ETC 79RC32V333

79RC32333
IDTTM InterpriseTM Integrated
Communications Processor
Features
Programmable I/O (PIO)
– Input/Output/Interrupt source
– Individually programmable
◆
SDRAM Controller (32-bit memory only)
– 4 banks, non-interleaved
– Up to 512MB total SDRAM memory supported
– Implements full, direct control of discrete, SODIMM, or DIMM
memories
– Supports 16Mb through 512Mb SDRAM device depths
– Automatic refresh generation
◆
Serial Peripheral Interface (SPI) master mode interface
◆
UART Interface
– 16550 compatible UART
– Baud rate support up to 1.5M
◆
Memory & Peripheral Controller
– 6 banks, up to 8MB per bank
– Supports 8-,16-, and 32-bit interfaces
– Supports Flash ROM, SRAM, dual-port memory, and
peripheral devices
– Supports external wait-state generation
– 8-bit boot PROM support
– Flexible I/O timing protocols
◆
RC32300 32-bit Microprocessor
– Up to 150 MHz operation
– Enhanced MIPS-II Instruction Set Architecture (ISA)
– Cache prefetch instruction
– Conditional move instruction
– DSP instructions
– Supports big or little endian operation
– MMU with 32 page TLB
– 8KB Instruction Cache, 2-way set associative
– 2KB Data Cache, 2-way set associative
– Cache locking per line
– Programmable on a page basis to implement a write-through
no write allocate, write-through write allocate, or write-back
algorithms for cache management
– Compatible with a wide variety of operating systems
◆
Local Bus Interface
– Up to 75 MHz operation
– 23-bit address bus
– 32-bit data bus
– Direct control of local memory and peripherals
– Programmable system watch-dog timers
– Big or little endian support
◆ Interrupt Controller simplifies exception management
◆ Four general purpose 32-bit timer/counters
◆
Block Diagram
EJTAG
In-Circuit Emulator Interface
RISCore 32300
Enhanced MIPS-II ISA
Integer CPU
Interrupt Control
Programmable I/O
RC5000
Compatible
CP0
32-bit Timers
SPI Control
DMA Control
32-page
TLB
UART
IPBus
Bridge
2KB
2-set, Lockable
Data Cache
Local
Memory/IO
Control
8KB
2-set
Lockable
Instr. Cache
IDT
Peripheral
Bus
SDRAM
Control
PCI Bridge
Figure 1 RC32333 Block Diagram
IDT and the IDT logo are registered trademarks of Integrated Device Technology, Inc.
1 of 28
 2002 Integrated Device Technology, Inc.
September 18, 2002
DSC 6209
IDT 79RC32333
4 DMA Channels
– 4 general purpose DMA, each with endianess swappers and
byte lane data alignment
– Supports scatter/gather, chaining via linked lists of records
– Supports memory-to-memory, memory-to-I/O, memory-toPCI, PCI-to-PCI, and I/O-to-I/O transfers
– Supports unaligned transfers
– Supports burst transfers
– Programmable DMA bus transactions burst size
(up to 16 bytes)
◆
PCI Bus Interface
– 32-bit PCI, up to 50 MHz
– Revision 2.2 compatible
– Target or master
– Host or satellite
– Three slot PCI arbiter
– Serial EEPROM support, for loading configuration registers
◆
Off-the-shelf development tools
◆ JTAG Interface (IEEE Std. 1149.1 compatible)
◆
208 QFP Package
◆
3.3V operation with 5V compatible I/O
◆
EJTAG in-circuit emulator interface
◆
Device Overview
The IDT RC32333 device is an integrated processor based on the
RC32300 CPU core. This product incorporates a high-performance, lowcost 32-bit CPU core with functionality common to a large number of
embedded applications. The RC32333 integrates these functions to
enable the use of low-cost PC commodity market memory and I/O
devices, allowing the aggressive price/performance characteristics of
the CPU to be realized quickly into low-cost systems.
Serial
Channel
Programmable I/O
Serial
EEPROM
CPU Execution Core
The RC32333 integrates the RISCore 32300, the same CPU core
found in the award-winning RC32364 microprocessor.
The RISCore 32300 implements the Enhanced MIPS-II ISA. Thus, it
is upwardly compatible with applications written for a wide variety of
MIPS architecture processors, and it is kernel compatible with the
modern operating systems that support IDT’s 64-bit RISController
product family.
The RISCore 32300 was explicitly defined and designed for integrated processor products such as the RC32333. Key attributes of the
execution core found within this product include:
◆ High-speed, 5-stage scalar pipeline executes to 150MHz. This
high performance enables the RC32333 to perform a variety of
performance intensive tasks, such as routing, DSP algorithms,
etc.
◆
32-bit architecture with enhancements of key capabilities. Thus,
the RC32333 can execute existing 32-bit programs, while
enabling designers to take advantage of recent advances in
CPU architecture.
◆
Count leading-zeroes/ones. These instructions are common to a
wide variety of tasks, including modem emulation, voice over IP
compression and decompression, etc.
◆
Cache PREFetch instruction support, including a specialized
form intended to help memory coherency. System programmers
can allocate and stage the use of memory bandwidth to achieve
maximum performance.
◆
8KB of 2-way set associative instruction cache
RC32333
Integrated
Core
Controller
SDRAM
Local
Memory
I/O Bus
FLASH
Local I/O
32-bit, 33MHz PCI
Figure 2 RC32333 Based System Diagram
2 of 28
September 18, 2002
IDT 79RC32333
◆
◆
◆
◆
2KB of 2-way set associative data cache, capable of write-back
and write-through operation.
Cache locking per line to speed real-time systems and critical
system functions
On-chip TLB to enable multi-tasking in modern operating
systems
EJTAG interface to enable sophisticated low-cost in-circuit
emulation.
Synchronous-DRAM Interface
The RC32333 integrates a SDRAM controller which provides direct
control of system SyncDRAM running at speeds to 75MHz.
Key capabilities of the SDRAM controller include:
◆
Direct control of 4 banks of SDRAM (up to 2 64-bit wide DIMMs)
◆ On-chip page comparators optimize access latency.
◆
Speeds to 75MHz
◆
Programmable address map.
◆
Supports 16, 64, 128, 256, or 512Mb SDRAM devices
◆
Automatic refresh generation driven by on-chip timer
◆
Support for discrete devices, SODIMM, or DIMM modules.
PCI Bus Bridge
In order to leverage the wide availability of low-cost peripherals for
the PC market as well as to simplify the design of add-in functions, the
RC32333 integrates a full 32-bit PCI bus bridge. Key attributes of this
bridge include:
◆
50 MHz operation
◆
PCI revision 2.2 compliant
◆ Programmable address mappings between CPU/Local memory
and PCI memory and I/O
◆
On-chip PCI arbiter
◆
Extensive buffering allows PCI to operate concurrently with local
memory transfers
◆ Selectable byte-ordering swapper
◆
5V tolerant I/O.
On-Chip DMA Controller
To minimize CPU exception handling and maximize the efficiency of
system bandwidth, the RC32333 integrates a very sophisticated 4channel DMA controller on chip.
The RC32333 DMA controller is capable of:
◆
Chaining and scatter/gather support through the use of a
flexible, linked list of DMA transaction descriptors
◆
Capable of memory<->memory, memory<->I/O, and
PCI<->memory DMA
◆
Unaligned transfer support
◆
Byte, halfword, word, quadword DMA support.
Thus, systems can take advantage of the full range of commodity
memory that is available, enabling system optimization for cost, realestate, or other attributes.
Local Memory and I/O Controller
The local memory and I/O controller implements direct control of
external memory devices, including the boot ROM as well as other
memory areas, and also implements direct control of external peripherals.
The local memory controller is highly flexible, allowing a wide range
of devices to be directly controlled by the RC32333 processor. For
example, a system can be built using an 8-bit boot ROM, 16-bit FLASH
cards (possibly on PCMCIA), a 32-bit SRAM or dual-port memory, and a
variety of low-cost peripherals.
