor
•
SmartPower – Allows the designer to quickly
estimate the power consumption of a design
•
PinEditor – A graphical application for editing pin
assignments and I/O attributes
•
I/O Attribute Editor – Displays all assigned and
unassigned I/O macros and their attributes in a
spreadsheet format
v5.9
2-25
ProASICPLUS Flash Family FPGAs
Related Documents
Application Notes
Efficient Use of ProASIC Clock Trees
http://www.actel.com/documents/A500K_Clocktree_AN.pdf
I/O Features in ProASICPLUS Flash FPGAs
http://www.actel.com/documents/APA_LVPECL_AN.pdf
Power-Up Behavior of ProASICPLUS Devices
http://www.actel.com/documents/APA_PowerUp_AN.pdf
ProASICPLUS PLL Dynamic Reconfiguration Using JTAG
http://www.actel.com/documents/APA_PLLdynamic_AN.pdf
Using ProASICPLUS Clock Conditioning Circuits
http://www.actel.com/documents/APA_PLL_AN.pdf
In-System Programming ProASICPLUS Devices
http://www.actel.com/documents/APA_External_ISP_AN.pdf
Performing Internal In-System Programming Using Actel’s ProASICPLUS Devices
http://www.actel.com/documents/APA_Microprocessor_AN.pdf
ProASICPLUS RAM and FIFO Blocks
http://www.actel.com/documents/APA_RAM_FIFO_AN.pdf
White Paper
Design Security in Nonvolatile Flash and Antifuse FPGAs
http://www.actel.com/documents/DesignSecurity_WP.pdf
User’s Guides
Designer User’s Guide
http://www.actel.com/documents/designer_UG.pdf
SmartGen Cores Reference Guide
http://www.actel.com/documents/gen_refguide_ug.pdf
ProASIC and ProASICPLUS Macro Library Guide
http://www.actel.com/documents/pa_libguide_UG.pdf
Additional Information
The following link contains additional information on ProASICPLUS devices.
http://www.actel.com/products/proasicplus/default.aspx
2 -2 6
v5.9
ProASICPLUS Flash Family FPGAs
Package Thermal Characteristics
surface of the integrated circuit (IC) and is 110°C. P is
defined as shown in EQ 2-4:
The ProASICPLUS family is available in several package
types with a range of pin counts. Actel has selected
packages based on high pin count, reliability factors, and
superior thermal characteristics.
TJ – TA
P = ---------------Θ ja
EQ 2-4
Thermal resistance defines the ability of a package to
conduct heat away from the silicon, through the
package to the surrounding air. Junction-to-ambient
thermal resistance is measured in degrees Celsius/Watt
and is represented as Theta ja (Θja). The lower the
thermal resistance, the more efficiently a package will
dissipate heat.
Θja is a function of the rate (in linear feet per minute
(lfpm)) of airflow in contact with the package. When the
estimated power consumption exceeds the maximum
allowed power, other means of cooling, such as
increasing the airflow rate, must be used. The maximum
power dissipation allowed for a Military temperature
device is specified as a function of Θjc. The absolute
maximum junction temperature is 150°C.
A package’s maximum allowed power (P) is a function of
maximum junction temperature (TJ), maximum ambient
operating temperature (TA), and junction-to-ambient
thermal resistance Θja. Maximum junction temperature is
the maximum allowable temperature on the active
The calculation of the absolute maximum power
dissipation allowed for a Military temperature
application is illustrated in the following example for a
456-pin PBGA package:
Max. junction temp. (°C) – Max. case temp. (°C) 150°C – 125°C
Maximum Power Allowed = ----------------------------------------------------------------------------------------------------------------------------- = ---------------------------------------- = 8.333W
3.0°C/W
θ jc (°C/W)
EQ 2-5
Table 2-16 • Package Thermal Characteristics
θja
Pin Count
θjc
Still Air
1.0 m/s
200 ft./min.
2.5 m/s
500 ft./min.
Units
Thin Quad Flat Pack (TQFP)
100
14.0
33.5
27.4
25.0
°C/W
Thin Quad Flat Pack (TQFP)
144
11.0
33.5
28.0
25.7
°C/W
208
8.0
26.1
22.5
20.8
°C/W
208
3.8
16.2
13.3
11.9
°C/W
Plastic Ball Grid Array (PBGA)
456
3.0
15.6
12.5
11.6
°C/W
Fine Pitch Ball Grid Array (FBGA)
144
3.8
26.9
22.9
21.5
°C/W
Fine Pitch Ball Grid Array (FBGA)
256
3.8
26.6
22.8
21.5
°C/W
484
3.2
18.0
14.7
13.6
°C/W
Plastic Packages
1
Plastic Quad Flat Pack (PQFP)
PQFP with heat
spreader2
Fine Pitch Ball Grid Array (FBGA)
3
Fine Pitch Ball Grid Array (FBGA)
4
484
3.2
20.5
17.0
15.9
°C/W
Fine Pitch Ball Grid Array (FBGA)
676
3.2
16.4
13.0
12.0
°C/W
Fine Pitch Ball Grid Array (FBGA)
896
2.4
13.6
10.4
9.4
°C/W
Fine Pitch Ball Grid Array (FBGA)
1152
1.8
12.0
8.9
7.9
°C/W
Ceramic Quad Flat Pack (CQFP)
208
2.0
22.0
19.8
18.0
°C/W
Ceramic Quad Flat Pack (CQFP)
352
2.0
17.9
16.1
14.7
°C/W
Ceramic Column Grid Array (CCGA/LGA)
624
6.5
8.9
8.5
8.0
°C/W
Notes:
1.
2.
3.
4.
Valid for the following devices irrespective of temperature grade: APA075, APA150, and APA300
Valid for the following devices irrespective of temperature grade: APA450, APA600, APA750, and APA1000
Depopulated array
Full array
v5.9
2-27
ProASICPLUS Flash Family FPGAs
Calculating Typical Power Dissipation
ProASICPLUS device power is calculated with both a static and an active component. The active component is a function
of both the number of tiles utilized and the system speed. Power dissipation can be calculated using the following
formula:
Total Power Consumption—Ptotal
Ptotal = Pdc + Pac
where:
Pdc =
7 mW for the APA075
8 mW for the APA150
11 mW for the APA300
12 mW for the APA450
12 mW for the APA600
13 mW for the APA750
19 mW for the APA1000
Pdc includes the static components of PVDDP + PVDD + PAVDD
Pac =
Pclock + Pstorage + Plogic + Poutputs + Pinputs + Ppll + Pmemory
Global Clock Contribution—Pclock
Pclock, the clock component of power dissipation, is given by the piece-wise model:
for R < 15000 the model is: (P1 + (P2*R) – (P7*R2)) * Fs (lightly-loaded clock trees)
for R > 15000 the model is: (P10 + P11*R) * Fs (heavily-loaded clock trees)
where:
P1
= 100 µW/MHz is the basic power consumption of the clock tree per MHz of the clock
P2
= 1.3 µW/MHz is the incremental power consumption of the clock tree per storage tile – also per MHz of the
clock
P7
= 0.00003 µW/MHz is a correction factor for partially-loaded clock trees
P10
= 6850 µW/MHz is the basic power consumption of the clock tree per MHz of the clock
P11
= 0.4 µW/MHz is the incremental power consumption of the clock tree per storage tile – also per MHz of
the clock
R
= the number of storage tiles clocked by this clock
Fs
= the clock frequency
Storage-Tile Contribution—Pstorage
Pstorage, the storage-tile (Register) component of AC power dissipation, is given by
Pstorage = P5 * ms * Fs
where:
2 -2 8
P5
=
ms
Fs
=
=
1.1 µW/MHz is the average power consumption of a storage tile per MHz of its output toggling rate.
The maximum output toggling rate is Fs/2.
the number of storage tiles (Register) switching during each Fs cycle
the clock frequency
v5.9
ProASICPLUS Flash Family FPGAs
Logic-Tile Contribution—Plogic
Plogic, the logic-tile component of AC power dissipation, is given by
Plogic = P3 * mc * Fs
where:
P3
=
mc
Fs
=
=
1.4 μW/MHz is the average power consumption of a logic tile per MHz of its output toggling rate. The
maximum output toggling rate is Fs/2.
the number of logic tiles switching during each Fs cycle
the clock frequency
I/O Output Buffer Contribution—Poutputs
Poutputs, the I/O component of AC power dissipation, is given by
Poutputs = (P4 + (Cload * VDDP2)) * p * Fp
where:
P4
=
Cload =
p
=
Fp
=
326 μW/MHz is the intrinsic power consumption of an output pad normalized per MHz of the output
frequency. This is the total I/O current VDDP.
the output load
the number of outputs
the average output frequency
I/O Input Buffer's Buffer Contribution—Pinputs
The input’s component of AC power dissipation is given by
Pinputs = P8 * q * Fq
where:
P8
=
29 μW/MHz is the intrinsic power consumption of an input pad normalized per MHz of the input
frequency.
q
=
the number of inputs
Fq
=
the average input frequency
PLL Contribution—Ppll
Ppll = P9 * Npll
where:
P9
=
7.5 mW. This value has been estimated at maximum PLL clock frequency.
NPll
=
number of PLLs used
RAM Contribution—Pmemory
Finally, Pmemory, the memory component of AC power consumption, is given by
Pmemory = P6 * Nmemory * Fmemory * Ememory
where:
P6
Nmemory
=
=
Fmemory
Ememory
=
=
175 µW/MHz is the average power consumption of a memory block per MHz of the clock
the number of RAM/FIFO blocks
(1 block = 256 words * 9 bits)
the clock frequency of the memory
the average number of active blocks divided by the total number of blocks (N) of the memory.
•
Typical values for Ememory would be 1/4 for a 1k x 8,9,16, 32 memory and 1/16 for a 4kx8,
9, 16, and 32 memory configuration
•
In addition, an application-dependent component to Ememory can be considered. For
example, for a 1kx8 memory configuration using only 1 cycle out of 2, Ememory = 1/4*1/2 = 1/8
v5.9
2-29
ProASICPLUS Flash Family FPGAs
The following is an APA750 example using a shift register design with 13,440 storage tiles (Register) and 0 logic tiles.
This design has one clock at 10 MHz, and 24 outputs toggling at 5 MHz. We then calculate the various components as
follows:
Pclock
Fs
= 10 MHz
R
= 13,440
Pclock = (P1 + (P2*R) - (P7*R2)) * Fs = 121.5 mW
=>
Pstorage
ms
=>
= 13,440 (in a shift register 100% of storage tiles are toggling at each clock cycle and Fs = 10 MHz)
Pstorage = P5 * ms * Fs = 147.8 mW
Plogic
mc
=>
= 0 (no logic tiles in this shift register)
Plogic = 0 mW
Poutputs
=>
Cload
=
40 pF
VDDP
=
3.3 V
p
=
24
Fp
=
5 MHz
Poutputs = (P4 + (Cload * VDDP2)) * p * Fp = 91.4 mW
Pinputs
=>
q
=
1
Fq
=
10 MHz
Pinputs = P8 * q * Fq = 0.3 mW
Pmemory
Nmemory
=>
=
0 (no RAM/FIFO blocks in this shift register)
Pmemory = 0 mW
Pac
=>
361 mW
Ptotal
Pdc + Pac = 374 mW (typical)
2 -3 0
v5.9
ProASICPLUS Flash Family FPGAs
Operating Conditions
Table 2-17 and Table 2-18 delineate operating limits.
Table 2-17 • Absolute Maximum Ratings*
Parameter
Condition
Minimum
Maximum
Units
Supply Voltage Core (VDD)
–0.3
3.0
V
Supply Voltage I/O Ring (VDDP)
–0.3
4.0
V
DC Input Voltage
–0.3
VDDP + 0.3
V
PCI DC Input Voltage
–1.0
VDDP + 1.0
V
PCI DC Input Clamp Current (absolute)
VIN < –1 or VIN = VDDP + 1 V
LVPECL Input Voltage
GND
10
mA
–0.3
VDDP + 0.5
V
0
0
V
Note: *Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to
absolute maximum rated conditions for extended periods may affect device reliability. Devices should not be operated outside the
Recommended Operating Conditions.
Table 2-18 • Programming, Storage, and Operating Limits
Storage Temperature
Product Grade
Commercial
Operating
Programming Cycles (min.)
Program Retention (min.)
Min.
Max.
TJ Max.
Junction
Temperature
500
20 years
–55°C
110°C
110°C
Industrial
500
20 years
–55°C
110°C
110°C
Military
100
Refer to Table 2-19 on page 2-32
–65°C
150°C
150°C
MIL-STD-883
100
Refer to Table 2-19 on page 2-32
–65°C
150°C
150°C
Performance Retention
Example – the ambient temperature of a system cycles
between 100°C (25% of the time) and 50°C (75% of the
time). No forced ventilation cooling system is in use. An
APA600-PQ208M FPGA operates in the system,
dissipating 1 W. The package thermal resistance
(junction-to-ambient) in still air Θja is 20°C/W, indicating
that the junction temperature of the FPGA will be 120°C
(25% of the time) and 70°C (75% of the time). The entry
in Table 2-19 on page 2-32, which most closely matches
the application, is 25% at 125°C with 75% at 110°C.
Performance retention in this example is at least 16.0
years.
For devices operated and stored at 110°C or less, the
performance retention period is 20 years after
programming. For devices operated and stored at
temperatures greater than 110°C, refer to Table 2-19 on
page 2-32 to determine the performance retention
period. Actel does not guarantee performance if the
performance retention period is exceeded. Designers can
determine the performance retention period from the
following table.
Evaluate the percentage of time spent at the highest
temperature, then determine the next highest
temperature to which the device will be exposed. In
Table 2-19 on page 2-32, find the temperature profile
that most closely matches the application.
Note that exceeding the stated retention period may
result in a performance degradation in the FPGA below
the worst-case performance indicated in the Actel Timer.
To ensure that performance does not degrade below the
worst-case values in the Actel Timer, the FPGA must be
reprogrammed within the performance retention
period. In addition, note that performance retention is
independent of whether or not the FPGA is operating.
The retention period of a device in storage at a given
temperature will be the same as the retention period of
a device operating at that junction temperature.
v5.9
2-31
ProASICPLUS Flash Family FPGAs
Table 2-19 • Military Temperature Grade Product Performance Retention
Minimum Time at TJ
110°C or Below
Minimum Time at TJ
125°C or Below
Minimum Time at TJ
135°C or Below
Minimum Time at TJ
150°C or Below
100%
20.0
90%
10%
18.2
75%
25%
16
90%
50%
10%
15.4
50%
13.3
90%
10%
75%
25%
90%
50%
75%
10
10%
9.1
50%
8
25%
8
90%
75%
50%
11.8
11.4
100%
10%
7.7
25%
7.3
50%
75%
6.7
25%
100%
90%
5.7
5
10%
4.5
50%
4.4
50%
4
75%
25%
4
50%
50%
3.3
100%
2.5
50%
50%
2 -3 2
Minimum
Performance
Retention (Years)
v5.9
ProASICPLUS Flash Family FPGAs
Table 2-20 • Recommended Maximum Operating Conditions Programming and PLL Supplies
Commercial/Industrial/Military/MIL-STD-883
Parameter
VPP
Condition
Maximum
Units
15.8
16.5
V
0
16.5
V
–13.8
–13.2
V
–13.8
During Programming
Normal Operation
VPN
Minimum
1
During Programming
2
0.5
V
IPP
During Programming
25
mA
IPN
During Programming
10
mA
Normal Operation
AVDD
VDD
VDD
V
AGND
GND
GND
V
Notes:
1. Please refer to the "VPP Programming Supply Pin" section on page 2-74 for more information.
2. Please refer to the "VPN Programming Supply Pin" section on page 2-74 for more information.
Table 2-21 • Recommended Operating Conditions
Limits
Parameter
Symbol
Commercial
Industrial
Military/MIL-STD-883
DC Supply Voltage (2.5 V I/Os)
VDD and VDDP
2.5 V ± 0.2 V
2.5 V ± 0.2 V
2.5 V ± 0.2 V
DC Supply Voltage (3.3 V I/Os)
VDDP
VDD
3.3 V ± 0.3 V
2.5 V ± 0.2 V
3.3 V ± 0.3 V
2.5 V ± 0.2 V
3.3 V ± 0.3 V
2.5 V ± 0.2 V
Operating Ambient Temperature Range
TA, TC
0°C to 70°C
–40°C to 85°C
–55°C (TA) to 125°C (TC)
TJ
110°C
110°C
150°C
Maximum Operating Junction Temperature
Note: For I/O long-term reliability, external pull-up resistors cannot be used to increase output voltage above VDDP.
v5.9
2-33
ProASICPLUS Flash Family FPGAs
Table 2-22 • DC Electrical Specifications (VDDP = 2.5 V ±0.2V)
Commercial/Industrial/
Military/MIL-STD-8831, 2
Symbol
Parameter
VOH
Output High Voltage
High Drive (OB25LPH)
Low Drive (OB25LPL)
VOL
Conditions
Min.
IOH = –6 mA
IOH = –12 mA
IOH = –24 mA
2.1
2.0
1.7
IOH = –3 mA
IOH = –6 mA
IOH = –8 mA
2.1
1.9
1.7
Typ.
Max.
Units
V
Output Low Voltage
High Drive (OB25LPH)
Low Drive (OB25LPL)
IOL = 8 mA
IOL = 15 mA
IOL = 24 mA
0.2
0.4
0.7
IOL = 4 mA
IOL = 8 mA
IOL = 15 mA
0.2
0.4
0.7
V
VIH3
Input High Voltage
1.7
VDDP + 0.3
V
VIL4
Input Low Voltage
–0.3
0.7
V
6
56
kΩ
0.45
V
RWEAKPULLUP Weak Pull-up Resistance
(OTB25LPU)
VIN ≥ 1.25 V
HYST
Input Hysteresis Schmitt
See Table 2-4 on page 2-6
IIN
Input Current
with pull up (VIN = GND)
–240
– 20
µA
without pull up (VIN = GND or VDD)
–10
10
µA
5.0
15
mA
5.0
20
mA
5.0
25
mA
10
µA
GND5
0.3
IDDQ
Quiescent Supply Current
(standby)
Commercial
VIN =
or VDD
Std.
IDDQ
Quiescent Supply Current
(standby)
Industrial
VIN = GND5 or VDD
Std.
IDDQ
Quiescent Supply Current
(standby)
Military/MIL-STD-883
VIN =
GND5
or VDD
IOZ
Tristate Output Leakage Current VOH = GND or VDD
IOSH
Output Short Circuit Current High
High Drive (OB25LPH)
VIN = VSS
VIN = VSS
Low Drive (OB25LPL)
0.35
Std.
Std.
–10
mA
–120
–100
Notes:
1.
2.
3.
4.
5.
All process conditions. Commercial/Industrial: Junction Temperature: –40 to +110°C.
All process conditions. Military: Junction Temperature: –55 to +150°C.
During transitions, the input signal may overshoot to VDDP +1.0V for a limited time of no larger than 10% of the duty cycle.
During transitions, the input signal may undershoot to -1.0V for a limited time of no larger than 10% of the duty cycle.
No pull-up resistor.
2 -3 4
v5.9
ProASICPLUS Flash Family FPGAs
Table 2-22 • DC Electrical Specifications (VDDP = 2.5 V ±0.2V) (Continued)
Commercial/Industrial/
Military/MIL-STD-8831, 2
Min.
Conditions
Typ.
Max.
Units
Symbol
Parameter
IOSL
Output Short Circuit Current Low
High Drive (OB25LPH)
VIN = VDDP
VIN = VDDP
Low Drive (OB25LPL)
100
30
CI/O
I/O Pad Capacitance
10
pF
CCLK
Clock Input Pad Capacitance
10
pF
mA
Notes:
1.
2.
3.
4.
5.
All process conditions. Commercial/Industrial: Junction Temperature: –40 to +110°C.
All process conditions. Military: Junction Temperature: –55 to +150°C.
During transitions, the input signal may overshoot to VDDP +1.0V for a limited time of no larger than 10% of the duty cycle.
During transitions, the input signal may undershoot to -1.0V for a limited time of no larger than 10% of the duty cycle.
No pull-up resistor.
v5.9
2-35
ProASICPLUS Flash Family FPGAs
Table 2-23 • DC Electrical Specifications (VDDP = 3.3 V ±0.3 V and VDD = 2.5 V ±0.2 V)
Applies to Commercial and Industrial Temperature Only
Commercial/Industrial1
Symbol
Parameter
VOH
Output High Voltage
3.3 V I/O, High Drive (OB33P)
3.3 V I/O, Low Drive (OB33L)
Output Low Voltage
3.3 V I/O, High Drive (OB33P)
VOL
Conditions
Min.
IOH = –14 mA
IOH = –24 mA
0.9∗VDDP
2.4
IOH = –6 mA
IOH = –12 mA
0.9∗VDDP
2.4
Typ.
Max.
V
IOL = 15 mA
IOL = 20 mA
IOL = 28 mA
0.1VDDP
0.4
0.7
IOL = 7 mA
IOL = 10 mA
IOL = 15 mA
0.1VDDP
0.4
0.7
3.3 V I/O, Low Drive (OB33L)
VIH2
VIL3
1.6
2
1.7
VDDP + 0.3
VDDP + 0.3
VDDP + 0.3
Input Low Voltage
3.3 V Schmitt Trigger Inputs
3.3 V LVTTL/LVCMOS
2.5 V Mode
–0.3
–0.3
–0.3
0.8
0.8
0.7
V
Resistance VIN ≥ 1.5 V
7
43
kΩ
Resistance VIN ≥ 1.5 V
7
43
kΩ
with pull up (VIN = GND)
–300
–40
µA
without pull up (VIN = GND or VDD)
–10
10
µA
RWEAKPULLUP Weak
Pull-up
(IOB25U)
Input Current
GND4
IDDQ
Quiescent Supply Current
(standby)
Commercial
VIN =
IDDQ
Quiescent Supply Current
(standby)
Industrial
VIN = GND4 or VDD
IDDQ
Quiescent Supply Current
(standby)
Military
VIN =
GND4
or VDD
2 -3 6
V
Std.
5.0
15
mA
Std.
5.0
20
mA
Std.
5.0
25
mA
or VDD
Notes:
1.
2.
3.
4.
V
Input High Voltage
3.3 V Schmitt Trigger Inputs
3.3 V LVTTL/LVCMOS
2.5 V Mode
Pull-up
RWEAKPULLUP Weak
(IOB33U)
IIN
Units
All process conditions. Commercial/Industrial: Junction Temperature: –40 to +110°C.
During transitions, the input signal may overshoot to VDDP +1.0 V for a limited time of no larger than 10% of the duty cycle.
During transitions, the input signal may undershoot to –1.0 V for a limited time of no larger than 10% of the duty cycle.
No pull-up resistor required.
v5.9
ProASICPLUS Flash Family FPGAs
Table 2-23 • DC Electrical Specifications (VDDP = 3.3 V ±0.3 V and VDD = 2.5 V ±0.2 V) (Continued)
Applies to Commercial and Industrial Temperature Only
Commercial/Industrial1
Symbol
Parameter
Conditions
IOSH
Output Short Circuit Current
High
3.3 V High Drive (OB33P)
VIN = GND
VIN = GND
3.3 V Low Drive (OB33L)
Min.
Typ.
Max.
Units
–200
–100
Output Short Circuit Current
Low
3.3 V High Drive
VIN = VDD
VIN = VDD
3.3 V Low Drive
200
100
CI/O
I/O Pad Capacitance
10
pF
CCLK
Clock Input Pad Capacitance
10
pF
IOSL
Notes:
1.
2.
3.
4.
All process conditions. Commercial/Industrial: Junction Temperature: –40 to +110°C.
During transitions, the input signal may overshoot to VDDP +1.0 V for a limited time of no larger than 10% of the duty cycle.
During transitions, the input signal may undershoot to –1.0 V for a limited time of no larger than 10% of the duty cycle.
No pull-up resistor required.
v5.9
2-37
ProASICPLUS Flash Family FPGAs
Table 2-24 • DC Electrical Specifications (VDDP = 3.3 V ±0.3 V and VDD = 2.5 V ±0.2 V)
Applies to Military Temperature and MIL-STD-883B Temperature Only
Military/MIL-STD-883B1
Symbol
Parameter
VOH
Output High Voltage
3.3 V I/O, High Drive, High Slew IOH = –8 mA
(OB33PH)
IOH = –16 mA
VOL
VIL3
Typ.
Max.
3.3 V I/O, Low Drive, High/
Normal/Low Slew (OB33LH/
OB33LN/OB33LL)
0.9∗VDDP
2.4
IOH = –3 mA
IOH = –8 mA
V
Output Low Voltage
3.3 V I/O, High Drive, High Slew IOL = 12 mA
IOL = 17 mA
(OB33PH)
IOL = 28 mA
0.1VDDP
0.4
0.7
3.3V I/O, High Drive, Normal/ IOL = 4 mA
IOL = 6 mA
Low Slew (OB33PN/OB33PL))
IOL = 13 mA
0.1VDDP
0.4
0.7
IOL = 4 mA
IOL = 6 mA
IOL = 13 mA
0.1VDDP
0.4
0.7
1.6
2
1.7
VDDP + 0.3
VDDP + 0.3
VDDP + 0.3
Input Low Voltage
3.3 V Schmitt Trigger Inputs
3.3 V LVTTL/LVCMOS
2.5 V Mode
–0.3
–0.3
–0.3
0.7
0.8
0.7
V
VIN ≥ 1.5 V
7
43
kΩ
VIN ≥ 1.5 V
7
43
kΩ
with pull up (VIN = GND)
–300
–40
µA
without pull up (VIN = GND or VDD)
–10
10
µA
Input Current
4
IDDQ
Quiescent Supply Current
(standby)
Commercial
VIN = GND or VDD
IDDQ
Quiescent Supply Current
(standby)
Industrial
VIN = GND4 or VDD
5.0
15
mA
Std.
5.0
20
mA
All process conditions. Military Temperature / MIL-STD-883 Class B: Junction Temperature: –55 to +125°C.
During transitions, the input signal may overshoot to VDDP +1.0 V for a limited time of no larger than 10% of the duty cycle.
During transitions, the input signal may undershoot to –1.0 V for a limited time of no larger than 10% of the duty cycle.
No pull-up resistor required.
v5.9
V
Std.
Notes:
2 -3 8
V
Input High Voltage
3.3 V Schmitt Trigger Inputs
3.3 V LVTTL/LVCMOS
2.5 V Mode
RWEAKPULLUP Weak Pull-up Resistance
(IOB25U)
1.
2.
3.
4.
Units
0.9∗VDDP
2.4
0.9∗VDDP
2.4
RWEAKPULLUP Weak Pull-up Resistance
(IOB33U)
IIN
Min.
3.3V I/O, High Drive, Normal/ IOH = –3mA
Low Slew (OB33PN/OB33PL)
IOH = –8mA
3.3 V I/O, Low Drive, High/
Normal/Low Slew (OB33LH/
OB33LN/OB33LL)
VIH2
Conditions
ProASICPLUS Flash Family FPGAs
Table 2-24 • DC Electrical Specifications (VDDP = 3.3 V ±0.3 V and VDD = 2.5 V ±0.2 V) (Continued)
Applies to Military Temperature and MIL-STD-883B Temperature Only
Military/MIL-STD-883B1
Symbol
IDDQ
Parameter
Conditions
Quiescent Supply Current
(standby)
Military
Output
Min.
Typ.
Max.
Units
5.0
25
mA
10
µA
4
VIN = GND or VDD
IOZ
Tristate
Current
IOSH
Output Short Circuit Current
High
3.3 V High Drive (OB33P)
VIN = GND
3.3 V Low Drive (OB33L)
VIN = GND
Std.
Leakage VOH = GND or VDD
Std.
–10
–200
–100
Output Short Circuit Current
Low
3.3 V High Drive
VIN = VDD
VIN = VDD
3.3 V Low Drive
200
100
CI/O
I/O Pad Capacitance
10
pF
CCLK
Clock Input Pad Capacitance
10
pF
IOSL
Notes:
1.
2.
3.
4.
All process conditions. Military Temperature / MIL-STD-883 Class B: Junction Temperature: –55 to +125°C.
During transitions, the input signal may overshoot to VDDP +1.0 V for a limited time of no larger than 10% of the duty cycle.
During transitions, the input signal may undershoot to –1.0 V for a limited time of no larger than 10% of the duty cycle.
No pull-up resistor required.
v5.9
2-39
ProASICPLUS Flash Family FPGAs
Table 2-25 • DC Specifications (3.3 V PCI Operation)1
Commercial/
Industrial2
Symbol
Parameter
VDD
Condition
Military/MIL-STD- 8832
Min.
Max.
Min.
Max.
Units
Supply Voltage for Core
2.3
2.7
2.3
2.7
V
VDDP
Supply Voltage for I/O Ring
3.0
3.6
3.0
3.6
V
VIH
Input High Voltage
0.5VDDP
VDDP + 0.5
V
VIL
Input Low Voltage
–0.5
0.3VDDP
V
0.5VDDP VDDP + 0.5
–0.5
3
IIPU
Input Pull-up Voltage
IIL
Input Leakage Current4
0 < VIN < VDDP
VOH
Output High Voltage
IOUT = –500 µA
VOL
Output Low Voltage
IOUT = 1500 µA
CIN
Input Pin Capacitance (except CLK)
CCLK
CLK Pin Capacitance
0.3VDDP
0.7VDDP
Std.
–10
0.7VDDP
10
0.9VDDP
5
–50
V
50
0.9VDDP
μA
V
0.1VDDP
0.1VDDP
V
10
10
pF
12
pF
12
5
Notes:
1. For PCI operation, use GL33, OTB33PH, OB33PH, IOB33PH, IB33, or IB33S macro library cell only.
2. All process conditions. Junction Temperature: –40 to +110°C for Commercial and Industrial devices and –55 to +125°C for Military.
3. This specification is guaranteed by design. It is the minimum voltage to which pull-up resistors are calculated to pull a floated
network. Designers with applications sensitive to static power utilization should ensure that the input buffer is conducting minimum
current at this input voltage.
4. Input leakage currents include hi-Z output leakage for all bidirectional buffers with tristate outputs.
2 -4 0
v5.9
ProASICPLUS Flash Family FPGAs
Table 2-26 • AC Specifications (3.3 V PCI Revision 2.2 Operation)
Commercial/Industrial/Military/MIL-STD- 883
Symbol Parameter
IOH(AC)
IOL(AC)
Switching Current High
Condition
Min.
0 < VOUT ≤ 0.3VDDP*
0.3VDDP ≤ VOUT <
0.9VDDP*
0.7VDDP < VOUT <
VDDP*
(Test Point)
VOUT = 0.7VDDP*
Switching Current Low
VDDP > VOUT ≥
mA
(–17.1 + (VDDP – VOUT))
mA
See equation C – page 124 of
the PCI Specification
document rev. 2.2
–32VDDP
1
mA
(26.7VOUT)
mA
See equation D – page 124 of
the PCI Specification
document rev. 2.2
(Test Point)
VOUT = 0.18VDDP
ICL
Low Clamp Current
–3 < VIN ≤ –1
ICH
High Clamp Current
VDDP + 4 > VIN ≥ VDDP + 1
slewF
Output Fall Slew Rate
mA
16VDDP
0.18VDDP > VOUT > 0*
Output Rise Slew Rate
Units
–12VDDP
0.6VDDP*
0.6VDDP > VOUT > 0.1VDDP
slewR
Max.
38VDDP
mA
–25 + (VIN + 1)/0.015
mA
25 + (VIN – VDDP – 1)/0.015
mA
0.2VDDP to 0.6VDDP
load*
1
4
V/ns
0.6VDDP to 0.2VDDP
load*
1
4
V/ns
Note: * Refer to the PCI Specification document rev. 2.2.
Pad Loading Applicable to the Rising Edge PCI
Pin
1/2 in. maxx
Output
Buffer
10 pF
1kΩ
Pad Loading Applicable to the Falling Edge PCI
Pin
Output
Buffer
1kΩ
10 pF
v5.9
2-41
ProASICPLUS Flash Family FPGAs
Tristate Buffer Delays
EN
A
PAD
OTBx
A
50% 50%
VOH
PAD
VOL
EN
EN
50%
50%
tDLH
35 pF
tDHL
50% 50%
VDDP
50%
PAD
VOL
tENZL
10%
50% 50%
VOH
PAD
GND
50%
90%
tENZH
Figure 2-23 • Tristate Buffer Delays
Table 2-27 • Worst-Case Commercial Conditions
VDDP = 3.0 V, VDD = 2.3 V, 35 pF load, TJ = 70°C
Max.
tDLH1
Max.
tDHL2
Max. Max.
tENZH3 tENZL4
Std.
Std.
Std.
Std.
Units
OTB33PH
3.3 V, PCI Output Current, High Slew Rate
2.0
2.2
2.2
2.0
ns
OTB33PN
3.3 V, High Output Current, Nominal Slew Rate
2.2
2.9
2.4
2.1
ns
OTB33PL
3.3 V, High Output Current, Low Slew Rate
2.5
3.2
2.7
2.8
ns
OTB33LH
3.3 V, Low Output Current, High Slew Rate
2.6
4.0
2.8
3.0
ns
OTB33LN
3.3 V, Low Output Current, Nominal Slew Rate
2.9
4.3
3.2
4.1
ns
OTB33LL
3.3 V, Low Output Current, Low Slew Rate
3.0
5.6
3.3
5.5
ns
Macro Type
Description
Notes:
1.
2.
3.
4.
tDLH = Data-to-Pad High
tDHL = Data-to-Pad Low
tENZH = Enable-to-Pad, Z to High
tENZL = Enable-to-Pad, Z to Low
Table 2-28 • Worst-Case Commercial Conditions
VDDP = 2.3 V, VDD = 2.3 V, 35 pF load, TJ = 70°C
Macro Type
OTB25LPHH
OTB25LPHN
Description
2.5 V, Low Power, High Output Current, High Slew Rate5
2.5 V, Low Power, High Output Current, Nominal Slew
Rate5
Max.
tDLH1
Max.
tDHL2
Max.
tENZH3
Max.
tENZL4
Std.
Std.
Std.
Std.
Units
2.0
2.1
2.3
2.0
ns
2.4
3.0
2.7
2.1
ns
OTB25LPHL
2.5 V, Low Power, High Output Current, Low Slew
Rate5
2.9
3.2
3.1
2.7
ns
OTB25LPLH
2.5 V, Low Power, Low Output Current, High Slew Rate5
2.7
4.6
3.0
2.6
ns
3.5
4.2
3.8
3.8
ns
4.0
5.3
4.2
5.1
ns
Rate5
OTB25LPLN
2.5 V, Low Power, Low Output Current, Nominal Slew
OTB25LPLL
2.5 V, Low Power, Low Output Current, Low Slew Rate5
Notes:
1.
2.
3.
4.
5.
2 -4 2
tDLH = Data-to-Pad High
tDHL = Data-to-Pad Low
tENZH = Enable-to-Pad, Z to High
tENZL = Enable-to-Pad, Z to Low
Low power I/O work with VDDP = 2.5 V ±10% only. VDDP = 2.3 V for delays.
v5.9
ProASICPLUS Flash Family FPGAs
Table 2-29 • Worst-Case Military Conditions
VDDP = 3.0 V, VDD = 2.3 V, 35 pF load, TJ = 125°C for Military/MIL-STD-883
Max.
tDLH1
Max.
tDHL2
Max.
tENZH3
Max.
tENZL4
Std.
Std.
Std.
Std.
Units
Macro Type
Description
OTB33PH
3.3 V, PCI Output Current, High Slew Rate
2.2
2.4
2.3
2.1
ns
OTB33PN
3.3 V, High Output Current, Nominal Slew Rate
2.4
3.2
2.7
2.3
ns
OTB33PL
3.3 V, High Output Current, Low Slew Rate
2.7
3.5
2.9
3.0
ns
OTB33LH
3.3 V, Low Output Current, High Slew Rate
2.7
4.3
3.0
3.1
ns
OTB33LN
3.3 V, Low Output Current, Nominal Slew Rate
3.3
4.7
3.4
4.4
ns
OTB33LL
3.3 V, Low Output Current, Low Slew Rate
3.2
6.0
3.5
5.9
ns
Max.
tDLH1
Max.
tDHL2
Max.
tENZH3
Max.
tENZL4
Std.
Std.
Std.
Std.
Units
Notes:
1.
2.
3.
4.
tDLH = Data-to-Pad High
tDHL = Data-to-Pad Low
tENZH = Enable-to-Pad, Z to High
tENZL = Enable-to-Pad, Z to Low
Table 2-30 • Worst-Case Military Conditions
VDDP = 2.3 V, VDD = 2.3 V, 35 pF load, TJ = 125°C for Military/MIL-STD-883
Macro Type
Description
5
OTB25LPHH
2.5 V, Low Power, High Output Current, High Slew Rate
2.3
2.3
2.4
2.1
ns
OTB25LPHN
2.5 V, Low Power, High Output Current, Nominal Slew
Rate5
2.7
3.2
2.8
2.1
ns
OTB25LPHL
2.5 V, Low Power, High Output Current, Low Slew Rate5
3.2
3.5
3.3
2.8
ns
OTB25LPLH
5
2.5 V, Low Power, Low Output Current, High Slew Rate
3.0
5.0
3.2
2.8
ns
OTB25LPLN
2.5 V, Low Power, Low Output Current, Nominal Slew Rate5
3.7
4.5
4.1
4.1
ns
4.4
5.8
4.4
5.4
ns
OTB25LPLL
2.5 V, Low Power, Low Output Current, Low Slew Rate
5
Notes:
1.
2.
3.
4.
5.
tDLH = Data-to-Pad High
tDHL = Data-to-Pad Low
tENZH = Enable-to-Pad, Z to High
tENZL = Enable-to-Pad, Z to Low
Low power I/O work with VDDP = 2.5 V ± 10% only. VDDP = 2.3 V for delays.
v5.9
2-43
ProASICPLUS Flash Family FPGAs
Output Buffer Delays
A
PAD
A
35 pF
OBx
50% 50%
VOH
50%
PAD
50%
VOL
tDLH
tDHL
Figure 2-24 • Output Buffer Delays
Table 2-31 • Worst-Case Commercial Conditions
VDDP = 3.0 V, VDD = 2.3 V, 35 pF load, TJ = 70°C
Macro Type
Max. tDLH1
Max. tDHL2
Std.
Std.
Units
Description
OB33PH
3.3 V, PCI Output Current, High Slew Rate
2.0
2.2
ns
OB33PN
3.3 V, High Output Current, Nominal Slew Rate
2.2
2.9
ns
OB33PL
3.3 V, High Output Current, Low Slew Rate
2.5
3.2
ns
OB33LH
3.3 V, Low Output Current, High Slew Rate
2.6
4.0
ns
OB33LN
3.3 V, Low Output Current, Nominal Slew Rate
2.9
4.3
ns
OB33LL
3.3 V, Low Output Current, Low Slew Rate
3.0
5.6
ns
Max. tDLH1
Max. tDHL2
Std.
Std.
Units
2.0
2.1
ns
2.4
3.0
ns
2.9
3.2
ns
2.7
4.6
ns
3.5
4.2
ns
4.0
5.3
ns
Notes:
1. tDLH = Data-to-Pad High
2. tDHL = Data-to-Pad Low
Table 2-32 • Worst-Case Commercial Conditions
VDDP = 2.3 V, VDD = 2.3 V, 35 pF load, TJ = 70°C
Macro Type
OB25LPHH
OB25LPHN
Description
2.5 V, Low Power, High Output Current, High Slew
Rate3
2.5 V, Low Power, High Output Current, Nominal Slew Rate
3
OB25LPHL
2.5 V, Low Power, High Output Current, Low Slew Rate
OB25LPLH
2.5 V, Low Power, Low Output Current, High Slew Rate3
OB25LPLN
OB25LPLL
3
3
2.5 V, Low Power, Low Output Current, Nominal Slew Rate
3
2.5 V, Low Power, Low Output Current, Low Slew Rate
Notes:
1. tDLH = Data-to-Pad High
2. tDHL = Data-to-Pad Low
3. Low-power I/Os work with VDDP = 2.5 V ±10% only. VDDP = 2.3 V for delays.
Table 2-33 • Worst-Case Military Conditions
VDDP = 3.0V, VDD = 2.3V, 35 pF load, TJ = 125°C for Military/MIL-STD-883
Max.
tDLH1
Max.
tDHL2
Std.
Std.
Units
Macro Type
Description
OB33PH
3.3V, PCI Output Current, High Slew Rate
2.1
2.3
ns
OB33PN
3.3V, High Output Current, Nominal Slew Rate
2.5
3.2
ns
2 -4 4
v5.9
ProASICPLUS Flash Family FPGAs
Table 2-33 • Worst-Case Military Conditions
VDDP = 3.0V, VDD = 2.3V, 35 pF load, TJ = 125°C for Military/MIL-STD-883
Max.
tDLH1
Max.
tDHL2
Std.
