Freescale Semiconductor, Inc... Freescale Semiconductor, Inc. BLDC Motor Control Board for Industrial and Appliance Applications Designer Reference Manual M68HC08 Microcontrollers DRM007/D 2/2003 MOTOROLA.COM/SEMICONDUCTORS For More Information On This Product, Go to: www.freescale.com Freescale Semiconductor, Inc... Freescale Semiconductor, Inc. For More Information On This Product, Go to: www.freescale.com Freescale Semiconductor, Inc. Freescale Semiconductor, Inc... BLDC Motor Control Board for Industrial and Appliance Applications Reference Design By: Jorge Zambada Email: [email protected] Applications Engineer — Mexico Applications Lab Diego Garay Email: [email protected] Applications Engineer — Mexico Applications Lab Maurizio Acosta Email: [email protected] Applications Engineer — Mexico Applications Lab Motorola and the Stylized M Logo are registered trademarks of Motorola, Inc. DigitalDNA is a trademark of Motorola, Inc. This product incorporates SuperFlash® technology licensed from SST. BLDC Motor Control Board for Industrial and Appliance Applications MOTOROLA © Motorola, Inc., 2003 DRM007 3 For More Information On This Product, Go to: www.freescale.com Freescale Semiconductor, Inc. Revision History To provide the most up-to-date information, the revision of our documents on the World Wide Web will be the most current. Your printed copy may be an earlier revision. To verify you have the latest information available, refer to: http://motorola.com/semiconductors Freescale Semiconductor, Inc... The following revision history table summarizes changes contained in this document. For your convenience, the page number designators have been linked to the appropriate location. Revision History Date Revision Level February, 2003 N/A DRM007 Description Initial release Page Number(s) N/A BLDC Motor Control Board for Industrial and Appliance Applications 4 MOTOROLA For More Information On This Product, Go to: www.freescale.com Freescale Semiconductor, Inc. Designer Reference Manual — BLDC Motor Control Board List of Sections Section 1. Introduction and Setup . . . . . . . . . . . . . . . . . . 15 Freescale Semiconductor, Inc... Section 2. Operational Description . . . . . . . . . . . . . . . . . 37 Section 3. Schematics and Bill of Materials . . . . . . . . . . 43 Section 4. Hardware Design Considerations . . . . . . . . . 55 Section 5. Software Design Considerations . . . . . . . . . . 71 Section 6. Practical Results . . . . . . . . . . . . . . . . . . . . . . . 97 Section 7. Source Code . . . . . . . . . . . . . . . . . . . . . . . . . 103 BLDC Motor Control Board for Industrial and Appliance Applications MOTOROLA List of Sections For More Information On This Product, Go to: www.freescale.com DRM007 5 Freescale Semiconductor, Inc. Freescale Semiconductor, Inc... List of Sections DRM007 6 BLDC Motor Control Board for Industrial and Appliance Applications List of Sections For More Information On This Product, Go to: www.freescale.com MOTOROLA Freescale Semiconductor, Inc. Designer Reference Manual — BLDC Motor Control Board Table of Contents Freescale Semiconductor, Inc... Section 1. Introduction and Setup 1.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 1.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.3 MC68HC908MR8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 1.4 MC68HC908MR8 Pulse-Width Modulator . . . . . . . . . . . . . . . . 21 1.4.1 Fault Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 1.4.2 PWM Output Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 1.4.3 PWM Counter Timebase . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 1.4.4 PWM Load Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 1.4.5 Direct Output Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 1.4.6 Deadtime Insertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 1.5 Brief Overview to Brushless DC Motors . . . . . . . . . . . . . . . . . . 25 1.6 Washing Machine Application’s Overview . . . . . . . . . . . . . . . . 28 1.6.1 Movement Patterns of the Washer. . . . . . . . . . . . . . . . . . . . 28 1.6.2 Agitator Hits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1.6.3 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1.6.4 User’s Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1.6.5 Control Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1.6.6 Target Washer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 1.7 System Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 1.8 Warnings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32 1.9 Setup Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 1.9.1 Programming Mode Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 33 1.9.2 Running Mode Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 BLDC Motor Control Board for Industrial and Appliance Applications MOTOROLA Table of Contents For More Information On This Product, Go to: www.freescale.com DRM007 7 Freescale Semiconductor, Inc. Table of Contents Section 2. Operational Description 2.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37 2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.3 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.4 User Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Freescale Semiconductor, Inc... 2.5 Connectors Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.5.1 J1 — AC Jack. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.5.2 J2 — 3-Phase Motor Connector. . . . . . . . . . . . . . . . . . . . . . 41 2.5.3 J3 — Single Phase Motor 1 Connector . . . . . . . . . . . . . . . . 41 2.5.4 J4 — Temperature Sensor Connector . . . . . . . . . . . . . . . . . 41 2.5.5 J5 — RS-232 Interface Connector . . . . . . . . . . . . . . . . . . . . 42 2.5.6 J6 — External 18 Vdc Source Connector. . . . . . . . . . . . . . . 42 2.5.7 J7 — Single Phase Motor 2 Connector . . . . . . . . . . . . . . . . 42 2.5.8 J8 — Motor Hall Effect Sensor Connector . . . . . . . . . . . . . . 42 Section 3. Schematics and Bill of Materials 3.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43 3.2 Schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.3 Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Section 4. Hardware Design Considerations DRM007 8 4.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55 4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.3 Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56 4.4 RS-232 interface and MON08 Hardware Interface. . . . . . . . . . 58 4.5 Clock Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59 4.6 Hall-Effect Sensors Interface . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.7 LCD Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61 4.8 Reset Button . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.9 3-Phase H-Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63 4.10 Current Feedback and Cycle-by-Cycle Limiting . . . . . . . . . . . . 64 BLDC Motor Control Board for Industrial and Appliance Applications Table of Contents For More Information On This Product, Go to: www.freescale.com MOTOROLA Freescale Semiconductor, Inc. Table of Contents 4.11 Voltage Feedback. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67 4.12 Current and Voltage Limiter . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 4.13 Heat Sink Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Freescale Semiconductor, Inc... Section 5. Software Design Considerations 5.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71 5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 5.3 Controller Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5.4 Speed Control Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 5.4.1 Motor Stalled Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . .79 5.5 Commutation Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 5.6 Data Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 5.6.1 Processes: Latest Position Capture, Period Measuring, and Speed Calculation . . . . . . . . . . . 84 5.6.2 Process Speed Controller . . . . . . . . . . . . . . . . . . . . . . . . . . 84 5.6.3 Process MOSFET Gating Selection . . . . . . . . . . . . . . . . . . . 84 5.6.4 Process Washing Machine. . . . . . . . . . . . . . . . . . . . . . . . . . 86 5.7 Application State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 5.8 Drive State Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5.9 Description of Routines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.9.1 Main(void). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.9.1.1 Stop Motor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.9.1.2 Waiting for Command . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.9.1.3 Displaying Actual and Reference Speed . . . . . . . . . . . . . 89 5.9.1.4 Wash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.9.1.5 Spin CW and Spin CCW . . . . . . . . . . . . . . . . . . . . . . . . . 90 5.9.1.6 Fixed Reference Speed . . . . . . . . . . . . . . . . . . . . . . . . . . 90 5.9.2 InitPLL(void) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 5.9.3 InitPWMMC(void) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 5.9.4 InitTimerA(void) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 5.9.5 InitTimerB(void) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.9.6 Byte ResolveButtons(void) . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.9.7 InitMotor(Byte Commanded_Operation) . . . . . . . . . . . . . . . 91 5.9.8 TimerAOverflow_ISR(void). . . . . . . . . . . . . . . . . . . . . . . . . . 91 BLDC Motor Control Board for Industrial and Appliance Applications MOTOROLA Table of Contents For More Information On This Product, Go to: www.freescale.com DRM007 9 Freescale Semiconductor, Inc. Table of Contents Freescale Semiconductor, Inc... 5.9.9 5.9.10 5.9.11 5.9.12 5.9.13 5.9.14 5.9.15 5.9.16 5.9.17 5.9.18 5.9.19 5.9.20 5.9.21 5.9.22 5.10 Signed Word 16 PIController(void). . . . . . . . . . . . . . . . . . . . 92 MotorStalledProtection(void) . . . . . . . . . . . . . . . . . . . . . . . .92 HALLA_ISR(void) and HALLB_ISR(void). . . . . . . . . . . . . . . 92 HALLC_ISR(void). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Fault1_ISR(void) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 NextSequence(void). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 InitLCD(void) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 CtrlLCD(Byte ctrl) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Ctrl8LCD(Byte ctrl) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 MovCursorLCD(Byte places, Byte dir) . . . . . . . . . . . . . . . . . 93 DataLCD(Byte data) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 StringLCD(Byte *msgLCD). . . . . . . . . . . . . . . . . . . . . . . . . . 94 WaitMs(Byte milis) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Wait40ms(void) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 MCU Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Section 6. Practical Results Section 7. Source Code 7.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103 7.2 Include Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 7.2.1 MR8IO.H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 7.2.2 START08.H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 7.2.3 MAIN.H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 7.2.4 TIMER.H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 7.2.5 LCD.H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113 7.2.6 TABLES.H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115 7.3 Source Code Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 7.3.1 START08.C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 7.3.2 MAIN.C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 7.3.3 TIMER.C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 7.3.4 LCD.C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145 DRM007 10 BLDC Motor Control Board for Industrial and Appliance Applications Table of Contents For More Information On This Product, Go to: www.freescale.com MOTOROLA Freescale Semiconductor, Inc. Designer Reference Manual — BLDC Motor Control Board List of Figures Freescale Semiconductor, Inc... Figure Title 1-1 1-2 1-3 1-4 1-5 1-6 1-7 1-8 MC68HC908MR8 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . 18 PWMMC Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . 22 BLDC Motor – Cross Section . . . . . . . . . . . . . . . . . . . . . . . . . . 25 BLDC Motor Commutation Signals. . . . . . . . . . . . . . . . . . . . . . 27 BLDC Motor Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 System Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Monitor Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Board Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36 3-1 3-2 3-3 3-4 3-5 Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44 MCU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45 Gate Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3-Phase H-Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47 Current and Voltage Sense . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4-1 4-2 4-3 4-4 4-5 4-6 4-7 4-8 4-9 4-10 4-11 4-12 4-13 4-14 V_BUS Power Supply. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 15 Vdc and 5 Vdc Power Supplies . . . . . . . . . . . . . . . . . . . . . . 57 RS-232 and MON08 Interfaces . . . . . . . . . . . . . . . . . . . . . . . .58 Clock Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59 Hall-Effect Sensors Interface . . . . . . . . . . . . . . . . . . . . . . . . . . 60 LCD Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61 Reset Button . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 External Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62 Phase C Output and Gate Driver . . . . . . . . . . . . . . . . . . . . . . . 63 Current Differential Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Current Peak Detector for Current Sensing . . . . . . . . . . . . . . . 65 Cycle-by-Cycle Current Limiter. . . . . . . . . . . . . . . . . . . . . . . . . 66 Voltage Feedback and Fault Detector . . . . . . . . . . . . . . . . . . . 67 Current and Voltage Limiter . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 BLDC Motor Control Board for Industrial and Appliance Applications MOTOROLA Page List of Figures For More Information On This Product, Go to: www.freescale.com DRM007 11 Freescale Semiconductor, Inc. List of Figures Freescale Semiconductor, Inc... Figure PI Controller Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Speed Control Algorithm Flowchart . . . . . . . . . . . . . . . . . . . . . 78 Motor Stalled Protection Flowchart. . . . . . . . . . . . . . . . . . . . . . 79 3-Phase Voltage System Applies to BLDC Motor. . . . . . . . . . . 81 Commutation Algorithm for Hall Sensors . . . . . . . . . . . . . . . . . 82 Main Data Flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Software Deadtime Insertion . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Application State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Drive State Machine and Transitions . . . . . . . . . . . . . . . . . . . . 88 6-1 6-2 6-3 Power Output versus Torque Motor Characteristic. . . . . . . . . . 97 Speed versus Torque Motor Characteristic . . . . . . . . . . . . . . . 98 Current Waveform for Two MOSFET Commutation Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Current Waveform for Three MOSFET Commutation Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Torque Waveform for Two MOSFET Commutation Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Torque Waveform for Three MOSFET Commutation Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 6-5 6-6 12 Page 5-1 5-2 5-3 5-4 5-5 5-6 5-7 5-8 5-9 6-4 DRM007 Title BLDC Motor Control Board for Industrial and Appliance Applications List of Figures For More Information On This Product, Go to: www.freescale.com MOTOROLA Freescale Semiconductor, Inc. Designer Reference Manual — BLDC Motor Control Board List of Tables Freescale Semiconductor, Inc... Table Title 1-1 MC68HC908MR8 Peripherals and Memory . . . . . . . . . . . . . . . 17 2-1 2-2 2-3 2-4 2-5 2-6 2-7 2-8 2-9 2-10 Electrical Characteristics for 127 Vac Board Version . . . . . . . . 38 Electrical Characteristics for 230 Vac Board Version . . . . . . . . 38 AC Jack Connector (J1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3-Phase Motor Connector (J2) . . . . . . . . . . . . . . . . . . . . . . . . . 41 Single-Phase Motor 1 Connector (J3) . . . . . . . . . . . . . . . . . . . 41 Temperature Sensor Connector (J4) . . . . . . . . . . . . . . . . . . . . 41 Optoisolated RS-232 DB-9 Connector (J5) . . . . . . . . . . . . . . . 42 External 18 Vdc Source Connector (J6) . . . . . . . . . . . . . . . . . . 42 Single-Phase Motor 2 Connector (J7) . . . . . . . . . . . . . . . . . . . 42 Motor Hall Effect Sensors Connector (J8) . . . . . . . . . . . . . . . . 42 3-1 3-2 Bill of Materials for 127 Vac Board . . . . . . . . . . . . . . . . . . . . . . 49 Bill of Material Changes for 230 Vac Board . . . . . . . . . . . . . . . 53 4-1 PIN Bit Set Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5-1 5-2 5-3 Commutation Sequence for Clockwise Rotation . . . . . . . . . . . 80 Commutation Sequence for Counterclockwise Rotation . . . . . 81 RAM and FLASH Memory Usage. . . . . . . . . . . . . . . . . . . . . . . 95 6-1 Speed Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 BLDC Motor Control Board for Industrial and Appliance Applications MOTOROLA Page List of Tables For More Information On This Product, Go to: www.freescale.com DRM007 13 Freescale Semiconductor, Inc. Freescale Semiconductor, Inc... List of Tables DRM007 14 BLDC Motor Control Board for Industrial and Appliance Applications List of Tables For More Information On This Product, Go to: www.freescale.com MOTOROLA Freescale Semiconductor, Inc. Designer Reference Manual — BLDC Motor Control Board Section 1. Introduction and Setup Freescale Semiconductor, Inc... 1.1 Contents 1.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.3 MC68HC908MR8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 1.4 MC68HC908MR8 Pulse-Width Modulator . . . . . . . . . . . . . . . . 21 1.4.1 Fault Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 1.4.2 PWM Output Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 1.4.3 PWM Counter Timebase . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 1.4.4 PWM Load Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 1.4.5 Direct Output Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 1.4.6 Deadtime Insertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 1.5 Brief Overview to Brushless DC Motors . . . . . . . . . . . . . . . . . . 25 1.6 Washing Machine Application’s Overview . . . . . . . . . . . . . . . . 28 1.6.1 Movement Patterns of the Washer. . . . . . . . . . . . . . . . . . . . 