Key capabilities include:
◆ Direct control of EPROM, FLASH, RAM, and dual-port memories
◆
6 chip-select outputs, supporting up to 8MB per memory space
◆ Supports mixture of 8-, 16-, and 32-bit wide memory regions
◆ Flexible timing protocols allow direct control of a wide variety of
devices
◆
Programmable address map for 2 chip selects
◆ Automatic wait state generation.
On-Chip Peripherals
The RC32333 also integrates peripherals that are common to a wide
variety of embedded systems.
◆
Single 16550 compatible UART.
◆ SPI master mode interface for direct interface to EEPROM,
A/D, etc.
◆
Interrupt Controller to speed interrupt decode and management
◆
Four 32-bit on-chip Timer/Counters
◆ Programmable I/O module
Debug Support
To facilitate rapid time to market, the RC32333 provides extensive
support for system debug.
First and foremost, this product integrates an EJTAG in-circuit emulation module, allowing a low-cost emulator to interoperate with programs
executing on the controller. By using an augmented JTAG interface, the
RC32333 is able to reuse the same low-cost emulators developed
around the RC32364 CPU.
3 of 28
September 18, 2002
IDT 79RC32333
Secondly, the RC32333 implements additional reporting signals
intended to simplify the task of system debugging when using a logic
analyzer. This product allows the logic analyzer to differentiate transactions initiated by DMA from those initiated by the CPU and further allows
CPU transactions to be sorted into instruction fetches vs. data fetches.
Finally, the RC32333 implements a full boundary scan capability,
allowing board manufacturing diagnostics and debug.
Packaging
The RC32333 is packaged using a 208 Quad Flat Pack (QFP)
package.
Thermal Considerations
The RC32333 consumes less than 2.0 W peak power. The device is
guaranteed in an ambient temperature range of 0° to +70° C for
commercial temperature devices; -40° to +85° C for industrial temperature devices.
Revision History
September 18, 2002: Initial publication.
4 of 28
September 18, 2002
IDT 79RC32333
Pin Description Table
The following table lists the pins provided on the RC32333. Note that those pin names followed by “_n” are active-low signals. All external pull-ups
and pull-downs require 10 kΩ resistor.
Name
Type
Drive
Reset
Strength
State
Status Capability
Description
Local System Interface
mem_data[31:0]
I/O
Z
mem_addr[22:2]
I/O
[22:10] Z
[9:2] L
High
Local system data bus
Primary data bus for memory. I/O and SDRAM.
[22:17] Low Memory Address Bus
These signals provide the Memory or DRAM address, during a Memory or DRAM bus transaction. During
[16:2] High each word data, the address increments either in linear or sub-block ordering, depending on the transaction type. The table below indicates how the memory write enable signals are used to address discreet
memory port width types.
Port Width
Pin Signals
mem_we_n[3]
mem_we_n[2] mem_we_n[1]
mem_we_n[0]
DMA (32-bit) mem_we_n[3]
mem_we_n[2]
mem_we_n[1]
mem_we_n[0]
32-bit
mem_we_n[3]
mem_we_n[2]
mem_we_n[1]
mem_we_n[0]
16-bit
Byte High Write Enable mem_addr[1]
Not Used (Driven
Low)
Byte Low Write
Enable
8-bit
Not Used (Driven High) mem_addr[1]
mem_addr[0]
Byte Write Enable
mem_addr[22] Alternate function: reset_boot_mode[1].
mem_addr[21] Alternate function: reset_boot_mode[0].
mem_addr[20] Alternate function: reset_pci_host_mode.
mem_addr[19] Alternate function: modebit [9].
mem_addr[18] Alternate function: modebit [8].
mem_addr[17] Alternate function: modebit [7].
mem_addr[16] Alternate function: sdram_addr[16].
mem_addr[15] Alternate function: sdram_addr[15].
mem_addr[14] Alternate function: sdram_addr[14].
mem_addr[13] Alternate function: sdram_addr[13].
mem_addr[11] Alternate function: sdram_addr[11].
mem_addr[10] Alternate function: sdram_addr[10].
mem_addr[9] Alternate function: sdram_addr[9].
mem_addr[8] Alternate function: sdram_addr[8].
mem_addr[7] Alternate function: sdram_addr[7].
mem_addr[6] Alternate function: sdram_addr[6].
mem_addr[5] Alternate function: sdram_addr[5].
mem_addr[4] Alternate function: sdram_addr[4].
mem_addr[3] Alternate function: sdram_addr[3].
mem_addr[2] Alternate function: sdram_addr[2].
mem_cs_n[5:0]
Output
H
Low
Memory Chip Select Negated Recommend an external pull-up.
Signals that a Memory Bank is actively selected.
mem_oe_n
Output
H
High
Memory Output Enable Negated Recommend an external pull-up.
Signals that a Memory Bank can output its data lines onto the cpu_ad bus.
mem_we_n[3:0]
Output
H
High
Memory Write Enable Negated Bus
Signals which bytes are to be written during a memory transaction. Bits act as Byte Enable and
mem_addr[1:0] signals for 8-bit or 16-bit wide addressing.
Table 1 Pin Descriptions (Part 1 of 6)
5 of 28
September 18, 2002
IDT 79RC32333
Name
mem_wait_n
Type
Drive
Reset
Strength
State
Status Capability
Input
Description
—
Memory Wait Negated Requires an external pull-up.
SRAM/IOI/IOM modes: Allows external wait-states to be injected during the last cycle before data is sampled.
DPM (dual-port) mode: Allows dual-port busy signal to restart memory transaction.
Alternate function: sdram_wait_n.
mem_245_oe_n
Output
H
Low
Memory FCT245 Output Enable Negated
Controls output enable to optional FCT245 transceiver bank by asserting during both reads and writes to
a memory or I/O bank.
mem_245_dt_r_n
Output
Z
High
Memory FCT245 Direction Xmit/Rcv Negated Recommend an external pull-up.
Alternate function: cpu_dt_r_n. See CPU Core Specific Signals below.
output_clk
Output cpu_mas
terclk
High
Output Clock
Optional clock output.
PCI Interface
pci_ad[31:0]
I/O
Z
PCI
PCI Multiplexed Address/Data Bus
Address driven by Bus Master during initial frame_n assertion, and then the Data is driven by the Bus
Master during writes; or the Data is driven by the Bus Slave during reads.
pci_cbe_n[3:0]
I/O
Z
PCI
PCI Multiplexed Command/Byte Enable Bus
Command (not negated) Bus driven by the Bus Master during the initial frame_n assertion. Byte Enable
Negated Bus driven by the Bus Master during the data phase(s).
pci_par
I/O
Z
PCI
PCI Parity
Even parity of the pci_ad[31:0] bus. Driven by Bus Master during Address and Write Data phases. Driven
by the Bus Slave during the Read Data phase.
pci_frame_n
I/O
Z
PCI
PCI Frame Negated
Driven by the Bus Master. Assertion indicates the beginning of a bus transaction. De-assertion indicates
the last datum.
pci_trdy_n
I/O
Z
PCI
PCI Target Ready Negated
Driven by the Bus Slave to indicate the current datum can complete.
pci_irdy_n
I/O
Z
PCI
PCI Initiator Ready Negated
Driven by the Bus Master to indicate that the current datum can complete.
pci_stop_n
I/O
Z
PCI
PCI Stop Negated
Driven by the Bus Slave to terminate the current bus transaction.
pci_idsel_n
Input
—
PCI Initialization Device Select
Uses pci_req_n[2] pin. See the PCI subsection.
pci_perr_n
I/O
Z
PCI
PCI Parity Error Negated
Driven by the receiving Bus Agent 2 clocks after the data is received, if a parity error occurs.
pci_serr_n
I/O
Opencollector
Z
PCI
System Error Requires an external pull-up.
Driven by any agent to indicate an address parity error, data parity during a Special Cycle command, or
any other system error.
pci_clk
Input
—
PCI Clock
Clock for PCI Bus transactions. Uses the rising edge for all timing references.
pci_rst_n
Input
L
—
PCI Reset Negated
Host mode: Resets all PCI related logic.
Satellite mode: with boot from PCI mode: Resets all PCI related logic and also warm resets the 32333.