Std.
Units
Macro Type
Description
OB33PL
3.3V, High Output Current, Low Slew Rate
2.7
3.5
ns
OB33LH
3.3V, Low Output Current, High Slew Rate
2.7
4.3
ns
OB33LN
3.3V, Low Output Current, Nominal Slew Rate
3.3
4.7
ns
OB33LL
3.3V, Low Output Current, Low Slew Rate
3.3
6.1
ns
Max.
tDLH1
Max.
tDHL2
Std.
Std.
Units
2.3
2.4
ns
Notes:
1. tDLH = Data-to-Pad High
2. tDHL = Data-to-Pad Low
Table 2-34 • Worst-Case Military Conditions
VDDP = 2.3 V, VDD = 2.3V, 35 pF load, TJ = 125°C for Military/MIL-STD-883
Macro Type
Description
3
OB25LPHH
2.5V, Low Power, High Output Current, High Slew Rate
OB25LPHN
2.5V, Low Power, High Output Current, Nominal Slew Rate3
OB25LPHL
OB25LPLH
2.7
3.3
ns
3
3.2
3.5
ns
3
3.0
5.0
ns
3.9
4.6
ns
4.3
5.7
ns
2.5V, Low Power, High Output Current, Low Slew Rate
2.5V, Low Power, Low Output Current, High Slew Rate
Rate3
OB25LPLN
2.5V, Low Power, Low Output Current, Nominal Slew
OB25LPLL
2.5V, Low Power, Low Output Current, Low Slew Rate3
Notes:
1. tDLH = Data-to-Pad High
2. tDHL = Data-to-Pad Low
3. Low power I/O work with VDDP = 2.5 V ±10% only. VDDP = 2.3 V for delays.
v5.9
2-45
ProASICPLUS Flash Family FPGAs
Input Buffer Delays
VDDP
PAD
Y
PAD
Y
GND
IBx
50% 50%
VDD
50%
tINYH
0V
50%
tINYL
Figure 2-25 • Input Buffer Delays
Table 2-35 • Worst-Case Commercial Conditions
VDDP = 3.0 V, VDD = 2.3 V, TJ = 70°C
Macro Type
Description
Max. tINYH1
Max. tINYL2
Std.
Std.
Units
IB33
3.3 V, CMOS Input Levels3, No Pull-up Resistor
0.4
0.6
ns
IB33S
3.3 V, CMOS Input Levels3, No Pull-up Resistor, Schmitt Trigger
0.6
0.8
ns
Max. tINYH1
Max. tINYL2
Std.
Std.
Units
0.9
0.6
ns
0.7
0.9
ns
Notes:
1.
2.
3.
4.
tINYH = Input Pad-to-Y High
tINYL = Input Pad-to-Y Low
LVTTL delays are the same as CMOS delays.
For LP Macros, VDDP=2.3 V for delays.
Table 2-36 • Worst-Case Commercial Conditions
VDDP = 2.3 V, VDD = 2.3 V, TJ = 70°C
Macro Type
IB25LP
IB25LPS
Description
3,
2.5 V, CMOS Input Levels Low Power
2.5 V, CMOS Input
Levels3,
Low Power, Schmitt Trigger
Notes:
1.
2.
3.
4.
2 -4 6
tINYH = Input Pad-to-Y High
tINYL = Input Pad-to-Y Low
LVTTL delays are the same as CMOS delays.
For LP Macros, VDDP = 2.3 V for delays.
v5.9
ProASICPLUS Flash Family FPGAs
Table 2-37 • Worst-Case Military Conditions
VDDP = 3.0V, VDD = 2.3V, TJ = 125°C for Military/MIL-STD-883
Macro Type
Description
Levels3
IB33
3.3 V, CMOS Input
IB33S
3.3 V, CMOS Input Levels3, No Pull-up Resistor, Schmitt Trigger
, No Pull-up Resistor
Max. tINYH1
Max. tINYL2
Std.
Std.
Units
0.5
0.6
ns
0.6
0.8
ns
Max. tINYH1
Max. tINYL2
Std.
Std.
Units
0.9
0.7
ns
0.8
1.0
ns
Notes:
1.
2.
3.
4.
tINYH = Input Pad-to-Y High
tINYL = Input Pad-to-Y Low
LVTTL delays are the same as CMOS delays.
For LP Macros, VDDP = 2.3 V for delays.
Table 2-38 • Worst-Case Military Conditions
VDDP = 2.3V, VDD = 2.3V, TJ = 125°C for Military/MIL-STD-883
Macro Type
IB25LP
IB25LPS
Description
3,
2.5 V, CMOS Input Levels Low Power
2.5 V, CMOS Input
Levels3,
Low Power, Schmitt Trigger
Notes:
1.
2.
3.
4.
tINYH = Input Pad-to-Y High
tINYL = Input Pad-to-Y Low
LVTTL delays are the same as CMOS delays.
For LP Macros, VDDP = 2.3 V for delays.
v5.9
2-47
ProASICPLUS Flash Family FPGAs
Global Input Buffer Delays
Table 2-39 • Worst-Case Commercial Conditions
VDDP = 3.0 V, VDD = 2.3 V, TJ = 70°C
Max. tINYH1
Macro Type
GL33
Description
Std.
3.3 V, CMOS Input Levels4, No Pull-up Resistor
4
3
Max. tINYL2
Std.
Units
3
1.0
1.1
ns
GL33S
3.3 V, CMOS Input Levels , No Pull-up Resistor, Schmitt Trigger
1.0
1.1
ns
PECL
PPECL Input Levels
1.0
1.1
ns
Max. tINYH1
Max. tINYL2
Units
Notes:
1.
2.
3.
4.
5.
tINYH = Input Pad-to-Y High
tINYL = Input Pad-to-Y Low
Applies to Military ProASICPLUS devices.
LVTTL delays are the same as CMOS delays.
For LP Macros, VDDP = 2.3 V for delays.
Table 2-40 • Worst-Case Commercial Conditions
VDDP = 2.3 V, VDD = 2.3 V, TJ = 70°C
Macro Type
GL25LP
GL25LPS
Description
Std.
2.5 V, CMOS Input Levels4, Low Power
4,
2.5 V, CMOS Input Levels Low Power, Schmitt Trigger
Notes:
1.
2.
3.
4.
5.
2 -4 8
tINYH = Input Pad-to-Y High
tINYL = Input Pad-to-Y Low
Applies to Military ProASICPLUS devices.
LVTTL delays are the same as CMOS delays.
For LP Macros, VDDP = 2.3 V for delays.
v5.9
3
Std.3
1.1
1.0
ns
1.3
1.0
ns
ProASICPLUS Flash Family FPGAs
Table 2-41 • Worst-Case Military Conditions
VDDP = 3.0V, VDD = 2.3V, TJ = 125°C for Military/MIL-STD-883
Macro Type
Description
3
Max. tINYH1
Max. tINYL2
Std.
Std.
GL33
3.3V, CMOS Input Levels , No Pull-up Resistor
1.1
1.1
GL33S
3.3V, CMOS Input Levels3, No Pull-up Resistor, Schmitt Trigger
1.1
1.1
PECL
PPECL Input Levels
1.1
1.1
Max. tINYH1
Max. tINYL2
Std.
Std.
1.0
1.1
1.4
1.0
Notes:
1.
2.
3.
4.
tINYH = Input Pad-to-Y High
tINYL = Input Pad-to-Y Low
LVTTL delays are the same as CMOS delays.
For LP Macros, VDDP = 2.3 V for delays.
Table 2-42 • Worst-Case Military Conditions
VDDP = 2.3V, VDD = 2.3V, TJ = 125°C for Military/MIL-STD-883
Macro Type
GL25LP
GL25LPS
Description
2.5V, CMOS Input
Levels3,
Low Power
3,
2.5V, CMOS Input Levels Low Power, Schmitt Trigger
Notes:
1.
2.
3.
4.
tINYH = Input Pad-to-Y High
tINYL = Input Pad-to-Y Low
LVTTL delays are the same as CMOS delays.
For LP Macros, VDDP = 2.3 V for delays.
v5.9
2-49
ProASICPLUS Flash Family FPGAs
Predicted Global Routing Delay
Table 2-43 • Worst-Case Commercial Conditions1
VDDP = 3.0 V, VDD = 2.3 V, TJ = 70°C
Max.
Parameter
tRCKH
tRCKL
tRCKH
tRCKL
Std.
Units
Input Low to High
2
Description
1.1
ns
Input High to Low
2
1.0
ns
Input Low to High
3
0.8
ns
Input High to Low
3
0.8
ns
Max.
Units
Notes:
1. The timing delay difference between tile locations is less than 15 ps.
2. Highly loaded row 50%.
3. Minimally loaded row.
Table 2-44 • Worst-Case Military Conditions
VDDP = 3.0V, VDD = 2.3V, TJ = 125°C for Military/MIL-STD-883
Parameter
Description
tRCKH
Input Low to High (high loaded row of 50%)
1.1
ns
tRCKL
Input High to Low (high loaded row of 50%)
1.0
ns
tRCKH
Input Low to High (minimally loaded row)
0.8
ns
tRCKL
Input High to Low (minimally loaded row)
0.8
ns
Note: * The timing delay difference between tile locations is less than 15 ps.
Global Routing Skew
Table 2-45 • Worst-Case Commercial Conditions
VDDP = 3.0 V, VDD = 2.3 V, TJ = 70°C
Max.
Parameter
Description
Std.
Units
tRCKSWH
Maximum Skew Low to High
270
ps
tRCKSHH
Maximum Skew High to Low
270
ps
Table 2-46 • Worst-Case Commercial Conditions
VDDP = 3.0V, VDD = 2.3V, TJ = 125°C for Military/MIL-STD-883
Parameter
Description
Max.
Units
tRCKSWH
Maximum Skew Low to High
270
ps
tRCKSHH
Maximum Skew High to Low
270
ps
2 -5 0
v5.9
ProASICPLUS Flash Family FPGAs
Module Delays
A
B
C
A
Y
50%50%
50% 50%
B
C
50%50%
50%
Y
50%
50%
tDBLH
tDALH
50%
tDCLH
50%
50%
tDCHL
tDBHL
tDAHL
Figure 2-26 • Module Delays
Sample Macrocell Library Listing
Table 2-47 • Worst-Case Military Conditions1
VDD = 2.3 V, TJ = 70º C, TJ = 70°C, TJ = 125°C for Military/MIL-STD-883
Std.
Cell Name
Description
Max
Min
Units
NAND2
2-Input NAND
0.5
ns
AND2
2-Input AND
0.7
ns
NOR3
3-Input NOR
0.8
ns
MUX2L
2-1 MUX with Active Low Select
0.5
ns
OA21
2-Input OR into a 2-Input AND
0.8
ns
XOR2
2-Input Exclusive OR
0.6
ns
LDL
Active Low Latch (LH/HL)
CLK-Q
DFFL
ns
LH2
0.9
HL2
0.8
ns
tsetup
0.7
ns
thold
0.1
ns
Negative Edge-Triggered D-type Flip-Flop (LH/HL)
CLK-Q
ns
LH2
0.9
HL2
0.8
ns
tsetup
0.6
ns
thold
0.0
ns
Notes:
1. Intrinsic delays have a variable component, coupled to the input slope of the signal. These numbers assume an input slope typical of
local interconnect.
2. LH and HL refer to the Q transitions from Low to High and High to Low, respectively.
v5.9
2-51
ProASICPLUS Flash Family FPGAs
Table 2-48 • Recommended Operating Conditions
Limits
Parameter
Symbol
Commercial/Industrial
Military/MIL-STD-883
Maximum Clock Frequency*
fCLOCK
180 MHz
180 MHz
Maximum RAM Frequency*
fRAM
150 MHz
150 MHz
Maximum Rise/Fall Time on Inputs*
•
Schmitt Trigger Mode (10% to 90%)
tR/tF
N/A
100 ns
•
Non-Schmitt Trigger Mode (10% to
90%)
tR/tF
100 ns
10 ns
180 MHz
180 MHz
10 MHz
10 MHz
Maximum LVPECL Frequency*
Maximum TCK Frequency (JTAG)
fTCK
Table 2-49 • Slew Rates Measured at C = 30pF, Nominal Power Supplies and 25°C
Type
Trig. Level Rising Edge (ns)
Slew Rate (V/ns)
Falling Edge (ns)
Slew Rate (V/ns)
PCI Mode
OB33PH
10%-90%
1.60
1.65
1.65
1.60
Yes
OB33PN
10%-90%
1.57
1.68
3.32
0.80
No
OB33PL
10%-90%
1.57
1.68
1.99
1.32
No
OB33LH
10%-90%
3.80
0.70
4.84
0.55
No
OB33LN
10%-90%
4.19
0.63
3.37
0.78
No
OB33LL
10%-90%
5.49
0.48
2.98
0.89
No
OB25LPHH
10%-90%
1.55
1.29
1.56
1.28
No
OB25LPHN
10%-90%
1.70
1.18
2.08
0.96
No
OB25LPHL
10%-90%
1.97
1.02
2.09
0.96
No
OB25LPLH
10%-90%
3.57
0.56
3.93
0.51
No
OB25LPLN
10%-90%
4.65
0.43
3.28
0.61
No
OB25LPLL
10%-90%
5.52
0.36
3.44
0.58
No
2 -5 2
v5.9
ProASICPLUS Flash Family FPGAs
Table 2-50 • JTAG Switching Characteristics
Description
Symbol
Min
Max
Unit
Output delay from TCK falling to TDI, TMS
tTCKTDI
–4
4
ns
TDO Setup time before TCK rising
tTDOTCK
10
TDO Hold time after TCK rising
tTCKTDO
0
TCK period
tTCK
RCK period
tRCK
100
ns
ns
2
100
1,000
ns
1,000
ns
Notes:
1. For DC electrical specifications of the JTAG pins (TCK, TDI, TMS, TDO, TRST), refer to Table 2-22 on page 2-34 when VDDP = 2.5 V
and Table 2-24 on page 2-38 when VDDP = 3.3 V.
2. If RCK is being used, there is no minimum on the TCK period.
TCK
tTCK
TMS, TDI
tTCKTDI
TDO
tTDOTCK
tTCKTDO
Figure 2-27 • JTAG Operation Timing
v5.9
2-53
ProASICPLUS Flash Family FPGAs
Embedded Memory Specifications
This section discusses ProASICPLUS SRAM/FIFO embedded
memory and its interface signals, including timing
diagrams that show the relationships of signals as they
pertain to single embedded memory blocks (Table 2-51).
Table 2-13 on page 2-21 shows basic SRAM and FIFO
configurations. Simultaneous read and write to the same
location must be done with care. On such accesses the DI
bus is output to the DO bus. Refer to the ProASICPLUS
RAM and FIFO Blocks application note for more
information.
Enclosed Timing Diagrams—SRAM Mode:
•
"Synchronous SRAM Read, Access Timed Output
Strobe (Synchronous Transparent)" section on
page 2-55
•
"Synchronous SRAM Read, Pipeline Mode Outputs
(Synchronous Pipelined)" section on page 2-56
•
"Asynchronous SRAM Write" section on page 2-57
•
"Asynchronous SRAM Read, Address Controlled,
RDB=0" section on page 2-58
•
"Asynchronous SRAM Read, RDB Controlled"
section on page 2-58
•
"Synchronous SRAM Write"
•
Embedded Memory Specifications
The difference between synchronous transparent and
pipeline modes is the timing of all the output signals
from the memory. In transparent mode, the outputs will
change within the same clock cycle to reflect the data
requested by the currently valid access to the memory. If
clock cycles are short (high clock speed), the data
requires most of the clock cycle to change to valid values
(stable signals). Processing of this data in the same clock
cycle is nearly impossible. Most designers add registers at
all outputs of the memory to push the data processing
into the next clock cycle. An entire clock cycle can then
be used to process the data. To simplify use of this
memory
setup,
suitable
registers
have
been
implemented as part of the memory primitive and are
available to the user in the synchronous pipeline mode.
In this mode, the output signals will change shortly after
the second rising edge, following the initiation of the
read access.
Table 2-51 • Memory Block SRAM Interface Signals
SRAM Signal
Bits
In/Out
Description
WCLKS
1
In
Write clock used on synchronization on write side
RCLKS
1
In
Read clock used on synchronization on read side
RADDR[0:7]
8
In
Read address
RBLKB
1
In
True read block select (active Low)
RDB
1
In
True read pulse (active Low)
WADDR[0:7]
8
In
Write address
WBLKB
1
In
Write block select (active Low)
DI[0:8]
9
In
Input data bits [0:8], [8] can be used for parity In
WRB
1
In
Negative true write pulse
DO[0:8]
9
Out
Output data bits [0:8], [8] can be used for parity Out
RPE
1
Out
Read parity error (active High)
WPE
1
Out
Write parity error (active High)
PARODD
1
In
Selects odd parity generation/detect when high, even when low
Note: Not all signals shown are used in all modes.
2 -5 4
v5.9
ProASICPLUS Flash Family FPGAs
Synchronous SRAM Read, Access Timed Output Strobe (Synchronous Transparent)
RCLKS
Cycle Start
RBD, RBLKB
New Valid
Address
RADDR
New Valid Data Out
Old Data Out
DO
RPE
tRACS
tRDCS
tRDCH
tRACH
tOCH
tRPCH
tCMH
tCML
tOCA
tRPCA
tCCYC
Note: The plot shows the normal operation status.
Figure 2-28 • Synchronous SRAM Read, Access Timed Output Strobe (Synchronous Transparent)
Table 2-52 • TJ = 0°C to 110°C; VDD = 2.3 V to 2.7 V for Commercial/Industrial
TJ = –55°C to 150°C, VDD = 2.3 V to 2.7 V for Military/MIL-STD-883
Symbol txxx
Description
Min.
Max.
Units
CCYC
Cycle time
7.5
ns
CMH
Clock high phase
3.0
ns
CML
Clock low phase
3.0
ns
OCA
New DO access from RCLKS ↑
7.5
ns
OCH
Old DO valid from RCLKS ↑
RACH
RADDR hold from RCLKS ↑
0.5
ns
RACS
RADDR setup to RCLKS ↑
1.0
ns
RDCH
RDB hold from RCLKS ↑
0.5
ns
RDCS
RDB setup to RCLKS ↑
1.0
ns
RPCA
New RPE access from RCLKS ↑
9.5
ns
RPCH
Old RPE valid from RCLKS ↑
3.0
3.0
v5.9
Notes
ns
ns
2-55
ProASICPLUS Flash Family FPGAs
Synchronous SRAM Read, Pipeline Mode Outputs (Synchronous Pipelined)
RCLKS
Cycle Start
RDB, RBLKB
New Valid
Address
RADDR
DO
New Valid Data Out
Old Data Out
RPE
Old RPE Out
New RPE Out
tOCA
tRACS
tRACH
tRPCH
tRDCH
tOCH
tRDCS
tRPCA
tCMH
tCML
tCCYC
Note: The plot shows the normal operation status.
Figure 2-29 • Synchronous SRAM Read, Pipeline Mode Outputs (Synchronous Pipelined)
Table 2-53 • TJ = 0°C to 110°C; VDD = 2.3 V to 2.7 V for Commercial/Industrial
TJ = 0°C to 150°C, VDD = 2.3 V to 2.7 V for Military/MIL-STD-883
Symbol txxx
Description
Min.
Max.
Units
CCYC
Cycle time
7.5
ns
CMH
Clock high phase
3.0
ns
CML
Clock low phase
3.0
ns
OCA
New DO access from RCLKS ↑
2.0
ns
OCH
Old DO valid from RCLKS ↑
RACH
RADDR hold from RCLKS ↑
0.5
ns
RACS
RADDR setup to RCLKS ↑
1.0
ns
RDCH
RDB hold from RCLKS ↑
0.5
ns
RDCS
RDB setup to RCLKS ↑
1.0
ns
RPCA
New RPE access from RCLKS ↑
4.0
ns
RPCH
Old RPE valid from RCLKS ↑
2 -5 6
0.75
1.0
v5.9
ns
ns
Notes
ProASICPLUS Flash Family FPGAs
Asynchronous SRAM Write
WADDR
WRB, WBLKB
DI
WPE
tAWRS
tAWRH
tDWRH
tWPDA
tWPDH
tDWRS
tWRML
tWRMH
tWRCYC
Note: The plot shows the normal operation status.
Figure 2-30 • Asynchronous SRAM Write
Table 2-54 • TJ = 0°C to 110°C; VDD = 2.3 V to 2.7 V for Commercial/Industrial
TJ = –55°C to 150°C, VDD = 2.3 V to 2.7 V for Military/MIL-STD-883B
Symbol txxx
Description
Min.
Max.
Units
Notes
AWRH
WADDR hold from WB ↑
1.0
ns
AWRS
WADDR setup to WB ↓
0.5
ns
DWRH
DI hold from WB ↑
1.5
ns
DWRS
DI setup to WB ↑
0.5
ns
PARGEN is inactive.
DWRS
DI setup to WB ↑
2.5
ns
PARGEN is active.
WPDA
WPE access from DI
3.0
ns
WPDH
WPE hold from DI
WPE is invalid, while PARGEN is
active.
WRCYC
Cycle time
7.5
ns
WRMH
WB high phase
3.0
ns
Inactive
WRML
WB low phase
3.0
ns
Active
1.0
v5.9
ns
2-57
ProASICPLUS Flash Family FPGAs
Asynchronous SRAM Read, Address Controlled, RDB=0
RADDR
DO
RPE
tOAH
tRPAH
tOAA
tRPAA
tACYC
Note: The plot shows the normal operation status.
Figure 2-31 • Asynchronous SRAM Read, Address Controlled, RDB = 0
Table 2-55 • TJ = 0°C to 110°C; VDD = 2.3 V to 2.7 V for Commercial/Industrial
TJ = –55°C to 150°C, VDD = 2.3 V to 2.7 V for Military/MIL-STD-883B
Symbol txxx
Description
Min.
Max.
Units
ACYC
Read cycle time
7.5
ns
OAA
New DO access from RADDR stable
7.5
ns
OAH
Old DO hold from RADDR stable
RPAA
New RPE access from RADDR stable
RPAH
Old RPE hold from RADDR stable
3.0
10.0
ns
ns
3.0
ns
Asynchronous SRAM Read, RDB Controlled
RB=(RDB+RBLKB)
DO
RPE
tORDH
tRPRDH
tORDA
tRPRDA
tRDML
tRDCYC
Note: The plot shows the normal operation status.
Figure 2-32 • Asynchronous SRAM Read, RDB Controlled
2 -5 8
v5.9
tRDMH
Notes
ProASICPLUS Flash Family FPGAs
Table 2-56 • TJ = 0°C to 110°C; VDD = 2.3 V to 2.7 V for Commercial/Industrial
TJ = –55°C to 150°C, VDD = 2.3 V to 2.7 V for Military/MIL-STD-883
Symbol txxx
Description
Min.
Max.
Units
Notes
ORDA
New DO access from RB ↓
ORDH
Old DO valid from RB ↓
RDCYC
Read cycle time
7.5
ns
RDMH
RB high phase
3.0
ns
Inactive setup to new cycle
RDML
RB low phase
3.0
ns
Active
RPRDA
New RPE access from RB ↓
9.5
ns
RPRDH
Old RPE valid from RB ↓
7.5
ns
3.0
3.0
v5.9
ns
ns
2-59
ProASICPLUS Flash Family FPGAs
Synchronous SRAM Write
WCLKS
Cycle Start
WRB, WBLKB
WADDR, DI
WPE
tWRCH, tWBCH
tWRCS, tWBCS
tDCS, tWDCS
tWPCH
tDCH, tWACH
tWPCA
tCMH
tCML
tCCYC
Note: The plot shows the normal operation status.
Figure 2-33 • Synchronous SRAM Write
Table 2-57 • TJ = 0°C to 110°C; VDD = 2.3 V to 2.7 V for Commercial/Industrial
TJ = –55°C to 150°C, VDD = 2.3 V to 2.7 V for Military/MIL-STD-883
Symbol txxx
Description
Min.
Max.
Units
Notes
CCYC
Cycle time
7.5
ns
CMH
Clock high phase
3.0
ns
CML
Clock low phase
3.0
ns
DCH
DI hold from WCLKS ↑
0.5
ns
DCS
DI setup to WCLKS ↑
1.0
ns
WACH
WADDR hold from WCLKS ↑
0.5
ns
WDCS
WADDR setup to WCLKS ↑
1.0
ns
WPCA
New WPE access from WCLKS ↑
3.0
ns
WPE is invalid while
WPCH
Old WPE valid from WCLKS ↑
ns
PARGEN is active
WRCH, WBCH WRB & WBLKB hold from WCLKS ↑
WRCS, WBCS
WRB & WBLKB setup to WCLKS ↑
0.5
0.5
ns
1.0
ns
Note: On simultaneous read and write accesses to the same location, DI is output to DO.
2 -6 0
v5.9
ProASICPLUS Flash Family FPGAs
Synchronous Write and Read to the Same Location
tCCYC
tCMH
tCML
RCLKS
DO
New Data*
Last Cycle Data
WCLKS
tWCLKRCLKH
tWCLKRCLKS
tOCH
tOCA
Note: * New data is read if WCLKS ↑ occurs before setup time. The data stored is read if WCLKS ↑ occurs after hold time. The plot shows
the normal operation status.
Figure 2-34 • Synchronous Write and Read to the Same Location
Table 2-58 • TJ = 0°C to 110°C; VDD = 2.3 V to 2.7 V for Commercial/Industrial
TJ = –55°C to 150°C, VDD = 2.3 V to 2.7 V for Military/MIL-STD-883
Symbol txxx
Description
Min.
Max.
Units
CCYC
Cycle time
7.5
ns
CMH
Clock high phase
3.0
ns
CML
Clock low phase
3.0
ns
WCLKRCLKS
WCLKS ↑ to RCLKS ↑ setup time
– 0.1
ns
WCLKRCLKH
WCLKS ↑ to RCLKS ↑ hold time
7.0
ns
OCH
Old DO valid from RCLKS ↑
3.0
ns
OCA
New DO valid from RCLKS ↑
7.5
ns
Notes
OCA/OCH displayed for
Access Timed Output
Notes:
1. This behavior is valid for Access Timed Output and Pipelined Mode Output. The table shows the timings of an Access Timed Output.
2. During synchronous write and synchronous read access to the same location, the new write data will be read out if the active write
clock edge occurs before or at the same time as the active read clock edge. The negative setup time insures this behavior for WCLKS
and RCLKS driven by the same design signal.
3. If WCLKS changes after the hold time, the data will be read.
4. A setup or hold time violation will result in unknown output data.
v5.9
2-61
ProASICPLUS Flash Family FPGAs
Asynchronous Write and Synchronous Read to the Same Location
tCMH
tCML
RCLKS
New Data*
DO Last Cycle Data
WB = {WRB + WBLKB}
DI
tWRCKS
tBRCLKH
tOCH
tOCA
tDWRRCLK
tDWRH
tCCYC
Note: *New data is read if WB ↓ occurs before setup time. The stored data is read if WB ↓ occurs after hold time. The plot shows the
normal operation status.
Figure 2-35 • Asynchronous Write and Synchronous Read to the Same Location
Table 2-59 • TJ = 0°C to 110°C; VDD = 2.3 V to 2.7 V for Commercial/Industrial
TJ = –55°C to 150°C, VDD = 2.3 V to 2.7 V for Military/MIL-STD-883
Symbol txxx
Description
Min.
Max.
Units
CCYC
Cycle time
7.5
ns
CMH
Clock high phase
3.0
ns
CML
Clock low phase
3.0
ns
WBRCLKS
WB ↓ to RCLKS ↑ setup time
–0.1
ns
WBRCLKH
WB ↓ to RCLKS ↑ hold time
7.0
ns
OCH
Old DO valid from RCLKS ↑
3.0
ns
OCA
New DO valid from RCLKS ↑
DWRRCLKS
DI to RCLKS ↑ setup time
DWRH
DI to WB ↑ hold time
7.5
ns
0
ns
1.5
Notes
OCA/OCH
displayed
Access Timed Output
for
ns
Notes:
1. This behavior is valid for Access Timed Output and Pipelined Mode Output. The table shows the timings of an Access Timed Output.
2. In asynchronous write and synchronous read access to the same location, the new write data will be read out if the active write
signal edge occurs before or at the same time as the active read clock edge. If WB changes to low after hold time, the data will be
read.
3. A setup or hold time violation will result in unknown output data.
2 -6 2
v5.9
ProASICPLUS Flash Family FPGAs
Asynchronous Write and Read to the Same Location
RB, RADDR
DO
NEW
OLD
NEWER
WB = {WRB+WBLKB}
tORDA
tRAWRH
tORDH
tRAWRS
tOWRA
tOWRH
Note: The plot shows the normal operation status.
Figure 2-36 • Asynchronous Write and Read to the Same Location
Table 2-60 • TJ = 0°C to 110°C; VDD = 2.3 V to 2.7 V for Commercial/Industrial
TJ = –55°C to 150°C, VDD = 2.3 V to 2.7 V for Military/MIL-STD-883
Symbol txxx
Description
Min.
Max.
Units
ORDA
New DO access from RB ↓
ORDH
Old DO valid from RB ↓
OWRA
New DO access from WB ↑
OWRH
Old DO valid from WB ↑
RAWRS
RB ↓ or RADDR from WB ↓
5.0
ns
RAWRH
RB ↑ or RADDR from WB ↑
5.0
ns
7.5
Notes
ns
3.0
3.0
ns
ns
0.5
ns
Notes:
1. During an asynchronous read cycle, each write operation (synchronous or asynchronous) to the same location will automatically
trigger a read operation which updates the read data. Refer to the ProASICPLUS RAM and FIFO Blocks application note for more
information.
2. Violation or RAWRS will disturb access to the OLD data.
3. Violation of RAWRH will disturb access to the NEWER data.
v5.9
2-63
ProASICPLUS Flash Family FPGAs
Synchronous Write and Asynchronous Read to the Same Location
RB, RADDR
NEWNEWER
OLD
DO
WCLKS
tORDA
tRAWCLKH
tORDH
tOWRA
tOWRH
tRAWCLKS
Note: The plot shows the normal operation status.
Figure 2-37 • Synchronous Write and Asynchronous Read to the Same Location
Table 2-61 • TJ = 0°C to 110°C; VDD = 2.3 V to 2.7 V for Commercial/Industrial
TJ = –55°C to 150°C, VDD = 2.3 V to 2.7 V for Military/MIL-STD-883
Symbol txxx
Description
Min.
Max.
Units
ORDA
New DO access from RB ↓
ORDH
Old DO valid from RB ↓
OWRA
New DO access from WCLKS ↓
OWRH
Old DO valid from WCLKS ↓
RAWCLKS
RB ↓ or RADDR from WCLKS ↑
5.0
ns
RAWCLKH
RB ↑ or RADDR from WCLKS ↓
5.0
ns
7.5
Notes
ns
3.0
3.0
ns
ns
0.5
ns
Notes:
1. During an asynchronous read cycle, each write operation (synchronous or asynchronous) to the same location will automatically
trigger a read operation which updates the read data.
2. Violation of RAWCLKS will disturb access to OLD data.
3. Violation of RAWCLKH will disturb access to NEWER data.
2 -6 4
v5.9
ProASICPLUS Flash Family FPGAs
Asynchronous FIFO Full and Empty Transitions
The asynchronous FIFO accepts writes and reads while
not full or not empty. When the FIFO is full, all writes are
inhibited. Conversely, when the FIFO is empty, all reads
are inhibited. A problem is created if the FIFO is written
to during the transition from full to not full, or read
during the transition from empty to not empty. The
exact time at which the write or read operation changes
from inhibited to accepted after the read (write) signal
which causes the transition from full or empty to not full
or not empty is indeterminate. For slow cycles, this
indeterminate period starts 1 ns after the RB (WB)
transition, which deactivates full or not empty and ends
3 ns after the RB (WB) transition. For fast cycles, the
indeterminate period ends 3 ns (7.5 ns – RDL (WRL)) after
the RB (WB) transition, whichever is later (Table 2-1 on
page 2-4).
empty flag will be asserted, the counters will reset, the
outputs go to zero, but the internal RAM is not erased.
Enclosed Timing Diagrams – FIFO Mode:
The following timing diagrams apply only to single cell;
they are not applicable to cascaded cells. For more
information, refer to the ProASICPLUS RAM/FIFO Blocks
application note.
The timing diagram for write is shown in Figure 2-35 on
page 2-62. The timing diagram for read is shown in
Figure 2-36 on page 2-63. For basic SRAM configurations,
see Table 2-14 on page 2-22. When reset is asserted, the
•
"Asynchronous FIFO Read" section on page 2-67
•
"Asynchronous FIFO Write" section on page 2-68
•
"Synchronous FIFO Read, Access Timed Output
Strobe (Synchronous Transparent)" section on
page 2-69
•
"Synchronous FIFO Read, Pipeline Mode Outputs
(Synchronous Pipelined)" section on page 2-70
•
"Synchronous FIFO Write" section on page 2-71
•
"FIFO Reset" section on page 2-72
Table 2-62 • Memory Block FIFO Interface Signals
FIFO Signal
Bits
In/Out
Description
WCLKS
1
In
Write clock used for synchronization on write side
RCLKS
1
In
Read clock used for synchronization on read side
LEVEL [0:7]*
8
In
Direct configuration implements static flag logic
RBLKB
1
In
Read block select (active Low)
RDB
1
In
Read pulse (active Low)
RESET
1
In
Reset for FIFO pointers (active Low)
WBLKB
1
In
Write block select (active Low)
DI[0:8]
9
In
Input data bits [0:8], [8] will be generated if PARGEN is true
WRB
1
In
Write pulse (active Low)
FULL, EMPTY
2
Out
FIFO flags. FULL prevents write and EMPTY prevents read
EQTH, GEQTH*
2
Out
EQTH is true when the FIFO holds the number of words specified by the LEVEL signal.
GEQTH is true when the FIFO holds (LEVEL) words or more
DO[0:8]
9
Out
Output data bits [0:8]
RPE
1
Out
Read parity error (active High)
WPE
1
Out
Write parity error (active High)
LGDEP [0:2]
3
In
Configures DEPTH of the FIFO to 2 (LGDEP+1)
PARODD
1
In
Selects Odd parity generation/detect when high, Even when low
Note: *LEVEL is always eight bits (0000.0000, 0000.0001). That means for values of DEPTH greater than 256, not all values will be
possible, e.g. for DEPTH = 512, the LEVEL can only have the values 2, 4, . . ., 512. The LEVEL signal circuit will generate signals that
indicate whether the FIFO is exactly filled to the value of LEVEL (EQTH) or filled equal or higher (GEQTH) than the specified LEVEL.
Since counting starts at 0, EQTH will become true when the FIFO holds (LEVEL+1) words for 512-bit FIFOs.
v5.9
2-65
ProASICPLUS Flash Family FPGAs
FULL
RB
Write
Cycle
Write Inhibited
Write Accepted
1 ns
3 ns
WB
Figure 2-38 • Write Timing Diagram
EMPTY
WB
Read
Cycle
Read Inhibited
Read Accepted
1 ns
3 ns
RB
Figure 2-39 • Read Timing Diagram
2 -6 6
v5.9
ProASICPLUS Flash Family FPGAs
Asynchronous FIFO Read
tRPRDA
tRDL
Cycle Start
tRDH
RB = (RDB+RBLKB)
(Empty inhibits read)
RDATA
RPE
WB
EMPTY
FULL
EQTH, GETH
tRDWRS
tERDH, tFRDH
tORDH
tERDA, tFRDA
tRPRDH
tTHRDH
tTHRDA
tORDA
tRPRDA
tRDL
tRDH
tRDCYC
Note: The plot shows the normal operation status.
Figure 2-40 • Asynchronous FIFO Read
Table 2-63 • TJ = 0°C to 110°C; VDD = 2.3 V to 2.7 V for Commercial/Industrial
TJ = –55°C to 150°C, VDD = 2.3 V to 2.7 V for Military/MIL-STD-883
Symbol txxx
Description
ERDH, FRDH,
THRDH
Old EMPTY, FULL, EQTH, & GETH valid hold
time from RB ↑
ERDA
New EMPTY access from RB ↑
FRDA
Min.
Max.
Units
Notes
0.5
ns
Empty/full/thresh are invalid from the end
of hold until the new access is complete
3.01
ns
FULL↓ access from RB ↑
1
3.0
ns
ORDA
New DO access from RB ↓
7.5
ns
ORDH
Old DO valid from RB ↓
RDCYC
Read cycle time
RDWRS
WB ↑, clearing EMPTY, setup to
RB ↓
3.0
RDH
RB high phase
RDL
3.0
7.5
ns
ns
2
ns
Enabling the read operation
ns
Inhibiting the read operation
3.0
ns
Inactive
RB low phase
3.0
ns
Active
RPRDA
New RPE access from RB ↓
9.5
ns
RPRDH
Old RPE valid from RB ↓
THRDA
EQTH or GETH access from RB↑
1.0
4.0
4.5
ns
ns
Notes:
1. At fast cycles, ERDA and FRDA = MAX (7.5 ns – RDL), 3.0 ns.
2. At fast cycles, RDWRS (for enabling read) = MAX (7.5 ns – WRL), 3.0 ns.
v5.9
2-67
ProASICPLUS Flash Family FPGAs
Asynchronous FIFO Write
Cycle Start
WB = (WRB + WBLKB)
WDATA
(Full inhibits write)
WPE
RB
FULL
EMPTY
EQTH, GETH
tWRRDS
tDWRH
tWPDH
tWPDA
tDWRS
tEWRH, tFWRH
tEWRA, tFWRA
tTHWRH
tTHWRA
tWRL
tWRH
tWRCYC
Note: The plot shows the normal operation status.
Figure 2-41 • Asynchronous FIFO Write
Table 2-64 • TJ = 0°C to 110°C; VDD = 2.3 V to 2.7 V for Commercial/Industrial
TJ = –55°C to 150°C, VDD = 2.3 V to 2.7 V for Military/MIL-STD-883
Description
Symbol txxx
Min.
Max.
Units
Notes
DWRH
DI hold from WB ↑
1.5
DWRS
DI setup to WB ↑
0.5
ns
PARGEN is inactive
DWRS
DI setup to WB ↑
2.5
ns
PARGEN is active
ns
Empty/full/thresh are invalid from the end
of hold until the new access is complete
EWRH, FWRH, Old EMPTY, FULL, EQTH, & GETH valid hold
THWRH
time after WB ↑
ns
0.5
EWRA
EMPTY ↓ access from WB ↑
3.01
ns
FWRA
New FULL access from WB ↑
3.01
ns
THWRA
EQTH or GETH access from WB ↑
4.5
ns
WPDA
WPE access from DI
3.0
ns
WPDH
WPE hold from DI
WRCYC
Cycle time
7.5
WRRDS
RB ↑, clearing FULL, setup to
WB ↓
3.02
1.0
WPE is invalid while PARGEN is active
ns
ns
ns
1.0
Enabling the write operation
Inhibiting the write operation
WRH
WB high phase
3.0
ns
Inactive
WRL
WB low phase
3.0
ns
Active
Notes:
1. At fast cycles, EWRA, FWRA = MAX (7.5 ns – WRL), 3.0 ns.
2. At fast cycles, WRRDS (for enabling write) = MAX (7.5 ns – RDL), 3.0 ns.
3. After FIFO reset, WRB needs an initial falling edge prior to any write actions.
2 -6 8
v5.9
ProASICPLUS Flash Family FPGAs
Synchronous FIFO Read, Access Timed Output Strobe (Synchronous Transparent)
RCLK
Cycle Start
RDB
RDATA
Old Data Out
New Valid Data Out (Empty Inhibits Read)
RPE
EMPTY
FULL
EQTH, GETH
tRDCH
tECBH, tFCBH
tECBA, tFCBA
tRDCS
tTHCBH
tOCH
tRPCH
tHCBA
tOCA
tRPCA
tCMH
tCML
tCCYC
Note: The plot shows the normal operation status.
Figure 2-42 • Synchronous FIFO Read, Access Timed Output Strobe (Synchronous Transparent)
Table 2-65 • TJ = 0°C to 110°C; VDD = 2.3 V to 2.7 V for Commercial/Industrial
TJ = –55°C to 150°C, VDD = 2.3 V to 2.7 V for Military/MIL-STD-883
Description
Symbol txxx
Min.
Max.