28 1.6.2 Agitator Hits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1.6.3 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1.6.4 User’s Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1.6.5 Control Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1.6.6 Target Washer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 1.7 System Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 1.8 Warnings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32 1.9 Setup Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 1.9.1 Programming Mode Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 33 1.9.2 Running Mode Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 BLDC Motor Control Board for Industrial and Appliance Applications MOTOROLA Introduction and Setup For More Information On This Product, Go to: www.freescale.com DRM007 15 Freescale Semiconductor, Inc. Introduction and Setup 1.2 Introduction Motorola’s BLDC (brushless dc motor) control board for industrial and appliance applications is a system for controlling a 3-phase BLDC motors with three Hall-effect position sensors. The system consists of hardware and software tools for controlling this type of motor. Freescale Semiconductor, Inc... Hardware consists of: • Three-phase inverter • Sensing circuitry for current, voltage, and temperature • User interface: 16 x 2 character display and two push buttons • On-board power supply: 15 Vdc or 5 Vdc • Optoisolated RS-232 interface for external microcontroller communication and for in-application programming. There are two board versions available, one for operating at 110–127 Vac and the other for operating at 220–240 Vac. The 3-phase inverter of the 110–127 Vac board operates at a nominal voltage of 180 Vdc and 8 A RMS with 11 A peak. The inverter of the 220–240 Vac board operates at a nominal voltage of 320 Vdc driving the same current. The example software consists of the following, but may be easily modified to perform other process cycles. • PI speed controller for closed loop control • Six-step BLDC commutation control based on three Hall-effect position sensors • User interface control • Two washing machine process implementations: wash process and spin process The wash process consists of generating a sine wave of speed references, including positive and negative reference speeds. The spin process consists of generating a start up curve of reference speeds and maintaining a fixed reference speed for a certain time. The PI speed controller operates in the 200 rpm up to 4000 rpm range. DRM007 16 BLDC Motor Control Board for Industrial and Appliance Applications Introduction and Setup For More Information On This Product, Go to: www.freescale.com MOTOROLA Freescale Semiconductor, Inc. Introduction and Setup MC68HC908MR8 1.3 MC68HC908MR8 Freescale Semiconductor, Inc... Motorola offers several 8-bit and 16-bit microcontroller families that are perfectly adapted to the requirements of modern industrial and household applications, combining high-performance and low cost. This development is based on an MC68HC908MR8 microcontroller, a member of the M68HC08 Family. The MC68HC908MR8 incorporates a fault tolerant and flexible 6-channel, 12-bit pulse-width modulator (PWM) designed to support center and edge-aligned modes with automatic deadtime insertion and patented deadtime compensation capability. Write-once protection of key configuration parameters further enhances motor and consumer safety, the MC68HC908MR8 is appropriate for cost and space conscious applications including smart appliances, blowers, fans, refrigeration compressors, office automation products, and electric lawn equipment. Refer to Figure 1-1 for a block diagram of the MC68HC908MR8. Table 1-1 summarizes the MC68HC908MR8 peripherals and memory. The MC68HC908MR8 is a member of the low-cost, high-performance M68HC08 Family of 8-bit microcontroller units (MCU). The M68HC08 Family is based on the customer-specified integrated circuit (CSIC) design strategy. All MCU’s in the family use the enhanced M68HC08 central processor unit (CPU08) and are available with a variety of modules, memory sizes and types, and package types. The central processor unit can address 64 Kbytes of memory space. Table 1-1. MC68HC908MR8 Peripherals and Memory RAM (Bytes) FLASH (Bytes) Timer I/O Serial A/D PWM Operating Voltage Maximum Bus Frequency 256 8K 2-ch + 2-ch 16-bit IC, OC, or PWM 14 SCI 4-ch to 7-ch 10 bit 6-ch 12 bit 5.0 V 8.0 MHz BLDC Motor Control Board for Industrial and Appliance Applications MOTOROLA Introduction and Setup For More Information On This Product, Go to: www.freescale.com DRM007 17 Freescale Semiconductor, Inc. Introduction and Setup INTERNAL BUS M68HC08 CPU COMPUTER OPERATING PROPERLY MODULE DDRA CONTROL AND STATUS REGISTERS — 112 BYTES LOW-VOLTAGE INHIBIT MODULE PORTA ARITHMETIC/LOGIC UNIT (ALU) PTA6/ATD6 PTA5/ATD5 PTA4/ATD4 PTA3/ATD3 PTA2/ATD2 PTA1/ATD1 PTA0/ATD0 PORTB CPU REGISTERS PTB6/TCH1B PTB5/TCH0B PTB4/TCH1A PTB3/TCH0A PTB2TCLKA PTB1/TxD PTB0/RxD USER FLASH — 7680 BYTES TIMER A AND TIMER B INTERFACE MODULES MONITOR ROM — 313 BYTES USER VECTOR SPACE — 46 BYTES OSC1 OSC2 CGMXFC CLOCK GENERATOR MODULE RST SYSTEM INTEGRATION MODULE IRQ IRQ MODULE VREFH SERIAL COMMUNICATIONS INTERFACE MODULE POWER-ON RESET MODULE PULSE-WIDTH MODULATOR Freescale Semiconductor, Inc... USER RAM — 256 BYTES DDRB BREAK MODULE PWM6 PWM5 PWM4 PWM3 PWM2 PWM1 PTC1/FAULT4 PTC1/FAULT4 ANALOG-TO-DIGITAL CONVERTER MODULE PULSE-WIDTH MODULATOR MODULE VDD VDDA VSSA VSS POWER Figure 1-1. MC68HC908MR8 Block Diagram DRM007 18 BLDC Motor Control Board for Industrial and Appliance Applications Introduction and Setup For More Information On This Product, Go to: www.freescale.com MOTOROLA Freescale Semiconductor, Inc. Introduction and Setup MC68HC908MR8 Freescale Semiconductor, Inc... Features of the MC68HC908MR8 include: • High-performance M68HC08 architecture • Fully upward-compatible object code with M6805, M146805, and M68HC05 Families • 8-MHz internal bus frequency • 8 Kbytes of on-chip FLASH • On-chip programming firmware for use with host PC • On-chip random-access memory (RAM) 256 bytes • 12-bit, 6-channel center-aligned or edge-aligned PWMMC • Serial communications interface module (SCI) • Two 16-bit, 2-channel timer interface modules (TIMA and TIMB) • Eight high current sink and source pins (PTA1/ATD1, PTA0/ATD0, PTB6/TCH1B, PTB5/TCH0B, PTB4/TCH1A, PTB3/TCH0A, PTB2/TCLKA, and PTB1/TxD) • Clock generator module (CGM) • Digitally filtered low-voltage inhibit (LVI), software selectable for ±5 percent or ±10 percent tolerance • 10-bit, 4- to7-channel analog-to-digital converter (ADC) • System protection features: – Optional computer operating properly (COP) reset – Low-voltage detection with optional reset – Illegal opcode detection with optional reset – Illegal address detection with optional reset • Fault detection with optional PWM disabling • Available packages: – 32-pin low-profile quad flat pack (LQFP) – 28-pin dual in-line package (PDIP) – 28-pin small outline package (SOIC) BLDC Motor Control Board for Industrial and Appliance Applications MOTOROLA Introduction and Setup For More Information On This Product, Go to: www.freescale.com DRM007 19 Freescale Semiconductor, Inc. Introduction and Setup • Low-power design, fully static with stop and wait modes • Break (BRK) module allows single breakpoint setting during in-circuit debugging • Master reset pin and power-on reset (POR) Freescale Semiconductor, Inc... Features of the CPU include: • Fully upward, object-code compatibility with M68HC05 Family • 16-bit stack pointer with stack manipulation instructions • 16-bit index register with X-register manipulation instructions • 8-MHz CPU internal bus frequency • 64-Kbyte program/data memory space • Sixteen addressing modes • Memory-to-memory data moves without using the accumulator • Fast 8-bit by 8-bit multiply and 16-bit by 8-bit divide instructions • Enhanced binary-coded decimal (BCD) data handling • Modular architecture with expandable internal bus definition for extension of addressing range beyond 64 Kbytes • Low-power stop and wait modes The MC68HC908MR8 PWM module can generate three complementary PWM pairs or six independent PWM signals. These PWM signals can be center-aligned or edge-aligned. A 12-bit timer PWM counter is common to all six channels. PWM resolution is one clock period for edge-aligned operation and two clock periods for center-aligned operation. The clock period is dependent on the internal operating frequency (fop of the MCU) and a programmable prescaler. The highest resolution for edge-aligned operation is 125 ns (fop = 8 MHz). The highest resolution for center-aligned operation is 250 ns (fop = 8 MHz). When generating complementary PWM signals, the module features automatic deadtime insertion to the PWM output pairs. DRM007 20 BLDC Motor Control Board for Industrial and Appliance Applications Introduction and Setup For More Information On This Product, Go to: www.freescale.com MOTOROLA Freescale Semiconductor, Inc. Introduction and Setup MC68HC908MR8 Pulse-Width Modulator 1.4 MC68HC908MR8 Pulse-Width Modulator Freescale Semiconductor, Inc... The pulse-width modulator module (PWMMC) resident on the MC68HC908MR8 is specifically designed to provide pulse-width modulated outputs to drive a power stage connected to a dc servo, brushless dc, or 3-phase ac motor system. The PWMMC module can be partitioned and configured in several ways, depending on the specific motor control application. Figure 1-2 shows a block diagram of the PWMMC module and is referenced throughout this explanation of the PWMMC generator. Features of the PWM include: • Three complementary PWM pairs or six independent PWM signals • Complementary mode features include: – Deadtime insertion – Separate top/bottom pulse-width correction via current sensing or programmable software bits • Edge-aligned PWM or center-aligned PWM signals • PWM signal polarity • 20-mA current sink capability on all PWM outputs • Manual PWM output control through software • Programmable fault protection. One of the most important features of the PWMMC is its ability to “shut itself down” when a system fault is detected. When dealing with a system that potentially could have hundreds of amps of peak current, reacting to faults such as Overcurrent or Overvoltage conditions is an absolute necessity. Fault protection is discussed first. Then, we will work our way from the outputs of the PWM inward. BLDC Motor Control Board for Industrial and Appliance Applications MOTOROLA Introduction and Setup For More Information On This Product, Go to: www.freescale.com DRM007 21 Freescale Semiconductor, Inc. Introduction and Setup OR PRESCALER UP/DOWN COUNTER PRESCALER ÷ 1, 2, 3, OR 8 PWM RELOAD AND INTERRUPT ÷ 1, 2, 3, OR 8 INTERRUPTS PWM GENERATORS CONTROL PWM MODE SELECT Freescale Semiconductor, Inc... COMPARATORS DOUBLE BUFFERED REGISTERS DEADTIME INSERTION DIRECT OUTPUT CONTROL DISTORTION CORRECTION MOTOR CURRENT POLARITIES FAULT PROTECTION PWM1 OUTPUT PWM2 FAULT PARTITIONING POLARITY CONTROL PWM3 PWM4 FAULT MODE SELECT HIGH CURRENT DRIVERS PWM5 PWM6 SYSTEM FAULTS Figure 1-2. PWMMC Module Block Diagram The six outputs of the PWMMC generator can be configured as individual pulse-width modulated signals where each output can be controlled as an independent output. Another option is to configure the outputs in pairs, with the outputs complementary or not, so driving complementary top and bottom transistors on a power stage becomes an easy task. The outputs of the PWMMC are capable of sinking up to 20 mA. That drive capability allows for direct drive of optocouplers without the need of additional drivers. To prevent erroneous signals from being output from the PWMMC module while loading new values, the bulk of the registers are double buffered. New output is inhibited until the load okay (LDOK) bit in the PWM control register is set indicating that it is okay to output the new values. DRM007 22 BLDC Motor Control Board for Industrial and Appliance Applications Introduction and Setup For More Information On This Product, Go to: www.freescale.com MOTOROLA Freescale Semiconductor, Inc. Introduction and Setup MC68HC908MR8 Pulse-Width Modulator 1.4.1 Fault Protection Freescale Semiconductor, Inc... Conditions can arise in the external drive circuitry, requiring that the PWM signals become inactive immediately. These conditions include Overcurrent, Overvoltage, Overtemperature, or other error conditions. Upon detection of a fault, the two fault input pins on the MC68HC908MR8’s PWMMC module can be configured to react in a number of different ways. Each fault input has its own interrupt vector. In all fault conditions, the output of the PWM generator is forced to a known inactive state. A number of fault control and recovery options are available to the systems architect. In some cases, it may be desirable to selectively disable PWM(s) solely with software. Manual and automatic recovery mechanisms are available that allow certain acceptable fault situations to occur, such as starting a motor and using a fault input to limit the maximum startup current. The fault inputs can be partitioned if the MC68HC908MR8 is used to control multiple motors. 1.4.2 PWM Output Alignment Depending on the system design, there is a choice between edge- or center-aligned PWM signals output from the MC68HC908MR32’s PWM generator. The PWM counter uses the value in the timer modulus register to determine its maximum count. In center-aligned mode, a 12-bit up/down counter is used to create the PWM period. The PWM resolution in center-aligned mode is two clock periods (highest resolution is 250 ns at a processor speed of 8 MHz). The PWM period will be equal to: [(Timer modulus) x (PWM clock period) x 2] In edge-aligned mode, a 12-bit up-only counter is used to create the PWM period. Therefore, the PWM resolution in edge-aligned mode is one clock (highest resolution is 125 ns at a processor speed of 8 MHz). Again, the timer modulus register is used to determine the maximum count. The PWM period will be equal to: [(Timer modulus) x (PWM clock period)] BLDC Motor Control Board for Industrial and Appliance Applications MOTOROLA Introduction and Setup For More Information On This Product, Go to: www.freescale.com DRM007 23 Freescale Semiconductor, Inc. Introduction and Setup 1.4.3 PWM Counter Timebase To permit lower PWM frequencies, a prescaler is provided which will divide the PWM clock frequency by 1, 2, 4, or 8. This prescaler is buffered and will not be used by the PWM generator until the LDOK bit located in a PWM control register is set and a new PWM reload cycle begins. Freescale Semiconductor, Inc... 1.4.4 PWM Load Operations When generating sine waves to a motor, an interrupt routine is typically used to step through a sine table located in FLASH memory, scale that sine value, and output the result to the system from the PWM generator. The rate at which the sine table is scanned can be derived from an interrupt from the PWM generator. The PWM module can be programmed to provide an interrupt rate of every 1, 2, 3, or 8 PWM reload cycles. 1.4.5 Direct Output Control In some cases, the user may desire to bypass the PWM generator and directly control the PWM outputs. A mechanism exists to disconnect the PWM generator from its outputs and directly control the six PWM outputs. When this mode is used, the PWM generator continues to run; however, it’s normal PWM output is disabled as it is overridden by direct output. 1.4.6 Deadtime Insertion When the PWM generator is used in complementary mode, automatic deadtime insertion can be provided to prevent turning on both top and bottom inverter transistors in the same phase leg at the same time. When controlling dc-to-ac inverters, the top and bottom PWMs in one pair must never be active at any given time. CAUTION: DRM007 24 If the top and bottom transistors are turned on simultaneously, large currents will flow through the two transistors as they attempt to discharge the bus supply voltage. The transistors could be weakened or destroyed. BLDC Motor Control Board for Industrial and Appliance Applications Introduction and Setup For More Information On This Product, Go to: www.freescale.com MOTOROLA Freescale Semiconductor, Inc. Introduction and Setup Brief Overview to Brushless DC Motors Freescale Semiconductor, Inc... Simply forcing the two PWMs to be inversions of each other is not always sufficient. Since a time delay is associated with turning off the transistors in the motor drive, there must be a “deadtime” between the deactivation of one PWM power transistor and the activation of the opposite transistor in a top and bottom pair. Deadtime can be specified in the deadtime write-once register. This 8-bit value specifies the number of CPU clock cycles to use for the deadtime. 1.5 Brief Overview to Brushless DC Motors A brushless dc motor is a rotating electric machine where the stator is a classic 3-phase stator like that of an induction motor and the rotor has surface-mounted permanent magnets. There are no brushes on the rotor and the commutation is performed electronically at certain rotor positions. The stator is usually made from magnetic steel sheets. The stator phase windings are inserted in the slots (distributed winding) as shown on Figure 1-3. Stator Stator windings in slots Shaft Rotor Air gaps Permanent magnets Figure 1-3. BLDC Motor – Cross Section BLDC Motor Control Board for Industrial and Appliance Applications MOTOROLA Introduction and Setup For More Information On This Product, Go to: www.freescale.com DRM007 25 Freescale Semiconductor, Inc. Introduction and Setup Brushless dc motors are named in different ways: • Permanent magnet synchronous motors • Brushless permanent magnet • Permanent magnet ac motors, etc. Freescale Semiconductor, Inc... A BLDC motor is equivalent to an inverted dc commutation motor, where the magnet rotates while the conductors remain stationary. In the dc commutation motor, the commutator and brushes reverse the current polarity. But, in the brushless dc motor, a power transistor (which must be switched in synchronization with the rotor position) performs the polarity reversal. The BLDC motor often has either internal or external position sensors to sense actual rotor position so that synchronization can be performed. The motor can have more than one pole-pair per phase. The pole-pair per phase defines the ratio between the electrical revolution and the mechanical revolution. For example, the BLDC motor shown in Figure 1-3 has four pole-pairs per phase; which leads to four electrical revolutions; per one mechanical revolution. Advantages of the brushless dc motors are: DRM007 26 • No electrical noise due to brushes and commutator • No tachometer needed for speed control • High starting torque and high no load speed • Good power output to size ratio • Higher efficiency than ac induction motors • Reversible • Precise speed control • Variable speed • Oil-less operation • Rapid acceleration and deceleration • Very low torque ripple BLDC Motor Control Board for Industrial and Appliance Applications Introduction and Setup For More Information On This Product, Go to: www.freescale.com MOTOROLA Freescale Semiconductor, Inc. Introduction and Setup Brief Overview to Brushless DC Motors The presented application uses three Hall effect sensors to sense actual position. The Hall effect sensors’ signals together give the six output values. These outputs are read by the microcontroller and the corresponding output voltage is generated by PWM outputs, as shown in Figure 1-4. 0° 15° 30° 45° 60° 75° 90° HALL A Freescale Semiconductor, Inc... HALL B HALL C PWM1 PWM2 PWM3 PWM4 PWM5 PWM6 Figure 1-4. BLDC Motor Commutation Signals These six PWM outputs are direct inputs to the 3-phase inverter. The motor windings are connected to the inverter. The three Hall effect sensors are connected to independent input capture channels of the microcontroller. See Figure 1-5. BLDC Motor Control Board for Industrial and Appliance Applications MOTOROLA Introduction and Setup For More Information On This Product, Go to: www.freescale.com DRM007 27 Freescale Semiconductor, Inc. Introduction and Setup VBUS PWM1 PWM3 PWM5 BRUSHLESS MOTOR PWM6 CURRENT PROCESSING VALUE LIMIT HALL C TCH1B TCH1A Freescale Semiconductor, Inc... HALL B FILTERING TCH0B PWM4 HALL A PWM2 ATD6 FAULT1 SHUNT RESISTOR VOLTAGE PROCESSING VALUE PWM1 PWM2 PWM3 PWM4 PWM5 PWM6 ATD5 MC68HC908MR8 Figure 1-5. BLDC Motor Controller 1.6 Washing Machine Application’s Overview This reference design has many possible applications and can be easily reconfigured to suit industrial or appliance needs. The provided source code example emulates a basic washing machine as discussed in the following subsections. 1.6.1 Movement Patterns of the Washer In washing machines there is a trade-off between clothes washability and clothes damage. One important consideration in the design is the agitator movement in the washer. The agitator movement pattern is given by a look up table of desired speeds. This look up table could DRM007 28 BLDC Motor Control Board for Industrial and Appliance Applications Introduction and Setup For More Information On This Product, Go to: www.freescale.com MOTOROLA Freescale Semiconductor, Inc. Introduction and Setup Washing Machine Application’s Overview follow different shapes, such as square, trapezoidal or sinusoidal shapes. That is why the reference speeds in this design are taken from a table, leaving the user to customize the movement and test different patterns. From a mechanical point of view, a sinusoid agitator movement has less clothes damage, due to the smooth movement of the washer. Freescale Semiconductor, Inc... 1.6.2 Agitator Hits When washing, there are two important design considerations on each hit of the agitator: • One is the angular displacement of the agitator in each hit. Modifying the reference speeds curve and calculating the integral of the entire hit can change this displacement. • The other parameter is the frequency at which the table of reference speeds is accessed, giving different hits per minute in the washer. 1.6.3 Software The software for this reference design drives a brushless dc motor in the four quadrants, which means that the motor can be reversed without any need of stopping the motor first. This driver capability is very useful in washers because of the water inertia in the washing machine. 1.6.4 User’s Menu A user menu with a 16 x 2 character display and two push buttons was included in the reference design board. This menu provides useful information during operation. 