I/O
Z
PCI
PCI Device Select Negated
Driven by the target to indicate that the target has decoded the present address as a target address.
pci_devsel_n
Table 1 Pin Descriptions (Part 2 of 6)
6 of 28
September 18, 2002
IDT 79RC32333
Name
Type
Drive
Reset
Strength
State
Status Capability
Description
pci_req_n[2]
Input
Z
—
PCI Bus Request #2 Negated Requires an external pull-up.
Host mode: pci_req_n[2] is an input indicating a request from an external device.
Satellite mode: used as pci_idsel pin which selects this device during a configuration read or write.
Alternate function: pci_idsel (satellite).
pci_req_n[1]
Input
Z
—
PCI Bus Request #1 Negated
Requires external pull-up.
Host mode: pci_req_n[1] is an input indicating a request from an external device.
Alternate function: Unused (satellite).
pci_req_n[0]
I/O
Z
High
PCI Bus Request #0 Negated Requires an external pull-up for burst mode.
Host mode: pci_req_n[0] is an input indicating a request from an external device.
Satellite mode: pci_req_n[0] is an output indicating a request from this device.
pci_gnt_n[2]
Output
Z1
High
PCI Bus Grant #2 Negated Recommend an external pull-up.
Host mode: pci_gnt_n[2] is an output indicating a grant to an external device.
Satellite mode: pci_gnt_n[2] is used as the pci_inta_n output pin. External pull-up is required.
Alternate function: pci_inta_n (satellite).
pci_gnt_n[1] /
pci_eeprom_cs
I/O
X for 1 pci
clock then
H2
High
PCI Bus Grant #1 Negated
Recommend external pull-up.
Host mode: pci_gnt_n[1] is an output indicating a grant to an external device.
Satellite mode: Used as pci_eprom_cs output pin for Serial Chip Select for loading PCI Configuration
Registers in the RC32333 Reset Initialization Vector PCI boot mode. Defaults to the output direction at
reset time.
1st Alternate function: pci_eeprom_cs (satellite).
2nd Alternate function: PIO[7].
pci_gnt_n[0]
I/O
Z
High
PCI Bus Grant #0 Negated
Host mode: pci_gnt_n[0] is an output indicating a grant to an external device. Recommend external pullup.
Satellite mode: pci_gnt_n[0] is an input indicating a grant to this device. Requires external pull-up.
pci_inta_n
Output
Opencollector
Z
PCI
PCI Interrupt #A Negated
Uses pci_gnt_n[2]. See the PCI subsection.
pci_lock_n
Input
—
PCI Lock Negated
Driven by the Bus Master to indicate that an exclusive operation is occurring.
1 Z in host mode; L in satellite non-boot mode; Z in satellite boot mode.
2 H in host mode, L in satellite non-boot and boot modes. X = unknown.
SDRAM Control Interface
sdram_addr_12
Output
L
High
SDRAM Address Bit 12 and Precharge All
SDRAM mode: Provides SDRAM address bit 12 (10 on the SDRAM chip) during row address and "precharge all" signal during refresh, read and write command.
sdram_ras_n
Output
H
High
SDRAM RAS Negated
SDRAM mode: Provides SDRAM RAS control signal to all SDRAM banks.
sdram_cas_n
Output
H
High
SDRAM CAS Negated
SDRAM mode: Provides SDRAM CAS control signal to all SDRAM banks.
sdram_we_n
Output
H
High
SDRAM WE Negated
SDRAM mode: Provides SDRAM WE control signal to all SDRAM banks.
sdram_cke
Output
H
High
SDRAM Clock Enable
SDRAM mode: Provides clock enable to all SDRAM banks.
Table 1 Pin Descriptions (Part 3 of 6)
7 of 28
September 18, 2002
IDT 79RC32333
Name
Type
Drive
Reset
Strength
State
Status Capability
Description
sdram_cs_n[3:0]
Output
H
High
SDRAM Chip Select Negated Bus Recommend an external pull-up.
SDRAM mode: Provides chip select to each SDRAM bank.
SODIMM mode: Provides upper select byte enables [7:4].
sdram_s_n[1:0]
Output
H
High
SDRAM SODIMM Select Negated Bus
SDRAM mode: Not used.
SDRAM SODIMM mode: Upper and lower chip selects.
sdram_bemask_n
[3:0]
Output
H
High
SDRAM Byte Enable Mask Negated Bus (DQM)
SDRAM mode: Provides byte enables for each byte lane of all DRAM banks.
SODIMM mode: Provides lower select byte enables [3:0].
sdram_245_oe_n
Output
H
Low
SDRAM FCT245 Output Enable Negated Recommend an external pull-up.
SDRAM mode: Controls output enable to optional FCT245 transceiver bank by asserting during both
reads and writes to any DRAM bank.
sdram_245_dt_r_n
Output
Z
High
SDRAM FCT245 Direction Transmit/Receive Recommend an external pull-up.
Uses cpu_dt_r_n. See CPU Core Specific Signals below.
dma_ready_n[0]
I/O
Z
Low
DMA Ready Negated Bus Requires an external pull-up.
Ready mode: Input pin for general purpose DMA channel 0 that can initiate the next datum in the current
DMA descriptor frame.
Done mode: Input pin for general purpose DMA channel 0 that can terminate the current DMA descriptor
frame.
dma_ready_n[0] 1st Alternate function PIO[0]; 2nd Alternate function: dma_done_n[0].
pio[7:0]
I/O
See
related
pins
Low
Programmable Input/Output
General purpose pins that can each can be configured as a general purpose input or general purpose
output. These pins are multiplexed with other pin functions:
pci_gnt_n[1] (pci_eeprom_cs), spi_mosi, spi_sck, spi_ss_n, spi_miso, uart_rx[0], uart_tx[0],
dma_ready_n[0]. Note that pci_gnt_n[1], spi_mosi, spi_sck, and spi_ss_n default to outputs at reset time.
The others default to inputs.
uart_rx[0]
I/O
Z
Low
UART Receive Data Bus
UART mode: UART channel receive data.
uart_rx[0] Alternate function: PIO[2].
uart_tx[0]
I/O
Z
Low
UART Transmit Data Bus Recommend an external pull-up.
UART mode: UART channel send data. Note that this pin defaults to an input at reset time and must be
programmed via the PIO interface before being used as a UART output.
uart_tx[0] Alternate function: PIO[1].
spi_mosi
I/O
L
Low
SPI Data Output
Serial mode: Output pin from RC32333 as an Input to a Serial Chip for the Serial data input stream.
In PCI satellite mode, acts as an Output pin from RC32333 that connects as an Input to a Serial Chip for
the Serial data input stream for loading PCI Configuration Registers in the RC32333 Reset Initialization
Vector PCI boot mode.
1st Alternate function: PIO[6]. Defaults to the output direction at reset time.
2nd Alternate function: pci_eeprom_mdo.
spi_miso
I/O
Z
Low
SPI Data Input
Serial mode: Input pin to RC32333 from the Output of a Serial Chip for the Serial data output stream.
In PCI satellite mode, acts as an Input pin from RC32333 that connects as an output to a Serial Chip for
the Serial data output stream for loading PCI Configuration Registers in the RC32333 Reset Initialization
Vector PCI boot mode. Defaults to input direction at reset time.
1st Alternate function: PIO[3].
2nd Alternate function: pci_eeprom_mdi.
On-Chip Peripherals
Table 1 Pin Descriptions (Part 4 of 6)
8 of 28
September 18, 2002
IDT 79RC32333
Name
Type
Drive
Reset
Strength
State
Status Capability
Description
spi_sck
I/O
L
Low
SPI Clock
Serial mode: Output pin for Serial Clock.
In PCI satellite mode, acts as an Output pin for Serial Clock for loading PCI Configuration Registers in the
RC323333 Reset Initialization Vector PCI boot mode.
1st Alternate function: PIO[5]. Defaults to the output direction at reset time.
2nd Alternate function: pci_eeprom_sk.
spi_ss_n
I/O
H
Low
SPI Chip Select
Output pin selecting the serial protocol device as opposed to the PCI satellite mode EEPROM device.
Alternate function: PIO[4]. Defaults to the output direction at reset time.
CPU Core Specific Signals
cpu_nmi_n
Input
—
CPU Non-Maskable Interrupt Requires an external pull-up.