Units
CCYC
Cycle time
7.5
ns
CMH
Clock high phase
3.0
ns
CML
Clock low phase
3.0
ns
ECBA
New EMPTY access from RCLKS ↓
3.0*
ns
FCBA
FULL ↓ access from RCLKS ↓
3.0*
ns
ECBH, FCBH, Old EMPTY, FULL, EQTH, & GETH valid hold
THCBH
time from RCLKS ↓
1.0
ns
OCA
New DO access from RCLKS ↑
OCH
Old DO valid from RCLKS ↑
RDCH
RDB hold from RCLKS ↑
0.5
ns
RDCS
RDB setup to RCLKS ↑
1.0
ns
RPCA
New RPE access from RCLKS ↑
9.5
ns
RPCH
Old RPE valid from RCLKS ↑
HCBA
EQTH or GETH access from RCLKS ↓
7.5
Empty/full/thresh are invalid from the end
of hold until the new access is complete
ns
3.0
3.0
4.5
Notes
ns
ns
ns
Note: *At fast cycles, ECBA and FCBA = MAX (7.5 ns – CMH), 3.0 ns.
v5.9
2-69
ProASICPLUS Flash Family FPGAs
Synchronous FIFO Read, Pipeline Mode Outputs (Synchronous Pipelined)
RCLK
Cycle Start
RDB
RDATA
Old Data Out
RPE
New Valid Data Out
Old RPE Out
New RPE Out
EMPTY
FULL
EQTH, GETH
tECBH, tFCBH
tOCA
tRDCH
tECBA, tFCBA
tTHCBH
tRDCS
tRPCH
tOCH
tHCBA
tRPCA
tCMH
tCML
tCCYC
Note: The plot shows the normal operation status.
Figure 2-43 • Synchronous FIFO Read, Pipeline Mode Outputs (Synchronous Pipelined)
Table 2-66 • TJ = 0°C to 110°C; VDD = 2.3 V to 2.7 V for Commercial/Industrial
TJ = –55°C to 150°C, VDD = 2.3 V to 2.7 V for Military/MIL-STD-883
Symbol txxx
Description
Min.
Max.
Units
CCYC
Cycle time
7.5
ns
CMH
Clock high phase
3.0
ns
CML
Clock low phase
3.0
ns
ECBA
New EMPTY access from RCLKS ↓
3.0*
ns
FCBA
FULL ↓ access from RCLKS ↓
3.0*
ns
ECBH, FCBH,
THCBH
Old EMPTY, FULL, EQTH, & GETH valid hold
time from RCLKS ↓
OCA
New DO access from RCLKS ↑
OCH
Old DO valid from RCLKS ↑
RDCH
RDB hold from RCLKS ↑
0.5
ns
RDCS
RDB setup to RCLKS ↑
1.0
ns
RPCA
New RPE access from RCLKS ↑
4.0
ns
RPCH
Old RPE valid from RCLKS ↑
HCBA
EQTH or GETH access from RCLKS ↓
1.0
2.0
1.0
Note: *At fast cycles, ECBA and FCBA = MAX (7.5 ns – CMS), 3.0 ns.
2 -7 0
ns
0.75
4.5
v5.9
ns
ns
ns
ns
Notes
Empty/full/thresh are invalid from the end of
hold until the new access is complete
ProASICPLUS Flash Family FPGAs
Synchronous FIFO Write
WCLKS
Cycle Start
WRB, WBLKB
(Full Inhibits Write)
DI
WPE
FULL
EMPTY
EQTH, GETH
tWRCH, tWBCH
tECBH, tFCBH
tECBA, tFCBA
tWRCS, tWBCS
tDCS
tHCBH
tHCBA
tWPCH
tDCH
tWPCA
tCMH
tCML
tCCYC
Note: The plot shows the normal operation status.
Figure 2-44 • Synchronous FIFO Write
Table 2-67 • TJ = 0°C to 110°C; VDD = 2.3 V to 2.7 V for Commercial/Industrial
TJ = –55°C to 150°C, VDD = 2.3 V to 2.7 V for Military/MIL-STD-883
Symbol txxx
Description
Min.
Max.
Units
CCYC
Cycle time
7.5
ns
CMH
Clock high phase
3.0
ns
CML
Clock low phase
3.0
ns
DCH
DI hold from WCLKS ↑
0.5
ns
DCS
DI setup to WCLKS ↑
1.0
ns
FCBA
New FULL access from WCLKS ↓
3.0*
ns
ECBA
EMPTY↓ access from WCLKS ↓
3.0*
ns
ECBH,
FCBH,
HCBH
Old EMPTY, FULL, EQTH, & GETH valid hold
time from WCLKS ↓
HCBA
EQTH or GETH access from WCLKS ↓
4.5
ns
WPCA
New WPE access from WCLKS ↑
3.0
ns
WPCH
Old WPE valid from WCLKS ↑
WRCH, WBCH WRB & WBLKB hold from WCLKS ↑
WRCS, WBCS
WRB & WBLKB setup to WCLKS ↑
1.0
0.5
ns
Notes
Empty/full/thresh are invalid from the end of
hold until the new access is complete
WPE is invalid, while PARGEN is active
ns
0.5
ns
1.0
ns
Note: * At fast cycles, ECBA and FCBA = MAX (7.5 ns – CMH), 3.0 ns.
v5.9
2-71
ProASICPLUS Flash Family FPGAs
FIFO Reset
RESETB
Cycle Start
WRB/RBD1
WCLKS, RCLKS1
Cycle Start
FULL
EMPTY
EQTH, GETH
tCBRSS
tERSA, tFRSA
tCBRSH
tWBRSH
tTHRSA
tRSL
tWBRSS
Notes:
1. During reset, either the enables (WRB and RBD) OR the clocks (WCLKS and RCKLS) must be low.
2. The plot shows the normal operation status.
Figure 2-45 • FIFO Reset
Table 2-68 • TJ = 0°C to 110°C; VDD = 2.3 V to 2.7 V for Commercial/Industrial
TJ = –55°C to 150°C, VDD = 2.3 V to 2.7 V for Military/MIL-STD-883
Symbol txxx
Description
Min.
Max.
Units
Notes
CBRSH1
WCLKS or RCLKS ↑ hold from RESETB ↑
1.5
ns
Synchronous mode only
CBRSS1
WCLKS or RCLKS ↓ setup to RESETB ↑
1.5
ns
Synchronous mode only
ERSA
New EMPTY ↑ access from RESETB ↓
3.0
ns
FRSA
FULL ↓ access from RESETB ↓
3.0
ns
RSL
RESETB low phase
7.5
ns
EQTH or GETH access from RESETB ↓
4.5
ns
1
WB ↓ hold from RESETB ↑
1.5
ns
Asynchronous mode only
1
WB ↑ setup to RESETB ↑
1.5
ns
Asynchronous mode only
THRSA
WBRSH
WBRSS
Note: During rest, the enables (WRB and RBD) must be high OR the clocks (WCLKS and RCKLS) must be low.
2 -7 2
v5.9
ProASICPLUS Flash Family FPGAs
Pin Description
TMS
The TMS pin controls the use of boundary-scan circuitry.
This pin has an internal pull-up resistor.
User Pins
I/O
TCK
User Input/Output
TDI
No Connect
TDO
Global Pin
TRST
Global Multiplexing Pin
Special Function Pins
RCK
In applications where two different signals access the
same global net at different times through the use of
GLMXx and GLMXLx macros, this pin will be fixed as one
of the source pins.
NPECL
User Negative Input
Provides high speed clock or data signals to the PLL
block. If unused, leave the pin unconnected.
This pin can be configured with an internal pull-up
resistor. When it is not connected to the global network
or the clock conditioning circuit, it can be configured and
used as any normal I/O. If not used, the GLMXx pin will
be configured as an input with pull-up.
PPECL
User Positive Input
Provides high speed clock or data signals to the PLL
block. If unused, leave the pin unconnected.
AVDD
PLL Power Supply
Analog VDD should be VDD (core voltage) 2.5 V (nominal)
and be decoupled from GND with suitable decoupling
capacitors to reduce noise. For more information, refer
to Actel’s Using ProASICPLUS Clock Conditioning Circuits
application note. If the clock conditioning circuitry is not
used in a design, AVDD can either be left floating or tied
to 2.5 V.
Dedicated Pins
Ground
Common ground supply voltage.
Logic Array Power Supply Pin
2.5 V supply voltage.
VDDP
Running Clock
A free running clock is needed during programming if
the programmer cannot guarantee that TCK will be
uninterrupted. If not used, this pin has an internal pullup and can be left floating.
When the external feedback option is selected for the
PLL block, this pin is routed as the external feedback
source to the clock conditioning circuit.
VDD
Test Reset Input
Asynchronous, active low input pin for resetting
boundary-scan circuitry. This pin has an internal pull-up
resistor. For more information, please refer to Power-up
Behavior of ProASICPLUS Devices application note.
Low skew input pin for clock or other global signals. This
pin can be used in one of two special ways (refer to
Actel’s Using ProASICPLUS Clock Conditioning Circuits).
GND
Test Data Out
Serial output for boundary scan. Actel recommends
adding a nominal 20kΩ pull-up resistor to this pin.
Low skew input pin for clock or other global signals. This
pin can be configured with an internal pull-up resistor.
When it is not connected to the global network or the
clock conditioning circuit, it can be configured and used
as a normal I/O.
GLMX
Test Data In
Serial input for boundary scan. A dedicated pull-up
resistor is included to pull this pin high when not being
driven.
To maintain compatibility with other Actel ProASICPLUS
products, it is recommended that this pin not be
connected to the circuitry on the board.
GL
Test Clock
Clock input pin for boundary scan (maximum 10 MHz). Actel
recommends adding a nominal 20 kΩ pull-up resistor to this
pin.
The I/O pin functions as an input, output, tristate, or
bidirectional buffer. Input and output signal levels are
compatible with standard LVTTL and LVCMOS
specifications. Unused I/O pins are configured as inputs
with pull-up resistors.
NC
Test Mode Select
AGND
I/O Pad Power Supply Pin
PLL Power Ground
The analog ground can be connected to the system
ground. For more information, refer to Actel’s Using
ProASICPLUS Clock Conditioning Circuits application note.
If the PLLs or clock conditioning circuitry are not used in
a design, AGND should be tied to GND.
2.5 V or 3.3 V supply voltage.
v5.9
2-73
ProASICPLUS Flash Family FPGAs
VPP
Programming Supply Pin
This pin may be connected to any voltage between GND
and 16.5 V during normal operation, or it can be left
unconnected.2 For information on using this pin during
programming,
see
the
In-System Programming
ProASICPLUS Devices application note. Actel recommends
floating the pin or connecting it to VDDP.
VPN
Programming Supply Pin
finite length conductors that distribute the power to the
device. This can be accomplished by providing sufficient
bypass capacitance between the VPP and VPN pins and
GND (using the shortest paths possible). Without
sufficient bypass capacitance to counteract the
inductance, the VPP and VPN pins may incur a voltage
spike beyond the voltage that the device can withstand.
This issue applies to all programming configurations.
Recommended Design Practice
for VPN/VPP
The solution prevents spikes from damaging the
ProASICPLUS devices. Bypass capacitors are required for
the VPP and VPN pads. Use a 0.01 µF to 0.1 µF ceramic
capacitor with a 25 V or greater rating. To filter lowfrequency noise (decoupling), use a 4.7 µF (low ESR, <1
<Ω, tantalum, 25 V or greater rating) capacitor. The
capacitors should be located as close to the device pins as
possible (within 2.5 cm is desirable). The smaller, highfrequency capacitor should be placed closer to the device
pins than the larger low-frequency capacitor. The same
dual-capacitor circuit should be used on both the VPP and
VPN pins (Figure 2-46).
ProASICPLUS Devices – APA450, APA600,
APA750, APA1000
ProASICPLUS Devices – APA075, APA150,
APA300
Bypass capacitors are required from VPP to GND and VPN
to GND for all ProASICPLUS devices during programming.
During the erase cycle, ProASICPLUS devices may have
current surges on the VPP and VPN power supplies. The
only way to maintain the integrity of the power
distribution to the ProASICPLUS device during these
current surges is to counteract the inductance of the
These devices do not require bypass capacitors on the VPP
and VPN pins as long as the total combined distance of
the programming cable and the trace length on the
board is less than or equal to 30 inches. Note: For trace
lengths greater than 30 inches, use the bypass capacitor
recommendations in the previous section.
This pin may be connected to any voltage between 0.5 V
and –13.8 V during normal operation, or it can be left
unconnected.3 For information on using this pin during
programming,
see
the
In-System Programming
ProASICPLUS Devices application note. Actel recommends
floating the pin or connecting it to GND.
2.5cm
+ _
V
PP
0.1 µF
to
0.01 µF
Actel
PLUS
ProASIC
Device
4.7 µF
+
_ +
V
PN
0.1 µF
to
0.01 µF
4.7 µF +
Figure 2-46 • ProASICPLUS VPP and VPN Capacitor Requirements
2. There is a nominal 40 kΩ pull-up resistor on VPP.
3. There is a nominal 40 kΩ pull-down resistor on VPN.
2 -7 4
Programming
Header
or
Supplies
v5.9
ProASICPLUS Flash Family FPGAs
Package Pin Assignments
100-Pin TQFP
1
100
100-Pin TQFP
Note
For Package Manufacturing and Environmental information, visit the Package Resource center at
http://www.actel.com/products/solutions/package/docs.aspx.
v5.9
3-1
ProASICPLUS Flash Family FPGAs
100-Pin TQFP
100-Pin TQFP
100-Pin TQFP
Pin
Number
APA075
Function
APA150
Function
Pin
Number
APA075
Function
APA150
Function
Pin
Number
APA075
Function
APA150
Function
1
GND
GND
36
I/O
I/O
71
I/O
I/O
2
I/O
I/O
37
VDD
VDD
72
I/O
I/O
3
I/O
I/O
38
GND
GND
73
I/O
I/O
4
I/O
I/O
39
VDDP
VDDP
74
I/O
I/O
5
I/O
I/O
40
GND
GND
75
GND
GND
6
I/O
I/O
41
I/O
I/O
76
VDDP
VDDP
7
I/O
I/O
42
I/O
I/O
77
I/O
I/O
8
I/O
I/O
43
I/O
I/O
78
I/O
I/O
9
GND
GND
44
I/O
I/O
79
I/O
I/O
10
I/O / GLMX1
I/O / GLMX1
45
I/O
I/O
80
I/O
I/O
11
I/O / GL1
I/O / GL1
46
I/O
I/O
81
I/O
I/O
12
AGND
AGND
47
TCK
TCK
82
I/O
I/O
13
NPECL1
NPECL1
48
TDI
TDI
83
I/O
I/O
14
AVDD
AVDD
49
TMS
TMS
84
I/O
I/O
50
VDDP
VDDP
85
I/O
I/O
15
3 -2
PPECL1 / Input PPECL1 / Input
16
I/O / GL2
I/O / GL2
51
GND
GND
86
GND
GND
17
VDD
VDD
52
VPP
VPP
87
VDDP
VDDP
18
I/O
I/O
53
VPN
VPN
88
GND
GND
19
I/O
I/O
54
TDO
TDO
89
VDD
VDD
20
I/O
I/O
55
TRST
TRST
90
I/O
I/O
21
I/O
I/O
56
RCK
RCK
91
I/O
I/O
22
I/O
I/O
57
I/O
I/O
92
I/O
I/O
23
I/O
I/O
58
I/O
I/O
93
I/O
I/O
24
I/O
I/O
59
I/O
I/O
94
I/O
I/O
25
GND
GND
60
I/O / GL3
I/O / GL3
95
I/O
I/O
26
VDDP
VDDP
61
96
I/O
I/O
27
I/O
I/O
62
AVDD
AVDD
97
I/O
I/O
28
I/O
I/O
63
NPECL2
NPECL2
98
I/O
I/O
29
I/O
I/O
64
AGND
AGND
99
I/O
I/O
30
I/O
I/O
65
I/O / GL4
I/O / GL4
100
VDDP
VDDP
31
I/O
I/O
66
I/O / GLMX2
I/O / GLMX2
32
I/O
I/O
67
GND
GND
33
I/O
I/O
68
VDD
VDD
34
I/O
I/O
69
I/O
I/O
35
I/O
I/O
70
I/O
I/O
PPECL2 / Input PPECL2 / Input
v5.9
ProASICPLUS Flash Family FPGAs
144-Pin TQFP
144
1
144-Pin
TQFP
Note
For Package Manufacturing and Environmental information, visit the Package Resource center at
http://www.actel.com/products/solutions/package/docs.aspx.
v5.9
3-3
ProASICPLUS Flash Family FPGAs
144-Pin TQFP
144-Pin TQFP
144-Pin TQFP
144-Pin TQFP
Pin
Number
APA075
Function
Pin
Number
APA075
Function
Pin
Number
APA075
Function
Pin
Number
APA075
Function
1
I/O
37
I/O
73
VPP
109
I/O
2
I/O
38
I/O
74
VPN
110
I/O
3
I/O
39
I/O
75
TDO
111
I/O
4
I/O
40
I/O
76
TRST
112
I/O
5
I/O
41
I/O
77
RCK
113
I/O
6
I/O
42
I/O
78
I/O
114
I/O
7
I/O
43
I/O
79
I/O
115
I/O
8
I/O
44
I/O
80
I/O
116
I/O
9
VDD
45
VDD
81
VDDP
117
VDDP
10
GND
46
GND
82
GND
118
GND
11
VDDP
47
VDDP
83
I/O
119
VDD
12
I/O
48
I/O
84
I/O
120
I/O
13
I/O
49
I/O
85
I/O
121
I/O
14
I/O
50
I/O
86
I/O
122
I/O
15
I/O / GLMX1
51
I/O
87
I/O
123
I/O
16
I/O / GL1
52
I/O
88
I/O / GL3
124
I/O
17
AGND
53
I/O
89
125
I/O
18
NPECL1
54
I/O
PPECL2 /
Input
126
I/O
90
AVDD
127
I/O
91
NPECL2
128
I/O
92
AGND
129
I/O
93
I/O / GL4
130
I/O
94
I/O / GLMX2
131
I/O
95
I/O
132
I/O
96
I/O
133
I/O
97
I/O
134
98
VDDP
VDDP
135
GND
99
GND
136
100
VDD
VDD
137
I/O
101
I/O
138
I/O
102
I/O
139
I/O
103
I/O
140
I/O
104
I/O
141
I/O
105
I/O
142
I/O
106
I/O
143
I/O
107
I/O
144
I/O
108
I/O
19
20
3 -4
AVDD
PPECL1 /
Input
21
I/O / GL2
22
I/O
23
I/O
24
I/O
25
I/O
26
I/O
27
GND
28
VDDP
29
I/O
30
I/O
31
I/O
32
I/O
33
I/O
34
I/O
35
I/O
36
I/O
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
I/O
I/O
I/O
I/O
I/O
I/O
I/O
VDD
GND
VDDP
I/O
I/O
I/O
I/O
TCK
TDI
TMS
NC
v5.9
ProASICPLUS Flash Family FPGAs
208-Pin PQFP
1
208
208-Pin PQFP
Note
For Package Manufacturing and Environmental information, visit the Package Resource center at
http://www.actel.com/products/solutions/package/docs.aspx.
v5.9
3-5
ProASICPLUS Flash Family FPGAs
208-Pin PQFP
3 -6
Pin
Number
APA075
Function
APA150
Function
APA300
Function
APA450
Function
APA600
Function
APA750
Function
APA1000
Function
1
GND
GND
GND
GND
GND
GND
GND
2
I/O
I/O
I/O
I/O
I/O
I/O
I/O
3
I/O
I/O
I/O
I/O
I/O
I/O
I/O
4
I/O
I/O
I/O
I/O
I/O
I/O
I/O
5
I/O
I/O
I/O
I/O
I/O
I/O
I/O
6
I/O
I/O
I/O
I/O
I/O
I/O
I/O
7
I/O
I/O
I/O
I/O
I/O
I/O
I/O
8
I/O
I/O
I/O
I/O
I/O
I/O
I/O
9
I/O
I/O
I/O
I/O
I/O
I/O
I/O
10
I/O
I/O
I/O
I/O
I/O
I/O
I/O
11
I/O
I/O
I/O
I/O
I/O
I/O
I/O
12
I/O
I/O
I/O
I/O
I/O
I/O
I/O
13
I/O
I/O
I/O
I/O
I/O
I/O
I/O
14
I/O
I/O
I/O
I/O
I/O
I/O
I/O
15
I/O
I/O
I/O
I/O
I/O
I/O
I/O
16
VDD
VDD
VDD
VDD
VDD
VDD
VDD
17
GND
GND
GND
GND
GND
GND
GND
18
I/O
I/O
I/O
I/O
I/O
I/O
I/O
19
I/O
I/O
I/O
I/O
I/O
I/O
I/O
20
I/O
I/O
I/O
I/O
I/O
I/O
I/O
21
I/O
I/O
I/O
I/O
I/O
I/O
I/O
22
VDDP
VDDP
VDDP
VDDP
VDDP
VDDP
VDDP
23
I/O / GLMX1
I/O / GLMX1
I/O / GLMX1
I/O / GLMX1
I/O / GLMX1
I/O / GLMX1
I/O / GLMX1
24
I/O / GL2
I/O / GL2
I/O / GL2
I/O / GL2
I/O / GL2
I/O / GL2
I/O / GL2
25
AGND
AGND
AGND
AGND
AGND
AGND
AGND
26
NPECL1
NPECL1
NPECL1
NPECL1
NPECL1
NPECL1
NPECL1
27
AVDD
AVDD
AVDD
AVDD
AVDD
AVDD
AVDD
28
PPECL1 / Input
PPECL1 / Input
PPECL1 / Input
PPECL1 / Input
PPECL1 / Input
PPECL1 / Input
PPECL1 / Input
29
GND
GND
GND
GND
GND
GND
GND
30
I/O / GL1
I/O / GL1
I/O / GL1
I/O / GL1
I/O / GL1
I/O / GL1
I/O / GL1
31
I/O
I/O
I/O
I/O
I/O
I/O
I/O
32
I/O
I/O
I/O
I/O
I/O
I/O
I/O
33
I/O
I/O
I/O
I/O
I/O
I/O
I/O
34
I/O
I/O
I/O
I/O
I/O
I/O
I/O
35
I/O
I/O
I/O
I/O
I/O
I/O
I/O
v5.9
ProASICPLUS Flash Family FPGAs
208-Pin PQFP
Pin
Number
APA075
Function
APA150
Function
APA300
Function
APA450
Function
APA600
Function
APA750
Function
APA1000
Function
36
VDD
VDD
VDD
VDD
VDD
VDD
VDD
37
I/O
I/O
I/O
I/O
I/O
I/O
I/O
38
I/O
I/O
I/O
I/O
I/O
I/O
I/O
39
I/O
I/O
I/O
I/O
I/O
I/O
I/O
40
VDDP
VDDP
VDDP
VDDP
VDDP
VDDP
VDDP
41
GND
GND
GND
GND
GND
GND
GND
42
I/O
I/O
I/O
I/O
I/O
I/O
I/O
43
I/O
I/O
I/O
I/O
I/O
I/O
I/O
44
I/O
I/O
I/O
I/O
I/O
I/O
I/O
45
I/O
I/O
I/O
I/O
I/O
I/O
I/O
46
I/O
I/O
I/O
I/O
I/O
I/O
I/O
47
I/O
I/O
I/O
I/O
I/O
I/O
I/O
48
I/O
I/O
I/O
I/O
I/O
I/O
I/O
49
I/O
I/O
I/O
I/O
I/O
I/O
I/O
50
I/O
I/O
I/O
I/O
I/O
I/O
I/O
51
I/O
I/O
I/O
I/O
I/O
I/O
I/O
52
GND
GND
GND
GND
GND
GND
GND
53
VDDP
VDDP
VDDP
VDDP
VDDP
VDDP
VDDP
54
I/O
I/O
I/O
I/O
I/O
I/O
I/O
55
I/O
I/O
I/O
I/O
I/O
I/O
I/O
56
I/O
I/O
I/O
I/O
I/O
I/O
I/O
57
I/O
I/O
I/O
I/O
I/O
I/O
I/O
58
I/O
I/O
I/O
I/O
I/O
I/O
I/O
59
I/O
I/O
I/O
I/O
I/O
I/O
I/O
60
I/O
I/O
I/O
I/O
I/O
I/O
I/O
61
I/O
I/O
I/O
I/O
I/O
I/O
I/O
62
I/O
I/O
I/O
I/O
I/O
I/O
I/O
63
I/O
I/O
I/O
I/O
I/O
I/O
I/O
64
I/O
I/O
I/O
I/O
I/O
I/O
I/O
65
GND
GND
GND
GND
GND
GND
GND
66
I/O
I/O
I/O
I/O
I/O
I/O
I/O
67
I/O
I/O
I/O
I/O
I/O
I/O
I/O
68
I/O
I/O
I/O
I/O
I/O
I/O
I/O
69
I/O
I/O
I/O
I/O
I/O
I/O
I/O
70
I/O
I/O
I/O
I/O
I/O
I/O
I/O
v5.9
3-7
ProASICPLUS Flash Family FPGAs
208-Pin PQFP
3 -8
Pin
Number
APA075
Function
APA150
Function
APA300
Function
APA450
Function
APA600
Function
APA750
Function
APA1000
Function
71
VDD
VDD
VDD
VDD
VDD
VDD
VDD
72
VDDP
VDDP
VDDP
VDDP
VDDP
VDDP
VDDP
73
I/O
I/O
I/O
I/O
I/O
I/O
I/O
74
I/O
I/O
I/O
I/O
I/O
I/O
I/O
75
I/O
I/O
I/O
I/O
I/O
I/O
I/O
76
I/O
I/O
I/O
I/O
I/O
I/O
I/O
77
I/O
I/O
I/O
I/O
I/O
I/O
I/O
78
I/O
I/O
I/O
I/O
I/O
I/O
I/O
79
I/O
I/O
I/O
I/O
I/O
I/O
I/O
80
I/O
I/O
I/O
I/O
I/O
I/O
I/O
81
GND
GND
GND
GND
GND
GND
GND
82
I/O
I/O
I/O
I/O
I/O
I/O
I/O
83
I/O
I/O
I/O
I/O
I/O
I/O
I/O
84
I/O
I/O
I/O
I/O
I/O
I/O
I/O
85
I/O
I/O
I/O
I/O
I/O
I/O
I/O
86
I/O
I/O
I/O
I/O
I/O
I/O
I/O
87
I/O
I/O
I/O
I/O
I/O
I/O
I/O
88
VDD
VDD
VDD
VDD
VDD
VDD
VDD
89
VDDP
VDDP
VDDP
VDDP
VDDP
VDDP
VDDP
90
I/O
I/O
I/O
I/O
I/O
I/O
I/O
91
I/O
I/O
I/O
I/O
I/O
I/O
I/O
92
I/O
I/O
I/O
I/O
I/O
I/O
I/O
93
I/O
I/O
I/O
I/O
I/O
I/O
I/O
94
I/O
I/O
I/O
I/O
I/O
I/O
I/O
95
I/O
I/O
I/O
I/O
I/O
I/O
I/O
96
I/O
I/O
I/O
I/O
I/O
I/O
I/O
97
GND
GND
GND
GND
GND
GND
GND
98
I/O
I/O
I/O
I/O
I/O
I/O
I/O
99
I/O
I/O
I/O
I/O
I/O
I/O
I/O
100
I/O
I/O
I/O
I/O
I/O
I/O
I/O
101
TCK
TCK
TCK
TCK
TCK
TCK
TCK
102
TDI
TDI
TDI
TDI
TDI
TDI
TDI
103
TMS
TMS
TMS
TMS
TMS
TMS
TMS
104
VDDP
VDDP
VDDP
VDDP
VDDP
VDDP
VDDP
105
GND
GND
GND
GND
GND
GND
GND
v5.9
ProASICPLUS Flash Family FPGAs
208-Pin PQFP
Pin
Number
APA075
Function
APA150
Function
APA300
Function
APA450
Function
APA600
Function
APA750
Function
APA1000
Function
106
VPP
VPP
VPP
VPP
VPP
VPP
VPP
107
VPN
VPN
VPN
VPN
VPN
VPN
VPN
108
TDO
TDO
TDO
TDO
TDO
TDO
TDO
109
TRST
TRST
TRST
TRST
TRST
TRST
TRST
110
RCK
RCK
RCK
RCK
RCK
RCK
RCK
111
I/O
I/O
I/O
I/O
I/O
I/O
I/O
112
I/O
I/O
I/O
I/O
I/O
I/O
I/O
113
I/O
I/O
I/O
I/O
I/O
I/O
I/O
114
I/O
I/O
I/O
I/O
I/O
I/O
I/O
115
I/O
I/O
I/O
I/O
I/O
I/O
I/O
116
I/O
I/O
I/O
I/O
I/O
I/O
I/O
117
I/O
I/O
I/O
I/O
I/O
I/O
I/O
118
I/O
I/O
I/O
I/O
I/O
I/O
I/O
119
I/O
I/O
I/O
I/O
I/O
I/O
I/O
120
I/O
I/O
I/O
I/O
I/O
I/O
I/O
121
I/O
I/O
I/O
I/O
I/O
I/O
I/O
122
GND
GND
GND
GND
GND
GND
GND
123
VDDP
VDDP
VDDP
VDDP
VDDP
VDDP
VDDP
124
I/O
I/O
I/O
I/O
I/O
I/O
I/O
125
I/O
I/O
I/O
I/O
I/O
I/O
I/O
126
VDD
VDD
VDD
VDD
VDD
VDD
VDD
127
I/O
I/O
I/O
I/O
I/O
I/O
I/O
128
I/O / GL3
I/O / GL3
I/O / GL3
I/O / GL3
I/O / GL3
I/O / GL3
I/O / GL3
129
PPECL2 / Input
PPECL2 / Input
PPECL2 / Input
PPECL2 / Input
PPECL2 / Input
PPECL2 / Input
PPECL2 / Input
130
GND
GND
GND
GND
GND
GND
GND
131
AVDD
AVDD
AVDD
AVDD
AVDD
AVDD
AVDD
132
NPECL2
NPECL2
NPECL2
NPECL2
NPECL2
NPECL2
NPECL2
133
AGND
AGND
AGND
AGND
AGND
AGND
AGND
134
I/O / GL4
I/O / GL4
I/O / GL4
I/O / GL4
I/O / GL4
I/O / GL4
I/O / GL4
135
I/O / GLMX2
I/O / GLMX2
I/O / GLMX2
I/O / GLMX2
I/O / GLMX2
I/O / GLMX2
I/O / GLMX2
136
I/O
I/O
I/O
I/O
I/O
I/O
I/O
137
I/O
I/O
I/O
I/O
I/O
I/O
I/O
138
VDDP
VDDP
VDDP
VDDP
VDDP
VDDP
VDDP
139
I/O
I/O
I/O
I/O
I/O
I/O
I/O
140
I/O
I/O
I/O
I/O
I/O
I/O
I/O
v5.9
3-9
ProASICPLUS Flash Family FPGAs
208-Pin PQFP
Pin
Number
APA075
Function
APA150
Function
APA300
Function
APA450
Function
APA600
Function
APA750
Function
APA1000
Function
141
GND
GND
GND
GND
GND
GND
GND
142
VDD
VDD
VDD
VDD
VDD
VDD
VDD
143
I/O
I/O
I/O
I/O
I/O
I/O
I/O
144
I/O
I/O
I/O
I/O
I/O
I/O
I/O
145
I/O
I/O
I/O
I/O
I/O
I/O
I/O
146
I/O
I/O
I/O
I/O
I/O
I/O
I/O
147
I/O
I/O
I/O
I/O
I/O
I/O
I/O
148
I/O
I/O
I/O
I/O
I/O
I/O
I/O
149
I/O
I/O
I/O
I/O
I/O
I/O
I/O
150
I/O
I/O
I/O
I/O
I/O
I/O
I/O
151
I/O
I/O
I/O
I/O
I/O
I/O
I/O
152
I/O
I/O
I/O
I/O
I/O
I/O
I/O
153
I/O
I/O
I/O
I/O
I/O
I/O
I/O
154
I/O
I/O
I/O
I/O
I/O
I/O
I/O
155
I/O
I/O
I/O
I/O
I/O
I/O
I/O
156
GND
GND
GND
GND
GND
GND
GND
157
VDDP
VDDP
VDDP
VDDP
VDDP
VDDP
VDDP
158
I/O
I/O
I/O
I/O
I/O
I/O
I/O
159
I/O
I/O
I/O
I/O
I/O
I/O
I/O
160
I/O
I/O
I/O
I/O
I/O
I/O
I/O
161
I/O
I/O
I/O
I/O
I/O
I/O
I/O
162
GND
GND
GND
GND
GND
GND
GND
163
I/O
I/O
I/O
I/O
I/O
I/O
I/O
164
I/O
I/O
I/O
I/O
I/O
I/O
I/O
165
I/O
I/O
I/O
I/O
I/O
I/O
I/O
166
I/O
I/O
I/O
I/O
I/O
I/O
I/O
167
I/O
I/O
I/O
I/O
I/O
I/O
I/O
168
I/O
I/O
I/O
I/O
I/O
I/O
I/O
169
I/O
I/O
I/O
I/O
I/O
I/O
I/O
170
VDDP
VDDP
VDDP
VDDP
VDDP
VDDP
VDDP
171
VDD
VDD
VDD
VDD
VDD
VDD
VDD
172
I/O
I/O
I/O
I/O
I/O
I/O
I/O
173
I/O
I/O
I/O
I/O
I/O
I/O
I/O
174
I/O
I/O
I/O
I/O
I/O
I/O
I/O
175
I/O
I/O
I/O
I/O
I/O
I/O
I/O
3 -1 0
v5.9
ProASICPLUS Flash Family FPGAs
208-Pin PQFP
Pin
Number
APA075
Function
APA150
Function
APA300
Function
APA450
Function
APA600
Function
APA750
Function
APA1000
Function
176
I/O
I/O
I/O
I/O
I/O
I/O
I/O
177
I/O
I/O
I/O
I/O
I/O
I/O
I/O
178
GND
GND
GND
GND
GND
GND
GND
179
I/O
I/O
I/O
I/O
I/O
I/O
I/O
180
I/O
I/O
I/O
I/O
I/O
I/O
I/O
181
I/O
I/O
I/O
I/O
I/O
I/O
I/O
182
I/O
I/O
I/O
I/O
I/O
I/O
I/O
183
I/O
I/O
I/O
I/O
I/O
I/O
I/O
184
I/O
I/O
I/O
I/O
I/O
I/O
I/O
185
I/O
I/O
I/O
I/O
I/O
I/O
I/O
186
VDDP
VDDP
VDDP
VDDP
VDDP
VDDP
VDDP
187
VDD
VDD
VDD
VDD
VDD
VDD
VDD
188
I/O
I/O
I/O
I/O
I/O
I/O
I/O
189
I/O
I/O
I/O
I/O
I/O
I/O
I/O
190
I/O
I/O
I/O
I/O
I/O
I/O
I/O
191
I/O
I/O
I/O
I/O
I/O
I/O
I/O
192
I/O
I/O
I/O
I/O
I/O
I/O
I/O
193
I/O
I/O
I/O
I/O
I/O
I/O
I/O
194
I/O
I/O
I/O
I/O
I/O
I/O
I/O
195
GND
GND
GND
GND
GND
GND
GND
196
I/O
I/O
I/O
I/O
I/O
I/O
I/O
197
I/O
I/O
I/O
I/O
I/O
I/O
I/O
198
I/O
I/O
I/O
I/O
I/O
I/O
I/O
199
I/O
I/O
I/O
I/O
I/O
I/O
I/O
200
I/O
I/O
I/O
I/O
I/O
I/O
I/O
201
I/O
I/O
I/O
I/O
I/O
I/O
I/O
202
I/O
I/O
I/O
I/O
I/O
I/O
I/O
203
I/O
I/O
I/O
I/O
I/O
I/O
I/O
204
I/O
I/O
I/O
I/O
I/O
I/O
I/O
205
I/O
I/O
I/O
I/O
I/O
I/O
I/O
206
I/O
I/O
I/O
I/O
I/O
I/O
I/O
207
I/O
I/O
I/O
I/O
I/O
I/O
I/O
208
VDDP
VDDP
VDDP
VDDP
VDDP
VDDP
VDDP
v5.9
3-11
ProASICPLUS Flash Family FPGAs
160
159
158
157
194
193
192
191
190
189
188
187
186
208
207
206
205
208-Pin CQFP
No. 1
1
2
3
4
156
155
154
153
Ceramic
Tie Bar
31
32
33
34
35
36
37
38
39
142
141
140
139
138
137
136
135
134
208-Pin CQFP
101
102
103
104
84
85
86
87
88
89
90
91
92
108
107
106
105
53
54
55
57
49
50
51
52
Note
For Package Manufacturing and Environmental information, visit the Package Resource center at
http://www.actel.com/products/solutions/package/docs.aspx.
3 -1 2
v5.9
ProASICPLUS Flash Family FPGAs
208-Pin CQFP
208-Pin CQFP
Pin
Number
APA300
Function
APA600
Function
APA1000
Function
Pin
Number
APA300
Function
APA600
Function
APA1000
Function
1
GND
GND
GND
36
VDD
VDD
VDD
2
I/O
I/O
I/O
37
I/O
I/O
I/O
3
I/O
I/O
I/O
38
I/O
I/O
I/O
4
I/O
I/O
I/O
39
I/O
I/O
I/O
5
I/O
I/O
I/O
40
VDDP
VDDP
VDDP
6
I/O
I/O
I/O
41
GND
GND
GND
7
I/O
I/O
I/O
42
I/O
I/O
I/O
8
I/O
I/O
I/O
43
I/O
I/O
I/O
9
I/O
I/O
I/O
44
I/O
I/O
I/O
10
I/O
I/O
I/O
45
I/O
I/O
I/O
11
I/O
I/O
I/O
46
I/O
I/O
I/O
12
I/O
I/O
I/O
47
I/O
I/O
I/O
13
I/O
I/O
I/O
48
I/O
I/O
I/O
14
I/O
I/O
I/O
49
I/O
I/O
I/O
15
I/O
I/O
I/O
50
I/O
I/O
I/O
16
VDD
VDD
VDD
51
I/O
I/O
I/O
17
GND
GND
GND
52
GND
GND
GND
18
I/O
I/O
I/O
53
VDDP
VDDP
VDDP
19
I/O
I/O
I/O
54
I/O
I/O
I/O
20
I/O
I/O
I/O
55
I/O
I/O
I/O
21
I/O
I/O
I/O
56
I/O
I/O
I/O
22
VDDP
VDDP
VDDP
57
I/O
I/O
I/O
23
I/O / GLMX1
I/O / GLMX1
I/O / GLMX1
58
I/O
I/O
I/O
24
I/O / GL2
I/O / GL2
I/O / GL2
59
I/O
I/O
I/O
25
AGND
AGND
AGND
60
I/O
I/O
I/O
26
NPECL1
NPECL1
NPECL1
61
I/O
I/O
I/O
27
AVDD
AVDD
AVDD
62
I/O
I/O
I/O
63
I/O
I/O
I/O
28
PPECL1 / Input PPECL1 / Input PPECL1 / Input
29
GND
GND
GND
64
I/O
I/O
I/O
30
I/O / GL1
I/O / GL1
I/O / GL1
65
GND
GND
GND
31
I/O
I/O
I/O
66
I/O
I/O
I/O
32
I/O
I/O
I/O
67
I/O
I/O
I/O
33
I/O
I/O
I/O
68
I/O
I/O
I/O
34
I/O
I/O
I/O
69
I/O
I/O
I/O
35
I/O
I/O
I/O
70
I/O
I/O
I/O
v5.9
3-13
ProASICPLUS Flash Family FPGAs
208-Pin CQFP
208-Pin CQFP
Pin
Number
APA300
Function
APA600
Function
APA1000
Function
Pin
Number
APA300
Function
APA600
Function
APA1000
Function
71
VDD
VDD
VDD
106
VPP
VPP
VPP
72
VDDP
VDDP
VDDP
107
VPN
VPN
VPN
73
I/O
I/O
I/O
108
TDO
TDO
TDO
74
I/O
I/O
I/O
109
TRST
TRST
TRST
75
I/O
I/O
I/O
110
RCK
RCK
RCK
76
I/O
I/O
I/O
111
I/O
I/O
I/O
77
I/O
I/O
I/O
112
I/O
I/O
I/O
78
I/O
I/O
I/O
113
I/O
I/O
I/O
79
I/O
I/O
I/O
114
I/O
I/O
I/O
80
I/O
I/O
I/O
115
I/O
I/O
I/O
81
GND
GND
GND
116
I/O
I/O
I/O
82
I/O
I/O
I/O
117
I/O
I/O
I/O
83
I/O
I/O
I/O
118
I/O
I/O
I/O
84
I/O
I/O
I/O
119
I/O
I/O
I/O
85
I/O
I/O
I/O
120
I/O
I/O
I/O
86
I/O
I/O
I/O
121
I/O
I/O
I/O
87
I/O
I/O
I/O
122
GND
GND
GND
88
VDD
VDD
VDD
123
VDDP
VDDP
VDDP
89
VDDP
VDDP
VDDP
124
I/O
I/O
I/O
90
I/O
I/O
I/O
125
I/O
I/O
I/O
91
I/O
I/O
I/O
126
VDD
VDD
VDD
92
I/O
I/O
I/O
127
I/O
I/O
I/O
93
I/O
I/O
I/O
128
I/O / GL3
I/O / GL3
I/O / GL3
94
I/O
I/O
I/O
129
95
I/O
I/O
I/O
130
GND
GND
GND
96
I/O
I/O
I/O
131
AVDD
AVDD
AVDD
97
GND
GND
GND
132
NPECL2
NPECL2
NPECL2
98
I/O
I/O
I/O
133
AGND
AGND
AGND
99
I/O
I/O
I/O
134
I/O / GL4
I/O / GL4
I/O / GL4
100
I/O
I/O
I/O
135
I/O / GLMX2
I/O / GLMX2
I/O / GLMX2
101
TCK
TCK
TCK
136
I/O
I/O
I/O
102
TDI
TDI
TDI
137
I/O
I/O
I/O
103
TMS
TMS
TMS
138
VDDP
VDDP
VDDP
104
VDDP
VDDP
VDDP
139
I/O
I/O
I/O
105
GND
GND
GND
140
I/O
I/O
I/O
3 -1 4
v5.9
PPECL2 / Input PPECL2 / Input PPECL2 / Input
ProASICPLUS Flash Family FPGAs
208-Pin CQFP
208-Pin CQFP
Pin
Number
APA300
Function
APA600
Function
APA1000
Function
Pin
Number
APA300
Function
APA600
Function
APA1000
Function
141
GND
GND
GND
176
I/O
I/O
I/O
142
VDD
VDD
VDD
177
I/O
I/O
I/O
143
I/O
I/O
I/O
178
GND
GND
GND
144
I/O
I/O
I/O
179
I/O
I/O
I/O
145
I/O
I/O
I/O
180
I/O
I/O
I/O
146
I/O
I/O
I/O
181
I/O
I/O
I/O
147
I/O
I/O
I/O
182
I/O
I/O
I/O
148
I/O
I/O
I/O
183
I/O
I/O
I/O
149
I/O
I/O
I/O
184
I/O
I/O
I/O
150
I/O
I/O
I/O
185
I/O
I/O
I/O
151
I/O
I/O
I/O
186
VDDP
VDDP
VDDP
152
I/O
I/O
I/O
187
VDD
VDD
VDD
153
I/O
I/O
I/O
188
I/O
I/O
I/O
154
I/O
I/O
I/O
189
I/O
I/O
I/O
155
I/O
I/O
I/O
190
I/O
I/O
I/O
156
GND
]GND
GND
191
I/O
I/O
I/O
157
VDDP
VDDP
VDDP
192
I/O
I/O
I/O
158
I/O
I/O
I/O
193
I/O
I/O
I/O
159
I/O
I/O
I/O
194
I/O
I/O
I/O
160
I/O
I/O
I/O
195
GND
GND
GND
161
I/O
I/O
I/O
196
I/O
I/O
I/O
162
GND
GND
GND
197
I/O
I/O
I/O
163
I/O
I/O
I/O
198
I/O
I/O
I/O
164
I/O
I/O
I/O
199
I/O
I/O
I/O
165
I/O
I/O
I/O
200
I/O
I/O
I/O
166
I/O
I/O
I/O
201
I/O
I/O
I/O
167
I/O
I/O
I/O
202
I/O
I/O
I/O
168
I/O
I/O
I/O
203
I/O
I/O
I/O
169
I/O
I/O
I/O
204
I/O
I/O
I/O
170
VDDP
VDDP
VDDP
205
I/O
I/O
I/O
171
VDD
VDD
VDD
206
I/O
I/O
I/O
172
I/O
I/O
I/O
207
I/O
I/O
I/O
173
I/O
I/O
I/O
208
VDDP
VDDP
VDDP
174
I/O
I/O
I/O
175
I/O
I/O
I/O
v5.9
3-15
ProASICPLUS Flash Family FPGAs
268
267
266
265
339
338
337
336
335
334
333
332
331
352
351
350
349
352-Pin CQFP
Pin 1
1
2
3
4
264
263
262
261
Ceramic
Tie Bar
41
42
43
44
45
46
47
48
49
223
222
221
220
219
218
217
216
215
352-Pin CQFP
173
174
175
176
127
128
129
130
131
132
133
134
135
180
179
178
177
89
90
91
92
85
86
87
88
Note
For Package Manufacturing and Environmental information, visit the Package Resource center at
http://www.actel.com/products/solutions/package/docs.aspx.