1.6.5 Control Scheme The closed loop control scheme becomes necessary in this application to have more robustness in the washer operation, such as load change, input voltage variations, or mechanical degradations. BLDC Motor Control Board for Industrial and Appliance Applications MOTOROLA Introduction and Setup For More Information On This Product, Go to: www.freescale.com DRM007 29 Freescale Semiconductor, Inc. Introduction and Setup 1.6.6 Target Washer Freescale Semiconductor, Inc... The targeted washers for this application example are direct drive washing machines. These washers have the following advantages over the classic ones: • No belts between the motor shaft and the agitator of the washer. • Different speed ranges, allowing different patterns of agitator movement. • Powerful microcontroller, which makes possible the implementation of digital controllers. 1.7 System Concept The system is designed to drive a 4-pole 3-phase BLDC star connected motor with a 5 to 1 speed gearbox. The microcontroller runs the main control algorithm. According to the user interface input and feedback signals, it generates 3-phase PWM output signals for the motor inverter. The system incorporates all of the application in one board. Figure 1-6 shows the system concept, including the following hardware: • On-board power supply • Feedback network • Three-phase inverter • Microcontroller unit • User interface • Optoisolated RS-232 interface The motor used for this application is based on a ½ HP BLDC and a maximum speed of 4000 rpm. DRM007 30 BLDC Motor Control Board for Industrial and Appliance Applications Introduction and Setup For More Information On This Product, Go to: www.freescale.com MOTOROLA Freescale Semiconductor, Inc. Introduction and Setup System Concept 3-PHASE BLDC MOTOR 3-PHASE INVERTER 120 / 230 VAC FAULT ADC PWM I/O USER INTERFACE SIX-STEP VOLTAGE GENERATOR I/O 16 x 2 LCD SPEED PI CONTROLLER REQUIRED VOLTAGE CURRENT POSITION ACTUAL SPEED REQUIRED SPEED 1/T POSITION, DIRECTION RECOGNITION I/O RS-232 SCI Freescale Semiconductor, Inc... SENSING CIRCUITRY FOR I, V, AND T HALL EFFECT SENSOR SIGNALS WASH PROCESS REQUIRED TABLE MC68HC908MR8 Figure 1-6. System Concept The control process is as follows: The state of the Hall sensor’s inputs is periodically scanned, while the speed of the motor is measured on each new incoming edge from the Hall sensors. According to the user menu, the speed reference is calculated and controlled based upon the current and desired speed. The comparison between the actual speed and the desired speed generates a speed error. The speed error is brought to the speed PI controller that generates a new corrected applied voltage. There are two independent modules in software, one for commutating the motor and other for controlling the speed, which gives us a four-quadrant BLDC motor drive. BLDC Motor Control Board for Industrial and Appliance Applications MOTOROLA Introduction and Setup For More Information On This Product, Go to: www.freescale.com DRM007 31 Freescale Semiconductor, Inc. Introduction and Setup The Hall sensor signals are scanned independently of the speed controller. Each new incoming edge of any Hall sensor signal calls an interrupt routine, which calculates a new voltage shape, applied to the BLDC motor. This process is called commutation. The PWM transistors work in complementary mode, when the upper transistor is on, the lower transistor is off and vice versa. Freescale Semiconductor, Inc... 1.8 Warnings This reference board operates in an environment that includes dangerous voltages and rotating machinery. Due to the high-voltage power stage operating directly from an ac line, oscilloscope grounds and power stage grounds are at different potentials, unless the oscilloscope is floating. Note that probe grounds and, therefore, the case of a floated oscilloscope, are subjected to dangerous voltages. DRM007 32 • Before moving scope probes, making connections, etc., you must turn off the main switch. • Operation in lab setups that have grounded tables and/or chairs should be avoided. • Wearing safety glasses, avoiding ties and jewelry, using shields, and operation by personnel trained in high-voltage lab techniques are advisable. • Never turn on the board in running mode if it is not known if the code is downloaded. • To reduce the cost of the board, optoisolation circuitry was not included: the microcontroller’s ground is tied to a power stage ground. For this reason, special care must be taken when handling the board. Touching its components when it is turned on must be avoided. BLDC Motor Control Board for Industrial and Appliance Applications Introduction and Setup For More Information On This Product, Go to: www.freescale.com MOTOROLA Freescale Semiconductor, Inc. Introduction and Setup Setup Guide 1.9 Setup Guide This board operates in two different modes: programming mode and running mode. Programming mode allows downloading code to the microcontroller. In running mode the microcontroller executes the downloaded code. Freescale Semiconductor, Inc... Out of the box conditions suppose the board is programmed with “BLDC CODE V1.s19”. Default position of Jumper JP1 is between 2 and 3 pins. The board contains its own dc power supply for the power stage, besides a 15 Vdc regulated power supply and a 5 Vdc regulated power supply. The 15 Vdc and the 5 Vdc power supplies can be sourced by the dc power supply for power stage or by and external source of 18 Vdc at 200 mA. Input for this external source is the connector labeled J6. Selecting internal or external sourcing of 15 Vdc and 5 Vdc regulated power supplies, is done by means of switch S5. Then, if the user wants to use an external power supply, connect its terminals to connector J6 and slide the switch S5 to the position labeled “EXT”. 1.9.1 Programming Mode Setup The following procedure describes programming mode setup. Before starting you must turn off the main switch. Auxiliary external power supply usage is recommended. A PC computer is required having Metrowerks CodeWarrior Development Studio for HC08 Microcontrollers or PEMICRO PROG08SZ — FLASH programmer for M68HC908MR. The PC serial port baud rate should be set up at 9600 bps with no DTR signal. The reference board works as a Class III — direct serial to target with MON08 serial port circuitry built in. The programmers software should be configured to match this. BLDC Motor Control Board for Industrial and Appliance Applications MOTOROLA Introduction and Setup For More Information On This Product, Go to: www.freescale.com DRM007 33 Freescale Semiconductor, Inc. Introduction and Setup To program the MCU perform the following steps: 1. Unplug the active cord. 2. Install a shorting jumper on pins 1 and 2 of JP1 to enter the microcontroller to monitor mode. 3. Connect a serial cable from a PC RS-232 serial port to the reference board’s DB9 connector J5. Freescale Semiconductor, Inc... 4. Connect external 18 Vdc power supply to J6 and slide switch S5 to position labeled “EXT”. Or, plug ac line cord into jack J1 and turn on the main switch S4. 5. Continue with the FLASH programming procedure of the software used by the computer. Figure 1-7. Monitor Setup DRM007 34 BLDC Motor Control Board for Industrial and Appliance Applications Introduction and Setup For More Information On This Product, Go to: www.freescale.com MOTOROLA Freescale Semiconductor, Inc. Introduction and Setup Setup Guide 1.9.2 Running Mode Setup Setup procedure for running mode is described here. This procedure supposes the microcontroller is programmed with a valid version of code. Before starting you must turn off the main switch S4. 1. Unplug the ac line cord. 2. Install a shorting jumper on pins 2 and 3 of JP1 to entry microcontroller to user mode. Freescale Semiconductor, Inc... 3. Connect motor phase terminals to connector J2 according to labels near the connector. 4. Connect motor Hall sensor terminals to header J8 according to its label. 5. Slide switch S5 to position labeled “INT”. 6. Plug ac line cord into jack J1. 7. Turn on the main switch S4. Alternatively to steps 5 through 7, you can connect an external 18 Vdc power supply to J6 and slide switch S5 to position labeled “EXT”. The green LED, D21, must be turned on indicating that the 5 Vdc regulated power supply is working properly. BLDC Motor Control Board for Industrial and Appliance Applications MOTOROLA Introduction and Setup For More Information On This Product, Go to: www.freescale.com DRM007 35 Freescale Semiconductor, Inc. Introduction and Setup HALL EFFECT SENSORS CONNECTOR LCD EXTERNAL 18 VDC SOURCE CONNECTOR TEMPERATURE SENSOR CONNECTOR POWER ON LED ENTER SWITCH RS-232 INTERFACE OPTIONS SWITCH Freescale Semiconductor, Inc... RESET SWITCH SINGLE-PHASE M1 CONNECTOR EXTERN/INTERNAL SOURCE SWITCH SINGLE PHASE M2 CONNECTOR MAIN SWITCH 3-PHASE MOTOR CONNECTOR A.C. JACK Figure 1-8. Board Layout DRM007 36 BLDC Motor Control Board for Industrial and Appliance Applications Introduction and Setup For More Information On This Product, Go to: www.freescale.com MOTOROLA Freescale Semiconductor, Inc. Designer Reference Manual — BLDC Motor Control Board Section 2. Operational Description Freescale Semiconductor, Inc... 2.1 Contents 2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.3 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.4 User Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.5 Connectors Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.5.1 J1 — AC Jack. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.5.2 J2 — 3-Phase Motor Connector. . . . . . . . . . . . . . . . . . . . . . 41 2.5.3 J3 — Single Phase Motor 1 Connector . . . . . . . . . . . . . . . . 41 2.5.4 J4 — Temperature Sensor Connector . . . . . . . . . . . . . . . . . 41 2.5.5 J5 — RS-232 Interface Connector . . . . . . . . . . . . . . . . . . . . 42 2.5.6 J6 — External 18 Vdc Source Connector. . . . . . . . . . . . . . . 42 2.5.7 J7 — Single Phase Motor 2 Connector . . . . . . . . . . . . . . . . 42 2.5.8 J8 — Motor Hall Effect Sensor Connector . . . . . . . . . . . . . . 42 2.2 Introduction This section describes the electrical characteristics, user interfaces, and connections for the BLDC (brushless dc motor) control board. BLDC Motor Control Board for Industrial and Appliance Applications MOTOROLA Operational Description For More Information On This Product, Go to: www.freescale.com DRM007 37 Freescale Semiconductor, Inc. Operational Description 2.3 Electrical Characteristics The electrical characteristics in Table 2-1 and Table 2-2 apply to operation of the BLDC reference board at 25°C. Table 2-1. Electrical Characteristics for 127 Vac Board Version Freescale Semiconductor, Inc... Inputs Min Typ Max Unit AC input voltage 110 120 127 V RMS AC input current — — 9 A RMS Auxiliary dc input voltage 16 18 20 V Auxiliary dc input current — — 150 mA Minimum logic 1 input voltage 3.5 — — V Maximum logic 0 input voltage — — 1.5 V Motor output voltage — — 180 V RMS Motor output current — — 8 A RMS 9504 9600 9696 Baud RS-232 connection speed Table 2-2. Electrical Characteristics for 230 Vac Board Version Inputs Min Typ Max Unit AC input voltage 210 220 230 V RMS AC input current — — 9 A RMS Auxiliary dc input voltage 16 18 20 V Auxiliary dc input current — — 150 mA Minimum logic 1 input voltage 3.5 — — V Maximum logic 0 input voltage — — 1.5 V Motor output voltage — — 320 V RMS Motor output current — — 8 A RMS 9504 9600 9696 Baud RS-232 connection data rate DRM007 38 BLDC Motor Control Board for Industrial and Appliance Applications Operational Description For More Information On This Product, Go to: www.freescale.com MOTOROLA Freescale Semiconductor, Inc. Operational Description User Interfaces 2.4 User Interfaces Freescale Semiconductor, Inc... The BLDC board user interface consists of a 16 x 2 line character liquid crystal display (LCD), a LCD contrast potentiometer, a reset switch, a jumper, two push buttons, a slide switch, an indicator light-emitting diode (LED), and an optoisolated RS-232 interface. • D21: PWR ON — D21, labeled PWR ON, illuminates when power is applied to the board. • JP1 — Jumper JP1 is a 3-position jumper header. When shorted between position 1 and 2 the microcontroller is set to enter the HC08 monitor mode. For more detailed information, refer to the MC68HC908MR8 Technical Data (Motorola document order number MC68HC908MR8/D). • LCD — A 16 characters per 2 lines liquid crystal display. • S5 — S5 is a slide switch located on the top-right side of the board. It is used to select between external or internal input of power for 15 Vdc and 5 Vdc power supplies. • S1: RESET — S1, the RESET switch, is a push button located near the right border of the board. It resets the microcontroller of the board. • S2: OPTIONS — Push-button labeled OPTIONS scrolls all the washing machine cycles programmed. • S3: ENTER — Push-button labeled ENTER selects the options showed in the LCD. • J5 — An Optoisolated RS-232 interface, for monitor mode communication with a host computer, is available via DB-9 connector J5. After turning on the board, when the board is programmed with code version “BLDC CODE V1.s19”, the first message displayed on the LCD is “BLDC WASH”. BLDC Motor Control Board for Industrial and Appliance Applications MOTOROLA Operational Description For More Information On This Product, Go to: www.freescale.com DRM007 39 Freescale Semiconductor, Inc. Operational Description Freescale Semiconductor, Inc... By pressing the push button labeled OPTIONS (S2) the following menu options (defined in the following paragraphs) are displayed on the LCD: • “Fault Occurred!!!” • “Motor Stalled!!!” • “BLDC WASH” • “BLDC SPIN CW” • “BLDC SPIN CCW” • “SPEED DES +1980 CU +000” • “BLDC STOP” “Fault Occurred!!!” is a message display when an over voltage or over current has activated the FAULT1 input signal. The motor is stopped when this happens and the message is displayed. “Motor Stalled!!!” is a message displayed when the motor is stalled. “BLDC WASH” option is the typical washing cycle. The motor rotates in both directions, clockwise and counterclockwise. To produce this movement of the motor a defined look-up table of desired speeds is accessed continuously. “BLDC SPIN CW” option makes the motor rotate in a clockwise direction. It is applied as a starting curve table and then the speed is maintained at a desired value programmed in software. “BLDC SPIN CCW” option behaves similar to “BLDC SPIN CW” but in counterclockwise direction. “SPEED” option displays the desired speed (‘DES’) programmed in software and the current speed (‘CU’), both in RPMs with a direction sign (‘+’ or ‘–’) corresponding to either clockwise or counterclockwise direction. “BLDC STOP” option is intended to stop the motor. When the push button labeled ENTER (S3) is pressed, the option showed on the LCD is executed. For example, if the option “BLDC SPIN CW” is displayed on the LCD and this button is pressed then the spin DRM007 40 BLDC Motor Control Board for Industrial and Appliance Applications Operational Description For More Information On This Product, Go to: www.freescale.com MOTOROLA Freescale Semiconductor, Inc. Operational Description Connectors Pin Descriptions clockwise cycle starts. Stopping a washing cycle is accomplished by selecting the option “BLDC STOP” by mean of OPTIONS button and then pressing the ENTER button. 2.5 Connectors Pin Descriptions The following subsections describe the connector pins. Freescale Semiconductor, Inc... 2.5.1 J1 — AC Jack Table 2-3. AC Jack Connector (J1) Pin Number Name Description s 1 Line Line signal 2 Neutral Neutral signal 3 GND Chassis ground 2.5.2 J2 — 3-Phase Motor Connector Table 2-4. 3-Phase Motor Connector (J2) Pin Number Name Description 1 Phase A Signal for phase A motor terminal 2 Phase B Signal for phase B motor terminal 3 Phase C Signal for phase C motor terminal 2.5.3 J3 — Single Phase Motor 1 Connector Table 2-5. Single-Phase Motor 1 Connector (J3) Pin Number Name Description 1 Phase B Signal for phase B motor terminal 2 Phase C Signal for phase C motor terminal 2.5.4 J4 — Temperature Sensor Connector Table 2-6. Temperature Sensor Connector (J4) Pin Number Name Description 1 VCC 5 Vdc output signal 2 TEMPERATURE_SENSE DC input signal from temperature sensor BLDC Motor Control Board for Industrial and Appliance Applications MOTOROLA Operational Description For More Information On This Product, Go to: www.freescale.com DRM007 41 Freescale Semiconductor, Inc. Operational Description 2.5.5 J5 — RS-232 Interface Connector Table 2-7. Optoisolated RS-232 DB-9 Connector (J5) Freescale Semiconductor, Inc... Pin Number Name Description 1 Unused N/A 2 RxD Data received by the PC from the control board 3 TxD Data transmitted from the PC to the control board 4 DTR Positive or negative voltage for communication 5 GND Common ground reference 6 Unused N/A 7 RTS Negative or positive voltage for communication 8 Unused N/A 9 Unused N/A 2.5.6 J6 — External 18 Vdc Source Connector Table 2-8. External 18 Vdc Source Connector (J6) Pin Number Name Description 1 18 Vdc 18 Vdc signal from external source 2 GND Common ground reference 2.5.7 J7 — Single Phase Motor 2 Connector Table 2-9. Single-Phase Motor 2 Connector (J7) Pin Number Name Description 1 Phase B Signal for phase B motor terminal 2 Phase C Signal for phase C motor terminal 2.5.8 J8 — Motor Hall Effect Sensor Connector Table 2-10. Motor Hall Effect Sensors Connector (J8) Pin Number DRM007 42 Name Description 1 GND GND 2 VCC 5 Vdc output signal 3 HALL_A Input signal from motor Hall sensor A 4 HALL_B Input signal from motor Hall sensor B 5 HALL_C Input signal from motor Hall sensor C BLDC Motor Control Board for Industrial and Appliance Applications Operational Description For More Information On This Product, Go to: www.freescale.com MOTOROLA Freescale Semiconductor, Inc. Designer Reference Manual — BLDC Motor Control Board Section 3. Schematics and Bill of Materials Freescale Semiconductor, Inc... 3.1 Contents 3.2 Schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.3 Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.2 Schematics A set of schematics for the BLDC (brushless dc motor) control board appears in Figure 3-1 through Figure 3-5. Interrupted lines coded with the same letters are electrically connected. BLDC Motor Control Board for Industrial and Appliance Applications MOTOROLA Schematics and Bill of Materials For More Information On This Product, Go to: www.freescale.com DRM007 43 22nF / 400V C2 1 S4 10A J6 1 2 F2 7A Fast Acting R7 (BC1429-ND @ 127VAC) (BC1432-ND @ 230VAC) 22nF / 400V C39 2 J1 PLUG AC 3 IC2 MC78M15CDT 3 IN OUT GND 8 6 7 5 470uF/25V + C4 500mA F1 Schematics and Bill of Materials For More Information On This Product, Go to: www.freescale.com B2 GBPC2508W + GND + C6 470uF/25V 100nF / 16V C45 C49 0.1 uF C5 0.1uF/50V D21 GREEN R40 330 + C48 0.1 uF VCC V_BUS +15V C46 22nF / 400V C1 (1500uF/250V @ 127VAC) (560uF/400V @ 230VAC) B1 1KAB05E-ND S5 470uF/10V + C50 R52 (47K/1W @ 127VAC) (150K/1W @ 230VAC) Figure 3-1. Power Supply - RT1 CL-40 - + IC3 MC33269DT-5.0 3 IN OUT 100nF/25V C19 1 T1 (SW-328 @ 127VAC) (DSW-328 @ 230VAC) 4 2 3 1 2 44 2 DRM007 t EXTERNAL_POWER_SUPPLY_CONNECTOR 1 C47 0.1 uF Freescale Semiconductor, Inc... Freescale Semiconductor, Inc. Schematics and Bill of Materials BLDC Motor Control Board for Industrial and Appliance Applications MOTOROLA C32 0.1uF +15V R39 2.2k C15 0.02uF C14 15pF D20 8.2V S3 ENTER R30 10k VCC FAULT PWM_AT PWM_AB PWM_BT PWM_BB PWM_CT PWM_CB X1 4MHz C13 15pF 1x3 PIN HEADER JP1 VCC C11 0.1uF R23 10k R24 10M R33 VSSA OSC2 OSC1 CGMXFC /IRQ PWM1 PWM2 PWM3 BLDC Motor Control Board for Industrial and Appliance Applications Schematics and Bill of Materials For More Information On This Product, Go to: www.freescale.com R48 100K + VCC R4 1K R60 1K TxD RxD RS R41 330 Q7 2N2222 VCC R57 1K ENABLE PTA1/ATD1 PTA0/ATD0 PTB6/TCH1B PTB5/TCH0B VSS VDD PTB4/TCH1A PTB3/TCH0A Figure 3-2. MCU VCC IC9 MC68HC908MR8 1 2 3 4 5 6 7 8 C12 0.1uF C42 10uF/10V 4.7 VCC 1N4148 D2 24 23 22 21 20 19 18 17 10K R22 + TEMPERATURE_SENSE V_SENSE I_SENSE 32 31 30 29 28 27 26 25 VDDA /RST VREFH PTA6/ATD6 PTA5/ATD5 PTA4/ATD4 PTA3/ATD3 PTA2/ATD2 PWM4 PWM5 PWM6 PTC0/FAULT1 PTC1/FAULT4 PTB0/RxD PTB1/TxD PTB2/TCLKA 9 10 11 12 13 14 15 16 S1 Reset VCC R29 10K 4 3 2 1 VCC 5 6 7 8 R34 2.2K C17 10uF/35V S2 OPTIONS IC8 LTV-827S C18 10uF/35V VCC C16 0.47uF/10V RS ENABLE R3 20K + 10nF 10nF D9 1N4148 D3 1N4148 D4 1N4148 D1 1N4148 C35 R27 1K C34 R26 1K C52 VCC 100 TxD RTS RxD DTR 5 9 4 8 3 7 2 6 1 0.47uF/10V GND 10nF C36 100 R53 100 R54 R55 R28 1K J8 HALL_EFFECT_CONN LCD 1x14 PIN HEADER VCC 1 2 3 4 5 6 7 8 9 10 11 12 13 14 J5 5 4 3 2 1 MOTOROLA HALL_C HALL_B HALL_A VCC GND Freescale Semiconductor, Inc... Freescale Semiconductor, Inc. Schematics and Bill of Materials Schematics DRM007 45 DRM007 46 PWM_CT PWM_CB PWM_BT PWM_BB PWM_AT PWM_AB C54 1nF C55 1nF C51 1nF R58 10K R51 10K R56 10K C53 1nF C56 1nF C57 1nF R59 10K R50 10K R49 10K D23 D14 Schematics and Bill of Materials For More Information On This Product, Go to: www.freescale.com D19 C8 0.1uF +15V C27 0.1uF +15V C24 0.1uF +15V 6 8 1 4 2 3 6 8 1 4 2 3 6 8 1 4 2 3 HO LO HO LO HO LO IR2101/SO VS VB VCC COM HIN LIN IC1 IR2101/SO VS VB VCC COM HIN LIN IC5 IR2101/SO VS VB VCC COM HIN LIN IC4 7 5 7 5 7 5 R20 600 R45 75 R21 600 R44 75 R38 600 R43 75 R37 600 R42 75 R36 600 R46 75 Figure 3-3. Gate Driver C30 0.47uF/25V + C9 33uF/50V MURA160T3 C10 0.47uF/25V C29 0.47uF/25V + C26 33uF/50V MURA160T3 C25 0.47uF/25V C31 0.47uF/25V + C23 33uF/50V MURA160T3 C22 0.47uF/25V R35 600 R47 75 D5 MBRS130CT D7 MBRS130CT D18 MBRS130CT D16 MBRS130CT D13 MBRS130CT D11 MBRS130CT Freescale Semiconductor, Inc... D6 MMSZ5248BT1 D8 MMSZ5248BT1 D17 MMSZ5248BT1 D15 MMSZ5248BT1 D12 MMSZ5248BT1 D10 MMSZ5248BT1 SOURCE_COM GATE_CB SOURCE_CT GATE_CT SOURCE_COM GATEBB SOURCE_BT GATE_BT SOURCE_COM GATE_AB SOURCE_AT GATE_AT Freescale Semiconductor, Inc. Schematics and Bill of Materials BLDC Motor Control Board for Industrial and Appliance Applications MOTOROLA MOTOROLA SOURCE_COM BLDC Motor Control Board for Industrial and Appliance Applications Schematics and Bill of Materials For More Information On This Product, Go to: www.freescale.com Q4 IRFB17N50L Q3 IRFB17N50L GATE_CT 1 2 1 2 1 2 3 J7 J3 J2 GATE_CB PHASE_C SOURCE_CT Figure 3-4. 