This interrupt input is active low to the CPU.
cpu_masterclk
Input
—
CPU Master System Clock
Provides the basic system clock.
cpu_int_n[1:0]
Input
—
CPU Interrupt Requires an external pull-up.
These interrupt inputs are active low to the CPU.
cpu_coldreset_n
Input
L
—
CPU Cold Reset
This active-low signal is asserted to the RC32333 after Vcc becomes valid on the initial power-up. The
Reset initialization vectors for the RC32333 are latched by cold reset.
Output
Z
—
CPU Direction Transmit/Receive
This active-low signal controls the DT/R pin of an optional FCT245 transceiver bank. It is asserted during
read operations.
1st Alternate function: mem_245_dt_r_n.
2nd Alternate function: sdram_245_dt_r_n.
cpu_dt_r_n
JTAG Interface Signals
jtag_tck
Input
—
JTAG Test Clock Requires an external pull-down.
An input test clock used to shift into or out of the Boundary-Scan register cells. jtag_tck is independent of
the system and the processor clock with nominal 50% duty cycle.
jtag_tdi,
ejtag_dint_n
Input
—
JTAG Test Data In Requires an external pull-up.
On the rising edge of jtag_tck, serial input data are shifted into either the Instruction or Data register,
depending on the TAP controller state. During Real Mode, this input is used as an interrupt line to stop the
debug unit from Real Time mode and return the debug unit back to Run Time Mode (standard JTAG).
This pin is also used as the ejtag_dint_n signal in the EJTAG mode.
High
JTAG Test Data Out
The jtag_tdo is serial data shifted out from instruction or data register on the falling edge of jtag_tck.
When no data is shifted out, the jtag_tdo is tri-stated. During Real Time Mode, this signal provides a nonsequential program counter at the processor clock or at a division of processor clock. This pin is also
used as the ejtag_tpc signal in the EJTAG mode.
—
JTAG Test Mode Select Requires an external pull-up.
The logic signal received at the jtag_tms input is decoded by the TAP controller to control test operation.
jtag_tms is sampled on the rising edge of the jtag_tck.
jtag_tdo,
ejtag_tpc
Output
Z
jtag_tms
Input
jtag_trst_n
Input
L
—
JTAG Test Reset
When neither JTAG nor EJTAG are being used, jtag_trst_n must be driven low (pulled down) or the
jtag_tms/ejtag_tms signals must be pulled up and jtag_clk actively clocked.
ejtag_dclk
Output
Z
—
EJTAG Test Clock
Processor Clock. During Real Time Mode, this signal is used to capture address and data from the
ejtag_tpc signal at the processor clock speed or any division of the internal pipeline.
Table 1 Pin Descriptions (Part 5 of 6)
9 of 28
September 18, 2002
IDT 79RC32333
Name
ejtag_pcst[2:0]
ejtag_tms
Type
I/O
Drive
Reset
Strength
State
Status Capability
Z
Input
Low
—
Description
EJTAG PC Trace Status Information
111 (STL) Pipe line Stall
110 (JMP) Branch/Jump forms with PC output
101 (BRT) Branch/Jump forms with no PC output
100 (EXP) Exception generated with an exception vector code output
011 (SEQ) Sequential performance
010 (TST) Trace is outputted at pipeline stall time
001 (TSQ) Trace trigger output at performance time
000 (DBM) Run Debug Mode
Alternate function: modebit[2:0].
EJTAG Test Mode Select Requires an external pull-up.
The ejtag_tms is sampled on the rising edge of jtag_tck.
Debug Signals
debug_cpu_dma_n
I/O
Z
Low
Debug CPU versus DMA Negated
De-assertion high during debug_cpu_ads_n assertion or debug_cpu_ack_n assertion indicates transaction was generated from the CPU.
Assertion low during debug_cpu_ads_n assertion or debug_cpu_ack_n assertion indicates transaction
was generated from DMA.
Alternate function: modebit[6].
debug_cpu_ack_n
I/O
Z
Low
Debug CPU Acknowledge Negated
Indicates either a data acknowledge to the CPU or DMA.
Alternate function: modebit[4].
debug_cpu_ads_n
I/O
Z
Low
Debug CPU Address/Data Strobe Negated
Assertion indicates that either a CPU or a DMA transaction is beginning and that the mem_data[31:4] bus
has the current block address.
Alternate function: modebit[5].
debug_cpu_i_d_n
I/O
Z
Low
Debug CPU Instruction versus Data Negated
Assertion during debug_cpu_ads_n assertion or debug_cpu_ack_n assertion indicates transaction is a
CPU or DMA data transaction.
De-assertion during debug_cpu_ads_n assertion or debug_cpu_ack_n assertion indicates transaction is
a CPU instruction transaction.
Alternate function: modebit[3].
Table 1 Pin Descriptions (Part 6 of 6)
10 of 28
September 18, 2002
IDT 79RC32333
mem_addr[22:2]
cpu_masterclk
mem_data[31:0]
cpu_coldreset_n
mem_cs_n[5:0]
cpu_nmi_n
mem_oe_n
mem_we_n[3:0]
mem_wait_n
cpu_int_n[1:0]
cpu_dt_r_n
Local System
Interface
CPU Core signals
Logic Diagram — RC32333
mem_245_oe_n
output_clk
pci_cbe_n[3:0]
pci_ad[31:0]
pci_par
pci_frame_n
pci_trdy_n
pci_irdy_n
pci_stop_n
pci_idsel
pci_perr_n
pci_serr_n
pci_clk
pci_rst_n
pci_devsel_n
pci_req_n[2:0]
spi_miso
spi_ss_n
SPI
Interface
spi_mosi
spi_sck
sdram_addr[16:13]
sdram_addr[12]
sdram_addr[11:2]
RC32333
pci_gnt_n[2:0]
pci_inta_n
Logic
Symbol
pci_lock_n
pci_eeprom_mdi
pci_eeprom_mdo
pci_eeprom_cs
pci_eeprom_sk
sdram_ras_n
sdram_cas_n
sdram_we_n
sdram_cke
sdram_cs_n[3:0]
sdram_bemask_n[3:0]
sdram_245_oe_n
SDRAM Signals
PCI Interface
mem_245_dt_r_n
Gnd
Vcc to I/O
Vcc to core
VccP
VssP
ejtag_dclk
ejtag_pcst[2:0]
ejtag_tms
ejtag_tpc
Vss
Vcc I/O
Vcc core
pio[7:0]
11 of 28
UART
EJTAG
uart_rx[0]
uart_tx[0]
debug_cpu_dma_n
debug_cpu_ack_n
debug_cpu_i_d_n
debug_cpu_ads_n
PIO
Interface
Power/
Ground
Debug
JTAG
Interface
dma_ready_n[0]
jtag_tck
jtag_tms
jtag_tdi
jtag_tdo
jtag_trst_n
DMA
Interface
sdram_245_dt_r_n
sdram_s_n_[1:0]
September 18, 2002
IDT 79RC32333
Mode Bit Settings to Configure Controller on Reset
The following table lists the mode bit settings to configure the controller on reset.
Pin
ejtag_pcst[2:0]
debug_cpu_i_d_n
Mode Bit
2:0 MSB (2)
3
Description
Value
Clock Multiplier
MasterClock is multiplied internally to generate PClock
0
Multiply by 2
1
Multiply by 3
2
Multiply by 4
3
Reserved
4
Reserved
5
Reserved
6
Reserved
7
Reserved
EndBit
Mode Setting
0
Little-endian ordering
1
Big-endian ordering
debug_cpu_ack_n
4
Reserved
0
debug_cpu_ads_n
5
Reserved
0
debug_cpu_dma_n
6
TmrIntEn
Enables/Disables the timer interrupt on Int*[5]
0
Enables timer interrupt
1
Disables timer interrupt
mem_addr[17]
7
Reserved for future use
1
mem_addr[19:18]
9:8 MSB (9)
Boot-Prom Width specifies the memory port
width of the memory space which contains the
boot prom.