3 -1 6
v5.9
ProASICPLUS Flash Family FPGAs
352-Pin CQFP
352-Pin CQFP
Pin Number
APA300
Function
APA600
Function
APA1000
Function
Pin Number
APA300
Function
APA600
Function
APA1000
Function
1
I/O
I/O
I/O
38
I/O / GLMX1
I/O / GLMX1
I/O / GLMX1
2
I/O
I/O
I/O
39
I/O / GL2
I/O / GL2
I/O / GL2
3
I/O
I/O
I/O
40
AGND
AGND
AGND
4
I/O
I/O
I/O
41
AVDD
AVDD
AVDD
5
I/O
I/O
I/O
42
NPECL1
NPECL1
NPECL1
6
I/O
I/O
I/O
43
7
VDD
VDD
VDD
44
I/O / GL1
I/O / GL1
I/O / GL1
8
GND
GND
GND
45
I/O
I/O
I/O
9
VDDP
VDDP
VDDP
46
I/O
I/O
I/O
10
I/O
I/O
I/O
47
VDD
VDD
VDD
11
I/O
I/O
I/O
48
GND
GND
GND
12
I/O
I/O
I/O
49
VDDP
VDDP
VDDP
13
I/O
I/O
I/O
50
I/O
I/O
I/O
14
I/O
I/O
I/O
51
I/O
I/O
I/O
15
I/O
I/O
I/O
52
I/O
I/O
I/O
16
I/O
I/O
I/O
53
I/O
I/O
I/O
17
I/O
I/O
I/O
54
I/O
I/O
I/O
18
VDD
VDD
VDD
55
I/O
I/O
I/O
19
GND
GND
GND
56
I/O
I/O
I/O
20
VDDP
VDDP
VDDP
57
I/O
I/O
I/O
21
I/O
I/O
I/O
58
VDD
VDD
VDD
22
I/O
I/O
I/O
59
GND
GND
GND
23
I/O
I/O
I/O
60
VDDP
VDDP
VDDP
24
I/O
I/O
I/O
61
I/O
I/O
I/O
25
I/O
I/O
I/O
62
I/O
I/O
I/O
26
I/O
I/O
I/O
63
I/O
I/O
I/O
27
I/O
I/O
I/O
64
I/O
I/O
I/O
28
I/O
I/O
I/O
65
I/O
I/O
I/O
29
VDD
VDD
VDD
66
I/O
I/O
I/O
30
GND
GND
GND
67
I/O
I/O
I/O
31
VDDP
VDDP
VDDP
68
I/O
I/O
I/O
32
I/O
I/O
I/O
69
VDD
VDD
VDD
33
I/O
I/O
I/O
70
GND
GND
GND
34
I/O
I/O
I/O
71
VDDP
VDDP
VDDP
35
I/O
I/O
I/O
72
I/O
I/O
I/O
36
I/O
I/O
I/O
73
I/O
I/O
I/O
37
I/O
I/O
I/O
74
I/O
I/O
I/O
v5.9
PPECL1 / Input PPECL1 / Input PPECL1 / Input
3-17
ProASICPLUS Flash Family FPGAs
352-Pin CQFP
352-Pin CQFP
Pin Number
APA300
Function
APA600
Function
APA1000
Function
Pin Number
APA300
Function
APA600
Function
APA1000
Function
75
I/O
I/O
I/O
112
GND
GND
GND
76
I/O
I/O
I/O
113
VDD
VDD
VDD
77
I/O
I/O
I/O
114
I/O
I/O
I/O
78
I/O
I/O
I/O
115
I/O
I/O
I/O
79
I/O
I/O
I/O
116
I/O
I/O
I/O
80
VDD
VDD
VDD
117
I/O
I/O
I/O
81
GND
GND
GND
118
I/O
I/O
I/O
82
VDDP
VDDP
VDDP
119
I/O
I/O
I/O
83
I/O
I/O
I/O
120
I/O
I/O
I/O
84
I/O
I/O
I/O
121
I/O
I/O
I/O
85
I/O
I/O
I/O
122
VDDP
VDDP
VDDP
86
I/O
I/O
I/O
123
GND
GND
GND
87
I/O
I/O
I/O
124
VDD
VDD
VDD
88
I/O
I/O
I/O
125
I/O
I/O
I/O
89
VDDP
VDDP
VDDP
126
I/O
I/O
I/O
90
GND
GND
GND
127
I/O
I/O
I/O
91
VDD
VDD
VDD
128
I/O
I/O
I/O
92
I/O
I/O
I/O
129
I/O
I/O
I/O
93
I/O
I/O
I/O
130
I/O
I/O
I/O
94
I/O
I/O
I/O
131
I/O
I/O
I/O
95
I/O
I/O
I/O
132
I/O
I/O
I/O
96
I/O
I/O
I/O
133
VDDP
VDDP
VDDP
97
I/O
I/O
I/O
134
GND
GND
GND
98
I/O
I/O
I/O
135
VDD
VDD
VDD
99
I/O
I/O
I/O
136
I/O
I/O
I/O
100
VDDP
VDDP
VDDP
137
I/O
I/O
I/O
101
GND
GND
GND
138
I/O
I/O
I/O
102
VDD
VDD
VDD
139
I/O
I/O
I/O
103
I/O
I/O
I/O
140
I/O
I/O
I/O
104
I/O
I/O
I/O
141
I/O
I/O
I/O
105
I/O
I/O
I/O
142
I/O
I/O
I/O
106
I/O
I/O
I/O
143
I/O
I/O
I/O
107
I/O
I/O
I/O
144
VDDP
VDDP
VDDP
108
I/O
I/O
I/O
145
GND
GND
GND
109
I/O
I/O
I/O
146
VDD
VDD
VDD
110
I/O
I/O
I/O
147
I/O
I/O
I/O
111
VDDP
VDDP
VDDP
148
I/O
I/O
I/O
3 -1 8
v5.9
ProASICPLUS Flash Family FPGAs
352-Pin CQFP
352-Pin CQFP
Pin Number
APA300
Function
APA600
Function
APA1000
Function
Pin Number
APA300
Function
APA600
Function
APA1000
Function
149
I/O
I/O
I/O
186
I/O
I/O
I/O
150
I/O
I/O
I/O
187
I/O
I/O
I/O
151
I/O
I/O
I/O
188
I/O
I/O
I/O
152
I/O
I/O
I/O
189
I/O
I/O
I/O
153
I/O
I/O
I/O
190
I/O
I/O
I/O
154
I/O
I/O
I/O
191
I/O
I/O
I/O
155
VDDP
VDDP
VDDP
192
I/O
I/O
I/O
156
GND
GND
GND
193
I/O
I/O
I/O
157
VDD
VDD
VDD
194
VDDP
VDDP
VDDP
158
I/O
I/O
I/O
195
GND
GND
GND
159
I/O
I/O
I/O
196
VDD
VDD
VDD
160
I/O
I/O
I/O
197
I/O
I/O
I/O
161
I/O
I/O
I/O
198
I/O
I/O
I/O
162
I/O
I/O
I/O
199
I/O
I/O
I/O
163
I/O
I/O
I/O
200
I/O
I/O
I/O
164
I/O
I/O
I/O
201
I/O
I/O
I/O
165
I/O
I/O
I/O
202
I/O
I/O
I/O
166
VDDP
VDDP
VDDP
203
I/O
I/O
I/O
167
GND
GND
GND
204
I/O
I/O
I/O
168
VDD
VDD
VDD
205
VDDP
VDDP
VDDP
169
I/O
I/O
I/O
206
GND
GND
GND
170
I/O
I/O
I/O
207
VDD
VDD
VDD
171
I/O
I/O
I/O
208
I/O
I/O
I/O
172
I/O
I/O
I/O
209
I/O
I/O
I/O
173
TCK
TCK
TCK
210
I/O
I/O
I/O
174
TDI
TDI
TDI
211
I/O
I/O
I/O
175
TMS
TMS
TMS
212
I/O
I/O
I/O
176
I/O
I/O
I/O
213
I/O
I/O
I/O
177
VPP
VPP
VPP
214
I/O
I/O
I/O
178
VPN
VPN
VPN
215
I/O
I/O
I/O
179
TDO
TDO
TDO
216
VDDP
VDDP
VDDP
180
TRST
TRST
TRST
217
GND
GND
GND
181
RCK
RCK
RCK
218
VDD
VDD
VDD
182
I/O
I/O
I/O
219
I/O
I/O
I/O
183
VDDP
VDDP
VDDP
220
I/O
I/O
I/O
184
GND
GND
GND
221
I/O / GL3
I/O / GL3
I/O / GL3
185
VDD
VDD
VDD
222
v5.9
PPECL2 / Input PPECL2 / Input PPECL2 / Input
3-19
ProASICPLUS Flash Family FPGAs
352-Pin CQFP
352-Pin CQFP
Pin Number
APA300
Function
APA600
Function
APA1000
Function
Pin Number
APA300
Function
APA600
Function
APA1000
Function
223
NPECL2
NPECL2
NPECL2
260
I/O
I/O
I/O
224
AVDD
AVDD
AVDD
261
I/O
I/O
I/O
225
AGND
AGND
AGND
262
I/O
I/O
I/O
226
I/O / GL4
I/O / GL4
I/O / GL4
263
I/O
I/O
I/O
227
I/O / GLMX2
I/O / GLMX2
I/O / GLMX2
264
I/O
I/O
I/O
228
I/O
I/O
I/O
265
I/O
I/O
I/O
229
I/O
I/O
I/O
266
I/O
I/O
I/O
230
I/O
I/O
I/O
267
I/O
I/O
I/O
231
I/O
I/O
I/O
268
I/O
I/O
I/O
232
I/O
I/O
I/O
269
I/O
I/O
I/O
233
I/O
I/O
I/O
270
I/O
I/O
I/O
234
VDDP
VDDP
VDDP
271
I/O
I/O
I/O
235
GND
GND
GND
272
I/O
I/O
I/O
236
VDD
VDD
VDD
273
VDD
VDD
VDD
237
I/O
I/O
I/O
274
GND
GND
GND
238
I/O
I/O
I/O
275
VDDP
VDDP
VDDP
239
I/O
I/O
I/O
276
I/O
I/O
I/O
240
I/O
I/O
I/O
277
I/O
I/O
I/O
241
I/O
I/O
I/O
278
I/O
I/O
I/O
242
I/O
I/O
I/O
279
I/O
I/O
I/O
243
I/O
I/O
I/O
280
I/O
I/O
I/O
244
I/O
I/O
I/O
281
I/O
I/O
I/O
245
VDDP
VDDP
VDDP
282
I/O
I/O
I/O
246
GND
GND
GND
283
I/O
I/O
I/O
247
VDD
VDD
VDD
284
VDD
VDD
VDD
248
I/O
I/O
I/O
285
GND
GND
GND
249
I/O
I/O
I/O
286
VDDP
VDDP
VDDP
250
I/O
I/O
I/O
287
I/O
I/O
I/O
251
I/O
I/O
I/O
288
I/O
I/O
I/O
252
I/O
I/O
I/O
289
I/O
I/O
I/O
253
I/O
I/O
I/O
290
I/O
I/O
I/O
254
I/O
I/O
I/O
291
I/O
I/O
I/O
255
I/O
I/O
I/O
292
I/O
I/O
I/O
256
VDDP
VDDP
VDDP
293
I/O
I/O
I/O
257
GND
GND
GND
294
I/O
I/O
I/O
258
VDD
VDD
VDD
295
VDD
VDD
VDD
259
I/O
I/O
I/O
296
GND
GND
GND
3 -2 0
v5.9
ProASICPLUS Flash Family FPGAs
352-Pin CQFP
352-Pin CQFP
Pin Number
APA300
Function
APA600
Function
APA1000
Function
Pin Number
APA300
Function
APA600
Function
APA1000
Function
297
VDDP
VDDP
VDDP
334
I/O
I/O
I/O
298
I/O
I/O
I/O
335
I/O
I/O
I/O
299
I/O
I/O
I/O
336
I/O
I/O
I/O
300
I/O
I/O
I/O
337
I/O
I/O
I/O
301
I/O
I/O
I/O
338
I/O
I/O
I/O
302
I/O
I/O
I/O
339
VDD
VDD
VDD
303
I/O
I/O
I/O
340
GND
GND
GND
304
I/O
I/O
I/O
341
VDDP
VDDP
VDDP
305
I/O
I/O
I/O
342
I/O
I/O
I/O
306
VDD
VDD
VDD
343
I/O
I/O
I/O
307
GND
GND
GND
344
I/O
I/O
I/O
308
VDDP
VDDP
VDDP
345
I/O
I/O
I/O
309
I/O
I/O
I/O
346
I/O
I/O
I/O
310
I/O
I/O
I/O
347
I/O
I/O
I/O
311
I/O
I/O
I/O
348
I/O
I/O
I/O
312
I/O
I/O
I/O
349
I/O
I/O
I/O
313
I/O
I/O
I/O
350
VDD
VDD
VDD
314
I/O
I/O
I/O
351
GND
GND
GND
315
I/O
I/O
I/O
352
VDDP
VDDP
VDDP
316
I/O
I/O
I/O
317
VDD
VDD
VDD
318
GND
GND
GND
319
VDDP
VDDP
VDDP
320
I/O
I/O
I/O
321
I/O
I/O
I/O
322
I/O
I/O
I/O
323
I/O
I/O
I/O
324
I/O
I/O
I/O
325
I/O
I/O
I/O
326
I/O
I/O
I/O
327
I/O
I/O
I/O
328
VDD
VDD
VDD
329
GND
GND
GND
330
VDDP
VDDP
VDDP
331
I/O
I/O
I/O
332
I/O
I/O
I/O
333
I/O
I/O
I/O
v5.9
3-21
ProASICPLUS Flash Family FPGAs
456-Pin PBGA
A1 Ball Pad Corner
26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9
8
7
6
5 4
3
2
1
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA
AB
AC
AD
AE
AF
Note
For Package Manufacturing and Environmental information, visit the Package Resource center at
http://www.actel.com/products/solutions/package/docs.aspx.
3 -2 2
v5.9
ProASICPLUS Flash Family FPGAs
456-Pin PBGA
Pin
Number
APA150
Function
APA300
Function
APA450
Function
APA600
Function
APA750
Function
APA1000
Function
A1
VDDP
VDDP
VDDP
VDDP
VDDP
VDDP
A2
VDDP
VDDP
VDDP
VDDP
VDDP
VDDP
A3
NC
NC
I/O
I/O
I/O
I/O
A4
NC
NC
I/O
I/O
I/O
I/O
A5
NC
NC
I/O
I/O
I/O
I/O
A6
NC
NC
I/O
I/O
I/O
I/O
A7
NC
NC
I/O
I/O
I/O
I/O
A8
I/O
I/O
I/O
I/O
I/O
I/O
A9
I/O
I/O
I/O
I/O
I/O
I/O
A10
I/O
I/O
I/O
I/O
I/O
I/O
A11
I/O
I/O
I/O
I/O
I/O
I/O
A12
I/O
I/O
I/O
I/O
I/O
I/O
A13
I/O
I/O
I/O
I/O
I/O
I/O
A14
I/O
I/O
I/O
I/O
I/O
I/O
A15
I/O
I/O
I/O
I/O
I/O
I/O
A16
I/O
I/O
I/O
I/O
I/O
I/O
A17
I/O
I/O
I/O
I/O
I/O
I/O
A18
I/O
I/O
I/O
I/O
I/O
I/O
A19
I/O
I/O
I/O
I/O
I/O
I/O
A20
NC
NC
I/O
I/O
I/O
I/O
A21
NC
NC
I/O
I/O
I/O
I/O
A22
NC
NC
I/O
I/O
I/O
I/O
A23
NC
NC
I/O
I/O
I/O
I/O
A24
NC
NC
I/O
I/O
I/O
I/O
A25
VDDP
VDDP
VDDP
VDDP
VDDP
VDDP
A26
VDDP
VDDP
VDDP
VDDP
VDDP
VDDP
B1
VDDP
VDDP
VDDP
VDDP
VDDP
VDDP
B2
VDDP
VDDP
VDDP
VDDP
VDDP
VDDP
B3
NC
NC
NC
I/O
I/O
I/O
B4
NC
NC
I/O
I/O
I/O
I/O
B5
NC
NC
I/O
I/O
I/O
I/O
B6
NC
NC
I/O
I/O
I/O
I/O
B7
NC
NC
I/O
I/O
I/O
I/O
B8
I/O
I/O
I/O
I/O
I/O
I/O
v5.9
3-23
ProASICPLUS Flash Family FPGAs
456-Pin PBGA
3 -2 4
Pin
Number
APA150
Function
APA300
Function
APA450
Function
APA600
Function
APA750
Function
APA1000
Function
B9
I/O
I/O
I/O
I/O
I/O
I/O
B10
I/O
I/O
I/O
I/O
I/O
I/O
B11
I/O
I/O
I/O
I/O
I/O
I/O
B12
I/O
I/O
I/O
I/O
I/O
I/O
B13
I/O
I/O
I/O
I/O
I/O
I/O
B14
I/O
I/O
I/O
I/O
I/O
I/O
B15
I/O
I/O
I/O
I/O
I/O
I/O
B16
I/O
I/O
I/O
I/O
I/O
I/O
B17
I/O
I/O
I/O
I/O
I/O
I/O
B18
I/O
I/O
I/O
I/O
I/O
I/O
B19
I/O
I/O
I/O
I/O
I/O
I/O
B20
NC
NC
I/O
I/O
I/O
I/O
B21
NC
NC
I/O
I/O
I/O
I/O
B22
NC
NC
I/O
I/O
I/O
I/O
B23
NC
NC
I/O
I/O
I/O
I/O
B24
NC
NC
I/O
I/O
I/O
I/O
B25
VDDP
VDDP
VDDP
VDDP
VDDP
VDDP
B26
VDDP
VDDP
VDDP
VDDP
VDDP
VDDP
C1
VDDP
VDDP
VDDP
VDDP
VDDP
VDDP
C2
NC
I/O
I/O
I/O
I/O
I/O
C3
VDDP
VDDP
VDDP
VDDP
VDDP
VDDP
C4
NC
NC
NC
I/O
I/O
I/O
C5
NC
NC
I/O
I/O
I/O
I/O
C6
NC
NC
I/O
I/O
I/O
I/O
C7
I/O
I/O
I/O
I/O
I/O
I/O
C8
I/O
I/O
I/O
I/O
I/O
I/O
C9
I/O
I/O
I/O
I/O
I/O
I/O
C10
I/O
I/O
I/O
I/O
I/O
I/O
C11
I/O
I/O
I/O
I/O
I/O
I/O
C12
I/O
I/O
I/O
I/O
I/O
I/O
C13
I/O
I/O
I/O
I/O
I/O
I/O
C14
I/O
I/O
I/O
I/O
I/O
I/O
C15
I/O
I/O
I/O
I/O
I/O
I/O
C16
I/O
I/O
I/O
I/O
I/O
I/O
v5.9
ProASICPLUS Flash Family FPGAs
456-Pin PBGA
Pin
Number
APA150
Function
APA300
Function
APA450
Function
APA600
Function
APA750
Function
APA1000
Function
C17
I/O
I/O
I/O
I/O
I/O
I/O
C18
I/O
I/O
I/O
I/O
I/O
I/O
C19
I/O
I/O
I/O
I/O
I/O
I/O
C20
I/O
I/O
I/O
I/O
I/O
I/O
C21
NC
NC
I/O
I/O
I/O
I/O
C22
NC
NC
I/O
I/O
I/O
I/O
C23
NC
NC
I/O
I/O
I/O
I/O
C24
VDDP
VDDP
VDDP
VDDP
VDDP
VDDP
C25
NC
NC
NC
I/O
I/O
I/O
C26
NC
NC
NC
I/O
I/O
I/O
D1
NC
NC
NC
I/O
I/O
I/O
D2
NC
NC
NC
I/O
I/O
I/O
D3
NC
I/O
I/O
I/O
I/O
I/O
D4
VDDP
VDDP
VDDP
VDDP
VDDP
VDDP
D5
NC
NC
I/O
I/O
I/O
I/O
D6
NC
NC
I/O
I/O
I/O
I/O
D7
I/O
I/O
I/O
I/O
I/O
I/O
D8
I/O
I/O
I/O
I/O
I/O
I/O
D9
I/O
I/O
I/O
I/O
I/O
I/O
D10
I/O
I/O
I/O
I/O
I/O
I/O
D11
I/O
I/O
I/O
I/O
I/O
I/O
D12
I/O
I/O
I/O
I/O
I/O
I/O
D13
I/O
I/O
I/O
I/O
I/O
I/O
D14
I/O
I/O
I/O
I/O
I/O
I/O
D15
I/O
I/O
I/O
I/O
I/O
I/O
D16
I/O
I/O
I/O
I/O
I/O
I/O
D17
I/O
I/O
I/O
I/O
I/O
I/O
D18
I/O
I/O
I/O
I/O
I/O
I/O
D19
I/O
I/O
I/O
I/O
I/O
I/O
D20
I/O
I/O
I/O
I/O
I/O
I/O
D21
I/O
I/O
I/O
I/O
I/O
I/O
D22
NC
NC
I/O
I/O
I/O
I/O
D23
VDDP
VDDP
VDDP
VDDP
VDDP
VDDP
D24
NC
I/O
I/O
I/O
I/O
I/O
v5.9
3-25
ProASICPLUS Flash Family FPGAs
456-Pin PBGA
3 -2 6
Pin
Number
APA150
Function
APA300
Function
APA450
Function
APA600
Function
APA750
Function
APA1000
Function
D25
NC
NC
NC
I/O
I/O
I/O
D26
NC
NC
NC
I/O
I/O
I/O
E1
NC
I/O
I/O
I/O
I/O
I/O
E2
NC
I/O
I/O
I/O
I/O
I/O
E3
NC
I/O
I/O
I/O
I/O
I/O
E4
NC
I/O
I/O
I/O
I/O
I/O
E5
VDD
VDD
VDD
VDD
VDD
VDD
E6
VDD
VDD
VDD
VDD
VDD
VDD
E7
VDD
VDD
VDD
VDD
VDD
VDD
E8
VDD
VDD
VDD
VDD
VDD
VDD
E9
I/O
I/O
I/O
I/O
I/O
I/O
E10
I/O
I/O
I/O
I/O
I/O
I/O
E11
I/O
I/O
I/O
I/O
I/O
I/O
E12
I/O
I/O
I/O
I/O
I/O
I/O
E13
I/O
I/O
I/O
I/O
I/O
I/O
E14
I/O
I/O
I/O
I/O
I/O
I/O
E15
I/O
I/O
I/O
I/O
I/O
I/O
E16
I/O
I/O
I/O
I/O
I/O
I/O
E17
I/O
I/O
I/O
I/O
I/O
I/O
E18
I/O
I/O
I/O
I/O
I/O
I/O
E19
I/O
I/O
I/O
I/O
I/O
I/O
E20
VDD
VDD
VDD
VDD
VDD
VDD
E21
VDD
VDD
VDD
VDD
VDD
VDD
E22
VDD
VDD
VDD
VDD
VDD
VDD
E23
NC
I/O
I/O
I/O
I/O
I/O
E24
NC
I/O
I/O
I/O
I/O
I/O
E25
NC
I/O
I/O
I/O
I/O
I/O
E26
NC
I/O
I/O
I/O
I/O
I/O
F1
NC
I/O
I/O
I/O
I/O
I/O
F2
NC
I/O
I/O
I/O
I/O
I/O
F3
NC
I/O
I/O
I/O
I/O
I/O
F4
NC
I/O
I/O
I/O
I/O
I/O
F5
VDD
VDD
VDD
VDD
VDD
VDD
F22
VDD
VDD
VDD
VDD
VDD
VDD
v5.9
ProASICPLUS Flash Family FPGAs
456-Pin PBGA
Pin
Number
APA150
Function
APA300
Function
APA450
Function
APA600
Function
APA750
Function
APA1000
Function
F23
NC
I/O
I/O
I/O
I/O
I/O
F24
NC
I/O
I/O
I/O
I/O
I/O
F25
NC
I/O
I/O
I/O
I/O
I/O
F26
NC
I/O
I/O
I/O
I/O
I/O
G1
I/O
I/O
I/O
I/O
I/O
I/O
G2
I/O
I/O
I/O
I/O
I/O
I/O
G3
NC
I/O
I/O
I/O
I/O
I/O
G4
NC
I/O
I/O
I/O
I/O
I/O
G5
VDD
VDD
VDD
VDD
VDD
VDD
G22
VDD
VDD
VDD
VDD
VDD
VDD
G23
NC
I/O
I/O
I/O
I/O
I/O
G24
NC
I/O
I/O
I/O
I/O
I/O
G25
NC
I/O
I/O
I/O
I/O
I/O
G26
I/O
I/O
I/O
I/O
I/O
I/O
H1
I/O
I/O
I/O
I/O
I/O
I/O
H2
I/O
I/O
I/O
I/O
I/O
I/O
H3
I/O
I/O
I/O
I/O
I/O
I/O
H4
I/O
I/O
I/O
I/O
I/O
I/O
H5
VDD
VDD
VDD
VDD
VDD
VDD
H22
VDD
VDD
VDD
VDD
VDD
VDD
H23
I/O
I/O
I/O
I/O
I/O
I/O
H24
I/O
I/O
I/O
I/O
I/O
I/O
H25
I/O
I/O
I/O
I/O
I/O
I/O
H26
I/O
I/O
I/O
I/O
I/O
I/O
J1
I/O
I/O
I/O
I/O
I/O
I/O
J2
I/O
I/O
I/O
I/O
I/O
I/O
J3
I/O
I/O
I/O
I/O
I/O
I/O
J4
I/O
I/O
I/O
I/O
I/O
I/O
J5
I/O
I/O
I/O
I/O
I/O
I/O
J22
I/O
I/O
I/O
I/O
I/O
I/O
J23
I/O
I/O
I/O
I/O
I/O
I/O
J24
I/O
I/O
I/O
I/O
I/O
I/O
J25
I/O
I/O
I/O
I/O
I/O
I/O
J26
I/O
I/O
I/O
I/O
I/O
I/O
v5.9
3-27
ProASICPLUS Flash Family FPGAs
456-Pin PBGA
3 -2 8
Pin
Number
APA150
Function
APA300
Function
APA450
Function
APA600
Function
APA750
Function
APA1000
Function
K1
I/O
I/O
I/O
I/O
I/O
I/O
K2
I/O
I/O
I/O
I/O
I/O
I/O
K3
I/O
I/O
I/O
I/O
I/O
I/O
K4
I/O
I/O
I/O
I/O
I/O
I/O
K5
I/O
I/O
I/O
I/O
I/O
I/O
K22
I/O
I/O
I/O
I/O
I/O
I/O
K23
I/O
I/O
I/O
I/O
I/O
I/O
K24
I/O
I/O
I/O
I/O
I/O
I/O
K25
I/O
I/O
I/O
I/O
I/O
I/O
K26
I/O
I/O
I/O
I/O
I/O
I/O
L1
I/O
I/O
I/O
I/O
I/O
I/O
L2
I/O
I/O
I/O
I/O
I/O
I/O
L3
I/O
I/O
I/O
I/O
I/O
I/O
L4
I/O
I/O
I/O
I/O
I/O
I/O
L5
I/O
I/O
I/O
I/O
I/O
I/O
L11
GND
GND
GND
GND
GND
GND
L12
GND
GND
GND
GND
GND
GND
L13
GND
GND
GND
GND
GND
GND
L14
GND
GND
GND
GND
GND
GND
L15
GND
GND
GND
GND
GND
GND
L16
GND
GND
GND
GND
GND
GND
L22
I/O
I/O
I/O
I/O
I/O
I/O
L23
I/O
I/O
I/O
I/O
I/O
I/O
L24
I/O
I/O
I/O
I/O
I/O
I/O
L25
I/O
I/O
I/O
I/O
I/O
I/O
L26
I/O
I/O
I/O
I/O
I/O
I/O
M1
I/O / GL1
I/O / GL1
I/O / GL1
I/O / GL1
I/O / GL1
I/O / GL1
M2
I/O / GL2
I/O / GL2
I/O / GL2
I/O / GL2
I/O / GL2
I/O / GL2
M3
I/O
I/O
I/O
I/O
I/O
I/O
M4
I/O
I/O
I/O
I/O
I/O
I/O
M5
I/O
I/O
I/O
I/O
I/O
I/O
M11
GND
GND
GND
GND
GND
GND
M12
GND
GND
GND
GND
GND
GND
M13
GND
GND
GND
GND
GND
GND
v5.9
ProASICPLUS Flash Family FPGAs
456-Pin PBGA
Pin
Number
APA150
Function
APA300
Function
APA450
Function
APA600
Function
APA750
Function
APA1000
Function
M14
GND
GND
GND
GND
GND
GND
M15
GND
GND
GND
GND
GND
GND
M16
GND
GND
GND
GND
GND
GND
M22
I/O / GL4
I/O / GL4
I/O / GL4
I/O / GL4
I/O / GL4
I/O / GL4
M23
I/O
I/O
I/O
I/O
I/O
I/O
M24
I/O
I/O
I/O
I/O
I/O
I/O
M25
I/O
I/O
I/O
I/O
I/O
I/O
M26
I/O
I/O
I/O
I/O
I/O
I/O
N1
I/O
I/O
I/O
I/O
I/O
I/O
N2
I/O / GLMX1
I/O / GLMX1
I/O / GLMX1
I/O / GLMX1
I/O / GLMX1
I/O / GLMX1
N3
AGND
AGND
AGND
AGND
AGND
AGND
N4
PPECL1 / Input
PPECL1 / Input
PPECL1 / Input
PPECL1 / Input
PPECL1 / Input
PPECL1 / Input
N5
AVDD
AVDD
AVDD
AVDD
AVDD
AVDD
N11
GND
GND
GND
GND
GND
GND
N12
GND
GND
GND
GND
GND
GND
N13
GND
GND
GND
GND
GND
GND
N14
GND
GND
GND
GND
GND
GND
N15
GND
GND
GND
GND
GND
GND
N16
GND
GND
GND
GND
GND
GND
N22
NPECL2
NPECL2
NPECL2
NPECL2
NPECL2
NPECL2
N23
I/O / GL3
I/O / GL3
I/O / GL3
I/O / GL3
I/O / GL3
I/O / GL3
N24
AVDD
AVDD
AVDD
AVDD
AVDD
AVDD
N25
I/O / GLMX2
I/O / GLMX2
I/O / GLMX2
I/O / GLMX2
I/O / GLMX2
I/O / GLMX2
N26
AGND
AGND
AGND
AGND
AGND
AGND
P1
I/O
I/O
I/O
I/O
I/O
I/O
P2
I/O
I/O
I/O
I/O
I/O
I/O
P3
I/O
I/O
I/O
I/O
I/O
I/O
P4
I/O
I/O
I/O
I/O
I/O
I/O
P5
NPECL1
NPECL1
NPECL1
NPECL1
NPECL1
NPECL1
P11
GND
GND
GND
GND
GND
GND
P12
GND
GND
GND
GND
GND
GND
P13
GND
GND
GND
GND
GND
GND
P14
GND
GND
GND
GND
GND
GND
P15
GND
GND
GND
GND
GND
GND
v5.9
3-29
ProASICPLUS Flash Family FPGAs
456-Pin PBGA
3 -3 0
Pin
Number
APA150
Function
APA300
Function
APA450
Function
APA600
Function
APA750
Function
APA1000
Function
P16
GND
GND
GND
GND
GND
GND
P22
I/O
I/O
I/O
I/O
I/O
I/O
P23
I/O
I/O
I/O
I/O
I/O
I/O
P24
I/O
I/O
I/O
I/O
I/O
I/O
P25
I/O
I/O
I/O
I/O
I/O
I/O
P26
PPECL2 / Input
PPECL2 / Input
PPECL2 / Input
PPECL2 / Input
PPECL2 / Input
PPECL2 / Input
R1
I/O
I/O
I/O
I/O
I/O
I/O
R2
I/O
I/O
I/O
I/O
I/O
I/O
R3
I/O
I/O
I/O
I/O
I/O
I/O
R4
I/O
I/O
I/O
I/O
I/O
I/O
R5
I/O
I/O
I/O
I/O
I/O
I/O
R11
GND
GND
GND
GND
GND
GND
R12
GND
GND
GND
GND
GND
GND
R13
GND
GND
GND
GND
GND
GND
R14
GND
GND
GND
GND
GND
GND
R15
GND
GND
GND
GND
GND
GND
R16
GND
GND
GND
GND
GND
GND
R22
I/O
I/O
I/O
I/O
I/O
I/O
R23
I/O
I/O
I/O
I/O
I/O
I/O
R24
I/O
I/O
I/O
I/O
I/O
I/O
R25
I/O
I/O
I/O
I/O
I/O
I/O
R26
I/O
I/O
I/O
I/O
I/O
I/O
T1
I/O
I/O
I/O
I/O
I/O
I/O
T2
I/O
I/O
I/O
I/O
I/O
I/O
T3
I/O
I/O
I/O
I/O
I/O
I/O
T4
I/O
I/O
I/O
I/O
I/O
I/O
T5
I/O
I/O
I/O
I/O
I/O
I/O
T11
GND
GND
GND
GND
GND
GND
T12
GND
GND
GND
GND
GND
GND
T13
GND
GND
GND
GND
GND
GND
T14
GND
GND
GND
GND
GND
GND
T15
GND
GND
GND
GND
GND
GND
T16
GND
GND
GND
GND
GND
GND
T22
I/O
I/O
I/O
I/O
I/O
I/O
v5.9
ProASICPLUS Flash Family FPGAs
456-Pin PBGA
Pin
Number
APA150
Function
APA300
Function
APA450
Function
APA600
Function
APA750
Function
APA1000
Function
T23
I/O
I/O
I/O
I/O
I/O
I/O
T24
I/O
I/O
I/O
I/O
I/O
I/O
T25
I/O
I/O
I/O
I/O
I/O
I/O
T26
I/O
I/O
I/O
I/O
I/O
I/O
U1
I/O
I/O
I/O
I/O
I/O
I/O
U2
I/O
I/O
I/O
I/O
I/O
I/O
U3
I/O
I/O
I/O
I/O
I/O
I/O
U4
I/O
I/O
I/O
I/O
I/O
I/O
U5
I/O
I/O
I/O
I/O
I/O
I/O
U22
I/O
I/O
I/O
I/O
I/O
I/O
U23
I/O
I/O
I/O
I/O
I/O
I/O
U24
I/O
I/O
I/O
I/O
I/O
I/O
U25
I/O
I/O
I/O
I/O
I/O
I/O
U26
I/O
I/O
I/O
I/O
I/O
I/O
V1
I/O
I/O
I/O
I/O
I/O
I/O
V2
I/O
I/O
I/O
I/O
I/O
I/O
V3
I/O
I/O
I/O
I/O
I/O
I/O
V4
I/O
I/O
I/O
I/O
I/O
I/O
V5
I/O
I/O
I/O
I/O
I/O
I/O
V22
I/O
I/O
I/O
I/O
I/O
I/O
V23
I/O
I/O
I/O
I/O
I/O
I/O
V24
I/O
I/O
I/O
I/O
I/O
I/O
V25
I/O
I/O
I/O
I/O
I/O
I/O
V26
I/O
I/O
I/O
I/O
I/O
I/O
W1
I/O
I/O
I/O
I/O
I/O
I/O
W2
I/O
I/O
I/O
I/O
I/O
I/O
W3
I/O
I/O
I/O
I/O
I/O
I/O
W4
I/O
I/O
I/O
I/O
I/O
I/O
W5
VDD
VDD
VDD
VDD
VDD
VDD
W22
VDD
VDD
VDD
VDD
VDD
VDD
W23
I/O
I/O
I/O
I/O
I/O
I/O
W24
I/O
I/O
I/O
I/O
I/O
I/O
W25
I/O
I/O
I/O
I/O
I/O
I/O
W26
I/O
I/O
I/O
I/O
I/O
I/O
v5.9
3-31
ProASICPLUS Flash Family FPGAs
456-Pin PBGA
3 -3 2
Pin
Number
APA150
Function
APA300
Function
APA450
Function
APA600
Function
APA750
Function
APA1000
Function
Y1
I/O
I/O
I/O
I/O
I/O
I/O
Y2
I/O
I/O
I/O
I/O
I/O
I/O
Y3
I/O
I/O
I/O
I/O
I/O
I/O
Y4
NC
I/O
I/O
I/O
I/O
I/O
Y5
VDD
VDD
VDD
VDD
VDD
VDD
Y22
VDD
VDD
VDD
VDD
VDD
VDD
Y23
NC
I/O
I/O
I/O
I/O
I/O
Y24
NC
I/O
I/O
I/O
I/O
I/O
Y25
NC
I/O
I/O
I/O
I/O
I/O
Y26
NC
I/O
I/O
I/O
I/O
I/O
AA1
I/O
I/O
I/O
I/O
I/O
I/O
AA2
NC
I/O
I/O
I/O
I/O
I/O
AA3
NC
I/O
I/O
I/O
I/O
I/O
AA4
NC
I/O
I/O
I/O
I/O
I/O
AA5
VDD
VDD
VDD
VDD
VDD
VDD
AA22
VDD
VDD
VDD
VDD
VDD
VDD
AA23
NC
I/O
I/O
I/O
I/O
I/O
AA24
NC
I/O
I/O
I/O
I/O
I/O
AA25
NC
I/O
I/O
I/O
I/O
I/O
AA26
NC
I/O
I/O
I/O
I/O
I/O
AB1
NC
I/O
I/O
I/O
I/O
I/O
AB2
NC
I/O
I/O
I/O
I/O
I/O
AB3
NC
I/O
I/O
I/O
I/O
I/O
AB4
NC
I/O
I/O
I/O
I/O
I/O
AB5
VDD
VDD
VDD
VDD
VDD
VDD
AB6
VDD
VDD
VDD
VDD
VDD
VDD
AB7
VDD
VDD
VDD
VDD
VDD
VDD
AB8
I/O
I/O
I/O
I/O
I/O
I/O
AB9
I/O
I/O
I/O
I/O
I/O
I/O
AB10
I/O
I/O
I/O
I/O
I/O
I/O
AB11
I/O
I/O
I/O
I/O
I/O
I/O
AB12
I/O
I/O
I/O
I/O
I/O
I/O
AB13
I/O
I/O
I/O
I/O
I/O
I/O
AB14
I/O
I/O
I/O
I/O
I/O
I/O
v5.9
ProASICPLUS Flash Family FPGAs
456-Pin PBGA
Pin
Number
APA150
Function
APA300
Function
APA450
Function
APA600
Function
APA750
Function
APA1000
Function
AB15
I/O
I/O
I/O
I/O
I/O
I/O
AB16
I/O
I/O
I/O
I/O
I/O
I/O
AB17
I/O
I/O
I/O
I/O
I/O
I/O
AB18
I/O
I/O
I/O
I/O
I/O
I/O
AB19
I/O
I/O
I/O
I/O
I/O
I/O
AB20
VDD
VDD
VDD
VDD
VDD
VDD
AB21
VDD
VDD
VDD
VDD
VDD
VDD
AB22
VDD
VDD
VDD
VDD
VDD
VDD
AB23
NC
I/O
I/O
I/O
I/O
I/O
AB24
NC
I/O
I/O
I/O
I/O
I/O
AB25
NC
I/O
I/O
I/O
I/O
I/O
AB26
NC
NC
NC
I/O
I/O
I/O
AC1
NC
I/O
I/O
I/O
I/O
I/O
AC2
NC
I/O
I/O
I/O
I/O
I/O
AC3
NC
I/O
I/O
I/O
I/O
I/O
AC4
VDDP
VDDP
VDDP
VDDP
VDDP
VDDP
AC5
NC
NC
I/O
I/O
I/O
I/O
AC6
I/O
I/O
I/O
I/O
I/O
I/O
AC7
I/O
I/O
I/O
I/O
I/O
I/O
AC8
I/O
I/O
I/O
I/O
I/O
I/O
AC9
I/O
I/O
I/O
I/O
I/O
I/O
AC10
I/O
I/O
I/O
I/O
I/O
I/O
AC11
I/O
I/O
I/O
I/O
I/O
I/O
AC12
I/O
I/O
I/O
I/O
I/O
I/O
AC13
I/O
I/O
I/O
I/O
I/O
I/O
AC14
I/O
I/O
I/O
I/O
I/O
I/O
AC15
I/O
I/O
I/O
I/O
I/O
I/O
AC16
I/O
I/O
I/O
I/O
I/O
I/O
AC17
I/O
I/O
I/O
I/O
I/O
I/O
AC18
I/O
I/O
I/O
I/O
I/O
I/O
AC19
I/O
I/O
I/O
I/O
I/O
I/O
AC20
I/O
I/O
I/O
I/O
I/O
I/O
AC21
TMS
TMS
TMS
TMS
TMS
TMS
AC22
TDO
TDO
TDO
TDO
TDO
TDO
v5.9
3-33
ProASICPLUS Flash Family FPGAs
456-Pin PBGA
3 -3 4
Pin
Number
APA150
Function
APA300
Function
APA450
Function
APA600
Function
APA750
Function
APA1000
Function
AC23
VDDP
VDDP
VDDP
VDDP
VDDP
VDDP
AC24
RCK
RCK
RCK
RCK
RCK
RCK
AC25
NC
NC
I/O
I/O
I/O
I/O
AC26
NC
I/O
I/O
I/O
I/O
I/O
AD1
NC
NC
NC
I/O
I/O
I/O
AD2
NC
I/O
I/O
I/O
I/O
I/O
AD3
VDDP
VDDP
VDDP
VDDP
VDDP
VDDP
AD4
NC
NC
I/O
I/O
I/O
I/O
AD5
NC
NC
I/O
I/O
I/O
I/O
AD6
NC
NC
I/O
I/O
I/O
I/O
AD7
I/O
I/O
I/O
I/O
I/O
I/O
AD8
I/O
I/O
I/O
I/O
I/O
I/O
AD9
I/O
I/O
I/O
I/O
I/O
I/O
AD10
I/O
I/O
I/O
I/O
I/O
I/O
AD11
I/O
I/O
I/O
I/O
I/O
I/O
AD12
I/O
I/O
I/O
I/O
I/O
I/O
AD13
I/O
I/O
I/O
I/O
I/O
I/O
AD14
I/O
I/O
I/O
I/O
I/O
I/O
AD15
I/O
I/O
I/O
I/O
I/O
I/O
AD16
I/O
I/O
I/O
I/O
I/O
I/O
AD17
I/O
I/O
I/O
I/O
I/O
I/O
AD18
I/O
I/O
I/O
I/O
I/O
I/O
AD19
I/O
I/O
I/O
I/O
I/O
I/O
AD20
NC
NC
I/O
I/O
I/O
I/O
AD21
TCK
TCK
TCK
TCK
TCK
TCK
AD22
VPP
VPP
VPP
VPP
VPP
VPP
AD23
NC
NC
NC
I/O
I/O
I/O
AD24
VDDP
VDDP
VDDP
VDDP
VDDP
VDDP
AD25
NC
NC
I/O
I/O
I/O
I/O
AD26
NC
NC
I/O
I/O
I/O
I/O
AE1
VDDP
VDDP
VDDP
VDDP
VDDP
VDDP
AE2
VDDP
VDDP
VDDP
VDDP
VDDP
VDDP
AE3
NC
NC
I/O
I/O
I/O
I/O
AE4
NC
NC
I/O
I/O
I/O
I/O
v5.9
ProASICPLUS Flash Family FPGAs
456-Pin PBGA
Pin
Number
APA150
Function
APA300
Function
APA450
Function
APA600
Function
APA750
Function
APA1000
Function
AE5
NC
NC
I/O
I/O
I/O
I/O
AE6
NC
NC
I/O
I/O
I/O
I/O
AE7
NC
NC
I/O
I/O
I/O
I/O
AE8
I/O
I/O
I/O
I/O
I/O
I/O
AE9
I/O
I/O
I/O
I/O
I/O
I/O
AE10
I/O
I/O
I/O
I/O
I/O
I/O
AE11
I/O
I/O
I/O
I/O
I/O
I/O
AE12
I/O
I/O
I/O
I/O
I/O
I/O
AE13
I/O
I/O
I/O
I/O
I/O
I/O
AE14
I/O
I/O
I/O
I/O
I/O
I/O
AE15
I/O
I/O
I/O
I/O
I/O
I/O
AE16
I/O
I/O
I/O
I/O
I/O
I/O
AE17
I/O
I/O
I/O
I/O
I/O
I/O
AE18
I/O
I/O
I/O
I/O
I/O
I/O
AE19
I/O
I/O
I/O
I/O
I/O
I/O
AE20
NC
NC
I/O
I/O
I/O
I/O
AE21
NC
NC
I/O
I/O
I/O
I/O
AE22
NC
NC
I/O
I/O
I/O
I/O
AE23
VPN
VPN
VPN
VPN
VPN
VPN
AE24
TRST
TRST
TRST
TRST
TRST
TRST
AE25
VDDP
VDDP
VDDP
VDDP
VDDP
VDDP
AE26
VDDP
VDDP
VDDP
VDDP
VDDP
VDDP
AF1
VDDP
VDDP
VDDP
VDDP
VDDP
VDDP
AF2
VDDP
VDDP
VDDP
VDDP
VDDP
VDDP
AF3
NC
NC
I/O
I/O
I/O
I/O
AF4
NC
NC
I/O
I/O
I/O
I/O
AF5
NC
NC
I/O
I/O
I/O
I/O
AF6
NC
NC
I/O
I/O
I/O
I/O
AF7
NC
NC
I/O
I/O
I/O
I/O
AF8
NC
NC
NC
I/O
I/O
I/O
AF9
I/O
I/O
I/O
I/O
I/O
I/O
AF10
I/O
I/O
I/O
I/O
I/O
I/O
AF11
I/O
I/O
I/O
I/O
I/O
I/O
AF12
I/O
I/O
I/O
I/O
I/O
I/O
v5.9
3-35
ProASICPLUS Flash Family FPGAs
456-Pin PBGA
3 -3 6
Pin
Number
APA150
Function
APA300
Function
APA450
Function
APA600
Function
APA750
Function
APA1000
Function
AF13
I/O
I/O
I/O
I/O
I/O
I/O
AF14
I/O
I/O
I/O
I/O
I/O
I/O
AF15
I/O
I/O
I/O
I/O
I/O
I/O
AF16
I/O
I/O
I/O
I/O
I/O
I/O
AF17
I/O
I/O
I/O
I/O
I/O
I/O
AF18
NC
NC
I/O
I/O
I/O
I/O
AF19
NC
NC
I/O
I/O
I/O
I/O
AF20
NC
NC
I/O
I/O
I/O
I/O
AF21
NC
NC
I/O
I/O
I/O
I/O
AF22
NC
NC
I/O
I/O
I/O
I/O
AF23
TDI
TDI
TDI
TDI
TDI
TDI
AF24
NC
NC
I/O
I/O
I/O
I/O
AF25
VDDP
VDDP
VDDP
VDDP
VDDP
VDDP
AF26
VDDP
VDDP
VDDP
VDDP
VDDP
VDDP
v5.9
ProASICPLUS Flash Family FPGAs
144-Pin FBGA
A1 Ball Pad Corner
12
11
10
9
8
7
6
5
4
3
2
1
A
B
C
D
E
F
G
H
J
K
L
M
Note
For Package Manufacturing and Environmental information, visit the Package Resource center at
http://www.actel.com/products/solutions/package/docs.aspx.