3-Phase H-Bridge PHASE_A PHASE_B PHASE_C SHUNT_- R19 0.005 Ohms / 3 Watts / 1% SHUNT_+ GATE_BB Q2 IRFB17N50L GATE_AB SOURCE_BT GATE_BT PHASE_B Q1 IRFB17N50L PHASE_A SOURCE_AT GATE_AT V_BUS Q6 IRFB17N50L Q5 IRFB17N50L SINGLE_PHASE2_CONNECTOR SINGLE_PHASE1_CONNECTOR 3_PHASE_CONNECTOR Freescale Semiconductor, Inc... Freescale Semiconductor, Inc. Schematics and Bill of Materials Schematics DRM007 47 Schematics and Bill of Materials For More Information On This Product, Go to: www.freescale.com VCC R10 500K 1% R12 (10k 1% @ 127VAC) (2.5k 1% @ 230VAC) V_BUS R25 500K 1% C20 10pF C21 22pF R11 10k 1% R9 10K 1% R15 100K 1% 2 - SHUNT_R18 1K 1% 3 + R16 100K 1% SHUNT_+ R17 1K 1% 8 1 IC6A MC33502D C43 68pF 100 R13 C7 15pF +15V 3 2 C37 20nF VCC R2 10K 7 LM393D IC7A 1 C28 22pF R5 2.5K 1% C3 0.1uF 6 - 5 + R31 8.25k 1% R6 10K 1% R32 1K +15V 5 6 C44 15pF D22 1N5817MCT-ND IC6B MC33502D C40 0.1uF C41 0.1uF Figure 3-5. Current and Voltage Sense R14 15K V_SENSE 4 VCC 8 4 C33 0.1uF 4 8 4 8 VCC + - 48 + DRM007 - VCC 7 J4 R1 10K VCC Q8 2N2222 R8 10K I_SENSE TEMPERATURE_SENSE TEMPERATURE_CONNECTOR VCC IC7B LM393D 1 2 Freescale Semiconductor, Inc... C38 15pF FAULT Freescale Semiconductor, Inc. Schematics and Bill of Materials BLDC Motor Control Board for Industrial and Appliance Applications MOTOROLA Freescale Semiconductor, Inc. Schematics and Bill of Materials Bill of Materials 3.3 Bill of Materials The BLDC for Washing Machines Motor Controller Board Bill of Materials (BOM) 127 Vac version is described in Table 3-1. The 230 Vac board version has only five components different from 127 Vac version, Table 3-2 shows those changes. Freescale Semiconductor, Inc... Table 3-1. Bill of Materials for 127 Vac Board (Sheet 1 of 5) Qty Value Description Label Manufacturer Part Number Distributor Distributor Part Number Diode Bridges 1 1.2 A 1.2 A Rectifier B1 International Rectifier 1KAB05E Digikey 1KAB05E-ND 1 25 A 25 A Rectifier B2 International Rectifier GBPC2508W Digikey GBPC2508W-ND ECOS2EP152EA Digikey P7413-ND Capacitors 1 1500 uF / 250v Large Can Aluminum Electrolytic Capacitors 6 0.47 uF / 25v C10, C22, Ceramic Capacitor (1206) C25, C29, Panasonic - ECG C30, C31 ECJ-3YB1E474K Digikey PCC1891TR-ND 5 15 pF C7, C13, Ceramic Capacitor (0805) C14, C38, Yageo America C44 0805CG150J9B200 Digikey 311-1101-1-ND 2 0.02 uF Ceramic Capacitor (0805) ECJ-2VB1H223K Digikey PCC223BGCT-ND 1 0.47 uF/10v Ceramic Capacitor (0805) ECJ-2YB1C474K Digikey PCC1818CT-ND 2 10 uF / 35v CPOL-USCT3216 C17, C18 Panasonic - ECG EEV-HA1V100WR Digikey PCE3299TR-ND 3 0.022 uF / 400v Large Ceramic Capacitor C2, C39, Vishay / Sprague C46 225P22394XD3 Newark 47F143 1 10 pF Ceramic Capacitor (0805) Yageo America 0805CG100J9B200 Digikey 311-1099-1-ND 2 22 pF Ceramic Capacitor (0805) C21, C28 Yageo America 0805CG220J9B200 Digikey 311-1103-1-ND 15 0.1 uF C3, C8, C11, C12, C19, C24, C27, C32, Ceramic Capacitor (0805) Panasonic - ECG C33, C40, C41, C45, C47, C48, C49 ECJ-2VB1E104K Digikey PCC1828TR-ND 3 10 nF Ceramic Capacitor (0805) C34, C35, Panasonic - ECG C36 ECJ-2VB1H103K Digikey PCC103BNCT-ND C1 Panasonic C15, C37 Panasonic - ECG C16 C20 Panasonic - ECG BLDC Motor Control Board for Industrial and Appliance Applications MOTOROLA Schematics and Bill of Materials For More Information On This Product, Go to: www.freescale.com DRM007 49 Freescale Semiconductor, Inc. Schematics and Bill of Materials Table 3-1. Bill of Materials for 127 Vac Board (Sheet 2 of 5) Freescale Semiconductor, Inc... Qty Value Description Label Manufacturer Part Number Distributor Distributor Part Number 6 1 nF C51, C53, Ceramic Capacitor (0805) C54, C55, Yageo America C56, C57 0805CG102J9B200 Digikey 311-1122-1-ND 2 470 uF / 25v Electrolitic Capacitor C4, C6 Panasonic - ECG EEV-FK1V471Q Digikey PCE3464CT-ND 1 10 uF / 10v Electrolitic Capacitor C42 Panasonic - ECG ECE-V1AA100NR Digikey PCE3125CT-ND 1 68 pF Ceramic Capacitor (0805) C43 Panasonic - ECG ECJ-2VC1H680J Digikey PCC680CGCT-ND 1 0.1 uF / 50v Ceramic Capacitor (0805) C5 Panasonic - ECG ECJ-2YB1H104K Digikey PCC1840CT-ND 1 470 uF / 10v POL-CAPF C50 Panasonic - ECG EEV-FK1A471P Digikey PCE3392CT-ND 1 0.47 uF / 10v Ceramic Capacitor (0805) C52 Panasonic - ECG ECJ-2YF1E474Z Digikey PCC1857CT-ND 3 33 uF / 50v CPOL-USCT7343 T491X336K025AS Newark C9, C23, Kemet C26 Diodes 5 LL4148 LL4148 D1, D2, D3, Diodes Inc. D4, D9 LL4148 3 MURA160T3 SCHOTTKY_SMA D14, D19, ON D23 MURA160T3 1 MMSZ5237BT1 Zener Diode 8.2 v D20 ON 1 Green SMD Green Led D21 Stanley Electric Sales DG1112H-TR of America Digikey 404-1026-2-ND 1 1N5817MCT Schottky - 20v / 1A D22 Diodes Inc. Digikey 1N5817MCT-ND 6 MBRS130LT SCHOTTKY_SMB D5, D7, D11, D13, International Rectifier MBRS130LTR D16, D18 Digikey MBRS130LCT-ND D6, D8, D10, D12, ON D15, D17 Diodes Inc SMAZ18-13 Digikey IR2101S-ND 6 MMSZ5248BT1 Zener Diode 18 v MMSZ5237BT1 1N5817M MMSZ5248BT1 Fuses 1 500 mA SMT SM-FUSESM F1 Bourns MF-SM050 1 10 Amp FUSE22 F2 Schurterinc OGD 0031.8231 Integrated Circuits IC1, IC4, International Rectifier IR2101S IC5 3 IR2101S 1 MC78M15CDT Voltage Regulator 15v / 500mA IC2 ON MC78M15CDT 1 MC33269DT-5.0 Voltage Regulator 5v / 800mA IC3 ON MC33269DT-5.0 1 MC33502D Dual Operational Amplifier IC6 ON MC33502D DRM007 50 BLDC Motor Control Board for Industrial and Appliance Applications Schematics and Bill of Materials For More Information On This Product, Go to: www.freescale.com MOTOROLA Freescale Semiconductor, Inc. Schematics and Bill of Materials Bill of Materials Table 3-1. Bill of Materials for 127 Vac Board (Sheet 3 of 5) Qty Value Description Label Manufacturer Part Number Distributor Distributor Part Number 1 LM393D Low Offset Voltage Comparator IC7 ON LM393D 1 LTV-827S Optoisolator SMD IC8 Lite-On Inc. LTV-827S Digikey 160-1369-5-ND Freescale Semiconductor, Inc... Connectors 1 AC_jack AC Power Connector J1 SCHURTER GSP2.9213.13 Newark 32C1691 1 66503 66503 J2 MOLEX/WALDOM 66503 Newark 29B3093 2 6650202 6650202 J3, J7 MOLEX/WALDOM 66502 Newark 29B3092 1 S02P J4 TYCO ELECTRONICS 640456-2 Newark 90F4250 1 FDB9 DB9 / Female connector J5 CINCH DEKL-9SAT-F Newark 95F4126 1 W237-102 J6 TYCO ELECTRONICS 796949-2 Newark 34C9478 1 S05P J8 TYCO ELECTRONICS 640456-5 Newark 90F5643 SPC CONNECTORS 8431-0721 Newark 16N2602 Digikey 67-1779-ND Newark 33C4970 Jumpers 1 JP2E JP1 LCD 1 LCD_OPTREXN LCD LUMEX LCM-S01602DTR/A Microcontroller 1 HC908MR8 MC68HC90 Motorola 8MR8 Microcontroller MC68HC908MR8 Transistors 6 IRFPC40VH Power Mosfet 500V 17A Q1, Q2, Q3, Q4, Q5, Q6 International Rectifier IRFB17N50L 2 MMBT2222AL NPN transistor 2N2222AL Q7, Q8 ON MMBT2222AL Resistors 16 10 K Resistor (0805) R1, R2, R8, R22, R23, R26, R27, R28, R29, Yageo America R30, R49, R50, R51, R56, R58, R59 2 500 k / 1% Resistor (0805) R10, R25 Yageo America 1 10 k / 1% Resistor (0805) R11 Yageo America 9C08052A1002FKHFT Digikey 311-10.0KCCT-ND 9C08052A4993FKHFT Digikey 311-499KCCT-ND 9C08052A1002FKHFT Digikey 311-10.0KCCT-ND BLDC Motor Control Board for Industrial and Appliance Applications MOTOROLA Schematics and Bill of Materials For More Information On This Product, Go to: www.freescale.com DRM007 51 Freescale Semiconductor, Inc. Schematics and Bill of Materials Table 3-1. Bill of Materials for 127 Vac Board (Sheet 4 of 5) Freescale Semiconductor, Inc... Qty Value Description 4 100 Resistor (0805) 1 15 K Resistor (0805) 2 100 K / 1% Label Manufacturer R13, R53, Yageo America R54, R55 Part Number Distributor Distributor Part Number 9C08052A1000FKHFT Digikey 311-100CCT-ND Yageo America 9C08052A1502FKHFT Digikey 311-15.0KCCT-ND Resistor (0805) R15, R16 Yageo America 9C08052A1652FKHFT Digikey 311-16.5KCTR-ND 2 1 K / 1% Resistor (0805) R17, R18 Yageo America 9C08052A1001FKHFT Digikey 311-1.00KCCT-ND 1 .005 / 3w / 1% Shunt Resistor 4 1K Resistor (0805) R4, R32, Yageo America R57, R60 9C08052A1001FKHFT Digikey 311-1.00KCCT-ND 6 600 Resistor (0805) R20, R21, R35, R36, Yageo America R37, R38 9C08052A6040FKHFT Digikey 311-604CCT-ND 1 10 M Resistor (0805) R24 Yageo America 9C08052A1005FKHFT Digikey 311-10.0MCCT-ND 1 8.25 K / 1% Resistor (0805) R31 Yageo America 9C08052A8251FKHFT Digikey 311-8.25KCCT-ND 1 4.7 Resistor (0805) R33 Yageo America 9C08052A4R70JLHFT Digikey 311-4.7ACT-ND 2 2.2 K Resistor (0805) R34, R39 Yageo America 9C08052A2201FKHFT Digikey 311-2.20KCCT-ND 2 330 Resistor (0805) R40, R41 Yageo America 9C08052A3300FKHFT Digikey 311-330CCT-ND 6 75 - 1/4 w Resistor (1206) R42, R43, R44, R45, Yageo America R46, R47 9C12063A1200FKHFT Digikey 311-120FCT-ND 1 100 K Resistor (0805) R48 Yageo America 9C08052A1003FKHFT Digikey 311-100KCTR-ND 1 2.5 K / 1% Resistor (0805) R5 Yageo America 9C08052A2501FKHFT Digikey 311-2.50KCCT-ND 1 47k / 1w Resistor (2512) R52 Panasonic - ECG ERJ-1TYJ473U PT47KXCT-ND 3 10 K / 1% Resistor (0805) R6, R9, R12 Yageo America 9C08052A1002FKHFT Digikey 311-10.0KCCT-ND 2322 594 51516 Digikey BC1429-ND ST4TA203 Digikey ST4A203TR-ND R14 R19 IRC OAR-3 0.005 1% Future Electronics Digikey Varistor 1 Varistor 150v RMS R7 BC Components NTC 1 CL40 Disc thermistor RT1 NTC Thermistors CL40 Potentiometer 1 20 K Trimmer R3 Copal Electronics Switches 1 RESET Push Button S1 E-switch TL59FF260Q Newark 2 Push Button S2, S3 E-switch TL59FF260Q Newark 1 CKDFA Main Switch Power Supply S4 C&K COMPONENTS DF62J12S2APQF 1 Slide Switch S5 C&K COMPONENTS CK1101M2S3CQE2 DRM007 52 Newark 91F4835 BLDC Motor Control Board for Industrial and Appliance Applications Schematics and Bill of Materials For More Information On This Product, Go to: www.freescale.com MOTOROLA Freescale Semiconductor, Inc. Schematics and Bill of Materials Bill of Materials Table 3-1. Bill of Materials for 127 Vac Board (Sheet 5 of 5) Qty Value Description Label Manufacturer Part Number Distributor Distributor Part Number Transformer 1 328SW Side-Winder Transformer T1 Stancor SW-328 Freescale Semiconductor, Inc... Test Points 1 VCC Test Point - Vcc TP1 Keystone Electronics 5000 Newark 52F7277 1 15V Test Point - 15v TP2 Keystone Electronics 5000 Newark 52F7277 1 DGND Test Point - DGND TP3 Keystone Electronics 5001 Newark 52F7278 1 AGND Test Point - AGND TP4 Keystone Electronics 5001 Newark 52F7278 1 VBUS Test Point - VBUS TP5 Keystone Electronics 5000 Newark 52F7277 1 C Test Point - Hall Sensor C TP6 Keystone Electronics 5002 Newark 52F7279 1 B Test Point - Hall Sensor B TP7 Keystone Electronics 5003 Newark 52F7280 1 A Test Point - Hall Sensor A TP8 Keystone Electronics 5004 Newark 52F7281 Digikey CTX502-ND Heat Sink 1 Heatsink U1 Aavid Thermalloy 780103B04500 Crystal 1 4 MHz 4 MHz crystal CTS-Frequency Controls X1 ATS040SM Table 3-2. Bill of Material Changes for 230 Vac Board Qty Value Description Label Part Number Manufacturer Distributor Distributor Part Number Capacitor 1 560 mF/400 V Large Can Aluminum Electrolytic Capacitors C1 Panasonic ECOS2GP1561EA Digikey P6157-ND Resistors 1 2.5 K/1% Resistor (0805) R12 Yageo America 9C08052A2501FKHFT Digikey 311-2.50KCCT-ND 1 150 K/1 W Resistor (2512) R52 Panasonic – ECG ERJ-1TYJ154U Digikey PT150KXCT-ND 2322 594 52516 Digikey BC1432-ND Varistor 1 Varistor 250 V RMS R7 BC Components Transformer 1 328 DSW Dual Side-Winder Transformer T1 Stancor DSW-328 BLDC Motor Control Board for Industrial and Appliance Applications MOTOROLA Schematics and Bill of Materials For More Information On This Product, Go to: www.freescale.com DRM007 53 Freescale Semiconductor, Inc. Freescale Semiconductor, Inc... Schematics and Bill of Materials DRM007 54 BLDC Motor Control Board for Industrial and Appliance Applications Schematics and Bill of Materials For More Information On This Product, Go to: www.freescale.com MOTOROLA Freescale Semiconductor, Inc. Designer Reference Manual — BLDC Motor Control Board Section 4. Hardware Design Considerations Freescale Semiconductor, Inc... 4.1 Contents 4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.3 Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56 4.4 RS-232 interface and MON08 Hardware Interface. . . . . . . . . . 58 4.5 Clock Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59 4.6 Hall-Effect Sensors Interface . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.7 LCD Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61 4.8 Reset Button . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.9 3-Phase H-Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63 4.10 Current Feedback and Cycle-by-Cycle Limiting . . . . . . . . . . . . 64 4.11 Voltage Feedback. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67 4.12 Current and Voltage Limiter . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 4.13 Heat Sink Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 BLDC Motor Control Board for Industrial and Appliance Applications MOTOROLA Hardware Design Considerations For More Information On This Product, Go to: www.freescale.com DRM007 55 Freescale Semiconductor, Inc. Hardware Design Considerations 4.2 Introduction The hardware for motor control developed for the reference design has the power output for the motor, and the microcontroller on the same board. In addition to the hardware that is needed to run the motor, a variety of feedback signals that facilitate control algorithm development are included. Freescale Semiconductor, Inc... 4.3 Power Supply The main power input to the board is through a power jack (J1). From this power input, V_BUS signal is generated. This voltage (V_BUS) is generated through a rectifier bridge (B2). To minimize the effects of the in-rush current when S4 is turned on, a NTC (RT1) was placed to slowly charge V_BUS capacitor (C1). When S4 is turned OFF, C1 is sometimes charged (depending on last system operation). To avoid any risk, a discharge resistor (R52) is connected in parallel to C1. See Figure 4-1. NOTE: J1 PLUG AC 1 There is also an Overvoltage (R7) and an Overcurrent (F2) protection. S4 10A RT1 CL-40 F2 7A Fast Acting t C1 (1500uF/250V @ 127VAC) (560uF/400V @ 230VAC) V_BUS 2 + C2 22nF / 400V 3 C39 - 22nF / 400V B2 GBPC2508W R7 (BC1429-ND @ 127VAC) (BC1432-ND @ 230VAC) C46 22nF / 400V + R52 (47K/1W @ 127VAC) (150K/1W @ 230VAC) Figure 4-1. V_BUS Power Supply DRM007 56 BLDC Motor Control Board for Industrial and Appliance Applications Hardware Design Considerations For More Information On This Product, Go to: www.freescale.com MOTOROLA Freescale Semiconductor, Inc. Freescale Semiconductor, Inc... Hardware Design Considerations Power Supply From the line input jack (J1) the low voltage power supplies (5 Vdc and 15 Vdc) are derived. These power supplies are generated using voltage regulators (IC2 and IC3). To help developers vary V_BUS voltage using a variable transformer in J1 and also let them program the microcontroller without having the power-stage turned on (V_BUS), an alternate Vdc power supply can be connected (J6) to keep 5 Vdc and 15 Vdc on the board when varying AC voltage in J1. To enable this external power supply, S5 slide switch must be turned to “EXT” position. A green LED (D21) was included to show proper +5 Vdc power supply operation. See Figure 4-2. +15V C47 0.1 uF 1 IC2 MC78M15CDT GN 3 IN D OUT 1 + C4 2 IC3 MC33269DT-5.0 GN 3 IN D OUT C19 470uF/25V C49 0.1 uF VCC + C50 2 C45 470uF/10V 100nF/25V R40 330 C48 0.1 uF 100nF / 16V D21 GREEN EXTERNAL_POWER_SUPPLY_CONNECTOR J6 1 2 F1 J1 PLUG AC 1 C2 22nF / 400V 1 S4 10A 5 500mA F2 7A Fast Acting S5 2 3 2 3 6 7 4 8 - + C39 + 22nF / 400V B1 1KAB05E-ND C6 470uF/25V C5 0.1uF/50V T1 (SW-328 @ 127VAC) (DSW-328 @ 230VAC) R7 (BC1429-ND @ 127VAC) (BC1432-ND @ 230VAC) RT1 CL-40 t C1 (1500uF/250V @ 127VAC) (560uF/400V @ 230VAC) V_BUS + - C46 22nF / 400V + B2 GBPC2508W R52 (47K/1W @ 127VAC) (150K/1W @ 230VAC) Figure 4-2. 15 Vdc and 5 Vdc Power Supplies BLDC Motor Control Board for Industrial and Appliance Applications MOTOROLA Hardware Design Considerations For More Information On This Product, Go to: www.freescale.com DRM007 57 Freescale Semiconductor, Inc. Hardware Design Considerations 4.4 RS-232 interface and MON08 Hardware Interface Freescale Semiconductor, Inc... The board provides an RS-232 interface by the use of an optoisolator referenced at 5 Vdc voltage level (IC8). This topology lets the user program the microcontroller using the MON08 interface, and communicate via the RS-232 interface when operating in run mode. This topology also, allows operating the board ground at a different level than the PC (or RS-232 device), avoiding the risk of damaging the board or the PC. See Figure 4-3. MC68HC908MR8 5 /IRQ PTB1/TxD PTB0/RxD IC9 14 1x3 PIN HEADER JP1 VCC 15 + R57 1K R30 10k VCC C18 10uF/35V + C17 10uF/35V R60 1K D1 1N4148 RxD D4 1N4148 D2 +15V R39 2.2k C32 0.1uF GND 1 VCC 8 DTR 1N4148 S3 ENTER 2 R41 330 3 VCC D20 8.2V 7 IC8 LTV-827S D3 1N4148 6 TxD 4 C42 10uF/10V R48 100K + 5 R34 2.2K D9 1N4148 TxD RTS RxD 5 9 4 8 3 7 2 6 1 R4 1K Q7 2N2222 Figure 4-3. RS-232 and MON08 Interfaces DRM007 58 BLDC Motor Control Board for Industrial and Appliance Applications Hardware Design Considerations For More Information On This Product, Go to: www.freescale.com MOTOROLA Freescale Semiconductor, Inc. Hardware Design Considerations Clock Source 4.5 Clock Source The board uses a 4.00-MHz crystal (X1) connected to microcontroller’s oscillator inputs (OSC1 and OSC2). The MC68HC908MR8 uses its internal phase-locked loop (PLL) to multiply the input frequency in order to achieve its 8 MHz maximum operating frequency. See Figure 4-4. Freescale Semiconductor, Inc... C13 15pF X1 4MHz R24 10M 2 3 OSC2 OSC1 MC68HC908MR8 C14 15pF IC9 Figure 4-4. Clock Source BLDC Motor Control Board for Industrial and Appliance Applications MOTOROLA Hardware Design Considerations For More Information On This Product, Go to: www.freescale.com DRM007 59 Freescale Semiconductor, Inc. Hardware Design Considerations 4.6 Hall-Effect Sensors Interface Freescale Semiconductor, Inc... The board contains a Hall-effect interface connected to the microcontroller’s timer A (channel 1) and timer B (channel 0 and channel 1) port signals, TCH1A, TCH0B, and TCH1B. The circuit is designed to accept +5.0 V Hall-effect sensor inputs. Input noise filtering is supplied on the input path for the Hall-effect interface. Figure 4-5 shows the hardware interface. HALL_EFFECT_CONN J8 VCC PTB6/TCH1B MC68HC908MR8 PTB5/TCH0B PTB4/TCH1A 5 4 3 2 1 22 21 C B A R26 1K R27 1K R28 1K 18 R55 100 R54 100 R53 IC9 C34 C35 C36 10nF 10nF 10nF 100 VCC C52 0.47uF/10V Figure 4-5. Hall-Effect Sensors Interface DRM007 60 BLDC Motor Control Board for Industrial and Appliance Applications Hardware Design Considerations For More Information On This Product, Go to: www.freescale.com MOTOROLA Freescale Semiconductor, Inc. Hardware Design Considerations LCD Interface 4.7 LCD Interface The board contains an LCD as main user interface feedback. The LCD contains an internal driver. The display is controlled and managed by the microcontroller through it’s port signals. Figure 4-6 shows the hardware interface. VCC R22 R3 Freescale Semiconductor, Inc... 10K 26 PTA3/ATD3 25 PTA2/ATD2 PTA1/ATD1 PTA0/ATD0 LCD 1x14 PIN HEADER 20K 1 2 3 4 5 6 7 8 9 10 11 12 13 14 24 23 MC68HC908MR8 PTB2/TCLKA 16 PTC1/FAULT4 13 IC9 Figure 4-6. LCD Interface 4.8 Reset Button The board contains