00
8 bits
01
16 bits
10
32 bits
11
Reserved
Table 2 Boot-Mode Configuration Settings
reset_boot_mode Settings
By using the non-boot mode reset initialization mode the user can change the internal register addresses from base 1800_0000 to base
1900_0000, as required. The RC32333 reset-boot mode initialization setting values and mode descriptions are listed below.
Pin
Reset Boot Mode
mem_addr[22:21] 1:0 MSB (1)
Description
Value Mode Settings
Tri-state memory bus and EEPROM bus during coldreset_n assertion
11
Tri-state_bus_mode
Reserved
10
PCI-boot mode (pci_host_mode must be in satellite mode) RC32333 will reset
either from a cold reset or from a PCI reset. Boot code is provided via PCI.
01
PCI_boot_mode
Standard-boot mode Boot from the RC32333’s memory controller (typical system).
00
standard_boot_mode
Table 3 RC32333 reset_boot_mode Initialization Settings
12 of 28
September 18, 2002
IDT 79RC32333
pci_host_mode Settings
During reset initialization, the RC32333’s PCI interface can be set to the Satellite or Host mode settings. When set to the Host mode, the CPU must
configure the RC32333’s PCI configuration registers, including the read-only registers. If the RC32333’s PCI is in the PCI-boot mode Satellite mode,
read-only configuration registers are loaded by the serial EEPROM.
Pin
mem_addr[20]
Reset Boot Mode
PCI host mode
Description
Value
Mode Settings
PCI is in satellite mode
1
PCI_satellite
PCI is in host mode (typical system)
0
PCI_host
Table 4 RC32333 pci_host_mode Initialization Settings
Clock Parameters — RC32333
(Ta = 0°C to +70°C Commercial, Ta = -40°C to +85°C Industrial, Vcc I/O = +3.3V±5%,Vcc Core = +3.3V±5%)
Parameter
Symbol
Test Conditions
RC32333
100MHz
RC32333
133MHz
RC32333
150MHz
Min
Max
Min
Max
Min
Max
Units
cpu_masterclock HIGH
tMCHIGH
Transition ≤ 2ns
8
—
6.75
—
6
—
ns
cpu_masterclock LOW
tMCLOW
Transition ≤ 2ns
8
—
6.75
—
6
—
ns
cpu_masterclock period1
tMCP
—
20
66.6
15
66.6
13.33
66.6
ns
cpu_masterclock Rise & Fall Time2
tMCRise, tMCFall —
—
3
—
3
—
3
ns
cpu_masterclock Jitter
tJITTER
—
—
+ 250
—
+ 250
—
+ 200
ps
pci_clk Rise & Fall Time
tPCRise, tPCFall
PCI 2.2
—
1.6
—
1.6
—
1.6
ns
pci_clk Period1
tPCP
20
—
20
—
20
—
ns
jtag_tck Rise & Fall Time
tJCRise, tJCFall
—
5
—
5
—
5
ns
ejtag_dck period
tDCK, t11
10
—
10
—
10
—
ns
jtag_tck clock period
tTCK, t3
100
—
100
—
100
—
ns
ejtag_dclk High, Low Time
tDCK High, t9
tDCK Low, t10
4
—
4
—
4
—
ns
ejtag_dclk Rise, Fall Time
tDCK Rise, t9
tDCK Fall, t10
—
1
—
1
—
1
ns
output_clk3
tDO21
N/A
N/A
N/A
N/A
N/A
N/A
—
120
—
120
—
120
—
ms
—
5
—
5
—
5
ns
cpu_coldreset_n
Asserted during power-up
cpu_coldreset_n Rise Time
—
power-on sequence
tCRRise
Table 5 Clock Parameters - RC32333
1.
cpu_masterclock should never be below pci_clk if PCI interface is used.
2.
Rise and Fall times are measured between 10% and 90%.
3.
Output_clk should not be used in a system. Only the cpu_masterclock or its derivative must be used to drive all the subsystems with designs based on the
RC3233x systems. Refer to the RC3233x Device Errata for more information.
13 of 28
September 18, 2002
IDT 79RC32333
Reset Specification
VCC
cpu_masterclk
(MClk)
cpu_coldreset_n
tCRRise
modebit[9:0]
>= 110 ms
>= 10 ms
120 ms
Figure 3 Mode Configuration Interface Reset Sequence
14 of 28
September 18, 2002
IDT 79RC32333
AC Timing Characteristics — RC32333
(Ta = 0°C to +70°C Commercial, Ta = -40°C to +85°C Industrial, Vcc I/O = +3.3V±5%,Vcc Core = +3.3V±5%)
Signal
Symbol
Reference
Edge
RC323331
100MHz
RC323331
133MHz
RC323331
150MHz
Min
Max
Min
Max
Min
Max
Units
User
Manual
Timing
Diagram
Reference
Local System Interface
mem_data[31:0] (data phase)
Tsu2
cpu_masterclk rising
6
—
5
—
4.8
—
ns
mem_data[31:0] (data phase)
Thld2
cpu_masterclk rising
1.5
—
1.5
—
1.5
—
ns
cpu_dt_r_n
Tdo3
cpu_masterclk rising
—
15
—
12
—
10
ns
mem_data[31:0]
Tdo4
cpu_masterclk rising
—
12
—
10
—
9.3
ns
mem_data[31:0] output hold time
Tdoh1
cpu_masterclk rising
1
—
1
—
1
—
ns
—
102
—
9.32
ns
mem_data[31:0] (tristate disable
time)
Tdz
cpu_masterclk rising
—
122
mem_data[31:0] (tristate to data
time)
Tzd
cpu_masterclk rising
—
122
—
102
—
9.32
ns
mem_wait_n
Tsu6
cpu_masterclk rising
9
—
7
—
6
—
ns
mem_wait_n
Thld8
cpu_masterclk rising
1
—
1
—
1
—
ns
mem_addr[22:2]
Tdo5
cpu_masterclk rising
—
12
—
9
—
8
ns
mem_cs_n[5:0]
Tdo6
cpu_masterclk rising
—
12
—
9
—
8
ns
mem_oe_n, mem_245_oe_n
Tdo7
cpu_masterclk rising
—
12
—
9
—
8
ns
mem_we_n[3:0]
Tdo7a
cpu_masterclk rising
—
15
—
12
—
10
ns
mem_245_dt_r_n
Tdo8
cpu_masterclk rising
—
15
—
12
—
10
ns
mem_addr[25:2]
mem_cs_n[5:0]
mem_oe_n, mem_we_n[3:0],
mem_245_dt_r_n,
mem_245_oe_n
Tdoh3
cpu_masterclk rising
1.5
—
1.5
—
1.5
—
ns
pci_ad[31:0], pci_cbe_n[3:0],
pci_par, pci_frame_n, pci_trdy_n,
pci_irdy_n, pci_stop_n, pci_perr_n,
pci_serr_n, pci_devsel_n,
pci_lock_n3
Tsu
pci_clk rising
3
—
3
—
3
—
ns
pci_idsel, pci_req_n[2],
pci_req_n[1], pci_req_n[0],
pci_gnt_n[0], pci_inta_n
Tsu
pci_clk rising
5
—
5
—
5
—
ns
pci_gnt_n[0]
Tsu
pci_clk rising
5
—
5
—
5
—
ns
pci_ad[31:0], pci_cbe_n[3:0],
pci_par, pci_frame_n, pci_trdy_n,
pci_irdy_n, pci_stop_n, pci_perr_n,
pci_serr_n, pci_devsel_n,
pci_lock_n3