v5.9
3-37
ProASICPLUS Flash Family FPGAs
144-FBGA Pin
144-FBGA Pin
Pin
APA075
Number Function
APA150
Function
APA300
Function
APA450
Function
Pin
APA075
Number Function
APA150
Function
APA300
Function
APA450
Function
A1
I/O
I/O
I/O
I/O
D2
I/O
I/O
I/O
I/O
A2
I/O
I/O
I/O
I/O
D3
I/O
I/O
I/O
I/O
A3
I/O
I/O
I/O
I/O
D4
I/O
I/O
I/O
I/O
A4
I/O
I/O
I/O
I/O
D5
I/O
I/O
I/O
I/O
A5
I/O
I/O
I/O
I/O
D6
I/O
I/O
I/O
I/O
A6
GND
GND
GND
GND
D7
I/O
I/O
I/O
I/O
A7
I/O
I/O
I/O
I/O
D8
I/O
I/O
I/O
I/O
A8
VDD
VDD
VDD
VDD
D9
I/O
I/O
I/O
I/O
A9
I/O
I/O
I/O
I/O
D10
I/O
I/O
I/O
I/O
A10
I/O
I/O
I/O
I/O
D11
I/O
I/O
I/O
I/O
A11
I/O
I/O
I/O
I/O
D12
A12
I/O
I/O
I/O
I/O
E1
VDD
VDD
VDD
VDD
B1
I/O
I/O
I/O
I/O
E2
I/O
I/O
I/O
I/O
B2
GND
GND
GND
GND
E3
I/O
I/O
I/O
I/O
B3
I/O
I/O
I/O
I/O
E4
VDDP
VDDP
VDDP
VDDP
B4
I/O
I/O
I/O
I/O
E5
I/O
I/O
I/O
I/O
B5
I/O
I/O
I/O
I/O
E6
VDDP
VDDP
VDDP
VDDP
B6
I/O
I/O
I/O
I/O
E7
VDDP
VDDP
VDDP
VDDP
B7
I/O
I/O
I/O
I/O
E8
AVDD
AVDD
AVDD
AVDD
B8
I/O
I/O
I/O
I/O
E9
VDDP
VDDP
VDDP
VDDP
B9
I/O
I/O
I/O
I/O
E10
VDD
VDD
VDD
VDD
B10
I/O
I/O
I/O
I/O
E11
NPECL2
NPECL2
NPECL2
NPECL2
B11
GND
GND
GND
GND
E12
AGND
AGND
AGND
AGND
B12
I/O
I/O
I/O
I/O
F1
I/O / GL2
I/O / GL2
I/O / GL2
I/O / GL2
C1
I/O
I/O
I/O
I/O
F2
AGND
AGND
AGND
AGND
C2
I/O / GL1
I/O / GL1
I/O / GL1
I/O / GL1
F3
C3
I/O
I/O
I/O
I/O
F4
I/O
I/O
I/O
I/O
C4
VDD
VDD
VDD
VDD
F5
GND
GND
GND
GND
C5
I/O
I/O
I/O
I/O
F6
GND
GND
GND
GND
C6
I/O
I/O
I/O
I/O
F7
GND
GND
GND
GND
C7
I/O
I/O
I/O
I/O
F8
I/O
I/O
I/O
I/O
C8
I/O
I/O
I/O
I/O
F9
I/O / GL4
I/O / GL4
I/O / GL4
I/O / GL4
C9
I/O
I/O
I/O
I/O
F10
GND
GND
GND
GND
C10
I/O
I/O
I/O
I/O
F11
C11
I/O
I/O
I/O
I/O
PPECL2 /
Input
PPECL2 /
Input
PPECL2 /
Input
PPECL2 /
Input
C12
I/O
I/O
I/O
I/O
F12
I/O / GL3
I/O / GL3
I/O / GL3
I/O / GL3
D1
I/O
I/O
I/O
I/O
3 -3 8
v5.9
I/O / GLMX2 I/O / GLMX2 I/O / GLMX2 I/O / GLMX2
I/O / GLMX1 I/O / GLMX1 I/O / GLMX1 I/O / GLMX1
ProASICPLUS Flash Family FPGAs
144-FBGA Pin
Pin
APA075
Number Function
144-FBGA Pin
APA150
Function
APA300
Function
APA450
Function
G1
PPECL1 /
Input
PPECL1 /
Input
PPECL1 /
Input
PPECL1 /
Input
G2
GND
GND
GND
GND
G3
AVDD
AVDD
AVDD
AVDD
G4
NPECL1
NPECL1
NPECL1
NPECL1
G5
GND
GND
GND
GND
G6
GND
GND
GND
GND
G7
GND
GND
GND
GND
G8
I/O
I/O
I/O
I/O
G9
I/O
I/O
I/O
I/O
G10
I/O
I/O
I/O
I/O
G11
I/O
I/O
I/O
I/O
G12
I/O
I/O
I/O
I/O
H1
VDD
VDD
VDD
VDD
H2
I/O
I/O
I/O
I/O
H3
I/O
I/O
I/O
I/O
H4
I/O
I/O
I/O
I/O
H5
VDD
VDD
VDD
VDD
H6
I/O
I/O
I/O
I/O
H7
I/O
I/O
I/O
I/O
H8
I/O
I/O
I/O
I/O
H9
I/O
I/O
I/O
I/O
H10
VDDP
VDDP
VDDP
VDDP
H11
I/O
I/O
I/O
I/O
H12
VDD
VDD
VDD
VDD
J1
I/O
I/O
I/O
I/O
J2
I/O
I/O
I/O
I/O
J3
VDDP
VDDP
VDDP
VDDP
J4
I/O
I/O
I/O
I/O
J5
I/O
I/O
I/O
I/O
J6
I/O
I/O
I/O
I/O
J7
VDD
VDD
VDD
VDD
J8
TCK
TCK
TCK
TCK
J9
I/O
I/O
I/O
I/O
J10
TDO
TDO
TDO
TDO
J11
I/O
I/O
I/O
I/O
J12
I/O
I/O
I/O
I/O
Pin
APA075
Number Function
v5.9
APA150
Function
APA300
Function
APA450
Function
K1
I/O
I/O
I/O
I/O
K2
I/O
I/O
I/O
I/O
K3
I/O
I/O
I/O
I/O
K4
I/O
I/O
I/O
I/O
K5
I/O
I/O
I/O
I/O
K6
I/O
I/O
I/O
I/O
K7
GND
GND
GND
GND
K8
I/O
I/O
I/O
I/O
K9
I/O
I/O
I/O
I/O
K10
GND
GND
GND
GND
K11
I/O
I/O
I/O
I/O
K12
I/O
I/O
I/O
I/O
L1
GND
GND
GND
GND
L2
I/O
I/O
I/O
I/O
L3
I/O
I/O
I/O
I/O
L4
I/O
I/O
I/O
I/O
L5
VDDP
VDDP
VDDP
VDDP
L6
I/O
I/O
I/O
I/O
L7
I/O
I/O
I/O
I/O
L8
I/O
I/O
I/O
I/O
L9
TMS
TMS
TMS
TMS
L10
RCK
RCK
RCK
RCK
L11
I/O
I/O
I/O
I/O
L12
TRST
TRST
TRST
TRST
M1
I/O
I/O
I/O
I/O
M2
I/O
I/O
I/O
I/O
M3
I/O
I/O
I/O
I/O
M4
I/O
I/O
I/O
I/O
M5
I/O
I/O
I/O
I/O
M6
I/O
I/O
I/O
I/O
M7
I/O
I/O
I/O
I/O
M8
I/O
I/O
I/O
I/O
M9
TDI
TDI
TDI
TDI
M10
VDDP
VDDP
VDDP
VDDP
M11
VPP
VPP
VPP
VPP
M12
VPN
VPN
VPN
VPN
3-39
ProASICPLUS Flash Family FPGAs
256-Pin FBGA
A1 Ball Pad Corner
16 15 14 13 12 11 10 9
8
7
6
5
4
3
2
1
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
Note
For Package Manufacturing and Environmental information, visit the Package Resource center at
http://www.actel.com/products/solutions/package/docs.aspx.
3 -4 0
v5.9
ProASICPLUS Flash Family FPGAs
256-Pin FBGA
256-Pin FBGA
Pin
Number
APA150
Function
APA300
Function
APA450
Function
APA600
Function
Pin
Number
APA150
Function
APA300
Function
APA450
Function
APA600
Function
A1
GND
GND
GND
GND
C4
I/O
I/O
I/O
I/O
A2
I/O
I/O
I/O
I/O
C5
I/O
I/O
I/O
I/O
A3
I/O
I/O
I/O
I/O
C6
I/O
I/O
I/O
I/O
A4
I/O
I/O
I/O
I/O
C7
I/O
I/O
I/O
I/O
A5
I/O
I/O
I/O
I/O
C8
I/O
I/O
I/O
I/O
A6
I/O
I/O
I/O
I/O
C9
I/O
I/O
I/O
I/O
A7
I/O
I/O
I/O
I/O
C10
I/O
I/O
I/O
I/O
A8
I/O
I/O
I/O
I/O
C11
I/O
I/O
I/O
I/O
A9
I/O
I/O
I/O
I/O
C12
I/O
I/O
I/O
I/O
A10
I/O
I/O
I/O
I/O
C13
I/O
I/O
I/O
I/O
A11
I/O
I/O
I/O
I/O
C14
I/O
I/O
I/O
I/O
A12
I/O
I/O
I/O
I/O
C15
I/O
I/O
I/O
I/O
A13
I/O
I/O
I/O
I/O
C16
I/O
I/O
I/O
I/O
A14
I/O
I/O
I/O
I/O
D1
I/O
I/O
I/O
I/O
A15
I/O
I/O
I/O
I/O
D2
I/O
I/O
I/O
I/O
A16
GND
GND
GND
GND
D3
I/O
I/O
I/O
I/O
B1
I/O
I/O
I/O
I/O
D4
I/O
I/O
I/O
I/O
B2
I/O
I/O
I/O
I/O
D5
I/O
I/O
I/O
I/O
B3
I/O
I/O
I/O
I/O
D6
I/O
I/O
I/O
I/O
B4
I/O
I/O
I/O
I/O
D7
I/O
I/O
I/O
I/O
B5
I/O
I/O
I/O
I/O
D8
I/O
I/O
I/O
I/O
B6
I/O
I/O
I/O
I/O
D9
I/O
I/O
I/O
I/O
B7
I/O
I/O
I/O
I/O
D10
I/O
I/O
I/O
I/O
B8
I/O
I/O
I/O
I/O
D11
I/O
I/O
I/O
I/O
B9
I/O
I/O
I/O
I/O
D12
I/O
I/O
I/O
I/O
B10
I/O
I/O
I/O
I/O
D13
I/O
I/O
I/O
I/O
B11
I/O
I/O
I/O
I/O
D14
I/O
I/O
I/O
I/O
B12
I/O
I/O
I/O
I/O
D15
I/O
I/O
I/O
I/O
B13
I/O
I/O
I/O
I/O
D16
I/O
I/O
I/O
I/O
B14
I/O
I/O
I/O
I/O
E1
I/O
I/O
I/O
I/O
B15
I/O
I/O
I/O
I/O
E2
I/O
I/O
I/O
I/O
B16
I/O
I/O
I/O
I/O
E3
I/O
I/O
I/O
I/O
C1
I/O
I/O
I/O
I/O
E4
I/O
I/O
I/O
I/O
C2
I/O
I/O
I/O
I/O
E5
I/O
I/O
I/O
I/O
C3
I/O
I/O
I/O
I/O
E6
VDDP
VDDP
VDDP
VDDP
v5.9
3-41
ProASICPLUS Flash Family FPGAs
256-Pin FBGA
256-Pin FBGA
Pin
Number
APA150
Function
APA300
Function
APA450
Function
APA600
Function
Pin
Number
APA150
Function
APA300
Function
APA450
Function
APA600
Function
E7
VDDP
VDDP
VDDP
VDDP
G10
GND
GND
GND
GND
E8
I/O
I/O
I/O
I/O
G11
VDD
VDD
VDD
VDD
E9
I/O
I/O
I/O
I/O
G12
VDDP
VDDP
VDDP
VDDP
E10
VDDP
VDDP
VDDP
VDDP
G13
I/O
I/O
I/O
I/O
E11
VDDP
VDDP
VDDP
VDDP
G14
I/O
I/O
I/O
I/O
E12
I/O
I/O
I/O
I/O
G15
I/O
I/O
I/O
I/O
E13
I/O
I/O
I/O
I/O
G16
I/O
I/O
I/O
I/O
E14
I/O
I/O
I/O
I/O
H1
I/O / GL1
I/O / GL1
I/O / GL1
I/O / GL1
E15
I/O
I/O
I/O
I/O
H2
NPECL1
NPECL1
NPECL1
NPECL1
E16
I/O
I/O
I/O
I/O
H3
F1
I/O
I/O
I/O
I/O
H4
AGND
AGND
AGND
AGND
F2
I/O
I/O
I/O
I/O
H5
I/O
I/O
I/O
I/O
F3
I/O
I/O
I/O
I/O
H6
VDD
VDD
VDD
VDD
F4
I/O
I/O
I/O
I/O
H7
GND
GND
GND
GND
F5
VDDP
VDDP
VDDP
VDDP
H8
GND
GND
GND
GND
F6
GND
GND
GND
GND
H9
GND
GND
GND
GND
F7
VDD
VDD
VDD
VDD
H10
GND
GND
GND
GND
F8
VDD
VDD
VDD
VDD
H11
VDD
VDD
VDD
VDD
F9
VDD
VDD
VDD
VDD
H12
I/O
I/O
I/O
I/O
F10
VDD
VDD
VDD
VDD
H13
F11
GND
GND
GND
GND
H14
NPECL2
NPECL2
NPECL2
NPECL2
F12
VDDP
VDDP
VDDP
VDDP
H15
AGND
AGND
AGND
AGND
F13
I/O
I/O
I/O
I/O
H16
I/O / GL4
I/O / GL4
I/O / GL4
I/O / GL4
F14
I/O
I/O
I/O
I/O
J1
I/O / GL2
I/O / GL2
I/O / GL2
I/O / GL2
F15
I/O
I/O
I/O
I/O
J2
F16
I/O
I/O
I/O
I/O
PPECL1 /
Input
PPECL1 /
Input
PPECL1 /
Input
PPECL1 /
Input
G1
I/O
I/O
I/O
I/O
J3
AVDD
AVDD
AVDD
AVDD
G2
I/O
I/O
I/O
I/O
J4
I/O
I/O
I/O
I/O
G3
I/O
I/O
I/O
I/O
J5
I/O
I/O
I/O
I/O
G4
I/O
I/O
I/O
I/O
J6
VDD
VDD
VDD
VDD
G5
VDDP
VDDP
VDDP
VDDP
J7
GND
GND
GND
GND
G6
VDD
VDD
VDD
VDD
J8
GND
GND
GND
GND
G7
GND
GND
GND
GND
J9
GND
GND
GND
GND
G8
GND
GND
GND
GND
J10
GND
GND
GND
GND
G9
GND
GND
GND
GND
J11
VDD
VDD
VDD
VDD
3 -4 2
v5.9
I/O / GLMX1 I/O / GLMX1 I/O / GLMX1 I/O / GLMX1
I/O / GLMX2 I/O / GLMX2 I/O / GLMX2 I/O / GLMX2
ProASICPLUS Flash Family FPGAs
256-Pin FBGA
256-Pin FBGA
Pin
Number
APA150
Function
APA300
Function
APA450
Function
APA600
Function
Pin
Number
APA150
Function
APA300
Function
APA450
Function
APA600
Function
J12
I/O
I/O
I/O
I/O
L14
I/O
I/O
I/O
I/O
J13
PPECL2 /
Input
PPECL2 /
Input
PPECL2 /
Input
PPECL2 /
Input
L15
I/O
I/O
I/O
I/O
L16
I/O
I/O
I/O
I/O
J14
I/O
I/O
I/O
I/O
M1
I/O
I/O
I/O
I/O
J15
AVDD
AVDD
AVDD
AVDD
M2
I/O
I/O
I/O
I/O
J16
I/O / GL3
I/O / GL3
I/O / GL3
I/O / GL3
M3
I/O
I/O
I/O
I/O
K1
I/O
I/O
I/O
I/O
M4
I/O
I/O
I/O
I/O
K2
I/O
I/O
I/O
I/O
M5
I/O
I/O
I/O
I/O
K3
I/O
I/O
I/O
I/O
M6
VDDP
VDDP
VDDP
VDDP
K4
I/O
I/O
I/O
I/O
M7
VDDP
VDDP
VDDP
VDDP
K5
VDDP
VDDP
VDDP
VDDP
M8
I/O
I/O
I/O
I/O
K6
VDD
VDD
VDD
VDD
M9
I/O
I/O
I/O
I/O
K7
GND
GND
GND
GND
M10
VDDP
VDDP
VDDP
VDDP
K8
GND
GND
GND
GND
M11
VDDP
VDDP
VDDP
VDDP
K9
GND
GND
GND
GND
M12
I/O
I/O
I/O
I/O
K10
GND
GND
GND
GND
M13
I/O
I/O
I/O
I/O
K11
VDD
VDD
VDD
VDD
M14
I/O
I/O
I/O
I/O
K12
VDDP
VDDP
VDDP
VDDP
M15
I/O
I/O
I/O
I/O
K13
I/O
I/O
I/O
I/O
M16
I/O
I/O
I/O
I/O
K14
I/O
I/O
I/O
I/O
N1
I/O
I/O
I/O
I/O
K15
I/O
I/O
I/O
I/O
N2
I/O
I/O
I/O
I/O
K16
I/O
I/O
I/O
I/O
N3
I/O
I/O
I/O
I/O
L1
I/O
I/O
I/O
I/O
N4
I/O
I/O
I/O
I/O
L2
I/O
I/O
I/O
I/O
N5
I/O
I/O
I/O
I/O
L3
I/O
I/O
I/O
I/O
N6
I/O
I/O
I/O
I/O
L4
I/O
I/O
I/O
I/O
N7
I/O
I/O
I/O
I/O
L5
VDDP
VDDP
VDDP
VDDP
N8
I/O
I/O
I/O
I/O
L6
GND
GND
GND
GND
N9
I/O
I/O
I/O
I/O
L7
VDD
VDD
VDD
VDD
N10
I/O
I/O
I/O
I/O
L8
VDD
VDD
VDD
VDD
N11
I/O
I/O
I/O
I/O
L9
VDD
VDD
VDD
VDD
N12
I/O
I/O
I/O
I/O
L10
VDD
VDD
VDD
VDD
N13
I/O
I/O
I/O
I/O
L11
GND
GND
GND
GND
N14
RCK
RCK
RCK
RCK
L12
VDDP
VDDP
VDDP
VDDP
N15
I/O
I/O
I/O
I/O
L13
I/O
I/O
I/O
I/O
N16
I/O
I/O
I/O
I/O
v5.9
3-43
ProASICPLUS Flash Family FPGAs
256-Pin FBGA
256-Pin FBGA
Pin
Number
APA150
Function
APA300
Function
APA450
Function
APA600
Function
Pin
Number
APA150
Function
APA300
Function
APA450
Function
APA600
Function
P1
I/O
I/O
I/O
I/O
T4
I/O
I/O
I/O
I/O
P2
I/O
I/O
I/O
I/O
T5
I/O
I/O
I/O
I/O
P3
I/O
I/O
I/O
I/O
T6
I/O
I/O
I/O
I/O
P4
I/O
I/O
I/O
I/O
T7
I/O
I/O
I/O
I/O
P5
I/O
I/O
I/O
I/O
T8
I/O
I/O
I/O
I/O
P6
I/O
I/O
I/O
I/O
T9
I/O
I/O
I/O
I/O
P7
I/O
I/O
I/O
I/O
T10
I/O
I/O
I/O
I/O
P8
I/O
I/O
I/O
I/O
T11
I/O
I/O
I/O
I/O
P9
I/O
I/O
I/O
I/O
T12
I/O
I/O
I/O
I/O
P10
I/O
I/O
I/O
I/O
T13
I/O
I/O
I/O
I/O
P11
I/O
I/O
I/O
I/O
T14
I/O
I/O
I/O
I/O
P12
I/O
I/O
I/O
I/O
T15
TMS
TMS
TMS
TMS
P13
TCK
TCK
TCK
TCK
T16
GND
GND
GND
GND
P14
VPP
VPP
VPP
VPP
P15
TRST
TRST
TRST
TRST
P16
I/O
I/O
I/O
I/O
R1
I/O
I/O
I/O
I/O
R2
I/O
I/O
I/O
I/O
R3
I/O
I/O
I/O
I/O
R4
I/O
I/O
I/O
I/O
R5
I/O
I/O
I/O
I/O
R6
I/O
I/O
I/O
I/O
R7
I/O
I/O
I/O
I/O
R8
I/O
I/O
I/O
I/O
R9
I/O
I/O
I/O
I/O
R10
I/O
I/O
I/O
I/O
R11
I/O
I/O
I/O
I/O
R12
I/O
I/O
I/O
I/O
R13
I/O
I/O
I/O
I/O
R14
TDI
TDI
TDI
TDI
R15
VPN
VPN
VPN
VPN
R16
TDO
TDO
TDO
TDO
T1
GND
GND
GND
GND
T2
I/O
I/O
I/O
I/O
T3
I/O
I/O
I/O
I/O
3 -4 4
v5.9
ProASICPLUS Flash Family FPGAs
484-Pin FBGA
A1 Ball Pad Corner
22 21 20 19 18 17 16 15 14 13 12 11 10 9
8
7
6
5
4
3
2
1
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA
AB
Note
For Package Manufacturing and Environmental information, visit the Package Resource center at
http://www.actel.com/products/solutions/package/docs.aspx.
v5.9
3-45
ProASICPLUS Flash Family FPGAs
484-Pin FBGA
484-Pin FBGA
484-Pin FBGA
Pin
Number
APA450
Function
APA600
Function
Pin
Number
APA450
Function
APA600
Function
Pin
Number
APA450
Function
APA600
Function
A1
GND
GND
B15
I/O
I/O
D7
I/O
I/O
A2
GND
GND
B16
I/O
I/O
D8
I/O
I/O
A3
VDDP
VDDP
B17
I/O
I/O
D9
I/O
I/O
A4
I/O
I/O
B18
I/O
I/O
D10
I/O
I/O
A5
I/O
I/O
B19
I/O
I/O
D11
I/O
I/O
A6
I/O
I/O
B20
I/O
I/O
D12
I/O
I/O
A7
I/O
I/O
B21
VDDP
VDDP
D13
I/O
I/O
A8
I/O
I/O
B22
GND
GND
D14
I/O
I/O
A9
I/O
I/O
C1
VDDP
VDDP
D15
I/O
I/O
A10
I/O
I/O
C2
NC
I/O
D16
I/O
I/O
A11
I/O
I/O
C3
I/O
I/O
D17
I/O
I/O
A12
I/O
I/O
C4
I/O
I/O
D18
I/O
I/O
A13
I/O
I/O
C5
GND
GND
D19
GND
GND
A14
I/O
I/O
C6
I/O
I/O
D20
I/O
I/O
A15
I/O
I/O
C7
I/O
I/O
D21
I/O
I/O
A16
I/O
I/O
C8
VDD
VDD
D22
I/O
I/O
A17
I/O
I/O
C9
VDD
VDD
E1
I/O
I/O
A18
I/O
I/O
C10
I/O
I/O
E2
NC
I/O
A19
I/O
I/O
C11
I/O
I/O
E3
GND
GND
A20
VDDP
VDDP
C12
NC
I/O
E4
I/O
I/O
A21
GND
GND
C13
NC
I/O
E5
I/O
I/O
A22
GND
GND
C14
VDD
VDD
E6
I/O
I/O
B1
GND
GND
C15
VDD
VDD
E7
I/O
I/O
B2
VDDP
VDDP
C16
NC
I/O
E8
I/O
I/O
B3
I/O
I/O
C17
I/O
I/O
E9
I/O
I/O
B4
I/O
I/O
C18
GND
GND
E10
I/O
I/O
B5
I/O
I/O
C19
I/O
I/O
E11
I/O
I/O
B6
I/O
I/O
C20
I/O
I/O
E12
I/O
I/O
B7
I/O
I/O
C21
I/O
I/O
E13
I/O
I/O
B8
I/O
I/O
C22
VDDP
VDDP
E14
I/O
I/O
B9
I/O
I/O
D1
I/O
I/O
E15
I/O
I/O
B10
I/O
I/O
D2
I/O
I/O
E16
I/O
I/O
B11
I/O
I/O
D3
NC
I/O
E17
I/O
I/O
B12
I/O
I/O
D4
GND
GND
E18
I/O
I/O
B13
I/O
I/O
D5
I/O
I/O
E19
I/O
I/O
B14
I/O
I/O
D6
I/O
I/O
E20
GND
GND
3 -4 6
v5.9
ProASICPLUS Flash Family FPGAs
484-Pin FBGA
484-Pin FBGA
484-Pin FBGA
Pin
Number
APA450
Function
APA600
Function
Pin
Number
APA450
Function
APA600
Function
Pin
Number
APA450
Function
APA600
Function
E21
I/O
I/O
G13
I/O
I/O
J5
I/O
I/O
E22
I/O
I/O
G14
I/O
I/O
J6
I/O
I/O
F1
I/O
I/O
G15
I/O
I/O
J7
I/O
I/O
F2
I/O
I/O
G16
I/O
I/O
J8
VDDP
VDDP
F3
I/O
I/O
G17
I/O
I/O
J9
GND
GND
F4
I/O
I/O
G18
I/O
I/O
J10
VDD
VDD
F5
I/O
I/O
G19
I/O
I/O
J11
VDD
VDD
F6
I/O
I/O
G20
I/O
I/O
J12
VDD
VDD
F7
I/O
I/O
G21
I/O
I/O
J13
VDD
VDD
F8
I/O
I/O
G22
I/O
I/O
J14
GND
GND
F9
I/O
I/O
H1
I/O
I/O
J15
VDDP
VDDP
F10
I/O
I/O
H2
I/O
I/O
J16
I/O
I/O
F11
I/O
I/O
H3
VDD
VDD
J17
I/O
I/O
F12
I/O
I/O
H4
I/O
I/O
J18
I/O
I/O
F13
I/O
I/O
H5
I/O
I/O
J19
I/O
I/O
F14
I/O
I/O
H6
I/O
I/O
J20
NC
I/O
F15
I/O
I/O
H7
I/O
I/O
J21
I/O
I/O
F16
I/O
I/O
H8
I/O
I/O
J22
I/O
I/O
F17
I/O
I/O
H9
VDDP
VDDP
K1
I/O
I/O
F18
I/O
I/O
H10
VDDP
VDDP
K2
I/O
I/O
F19
I/O
I/O
H11
I/O
I/O
K3
NC
I/O
F20
I/O
I/O
H12
I/O
I/O
K4
I/O
I/O
F21
I/O
I/O
H13
VDDP
VDDP
K5
I/O
I/O
F22
NC
I/O
H14
VDDP
VDDP
K6
I/O
I/O
G1
I/O
I/O
H15
I/O
I/O
K7
I/O
I/O
G2
I/O
I/O
H16
I/O
I/O
K8
VDDP
VDDP
G3
NC
I/O
H17
I/O
I/O
K9
VDD
VDD
G4
I/O
I/O
H18
I/O
I/O
K10
GND
GND
G5
I/O
I/O
H19
I/O
I/O
K11
GND
GND
G6
I/O
I/O
H20
VDD
VDD
K12
GND
GND
G7
I/O
I/O
H21
I/O
I/O
K13
GND
GND
G8
I/O
I/O
H22
I/O
I/O
K14
VDD
VDD
G9
I/O
I/O
J1
I/O
I/O
K15
VDDP
VDDP
G10
I/O
I/O
J2
I/O
I/O
K16
I/O
I/O
G11
I/O
I/O
J3
NC
I/O
K17
I/O
I/O
G12
I/O
I/O
J4
I/O
I/O
K18
I/O
I/O
v5.9
3-47
ProASICPLUS Flash Family FPGAs
484-Pin FBGA
484-Pin FBGA
484-Pin FBGA
Pin
Number
APA450
Function
APA600
Function
Pin
Number
APA450
Function
APA600
Function
Pin
Number
APA450
Function
APA600
Function
K19
I/O
I/O
M10
GND
GND
P1
I/O
I/O
K20
I/O
I/O
M11
GND
GND
P2
I/O
I/O
K21
I/O
I/O
M12
GND
GND
P3
I/O
I/O
K22
I/O
I/O
M13
GND
GND
P4
I/O
I/O
L1
NC
I/O
M14
VDD
VDD
P5
I/O
I/O
L2
I/O
I/O
M15
I/O
I/O
P6
I/O
I/O
L3
I/O
I/O
M16
I/O
I/O
I/O / GL1
I/O / GL1
PPECL2 /
Input
P7
L4
PPECL2 /
Input
P8
VDDP
VDDP
M17
I/O
I/O
P9
GND
GND
M18
AVDD
AVDD
P10
VDD
VDD
M19
I/O / GL3
I/O / GL3
P11
VDD
VDD
M20
I/O
I/O
P12
VDD
VDD
M21
I/O
I/O
P13
VDD
VDD
M22
I/O
I/O
P14
GND
GND
N1
I/O
I/O
P15
VDDP
VDDP
N2
I/O
I/O
P16
I/O
I/O
N3
NC
I/O
P17
I/O
I/O
N4
I/O
I/O
P18
I/O
I/O
N5
I/O
I/O
P19
I/O
I/O
N6
I/O
I/O
P20
NC
I/O
N7
I/O
I/O
P21
I/O
I/O
N8
VDDP
VDDP
P22
I/O
I/O
N9
VDD
VDD
R1
I/O
I/O
N10
GND
GND
R2
I/O
I/O
N11
GND
GND
R3
VDD
VDD
N12
GND
GND
R4
I/O
I/O
N13
GND
GND
R5
I/O
I/O
N14
VDD
VDD
R6
I/O
I/O
N15
VDDP
VDDP
R7
I/O
I/O
N16
I/O
I/O
R8
I/O
I/O
N17
I/O
I/O
R9
VDDP
VDDP
N18
I/O
I/O
R10
VDDP
VDDP
R11
I/O
I/O
R12
I/O
I/O
R13
VDDP
VDDP
R14
VDDP
VDDP
L5
L6
L7
L8
L9
L10
L11
L12
L13
L14
L15
L16
L17
L18
L19
L20
L21
L22
M1
M2
M3
M4
M5
3 -4 8
NPECL1
NPECL1
I/O / GLMX1 I/O / GLMX1
AGND
I/O
VDD
GND
GND
GND
GND
VDD
I/O
AGND
I/O
VDD
GND
GND
GND
GND
VDD
I/O
I/O / GLMX2 I/O / GLMX2
NPECL2
AGND
I/O / GL4
I/O
I/O
I/O
I/O
I/O
I/O
I/O / GL2
NPECL2
AGND
I/O / GL4
I/O
I/O
I/O
I/O
I/O
I/O
I/O / GL2
PPECL1 /
Input
PPECL1 /
Input
M6
AVDD
AVDD
N19
I/O
I/O
M7
I/O
I/O
N20
NC
I/O
M8
I/O
I/O
N21
I/O
I/O
M9
VDD
VDD
N22
I/O
I/O
v5.9
ProASICPLUS Flash Family FPGAs
484-Pin FBGA
484-Pin FBGA
484-Pin FBGA
Pin
Number
APA450
Function
APA600
Function
Pin
Number
APA450
Function
APA600
Function
Pin
Number
APA450
Function
APA600
Function
R15
I/O
I/O
U7
I/O
I/O
V21
NC
I/O
R16
I/O
I/O
U8
I/O
I/O
V22
I/O
I/O
R17
I/O
I/O
U9
I/O
I/O
W1
NC
I/O
R18
I/O
I/O
U10
I/O
I/O
W2
I/O
I/O
R19
I/O
I/O
U11
I/O
I/O
W3
I/O
I/O
R20
VDD
VDD
U12
I/O
I/O
W4
GND
GND
R21
I/O
I/O
U13
I/O
I/O
W5
I/O
I/O
R22
I/O
I/O
U14
I/O
I/O
W6
I/O
I/O
T1
I/O
I/O
U15
I/O
I/O
W7
I/O
I/O
T2
I/O
I/O
U16
TCK
TCK
W8
I/O
I/O
T3
NC
I/O
U17
VPP
VPP
W9
I/O
I/O
T4
I/O
I/O
U18
TRST
TRST
W10
I/O
I/O
T5
I/O
I/O
U19
I/O
I/O
W11
I/O
I/O
T6
I/O
I/O
U20
NC
I/O
W12
I/O
I/O
T7
I/O
I/O
U21
I/O
I/O
W13
I/O
I/O
T8
I/O
I/O
U22
I/O
I/O
W14
I/O
I/O
T9
I/O
I/O
V1
I/O
I/O
W15
I/O
I/O
T10
I/O
I/O
V2
I/O
I/O
W16
I/O
I/O
T11
I/O
I/O
V3
GND
GND
W17
I/O
I/O
T12
I/O
I/O
V4
I/O
I/O
W18
TMS
TMS
T13
I/O
I/O
V5
I/O
I/O
W19
GND
GND
T14
I/O
I/O
V6
I/O
I/O
W20
NC
I/O
T15
I/O
I/O
V7
I/O
I/O
W21
NC
I/O
T16
I/O
I/O
V8
I/O
I/O
W22
I/O
I/O
T17
RCK
RCK
V9
I/O
I/O
Y1
VDDP
VDDP
T18
I/O
I/O
V10
I/O
I/O
Y2
I/O
I/O
T19
I/O
I/O
V11
I/O
I/O
Y3
I/O
I/O
T20
NC
I/O
V12
I/O
I/O
Y4
I/O
I/O
T21
I/O
I/O
V13
I/O
I/O
Y5
GND
GND
T22
I/O
I/O
V14
I/O
I/O
Y6
I/O
I/O
U1
I/O
I/O
V15
I/O
I/O
Y7
I/O
I/O
U2
I/O
I/O
V16
I/O
I/O
Y8
VDD
VDD
U3
I/O
I/O
V17
TDI
TDI
Y9
VDD
VDD
U4
I/O
I/O
V18
VPN
VPN
Y10
I/O
I/O
U5
I/O
I/O
V19
TDO
TDO
Y11
I/O
I/O
U6
I/O
I/O
V20
GND
GND
Y12
I/O
I/O
v5.9
3-49
ProASICPLUS Flash Family FPGAs
484-Pin FBGA
484-Pin FBGA
Pin
Number
APA450
Function
APA600
Function
Pin
Number
APA450
Function
APA600
Function
Y13
I/O
I/O
AB5
I/O
I/O
Y14
VDD
VDD
AB6
I/O
I/O
Y15
VDD
VDD
AB7
I/O
I/O
Y16
I/O
I/O
AB8
I/O
I/O
Y17
I/O
I/O
AB9
I/O
I/O
Y18
GND
GND
AB10
I/O
I/O
Y19
I/O
I/O
AB11
I/O
I/O
Y20
I/O
I/O
AB12
I/O
I/O
Y21
NC
I/O
AB13
I/O
I/O
Y22
VDDP
VDDP
AB14
I/O
I/O
AA1
GND
GND
AB15
I/O
I/O
AA2
VDDP
VDDP
AB16
I/O
I/O
AA3
I/O
I/O
AB17
I/O
I/O
AA4
I/O
I/O
AB18
NC
I/O
AA5
I/O
I/O
AB19
I/O
I/O
AA6
I/O
I/O
AB20
VDDP
VDDP
AA7
I/O
I/O
AB21
GND
GND
AA8
I/O
I/O
AB22
GND
GND
AA9
I/O
I/O
AA10
I/O
I/O
AA11
I/O
I/O
AA12
I/O
I/O
AA13
I/O
I/O
AA14
I/O
I/O
AA15
I/O
I/O
AA16
I/O
I/O
AA17
I/O
I/O
AA18
NC
I/O
AA19
NC
I/O
AA20
I/O
I/O
AA21
VDDP
VDDP
AA22
GND
GND
AB1
GND
GND
AB2
GND
GND
AB3
VDDP
VDDP
AB4
I/O
I/O
3 -5 0
v5.9
ProASICPLUS Flash Family FPGAs
676-Pin FBGA
A1 Ball Pad Corner
26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9
8
7
6
5 4
3
2
1
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA
AB
AC
AD
AE
AF
Note
For Package Manufacturing and Environmental information, visit the Package Resource center at
http://www.actel.com/products/solutions/package/docs.aspx.