a reset button (RESET). This button is directly connected to the microcontroller’s reset pin which causes an external pin reset to the microcontroller. Figure 4-7 shows the hardware interface. Pulling the asynchronous RST pin low halts all processing. The PIN bit of the SIM reset status register (SRSR) is set as long as RST is held low for a minimum of 67 CGMXCLK cycles, assuming that neither the power-on reset (POR) nor the low-voltage inhibit (LVI) was the source of the reset. Refer to Table 4-1 detailed information on PIN bit set timing and to Figure 4-8 for the relative timing. BLDC Motor Control Board for Industrial and Appliance Applications MOTOROLA Hardware Design Considerations For More Information On This Product, Go to: www.freescale.com DRM007 61 Freescale Semiconductor, Inc. Hardware Design Considerations VCC R23 10k S1 Reset 31 /RST C11 0.1uF Freescale Semiconductor, Inc... MC68HC908MR8 IC9 Figure 4-7. Reset Button Table 4-1. PIN Bit Set Timing Number of Cycles Required to Set PIN Reset Type POR/LVI 4163 (4096 + 64 + 3) All Others 67 (64 + 3) CGMOUT RST IAB PC VECT H VECT L Figure 4-8. External Reset Timing DRM007 62 BLDC Motor Control Board for Industrial and Appliance Applications Hardware Design Considerations For More Information On This Product, Go to: www.freescale.com MOTOROLA Freescale Semiconductor, Inc. Hardware Design Considerations 3-Phase H-Bridge 4.9 3-Phase H-Bridge Freescale Semiconductor, Inc... The power output is configured as a 3-phase MOSFET inverter with free-wheeling diodes. The gate drivers of the MOSFETs are integrated circuits for high and low side gate drivers with high voltage capability. The gate drivers have a minimum logic 1 input of 3 volts and a maximum logic 0 input voltage of 0.8 volts. A schematic of one of the three phases and its corresponding gate driver circuitry is shown in Figure 4-9. R44 75 R21 600 C10 0.47uF/25V +15V D19 C54 1nF R58 10K C53 1nF R59 10K MURA160T3 C8 0.1uF + C9 33uF/50V D8 MMSZ5248BT1 SOURCE_CT IC1 2 3 PWM_CT PWM_CB GATE_CT D7 MBRS130CT 6 8 1 4 HIN LIN HO LO VS VB VCC COM 7 5 R45 75 R20 600 GATE_CB D5 MBRS130CT IR2101/SO D6 MMSZ5248BT1 SOURCE_COM C30 0.47uF/25V V_BUS GATE_CT SOURCE_CT Q5 IRFB17N50L PHASE_C GATE_CB SOURCE_COM Q6 IRFB17N50L SHUNT_+ R19 0.005 Ohms / 3 Watts / 1% SHUNT_- Figure 4-9. Phase C Output and Gate Driver BLDC Motor Control Board for Industrial and Appliance Applications MOTOROLA Hardware Design Considerations For More Information On This Product, Go to: www.freescale.com DRM007 63 Freescale Semiconductor, Inc. Hardware Design Considerations Freescale Semiconductor, Inc... As a protection for power transitions of the microcontroller’s power supply, there are pull-down resistors R58 and R59. So, the MOSFETs are not triggered during transitions. The gate drive circuit has two different impedance output values, one for turn-on time and other for turn-off time for each of the power transistors, TOP and BOTTOM in each phase. This is possible using D7 and D5 for the turn-off impedances of the transistors per phase. The turn-on impedance is given by R20 and R21 respectively, and the turn-off impedance is given by the parallel connection of R44||R21 and R45||R20 respectively. With the values displayed in the schematic, the turn-on time is 800 ns, and the turn-off time is 600 ns with the IRFB17N50L MOSFET. In the software for this reference design, deadtime is fixed to 2 µs. This gives enough time for the transistors to change their state of conductance with no short circuit of the phase output. The bootstrap capacitor C10 is used to turn-on the TOP transistor without a charge pump circuitry. Turning on the lower transistors first is recommended in order to charge this bootstrap capacitor each time the motor is initially energized. 4.10 Current Feedback and Cycle-by-Cycle Limiting The 3-phase current is sensed by resistor R19 in Figure 4-9, and amplified by a differential amplifier shown in Figure 4-10. The circuit provides an amplified voltage of the chopped current of the inverter. The output of the amplifier represents 0.5 volts per ampere in the shunt resistor (R19). The MC33502 OPAMP was used for this amplifier circuit. At this point, for current sensing within the microcontroller the ADC conversion must be synchronized with the PWM module. That is why a peak detector circuit was implemented to have a suitable current waveform for sensing. DRM007 64 BLDC Motor Control Board for Industrial and Appliance Applications Hardware Design Considerations For More Information On This Product, Go to: www.freescale.com MOTOROLA Freescale Semiconductor, Inc. Hardware Design Considerations Current Feedback and Cycle-by-Cycle Limiting V_BUS GATE_CT Q7 IRFB17N50L SOURCE_CT VCC GATE_CB SOURCE_COM R16 100K 1% R17 1K 1% R19 0.005 Ohms / 3 Watts / 1% 8 IC8A MC33502D 3 + 1 2 R18 1K 1% R15 100K 1% SHUNT_AMP_CURRENT 4 Figure 4-10. Current Differential Amplifier This peak detector is shown in Figure 4-11. Consisting of a voltage follower configuration with diode output for detecting peaks in the input signals. 8 VCC 5 + SHUNT_AMP_CURRENT R13 100 C7 15pF IC6B MC33502D 7 6 - C37 20nF I_SENSE D22 1N5817MCT-ND 4 Freescale Semiconductor, Inc... C33 0.1uF Q9 IRFB17N50L R2 10K Figure 4-11. Current Peak Detector for Current Sensing BLDC Motor Control Board for Industrial and Appliance Applications MOTOROLA Hardware Design Considerations For More Information On This Product, Go to: www.freescale.com DRM007 65 Freescale Semiconductor, Inc. Hardware Design Considerations This peak is stored in capacitor C37 when current flows through R19. When the MOSFETs are switched off, the voltage stored in C37 starts to discharge through R2. The output of the peak detector is connected to a comparator for the cycle-by-cycle current limiting. The FAULT1 input signal of the microcontroller is used for limiting the current. The FAULT configuration in the MCU CONFIG register is set to automatic operation; so, cycle-by-cycle current limiting is accomplished. Freescale Semiconductor, Inc... The current limiter is shown in Figure 4-12. A LM393 was used for this purpose. The output of this current limiter is an open collector, so multiple inputs of limiting can be possible using only one FAULT input signal of the microcontroller. I_SENSE R32 1K C28 22pF 8 +15V 7 + 5 - 6 R5 2.5K 1% 4 C44 15pF VCC I_LIMIT_OC IC7B LM393D R6 10K 1% Figure 4-12. Cycle-by-Cycle Current Limiter DRM007 66 BLDC Motor Control Board for Industrial and Appliance Applications Hardware Design Considerations For More Information On This Product, Go to: www.freescale.com MOTOROLA Freescale Semiconductor, Inc. Hardware Design Considerations Voltage Feedback 4.11 Voltage Feedback For V_BUS FAULT there are two different values, depending on the reference board. For the 115 Vac reference design board, the value is chosen for 250 Vdc maximum, and 400 Vdc maximum for the 230 Vac reference design board. The LM393 is used for the voltage FAULT signal, which is shared with the current FAULT signal of the circuit shown in Figure 4-12. The voltage feedback circuitry and voltage FAULT detector (V_LIMIT_OC) is shown in Figure 4-13. C20 10pF V_SENSE R9 10K 1% V_BUS C43 68pF R14 15K 4 R10 500K 1% 2 3 R11 10k 1% V_LIMIT_OC LM393D IC7A 8 VCC 1 + R25 500K 1% - Freescale Semiconductor, Inc... Bus voltage is scaled down by a voltage divider consisting of R25, R10, and R9. The values are chosen such that a 500-volt maximum bus voltage corresponds to 5 volts at output V_SENSE. So, V_SENSE = V_BUS / 100. +15V R12 (10k 1% @ 127VAC) (2.5k 1% @ 230VAC) C21 22pF C3 0.1uF Figure 4-13. Voltage Feedback and Fault Detector BLDC Motor Control Board for Industrial and Appliance Applications MOTOROLA Hardware Design Considerations For More Information On This Product, Go to: www.freescale.com DRM007 67 Freescale Semiconductor, Inc. Hardware Design Considerations 4.12 Current and Voltage Limiter The circuit is shown in Figure 4-14. FAULT is signal connected to the FAULT1 pin of the microcontroller. This input of the microcontroller is used for limiting current and voltage. When either input of the FAULT is in logic 0 state, the transistor Q8 is switched off and the FAULT signal will be set to logic 1. VCC Freescale Semiconductor, Inc... VCC R8 10K R1 10K FAULT I_LIMIT_OC Q8 2N2222 V_LIMIT_OC C38 15pF Figure 4-14. Current and Voltage Limiter 4.13 Heat Sink Selection A recommended application note written by the manufacturer of the heat sink used in this board for selecting a heat sink can be found on the World Wide Web at: http://www.aavidthermalloy.com/technical/papers/pdfs/select.pdf The thermal model of a semiconductor with heat sink is: RϑDA = Where: RSDA DRM007 68 (T J MAX − TA PD )− R ϑJC − RϑCD Thermal impedance of selected heat sink TJMAX MOSFET junction maximum temperature TA Ambient temperature PD MOSFET power RSJC MOSFET thermal impedance junction to case RSCD Thermal impedance of the thermal conductive tape BLDC Motor Control Board for Industrial and Appliance Applications Hardware Design Considerations For More Information On This Product, Go to: www.freescale.com MOTOROLA Freescale Semiconductor, Inc. Hardware Design Considerations Heat Sink Selection The values for the components selected on this board are: Heat sink (part number: 780103B04500): RSDA = 1.45 °C-in2 /W MOSFET (part number: IRF17N50L): RSJC = 0.75 °C-in2 /W Thermally conductive tape (part number: 8805): RSCD = 0.50 °C-in2 /W Freescale Semiconductor, Inc... If we suppose that every MOSFET can be as hot as 110°C and ambient temperature is 25°C, we will get: PD = 31.48 W This is the maximum total power allowed for the six MOSFETs with this heat sink. The formula to obtain PD for a single MOSFET is: PD = (I )2·(Rds ) eff on Where: PD Power dissipated by a single MOSFET when conducting Ieff Effective MOSFET current Rdson MOSFET drain-source impedance when it is conducting (0.28 Ω for this MOSFET) BLDC Motor Control Board for Industrial and Appliance Applications MOTOROLA Hardware Design Considerations For More Information On This Product, Go to: www.freescale.com DRM007 69 Freescale Semiconductor, Inc. Freescale Semiconductor, Inc... Hardware Design Considerations DRM007 70 BLDC Motor Control Board for Industrial and Appliance Applications Hardware Design Considerations For More Information On This Product, Go to: www.freescale.com MOTOROLA Freescale Semiconductor, Inc. Designer Reference Manual — BLDC Motor Control Board Section 5. Software Design Considerations Freescale Semiconductor, Inc... 5.1 Contents 5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 5.3 Controller Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5.4 Speed Control Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 5.4.1 Motor Stalled Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . .79 5.5 Commutation Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 5.6 Data Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 5.6.1 Processes: Latest Position Capture, Period Measuring, and Speed Calculation . . . . . . . . . . . 84 5.6.2 Process Speed Controller . . . . . . . . . . . . . . . . . . . . . . . . . . 84 5.6.3 Process MOSFET Gating Selection . . . . . . . . . . . . . . . . . . . 84 5.6.4 Process Washing Machine. . . . . . . . . . . . . . . . . . . . . . . . . . 86 5.7 Application State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 5.8 Drive State Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5.9 Description of Routines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.9.1 Main(void). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.9.1.1 Stop Motor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.9.1.2 Waiting for Command . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.9.1.3 Displaying Actual and Reference Speed . . . . . . . . . . . . . 89 5.9.1.4 Wash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.9.1.5 Spin CW and Spin CCW . . . . . . . . . . . . . . . . . . . . . . . . . 90 5.9.1.6 Fixed Reference Speed . . . . . . . . . . . . . . . . . . . . . . . . . . 90 5.9.2 InitPLL(void) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 5.9.3 InitPWMMC(void) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 5.9.4 InitTimerA(void) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 5.9.5 InitTimerB(void) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.9.6 Byte ResolveButtons(void) . . . . . . . . . . . . . . . . . . . . . . . . . . 91 BLDC Motor Control Board for Industrial and Appliance Applications MOTOROLA Software Design Considerations For More Information On This Product, Go to: www.freescale.com DRM007 71 Freescale Semiconductor, Inc. Freescale Semiconductor, Inc... Software Design Considerations 5.9.7 5.9.8 5.9.9 5.9.10 5.9.11 5.9.12 5.9.13 5.9.14 5.9.15 5.9.16 5.9.17 5.9.18 5.9.19 5.9.20 5.9.21 5.9.22 5.10 InitMotor(Byte Commanded_Operation) . . . . . . . . . . . . . . . 91 TimerAOverflow_ISR(void). . . . . . . . . . . . . . . . . . . . . . . . . . 91 Signed Word 16 PIController(void). . . . . . . . . . . . . . . . . . . . 92 MotorStalledProtection(void) . . . . . . . . . . . . . . . . . . . . . . . .92 HALLA_ISR(void) and HALLB_ISR(void). . . . . . . . . . . . . . . 92 HALLC_ISR(void). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 NextSequence(void). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 StopMotor(void) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 InitLCD(void) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 CtrlLCD(Byte ctrl) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Ctrl8LCD(Byte ctrl) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 MovCursorLCD(Byte places, Byte dir) . . . . . . . . . . . . . . . . . 93 DataLCD(Byte data) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 StringLCD(Byte *msgLCD). . . . . . . . . . . . . . . . . . . . . . . . . . 94 WaitMs(Byte milis) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Wait40ms(void) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 MCU Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 5.2 Introduction This section describes data flow of the software implemented for this reference design. The microcontroller is mastering all inputs from the user interface and the Hall effect sensors. From the user interface, functionality (washing machine process) and desired speed for the motor can be set. This data is input for the speed controller that is also detailed in this section. Another input for the speed controller is the actual speed of the motor that is calculated based on the Hall effect sensors values. The controller processes this information and calculates the most suitable value for the MOSFET’s PWM signals. Using PWM modules, the microcontroller triggers the MOSFET through a power stage. NOTE: DRM007 72 The commutation algorithm and speed control for the motor are driven by input capture and timer interrupts. BLDC Motor Control Board for Industrial and Appliance Applications Software Design Considerations For More Information On This Product, Go to: www.freescale.com MOTOROLA Freescale Semiconductor, Inc. Software Design Considerations Controller Design 5.3 Controller Design The motor system to be controlled was considered as a first order system, with a time constant of 10 milliseconds. For a robust operation of the washing machine, a PI controller was implemented with a controller period of 1 millisecond. The actual motor speed is calculated from input capture channels, and the desired speed is generated in the microcontroller depending on the washing machine process being executed. Freescale Semiconductor, Inc... The system has the following transfer function in the continuous time domain. 1 τ G (s ) = s+ 1 τ Taking the Z transformation and considering the zero-order-hold of the PWM module, the system’s transfer function becomes: 1 − e −T τ z −1 G (z ) = −T τ 1 − e ⋅ z −1 The PI controller transfer function in the Z domain is: ( Kp + Ki ) − Kp ⋅ z −1 C (z ) = 1 − z −1 BLDC Motor Control Board for Industrial and Appliance Applications MOTOROLA Software Design Considerations For More Information On This Product, Go to: www.freescale.com DRM007 73 Freescale Semiconductor, Inc. Software Design Considerations Closing the loop: + E (z ) R(z ) C (z ) M (z ) G (z ) U (z ) Freescale Semiconductor, Inc... - R(z ) C ( z )G ( z ) 1 + C ( z )G ( z ) U (z ) R(z ) Gd (z ) U (z ) Where: 1 − e −T τd z −1 Gd (z ) = −T 1 − e τd ⋅ z −1 Then, the controller: C (z ) = C (z ) = 1− e −T 1− e τd −T τ Gd (z ) G (z )[1 − Gd (z )] 1 − e τ ⋅ z −1 (Kp + Ki ) − Kp ⋅ z −1 ⋅ = 1 − z −1 1 − z −1 −T Solving for Ki Ki = 1 − e DRM007 74 −T τd BLDC Motor Control Board for Industrial and Appliance Applications Software Design Considerations For More Information On This Product, Go to: www.freescale.com MOTOROLA Freescale Semiconductor, Inc. Software Design Considerations Controller Design And for Kp Kp = Ki 1− e −T τ − Ki Where: T — Controller period τ — Time constant of motor speed in open loop Freescale Semiconductor, Inc... τd — Desired time constant of motor speed in closed loop Kp — Proportional gain of the controller Ki — Integral gain of the controller The implementation of the PI controller using parallel programming is given in this diagram: Kp Mp(z ) + E (z ) M (z ) + Ki 1 − z −1 Mi (z ) Converting into equations in discrete time domain: Mp(K) = Kp • E(K) Mi(K) = Kp • E(K) M(K) = Mp(K) + Mi(K) The targeted motor for the application has a time constant of 10 milliseconds. Based on that, a controller period is defined as 1 millisecond (10 times bigger frequency). Thus, the system has this transfer function: 0.095163 ⋅ z −1 G (z ) = 1 − 0.904837 ⋅ z −1 BLDC Motor Control Board for Industrial and Appliance Applications MOTOROLA Software Design Considerations For More Information On This Product, Go to: www.freescale.com DRM007 75 Freescale Semiconductor, Inc. Software Design Considerations The desired time constant is 100 milliseconds for the closed loop system. That gives the following values for the controller parameters: Ki = 0.00995 Kp = 0.094609 Freescale Semiconductor, Inc... In the microcontroller implementation of this controller, a scale factor is defined. It is better if the scale value is a power of two. So, 256 is our scale value. I_ Gain = 0.00995 • 256 = 2.54 ≈ 3 P_Gain = 0.094609 • 256 = 24.22 ≈ 24 Once the controller parameters are calculated, it is possible to implement them into the microcontroller. The PI controller implementation is shown in Figure 5-1. 