Thld
pci_clk rising
0
—
0
—
0
—
ns
Chapter 9, Figures 9.2 and 9.3
Chapter 10,
Figures 10.6
through 10.8
PCI
Per PCI 2.2
Table 6 AC Timing Characteristics - RC32333 (Part 1 of 4)
15 of 28
September 18, 2002
IDT 79RC32333
Signal
Symbol
RC323331
100MHz
Reference
Edge
RC323331
133MHz
RC323331
150MHz
Min
Max
Min
Max
Min
Max
Units
pci_idsel, pci_req_n[2],
pci_req_n[1], pci_req_n[0],
pci_gnt_n[0], pci_inta_n
Thld
pci_clk rising
0
—
0
—
0
—
ns
pci_eeprom_mdi
Tsu
pci_clk rising,
pci_eeprom_sk falling
15
—
12
—
10
—
ns
pci_eeprom_mdi
Thld
pci_clk rising,
pci_eeprom_sk falling
15
—
12
—
10
—
ns
pci_eeprom_mdo, pci-eeprom_cs
Tdo
pci_clk rising,
pci_eeprom_sk falling
—
15
—
12
—
10
ns
pci_eeprom_sk
Tdo
pci_clk rising
—
15
—
12
—
10
ns
pci_ad[31:0], pci_cbe_n[3:0],
pci_par, pci_frame_n, pci_trdy_n,
pci_irdy_n, pci_stop_n, pci_perr_n,
pci_serr_n, pci_devsel_n
Tdo
pci_clk rising
2
7.5
2
7.5
2
7.5
ns
pci_req_n[0], pci_gnt_[2],
pci_gnt_n[1], pci_gnt_n[0],
pci_inta_n
Tdo
pci_clk rising
2
7.5
2
7.5
2
7.5
ns
sdram_245_dt_r_n
Tdo8
cpu_masterclk rising
—
15
—
12
—
10
ns
sdram_ras_n, sdram_cas_n,
sdram_we_n, sdram_cs_n[3:0],
sdram_s_n[1:0],
sdram_bemask_n[3:0], sdram_cke
Tdo9
cpu_masterclk rising
—
12
—
9
—
8
ns
sdram_addr_12
Tdo10
cpu_masterclk rising
—
12
—
9
—
8
ns
sdram_245_oe_n
Tdo11
cpu_masterclk rising
—
12
—
9
—
8
ns
sdram_245_dt_r_n
Tdoh4
cpu_masterclk rising
1
—
1
—
1
—
ns
sdram_ras_n, sdram_cas_n,
sdram_we_n, sdram_cs_n[3:0],
sdram_s_n[1:0],
sdram_bemask_n[3:0] sdram_cke,
sdram_addr_12, sdram_245_oe_n
Tdoh4
cpu_masterclk rising
2.5
—
2.5
—
2.5
—
ns
dma_ready_n[0], dma_done_n[0]
Tsu7
cpu_masterclk rising
9
—
7
—
6
—
ns
dma_ready_n[0], dma_done_n[0]
Thld9
cpu_masterclk rising
1
—
1
—
1
—
ns
cpu_int_n[1:0], cpu_nmi_n
Tsu9
cpu_masterclk rising
9
—
7
—
6
—
ns
cpu_int_n[1:0], cpu_nmi_n
Thld13
cpu_masterclk rising
1
—
1
—
1
—
ns
User
Manual
Timing
Diagram
Reference
Per PCI 2.2
SDRAM Controller
Chapter 11,
Figures 11.4 and
11.5
DMA
Chapter 13,
Figure 13.4
Interrupt Handling
Chapter 14,
Figure 14.12
Table 6 AC Timing Characteristics - RC32333 (Part 2 of 4)
16 of 28
September 18, 2002
IDT 79RC32333
Signal
Symbol
RC323331
100MHz
Reference
Edge
RC323331
133MHz
RC323331
150MHz
Min
Max
Min
Max
Min
Max
Units
User
Manual
Timing
Diagram
Reference
PIO
PIO[7:0]
Tsu7
cpu_masterclk rising
9
—
7
—
6
—
ns
PIO[7:0]
Thld9
cpu_masterclk rising
1
—
1
—
1
—
ns
PIO[7:6], PIO[4:0]
Tdo16
cpu_masterclk rising
—
15
—
12
—
10
ns
PIO[5]
Tdo19
cpu_masterclk rising
—
15
—
12
—
10
ns
PIO[7:6], PIO[4:0]
Tdoh7
cpu_masterclk rising
1
—
1
—
1
—
ns
PIO[5]
Tdoh7
cpu_masterclk rising
1
—
1
—
1
—
ns
uart_rx[0], uart_tx[0]
Tsu7
cpu_masterclk rising
15
—
12
—
10
—
ns
uart_rx[0], uart_tx[0]
Thld9
cpu_masterclk rising
15
—
12
—
10
—
ns
uart_rx[0], uart_tx[0]
Tdo16
cpu_masterclk rising
—
15
—
12
—
10
ns
uart_rx[0], uart_tx[0]
Tdoh8
cpu_masterclk rising
1
—
1
—
1
—
ns
cpu_coldreset_n
Tsu21
cpu_masterclk rising
9
—
7
—
6
—
ns
cpu_coldreset_n
Thld21
cpu_masterclk rising
1
—
1
—
1
—
ns
mem_addr[19:17]
Tsu10
cpu_coldreset_n rising
10
—
10
—
10
—
ms
mem_addr[19:17]
Thld10
cpu_coldreset_n rising
1
—
1
—
1
—
ns
mem_addr[22:20]
Tsu22
cpu_masterclk rising
9
—
7
—
6
—
ns
mem_addr[22:20]
Thld22
cpu_masterclk rising
1
—
1
—
1
—
ns
debug_cpu_dma_n,
debug_cpu_ack_n,
debug_cpu_ads_n,
debug_cpu_i_d_n, ejtag_pcst[2:0]
Tsu20
cpu_coldreset_n rising
10
—
10
—
10
—
ms
debug_cpu_dma_n,
debug_cpu_ack_n,
debug_cpu_ads_n,
debug_cpu_i_d_n, ejtag_pcst[2:0]
Thld20
cpu_coldreset_n rising
1
—
1
—
1
—
ns
debug_cpu_dma_n,
debug_cpu_ack_n,
debug_cpu_ads_n,
debug_cpu_i_d_n
Tdo20
cpu_masterclk rising
—
15
—
12
—
10
ns
debug_cpu_dma_n,
debug_cpu_ack_n,
debug_cpu_ads_n,
debug_cpu_i_d_n
Tdoh20
cpu_masterclk rising
1
—
1
—
1
—
ns
Chapter 15,
Figures 15.9 and
15.10
UARTs
Chapter 17,
Figure 17.16
Reset
Chapter 19,
Figures 19.8 and
19.9
Debug Interface
Chapter 19,
Figure 19.9 and
Chapter 9,
Figure 9.2
Table 6 AC Timing Characteristics - RC32333 (Part 3 of 4)
17 of 28
September 18, 2002
IDT 79RC32333
Signal
Reference
Edge
Symbol
RC323331
100MHz
RC323331
133MHz
RC323331
150MHz
Min
Max
Min
Max
Min
Max
Units
User
Manual
Timing
Diagram
Reference
JTAG Interface
jtag_tms, jtag_tdi, jtag_trst_n
t5
jtag_tck rising
10
—
10
—
10
—
ns
jtag_tms, jtag_tdi, jtag_trst_n
t6
jtag_tck rising
10
—
10
—
10
—
ns
jtag_tdo
t4
jtag_tck falling
—
10
—
10
—
10
ns
ejtag_tms
t5
jtag_tclk rising
4
—
4
—
4
—
ns
ejtag_tms
t6
jtag_clk rising
2
—
2
—
2
—
ns
jtag_tdo Output Delay Time
tTDODO, t4
jtag_tck falling
—
6
—
6
—
6
ns
jtag_tdi Input Setup Time
tTDIS, t5
jtag_tck rising
4
—
4
—
4
—
ns
jtag_tdi Input Hold Time
tTDIH, t6
jtag_tck rising
2
—
2
—
2
—
ns
jtag_trst_n Low Time
tTRSTLow, t12
—
100
—
100
—
100
—
ns
jtag_trst_n Removal Time
tTRSTR, t13
jtag_tck rising
3
—
3
—
3
—
ns
ejtag_tpc Output Delay Time
tTPCDO, t8
ejtag_dclk rising
-1
3
-1
3
-1
3
ns
ejtag_pcst Output Delay Time
tPCSTDO, t7
ejtag_dclk rising
-1
3
-1
3
-1
3
ns
See Figure 4
below.
EJTAG Interface
See Figure 4
below.
Table 6 AC Timing Characteristics - RC32333 (Part 4 of 4)
1. At all pipeline frequencies.
2.
Guaranteed by design.
3. pci_rst_n is tested per PCI 2.2 as an asynchronous signal.