v5.9
3-51
ProASICPLUS Flash Family FPGAs
676-Pin FBGA
676-Pin FBGA
676-Pin FBGA
Pin
Number
APA600
Function
APA750
Function
Pin
Number
APA600
Function
APA750
Function
Pin
Number
APA600
Function
APA750
Function
A1
GND
GND
B10
I/O
I/O
C19
I/O
I/O
A2
GND
GND
B11
I/O
I/O
C20
I/O
I/O
A3
I/O
I/O
B12
I/O
I/O
C21
I/O
I/O
A4
I/O
I/O
B13
I/O
I/O
C22
I/O
I/O
A5
I/O
I/O
B14
I/O
I/O
C23
I/O
I/O
A6
I/O
I/O
B15
I/O
I/O
C24
I/O
I/O
A7
I/O
I/O
B16
I/O
I/O
C25
I/O
I/O
A8
I/O
I/O
B17
I/O
I/O
C26
I/O
I/O
A9
I/O
I/O
B18
I/O
I/O
D1
I/O
I/O
A10
I/O
I/O
B19
I/O
I/O
D2
I/O
I/O
A11
I/O
I/O
B20
I/O
I/O
D3
GND
GND
A12
I/O
I/O
B21
I/O
I/O
D4
I/O
I/O
A13
I/O
I/O
B22
I/O
I/O
D5
I/O
I/O
A14
I/O
I/O
B23
I/O
I/O
D6
I/O
I/O
A15
I/O
I/O
B24
I/O
I/O
D7
I/O
I/O
A16
I/O
I/O
B25
GND
GND
D8
I/O
I/O
A17
I/O
I/O
B26
GND
GND
D9
I/O
I/O
A18
I/O
I/O
C1
GND
GND
D10
I/O
I/O
A19
I/O
I/O
C2
GND
GND
D11
I/O
I/O
A20
I/O
I/O
C3
GND
GND
D12
I/O
I/O
A21
I/O
I/O
C4
GND
GND
D13
I/O
I/O
A22
I/O
I/O
C5
I/O
I/O
D14
I/O
I/O
A23
I/O
I/O
C6
I/O
I/O
D15
I/O
I/O
A24
I/O
I/O
C7
I/O
I/O
D16
I/O
I/O
A25
GND
GND
C8
I/O
I/O
D17
I/O
I/O
A26
GND
GND
C9
I/O
I/O
D18
I/O
I/O
B1
GND
GND
C10
I/O
I/O
D19
I/O
I/O
B2
GND
GND
C11
I/O
I/O
D20
I/O
I/O
B3
GND
GND
C12
I/O
I/O
D21
I/O
I/O
B4
GND
GND
C13
I/O
I/O
D22
I/O
I/O
B5
I/O
I/O
C14
I/O
I/O
D23
I/O
I/O
B6
I/O
I/O
C15
I/O
I/O
D24
I/O
I/O
B7
I/O
I/O
C16
I/O
I/O
D25
I/O
I/O
B8
I/O
I/O
C17
I/O
I/O
D26
I/O
I/O
B9
I/O
I/O
C18
I/O
I/O
E1
I/O
I/O
3 -5 2
v5.9
ProASICPLUS Flash Family FPGAs
676-Pin FBGA
676-Pin FBGA
676-Pin FBGA
Pin
Number
APA600
Function
APA750
Function
Pin
Number
APA600
Function
APA750
Function
Pin
Number
APA600
Function
APA750
Function
E2
I/O
I/O
F11
I/O
I/O
G20
NC
NC
E3
I/O
I/O
F12
I/O
I/O
G21
I/O
I/O
E4
I/O
I/O
F13
I/O
I/O
G22
I/O
I/O
E5
I/O
I/O
F14
I/O
I/O
G23
I/O
I/O
E6
I/O
I/O
F15
I/O
I/O
G24
I/O
I/O
E7
I/O
I/O
F16
I/O
I/O
G25
I/O
I/O
E8
I/O
I/O
F17
I/O
I/O
G26
I/O
I/O
E9
I/O
I/O
F18
I/O
I/O
H1
I/O
I/O
E10
I/O
I/O
F19
I/O
I/O
H2
I/O
I/O
E11
I/O
I/O
F20
I/O
I/O
H3
I/O
I/O
E12
I/O
I/O
F21
I/O
I/O
H4
I/O
I/O
E13
I/O
I/O
F22
I/O
I/O
H5
I/O
I/O
E14
I/O
I/O
F23
I/O
I/O
H6
I/O
I/O
E15
I/O
I/O
F24
I/O
I/O
H7
VDDP
VDDP
E16
I/O
I/O
F25
I/O
I/O
H8
VDD
VDD
E17
I/O
I/O
F26
I/O
I/O
H9
VDDP
VDDP
E18
I/O
I/O
G1
I/O
I/O
H10
VDDP
VDDP
E19
I/O
I/O
G2
I/O
I/O
H11
VDDP
VDDP
E20
I/O
I/O
G3
I/O
I/O
H12
VDDP
VDDP
E21
I/O
I/O
G4
I/O
I/O
H13
VDDP
VDDP
E22
I/O
I/O
G5
I/O
I/O
H14
VDDP
VDDP
E23
I/O
I/O
G6
I/O
I/O
H15
VDDP
VDDP
E24
I/O
I/O
G7
I/O
I/O
H16
VDDP
VDDP
E25
I/O
I/O
G8
VDD
VDD
H17
VDDP
VDDP
E26
I/O
I/O
G9
NC
NC
H18
VDDP
VDDP
F1
I/O
I/O
G10
I/O
I/O
H19
VDD
VDD
F2
I/O
I/O
G11
NC
NC
H20
VDD
VDD
F3
I/O
I/O
G12
I/O
I/O
H21
I/O
I/O
F4
I/O
I/O
G13
NC
NC
H22
I/O
I/O
F5
GND
GND
G14
I/O
I/O
H23
I/O
I/O
F6
I/O
I/O
G15
NC
NC
H24
I/O
I/O
F7
NC
NC
G16
I/O
I/O
H25
I/O
I/O
F8
I/O
I/O
G17
NC
NC
H26
I/O
I/O
F9
I/O
I/O
G18
I/O
I/O
J1
I/O
I/O
F10
I/O
I/O
G19
VDDP
VDDP
J2
I/O
I/O
v5.9
3-53
ProASICPLUS Flash Family FPGAs
676-Pin FBGA
676-Pin FBGA
676-Pin FBGA
Pin
Number
APA600
Function
APA750
Function
Pin
Number
APA600
Function
APA750
Function
Pin
Number
APA600
Function
APA750
Function
J3
I/O
I/O
K12
GND
GND
L21
I/O
I/O
J4
I/O
I/O
K13
GND
GND
L22
I/O
I/O
J5
I/O
I/O
K14
GND
GND
L23
I/O
I/O
J6
I/O
I/O
K15
GND
GND
L24
I/O
I/O
J7
NC
NC
K16
GND
GND
L25
I/O
I/O
J8
VDDP
VDDP
K17
GND
GND
L26
I/O
I/O
J9
VDD
VDD
K18
VDD
VDD
M1
I/O
I/O
J10
VDD
VDD
K19
VDDP
VDDP
M2
I/O
I/O
J11
VDD
VDD
K20
I/O
I/O
M3
I/O
I/O
J12
VDD
VDD
K21
I/O
I/O
M4
I/O
I/O
J13
VDD
VDD
K22
I/O
I/O
M5
I/O
I/O
J14
VDD
VDD
K23
I/O
I/O
M6
I/O
I/O
J15
VDD
VDD
K24
I/O
I/O
M7
I/O
I/O
J16
VDD
VDD
K25
I/O
I/O
M8
VDDP
VDDP
J17
VDD
VDD
K26
I/O
I/O
M9
VDD
VDD
J18
VDD
VDD
L1
I/O
I/O
M10
GND
GND
J19
VDDP
VDDP
L2
I/O
I/O
M11
GND
GND
J20
NC
NC
L3
I/O
I/O
M12
GND
GND
J21
I/O
I/O
L4
I/O
I/O
M13
GND
GND
J22
I/O
I/O
L5
I/O
I/O
M14
GND
GND
J23
I/O
I/O
L6
I/O
I/O
M15
GND
GND
J24
I/O
I/O
L7
NC
NC
M16
GND
GND
J25
I/O
I/O
L8
VDDP
VDDP
M17
GND
GND
J26
I/O
I/O
L9
VDD
VDD
M18
VDD
VDD
K1
I/O
I/O
L10
GND
GND
M19
VDDP
VDDP
K2
I/O
I/O
L11
GND
GND
M20
I/O
I/O
K3
I/O
I/O
L12
GND
GND
M21
I/O
I/O
K4
I/O
I/O
L13
GND
GND
M22
I/O
I/O
K5
I/O
I/O
L14
GND
GND
M23
I/O
I/O
K6
I/O
I/O
L15
GND
GND
M24
I/O
I/O
K7
I/O
I/O
L16
GND
GND
M25
I/O
I/O
K8
VDDP
VDDP
L17
GND
GND
M26
I/O
I/O
K9
VDD
VDD
L18
VDD
VDD
N1
I/O / GL1
I/O / GL1
K10
GND
GND
L19
VDDP
VDDP
N2
AGND
AGND
K11
GND
GND
L20
NC
NC
N3
3 -5 4
v5.9
I/O / GLMX1 I/O / GLMX1
ProASICPLUS Flash Family FPGAs
676-Pin FBGA
676-Pin FBGA
676-Pin FBGA
Pin
Number
APA600
Function
APA750
Function
Pin
Number
APA600
Function
APA750
Function
Pin
Number
APA600
Function
APA750
Function
N4
I/O
I/O
P12
GND
GND
R20
NC
NC
N5
NPECL1
NPECL1
P13
GND
GND
R21
I/O
I/O
N6
I/O
I/O
P14
GND
GND
R22
I/O
I/O
N7
NC
NC
P15
GND
GND
R23
I/O
I/O
N8
VDDP
VDDP
P16
GND
GND
R24
I/O
I/O
N9
VDD
VDD
P17
GND
GND
R25
I/O
I/O
N10
GND
GND
P18
VDD
VDD
R26
I/O
I/O
N11
GND
GND
P19
VDDP
VDDP
T1
I/O
I/O
N12
GND
GND
P20
I/O
I/O
T2
I/O
I/O
N13
GND
GND
P21
I/O
I/O
T3
I/O
I/O
N14
GND
GND
P22
T4
I/O
I/O
N15
GND
GND
P23
I/O
I/O
T5
I/O
I/O
N16
GND
GND
P24
I/O
I/O
GND
GND
PPECL2 /
Input
T6
N17
PPECL2 /
Input
T7
I/O
I/O
P25
AVDD
AVDD
T8
VDDP
VDDP
P26
AGND
AGND
T9
VDD
VDD
R1
I/O
I/O
T10
GND
GND
R2
I/O
I/O
T11
GND
GND
R3
I/O
I/O
T12
GND
GND
R4
I/O
I/O
T13
GND
GND
R5
I/O
I/O
T14
GND
GND
R6
I/O
I/O
T15
GND
GND
R7
NC
NC
T16
GND
GND
R8
VDDP
VDDP
T17
GND
GND
R9
VDD
VDD
T18
VDD
VDD
R10
GND
GND
T19
VDDP
VDDP
R11
GND
GND
T20
I/O
I/O
R12
GND
GND
T21
I/O
I/O
R13
GND
GND
T22
I/O
I/O
T23
I/O
I/O
T24
I/O
I/O
T25
I/O
I/O
N18
N19
N20
N21
N22
N23
N24
N25
N26
P1
P2
P3
P4
P5
VDD
VDDP
NC
I/O
I/O / GL3
I/O
NPECL2
I/O / GL4
I/O
I/O / GL2
AVDD
I/O
I/O
VDD
VDDP
NC
I/O
I/O / GL3
I/O
NPECL2
I/O / GL4
I/O
I/O / GL2
AVDD
I/O
I/O
I/O / GLMX2 I/O / GLMX2
PPECL1 /
Input
PPECL1 /
Input
P6
I/O
I/O
R14
GND
GND
P7
I/O
I/O
R15
GND
GND
P8
VDDP
VDDP
R16
GND
GND
P9
VDD
VDD
R17
GND
GND
T26
I/O
I/O
P10
GND
GND
R18
VDD
VDD
U1
I/O
I/O
P11
GND
GND
R19
VDDP
VDDP
U2
I/O
I/O
v5.9
3-55
ProASICPLUS Flash Family FPGAs
676-Pin FBGA
676-Pin FBGA
676-Pin FBGA
Pin
Number
APA600
Function
APA750
Function
Pin
Number
APA600
Function
APA750
Function
Pin
Number
APA600
Function
APA750
Function
U3
I/O
I/O
V12
VDD
VDD
W21
I/O
I/O
U4
I/O
I/O
V13
VDD
VDD
W22
I/O
I/O
U5
I/O
I/O
V14
VDD
VDD
W23
I/O
I/O
U6
I/O
I/O
V15
VDD
VDD
W24
I/O
I/O
U7
NC
NC
V16
VDD
VDD
W25
I/O
I/O
U8
VDDP
VDDP
V17
VDD
VDD
W26
I/O
I/O
U9
VDD
VDD
V18
VDD
VDD
Y1
I/O
I/O
U10
GND
GND
V19
VDDP
VDDP
Y2
I/O
I/O
U11
GND
GND
V20
I/O
I/O
Y3
I/O
I/O
U12
GND
GND
V21
I/O
I/O
Y4
I/O
I/O
U13
GND
GND
V22
I/O
I/O
Y5
I/O
I/O
U14
GND
GND
V23
I/O
I/O
Y6
I/O
I/O
U15
GND
GND
V24
I/O
I/O
Y7
I/O
I/O
U16
GND
GND
V25
I/O
I/O
Y8
VDDP
VDDP
U17
GND
GND
V26
I/O
I/O
Y9
NC
NC
U18
VDD
VDD
W1
I/O
I/O
Y10
I/O
I/O
U19
VDDP
VDDP
W2
I/O
I/O
Y11
NC
NC
U20
NC
NC
W3
I/O
I/O
Y12
I/O
I/O
U21
I/O
I/O
W4
I/O
I/O
Y13
NC
NC
U22
I/O
I/O
W5
I/O
I/O
Y14
I/O
I/O
U23
I/O
I/O
W6
I/O
I/O
Y15
NC
NC
U24
I/O
I/O
W7
VDD
VDD
Y16
I/O
I/O
U25
I/O
I/O
W8
VDD
VDD
Y17
NC
NC
U26
I/O
I/O
W9
VDDP
VDDP
Y18
I/O
I/O
V1
I/O
I/O
W10
VDDP
VDDP
Y19
VDD
VDD
V2
I/O
I/O
W11
VDDP
VDDP
Y20
VPP
VPP
V3
I/O
I/O
W12
VDDP
VDDP
Y21
I/O
I/O
V4
I/O
I/O
W13
VDDP
VDDP
Y22
I/O
I/O
V5
I/O
I/O
W14
VDDP
VDDP
Y23
I/O
I/O
V6
I/O
I/O
W15
VDDP
VDDP
Y24
I/O
I/O
V7
I/O
I/O
W16
VDDP
VDDP
Y25
I/O
I/O
V8
VDDP
VDDP
W17
VDDP
VDDP
Y26
I/O
I/O
V9
VDD
VDD
W18
VDDP
VDDP
AA1
I/O
I/O
V10
VDD
VDD
W19
VDD
VDD
AA2
I/O
I/O
V11
VDD
VDD
W20
VDDP
VDDP
AA3
I/O
I/O
3 -5 6
v5.9
ProASICPLUS Flash Family FPGAs
676-Pin FBGA
676-Pin FBGA
676-Pin FBGA
Pin
Number
APA600
Function
APA750
Function
Pin
Number
APA600
Function
APA750
Function
Pin
Number
APA600
Function
APA750
Function
AA4
I/O
I/O
AB13
I/O
I/O
AC22
TMS
TMS
AA5
I/O
I/O
AB14
I/O
I/O
AC23
RCK
RCK
AA6
GND
GND
AB15
I/O
I/O
AC24
I/O
I/O
AA7
I/O
I/O
AB16
I/O
I/O
AC25
I/O
I/O
AA8
I/O
I/O
AB17
I/O
I/O
AC26
I/O
I/O
AA9
I/O
I/O
AB18
I/O
I/O
AD1
I/O
I/O
AA10
I/O
I/O
AB19
I/O
I/O
AD2
I/O
I/O
AA11
I/O
I/O
AB20
I/O
I/O
AD3
I/O
I/O
AA12
I/O
I/O
AB21
TCK
TCK
AD4
I/O
I/O
AA13
I/O
I/O
AB22
TRST
TRST
AD5
I/O
I/O
AA14
I/O
I/O
AB23
I/O
I/O
AD6
I/O
I/O
AA15
I/O
I/O
AB24
I/O
I/O
AD7
I/O
I/O
AA16
I/O
I/O
AB25
I/O
I/O
AD8
I/O
I/O
AA17
I/O
I/O
AB26
I/O
I/O
AD9
I/O
I/O
AA18
I/O
I/O
AC1
I/O
I/O
AD10
I/O
I/O
AA19
I/O
I/O
AC2
I/O
I/O
AD11
I/O
I/O
AA20
I/O
I/O
AC3
I/O
I/O
AD12
I/O
I/O
AA21
TDO
TDO
AC4
I/O
I/O
AD13
I/O
I/O
AA22
GND
GND
AC5
GND
GND
AD14
I/O
I/O
AA23
GND
GND
AC6
I/O
I/O
AD15
I/O
I/O
AA24
I/O
I/O
AC7
I/O
I/O
AD16
I/O
I/O
AA25
I/O
I/O
AC8
I/O
I/O
AD17
I/O
I/O
AA26
I/O
I/O
AC9
GND
GND
AD18
I/O
I/O
AB1
I/O
I/O
AC10
I/O
I/O
AD19
I/O
I/O
AB2
I/O
I/O
AC11
I/O
I/O
AD20
I/O
I/O
AB3
I/O
I/O
AC12
I/O
I/O
AD21
I/O
I/O
AB4
I/O
I/O
AC13
I/O
I/O
AD22
I/O
I/O
AB5
I/O
I/O
AC14
I/O
I/O
AD23
TDI
TDI
AB6
GND
GND
AC15
I/O
I/O
AD24
VPN
VPN
AB7
GND
GND
AC16
I/O
I/O
AD25
I/O
I/O
AB8
I/O
I/O
AC17
I/O
I/O
AD26
I/O
I/O
AB9
I/O
I/O
AC18
I/O
I/O
AE1
GND
GND
AB10
I/O
I/O
AC19
I/O
I/O
AE2
GND
GND
AB11
I/O
I/O
AC20
I/O
I/O
AE3
GND
GND
AB12
I/O
I/O
AC21
I/O
I/O
AE4
I/O
I/O
v5.9
3-57
ProASICPLUS Flash Family FPGAs
676-Pin FBGA
676-Pin FBGA
Pin
Number
APA600
Function
APA750
Function
Pin
Number
APA600
Function
APA750
Function
AE5
I/O
I/O
AF14
I/O
I/O
AE6
I/O
I/O
AF15
I/O
I/O
AE7
I/O
I/O
AF16
I/O
I/O
AE8
I/O
I/O
AF17
I/O
I/O
AE9
I/O
I/O
AF18
I/O
I/O
AE10
I/O
I/O
AF19
I/O
I/O
AE11
I/O
I/O
AF20
I/O
I/O
AE12
I/O
I/O
AF21
I/O
I/O
AE13
I/O
I/O
AF22
I/O
I/O
AE14
I/O
I/O
AF23
I/O
I/O
AE15
I/O
I/O
AF24
I/O
I/O
AE16
I/O
I/O
AF25
GND
GND
AE17
I/O
I/O
AF26
GND
GND
AE18
I/O
I/O
AE19
I/O
I/O
AE20
I/O
I/O
AE21
I/O
I/O
AE22
I/O
I/O
AE23
I/O
I/O
AE24
I/O
I/O
AE25
GND
GND
AE26
GND
GND
AF1
GND
GND
AF2
GND
GND
AF3
GND
GND
AF4
GND
GND
AF5
I/O
I/O
AF6
I/O
I/O
AF7
I/O
I/O
AF8
I/O
I/O
AF9
I/O
I/O
AF10
I/O
I/O
AF11
I/O
I/O
AF12
I/O
I/O
AF13
I/O
I/O
3 -5 8
v5.9
ProASICPLUS Flash Family FPGAs
896-Pin FBGA
A1 Ball Pad Corner
3029 2827 2625 2423 22 2120191817 16 151413 12 11 10 9 8 7 6 5 4 3 2 1
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA
AB
AC
AD
AE
AF
AG
AH
AJ
AK
Note
For Package Manufacturing and Environmental information, visit the Package Resource center at
http://www.actel.com/products/solutions/package/docs.aspx.
v5.9
3-59
ProASICPLUS Flash Family FPGAs
896-Pin FBGA
896-Pin FBGA
896-Pin FBGA
Pin
Number
APA750
Function
APA1000
Function
Pin
Number
APA750
Function
APA1000
Function
Pin
Number
APA750
Function
APA1000
Function
A2
GND
GND
B7
I/O
I/O
C11
I/O
I/O
A3
GND
GND
B8
I/O
I/O
C12
I/O
I/O
A4
I/O
I/O
B9
I/O
I/O
C13
I/O
I/O
A5
GND
GND
B10
I/O
I/O
C14
I/O
I/O
A6
I/O
I/O
B11
I/O
I/O
C15
I/O
I/O
A7
GND
GND
B12
I/O
I/O
C16
I/O
I/O
A8
I/O
I/O
B13
I/O
I/O
C17
I/O
I/O
A9
I/O
I/O
B14
I/O
I/O
C18
I/O
I/O
A10
I/O
I/O
B15
I/O
I/O
C19
I/O
I/O
A11
I/O
I/O
B16
I/O
I/O
C20
I/O
I/O
A12
I/O
I/O
B17
I/O
I/O
C21
I/O
I/O
A13
I/O
I/O
B18
I/O
I/O
C22
I/O
I/O
A14
I/O
I/O
B19
I/O
I/O
C23
I/O
I/O
A15
I/O
I/O
B20
I/O
I/O
C24
I/O
I/O
A16
I/O
I/O
B21
I/O
I/O
C25
I/O
I/O
A17
I/O
I/O
B22
I/O
I/O
C26
VDDP
VDDP
A18
I/O
I/O
B23
I/O
I/O
C27
I/O
I/O
A19
I/O
I/O
B24
I/O
I/O
C28
VDD
VDD
A20
I/O
I/O
B25
VDD
VDD
C29
NC
I/O
A21
I/O
I/O
B26
I/O
I/O
C30
GND
GND
A22
I/O
I/O
B27
VDD
VDD
D1
I/O
I/O
A23
I/O
I/O
B28
I/O
I/O
D2
VDD
VDD
A24
GND
GND
B29
GND
GND
D3
I/O
I/O
A25
I/O
I/O
B30
GND
GND
D4
GND
GND
A26
GND
GND
C1
GND
GND
D5
I/O
I/O
A27
I/O
I/O
C2
I/O
I/O
D6
I/O
I/O
A28
GND
GND
C3
VDD
VDD
D7
I/O
I/O
A29
GND
GND
C4
I/O
I/O
D8
I/O
I/O
B1
GND
GND
C5
VDDP
VDDP
D9
I/O
I/O
B2
GND
GND
C6
I/O
I/O
D10
I/O
I/O
B3
I/O
I/O
C7
I/O
I/O
D11
I/O
I/O
B4
VDD
VDD
C8
I/O
I/O
D12
I/O
I/O
B5
I/O
I/O
C9
I/O
I/O
D13
I/O
I/O
B6
VDD
VDD
C10
I/O
I/O
D14
I/O
I/O
3 -6 0
v5.9
ProASICPLUS Flash Family FPGAs
896-Pin FBGA
896-Pin FBGA
896-Pin FBGA
Pin
Number
APA750
Function
APA1000
Function
Pin
Number
APA750
Function
APA1000
Function
Pin
Number
APA750
Function
APA1000
Function
D15
I/O
I/O
E19
I/O
I/O
F23
I/O
I/O
D16
I/O
I/O
E20
I/O
I/O
F24
I/O
I/O
D17
I/O
I/O
E21
I/O
I/O
F25
GND
GND
D18
I/O
I/O
E22
I/O
I/O
F26
I/O
I/O
D19
I/O
I/O
E23
I/O
I/O
F27
I/O
I/O
D20
I/O
I/O
E24
VDDP
VDDP
F28
I/O
I/O
D21
I/O
I/O
E25
I/O
I/O
F29
VDD
VDD
D22
I/O
I/O
E26
VDD
VDD
F30
I/O
I/O
D23
I/O
I/O
E27
I/O
I/O
G1
GND
GND
D24
I/O
I/O
E28
VDDP
VDDP
G2
I/O
I/O
D25
I/O
I/O
E29
I/O
I/O
G3
I/O
I/O
D26
I/O
I/O
E30
GND
GND
G4
I/O
I/O
D27
GND
GND
F1
I/O
I/O
G5
VDDP
VDDP
D28
I/O
I/O
F2
VDD
VDD
G6
I/O
I/O
D29
VDD
VDD
F3
I/O
I/O
G7
VDD
VDD
D30
I/O
I/O
F4
I/O
I/O
G8
I/O
I/O
E1
GND
GND
F5
I/O
I/O
G9
VDDP
VDDP
E2
I/O
I/O
F6
GND
GND
G10
I/O
I/O
E3
VDDP
VDDP
F7
I/O
I/O
G11
I/O
I/O
E4
I/O
I/O
F8
I/O
I/O
G12
I/O
I/O
E5
VDD
VDD
F9
I/O
I/O
G13
I/O
I/O
E6
I/O
I/O
F10
I/O
I/O
G14
I/O
I/O
E7
VDDP
VDDP
F11
I/O
I/O
G15
I/O
I/O
E8
I/O
I/O
F12
I/O
I/O
G16
I/O
I/O
E9
I/O
I/O
F13
I/O
I/O
G17
I/O
I/O
E10
I/O
I/O
F14
I/O
I/O
G18
I/O
I/O
E11
I/O
I/O
F15
I/O
I/O
G19
I/O
I/O
E12
I/O
I/O
F16
I/O
I/O
G20
I/O
I/O
E13
I/O
I/O
F17
I/O
I/O
G21
I/O
I/O
E14
I/O
I/O
F18
I/O
I/O
G22
VDDP
VDDP
E15
I/O
I/O
F19
I/O
I/O
G23
I/O
I/O
E16
I/O
I/O
F20
I/O
I/O
G24
VDD
VDD
E17
I/O
I/O
F21
I/O
I/O
G25
I/O
I/O
E18
I/O
I/O
F22
I/O
I/O
G26
VDDP
VDDP
v5.9
3-61
ProASICPLUS Flash Family FPGAs
896-Pin FBGA
896-Pin FBGA
896-Pin FBGA
Pin
Number
APA750
Function
APA1000
Function
Pin
Number
APA750
Function
APA1000
Function
Pin
Number
APA750
Function
APA1000
Function
G27
I/O
I/O
J1
I/O
I/O
K5
I/O
I/O
G28
I/O
I/O
J2
I/O
I/O
K6
I/O
I/O
G29
I/O
I/O
J3
I/O
I/O
K7
I/O
I/O
G30
GND
GND
J4
I/O
I/O
K8
I/O
I/O
H1
I/O
I/O
J5
I/O
I/O
K9
NC
I/O
H2
I/O
I/O
J6
I/O
I/O
K10
VDD
VDD
H3
I/O
I/O
J7
VDDP
VDDP
K11
NC
I/O
H4
I/O
I/O
J8
I/O
I/O
K12
VDDP
VDDP
H5
I/O
I/O
J9
VDD
VDD
K13
VDDP
VDDP
H6
I/O
I/O
J10
NC
I/O
K14
VDDP
VDDP
H7
I/O
I/O
J11
NC
I/O
K15
VDDP
VDDP
H8
GND
GND
J12
NC
I/O
K16
VDDP
VDDP
H9
NC
I/O
J13
NC
I/O
K17
VDDP
VDDP
H10
NC
I/O
J14
NC
I/O
K18
VDDP
VDDP
H11
NC
I/O
J15
NC
I/O
K19
VDDP
VDDP
H12
NC
I/O
J16
NC
I/O
K20
NC
I/O
H13
NC
I/O
J17
NC
I/O
K21
VDD
VDD
H14
NC
I/O
J18
NC
I/O
K22
NC
I/O
H15
NC
I/O
J19
NC
I/O
K23
I/O
I/O
H16
NC
I/O
J20
NC
I/O
K24
I/O
I/O
H17
NC
I/O
J21
NC
I/O
K25
I/O
I/O
H18
NC
I/O
J22
VDD
VDD
K26
I/O
I/O
H19
NC
I/O
J23
I/O
I/O
K27
I/O
I/O
H20
NC
I/O
J24
VDDP
VDDP
K28
I/O
I/O
H21
NC
I/O
J25
I/O
I/O
K29
I/O
I/O
H22
NC
I/O
J26
I/O
I/O
K30
I/O
I/O
H23
GND
GND
J27
I/O
I/O
L1
I/O
I/O
H24
I/O
I/O
J28
I/O
I/O
L2
I/O
I/O
H25
I/O
I/O
J29
I/O
I/O
L3
I/O
I/O
H26
I/O
I/O
J30
I/O
I/O
L4
I/O
I/O
H27
I/O
I/O
K1
I/O
I/O
L5
I/O
I/O
H28
I/O
I/O
K2
I/O
I/O
L6
I/O
I/O
H29
I/O
I/O
K3
I/O
I/O
L7
I/O
I/O
H30
I/O
I/O
K4
I/O
I/O
L8
I/O
I/O
3 -6 2
v5.9
ProASICPLUS Flash Family FPGAs
896-Pin FBGA
896-Pin FBGA
896-Pin FBGA
Pin
Number
APA750
Function
APA1000
Function
Pin
Number
APA750
Function
APA1000
Function
Pin
Number
APA750
Function
APA1000
Function
L9
NC
I/O
M13
GND
GND
N17
GND
GND
L10
NC
I/O
M14
GND
GND
N18
GND
GND
L11
VDD
VDD
M15
GND
GND
N19
GND
GND
L12
VDD
VDD
M16
GND
GND
N20
VDD
VDD
L13
VDD
VDD
M17
GND
GND
N21
VDDP
VDDP
L14
VDD
VDD
M18
GND
GND
N22
NC
I/O
L15
VDD
VDD
M19
GND
GND
N23
I/O
I/O
L16
VDD
VDD
M20
VDD
VDD
N24
I/O
I/O
L17
VDD
VDD
M21
VDDP
VDDP
N25
I/O
I/O
L18
VDD
VDD
M22
NC
I/O
N26
I/O
I/O
L19
VDD
VDD
M23
I/O
I/O
N27
I/O
I/O
L20
VDD
VDD
M24
I/O
I/O
N28
I/O
I/O
L21
NC
I/O
M25
I/O
I/O
N29
I/O
I/O
L22
NC
I/O
M26
I/O
I/O
N30
I/O
I/O
L23
I/O
I/O
M27
I/O
I/O
P1
I/O
I/O
L24
I/O
I/O
M28
I/O
I/O
P2
I/O
I/O
L25
I/O
I/O
M29
I/O
I/O
P3
I/O
I/O
L26
I/O
I/O
M30
I/O
I/O
P4
I/O
I/O
L27
I/O
I/O
N1
I/O
I/O
P5
I/O
I/O
L28
I/O
I/O
N2
I/O
I/O
P6
I/O
I/O
L29
I/O
I/O
N3
I/O
I/O
P7
I/O
I/O
L30
I/O
I/O
N4
I/O
I/O
P8
I/O
I/O
M1
I/O
I/O
N5
I/O
I/O
P9
I/O
I/O
M2
I/O
I/O
N6
I/O
I/O
P10
VDDP
VDDP
M3
I/O
I/O
N7
I/O
I/O
P11
VDD
VDD
M4
I/O
I/O
N8
I/O
I/O
P12
GND
GND
M5
I/O
I/O
N9
NC
I/O
P13
GND
GND
M6
I/O
I/O
N10
VDDP
VDDP
P14
GND
GND
M7
I/O
I/O
N11
VDD
VDD
P15
GND
GND
M8
I/O
I/O
N12
GND
GND
P16
GND
GND
M9
NC
I/O
N13
GND
GND
P17
GND
GND
M10
VDDP
VDDP
N14
GND
GND
P18
GND
GND
M11
VDD
VDD
N15
GND
GND
P19
GND
GND
M12
GND
GND
N16
GND
GND
P20
VDD
VDD
v5.9
3-63
ProASICPLUS Flash Family FPGAs
896-Pin FBGA
896-Pin FBGA
896-Pin FBGA
Pin
Number
APA750
Function
APA1000
Function
Pin
Number
APA750
Function
APA1000
Function
Pin
Number
APA750
Function
APA1000
Function
P21
VDDP
VDDP
R25
I/O
I/O
T29
AVDD
AVDD
P22
I/O
I/O
R26
I/O
I/O
T30
I/O
I/O
P23
I/O
I/O
R27
NPECL2
NPECL2
U1
I/O
I/O
P24
I/O
I/O
R28
AGND
AGND
U2
I/O
I/O
P25
I/O
I/O
R29
I/O / GLMX2
I/O / GLMX2
U3
I/O
I/O
P26
I/O
I/O
R30
I/O
I/O
U4
I/O
I/O
P27
I/O
I/O
T1
I/O
I/O
U5
I/O
I/O
P28
I/O
I/O
T2
AVDD
AVDD
U6
I/O
I/O
P29
I/O
I/O
T3
I/O / GL2
I/O / GL2
U7
I/O
I/O
P30
I/O
I/O
T4
U8
I/O
I/O
R1
I/O
I/O
T5
I/O
I/O
U9
NC
I/O
R2
I/O / GLMX1
I/O / GLMX1
T6
I/O
I/O
U10
VDDP
VDDP
R3
AGND
AGND
T7
I/O
I/O
U11
VDD
VDD
R4
NPECL1
NPECL1
T8
I/O
I/O
U12
GND
GND
R5
I/O / GL1
I/O / GL1
T9
I/O
I/O
U13
GND
GND
R6
I/O
I/O
T10
VDDP
VDDP
U14
GND
GND
R7
I/O
I/O
T11
VDD
VDD
U15
GND
GND
R8
I/O
I/O
T12
GND
GND
U16
GND
GND
R9
NC
I/O
T13
GND
GND
U17
GND
GND
R10
VDDP
VDDP
T14
GND
GND
U18
GND
GND
R11
VDD
VDD
T15
GND
GND
U19
GND
GND
R12
GND
GND
T16
GND
GND
U20
VDD
VDD
R13
GND
GND
T17
GND
GND
U21
VDDP
VDDP
R14
GND
GND
T18
GND
GND
U22
NC
I/O
R15
GND
GND
T19
GND
GND
U23
I/O
I/O
R16
GND
GND
T20
VDD
VDD
U24
I/O
I/O
R17
GND
GND
T21
VDDP
VDDP
U25
I/O
I/O
R18
GND
GND
T22
I/O
I/O
U26
I/O
I/O
R19
GND
GND
T23
I/O
I/O
U27
I/O
I/O
R20
VDD
VDD
T24
I/O
I/O
U28
I/O
I/O
R21
VDDP
VDDP
T25
I/O
I/O
U29
I/O
I/O
R22
I/O
I/O
T26
U30
I/O
I/O
R23
I/O
I/O
T27
I/O / GL4
I/O / GL4
V1
I/O
I/O
R24
I/O
I/O
T28
I/O / GL3
I/O / GL3
V2
I/O
I/O
3 -6 4
PPECL1 / Input PPECL1 / Input
PPECL2 / Input PPECL2 / Input
v5.9
ProASICPLUS Flash Family FPGAs
896-Pin FBGA
896-Pin FBGA
896-Pin FBGA
Pin
Number
APA750
Function
APA1000
Function
Pin
Number
APA750
Function
APA1000
Function
Pin
Number
APA750
Function
APA1000
Function
V3
I/O
I/O
W7
I/O
I/O
Y11