5.4 Speed Control Algorithm The speed control algorithm consists of three main parts: the actual speed calculation, the speed regulator by a PI controller, and a motor stalled protection. This algorithm is executed by a timer overflow interrupt handler each millisecond. The flowchart of this interrupt handler is shown in Figure 5-2. DRM007 76 BLDC Motor Control Board for Industrial and Appliance Applications Software Design Considerations For More Information On This Product, Go to: www.freescale.com MOTOROLA Freescale Semiconductor, Inc. Software Design Considerations Speed Control Algorithm PI_Controller ControlDifference = Reference_Speed Speed NO ControlDifference >= 0 YES Freescale Semiconductor, Inc... ControlDifference = ControlDifference P_Portion = ControlDifference * Kp P_Portion = ControlDifference * Kp I_Portion = ControlDifference * Ki I_Portion = ControlDifference * Ki I_PortionK_1 > MAXINTEGRAL NO I_PortionK_1 < MININTEGRAL YES YES I_PortionK_1 = MAXINTEGRAL I_PortionK_1 = MININTEGRAL NO I_PortionK_1 = I_PortionK_1 + P_Portion Controller Output = I_PortionK_1 + P_Portion End Figure 5-1. PI Controller Flowchart BLDC Motor Control Board for Industrial and Appliance Applications MOTOROLA Software Design Considerations For More Information On This Product, Go to: www.freescale.com DRM007 77 Freescale Semiconductor, Inc. Software Design Considerations TIMA_OV_ISR 1 newPWM = (Controller Output / 256) + 128 Dif_Capture = Actual_Capture Past_Capture MotorStalled Protection Dif_Capture < MINCAPTURE YES Speed = MAXSPEED NO Freescale Semiconductor, Inc... MilliCounter = MilliCounter + 1 Dif_Capture > MAXCAPTURE YES Speed = MINSPEED 2 NO MilliCounter > 10 NO Speed = 1665 / (Dif_Capture / 18) End YES MilliCounter = 0 YES Actual_Direction = CCW YES Speed = -Speed BLDCState = BLDCWASH NO End of SPIN Table NO PI_Controller Controller Output < 0 YES Controller Output = -Controller Output YES NO Speed Reference = WASHTable [index++] Speed Reference = SPINTable [index++] NO NO 2 Required Direction = CW Required Direction = CCW Required Direction = CCW YES 1 Speed Reference = -Speed Reference Figure 5-2. Speed Control Algorithm Flowchart DRM007 78 BLDC Motor Control Board for Industrial and Appliance Applications Software Design Considerations For More Information On This Product, Go to: www.freescale.com MOTOROLA Freescale Semiconductor, Inc. Software Design Considerations Speed Control Algorithm 5.4.1 Motor Stalled Protection The motor stalled protection subroutine is used for commutating the motor windings if the motor hasn’t moved to a new angular position. If the motor doesn’t change its angular position in a period of 250 milliseconds, the motor is completely stopped. The motor stalled subroutine’s flowchart is the following: Freescale Semiconductor, Inc... Motor Stalled Protection Time_Out = Time_Out + 1 Time_Out > 250 YES Stop Motor NO (Time_Out % 8) = 0 YES NextSequence NO End Figure 5-3. Motor Stalled Protection Flowchart BLDC Motor Control Board for Industrial and Appliance Applications MOTOROLA Software Design Considerations For More Information On This Product, Go to: www.freescale.com DRM007 79 Freescale Semiconductor, Inc. Software Design Considerations 5.5 Commutation Algorithm Freescale Semiconductor, Inc... The commutation algorithm provides the generation of a rotational field according to rotor position. This algorithm uses the Hall sensors to obtain the rotor position. Outputs from the Hall sensors are connected to three independent input-capture channels through an analog filter. The timers are set to catch each input signal edge and call an interrupt routine, which provides the commutation algorithm. The Hall sensor consists of three sensors (sensor A, sensor B, and sensor C). These sensors comprise six states (001, 010, 011, 100, 101, and 110). Each state determines which motor phase the 3-phase inverter should power. The interrupt routine reads the state of the Hall sensors from the MCU port. This value is used as pointer to the commutation table (see Table 5-1 and Table 5-2), which includes information about the power MOSFETs gating. Figure 5-4 shows the resultant voltage which is applied to a BLDC motor per one electrical revolution. Table 5-1. Commutation Sequence for Clockwise Rotation Hall Sensor Inputs Two MOSFET Scheme Three MOSFET Scheme Hall Sensor A Hall Sensor B Hall Sensor C Phase A Phase B Phase C Phase A Phase B Phase C 1 1 0 +Vdc NC –Vdc +Vdc –Vdc –Vdc 1 0 0 +Vdc –Vdc NC +Vdc –Vdc +Vdc 1 0 1 NC –Vdc +Vdc –Vdc –Vdc +Vdc 0 0 1 –Vdc NC +Vdc –Vdc +Vdc +Vdc 0 1 1 –Vdc +Vdc NC –Vdc +Vdc –Vdc 0 1 0 NC +Vdc –Vdc +Vdc +Vdc –Vdc DRM007 80 BLDC Motor Control Board for Industrial and Appliance Applications Software Design Considerations For More Information On This Product, Go to: www.freescale.com MOTOROLA Freescale Semiconductor, Inc. Software Design Considerations Commutation Algorithm Table 5-2. Commutation Sequence for Counterclockwise Rotation Freescale Semiconductor, Inc... Hall Sensor Inputs Two MOSFET Scheme Three MOSFET Scheme Hall Sensor A Hall Sensor B Hall Sensor C Phase A Phase B Phase C Phase A Phase B Phase C 1 0 1 NC +Vdc –Vdc –Vdc +Vdc –Vdc 1 0 0 –Vdc +Vdc NC –Vdc +Vdc +Vdc 1 1 0 –Vdc NC +Vdc –Vdc –Vdc +Vdc 0 1 0 NC –Vdc +Vdc +Vdc –Vdc +Vdc 0 1 1 +Vdc –Vdc NC +Vdc –Vdc –Vdc 0 0 1 +Vdc NC –Vdc +Vdc +Vdc –Vdc Phase A Phase B Phase C 0° 60° 120° 180° 240° 300° Note: Use black area for three MOSFET commutation scheme. Figure 5-4. 3-Phase Voltage System Applies to BLDC Motor The generation of the PWM voltage waveforms is done by the complementary mode when using a three MOSFET commutation scheme, and by loading 0 to the corresponding phases and configuring the microcontroller to have a TOPNEG PWM when using a two MOSFET commutation scheme. This is done because the M68HC908MRx microcontrollers don’t have the PWM MASK option, so BLDC Motor Control Board for Industrial and Appliance Applications MOTOROLA Software Design Considerations For More Information On This Product, Go to: www.freescale.com DRM007 81 Freescale Semiconductor, Inc. Software Design Considerations the complementary mode with a two MOSFET commutation scheme is done by software. The deadtime is fixed to 2 microseconds for both commutation schemes. This method allows independence of commutation and speed control. See Figure 5-5. Freescale Semiconductor, Inc... Start of next sequence Read new state of Hall sensors Look up new transistor states from angular rotor position Put new value to PWM module End Figure 5-5. Commutation Algorithm for Hall Sensors DRM007 82 BLDC Motor Control Board for Industrial and Appliance Applications Software Design Considerations For More Information On This Product, Go to: www.freescale.com MOTOROLA Freescale Semiconductor, Inc. Software Design Considerations Data Flow 5.6 Data Flow Freescale Semiconductor, Inc... The control algorithm of a closed loop BLDC drive for washing machines is described in Figure 5-6. User's Menu (LCD and push buttons) Period Measurement Washing Machine Process Desired Speed Desired Speed Speed Calculation Position Sensors (Hall Sensors) Latests Position Capture Motor Direction Speed Controller (PI controller) Angular Position Actual Speed MOSFET gating selection PWM State PWM Generation Figure 5-6. Main Data Flow BLDC Motor Control Board for Industrial and Appliance Applications MOTOROLA Software Design Considerations For More Information On This Product, Go to: www.freescale.com DRM007 83 Freescale Semiconductor, Inc. Software Design Considerations 5.6.1 Processes: Latest Position Capture, Period Measuring, and Speed Calculation Freescale Semiconductor, Inc... The latest position capture, period measuring, and speed calculation processes relate to the inputs of the Hall sensors. The sensors generate streams of pulses that are captured (separately for each sensor) by the input capture (IC) function. The process latest position capture captures the latest state of the Hall sensors. The processes period measuring and speed calculation read the time between the adjacent rising edges of Hall sensor output and calculate the actual motor speed variable speed. 5.6.2 Process Speed Controller This process calculates the duty cycle of the PWM based on the output of the speed controller (the PI controller). 5.6.3 Process MOSFET Gating Selection This process calculates which PWM channel is enabled for PWM generation. Two commutation schemes are present here. In the file main.h, a compiler directive allows the programmer to select between the two MOSFET scheme and the three MOSFET scheme. For the deadtime insertion there are things which should be noted. If the three MOSFET commutation scheme is selected by the directive: #define MOS_3_COM #undef MOS_2_COM The PWM module automatically makes deadtime insertion by hardware. If the two MOSFET commutation scheme is selected by the directive: #undef MOS_3_COM #define MOS_2_COM Deadtime insertion is done by software and PWM module configuration. DRM007 84 BLDC Motor Control Board for Industrial and Appliance Applications Software Design Considerations For More Information On This Product, Go to: www.freescale.com MOTOROLA Freescale Semiconductor, Inc. Software Design Considerations Data Flow As an example, the algorithm for 50% of duty cycle on phase A and the two MOSFET commutation scheme is: • In the microcontroller CONFIG register the PWM write once register is configured as: – Center aligned PWM – Independent mode Freescale Semiconductor, Inc... – TOPNEG enabled • The required duty cycle is directly loaded into the PVAL register for the TOP transistor. • The value loaded into the PVAL register for the BOT transistor is calculated as: #define DEADTIME 0x10 PMOD = 0x100; PVAL1 = 0x80; PVAL2 = PVAL1 – DEADTIME; The output signal for one PWM cycle is shown in Figure 5-7. SOFTWARE DEADTIME INSERTION PWM1 TOP MOSFET TOPNEG ENABLED PWM2 BOTTOM MOSFET BOTNEG DISABLED 1 CYCLE PWM Note: The PWMMC is configured with independent mode and center aligned operation Figure 5-7. Software Deadtime Insertion BLDC Motor Control Board for Industrial and Appliance Applications MOTOROLA Software Design Considerations For More Information On This Product, Go to: www.freescale.com DRM007 85 Freescale Semiconductor, Inc. Software Design Considerations 5.6.4 Process Washing Machine The process generates reference speeds, depending on the process phase being executed of the washer. The user selects the washer process by a user’s menu. 5.7 Application State Diagram Freescale Semiconductor, Inc... Reset Initialization Interrupts Main Loop (State Machine) Figure 5-8. Application State Diagram As Figure 5-8 shows, the application state consists of the initialization routine, followed by a main loop with background tasks. The time critical functions are calculated by the interrupt routines. A brief description of the 3-phase BLDC motor control follows: • Initialization routine: – PWM initialization – System timer initialization – Input capture initialization for position feedback – Variable initialization for speed measurement – Character display initialization – I/O ports initialization – PLL initialization – MCU initialization DRM007 86 BLDC Motor Control Board for Industrial and Appliance Applications Software Design Considerations For More Information On This Product, Go to: www.freescale.com MOTOROLA Freescale Semiconductor, Inc. Software Design Considerations Application State Diagram • Main loop: – Application state machine – Check push buttons – Display messages for user menu – Display actual and desired motor speed • Initialize motor for running state: – Load desired speed from look up table Freescale Semiconductor, Inc... – Charge bootstrap capacitors – Resume timers for speed control • Timer A overflow interrupt handler: – Speed calculation – Speed PI controller calculation – Setting of new duty cycle to PWM – Motor stalled protection – Load new desired speed from look up table depending on the washer process being executed • Timer A Ch1, Timer B Ch0 and Ch1 interrupt handlers: – Reading the angular motor position – Spin direction calculation – Selecting gating signals for MOSFETs • Timer B Ch1 interrupt handler – Calculation of period between edges for one Hall effect sensor BLDC Motor Control Board for Industrial and Appliance Applications MOTOROLA Software Design Considerations For More Information On This Product, Go to: www.freescale.com DRM007 87 Freescale Semiconductor, Inc. Software Design Considerations 5.8 Drive State Machine The drive can be one of the states shown in Figure 5-9 (which also shows transition conditions among the drive states). Generating Reference Speed Freescale Semiconductor, Inc... Stop Command Stop Motor Display Actual and Reference Speed Stop Command WASH command Generating Ramp Waiting for command SPIN CW command Ramp Finished Fixed Reference Speed Generating Ramp Stop Motor Motor Stalled Detection SPIN CCW command Ramp Finished From any State Figure 5-9. Drive State Machine and Transitions DRM007 88 BLDC Motor Control Board for Industrial and Appliance Applications Software Design Considerations For More Information On This Product, Go to: www.freescale.com MOTOROLA Freescale Semiconductor, Inc. Software Design Considerations Description of Routines 5.9 Description of Routines The following subsections provide a description of each routine. Freescale Semiconductor, Inc... 5.9.1 Main(void) This routine contains the principal state machine of the application. It includes initialization and user’s menu for selecting two different processes of the washing machine: SPIN and WASH. It also includes two additional options: STOP and Speed display, where the actual and measured speeds are displayed in the LCD. 5.9.1.1 Stop Motor The application arrives in this state by two different ways: first if there is no Hall sensor changes for more than 250 milliseconds, and second if the user selects the option STOP from the menu. 5.9.1.2 Waiting for Command This is the idle state of the application. Only the LCD and the push buttons are processed in this state. The UPPER button is used for changing the message displayed; thus, the command to be executed, and the LOWER button is used for executing the currently displayed message command, except for the SPEED message, which displays the actual and desired speed of the motor. 5.9.1.3 Displaying Actual and Reference Speed In this state, the actual and reference speed are continuously displayed. 5.9.1.4 Wash When the user selects the WASH process from the user’s menu, the application starts running the motor. First an initialization routine is called for charging bootstrap capacitors, resume timers for speed control, and the first reference speed for the Wash process look up table is loaded into variable RefSpeed. Once the motor is running, a timer overflow BLDC Motor Control Board for Industrial and Appliance Applications MOTOROLA Software Design Considerations For More Information On This Product, Go to: www.freescale.com DRM007 89 Freescale Semiconductor, Inc. Software Design Considerations interrupt handler is used for the speed control and continuous generation of reference speeds, including positive and negative values, so the agitator moves in both directions of rotation. Freescale Semiconductor, Inc... 5.9.1.5 Spin CW and Spin CCW When the Spin process is selected in either direction, the motor initialization is called, and then an acceleration ramp is loaded from a Spin look up table, and the sign of the reference speed is set according to the direction of rotation selected. 5.9.1.6 Fixed Reference Speed When the acceleration ramp table of the Spin process is fully loaded, the reference speed remains constant. 5.9.2 InitPLL(void) This function is called once in the application. It sets the bus frequency to 8 MHz with an external crystal of 4 MHz. 5.9.3 InitPWMMC(void) This function initializes the PWM module for motor control with the following settings: • PWM frequency of 15.625 kHz • Two microseconds of deadtime • Reload every PWM cycle 5.9.4 InitTimerA(void) Timer A and timer A channel 1 are initialized for speed control and commutation control. The overflow interrupt is enabled for speed control each millisecond. Channel 1 is configured as an input capture channel with interrupt enabled on any edge. This channel is connected to Hall sensor A. DRM007 90 BLDC Motor Control Board for Industrial and Appliance Applications Software Design Considerations For More Information On This Product, Go to: www.freescale.com MOTOROLA Freescale Semiconductor, Inc. Software Design Considerations Description of Routines 5.9.5 InitTimerB(void) Timer B channel 0 and channel 1 are configured as input capture channels with interrupts enabled on any edge. Channel 0 is connected to Hall sensor B and channel 1 to Hall sensor C. These two channels are used also for commutation control. Channel 1 is used for period calculation between two Hall sensor edges. Freescale Semiconductor, Inc... 5.9.6 Byte ResolveButtons(void) The state of the input pins, where the push buttons are continuously checked for any change, are tested here. A debounce delay is included in the routine. If there is no change on the push buttons, and the Speed message is being displayed, the respective value of the actual speed and reference speed are displayed in this routine. 5.9.7 InitMotor(Byte Commanded_Operation) This subroutine is called from main to perform one of the two of the washing machine processes. The process is selected by the parameter value, Commanded_Operation. Parameters: BLDCWASH — Wash process of the washing machine. BLDCSPIN — Spin process Depending on the process selected from the user’s menu, the Speed reference is loaded from the respective look up table. The speed controller integral portion is set to 0, the bootstrap capacitors are charged and the timers are resumed. 5.9.8 TimerAOverflow_ISR(void) Refer to 5.4 Speed Control Algorithm. BLDC Motor Control Board for Industrial and Appliance Applications MOTOROLA Software Design Considerations For More Information On This Product, Go to: www.freescale.com DRM007 91 Freescale Semiconductor, Inc. Software Design Considerations 5.9.9 Signed Word 16 PIController(void) Refer to 5.3 Controller Design. 5.9.10 MotorStalledProtection(void) Refer to 5.4.1 Motor Stalled Protection. Freescale Semiconductor, Inc... 5.9.11 HALLA_ISR(void) and HALLB_ISR(void) Interrupt handler routines to drive Hall sensors A and B for BLDC motor commutation. Direction is computed from the last Hall sensor input state. 5.9.12 HALLC_ISR(void) Interrupt handler routines to drive Hall sensor C for BLDC motor commutation. Direction is computed from the last Hall Sensor input state. In this routine, the period between edges is measured for speed calculation. 5.9.13 Fault1_ISR(void) Interrupt handler subroutine for Fault1. The motor is stopped when a FAULT occurs. The FAULT is asserted when the current limit or voltage limit has been reached by the power stage. 5.9.14 NextSequence(void) In this routine, the MOSFET selection is performed based on the commutation scheme and the Required_Direction of the motor. Refer to 5.5 Commutation Algorithm. DRM007 92 BLDC Motor Control Board for Industrial and Appliance Applications Software Design Considerations For More Information On This Product, Go to: www.freescale.com MOTOROLA Freescale Semiconductor, Inc. Software Design Considerations Description of Routines 5.9.15 InitLCD(void) Freescale Semiconductor, Inc... This function initializes the character display with these settings: • 4-bit operation mode • 2-line display • No display shift and move right • Clear display and return to home position • Display on, blink off, and cursor off 5.9.16 CtrlLCD(Byte ctrl) This subroutine is used for sending control bytes to the LCD. Because the function is called in 4-bit operation mode, this routine sends the 8-bit value in two parts. Parameters: ctrl — An 8-bit value for different control of the LCD, such as number of lines, blink on or off, etc. 5.9.17 Ctrl8LCD(Byte ctrl) This subroutine is used for sending control bytes to the LCD in 8-bit mode. The function is used only to enter 4-bit mode, since the other four data pins have no connection. Parameters: ctrl — An 8-bit value for different control of the LCD, such as number of lines, blink on or off, etc. 5.9.18 MovCursorLCD(Byte places, Byte dir) Function used to move the LCD cursor to right or left the number of desired places. Parameters: places — Number of places wanted to move the LCD cursor without affecting any LCD actual message. dir — Direction in which the cursor is to be moved, right or left. BLDC Motor Control Board for Industrial and Appliance Applications MOTOROLA Software Design Considerations For More Information On This Product, Go to: www.freescale.com DRM007 93 Freescale Semiconductor, Inc. Software Design Considerations 5.9.19 DataLCD(Byte data) ASCII symbol to be displayed on the LCD, at the current cursor position. Parameters: data — 8-bit value representing the ASCII code of the symbol to be displayed in the LCD at current position. Freescale Semiconductor, Inc... 5.9.20 StringLCD(Byte *msgLCD) This function displays a string in the LCD at current cursor position. If a '&' character is present in the string, a new line feed is commanded to the LCD. The function sends all the bytes in the string until a presence of an End Of String, EOS or 0x00 byte. Parameters: *msgLCD — Pointer to the string to be displayed on the LCD. 5.9.21 WaitMs(Byte milis) Delay routine that waits for a number of milliseconds to send in the parameter milis. The delay is calculated for an 8 MHz fBUS operation. Parameters: milis — An 8-bit value representing the number of milliseconds the delay will take. 5.9.22 Wait40µs(void) Fixed delay of 40 microseconds. DRM007 94 BLDC Motor Control Board for Industrial and Appliance Applications Software Design Considerations For More Information On This Product, Go to: www.freescale.com MOTOROLA Freescale Semiconductor, Inc. Software Design Considerations MCU Usage 5.10 MCU Usage Table 5-3 shows how much memory is needed to run the 3-phase BLDC motor drive in a speed closed loop using Hall sensors, washing machine functions, and user’s interface. A part of the MCU memory is still available for other tasks. Table 5-3. RAM and FLASH Memory Usage Freescale Semiconductor, Inc... Memory (In 8-Bit Words) Available (MC68HC908MR8) Used (Application + Stack) Program FLASH 7680 2820 Data RAM 256 36 + 96 BLDC Motor Control Board for Industrial and Appliance Applications MOTOROLA Software Design Considerations For More Information On This Product, Go to: www.freescale.com DRM007 95 Freescale Semiconductor, Inc. Freescale Semiconductor, Inc... Software Design Considerations DRM007 96 BLDC Motor Control Board for Industrial and Appliance Applications Software Design Considerations For More Information On This Product, Go to: www.freescale.com MOTOROLA Freescale Semiconductor, Inc. Designer Reference Manual — BLDC Motor Control Board Figure 6-1 shows the motor power output versus the motor torque with drives for the two commutation schemes developed in the reference design — consisting of switching two MOSFETs at each angular position or three MOSFETs at each angular position. Pow er Output Vs Torque 500.00 450.00 400.00 Power Output (Watts) 350.00 300.00 Tw o-MOSFETs Scheme 250.00 Three-MOSFETs Scheme 200.00 150.00 100.00 50.00 24 .6 5 27 .9 3 18 .2 0 21 .4 9 15 .2 8 11 .7 6 9. 