18 of 28
September 18, 2002
IDT 79RC32333
Standard EJTAG Timing
—
RC32333
Figure 4 represents the timing diagram for the EJTAG interface signals.
The standard JTAG connector is a 10-pin connector providing 5 signals and 5 ground pins. For Standard EJTAG, a 24-pin connector has been
chosen providing 12 signals and 12 ground pins. This guarantees elimination of noise problems by incorporating signal-ground type arrangement.
Refer to the RC3233x User Reference Manual for connector pinout and mechanical specifications.
ejtag_tpc,ejtag_pcst[2:0] capture
t3
jtag_tck
t14
t14
t1
ejtag_dclk
t11
t2
t15
t15
jtag_tdi/ejtag_dint_n
ejtag_tms, jtag_tms
jtag_tdo/ejtag_tpc,
ejtag_tpc[8:2]
t9
t5
jtag_tdo
t10
t6
jtag_tdo
ejtag_tpc
t8
t4
ejtag_pcst[2:0]
ejtag_pcst
t7
jtag_trst_n
t13
Notes to diagram:
t1 = tTCKlow
t2 = tTCKHIGH
t3 = tTCK
t4 = tTDODO
t5 = tTDIS
t6 = tTDIH
t7 = tPCSTDO
t8 = tTPCDO
t9 = tDCKHIGH
t10 = tDCKLOW
t12
t11 =
t12 =
t13 =
t14 =
t15 =
tDCK
tTRSTDO
tTRSTR
tTCK RISE, tTCK FALL
tDCK RISE, tDCK FALL
Figure 4 Standard EJTAG Timing
19 of 28
September 18, 2002
IDT 79RC32333
Output Loading for AC Testing
To Device
Under Test
–
+
VREF
+1.5V
CLD
Signal
Cld
All High Drive Signals
50 pF
All Low Drive Signals
25 pF
Figure 5 Output Loading for AC Testing
Note: PCI pins have been correlated to PCI 2.2.
Recommended Operation Temperature and Supply Voltage
Grade
Ambient Temperature
Gnd
VccIO
VccCore
VccP
Commercial
0°C to +70°C Ambient
0V
3.3V±5%
3.3V±5%
3.3V±5%
Industrial
-40°C to +85°C Ambient
0V
3.3V±5%
3.3V±5%
3.3V±5%
Table 7 Temperature and Voltage
DC Electrical Characteristics — RC32333
Commercial Temperature Range—RC32333
(Ta = 0°C to +70°C Commercial, Ta = -40°C to +85°C Industrial, Vcc I/O = +3.3V±5%,Vcc Core = +3.3V±5%)
Parameter
LOW
Drive
OutputPads
HIGH
Drive
OutputPads
RC323331
Minimum
Maximum
VOL
—
0.4V
VOH
Vcc - 0.4V
—
VIL
—
0.8V
VIH
2.0V
—
VOL
—
0.4V
VOH
Vcc - 0.4V
—
VIL
—
0.8V
VIH
2.0V
—
Pin Numbers
Conditions
41-45, 48, 171, 172, 175, 176, 177-180, 185-190, 195-200, 207, 208
|IOUT| = 6mA
|IOUT| = 8mA
—
1- 5, 8, 13-15, 18-25, 28-35, 38-40, 49-51, 53- 57, 60, 61, 63, 6567,70-76, 79, 80, 83-87, 90-94, 153, 154, 156, 159, 166, 194, 201,
204, 205, 206
|IOUT| = 7mA
|IOUT| = 16mA
—
Table 8 DC Electrical Characteristics - RC32333 (Part 1 of 2)
20 of 28
September 18, 2002
IDT 79RC32333
Parameter
PCI
Drive
OutputPads
RC323331
Minimum
Maximum
VOL
—
—
VOH
—
—
VIL
—
—
VIH
—
—
CIN
—
CIN
5pf
CIN
Pin Numbers
Conditions
96, 97, 100-109, 112-119, 122, 124-129, 132-139, 142-149, 152
Per PCI 2.2
10pF
152, 169
—
12pF
155
Per PCI 2.2
8pF
156
Per PCI 2.2
COUT
—
10pF
All output pads
—
I/OLEAK
—
10µA
All non-internal pull-up pins
Input/Output Leakage
I/OLEAK
—
50µA
All internal pull-up pins
Input/Output Leakage
Table 8 DC Electrical Characteristics - RC32333 (Part 2 of 2)
1. At all pipeline frequencies.
Capacitive Load Deration — RC32333
Refer to the IDT document 79RC32333 IBIS Model which can be found on the company’s web site at www.idt.com.
Power Consumption — RC32333
Note: This table is based on a 2:1 pipeline-to-bus clock ratio.
Parameter
ICC
P
100MHz
RC32333
133MHz
RC32333
150MHz
RC32333
Typical
Max.
Typical
Max.
Typical
Max.
(mA) Normal mode
360
480
480
630
550
700
(mA) Standby mode1
250
370
330
480
390
540
Power dissipation (W)
Normal mode
1.2
1.7
1.5
2.2
1.7
2.4
Power dissipation (W)
Standby mode1
.87
1.3
1.1
1.7
1.3
1.9
Conditions
CL = (See Figure 5, Output Loading
for AC Testing)
Ta = 25oC
Vcc core = 3.46V (for max. values)
Vcc I/O = 3.46V (for max. values)
Vcc core = 3.3V (for typical values)
Vcc I/O = 3.3V (for typical values)
Table 9 Power Consumption
1.
RISCore 32300 CPU core enters Standby mode by executing WAIT instructions. On-chip logic outside the CPU core continues to function.
Power Ramp-up
There is no special requirement for how fast Vcc and VccP ramp up to 3.3V. However, all timing references are based on Vcc and VccP stabilized
at 3.3V -5%.
21 of 28
September 18, 2002
IDT 79RC32333
Power Curves
The following two graphs contain the simulated power curves that show power consumption at various bus frequencies.
ICC (mA @3.46V I/O & Core)
Note: Only pipeline frequencies that are integer multiples (2x, 3x, 4x) of bus frequencies are supported.
550.0
500.0
450.0
400.0
350.0
300.0
250.0
200.0
150.0
100.0
2x
3x
4x
15 20 25 30 35 40 45 50 55 60 65 70 75
System Bus Speed (MHz)
Figure 6 Typical Power Usage - RC32333
.
ICC (mA @ 3.46V I/O & core)
750.0
650.0
2x
550.0
3x
450.0
4x
350.0
250.0
150.0
15
20
25
30
35
40
45
50
55
60
65
70
75
System Bus Speed (MHz)
Figure 7 Maximum Power Usage - RC32333
22 of 28
September 18, 2002
IDT 79RC32333
Absolute Maximum Ratings
Symbol
Parameter
VCC
Supply Voltage
Vi
Input Voltage
Min1
Max1
-0.3
3.465
V
-0.3
5.5
V
-0.6
—
V
2
Unit
Vimin
Input Voltage - undershoot
Ta,
Industrial
Ambient Operating
Temperature
-40
85
degrees C
Tstg
Storage Temperature
-40
125
degrees C
Table 10 Absolute Maximum Ratings
1. Functional
and tested operating conditions are given in Table 7. Absolute maximum ratings are stress ratings only,
and functional operation at the maximums is not guaranteed. Stresses beyond those listed may affect device reliability
or cause permanent damage to the device.
2. All PCI pads are fully compatible with PCI Specification version 2.2.
Package Pin-out — 208-PQFP for RC32333
The following table lists the pin numbers and signal names for the RC32333. Signal names ending with an _n are active when low.