VDD
VDD
V4
I/O
I/O
W8
I/O
I/O
Y12
VDD
VDD
V5
I/O
I/O
W9
NC
I/O
Y13
VDD
VDD
V6
I/O
I/O
W10
VDDP
VDDP
Y14
VDD
VDD
V7
I/O
I/O
W11
VDD
VDD
Y15
VDD
VDD
V8
I/O
I/O
W12
GND
GND
Y16
VDD
VDD
V9
NC
I/O
W13
GND
GND
Y17
VDD
VDD
V10
VDDP
VDDP
W14
GND
GND
Y18
VDD
VDD
V11
VDD
VDD
W15
GND
GND
Y19
VDD
VDD
V12
GND
GND
W16
GND
GND
Y20
VDD
VDD
V13
GND
GND
W17
GND
GND
Y21
NC
I/O
V14
GND
GND
W18
GND
GND
Y22
NC
I/O
V15
GND
GND
W19
GND
GND
Y23
I/O
I/O
V16
GND
GND
W20
VDD
VDD
Y24
I/O
I/O
V17
GND
GND
W21
VDDP
VDDP
Y25
I/O
I/O
V18
GND
GND
W22
NC
I/O
Y26
I/O
I/O
V19
GND
GND
W23
I/O
I/O
Y27
I/O
I/O
V20
VDD
VDD
W24
I/O
I/O
Y28
I/O
I/O
V21
VDDP
VDDP
W25
I/O
I/O
Y29
I/O
I/O
V22
NC
I/O
W26
I/O
I/O
Y30
I/O
I/O
V23
I/O
I/O
W27
I/O
I/O
AA1
I/O
I/O
V24
I/O
I/O
W28
I/O
I/O
AA2
I/O
I/O
V25
I/O
I/O
W29
I/O
I/O
AA3
I/O
I/O
V26
I/O
I/O
W30
I/O
I/O
AA4
I/O
I/O
V27
I/O
I/O
Y1
I/O
I/O
AA5
I/O
I/O
V28
I/O
I/O
Y2
I/O
I/O
AA6
I/O
I/O
V29
I/O
I/O
Y3
I/O
I/O
AA7
I/O
I/O
V30
I/O
I/O
Y4
I/O
I/O
AA8
I/O
I/O
W1
I/O
I/O
Y5
I/O
I/O
AA9
NC
I/O
W2
I/O
I/O
Y6
I/O
I/O
AA10
VDD
VDD
W3
I/O
I/O
Y7
I/O
I/O
AA11
NC
I/O
W4
I/O
I/O
Y8
I/O
I/O
AA12
VDDP
VDDP
W5
I/O
I/O
Y9
NC
I/O
AA13
VDDP
VDDP
W6
I/O
I/O
Y10
NC
I/O
AA14
VDDP
VDDP
v5.9
3-65
ProASICPLUS Flash Family FPGAs
896-Pin FBGA
896-Pin FBGA
896-Pin FBGA
Pin
Number
APA750
Function
APA1000
Function
Pin
Number
APA750
Function
APA1000
Function
Pin
Number
APA750
Function
APA1000
Function
AA15
VDDP
VDDP
AB19
NC
I/O
AC23
GND
GND
AA16
VDDP
VDDP
AB20
NC
I/O
AC24
I/O
I/O
AA17
VDDP
VDDP
AB21
NC
I/O
AC25
I/O
I/O
AA18
VDDP
VDDP
AB22
VDD
VDD
AC26
I/O
I/O
AA19
VDDP
VDDP
AB23
I/O
I/O
AC27
I/O
I/O
AA20
NC
I/O
AB24
VDDP
VDDP
AC28
I/O
I/O
AA21
VDD
VDD
AB25
I/O
I/O
AC29
I/O
I/O
AA22
NC
I/O
AB26
I/O
I/O
AC30
I/O
I/O
AA23
I/O
I/O
AB27
I/O
I/O
AD1
GND
GND
AA24
I/O
I/O
AB28
I/O
I/O
AD2
I/O
I/O
AA25
I/O
I/O
AB29
I/O
I/O
AD3
I/O
I/O
AA26
I/O
I/O
AB30
I/O
I/O
AD4
I/O
I/O
AA27
I/O
I/O
AC1
I/O
I/O
AD5
VDDP
VDDP
AA28
I/O
I/O
AC2
I/O
I/O
AD6
I/O
I/O
AA29
I/O
I/O
AC3
I/O
I/O
AD7
VDD
VDD
AA30
I/O
I/O
AC4
I/O
I/O
AD8
I/O
I/O
AB1
I/O
I/O
AC5
I/O
I/O
AD9
VDDP
VDDP
AB2
I/O
I/O
AC6
I/O
I/O
AD10
I/O
I/O
AB3
I/O
I/O
AC7
I/O
I/O
AD11
I/O
I/O
AB4
I/O
I/O
AC8
GND
GND
AD12
I/O
I/O
AB5
I/O
I/O
AC9
NC
I/O
AD13
I/O
I/O
AB6
I/O
I/O
AC10
NC
I/O
AD14
I/O
I/O
AB7
VDDP
VDDP
AC11
NC
I/O
AD15
I/O
I/O
AB8
I/O
I/O
AC12
NC
I/O
AD16
I/O
I/O
AB9
VDD
VDD
AC13
NC
I/O
AD17
I/O
I/O
AB10
NC
I/O
AC14
NC
I/O
AD18
I/O
I/O
AB11
NC
I/O
AC15
NC
I/O
AD19
I/O
I/O
AB12
NC
I/O
AC16
NC
I/O
AD20
I/O
I/O
AB13
NC
I/O
AC17
NC
I/O
AD21
I/O
I/O
AB14
NC
I/O
AC18
NC
I/O
AD22
VDDP
VDDP
AB15
NC
I/O
AC19
NC
I/O
AD23
TCK
TCK
AB16
NC
I/O
AC20
NC
I/O
AD24
VDD
VDD
AB17
NC
I/O
AC21
NC
I/O
AD25
TRST
TRST
AB18
NC
I/O
AC22
NC
I/O
AD26
VDDP
VDDP
3 -6 6
v5.9
ProASICPLUS Flash Family FPGAs
896-Pin FBGA
896-Pin FBGA
896-Pin FBGA
Pin
Number
APA750
Function
APA1000
Function
Pin
Number
APA750
Function
APA1000
Function
Pin
Number
APA750
Function
APA1000
Function
AD27
I/O
I/O
AF1
GND
GND
AG5
I/O
I/O
AD28
I/O
I/O
AF2
I/O
I/O
AG6
I/O
I/O
AD29
I/O
I/O
AF3
VDDP
VDDP
AG7
I/O
I/O
AD30
GND
GND
AF4
I/O
I/O
AG8
I/O
I/O
AE1
I/O
I/O
AF5
VDD
VDD
AG9
I/O
I/O
AE2
VDD
VDD
AF6
I/O
I/O
AG10
I/O
I/O
AE3
I/O
I/O
AF7
VDDP
VDDP
AG11
I/O
I/O
AE4
I/O
I/O
AF8
I/O
I/O
AG12
I/O
I/O
AE5
I/O
I/O
AF9
I/O
I/O
AG13
I/O
I/O
AE6
GND
GND
AF10
I/O
I/O
AG14
I/O
I/O
AE7
I/O
I/O
AF11
I/O
I/O
AG15
I/O
I/O
AE8
I/O
I/O
AF12
I/O
I/O
AG16
I/O
I/O
AE9
I/O
I/O
AF13
I/O
I/O
AG17
I/O
I/O
AE10
I/O
I/O
AF14
I/O
I/O
AG18
I/O
I/O
AE11
I/O
I/O
AF15
I/O
I/O
AG19
I/O
I/O
AE12
I/O
I/O
AF16
I/O
I/O
AG20
I/O
I/O
AE13
I/O
I/O
AF17
I/O
I/O
AG21
I/O
I/O
AE14
I/O
I/O
AF18
I/O
I/O
AG22
I/O
I/O
AE15
I/O
I/O
AF19
I/O
I/O
AG23
I/O
I/O
AE16
I/O
I/O
AF20
I/O
I/O
AG24
I/O
I/O
AE17
I/O
I/O
AF21
I/O
I/O
AG25
I/O
I/O
AE18
I/O
I/O
AF22
I/O
I/O
AG26
I/O
I/O
AE19
I/O
I/O
AF23
I/O
I/O
AG27
GND
GND
AE20
I/O
I/O
AF24
VDDP
VDDP
AG28
RCK
RCK
AE21
I/O
I/O
AF25
I/O
I/O
AG29
VDD
VDD
AE22
I/O
I/O
AF26
VDD
VDD
AG30
I/O
I/O
AE23
I/O
I/O
AF27
TDO
TDO
AH1
GND
GND
AE24
I/O
I/O
AF28
VDDP
VDDP
AH2
I/O
I/O
AE25
GND
GND
AF29
VPN
VPN
AH3
VDD
VDD
AE26
I/O
I/O
AF30
GND
GND
AH4
I/O
I/O
AE27
I/O
I/O
AG1
I/O
I/O
AH5
VDDP
VDDP
AE28
I/O
I/O
AG2
VDD
VDD
AH6
I/O
I/O
AE29
VDD
VDD
AG3
I/O
I/O
AH7
I/O
I/O
AE30
I/O
I/O
AG4
GND
GND
AH8
I/O
I/O
v5.9
3-67
ProASICPLUS Flash Family FPGAs
896-Pin FBGA
896-Pin FBGA
896-Pin FBGA
Pin
Number
APA750
Function
APA1000
Function
Pin
Number
APA750
Function
APA1000
Function
Pin
Number
APA750
Function
APA1000
Function
AH9
I/O
I/O
AJ13
I/O
I/O
AK18
I/O
I/O
AH10
I/O
I/O
AJ14
I/O
I/O
AK19
I/O
I/O
AH11
I/O
I/O
AJ15
I/O
I/O
AK20
I/O
I/O
AH12
I/O
I/O
AJ16
I/O
I/O
AK21
I/O
I/O
AH13
I/O
I/O
AJ17
I/O
I/O
AK22
I/O
I/O
AH14
I/O
I/O
AJ18
I/O
I/O
AK23
I/O
I/O
AH15
I/O
I/O
AJ19
I/O
I/O
AK24
GND
GND
AH16
I/O
I/O
AJ20
I/O
I/O
AK25
I/O
I/O
AH17
I/O
I/O
AJ21
I/O
I/O
AK26
GND
GND
AH18
I/O
I/O
AJ22
I/O
I/O
AK27
I/O
I/O
AH19
I/O
I/O
AJ23
I/O
I/O
AK28
GND
GND
AH20
I/O
I/O
AJ24
I/O
I/O
AK29
GND
GND
AH21
I/O
I/O
AJ25
VDD
VDD
AH22
I/O
I/O
AJ26
I/O
I/O
AH23
I/O
I/O
AJ27
VDD
VDD
AH24
I/O
I/O
AJ28
TMS
TMS
AH25
I/O
I/O
AJ29
GND
GND
AH26
VDDP
VDDP
AJ30
GND
GND
AH27
TDI
TDI
AK2
GND
GND
AH28
VDD
VDD
AK3
GND
GND
AH29
VPP
VPP
AK4
I/O
I/O
AH30
GND
GND
AK5
GND
GND
AJ1
GND
GND
AK6
I/O
I/O
AJ2
GND
GND
AK7
GND
GND
AJ3
I/O
I/O
AK8
I/O
I/O
AJ4
VDD
VDD
AK9
I/O
I/O
AJ5
I/O
I/O
AK10
I/O
I/O
AJ6
VDD
VDD
AK11
I/O
I/O
AJ7
I/O
I/O
AK12
I/O
I/O
AJ8
I/O
I/O
AK13
I/O
I/O
AJ9
I/O
I/O
AK14
I/O
I/O
AJ10
I/O
I/O
AK15
I/O
I/O
AJ11
I/O
I/O
AK16
I/O
I/O
AJ12
I/O
I/O
AK17
I/O
I/O
3 -6 8
v5.9
ProASICPLUS Flash Family FPGAs
1152-Pin FBGA
A1 Ball Pad Corner
34 3332 3130 2928 2726 2524 232221 2019 18 171615 1413 12 11 10 9 8 7 6 5 4 3 2 1
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA
AB
AC
AD
AE
AF
AG
AH
AJ
AK
AL
AM
AN
AP
Note
For Package Manufacturing and Environmental information, visit the Package Resource center at
http://www.actel.com/products/solutions/package/docs.aspx.
v5.9
3-69
ProASICPLUS Flash Family FPGAs
1152-Pin FBGA
1152-Pin FBGA
1152-Pin FBGA
1152-Pin FBGA
Pin
Number
APA1000
Function
Pin
Number
APA1000
Function
Pin
Number
APA1000
Function
Pin
Number
APA1000
Function
A2
NC
B6
NC
C9
GND
D12
I/O
A3
GND
B7
I/O
C10
I/O
D13
I/O
A4
GND
B8
NC
C11
I/O
D14
I/O
A5
GND
B9
I/O
C12
I/O
D15
I/O
A6
I/O
B10
NC
C13
I/O
D16
I/O
A7
VDD
B11
I/O
C14
I/O
D17
I/O
A8
VDD
B12
GND
C15
I/O
D18
I/O
A9
VDD
B13
I/O
C16
I/O
D19
I/O
A10
VDD
B14
VDDP
C17
I/O
D20
I/O
A11
I/O
B15
VDDP
C18
I/O
D21
I/O
A12
GND
B16
I/O
C19
I/O
D22
I/O
A13
I/O
B17
GND
C20
I/O
D23
I/O
A14
VDDP
B18
GND
C21
I/O
D24
I/O
A15
VDDP
B19
I/O
C22
I/O
D25
I/O
A16
I/O
B20
VDDP
C23
I/O
D26
I/O
A17
GND
B21
VDDP
C24
I/O
D27
VDD
A18
GND
B22
I/O
C25
I/O
D28
I/O
A19
I/O
B23
GND
C26
GND
D29
VDD
A20
VDDP
B24
I/O
C27
I/O
D30
I/O
A21
VDDP
B25
NC
C28
GND
D31
GND
A22
I/O
B26
I/O
C29
I/O
D32
GND
A23
GND
B27
NC
C30
GND
D33
GND
A24
I/O
B28
I/O
C31
GND
D34
GND
A25
VDD
B29
NC
C32
NC
E1
GND
A26
VDD
B30
GND
C33
GND
E2
GND
A27
VDD
B31
GND
C34
GND
E3
GND
A28
VDD
B32
GND
D1
GND
E4
I/O
A29
I/O
B33
NC
D2
GND
E5
VDD
A30
GND
B34
NC
D3
GND
E6
I/O
A31
GND
C1
GND
D4
GND
E7
VDDP
A32
GND
C2
GND
D5
I/O
E8
I/O
A33
NC
C3
NC
D6
VDD
E9
I/O
B1
NC
C4
GND
D7
I/O
E10
I/O
B2
NC
C5
GND
D8
VDD
E11
I/O
B3
GND
C6
I/O
D9
I/O
E12
I/O
B4
GND
C7
GND
D10
I/O
E13
I/O
B5
GND
C8
I/O
D11
I/O
E14
I/O
3 -7 0
v5.9
ProASICPLUS Flash Family FPGAs
1152-Pin FBGA
1152-Pin FBGA
1152-Pin FBGA
1152-Pin FBGA
Pin
Number
APA1000
Function
Pin
Number
APA1000
Function
Pin
Number
APA1000
Function
Pin
Number
APA1000
Function
E15
I/O
F18
I/O
G21
I/O
H24
I/O
E16
I/O
F19
I/O
G22
I/O
H25
I/O
E17
I/O
F20
I/O
G23
I/O
H26
I/O
E18
I/O
F21
I/O
G24
I/O
H27
GND
E19
I/O
F22
I/O
G25
I/O
H28
I/O
E20
I/O
F23
I/O
G26
VDDP
H29
I/O
E21
I/O
F24
I/O
G27
I/O
H30
I/O
E22
I/O
F25
I/O
G28
VDD
H31
VDD
E23
I/O
F26
I/O
G29
I/O
H32
I/O
E24
I/O
F27
I/O
G30
VDDP
H33
NC
E25
I/O
F28
I/O
G31
I/O
H34
VDD
E26
I/O
F29
GND
G32
GND
J1
VDD
E27
I/O
F30
I/O
G33
I/O
J2
I/O
E28
VDDP
F31
VDD
G34
VDD
J3
GND
E29
I/O
F32
I/O
H1
VDD
J4
I/O
E30
VDD
F33
NC
H2
NC
J5
I/O
E31
I/O
F34
NC
H3
I/O
J6
I/O
E32
GND
G1
VDD
H4
VDD
J7
VDDP
E33
GND
G2
I/O
H5
I/O
J8
I/O
E34
GND
G3
GND
H6
I/O
J9
VDD
F1
I/O
G4
I/O
H7
I/O
J10
I/O
F2
NC
G5
VDDP
H8
GND
J11
VDDP
F3
I/O
G6
I/O
H9
I/O
J12
I/O
F4
VDD
G7
VDD
H10
I/O
J13
I/O
F5
I/O
G8
I/O
H11
I/O
J14
I/O
F6
GND
G9
VDDP
H12
I/O
J15
I/O
F7
I/O
G10
I/O
H13
I/O
J16
I/O
F8
I/O
G11
I/O
H14
I/O
J17
I/O
F9
I/O
G12
I/O
H15
I/O
J18
I/O
F10
I/O
G13
I/O
H16
I/O
J19
I/O
F11
I/O
G14
I/O
H17
I/O
J20
I/O
F12
I/O
G15
I/O
H18
I/O
J21
I/O
F13
I/O
G16
I/O
H19
I/O
J22
I/O
F14
I/O
G17
I/O
H20
I/O
J23
I/O
F15
I/O
G18
I/O
H21
I/O
J24
VDDP
F16
I/O
G19
I/O
H22
I/O
J25
I/O
F17
I/O
G20
I/O
H23
I/O
J26
VDD
v5.9
3-71
ProASICPLUS Flash Family FPGAs
1152-Pin FBGA
1152-Pin FBGA
1152-Pin FBGA
1152-Pin FBGA
Pin
Number
APA1000
Function
Pin
Number
APA1000
Function
Pin
Number
APA1000
Function
Pin
Number
APA1000
Function
J27
I/O
K30
I/O
L33
I/O
N2
I/O
J28
VDDP
K31
I/O
L34
I/O
N3
I/O
J29
I/O
K32
I/O
M1
GND
N4
I/O
J30
I/O
K33
NC
M2
GND
N5
I/O
J31
I/O
K34
VDD
M3
I/O
N6
I/O
J32
GND
L1
I/O
M4
I/O
N7
I/O
J33
I/O
L2
I/O
M5
I/O
N8
I/O
J34
VDD
L3
I/O
M6
I/O
N9
I/O
K1
VDD
L4
I/O
M7
I/O
N10
I/O
K2
NC
L5
I/O
M8
I/O
N11
I/O
K3
I/O
L6
I/O
M9
I/O
N12
I/O
K4
I/O
L7
I/O
M10
I/O
N13
VDD
K5
I/O
L8
I/O
M11
I/O
N14
VDD
K6
I/O
L9
VDDP
M12
VDD
N15
VDD
K7
I/O
L10
I/O
M13
I/O
N16
VDD
K8
I/O
L11
VDD
M14
VDDP
N17
VDD
K9
I/O
L12
I/O
M15
VDDP
N18
VDD
K10
GND
L13
I/O
M16
VDDP
N19
VDD
K11
I/O
L14
I/O
M17
VDDP
N20
VDD
K12
I/O
L15
I/O
M18
VDDP
N21
VDD
K13
I/O
L16
I/O
M19
VDDP
N22
VDD
K14
I/O
L17
I/O
M20
VDDP
N23
I/O
K15
I/O
L18
I/O
M21
VDDP
N24
I/O
K16
I/O
L19
I/O
M22
I/O
N25
I/O
K17
I/O
L20
I/O
M23
VDD
N26
I/O
K18
I/O
L21
I/O
M24
I/O
N27
I/O
K19
I/O
L22
I/O
M25
I/O
N28
I/O
K20
I/O
L23
I/O
M26
I/O
N29
I/O
K21
I/O
L24
VDD
M27
I/O
N30
I/O
K22
I/O
L25
I/O
M28
I/O
N31
I/O
K23
I/O
L26
VDDP
M29
I/O
N32
I/O
K24
I/O
L27
I/O
M30
I/O
N33
I/O
K25
GND
L28
I/O
M31
I/O
N34
I/O
K26
I/O
L29
I/O
M32
I/O
P1
VDDP
K27
I/O
L30
I/O
M33
GND
P2
VDDP
K28
I/O
L31
I/O
M34
GND
P3
I/O
K29
I/O
L32
I/O
N1
I/O
P4
I/O
3 -7 2
v5.9
ProASICPLUS Flash Family FPGAs
1152-Pin FBGA
1152-Pin FBGA
1152-Pin FBGA
1152-Pin FBGA
Pin
Number
APA1000
Function
Pin
Number
APA1000
Function
Pin
Number
APA1000
Function
Pin
Number
APA1000
Function
P5
I/O
R8
I/O
T11
I/O
U14
GND
P6
I/O
R9
I/O
T12
VDDP
U15
GND
P7
I/O
R10
I/O
T13
VDD
U16
GND
P8
I/O
R11
I/O
T14
GND
U17
GND
P9
I/O
R12
VDDP
T15
GND
U18
GND
P10
I/O
R13
VDD
T16
GND
U19
GND
P11
I/O
R14
GND
T17
GND
U20
GND
P12
VDDP
R15
GND
T18
GND
U21
GND
P13
VDD
R16
GND
T19
GND
U22
VDD
P14
GND
R17
GND
T20
GND
U23
VDDP
P15
GND
R18
GND
T21
GND
U24
I/O
P16
GND
R19
GND
T22
VDD
U25
I/O
P17
GND
R20
GND
T23
VDDP
U26
I/O
P18
GND
R21
GND
T24
I/O
U27
I/O
P19
GND
R22
VDD
T25
I/O
U28
I/O
P20
GND
R23
VDDP
T26
I/O
U29
NPECL2
P21
GND
R24
I/O
T27
I/O
U30
AGND
P22
VDD
R25
I/O
T28
I/O
U31
I/O / GLMX2
P23
VDDP
R26
I/O
T29
I/O
U32
I/O
P24
I/O
R27
I/O
T30
I/O
U33
GND
P25
I/O
R28
I/O
T31
I/O
U34
GND
P26
I/O
R29
I/O
T32
I/O
V1
GND
P27
I/O
R30
I/O
T33
I/O
V2
GND
P28
I/O
R31
I/O
T34
I/O
V3
I/O
P29
I/O
R32
I/O
U1
GND
V4
AVDD
P30
I/O
R33
VDDP
U2
GND
V5
I/O / GL2
P31
I/O
R34
VDDP
U3
I/O
V6
P32
I/O
T1
I/O
U4
I/O / GLMX1
PPECL1 /
Input
P33
VDDP
T2
I/O
U5
AGND
V7
I/O
P34
VDDP
T3
I/O
U6
NPECL1
V8
I/O
R1
VDDP
T4
I/O
U7
I/O / GL1
V9
I/O
R2
VDDP
T5
I/O
U8
I/O
V10
I/O
R3
I/O
T6
I/O
U9
I/O
V11
I/O
R4
I/O
T7
I/O
U10
I/O
V12
VDDP
R5
I/O
T8
I/O
U11
I/O
V13
VDD
R6
I/O
T9
I/O
U12
VDDP
V14
GND
R7
I/O
T10
I/O
U13
VDD
V15
GND
v5.9
3-73
ProASICPLUS Flash Family FPGAs
1152-Pin FBGA
1152-Pin FBGA
1152-Pin FBGA
1152-Pin FBGA
Pin
Number
APA1000
Function
Pin
Number
APA1000
Function
Pin
Number
APA1000
Function
Pin
Number
APA1000
Function
V16
GND
W18
GND
Y21
GND
AA24
I/O
V17
GND
W19
GND
Y22
VDD
AA25
I/O
V18
GND
W20
GND
Y23
VDDP
AA26
I/O
V19
GND
W21
GND
Y24
I/O
AA27
I/O
V20
GND
W22
VDD
Y25
I/O
AA28
I/O
V21
GND
W23
VDDP
Y26
I/O
AA29
I/O
V22
VDD
W24
I/O
Y27
I/O
AA30
I/O
V23
VDDP
W25
I/O
Y28
I/O
AA31
I/O
V24
I/O
W26
I/O
Y29
I/O
AA32
I/O
V25
I/O
W27
I/O
Y30
I/O
AA33
VDDP
V26
I/O
W28
I/O
Y31
I/O
AA34
VDDP
V27
I/O
W29
I/O
Y32
I/O
AB1
I/O
V28
PPECL2 /
Input
W30
I/O
Y33
VDDP
AB2
I/O
W31
I/O
Y34
VDDP
AB3
I/O
V29
I/O / GL4
W32
I/O
AA1
VDDP
AB4
I/O
V30
I/O / GL3
W33
I/O
AA2
VDDP
AB5
I/O
V31
AVDD
W34
I/O
AA3
I/O
AB6
I/O
V32
I/O
Y1
VDDP
AA4
I/O
AB7
I/O
V33
GND
Y2
VDDP
AA5
I/O
AB8
I/O
V34
GND
Y3
I/O
AA6
I/O
AB9
I/O
W1
I/O
Y4
I/O
AA7
I/O
AB10
I/O
W2
I/O
Y5
I/O
AA8
I/O
AB11
I/O
W3
I/O
Y6
I/O
AA9
I/O
AB12
I/O
W4
I/O
Y7
I/O
AA10
I/O
AB13
VDD
W5
I/O
Y8
I/O
AA11
I/O
AB14
VDD
W6
I/O
Y9
I/O
AA12
VDDP
AB15
VDD
W7
I/O
Y10
I/O
AA13
VDD
AB16
VDD
W8
I/O
Y11
I/O
AA14
GND
AB17
VDD
W9
I/O
Y12
VDDP
AA15
GND
AB18
VDD
W10
I/O
Y13
VDD
AA16
GND
AB19
VDD
W11
I/O
Y14
GND
AA17
GND
AB20
VDD
W12
VDDP
Y15
GND
AA18
GND
AB21
VDD
W13
VDD
Y16
GND
AA19
GND
AB22
VDD
W14
GND
Y17
GND
AA20
GND
AB23
I/O
W15
GND
Y18
GND
AA21
GND
AB24
I/O
W16
GND
Y19
GND
AA22
VDD
AB25
I/O
W17
GND
Y20
GND
AA23
VDDP
AB26
I/O
3 -7 4
v5.9
ProASICPLUS Flash Family FPGAs
1152-Pin FBGA
1152-Pin FBGA
1152-Pin FBGA
1152-Pin FBGA
Pin
Number
APA1000
Function
Pin
Number
APA1000
Function
Pin
Number
APA1000
Function
Pin
Number
APA1000
Function
AB27
I/O
AC30
I/O
AD33
I/O
AF2
I/O
AB28
I/O
AC31
I/O
AD34
I/O
AF3
GND
AB29
I/O
AC32
I/O
AE1
VDD
AF4
I/O
AB30
I/O
AC33
GND
AE2
NC
AF5
I/O
AB31
I/O
AC34
GND
AE3
I/O
AF6
I/O
AB32
I/O
AD1
I/O
AE4
I/O
AF7
VDDP
AB33
I/O
AD2
I/O
AE5
I/O
AF8
I/O
AB34
I/O
AD3
I/O
AE6
I/O
AF9
VDD
AC1
GND
AD4
I/O
AE7
I/O
AF10
I/O
AC2
GND
AD5
I/O
AE8
I/O
AF11
VDDP
AC3
I/O
AD6
I/O
AE9
I/O
AF12
I/O
AC4
I/O
AD7
I/O
AE10
GND
AF13
I/O
AC5
I/O
AD8
I/O
AE11
I/O
AF14
I/O
AC6
I/O
AD9
VDDP
AE12
I/O
AF15
I/O
AC7
I/O
AD10
I/O
AE13
I/O
AF16
I/O
AC8
I/O
AD11
VDD
AE14
I/O
AF17
I/O
AC9
I/O
AD12
I/O
AE15
I/O
AF18
I/O
AC10
I/O
AD13
I/O
AE16
I/O
AF19
I/O
AC11
I/O
AD14
I/O
AE17
I/O
AF20
I/O
AC12
VDD
AD15
I/O
AE18
I/O
AF21
I/O
AC13
I/O
AD16
I/O
AE19
I/O
AF22
I/O
AC14
VDDP
AD17
I/O
AE20
I/O
AF23
I/O
AC15
VDDP
AD18
I/O
AE21
I/O
AF24
VDDP
AC16
VDDP
AD19
I/O
AE22
I/O
AF25
TCK
AC17
VDDP
AD20
I/O
AE23
I/O
AF26
VDD
AC18
VDDP
AD21
I/O
AE24
I/O
AF27
TRST
AC19
VDDP
AD22
I/O
AE25
GND
AF28
VDDP
AC20
VDDP
AD23
I/O
AE26
I/O
AF29
I/O
AC21
VDDP
AD24
VDD
AE27
I/O
AF30
I/O
AC22
I/O
AD25
I/O
AE28
I/O
AF31
I/O
AC23
VDD
AD26
VDDP
AE29
I/O
AF32
GND
AC24
I/O
AD27
I/O
AE30
I/O
AF33
I/O
AC25
I/O
AD28
I/O
AE31
I/O
AF34
VDD
AC26
I/O
AD29
I/O
AE32
I/O
AG1
VDD
AC27
I/O
AD30
I/O
AE33
NC
AG2
NC
AC28
I/O
AD31
I/O
AE34
VDD
AG3
I/O
AC29
I/O
AD32
I/O
AF1
VDD
AG4
VDD
v5.9
3-75
ProASICPLUS Flash Family FPGAs
1152-Pin FBGA
1152-Pin FBGA
1152-Pin FBGA
1152-Pin FBGA
Pin
Number
APA1000
Function
Pin
Number
APA1000
Function
Pin
Number
APA1000
Function
Pin
Number
APA1000
Function
AG5
I/O
AH8
I/O
AJ11
I/O
AK14
I/O
AG6
I/O
AH9
VDDP
AJ12
I/O
AK15
I/O
AG7
I/O
AH10
I/O
AJ13
I/O
AK16
I/O
AG8
GND
AH11
I/O
AJ14
I/O
AK17
I/O
AG9
I/O
AH12
I/O
AJ15
I/O
AK18
I/O
AG10
I/O
AH13
I/O
AJ16
I/O
AK19
I/O
AG11
I/O
AH14
I/O
AJ17
I/O
AK20
I/O
AG12
I/O
AH15
I/O
AJ18
I/O
AK21
I/O
AG13
I/O
AH16
I/O
AJ19
I/O
AK22
I/O
AG14
I/O
AH17
I/O
AJ20
I/O
AK23
I/O
AG15
I/O
AH18
I/O
AJ21
I/O
AK24
I/O
AG16
I/O
AH19
I/O
AJ22
I/O
AK25
I/O
AG17
I/O
AH20
I/O
AJ23
I/O
AK26
I/O
AG18
I/O
AH21
I/O
AJ24
I/O
AK27
I/O
AG19
I/O
AH22
I/O
AJ25
I/O
AK28
VDDP
AG20
I/O
AH23
I/O
AJ26
I/O
AK29
TDI
AG21
I/O
AH24
I/O
AJ27
I/O
AK30
VDD
AG22
I/O
AH25
I/O
AJ28
I/O
AK31
VPP
AG23
I/O
AH26
VDDP
AJ29
GND
AK32
GND
AG24
I/O
AH27
I/O
AJ30
RCK
AK33
GND
AG25
I/O
AH28
VDD
AJ31
VDD
AK34
GND
AG26
I/O
AH29
TDO
AJ32
I/O
AL1
GND
AG27
GND
AH30
VDDP
AJ33
NC
AL2
GND
AG28
I/O
AH31
VPN
AJ34
NC
AL3
GND
AG29
I/O
AH32
GND
AK1
GND
AL4
GND
AG30
I/O
AH33
I/O
AK2
GND
AL5
I/O
AG31
VDD
AH34
VDD
AK3
GND
AL6
VDD
AG32
I/O
AJ1
I/O
AK4
I/O
AL7
I/O
AG33
NC
AJ2
NC
AK5
VDD
AL8
VDD
AG34
VDD
AJ3
I/O
AK6
I/O
AL9
I/O
AH1
VDD
AJ4
VDD
AK7
VDDP
AL10
I/O
AH2
I/O
AJ5
I/O
AK8
I/O
AL11
I/O
AH3
GND
AJ6
GND
AK9
I/O
AL12
I/O
AH4
I/O
AJ7
I/O
AK10
I/O
AL13
I/O
AH5
VDDP
AJ8
I/O
AK11
I/O
AL14
I/O
AH6
I/O
AJ9
I/O
AK12
I/O
AL15
I/O
AH7
VDD
AJ10
I/O
AK13
I/O
AL16
I/O
3 -7 6
v5.9
ProASICPLUS Flash Family FPGAs
1152-Pin FBGA
1152-Pin FBGA
1152-Pin FBGA
1152-Pin FBGA
Pin
Number
APA1000
Function
Pin
Number
APA1000
Function
Pin
Number
APA1000
Function
Pin
Number
APA1000
Function
AL17
I/O
AM20
I/O
AN23
GND
AP27
VDD
AL18
I/O
AM21
I/O
AN24
I/O
AP28
VDD
AL19
I/O
AM22
I/O
AN25
NC
AP29
I/O
AL20
I/O
AM23
I/O
AN26
I/O
AP30
GND
AL21
I/O
AM24
I/O
AN27
NC
AP31
GND
AL22
I/O
AM25
I/O
AN28
I/O
AP32
GND
AL23
I/O
AM26
GND
AN29
NC
AP33
NC
AL24
I/O
AM27
I/O
AN30
GND
AL25
I/O
AM28
GND
AN31
GND
AL26
I/O
AM29
I/O
AN32
GND
AL27
VDD
AM30
GND
AN33
NC
AL28
I/O
AM31
GND
AN34
NC
AL29
VDD
AM32
NC
AP2
NC
AL30
TMS
AM33
GND
AP3
GND
AL31
GND
AM34
GND
AP4
GND
AL32
GND
AN1
NC
AP5
GND
AL33
GND
AN2
NC
AP6
I/O
AL34
GND
AN3
GND
AP7
VDD
AM1
GND
AN4
GND
AP8
VDD
AM2
GND
AN5
GND
AP9
VDD
AM3
NC
AN6
NC
AP10
VDD
AM4
GND
AN7
I/O
AP11
I/O
AM5
GND
AN8
NC
AP12
GND
AM6
I/O
AN9
I/O
AP13
I/O
AM7
GND
AN10
NC
AP14
VDDP
AM8
I/O
AN11
I/O
AP15
VDDP
AM9
GND
AN12
GND
AP16
I/O
AM10
I/O
AN13
I/O
AP17
GND
AM11
I/O
AN14
VDDP
AP18
GND
AM12
I/O
AN15
VDDP
AP19
I/O
AM13
I/O
AN16
I/O
AP20
VDDP
AM14
I/O
AN17
GND
AP21
VDDP
AM15
I/O
AN18
GND
AP22
I/O
AM16
I/O
AN19
I/O
AP23
GND
AM17
I/O
AN20
VDDP
AP24
I/O
AM18
I/O
AN21
VDDP
AP25
VDD
AM19
I/O
AN22
I/O
AP26
VDD
v5.9
3-77
ProASICPLUS Flash Family FPGAs
624-Pin CCGA/LGA
Top View
D
A
A2
A1
A1 Corner
Index Area
b
E
Side View
D1
e
AE
AD
AC
AB
AA
Y
W
V
U
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
E1
e
1 2 3 4 5 6 7 8 9 101112131415 161718 19 20 2122 2324 25
Bottom View
Note
For Package Manufacturing and Environmental information, visit the Package Resource center at
http://www.actel.com/products/solutions/package/docs.aspx.