43 7. 82 6. 08 4. 34 2. 54 0.00 0. 93 Freescale Semiconductor, Inc... Section 6. Practical Results Torque (lb-in) Figure 6-1. Power Output versus Torque Motor Characteristic BLDC Motor Control Board for Industrial and Appliance Applications MOTOROLA Practical Results For More Information On This Product, Go to: www.freescale.com DRM007 97 Freescale Semiconductor, Inc. Practical Results Figure 6-2 shows the motor torque output versus motor maximum speed for the two commutation algorithms developed in the reference design. Speed Vs Torque 4000 Freescale Semiconductor, Inc... 3500 Speed (RPM) 3000 2500 Tw o-MOSFETs Scheme 2000 Three-MOSFETs Scheme 1500 1000 500 27 .9 3 24 .6 5 21 .4 9 18 .2 0 15 .2 8 11 .7 6 9. 43 7. 82 6. 08 4. 34 2. 54 0. 93 0 Torque (lb-in) Figure 6-2. Speed versus Torque Motor Characteristic Current waveforms are shown in the two oscilograms: NOTE: DRM007 98 • Figure 6-3 for the commutation scheme switching two MOSFETs at a time • Figure 6-4 for the commutation scheme switching three MOSFETs at a time There is less torque ripple, which is dependent on the current, for the commutation algorithm switching three MOSFETs. BLDC Motor Control Board for Industrial and Appliance Applications Practical Results For More Information On This Product, Go to: www.freescale.com MOTOROLA Freescale Semiconductor, Inc. Freescale Semiconductor, Inc... Practical Results Figure 6-3. Current Waveform for Two MOSFET Commutation Scheme Figure 6-4. Current Waveform for Three MOSFET Commutation Scheme BLDC Motor Control Board for Industrial and Appliance Applications MOTOROLA Practical Results For More Information On This Product, Go to: www.freescale.com DRM007 99 Freescale Semiconductor, Inc. Practical Results Taking the rectified current of the three-phase inverter, the torque ripple in the motor can be seen assuming that torque is proportional to current. This is shown in Figure 6-5 and Figure 6-6 for the two MOSFET commutation scheme and the three MOSFET commutation scheme, respectively. Freescale Semiconductor, Inc... 12 11 10 9 8 7 6 5 4 3 2 1 0 Figure 6-5. Torque Waveform for Two MOSFET Commutation Scheme 10 9 8 7 6 5 4 3 2 1 0 Figure 6-6. Torque Waveform for Three MOSFET Commutation Scheme DRM007 100 BLDC Motor Control Board for Industrial and Appliance Applications Practical Results For More Information On This Product, Go to: www.freescale.com MOTOROLA Freescale Semiconductor, Inc. Practical Results The speed control algorithm results are listed in Table 6-1 for this reference design. This data includes: • Steady-state error of the controller for different speeds • Minimum and maximum controllable speed ranges Freescale Semiconductor, Inc... Table 6-1. Speed Results Full Load (13.4 lb-in) Full Load (13.4 lb-in) No Load No Load Maximum Speed (RPM) Minimum Speed (RPM) Maximum Speed (RPM) Minimum Speed (RPM) 3 MOSFET 2189.7 (–31.3, +62.6) 218.9 (± 31.3) 3440.9 (–187.7, +31.3) 218.9 (± 31.3) 2 MOSFET 2033.3 (± 31.3) 218.9 (± 31.3) 2658.9 (± 62.6) 218.9 (± 31.3) BLDC Motor Control Board for Industrial and Appliance Applications MOTOROLA Practical Results For More Information On This Product, Go to: www.freescale.com DRM007 101 Freescale Semiconductor, Inc. Freescale Semiconductor, Inc... Practical Results DRM007 102 BLDC Motor Control Board for Industrial and Appliance Applications Practical Results For More Information On This Product, Go to: www.freescale.com MOTOROLA Freescale Semiconductor, Inc. Designer Reference Manual — Remote Keyless Access Section 7. Source Code 7.1 Contents Freescale Semiconductor, Inc... 7.2 Include Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 7.2.1 MR8IO.H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 7.2.2 START08.H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 7.2.3 MAIN.H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 7.2.4 TIMER.H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 7.2.5 LCD.H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113 7.2.6 TABLES.H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115 7.3 Source Code Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 7.3.1 START08.C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 7.3.2 MAIN.C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 7.3.3 TIMER.C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 7.3.4 LCD.C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145 BLDC Motor Control Board for Industrial and Appliance Applications MOTOROLA Source Code For More Information On This Product, Go to: www.freescale.com DRM007 103 Freescale Semiconductor, Inc. Source Code 7.2 Include Files Freescale Semiconductor, Inc... 7.2.1 MR8IO.H ; /*****************************************************************************\ * Copyright (c) 2002, Motorola Inc. * * Motorola Confidential Proprietary * * --------------------------------------------------------------------------- * * File name : mr8io.h * * Project name: Brushless DC Motor Drive with the MR8 Microcontroller * * --------------------------------------------------------------------------- * * Author : Jorge Zambada * * Email : [email protected] * * Department : Mexico Applications Lab - SPS * * * * Description : All the MCU registers and some bit mask values are declared * * in this document as defines to interface with most of the * * microcontroller registers and peripherals * \*****************************************************************************/ /* */ #define #define #define #define #define #define PORTS section /* */ #define #define #define #define #define #define #define #define #define #define #define #define A TIMER section DRM007 104 PORTA PORTB PORTC DDRA DDRB DDRC TASC TACNT TACNTH TACNTL TAMOD TAMODH TAMODL TASC0 TACH0 TACH0H TACH0L TASC1 (*(volatile (*(volatile (*(volatile (*(volatile (*(volatile (*(volatile (*(volatile (*(volatile (*(volatile (*(volatile (*(volatile (*(volatile (*(volatile (*(volatile (*(volatile (*(volatile (*(volatile (*(volatile char*)(0x00)) char*)(0x01)) char*)(0x02)) char*)(0x04)) char*)(0x05)) char*)(0x06)) /* /* /* /* /* /* port port port data data data char*)(0x0E)) int*)(0x0F)) char*)(0x0F) char*)(0x10)) int*)(0x11)) char*)(0x11)) char*)(0x12)) char*)(0x13)) int*)(0x14)) char*)(0x14)) char*)(0x15)) char*)(0x16)) /* /* /* /* /* /* /* /* /* /* /* /* timer timer timer timer timer timer timer timer timer timer timer timer A */ B */ C */ direction port A */ direction port B */ direction port C */ A A A A A A A A A A A A status/ctrl register */ counter register */ counter high */ counter low */ modulo register */ modulo high */ modulo low */ channel 0 status/ctrl */ channel 0 register */ channel 0 high */ channel 0 low */ channel 1 status/ctrl */ BLDC Motor Control Board for Industrial and Appliance Applications Source Code For More Information On This Product, Go to: www.freescale.com MOTOROLA Freescale Semiconductor, Inc. Source Code Include Files #define TACH1 #define TACH1H #define TACH1L (*(volatile int*)(0x17)) (*(volatile char*)(0x17)) (*(volatile char*)(0x18)) Freescale Semiconductor, Inc... /* OPTION section */ #define MOR (*(volatile char*)(0x1F)) ter */ /* timer A channel 1 register */ /* timer A channel 1 high */ /* timer A channel 1 low */ /* CONFIG Configuration Write-Once Regis- /* PWM section */ #define PCTL1 (*(volatile char*)(0x20)) #define PCTL2 (*(volatile char*)(0x21)) /* PWM control register 1 */ /* PWM control register 2 */ #define #define #define #define #define #define #define #define #define #define #define #define #define #define #define #define #define #define #define #define #define #define #define #define #define #define #define #define /* /* /* /* /* /* /* /* /* /* /* /* /* /* /* /* /* /* /* /* /* /* /* /* /* /* /* /* FCR FSR FTAC PWMOUT PCNT PCNTH PCNTL PMOD PMODH PMODL PVAL1 PVAL1H PVAL1L PVAL2 PVAL2H PVAL2L PVAL3 PVAL3H PVAL3L PVAL4 PVAL4H PVAL4L PVAL5 PVAL5H PVAL5L PVAL6 PVAL6H PVAL6L (*(volatile (*(volatile (*(volatile (*(volatile (*(volatile (*(volatile (*(volatile (*(volatile (*(volatile (*(volatile (*(volatile (*(volatile (*(volatile (*(volatile (*(volatile (*(volatile (*(volatile (*(volatile (*(volatile (*(volatile (*(volatile (*(volatile (*(volatile (*(volatile (*(volatile (*(volatile (*(volatile (*(volatile char*)(0x22)) char*)(0x23)) char*)(0x24)) char*)(0x25)) int*)(0x26)) char*)(0x26)) char*)(0x27)) int*)(0x28)) char*)(0x28)) char*)(0x29)) int*)(0x2a)) char*)(0x2a)) char*)(0x2b)) int*)(0x2c)) char*)(0x2c)) char*)(0x2d)) int*)(0x2e)) char*)(0x2e)) char*)(0x2f)) int*)(0x30)) char*)(0x30)) char*)(0x31)) int*)(0x32)) char*)(0x32)) char*)(0x33)) int*)(0x34)) char*)(0x34)) char*)(0x35)) Fault control register */ Fault Status register */ Fault acknowledge register */ PWM output control register */ PWM counter register */ PWM counter register high */ PWM counter register low */ PWM counter Modulo register */ PWM counter Modulo reg. high */ PWM counter Modulo reg. low */ PWM 1 value register */ PWM 1 value register high */ PWM 1 value register low */ PWM 2 value register */ PWM 2 value register high */ PWM 2 value register low */ PWM 3 value register */ PWM 3 value register high */ PWM 3 value register low */ PWM 4 value register */ PWM 4 value register high */ PWM 4 value register low */ PWM 5 value register */ PWM 5 value register high */ PWM 5 value register low */ PWM 6 value register */ PWM 6 value register high */ PWM 6 value register low */ #define DEADTM (*(volatile char*)(0x36)) /* Dead Time Write-once register */ #define DISMAP (*(volatile char*)(0x37)) /* PWM Disable Mapping Write-once register */ /* */ #define #define #define SCI section SCC1 SCC2 SCC3 (*(volatile char*)(0x38)) (*(volatile char*)(0x39)) (*(volatile char*)(0x3A)) /* SCI control register 1 */ /* SCI control register 2 */ /* SCI control register 3 */ BLDC Motor Control Board for Industrial and Appliance Applications MOTOROLA Source Code For More Information On This Product, Go to: www.freescale.com DRM007 105 Freescale Semiconductor, Inc. Freescale Semiconductor, Inc... Source Code #define #define #define #define SCS1 SCS2 SCDR SCBR (*(volatile (*(volatile (*(volatile (*(volatile /* */ #define /* */ #define #define #define #define #define INTERRUPT section /* */ #define #define #define #define #define #define #define #define #define #define #define #define #define #define #define B TIMER section /* */ #define #define #define PLL section /* */ #define #define #define #define SIM section char*)(0x3B)) char*)(0x3C)) char*)(0x3D)) char*)(0x3E)) /* /* /* /* SCI SCI SCI SCI status register 1 */ status register 2 */ data register */ baud rate */ ISCR (*(volatile char*)(0x3F)) A/D section /* IRQ status/control register */ ADSCR ADR ADRH ADRL ADCLK char*)(0x40)) int*)(0x41)) char*)(0x41)) char*)(0x42)) char*)(0x43)) /* /* /* /* /* ADC ADC ADC ADC ADC char*)(0x51)) int*)(0x52)) char*)(0x52)) char*)(0x53)) int*)(0x54)) char*)(0x54)) char*)(0x55)) char*)(0x56)) int*)(0x57)) char*)(0x57)) char*)(0x58)) char*)(0x59)) int*)(0x5A)) char*)(0x5A)) char*)(0x5B)) /* /* /* /* /* /* /* /* /* /* /* /* /* /* /* timer timer timer timer timer timer timer timer timer timer timer timer timer timer timer TBSC TBCNT TBCNTH TBCNTL TBMOD TBMODH TBMODL TBSC0 TBCH0 TBCH0H TBCH0L TBSC1 TBCH1 TBCH1H TBCH1L PCTL PBWC PPG SBSR SRSR SBFCR FLCR (*(volatile (*(volatile (*(volatile (*(volatile (*(volatile (*(volatile (*(volatile (*(volatile (*(volatile (*(volatile (*(volatile (*(volatile (*(volatile (*(volatile (*(volatile (*(volatile (*(volatile (*(volatile (*(volatile (*(volatile (*(volatile char*)(0x5C)) (*(volatile char*)(0x5D)) (*(volatile char*)(0x5E)) (*(volatile (*(volatile (*(volatile (*(volatile status and control reg. */ data register */ data register high */ data register low */ clock register */ B B B B B B B B B B B B B B B status/ctrl register */ counter register */ counter high */ counter low */ modulo register */ modulo high */ modulo low */ channel 0 status/ctrl */ channel 0 register */ channel 0 high */ channel 0 low */ channel 1 status/ctrl */ channel 1 register */ channel 1 high */ channel 1 low */ /* PLL control register */ /* PLL bandwidth register */ /* PLL programming register */ char*)(0xFE00))/* char*)(0xFE01))/* char*)(0xFE03))/* char*)(0xFE08))/* SIM break status register */ SIM reset status register */ SIM break control register */ FLASH control register */ #define LVISCR (*(volatile char*)(0xFE0F)) /* LVI status/control register */ #define FLBPR (*(volatile char*)(0xFF7E)) /* FLASH block protect register */ #define COPCTL (*(volatile char*)(0xFFFF)) /* COP control register */ DRM007 106 BLDC Motor Control Board for Industrial and Appliance Applications Source Code For More Information On This Product, Go to: www.freescale.com MOTOROLA Freescale Semiconductor, Inc. Source Code Include Files Freescale Semiconductor, Inc... /* */ #define #define #define #define #define /* */ #define #define #define #define /* */ #define /* */ */ #define #define #define #define #define /* */ #define #define #define #define #define #define ADC Flags and bit masks ATD8_PTC0 Continuous_Conversion 0x20 ADC_Input_Clock_by_8 0x60 Internal_Bus_Clock 0x10 COCO 0x06 0x80 PLL Flags and bit masks BCS 0x10 PLLON 0x20 AUTO 0x80 LOCK 0x40 IRQ Flags and bit masks IMASK 0x02 PWM Flags and bit masks PWMEN LDOK PWMINT PWMF FTACK1 0x01 0x02 0x20 0x10 0x01 TIM Flags and bit masks TRST TSTOP TOIE CHIE TOF CHF 0x10 0x20 0x40 0x40 0x80 0x80 /*****************************************************************************\ * End mr8io.h * ******************************************************************************/ ; BLDC Motor Control Board for Industrial and Appliance Applications MOTOROLA Source Code For More Information On This Product, Go to: www.freescale.com DRM007 107 Freescale Semiconductor, Inc. Source Code 7.2.2 START08.H ; /****************************************************************************** FILE : start08.h PURPOSE : datastructures for startup LANGUAGE: ANSI-C */ /*****************************************************************************/ Freescale Semiconductor, Inc... #ifndef START08_H #define START08_H #ifdef __cplusplus extern "C" { #endif #include "hidef.h" /* the following datastructures contain the data needed to initialize the processor and memory */ typedef struct{ unsigned char *_FAR beg; int size; /* [beg..beg+size] */ } _Range; typedef struct _Copy{ int size; unsigned char *_FAR dest; } _Copy; typedef void (*_PFunc)(void); typedef struct _LibInit{ _PFunc *startup; /* address of startup desc */ } _LibInit; typedef struct _Cpp{ _PFunc initFunc; } _Cpp; /* address of init function */ #define STARTUP_FLAGS_NONE #define STARTUP_FLAGS_ROM_LIB #define STARTUP_FLAGS_NOT_INIT_SP ized */ DRM007 108 0 (1<<0) /* if module is a ROM library */ (1<<1) /* if stack pointer has not to be initial- BLDC Motor Control Board for Industrial and Appliance Applications Source Code For More Information On This Product, Go to: www.freescale.com MOTOROLA Freescale Semiconductor, Inc. Source Code Include Files #pragma DATA_SEG FAR _STARTUP #ifdef __ELF_OBJECT_FILE_FORMAT__ /* ELF/DWARF object file format */ Freescale Semiconductor, Inc... /* attention: the linker scans the debug information for this structures */ /* to obtain the available fields and their sizes. */ /* So dont change the names in this file. */ extern struct _tagStartup { unsigned char flags; /* STARTUP_FLAGS_xxx */ _PFunc main; /* top level procedure of user program */ #ifndef __NO_STACK_OFFSET unsigned short stackOffset; /* initial value of the stack pointer */ #endif unsigned short nofZeroOuts; /* number of zero out ranges */ _Range *_FAR pZeroOut; /* vector of ranges with nofZeroOuts elements */ _Copy *_FAR toCopyDownBeg; /* rom-address where copydown-data begins */ #if 0 /* switch on to implement ROM libraries */ unsigned short nofLibInits; /* number of library startup descriptors */ _LibInit *_FAR libInits; /* vector of pointers to library startup descriptors */ #endif #if defined(__cplusplus) unsigned short nofInitBodies; /* number of init functions for C++ constructors */ _Cpp *_FAR initBodies; /* vector of function pointers to init functions for C++ constructors */ #endif } _startupData; #else extern struct _tagStartup{ unsigned flags; _PFunc main; unsigned dataPage; long stackOffset; int nofZeroOuts; _Range *_FAR pZeroOut; roOuts elements */ long toCopyDownBeg; _PFunc *_FAR mInits; minated by 0 */ _PFunc *_FAR libInits; terminated by 0x0000FFFF */ } _startupData; /* top procedure of user program */ /* page where data allocation begins */ /* pZeroOut is a vector of ranges with nofZe/* rom-address where copydown-data begins */ /* mInits is a vector of function pointers, ter/* libInits is a vector of function pointers, #endif BLDC Motor Control Board for Industrial and Appliance Applications MOTOROLA Source Code For More Information On This Product, Go to: www.freescale.com DRM007 109 Freescale Semiconductor, Inc. Source Code #pragma DATA_SEG DEFAULT extern void _Startup(void); /* execution begins in this procedure */ /*--------------------------------------------------------------------*/ #ifdef __cplusplus } #endif Freescale Semiconductor, Inc... #endif ; 7.2.3 MAIN.H ; /*****************************************************************************\ * Copyright (c) 2002, Motorola Inc. * * Motorola Confidential Proprietary * * ----------------------------------------------------------------------------* * File name : main.h * * Project name: Brushless DC Motor Drive with the MR8 Microcontroller * * ----------------------------------------------------------------------------* * Author : Jorge Zambada * * Email : [email protected] * * Department : Mexico Applications Lab - SPS * * * * Description : File subroutines and State Flags values are defined in this * * document. Macro definition and new type definition where * * added here * \*****************************************************************************/ #define MOS_2_COM #undef MOS_3_COM // New Data type definitions typedef unsigned short int UINT16; // 16 bit unsigned integer (0, 65535) typedef signed short int SINT16; // 16 bit signed integer (-32768, 32767) typedef unsigned char UBYTE; // 8 bit unsigned byte (0, 255) typedef signed char SBYTE; // 8 bit signed byte (-128, 127) // Function Headers UBYTE ResolveButtons(void); // Macro Definitions #define Forever() #define EnableInterrupts() #define DisableInterrupts() DRM007 110 while(1) {__asm CLI;} {__asm SEI;} BLDC Motor Control Board for Industrial and Appliance Applications Source Code For More Information On This Product, Go to: www.freescale.com MOTOROLA Freescale Semiconductor, Inc. Source Code Include Files #define DebounceDelay() #define WaitUntilUpButtonIsReleased() WaitMs(30) while((PORTB & OPTIONS_BUTTON) == 0x00) // General Boolean defines #define TRUE 1 #define FALSE 0 Freescale Semiconductor, Inc... // Buttons Definition #define OPTIONS_BUTTON #define ENTER_BUTTON 0x08 0x04 // MCU Configuration #define EDGE_ALIGNED #define CENTER_ALIGNED #define INDEPENDENT_PWMS #define COMPLEMENTARY_MODE #define COP_DISABLE #define TOPNEG #define FAULT_1_AUTOMATIC #define FAULT_1_MANUAL #define FAULT_1_INT 0x80 0x00 0x10 0x00 0x01 0x20 0x01 0x00 0x02 /*****************************************************************************\ * End main.h * ******************************************************************************/ ; 7.2.4 TIMER.H ; /*****************************************************************************\ * Copyright (c) 2002, Motorola Inc. * * Motorola Confidential Proprietary * * ----------------------------------------------------------------------------* * File name : timer.h * * Project name: Brushless DC Motor Drive with the MR8 Microcontroller * * ----------------------------------------------------------------------------* * Author : Jorge Zambada * * Email : [email protected] * * Department : Mexico Applications Lab - SPS * * * * Description : File subroutines and State Flags values are defined in this * * document. Also Macro definitions are placed here. * \*****************************************************************************/ BLDC Motor Control Board for Industrial and Appliance Applications MOTOROLA Source Code For More Information On This Product, Go to: www.freescale.com DRM007 