Pin
Function
Alt
Pin
Function
Alt
Pin
Function
Alt
Pin
Function
Alt
1
sdram_245_oe_n
53
mem_data[12]
105
pci_ad[7]
157
pci_req_n[1]
2
sdram_we_n
54
mem_data[19]
106
pci_cbe_n[0]
158
pci_req_n[2]
1
3
sdram_cas_n
55
mem_data[13]
107
pci_ad[8]
159
pci_gnt_n[2]
1
4
sdram_bemask_n[0]
56
mem_data[18]
108
pci_ad[9]
160
pci_rst_n
5
sdram_bemask_n[1]
57
mem_data[14]
109
pci_ad[10]
161
cpu_int_n[0]
6
Vss
58
Vss
110
Vss
162
cpu_int_n[1]
7
Vcc I/O
59
Vcc I/O
111
Vcc I/O
163
Vss
8
sdram_cs_n[0]
60
mem_data[17]
112
pci_ad[11]
164
Vcc I/O
9
sdram_cs_n[1]
61
mem_data[16]
113
pci_ad[12]
165
jtag_tdi
10
sdram_ras_n
62
Vcc core
114
pci_ad[13]
166
jtag_tdo
11
sdram_s_n[0]
63
mem_data[15]
115
pci_ad[14]
167
jtag_tms
12
sdram_s_n[1]
64
cpu_masterclk
116
pci_ad[15]
168
ejtag_tms
13
mem_addr[2]
1
65
mem_data[31]
117
pci_cbe_n[1]
169
jtag_tck
14
mem_addr[3]
1
66
mem_data[0]
118
pci_par
170
jtag_trst_n
15
mem_addr[4]
1
67
mem_data[30]
119
pci_serr_n
171
ejtag_pcst[0]
1
16
Vss
68
Vss
120
Vss
172
ejtag_pcst[1]
1
17
Vcc I/O
69
Vcc I/O
121
Vcc I/O
173
Vss
18
mem_addr[5]
1
70
mem_data[1]
122
pci_perr_n
174
Vcc I/O
19
mem_addr[6]
1
71
mem_data[29]
123
pci_lock_n
175
ejtag_pcst[2]
20
mem_addr[7]
1
72
mem_data[2]
124
pci_stop_n
176
ejtag_dclk
21
mem_addr[8]
1
73
mem_data[28]
125
pci_devsel_n
177
debug_cpu_i_d_n
1
1
Table 11 RC32333 208-pin QFP Package Pin-Out (Part 1 of 2)
23 of 28
September 18, 2002
IDT 79RC32333
Pin
Function
Alt
Pin
Function
Alt
Pin
Function
Alt
Pin
Function
Alt
22
mem_addr[9]
1
74
mem_data[3]
126
pci_trdy_n
178
debug_cpu_ads_n
1
23
mem_addr[10]
1
75
mem_data[27]
127
pci_irdy_n
179
debug_cpu_ack_n
1
24
mem_addr[11]
1
76
mem_data[4]
128
pci_frame_n
180
debug_cpu_dma_n
1
25
output_clk
77
Vccp
129
pci_cbe_n[2]
181
Vcc Core
26
Vss
78
Vssp
130
Vss
182
Vss
27
Vcc core
79
mem_data[26]
131
Vcc core
183
Vcc core
28
mem_addr_12
80
mem_data[5]
132
pci_ad[16]
184
Vcc Core
29
sdram_addr_12
81
Vss
133
pci_ad[17]
185
spi_ss_n
1
30
sdram_cke
82
Vcc core
134
pci_ad[18]
186
spi_sck
2
31
sdram_cs_n[2]
83
cpu_dt_r_n
135
pci_ad[19]
187
spi_miso
2
32
sdram_cs_n[3]
84
mem_data[25]
136
pci_ad[20]
188
spi_mosi
2
33
sdram_bemask_n[2]
85
mem_data[6]
137
pci_ad[21]
189
dma_ready_n[0]
2
34
sdram_bemask_n[3]
86
mem_data[24]
138
pci_ad[22]
190
mem_245_oe_n
35
mem_addr[13]
87
mem_data[7]
139
pci_ad[23]
191
mem_wait_n
36
Vss
88
Vss
140
Vss
192
Vss
37
Vcc I/O
89
Vcc I/O
141
Vcc I/O
193
Vcc I/O
38
mem_addr[14]
90
mem_data[23]
142
pci_cbe_n[3]
194
mem_oe_n
39
mem_addr[15]
1
91
mem_data[8]
143
pci_ad[24]
195
mem_cs_n[0]
40
mem_addr[16]
1
92
mem_data[22]
144
pci_ad[25]
196
mem_cs_n[1]
41
mem_addr[17]
1
93
mem_data[9]
145
pci_ad[26]
197
mem_cs_n[2]
42
mem_addr[18]
1
94
mem_data[21]
146
pci_ad[27]
198
mem_cs_n[3]
43
mem_addr[19]
1
95
cpu_nmi_n
147
pci_ad[28]
199
mem_cs_n[4]
44
mem_addr[20]
1
96
pci_ad[0]
148
pci_ad[29]
200
mem_cs_n[5]
45
mem_addr[21]
1
97
pci_ad[1]
149
pci_ad[30]
201
mem_we_n[0]
46
Vss
98
Vss
150
Vss
202
Vss
47
Vcc I/O
99
Vcc I/O
151
Vcc I/O
203
Vcc I/O
48
mem_addr[22]
100
pci_ad[2]
152
pci_ad[31]
204
mem_we_n[1]
49
mem_data[10]
101
pci_ad[3]
153
pci_req_n[0]
205
mem_we_n[2]
50
mem_data[11]
102
pci_ad[4]
154
pci_gnt_n[0]
206
mem_we_n[3]
51
mem_data[20]
103
pci_ad[5]
155
pci_clk
207
uart_tx[0]
1
52
cpu_coldreset_n
104
pci_ad[6]
156
pci_gnt_n[1]
208
uart_rx[0]
1
1
2
2
2
Table 11 RC32333 208-pin QFP Package Pin-Out (Part 2 of 2)
24 of 28
September 18, 2002
IDT 79RC32333
RC32333 Alternate Signal Functions
Pin
Alt #1
Alt #2
Pin
Alt #1
Alt #2
Pin
Alt #1
Alt #2
13
sdram_addr[2]
40
sdram_addr[16]
175
modebit[2]
14
sdram_addr[3]
41
modebit[7]
177
modebit[3]
15
sdram_addr[4]
42
modebit[8]
178
modebit[5]
18
sdram_addr[5]
43
modebit[9]
179
modebit[4]
19
sdram_addr[6]
44
reset_pci_host_mode
180
modebit[6]
20
sdram_addr[7]
45
reset_boot_mode[0]
185
PIO[4]
21
sdram_addr[8]
48
reset_boot_mode[1]
186
PIO[5]
pci_eeprom_sk
22
sdram_addr[9]
83
mem_245_dt_r_n
187
PIO[3]
pci_eeprom_mdi
23
sdram_addr[10]
156
pci_eeprom_cs (satellite) PIO[7]
188
PIO[6]
pci_eeprom_mdo
24
sdram_addr[11]
158
pci_idsel (satellite)
189
PIO[0]
dma_done_n[0]
35
sdram_addr[13]
159
pci_inta_n (satellite)
191
sdram_wait_n
mem_wait_n
38
sdram_addr[14]
171
modebit[0]
207
PIO[1]
39
sdram_addr[15]
172
modebit[1]
208
PIO[2]
sdram_245_dt_r_n
Table 12 RC32333 Alternate Signal Functions
25 of 28
September 18, 2002
IDT 79RC32333
RC32333 Package Drawing — 208-pin PQFP
26 of 28
September 18, 2002
IDT 79RC32333
RC32333 Package Drawing
— Page Two
27 of 28
September 18, 2002
IDT 79RC32333
Ordering Information
79RCXX
Product
Type
V
Operating
Voltage
DDD
SSS
Device
Type
CPU
Frequency
PP
Package
Temp range/
Process
Blank = Commercial Temperature (0° C to +70° C Ambient)
I = Industrial Temperature (-40° C to +85° C Ambient)
333
100MHz
133MHz
150MHz
DH = 208-pin PQFP
V = 3.3V ±5%
79RC32 =
32-bit family product
Valid Combinations
79RC32V333 - 100DH, 133DH, 150DH
Commercial
79RC32V333 - 100DHI, 133DHI, 150DHI
Industrial
CORPORATE HEADQUARTERS
2975 Stender Way
Santa Clara, CA 95054
for SALES:
800-345-7015 or 408-727-6116
fax: 408-330-1748
www.idt.com
28 of 28
for Tech Support:
email: [email protected]
phone: 408-492-8208
September 18, 2002