3 -7 8
v5.9
ProASICPLUS Flash Family FPGAs
624-Pin CCGA/LGA
624-Pin CCGA/LGA
624-Pin CCGA/LGA
Pin
Number
APA600
Function
APA1000
Function
Pin
Number
APA600
Function
APA1000
Function
Pin
Number
APA600
Function
APA1000
Function
A2
I/O
I/O
B12
I/O
I/O
C22
I/O
I/O
A3
I/O
I/O
B13
I/O
I/O
C23
GND
GND
A4
I/O
I/O
B14
I/O
I/O
C24
VDD
VDD
A5
I/O
I/O
B15
I/O
I/O
C25
I/O
I/O
A6
I/O
I/O
B16
I/O
I/O
D1
I/O
I/O
A7
I/O
I/O
B17
I/O
I/O
D2
I/O
I/O
A8
I/O
I/O
B18
I/O
I/O
D3
VDD
VDD
A9
I/O
I/O
B19
I/O
I/O
D4
GND
GND
A10
I/O
I/O
B20
I/O
I/O
D5
I/O
I/O
A11
I/O
I/O
B21
I/O
I/O
D6
I/O
I/O
A12
I/O
I/O
B22
I/O
I/O
D7
I/O
I/O
A13
I/O
I/O
B23
VDD
VDD
D8
I/O
I/O
A14
I/O
I/O
B24
GND
GND
D9
I/O
I/O
A15
I/O
I/O
B25
VDDP
VDDP
D10
I/O
I/O
A16
I/O
I/O
C1
I/O
I/O
D11
GND
GND
A17
I/O
I/O
C2
VDDP
VDDP
D12
I/O
I/O
A18
I/O
I/O
C3
GND
GND
D13
I/O
I/O
A19
I/O
I/O
C4
VDD
VDD
D14
I/O
I/O
A20
I/O
I/O
C5
I/O
I/O
D15
GND
GND
A21
I/O
I/O
C6
I/O
I/O
D16
I/O
I/O
A22
I/O
I/O
C7
GND
GND
D17
I/O
I/O
A23
I/O
I/O
C8
I/O
I/O
D18
I/O
I/O
A24
VDDP
VDDP
C9
I/O
I/O
D19
I/O
I/O
A25
GND
GND
C10
I/O
I/O
D20
I/O
I/O
B1
I/O
I/O
C11
I/O
I/O
D21
I/O
I/O
B2
GND
GND
C12
I/O
I/O
D22
I/O
I/O
B3
VDDP
VDDP
C13
I/O
I/O
D23
I/O
I/O
B4
I/O
I/O
C14
I/O
I/O
D24
I/O
I/O
B5
I/O
I/O
C15
I/O
I/O
D25
I/O
I/O
B6
I/O
I/O
C16
I/O
I/O
E1
I/O
I/O
B7
I/O
I/O
C17
I/O
I/O
E2
I/O
I/O
B8
I/O
I/O
C18
I/O
I/O
E3
I/O
I/O
B9
I/O
I/O
C19
GND
GND
E4
I/O
I/O
B10
I/O
I/O
C20
I/O
I/O
E5
I/O
I/O
B11
I/O
I/O
C21
I/O
I/O
E6
I/O
I/O
v5.9
3-79
ProASICPLUS Flash Family FPGAs
624-Pin CCGA/LGA
624-Pin CCGA/LGA
624-Pin CCGA/LGA
Pin
Number
APA600
Function
APA1000
Function
Pin
Number
APA600
Function
APA1000
Function
Pin
Number
APA600
Function
APA1000
Function
E7
I/O
I/O
F17
I/O
I/O
H2
I/O
I/O
E8
I/O
I/O
F18
GND
GND
H3
GND
GND
E9
I/O
I/O
F19
I/O
I/O
H4
I/O
I/O
E10
I/O
I/O
F20
I/O
I/O
H5
I/O
I/O
E11
I/O
I/O
F21
I/O
I/O
H6
I/O
I/O
E12
I/O
I/O
F22
I/O
I/O
H7
I/O
I/O
E13
I/O
I/O
F23
I/O
I/O
H8
VDDP
VDDP
E14
I/O
I/O
F24
I/O
I/O
H9
VDDP
VDDP
E15
I/O
I/O
F25
I/O
I/O
H10
VDDP
VDDP
E16
I/O
I/O
G1
I/O
I/O
H11
VDDP
VDDP
E17
I/O
I/O
G2
I/O
I/O
H12
VDDP
VDDP
E18
I/O
I/O
G3
I/O
I/O
H13
VDDP
VDDP
E19
I/O
I/O
G4
I/O
I/O
H14
VDDP
VDDP
E20
I/O
I/O
G5
I/O
I/O
H15
VDDP
VDDP
E21
I/O
I/O
G6
I/O
I/O
H16
VDDP
VDDP
E22
I/O
I/O
G7
I/O
I/O
H17
VDDP
VDDP
E23
I/O
I/O
G8
I/O
I/O
H18
VDDP
VDDP
E24
I/O
I/O
G9
I/O
I/O
H19
I/O
I/O
E25
I/O
I/O
G10
I/O
I/O
H20
I/O
I/O
F1
I/O
I/O
G11
I/O
I/O
H21
I/O
I/O
F2
I/O
I/O
G12
I/O
I/O
H22
I/O
I/O
F3
I/O
I/O
G13
I/O
I/O
H23
GND
GND
F4
I/O
I/O
G14
I/O
I/O
H24
I/O
I/O
F5
I/O
I/O
G15
I/O
I/O
H25
I/O
I/O
F6
I/O
I/O
G16
I/O
I/O
J1
I/O
I/O
F7
I/O
I/O
G17
I/O
I/O
J2
I/O
I/O
F8
GND
GND
G18
I/O
I/O
J3
I/O
I/O
F9
I/O
I/O
G19
I/O
I/O
J4
I/O
I/O
F10
I/O
I/O
G20
I/O
I/O
J5
I/O
I/O
F11
I/O
I/O
G21
I/O
I/O
J6
GND
GND
F12
I/O
I/O
G22
I/O
I/O
J7
I/O
I/O
F13
I/O
I/O
G23
I/O
I/O
J8
VDDP
VDDP
F14
I/O
I/O
G24
I/O
I/O
J9
GND
GND
F15
I/O
I/O
G25
I/O
I/O
J10
GND
GND
F16
I/O
I/O
H1
I/O
I/O
J11
GND
GND
3 -8 0
v5.9
ProASICPLUS Flash Family FPGAs
624-Pin CCGA/LGA
624-Pin CCGA/LGA
624-Pin CCGA/LGA
Pin
Number
APA600
Function
APA1000
Function
Pin
Number
APA600
Function
APA1000
Function
Pin
Number
APA600
Function
APA1000
Function
J12
GND
GND
K22
I/O
I/O
M7
I/O / GLMX1
I/O / GLMX1
J13
GND
GND
K23
I/O
I/O
M8
VDDP
VDDP
J14
GND
GND
K24
I/O
I/O
M9
GND
GND
J15
GND
GND
K25
I/O
I/O
M10
VDD
VDD
J16
GND
GND
L1
I/O
I/O
M11
GND
GND
J17
GND
GND
L2
I/O
I/O
M12
GND
GND
J18
VDDP
VDDP
L3
I/O
I/O
M13
GND
GND
J19
I/O
I/O
L4
I/O
I/O
M14
GND
GND
J20
GND
GND
L5
I/O
I/O
M15
GND
GND
J21
I/O
I/O
L6
I/O
I/O
M16
VDD
VDD
J22
I/O
I/O
L7
I/O
I/O
M17
GND
GND
J23
I/O
I/O
L8
VDDP
VDDP
M18
VDDP
VDDP
J24
I/O
I/O
L9
GND
GND
M19
I/O / GLMX2
I/O / GLMX2
J25
I/O
I/O
L10
VDD
VDD
M20
I/O / GL4
I/O / GL4
K1
I/O
I/O
L11
GND
GND
M21
NPECL2
NPECL2
K2
I/O
I/O
L12
GND
GND
M22
AGND
AGND
K3
I/O
I/O
L13
GND
GND
M23
I/O
I/O
K4
I/O
I/O
L14
GND
GND
M24
I/O
I/O
K5
I/O
I/O
L15
GND
GND
M25
I/O
I/O
K6
I/O
I/O
L16
VDD
VDD
N1
I/O
I/O
K7
I/O
I/O
L17
GND
GND
N2
I/O
I/O
K8
VDDP
VDDP
L18
VDDP
VDDP
N3
I/O
I/O
K9
GND
GND
L19
I/O
I/O
N4
AVDD
AVDD
K10
VDD
VDD
L20
I/O
I/O
N5
K11
VDD
VDD
L21
I/O
I/O
PPECL1 /
Input
PPECL1 /
Input
K12
VDD
VDD
L22
I/O
I/O
N6
I/O / GL1
I/O / GL1
K13
VDD
VDD
L23
I/O
I/O
N7
I/O
I/O
K14
VDD
VDD
L24
I/O
I/O
N8
VDDP
VDDP
K15
VDD
VDD
L25
I/O
I/O
N9
GND
GND
K16
VDD
VDD
M1
I/O
I/O
N10
VDD
VDD
K17
GND
GND
M2
I/O
I/O
N11
GND
GND
K18
VDDP
VDDP
M3
I/O
I/O
N12
GND
GND
K19
I/O
I/O
M4
AGND
AGND
N13
GND
GND
K20
I/O
I/O
M5
NPECL1
NPECL1
N14
GND
GND
K21
I/O
I/O
M6
I/O / GL2
I/O / GL2
N15
GND
GND
v5.9
3-81
ProASICPLUS Flash Family FPGAs
624-Pin CCGA/LGA
624-Pin CCGA/LGA
624-Pin CCGA/LGA
Pin
Number
APA600
Function
APA1000
Function
Pin
Number
APA600
Function
APA1000
Function
Pin
Number
APA600
Function
APA1000
Function
N16
VDD
VDD
P25
I/O
I/O
T10
VDD
VDD
N17
GND
GND
R1
I/O
I/O
T11
VDD
VDD
N18
VDDP
VDDP
R2
I/O
I/O
T12
VDD
VDD
N19
I/O
I/O
R3
I/O
I/O
T13
VDD
VDD
N20
I/O / GL3
I/O / GL3
R4
I/O
I/O
T14
VDD
VDD
N21
PPECL2 /
Input
PPECL2 /
Input
R5
I/O
I/O
T15
VDD
VDD
R6
I/O
I/O
T16
VDD
VDD
N22
AVDD
AVDD
R7
I/O
I/O
T17
GND
GND
N23
I/O
I/O
R8
VDDP
VDDP
T18
VDDP
VDDP
N24
I/O
I/O
R9
GND
GND
T19
I/O
I/O
N25
I/O
I/O
R10
VDD
VDD
T20
I/O
I/O
P1
I/O
I/O
R11
GND
GND
T21
I/O
I/O
P2
I/O
I/O
R12
GND
GND
T22
I/O
I/O
P3
I/O
I/O
R13
GND
GND
T23
I/O
I/O
P4
GND
GND
R14
GND
GND
T24
I/O
I/O
P5
I/O
I/O
R15
GND
GND
T25
I/O
I/O
P6
I/O
I/O
R16
VDD
VDD
U1
I/O
I/O
P7
I/O
I/O
R17
GND
GND
U2
I/O
I/O
P8
VDDP
VDDP
R18
VDDP
VDDP
U3
I/O
I/O
P9
GND
GND
R19
I/O
I/O
U4
I/O
I/O
P10
VDD
VDD
R20
I/O
I/O
U5
I/O
I/O
P11
GND
GND
R21
I/O
I/O
U6
GND
GND
P12
GND
GND
R22
I/O
I/O
U7
I/O
I/O
P13
GND
GND
R23
I/O
I/O
U8
VDDP
VDDP
P14
GND
GND
R24
I/O
I/O
U9
GND
GND
P15
GND
GND
R25
I/O
I/O
U10
GND
GND
P16
VDD
VDD
T1
I/O
I/O
U11
GND
GND
P17
GND
GND
T2
I/O
I/O
U12
GND
GND
P18
VDDP
VDDP
T3
I/O
I/O
U13
GND
GND
P19
I/O
I/O
T4
I/O
I/O
U14
GND
GND
P20
I/O
I/O
T5
I/O
I/O
U15
GND
GND
P21
I/O
I/O
T6
I/O
I/O
U16
GND
GND
P22
GND
GND
T7
I/O
I/O
U17
GND
GND
P23
I/O
I/O
T8
VDDP
VDDP
U18
VDDP
VDDP
P24
I/O
I/O
T9
GND
GND
U19
I/O
I/O
3 -8 2
v5.9
ProASICPLUS Flash Family FPGAs
624-Pin CCGA/LGA
624-Pin CCGA/LGA
624-Pin CCGA/LGA
Pin
Number
APA600
Function
APA1000
Function
Pin
Number
APA600
Function
APA1000
Function
Pin
Number
APA600
Function
APA1000
Function
U20
GND
GND
W5
I/O
I/O
Y15
I/O
I/O
U21
I/O
I/O
W6
I/O
I/O
Y16
I/O
I/O
U22
I/O
I/O
W7
I/O
I/O
Y17
GND
GND
U23
I/O
I/O
W8
I/O
I/O
Y18
I/O
I/O
U24
I/O
I/O
W9
I/O
I/O
Y19
TCK
TCK
U25
I/O
I/O
W10
I/O
I/O
Y20
VPP
VPP
V1
I/O
I/O
W11
I/O
I/O
Y21
VPN
VPN
V2
I/O
I/O
W12
I/O
I/O
Y22
I/O
I/O
V3
GND
GND
W13
I/O
I/O
Y23
I/O
I/O
V4
I/O
I/O
W14
I/O
I/O
Y24
I/O
I/O
V5
I/O
I/O
W15
I/O
I/O
Y25
I/O
I/O
V6
I/O
I/O
W16
I/O
I/O
AA1
I/O
I/O
V7
I/O
I/O
W17
I/O
I/O
AA2
I/O
I/O
V8
VDDP
VDDP
W18
I/O
I/O
AA3
I/O
I/O
V9
VDDP
VDDP
W19
TMS
TMS
AA4
I/O
I/O
V10
VDDP
VDDP
W20
TDO
TDO
AA5
I/O
I/O
V11
VDDP
VDDP
W21
I/O
I/O
AA6
I/O
I/O
V12
VDDP
VDDP
W22
I/O
I/O
AA7
I/O
I/O
V13
VDDP
VDDP
W23
I/O
I/O
AA8
I/O
I/O
V14
VDDP
VDDP
W24
I/O
I/O
AA9
I/O
I/O
V15
VDDP
VDDP
W25
I/O
I/O
AA10
I/O
I/O
V16
VDDP
VDDP
Y1
I/O
I/O
AA11
I/O
I/O
V17
VDDP
VDDP
Y2
I/O
I/O
AA12
I/O
I/O
V18
VDDP
VDDP
Y3
I/O
I/O
AA13
I/O
I/O
V19
RCK
RCK
Y4
I/O
I/O
AA14
I/O
I/O
V20
I/O
I/O
Y5
I/O
I/O
AA15
I/O
I/O
V21
I/O
I/O
Y6
I/O
I/O
AA16
I/O
I/O
V22
I/O
I/O
Y7
I/O
I/O
AA17
I/O
I/O
V23
GND
GND
Y8
GND
GND
AA18
I/O
I/O
V24
I/O
I/O
Y9
I/O
I/O
AA19
I/O
I/O
V25
I/O
I/O
Y10
I/O
I/O
AA20
TDI
TDI
W1
I/O
I/O
Y11
I/O
I/O
AA21
TRST
TRST
W2
I/O
I/O
Y12
I/O
I/O
AA22
I/O
I/O
W3
I/O
I/O
Y13
I/O
I/O
AA23
I/O
I/O
W4
I/O
I/O
Y14
I/O
I/O
AA24
I/O
I/O
v5.9
3-83
ProASICPLUS Flash Family FPGAs
624-Pin CCGA/LGA
624-Pin CCGA/LGA
624-Pin CCGA/LGA
Pin
Number
APA600
Function
APA1000
Function
Pin
Number
APA600
Function
APA1000
Function
Pin
Number
APA600
Function
APA1000
Function
AA25
I/O
I/O
AC10
I/O
I/O
AD20
I/O
I/O
AB1
I/O
I/O
AC11
I/O
I/O
AD21
I/O
I/O
AB2
I/O
I/O
AC12
I/O
I/O
AD22
I/O
I/O
AB3
I/O
I/O
AC13
I/O
I/O
AD23
VDD
VDD
AB4
I/O
I/O
AC14
I/O
I/O
AD24
GND
GND
AB5
I/O
I/O
AC15
I/O
I/O
AD25
VDDP
VDDP
AB6
I/O
I/O
AC16
I/O
I/O
AE1
GND
GND
AB7
I/O
I/O
AC17
I/O
I/O
AE2
VDDP
VDDP
AB8
I/O
I/O
AC18
I/O
I/O
AE3
I/O
I/O
AB9
I/O
I/O
AC19
GND
GND
AE4
I/O
I/O
AB10
I/O
I/O
AC20
I/O
I/O
AE5
I/O
I/O
AB11
GND
GND
AC21
I/O
I/O
AE6
I/O
I/O
AB12
I/O
I/O
AC22
I/O
I/O
AE7
I/O
I/O
AB13
I/O
I/O
AC23
I/O
I/O
AE8
I/O
I/O
AB14
I/O
I/O
AC24
VDD
VDD
AE9
I/O
I/O
AB15
GND
GND
AC25
I/O
I/O
AE10
I/O
I/O
AB16
I/O
I/O
AD1
VDDP
VDDP
AE11
I/O
I/O
AB17
I/O
I/O
AD2
GND
GND
AE12
I/O
I/O
AB18
I/O
I/O
AD3
VDD
VDD
AE13
I/O
I/O
AB19
I/O
I/O
AD4
I/O
I/O
AE14
I/O
I/O
AB20
I/O
I/O
AD5
I/O
I/O
AE15
I/O
I/O
AB21
I/O
I/O
AD6
I/O
I/O
AE16
I/O
I/O
AB22
I/O
I/O
AD7
I/O
I/O
AE17
I/O
I/O
AB23
I/O
I/O
AD8
I/O
I/O
AE18
I/O
I/O
AB24
I/O
I/O
AD9
I/O
I/O
AE19
I/O
I/O
AB25
I/O
I/O
AD10
I/O
I/O
AE20
I/O
I/O
AC1
I/O
I/O
AD11
I/O
I/O
AE21
I/O
I/O
AC2
VDD
VDD
AD12
I/O
I/O
AE22
I/O
I/O
AC3
GND
GND
AD13
I/O
I/O
AE23
I/O
I/O
AC4
I/O
I/O
AD14
I/O
I/O
AE24
VDDP
VDDP
AC5
I/O
I/O
AD15
I/O
I/O
AE25
GND
GND
AC6
I/O
I/O
AD16
I/O
I/O
AC7
GND
GND
AD17
I/O
I/O
AC8
I/O
I/O
AD18
I/O
I/O
AC9
I/O
I/O
AD19
I/O
I/O
3 -8 4
v5.9
ProASICPLUS Flash Family FPGAs
Datasheet Information
List of Changes
The following table lists critical changes that were made in the current version of the document.
Previous version
Changes in current version (v5.9)
Page
The –F speed grade is no longer supported and was removed from the datasheet.
N/A
v5.8
(June 2009)
A note regarding RoHS compliant packages was added to the "Device Resources" table.
v5.7
(September 2008)
The "PLL Electrical Specifications" table was updated significantly. Changes were made to the
Input, VCO (Voltage Controlled Oscillator), and Output frequencies, and the acquisition time.
2-18
Table 2-10 • PLL I/O Constraints is new.
2-19
Table 2-23 • DC Electrical Specifications (VDDP = 3.3 V ±0.3 V and VDD = 2.5 V ±0.2 V)
Applies to Commercial and Industrial Temperature Only is the same table that was in v5.7, but it
now only applies to commercial and industrial temperature ranges. Table 2-24 • DC Electrical
Specifications (VDDP = 3.3 V ±0.3 V and VDD = 2.5 V ±0.2 V) Applies to Military Temperature
and MIL-STD-883B Temperature Only is based on Table 2-23 but Table 2-24 only applies to
military temperature. The VOH and VOL specifications were updated in Table 2-24, and changes
have been made to the drive currents at which 3.3 V VOH and VOL voltage levels are measured
and are now split by slew rate. In addition in Table 2-24, the maximum VIL specification has
changed from 0.8 V to 0.7 V for 3.3 V Schmitt-trigger input operation.
2-38
v5.6
(August 2008)
VOH and VOL data in Table 2-24 • DC Electrical Specifications (VDDP = 3.3 V ±0.3 V and VDD =
2.5 V ±0.2 V) Applies to Military Temperature and MIL-STD-883B Temperature Only was
changed back to the data in v5.5.
2-38
v5.5
(February 2007)
VOH and VOL data was updated in Table 2-24 • DC Electrical Specifications (VDDP = 3.3 V ±0.3
V and VDD = 2.5 V ±0.2 V) Applies to Military Temperature and MIL-STD-883B Temperature
Only.
2-38
v5.4
(October 2006)
A statement about single cell and cascaded cell timing diagrams was added to the "Enclosed
Timing Diagrams – FIFO Mode:" section.
2-65
The following pins were updated in the "144-FBGA Pin" table:
Pin Number Updated Function
C2
I/O / GL1
F1
I/O / GL2
3-38
iii
v5.3
The heading, MIL-STD-883B, and note 4 were added to the "Device Resources" table.
iii
(May 2006)
The "Temperature Grade Offerings" table was updated to include the military (M) temperature
grade in the following device/packages:
APA300-FG144
APA300-FG256
APA600-FG256
APA600-FG484
APA600-FG676
APA1000-FG896
iv
v5.2
90° and 270° phase shift support was removed from the datasheet.
(December 2005)
The "Ordering Information" section was updated to include RoHS information.
N/A
ii
The last paragraph of the "Boundary Scan (JTAG)" section was updated.
2-8
The Output Frequency Range in the "Timing Control and Characteristics" section.
2-10
The title for Table 2-19 • Military Temperature Grade Product Performance Retention was
updated.
2-32
The caption was updated in Figure 2-45 • FIFO Reset.
2-72
v5.9
4-1
ProASICPLUS Flash Family FPGAs
Previous version
v5.1
v5.0
v4.1
Changes in current version (v5.9)
Page
MIL-STD-883 was added to the datasheet.
N/A
VCC and VCCI were changed to VDDP.
N/A
Table 2-9 • Temperature and Voltage Derating Factors was updated to include 135°C.
2-17
In the "208-Pin PQFP" table, the following pin numbers have been updated:
Pin Number
Function
24
I/O / GL2
30
I/O / GL1
3-6
In the "208-Pin CQFP" table, the following pin numbers have been updated:
Pin Number
Function
23
I/O / GLMX1
24
I/O / GL2
28
PPECL1 / Input
30
I/O / GL1
128
I/O / GL3
129
PPECL2 / Input
134
I/O / GL4
135
I/O / GLMX2
3-13
In the "624-Pin CCGA/LGA" table, the following pin numbers have been updated:
Pin Number
Function
M6
I/O / GL2
M7
I/O / GLMX1
M19
I/O / GLMX2
M20
I/O / GL4
N5
PPECL1 / Input
N6
I/O / GL1
N20
I/O / GL3
N21
PPECL2 / Input
3-79
MIL-STD 883B data will be added into this datasheet after the MIL-STD 883B qualification is
complete.
Green packaging information in the "Ordering Information" section was updated.
ii
The "Temperature Grade Offerings" table was updated for the CG624.
iv
The "Ordering Information" section was updated.
ii
The "Live at Power-Up" section is new.
1-3
Note 2 in Figure 2-1 • Ultra-Fast Local Resources was updated.
2-1
The 3.3 V column in Table 2-3 was updated.
2-6
The "Input/Output Blocks" section was updated.
2-6
The note was removed from Table 2-4 • I/O Features.
2-6
The "Power-Up Sequencing" section was updated.
2-7
The first bullet in the "ProASIC
PLUS
Clock Management System" section was updated.
2-31
Mixed Voltage was removed from Table 2-20 • Recommended Maximum Operating
Conditions Programming and PLL Supplies.
2-33
Table 2-21 • Recommended Operating Conditions was updated.
2-33
Mixed Mode Voltage was removed from Table 2-22 and the Military/MIL-STD-883B column was
updated.
2-34
All tables from Table 2-27 • Worst-Case Commercial Conditions to Table 2-47 • Worst-Case
Military Conditions1 were updated.
2-42 to
2-51
Table 2-50 • JTAG Switching Characteristics is new.
4 -2
2-10
The first paragraph in the "Performance Retention" section was updated.
v5.9
2-53
ProASICPLUS Flash Family FPGAs
Previous version
v4.1
(continued)
v4.0
Changes in current version (v5.9)
Page
Figure 2-27 • JTAG Operation Timing is new.
2-53
Note 1 in Table 2-52 • TJ = 0°C to 110°C; VDD = 2.3 V to 2.7 V for Commercial/Industrial was
updated.
2-55
The notes in Table 2-56 • TJ = 0°C to 110°C; VDD = 2.3 V to 2.7 V for Commercial/Industrial
were updated.
2-59
A note was added to Figure 2-45 • FIFO Reset.
2-72
A note was added to Table 2-68 • TJ = 0°C to 110°C; VDD = 2.3 V to 2.7 V for Commercial/
Industrial.
2-72
The "TRST Test Reset Input" section was updated in the "Pin Description" section.
2-73
The "624-Pin CCGA/LGA" section was updated for the APA600 and APA1000. Please review all
pin data.
3-78
Figure 2-17 • Using the PLL for Clock Deskewing was updated.
2-16
Table 2-48 • Recommended Operating Conditions was updated.
2-52
The "1152-Pin FBGA" figure was updated.
3-69
Pin names were changed to more accurately reflect the multiple functions supported by each
pin.
v3.5
v3.4
The ProASICPLUS and ProASICPLUS Military/Aerospace datasheets were combined. This
document now supports Commercial, Industrial, and Military Temperature devices.
Table 1 • ProASICPLUS Product Profile was updated.
i
The "Ordering Information" section was updated.
ii
"Plastic Device Resources" table was updated.
ii
The Long Term Jitter Peak-to-Peak Max. in the "PLL Electrical Specifications" table was updated.
2-18
The "Calculating Typical Power Dissipation" section was updated.
2-28
"Performance Retention" section
2-31
Table 2-19 • Military Temperature Grade Product Performance Retention
2-32
Table 2-21 • Recommended Operating Conditions was updated.
2-33
Table 2-22 • DC Electrical Specifications (VDDP = 2.5 V ±0.2V) was updated.
2-34
Table 2-24 • DC Electrical Specifications (VDDP = 3.3 V ±0.3 V and VDD = 2.5 V ±0.2 V) Applies
to Military Temperature and MIL-STD-883B Temperature Only was updated.
2-38
Table 2-48 • Recommended Operating Conditions was updated.
2-52
The "Temperature Grade Offerings" table is new.
The "Speed Grade and Temperature Matrix" table is new.
v3.3
iv
iv
The "ProASICPLUS Clock Management System" section was updated.
2-10
The "Lock Signal" section was updated.
2-13
The "PLL Electrical Specifications" table was updated.
2-18
The "User Security" section was updated.
2-20
The "Design Environment" section was updated.
2-25
Table 2-16 • Package Thermal Characteristics was updated.
2-27
The "Asynchronous FIFO Full and Empty Transitions" section was updated.
2-65
The "AVDD PLL Power Supply" section in the "Pin Description" section was updated.
2-73
The "144-Pin TQFP" table was updated. The following pins changed:
Pin 15 = GLMX1
Pin 16 = GL1
Pin 21 = GL2
Pin 88 = GL3
Pin93 = GL4
Pin 94 = GLMX2
3-4
v5.9
4-3
ProASICPLUS Flash Family FPGAs
Previous version
v3.2
Changes in current version (v5.9)
Page
The "ProASICPLUS Clock Management System" section was updated.
2-10
Figure 2-11 • PLL Block – Top-Level View and Detailed PLL Block Diagram was updated.
2-11
Table 2-7 • Clock-Conditioning Circuitry MUX Settings is new.
2-12
Figure 2-17 • Using the PLL for Clock Deskewing was updated.
2-16
The "PLL Electrical Specifications" section was updated.
2-18
Figure 2-23 • Tristate Buffer Delays was updated.
2-42
In the "Calculating Typical Power Dissipation" section, P9 was changed to 7.5 mW.
2-28
The "Programming, Storage, and Operating Limits" section was updated.
2-31
The "Recommended Design Practice for VPN/VPP" section was updated.
2-74
v3.1
The datasheet was updated to include references to guidelines concerning the use of certain
ProASICPLUS I/O standards.
v3.0
In Table 2-2 • Array Coordinates, the Memory Rows – Bottom coordinates were changed.
2-5
Figure 2-5 • Core Cell Coordinates for the APA1000 was updated.
2-5
The VIL Minimum in the Table 2-24 • DC Electrical Specifications (VDDP = 3.3 V ±0.3 V and VDD
= 2.5 V ±0.2 V) Applies to Military Temperature and MIL-STD-883B Temperature Only was
changed from 0.3 to –0.3.
2-38
In the "Output Buffer Delays" section, the OB25LPLL tDHL Standard changed to 5.3.
2-44
In the "Sample Macrocell Library Listing" section, the AND2 Standard maximum changed to 0.7
and the –F maximum changed to 0.8.
2-51
v2.0
The Table 1 • ProASICPLUS Product Profile was updated.
i
The "Ordering Information" section was updated.
ii
The "Plastic Device Resources" section was updated.
ii
The "ProASIC
PLUS
Architecture" section was updated.
2-5
Figure 2-5 • Core Cell Coordinates for the APA1000 is new.
2-13
Figure 2-8 • LVPECL High and Low Threshold Values is new.
2-7
The Introduction section in the "ProASIC
PLUS
Clock Management System" section was updated.
The "Physical Implementation" section was updated.
The "Functional Description" section was updated.
Figure 2-11 • PLL Block – Top-Level View and Detailed PLL Block Diagram through Figure 217 • Using the PLL for Clock Deskewing were updated.
4 -4
1-2
Table 2-2 • Array Coordinates was updated.
2-10
2-10
2-10
2-11 to 2-16
The "PLL Electrical Specifications" section was updated.
2-18
Figure 2-22 • Multi-Port Memory Usage was updated.
2-24
The "Calculating Typical Power Dissipation" section was updated.
2-28
The "Nominal Supply Voltages’ section was updated.
1-34
The Table 2-24 • DC Electrical Specifications (VDDP = 3.3 V ±0.3 V and VDD = 2.5 V ±0.2 V)
Applies to Military Temperature and MIL-STD-883B Temperature Only was updated.
2-38
The "Tristate Buffer Delays" section was updated.
2-42
The "Output Buffer Delays" section was updated.
2-44
The"Input Buffer Delays" section was updated.
2-46
"Global Routing Skew" section was updated.
2-50
The"Sample Macrocell Library Listing" section was updated.
2-51
The "Pin Description" section was updated.
2-73
v5.9
ProASICPLUS Flash Family FPGAs
Previous version
v2.0
(continued)
Changes in current version (v5.9)
Page
The following pins have been changed in the "100-Pin TQFP" table:
Pin Number
Function
Pin Number
Function
10
I/O (GLMX1)
60
GL3
11
GL1
61
PPECL2 (I/P)
13
NPECL1
63
NPECL2
15
PPECL1(I/P)
65
GL4
16
GL2
66
I/O (GLMX2)
3-1
"144-Pin TQFP" section is new.
3-3
The following pins have been changed in the "208-Pin PQFP" table:
Pin Number
Function
Pin Number
Function
23
I/O (GLMX1)
128
GL3
24
GL1
129
PPECL2 (I/P)
26
NPECL1
132
NPECL2
28
PPECL1 (I/P)
134
GL4
30
GL2
135
I/O (GLMX2)
3-5
The following pins have been changed in the "456-Pin PBGA" table:
Pin Number
Function
Pin Number
Function
M1
GL1
N22
NPECL2
M2
GL2
N23
GL3
M22
GL4
N25
I/O (GLMX2)
N2
I/O (GLMX1)
P5
NPECL1
N4
PPECL1 (I/P)
P26
PPECL2 (I/P)
3-22
The following pins have been changed in the "144-Pin FBGA" table:
Pin Number
Function
Pin Number
Function
C2
GL2
F9
GL4
D12
I/O (GLMX2
)F11
PPECL2 (I/P
E11
NPECL2
F12
GL3
F1
GL1
G1
PPECL1 (I/P)
F3
I/O (GLMX1)
G4
NPECL1
3-37
The following pins have been changed in the "256-Pin FBGA" table:
Pin Number
Function
Pin Number
Function
H1
GL1
H16
GL4
H2
NPECL1
J1
GL2
H3
I/O (GLMX1)
J2
PPECL1 (I/P)
H13
I/O (GLMX2)
J13
PPECL2 (I/P)
H14
NPECL2
J16
GL3
3-40
The following pins have been changed in the "484-Pin FBGA" table:
Pin Number
Function
Pin Number
Function
L4
GL1
L19
GL4
L5
NPECL1
M4
GL2
L6
I/O (GLMX1)
M5
PPECL1 (I/P)
L16
I/O (GLMX2)
M16
PPECL2 (I/P)
L17
NPECL2
M19
GL3
3-45
The following pins have been changed in the "676-Pin FBGA" table:
Pin Number
Function
Pin Number
Function
N1
GL1
N25
GL4
N3
I/O (GLMX1)
P1
GL2
N5
NPECL1
P5
PPECL1 (I/P)
N22
GL3
P22
I/O (GLMX2)
N24
NPECL2
P24
PPECL2 (I/P)
3-51
The following pins have been changed in the "896-Pin FBGA" table:
Pin Number
Function
Pin Number
Function
R2
I/O (GLMX1)
T3
GL2
R4
NPECL1
T4
PPECL1 (I/P)
R5
GL1
T26
PPECL2 (I/P)
R27
NPECL2
T27
GL4
R29
I/O (GLMX2)
T28
GL3
3-59
v5.9
4-5
ProASICPLUS Flash Family FPGAs
Previous version
Changes in current version (v5.9)
Page
v2.0
(continued)
The following pins have been changed in the "1152-Pin FBGA" table:
Pin Number
Function
Pin Number
Function
U4
I/O (GLMX1)
U29
NPECL2
U6
NPECL1
U31
I/O (GLMX2)
U7
GL1
V28
PPECL2 (I/P)
V5
GL2
V29
GL4
V6
PPECL1 (I/P)
V30
GL3
3-69
Advance v0.7
The "ProASICPLUS Architecture" section was updated.
1-2
The "Array Coordinates" section and Table 2-2 • Array Coordinates are new.
2-5
The "Power-Up Sequencing" section is new.
2-7
"I/O Features" section was updated.
2-6
The "Timing Control and Characteristics" section was updated. "Physical Implementation"
section, "Functional Description" section, "Lock Signal" section, and "PLL Configuration
Options" section are new.
Advance v0.6
"PLL Block – Top-Level View and Detailed PLL Block Diagram" section was updated.
2-11
Figure 2-12 • Input Connectors to ProASICPLUS Clock Conditioning Circuitry was updated.
2-12
"Sample Implementations" section, "Adjustable Clock Delay" section, and the "Clock Skew
Minimization" section are new.
2-13
Figure 2-13 • Using the PLL 33 MHz In, 133 MHz Outthrough and Figure 2-17 • Using the PLL
for Clock Deskewing are new.
2-14 to 2-16
The "PLL Electrical Specifications" section is new.
2-18
The "Design Environment" section was updated.
2-25
Figure 2-23 • Tristate Buffer Delays was updated.
2-42
The "Calculating Typical Power Dissipation" section was updated.
2-28
The "DC Electrical Specifications (VDDP = 2.5 V ±0.2V)" section was updated.
2-34
The Table 2-24 • DC Electrical Specifications (VDDP = 3.3 V ±0.3 V and VDD = 2.5 V ±0.2 V)
Applies to Military Temperature and MIL-STD-883B Temperature Only was updated.
2-38
The "DC Specifications (3.3 V PCI Operation)1" section was updated.
2-40
The "Tristate Buffer Delays" section (the figure and table) have been updated.
2-42
The "Output Buffer Delays" section (the figure and table) have been updated.
2-44
The "Input Buffer Delays" section was updated.
2-46
The "Global Input Buffer Delays" section was updated.
2-48
The "Predicted Global Routing Delay" section was updated.
2-50
The "Global Routing Skew" section was updated.
2-50
The "Sample Macrocell Library Listing" section was updated.
2-51
The "Pin Description" section was updated. GLMX is new.
2-73
The "Recommended Design Practice for VPN/VPP" section was updated.
2-74
Pin AK31 of FG1152 for the APA1000 changed to VPP.
3-69
The "Features and Benefits" section were updated.
i
The "ProASICPLUS Product Profile" section was updated.
i
The "Ordering Information" section was updated.
ii
The "Plastic Device Resources" was updated.
The "ProASICPLUS Architecture" section was updated.
4 -6
2-10 to 2-13
ii
1-2
Table 2-1 • Clock Spines was updated.
2-4
Figure 2-11 • PLL Block – Top-Level View and Detailed PLL Block Diagram was updated.
2-11
The "Design Environment" section was updated.
2-25
The "Package Thermal Characteristics" section was updated.
2-27
v5.9
ProASICPLUS Flash Family FPGAs
Previous version
Advance v0.6
(continued)
Changes in current version (v5.9)
Page
The "Calculating Typical Power Dissipation" section was updated.
2-28
The "Absolute Maximum Ratings*" section was updated.
2-31
The "Programming, Storage, and Operating Limits" section was updated.
2-31
The "Nominal Supply Voltages’ section was updated.
1-34
The "Recommended Operating Conditions" section was updated.
2-33
The "DC Electrical Specifications (VDDP = 2.5 V ±0.2V)" section was updated.
2-34
The "DC Electrical Specifications (VDDP = 3.3 V ±0.3 V and VDD = 2.5 V ±0.2 V) Applies to
Military Temperature and MIL-STD-883B Temperature Only" section was updated.
2-38
The "Synchronous Write and Read to the Same Location" section was updated.
2-61
The "Asynchronous Write and Synchronous Read to the Same Location" section was updated.
2-62
The "Asynchronous FIFO Read" section was updated.
2-67
The "Pin Description" section has been updated.
2-73
The "Recommended Design Practice for VPN/VPP" section is new.
2-74
The "100-Pin TQFP" section is new.
3-1
The "484-Pin FBGA" section is new.
3-45
Advance v0.5
The description for the VPN pin has changed.
2-74
Advance v0.4
The "Plastic Device Resources" section has been updated.
Advance v0.3
ii
Figure 2-9 • ProASICPLUS JTAG Boundary Scan Test Logic Circuit and Figure 2-10 • TAP
Controller State Diagram have been updated.
2-11
The "Tristate Buffer Delays" section has been updated.
2-42
The "Output Buffer Delays" section has been updated.
2-44
The "Input Buffer Delays" section has been updated.
2-46
The "Global Input Buffer Delays" section has been updated.
2-48
The "456-Pin PBGA" section has been updated.
3-22
The "676-Pin FBGA" section has been updated.
3-51
The "ProASICPLUS Product Profile" section has been changed.
i
The "Plastic Device Resources" section has been updated.
ii
The "ProASICPLUS I/O Power Supply Voltages" sectionhas been updated.
2-6
WDATA has ben changed to DI, and RDATA has been changed to DO to make them consistent
with the signal names found in the Macro Library Guide.
Figure 2-18 • Example SRAM Block Diagrams and Figure 2-19 • Basic FIFO Block Diagrams
have been updated.
2-22
and 2-23
The "Design Environment" section and Figure 2-23 • Tristate Buffer Delays have been
updated.
2-25
and 2-42
The table in the "Package Thermal Characteristics" section has been updated.
2-27
The "Calculating Typical Power Dissipation" section is new.
2-28
The "Programming, Storage, and Operating Limits" section is new.
2-31
The "Nominal Supply Voltages’ section has been updated.
1-34
The "DC Electrical Specifications (VDDP = 2.5 V ±0.2V)" section was updated.
2-34
The "DC Electrical Specifications (VDDP = 3.3 V ±0.3 V and VDD = 2.5 V ±0.2 V) Applies to
Military Temperature and MIL-STD-883B Temperature Only" section was updated.
2-38
The "Recommended Operating Conditions" section was updated.
2-33
The "ProASICPLUS Clock Management System" section was updated.
2-10
Figure 2-11 • PLL Block – Top-Level View and Detailed PLL Block Diagram was updated.
2-11
Figure 2-10 • TAP Controller State Diagram is new.
2-9
Tables 5, 6, and 7 from Advanced v0.3 were removed.
v5.9
4-7
ProASICPLUS Flash Family FPGAs
Previous version
Advance v0.3
(continued)
Changes in current version (v5.9)
Page
The "Memory Block SRAM Interface Signals" section was updated.
2-22
The "Memory Block FIFO Interface Signals" section was updated.
2-23
All pinout tables have been updated, and several packages are new:
208-Pin PQFP – APA150, APA300, APA450, APA600
456-Pin PBGA – APA150, APA300, APA450, APA600
144-Pin FBGA – APA150, APA300, APA450
256-Pin FBGA – APA150, APA300, APA450, APA600
676-Pin FBGA – APA600
Advance v0.1
Figure 2-20 • APA1000 Memory Block Architecture has been updated.
2-24
Data Sheet Categories
In order to provide the latest information to designers, some datasheets are published before data has been fully
characterized. Datasheets are designated as "Product Brief," "Advanced," "Production," and "Datasheet
Supplement." The definition of these categories are as follows:
Product Brief
The product brief is a summarized version of a datasheet (advanced or production) containing general product
information. This brief gives an overview of specific device and family information.
Advance
This datasheet version contains initial estimated information based on simulation, other products, devices, or speed
grades. This information can be used as estimates, but not for production.
Unmarked (production)
This datasheet version contains information that is considered to be final.
Datasheet Supplement
The datasheet supplement gives specific device information for a derivative family that differs from the general family
datasheet. The supplement is to be used in conjunction with the datasheet to obtain more detailed information and
for specifications that do not differ between the two families.
Export Administration Regulations (EAR)
The products described in this datasheet are subject to the Export Administration Regulations (EAR). They could
require an approved export license prior to export from the United States. An export includes release of product or
disclosure of technology to a foreign national inside or outside the United States.
Actel Safety Critical, Life Support, and High-Reliability Applications
Policy
The Actel products described in this advance status datasheet may not have completed Actel’s qualification process.
Actel may amend or enhance products during the product introduction and qualification process, resulting in changes
in device functionality or performance. It is the responsibility of each customer to ensure the fitness of any Actel
product (but especially a new product) for a particular purpose, including appropriateness for safety-critical, lifesupport, and other high-reliability applications. Consult Actel’s Terms and Conditions for specific liability exclusions
relating to life-support applications. A reliability report covering all of Actel’s products is available on the Actel
website at http://www.actel.com/documents/ORT_Report.pdf. Actel also offers a variety of enhanced qualification and
lot acceptance screening procedures. Contact your local Actel sales office for additional reliability information.
4 -8
v5.9
Actel and the Actel logo are registered trademarks of Actel Corporation.
All other trademarks are the property of their owners.
Actel is the leader in low-power and mixed-signal FPGAs and offers the most comprehensive portfolio of
system and power management solutions. Power Matters. Learn more at www.actel.com.
Actel Corporation
Actel Europe Ltd.
Actel Japan
Actel Hong Kong
2061 Stierlin Court
Mountain View, CA
94043-4655
USA
Phone 650.318.4200
Fax 650.318.4600
River Court, Meadows Business Park
Station Approach, Blackwater
Camberley Surrey GU17 9AB
United Kingdom
Phone +44 (0) 1276 609 300
Fax +44 (0) 1276 607 540
EXOS Ebisu Building 4F
1-24-14 Ebisu Shibuya-ku
Tokyo 150 Japan
Phone +81.03.3445.7671
Fax +81.03.3445.7668
http://jp.actel.com
Room 2107, China Resources Building
26 Harbour Road
Wanchai, Hong Kong
Phone +852 2185 6460
Fax +852 2185 6488
www.actel.com.cn
5172161-25/12.09