111 Freescale Semiconductor, Inc. Source Code Freescale Semiconductor, Inc... // Function Headers void InitTimerA(void); void InitTimerB(void); void StopMotor(void); void WaitMs(UBYTE number_of_miliseconds); void InitPWMMC(void); void InitPLL(void); void NextSequence(void); SINT16 PIController (void); void MotorStalledProtection(void); void InitMotor(UBYTE commanded_operation); // Macro Definitions #define HallSensorInputs() #define TurnOffAllPWMOutputs() #define Turn_On_Low_Side_MOSFETs() #define ResumeTimerA() #define ResumeTimerB() #define Reset_TimerA() #define Reset_TimerB() // Timer Flags #define Prescaler_by_1 #define Prescaler_by_2 #define Prescaler_by_4 #define Prescaler_by_8 #define Prescaler_by_16 #define Prescaler_by_32 #define Prescaler_by_64 #define _1milli #define _100milis #define IC_any_Edge #define Port_Control #define MAXPERIOD #define MINPERIOD #define MAXSPEED #define MINSPEED #define MAXINTEGRAL #define MININTEGRAL 0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x007D 0xC350 0x0C 0x00 4605 237 126 7 25000 -25000 // Brushless Status and #define HALL_A #define HALL_B #define HALL_C #define CW #define CCW #define BLDCSTOP #define BLDCSPIN #define BLDCWASH #define WASHTABLEPOINTS #define SPINTABLEPOINTS Control 0x10 0x20 0x40 0 1 0 1 2 256 256 DRM007 112 (PORTB & 0x70) (PWMOUT = 0x40) (PWMOUT = 0x6A) (TASC &= ~TSTOP) (TBSC &= ~TSTOP) (TASC |= TRST) (TBSC |= TRST) BLDC Motor Control Board for Industrial and Appliance Applications Source Code For More Information On This Product, Go to: www.freescale.com MOTOROLA Freescale Semiconductor, Inc. Freescale Semiconductor, Inc... Source Code Include Files #define NO_FAULT #define MOTOR_STALLED #define FAULT_OCCURRED 0x00 0x01 0x02 // PWM Module #define _15_625KHz #define ZEROPWM #define DEADTIME #define PWMOFF #define PWMFREQ #define PWMON #define RELOAD_1 #define RELOAD_2 #define RELOAD_4 #define RELOAD_8 0x100 0x80 0x10 0x0000 _15_625KHz PWMFREQ 0x00 0x40 0x80 0xC0 /*****************************************************************************\ * End timer.h * ******************************************************************************/ ; 7.2.5 LCD.H ; /*****************************************************************************\ * Copyright (c) 2002, Motorola Inc. * * Motorola Confidential Proprietary * * ----------------------------------------------------------------------------* * File name : lcd.h * * Project name: Brushless DC Motor Drive with the MR8 Microcontroller * * ----------------------------------------------------------------------------* * Author : Jorge Zambada * * Email : [email protected] * * Department : Mexico Applications Lab - SPS * * * * Description : The functions prototypes and some usefull #defines where * * placed in this document for a better understanding of LCD * * interface * \*****************************************************************************/ // Function Declaration Headers void WaitMs(UBYTE number_of_miliseconds); void Wait40us(void); void InitLCD(void); void DataLCD(UBYTE data_to_be_displayed); void StringLCD(UBYTE *pointer_to_string); BLDC Motor Control Board for Industrial and Appliance Applications MOTOROLA Source Code For More Information On This Product, Go to: www.freescale.com DRM007 113 Freescale Semiconductor, Inc. Source Code void CtrlLCD(UBYTE control_byte); void Ctrl8LCD(UBYTE control_byte); void MovCursorLCD(UBYTE number_of_places, UBYTE direction); Freescale Semiconductor, Inc... // Macro Definitions #define Set_E() #define Clear_E() #define Set_RS() #define Clear_RS() (PORTB (PORTB (PORTC (PORTC |= &= |= &= E) ~E) RS) ~RS) #define EnableInterrupts() {__asm CLI;} // General Defines #define CLEARLCD #define MOVECURSORCOMMAND #define MAXLCDMSGS #define RIGHT #define LEFT #define EOS #define EOL #define First_Column 0x01 0x10 5 0x04 0x00 0 '&' 16 // Control Pins #define RS #define E 0x02 0x04 // LCD States #define BLDC_WASH #define BLDC_SPINCW #define BLDC_SPINCCW #define SPEED #define BLDC_STOP 0 1 2 3 4 /*****************************************************************************\ * End lcd.h * ******************************************************************************/ ; DRM007 114 BLDC Motor Control Board for Industrial and Appliance Applications Source Code For More Information On This Product, Go to: www.freescale.com MOTOROLA Freescale Semiconductor, Inc. Source Code Include Files 7.2.6 TABLES.H Freescale Semiconductor, Inc... ; /* Table used for WASH process of the washing machine */ const SBYTE WASHTable[WASHTABLEPOINTS] = {14,15,16,18,19,20,22,23,24,25,27,28,29,30,32,33,34,35,36,37,38,40,41,42,43,44, 45,46,47,48,48,49,50,51,52,53,53,54,55,56,56,57,58,58,59,59,60,60,61,61,61,62, 62,62,63,63,63,63,64,64,64,64,64,64,64,64,64,64,64,63,63,63,63,63,62,62,62,61, 61,60,60,59,59,58,58,57,56,56,55,54,54,53,52,51,50,50,49,48,47,46,45,44,43,42, 41,40,39,38,37,35,34,33,32,31,29,28,27,26,24,23,22,21,19,18,17,15,14,13,-13, -15,-16,-17,-19,-20,-21,-22,-24,-25,-26,-28,-29,-30,-31,-32,-34,-35,-36,-37, -38,-39,-40,-41,-42,-43,-44,-45,-46,-47,-48,-49,-50,-51,-52,-52,-53,-54,-55, -55,-56,-57,-57,-58,-59,-59,-60,-60,-61,-61,-61,-62,-62,-62,-63,-63,-63,-63, -64,-64,-64,-64,-64,-64,-64,-64,-64,-64,-64,-64,-63,-63,-63,-63,-62,-62,-62, -61,-61,-60,-60,-59,-59,-58,-58,-57,-57,-56,-55,-55,-54,-53,-52,-52,-51,-50, -49,-48,-47,-46,-45,-44,-43,-42,-41,-40,-39,-38,-37,-36,-35,-33,-32,-31,-30, -29,-27,-26,-25,-24,-22,-21,-20,-18,-17,-16,-14,-13}; /* table used for SPIN process of washing machine */ const SBYTE SPINTable[SPINTABLEPOINTS] = {14,15,15,15,16,16,16,16,17,17,17,18,18,18,19,19,19,19,20,20,20,21,21,21,22,22, 22,23,23,23,23,24,24,24,25,25,25,26,26,26,26,27,27,27,28,28,28,28,29,29,29,30, 30,30,30,31,31,31,32,32,32,32,33,33,33,34,34,34,34,35,35,35,36,36,36,36,37,37, 37,37,38,38,38,39,39,39,39,40,40,40,40,41,41,41,41,42,42,42,42,43,43,43,43,44, 44,44,44,45,45,45,45,46,46,46,46,47,47,47,47,47,48,48,48,48,49,49,49,49,49,50, 50,50,50,51,51,51,51,51,52,52,52,52,52,53,53,53,53,53,53,54,54,54,54,54,55,55, 55,55,55,55,56,56,56,56,56,56,57,57,57,57,57,57,58,58,58,58,58,58,58,59,59,59, 59,59,59,59,59,60,60,60,60,60,60,60,60,61,61,61,61,61,61,61,61,61,61,62,62,62, 62,62,62,62,62,62,62,62,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,64, 64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64 }; ; BLDC Motor Control Board for Industrial and Appliance Applications MOTOROLA Source Code For More Information On This Product, Go to: www.freescale.com DRM007 115 Freescale Semiconductor, Inc. Source Code 7.3 Source Code Files Freescale Semiconductor, Inc... 7.3.1 START08.C ; /****************************************************************************** FILE : start08.c PURPOSE : 68HC08 standard startup code LANGUAGE : ANSI-C / INLINE ASSEMBLER ---------------------------------------------------------------------------HISTORY 22 oct 93 Created. 04/17/97 Also C++ constructors called in Init(). ******************************************************************************/ #include "start08.h" /**********************************************************************/ struct _tagStartup _startupData; /* read-only: _startupData is allocated in ROM and initialized by the linker */ #define USE_C_IMPL 0 /* for now, we are using the inline assembler implementation for the startup code */ #if !USE_C_IMPL #pragma MESSAGE DISABLE C20001 /* Warning C20001: Different value of stackpointer depending on control-flow */ /* the function _COPY_L releases some bytes from the stack internally */ #pragma NO_ENTRY #pragma NO_EXIT #pragma NO_FRAME static void near loadByte(void) { asm { PSHH PSHX LDA 5,SP PSHA LDX 7,SP PULH LDA 0,X AIX #1 STX 6,SP PSHH PULX STX 5,SP PULX DRM007 116 BLDC Motor Control Board for Industrial and Appliance Applications Source Code For More Information On This Product, Go to: www.freescale.com MOTOROLA Freescale Semiconductor, Inc. Source Code Source Code Files PULH RTS } } Freescale Semiconductor, Inc... #endif extern void /* DESC: incl.) IN: OUT: WRITTEN: _COPY_L(void); copy very large structures (>= 256 bytes) in 16 bit address space (stack TOS count, TOS(2) @dest, H:X @src X,H */ #ifdef __ELF_OBJECT_FILE_FORMAT__ #define toCopyDownBegOffs 0 #else #define toCopyDownBegOffs 2 /* for the hiware format, the toCopyDownBeg field is a long. Because the HC08 is big endian, we have to use an offset of 2 */ #endif static void Init(void) { /* purpose: 1) zero out RAM-areas where data is allocated 2) init run-time data 3) copy initialization data from ROM to RAM */ unsigned int i; int *p; #if USE_C_IMPL /* C implementation of ZERO OUT and COPY Down */ int j; char *dst; _Range *r; r = _startupData.pZeroOut; /* zero out */ for (i=0; i != _startupData.nofZeroOuts; i++) { dst = r->beg; j = r->size; do { *dst = 0; /* zero out */ dst++; j--; } while(j != 0); r++; } #else /* faster and smaller asm implementation for ZERO OUT */ asm { BLDC Motor Control Board for Industrial and Appliance Applications MOTOROLA Source Code For More Information On This Product, Go to: www.freescale.com DRM007 117 Freescale Semiconductor, Inc. Source Code ZeroOut: ; LDA INCA STA LDA INCA STA LDHX BRA Zero_3: ; Zero_4: ; Freescale Semiconductor, Inc... ; CLR _startupData.nofZeroOuts:1 ; nofZeroOuts i:1 ; i is counter for number of zero outs _startupData.nofZeroOuts:0 ; nofZeroOuts i:0 _startupData.pZeroOut Zero_5 ; *pZeroOut i:1 is already 0 ; { HX == _pZeroOut } PSHX PSHH ; { nof bytes in (int)2,X } ; { address in (int)0,X } LDA 0,X PSHA LDA 2,X INCA STA p ; p:0 is used for high byte of byte counter LDA 3,X LDX 1,X PULH INCA BRA Zero_0 Zero_1: Zero_2: Zero_0: ; ; ; CLRA A is already 0, so we don't have to clear it CLR AIX 0,X #1 DBNZA Zero_2 DBNZ PULH PULX AIX p, Zero_1 DBNZ DBNZ ; ; i:1, Zero_4 i:0, Zero_3 ; Zero_6: Zero_5: CopyDown: ; restore *pZeroOut ; advance *pZeroOut #4 ; } #endif /* copy down */ DRM007 118 BLDC Motor Control Board for Industrial and Appliance Applications Source Code For More Information On This Product, Go to: www.freescale.com MOTOROLA Freescale Semiconductor, Inc. Freescale Semiconductor, Inc... Source Code Source Code Files /* _startupData.toCopyDownBeg ---> {nof(16) dstAddr(16) {bytes(8)}^nof} Zero(16) */ #if USE_C_IMPL /* (optimized) C implementation of COPY DOWN */ p = (int*)_startupData.toCopyDownBeg; for (;;) { i = *p; /* nof */ if (i == 0) { break; } dst = (char*)p[1]; /* dstAddr */ p+=2; do { /* p points now into 'bytes' */ *dst = *((char*)p); /* copy byte-wise */ ((char*)p)++; dst++; i--; } while (i!= 0); } #elif defined(__OPTIMIZE_FOR_SIZE__) { asm { LDA PSHA LDA PSHA _startupData.toCopyDownBeg:(1+toCopyDownBegOffs) JSR TAX INCA STA JSR INCA STA DECA BNE CBEQX loadByte JSR PSHA PULH JSR TAX BRA loadByte ; load high byte ptr loadByte ; load high byte ptr ; HX is now destination pointer JSR STA AIX loadByte 0,X #1 _startupData.toCopyDownBeg:(0+toCopyDownBegOffs) Loop0: i loadByte ; load high byte counter ; save for compare ; load low byte counter i:1 notfinished #0, finished notfinished: Loop1 Loop3: Loop2: ; load data byte BLDC Motor Control Board for Industrial and Appliance Applications MOTOROLA Source Code For More Information On This Product, Go to: www.freescale.com DRM007 119 Freescale Semiconductor, Inc. Source Code Loop1: DBNZ DBNZ BRA i:1, Loop2 i:0, Loop3 Loop0 finished: AIS #2 } Freescale Semiconductor, Inc... } #else /* optimized asm version. Some bytes (ca 3) larger than C version (when considering the runtime routine too), but about 4 times faster */ asm { LDX _startupData.toCopyDownBeg:(0+toCopyDownBegOffs) PSHX PULH LDX _startupData.toCopyDownBeg:(1+toCopyDownBegOffs) next: LDA 0,X ; list is terminated by 2 zero bytes ORA 1,X BEQ copydone PSHX ; store current position PSHH LDA 3,X ; psh dest low PSHA LDA 2,X ; psh dest high PSHA LDA 1,X ; psh cnt low PSHA LDA 0,X ; psh cnt high PSHA AIX #4 JSR _COPY_L ; copy one block PULH PULX TXA ADD 1,X ; add low PSHA PSHH PULA ADC 0,X ; add high PSHA PULH PULX AIX #4 BRA next copydone: } #endif DRM007 120 BLDC Motor Control Board for Industrial and Appliance Applications Source Code For More Information On This Product, Go to: www.freescale.com MOTOROLA Freescale Semiconductor, Inc. Freescale Semiconductor, Inc... Source Code Source Code Files /* FuncInits: for C++, this are the global constructors */ #ifdef __cplusplus #ifdef __ELF_OBJECT_FILE_FORMAT__ i = _startupData.nofInitBodies - 1; while ( i >= 0) { (&_startupData.initBodies->initFunc)[i](); /* call C++ constructors */ i--; } #else if (_startupData.mInits != NULL) { _PFunc *fktPtr; fktPtr = _startupData.mInits; while(*fktPtr != NULL) { (**fktPtr)(); /* call constructor */ fktPtr++; } } #endif #endif /* LibInits: used only for ROM libraries */ } #pragma NO_EXIT #ifdef __cplusplus extern "C" #endif void _Startup (void) { /* To set in the linker parameter file: 'VECTOR 0 _Startup' */ /* purpose: 1) initialize the stack 2) initialize run-time, ... initialize the RAM, copy down init dat etc (Init) 3) call main; called from: _PRESTART-code generated by the Linker */ #ifdef __ELF_OBJECT_FILE_FORMAT__ //asm{ // mov #$40,$25 // } DisableInterrupts; /* in HIWARE format, this is done in the prestart code */ #endif for (;;) { /* forever: initialize the program; call the root-procedure */ if (!(_startupData.flags&STARTUP_FLAGS_NOT_INIT_SP)) { /* initialize the stack pointer */ INIT_SP_FROM_STARTUP_DESC(); } Init(); (*_startupData.main)(); } /* end loop forever */ } ; BLDC Motor Control Board for Industrial and Appliance Applications MOTOROLA Source Code For More Information On This Product, Go to: www.freescale.com DRM007 121 Freescale Semiconductor, Inc. Source Code Freescale Semiconductor, Inc... 7.3.2 MAIN.C ; /*****************************************************************************\ * Copyright (c) 2002, Motorola Inc. * * Motorola Confidential Proprietary * * --------------------------------------------------------------------------- * * File name : main.c * * Project name: Brushless DC Motor Drive with the MR8 Microcontroller * * --------------------------------------------------------------------------- * * Author : Jorge Zambada * * Email : [email protected] * * Department : Mexico Applications Lab - SPS * * * * Description : In this file, the MCU configuration, data initialization and* * an endless loop is implemented. Also a subroutine to sense * * push button changes and an algorithm for calculating the * * desired and actual motor speed. * \*****************************************************************************/ #ifndef _MAIN_H #define _MAIN_H #include "main.h" #include "timer.h" #include "MR8IO.h" #include "lcd.h" #endif /************************** LCD MESSAGES ***********************************/ const UBYTE MSGS[MAXLCDMSGS][13] = { {" BLDC WASH"}, {"BLDC SPIN CW"}, {"BLDC SPI CCW"}, {" SPEED &"}, {" BLDC STOP"} }; #pragma DATA_SEG DATA_ZEROPAGE UBYTE DRM007 122 LCDState = BLDC_WASH, // Variable for LCD command pointer BLDCState = BLDCSTOP, // State variable for Brushless DC motor FAULTState = NO_FAULT; /* State of the FAULT. Motor was stalled or FAULT 1 occurred */ BLDC Motor Control Board for Industrial and Appliance Applications Source Code For More Information On This Product, Go to: www.freescale.com MOTOROLA Freescale Semiconductor, Inc. Source Code Source Code Files /*****************************************************************************\ * void main(void): This function includes MCU and its peripherals * * configuration. Also an endless loop for the main menu * * in the LCD display for user interface * * * * Parameters: None. * * * * Return: None. * \*****************************************************************************/ Freescale Semiconductor, Inc... void main(void) { extern UBYTE Required_Direction; UBYTE botpressed; /* This variable is used to store the key pressed by the user */ // MCU init #ifdef MOS_3_COM MOR = CENTER_ALIGNED | COMPLEMENTARY_MODE | COP_DISABLE; #endif #ifdef MOS_2_COM DISMAP = 0x20; MOR = CENTER_ALIGNED | TOPNEG | INDEPENDENT_PWMS | COP_DISABLE; #endif ISCR = IMASK; FCR = FAULT_1_MANUAL | FAULT_1_INT; InitPLL(); InitPWMMC(); // Port init PORTA PORTB PORTC DDRA DDRB DDRC = = = = = = 0x00; 0x00; 0x00; 0x0F; 0x04; 0x02; WaitMs(250); InitLCD(); InitTimerA(); InitTimerB(); BLDC Motor Control Board for Industrial and Appliance Applications MOTOROLA Source Code For More Information On This Product, Go to: www.freescale.com DRM007 123 Freescale Semiconductor, Inc. Source Code EnableInterrupts(); do { /* At this point of the endless main loop, a new string of the main menu is displayed in the LCD for user interface */ Freescale Semiconductor, Inc... CtrlLCD(CLEARLCD); StringLCD((UBYTE *)(MSGS[LCDState])); /* This function call doesn't return until one of the two buttons is pressed and released */ botpressed = ResolveButtons(); /* The LEFT button is used for changing the LCD message for other system functions, such as varying BLDC and FAN DC speed, starting and stopping both motors, etc. */ if (botpressed == OPTIONS_BUTTON) { LCDState = (UBYTE)(LCDState + 1); if (LCDState == MAXLCDMSGS) LCDState = BLDC_WASH; } /* The RIGHT button is used for selecting the current function displayed in the LCD */ else if (botpressed == ENTER_BUTTON) { /* Function 1. Wash function for a washing machine is selected here. */ if(LCDState == BLDC_WASH) { if(BLDCState == BLDCSTOP) { LCDState = BLDC_STOP; InitMotor(BLDCWASH); } } DRM007 124 BLDC Motor Control Board for Industrial and Appliance Applications Source Code For More Information On This Product, Go to: www.freescale.com MOTOROLA Freescale Semiconductor, Inc. Source Code Source Code Files /* Function 2. Spin CW function for the washing machine */ Freescale Semiconductor, Inc... else if(LCDState == BLDC_SPINCW) { if(BLDCState == BLDCSTOP) { LCDState = BLDC_STOP; Required_Direction = CW; InitMotor(BLDCSPIN); } } /* Function 3. Spin CCW function for the washing machine */ else if(LCDState == BLDC_SPINCCW) { if(BLDCState == BLDCSTOP) { LCDState = BLDC_STOP; Required_Direction = CCW; InitMotor(BLDCSPIN); } } /* Function 4. At any time, when this function is selected, the brushless dc motor is stopped and all the values are reinitialized for another start */ else if(LCDState == BLDC_STOP) StopMotor(); } }Forever(); } UBYTE ResolveButtons(void) { extern SBYTE RefSpeed, Speed; #pragma DATA_SEG DATA_ZEROPAGE static UBYTE buffer = 0; /* used for buffer temporal calculations of motor actual speed */ do { if((PORTB & OPTIONS_BUTTON) == 0x00) { DebounceDelay(); BLDC Motor Control Board for Industrial and Appliance Applications MOTOROLA Source Code For More Information On This Product, Go to: www.freescale.com DRM007 125 Freescale Semiconductor, Inc. Source Code if((PORTB & OPTIONS_BUTTON) == 0x00) { WaitUntilUpButtonIsReleased(); return OPTIONS_BUTTON; } } else { asm BIH no_button_pressed; DebounceDelay(); asm BIH no_button_pressed; Freescale Semiconductor, Inc... asm button_pressed: /* Wait until DOWN button is released */ asm BIL button_pressed; return ENTER_BUTTON; asm no_button_pressed: } /* For displaying the actual and desired speed select this message. This algorithm converts a UBYTE value to ASCII values suitable for the LCD display */ if ((LCDState == SPEED)) { if (RefSpeed < 0) { buffer = (UBYTE)(-RefSpeed); StringLCD("DES-"); } else { buffer = (UBYTE)RefSpeed; StringLCD("DES+"); } DataLCD((UBYTE)(((buffer * 31) / 100) DataLCD((UBYTE)(((buffer * 31) / 100) DataLCD((UBYTE)(((buffer * 31) % 100) if (Speed < 0) { buffer = (UBYTE)(-Speed); StringLCD("0 CU-"); } else { buffer = (UBYTE)Speed; StringLCD("0 CU+"); } DataLCD((UBYTE)(((buffer * 31) / 100) DataLCD((UBYTE)(((buffer * 31) / 100) DataLCD((UBYTE)(((buffer * 31) % 100) DRM007 126 / 10) + '0'); % 10) + '0'); / 10) + '0'); / 10) + '0'); % 10) + '0'); / 10) + '0'); BLDC Motor Control Board for Industrial and Appliance Applications Source Code For More Information On This Product, Go to: www.freescale.com MOTOROLA Freescale Semiconductor, Inc. Source Code Source Code Files DataLCD('0'); MovCursorLCD(First_Column, LEFT); Freescale Semiconductor, Inc... } if (FAULTState != NO_FAULT) { CtrlLCD(CLEARLCD); if (FAULTState == MOTOR_STALLED) StringLCD("Motor Stalled!!!"); else StringLCD("Fault Occured!!!"); FAULTState = NO_FAULT; LCDState = BLDC_STOP; } }Forever(); } /*****************************************************************************\ * End main.c * ******************************************************************************/ ; 7.3.3 TIMER.C ; /*****************************************************************************\ * Copyright (c) 2002, Motorola Inc. * * Motorola Confidential Proprietary * * ----------------------------------------------------------------------------* * File name : timer.c * * Project name: Brushless DC Motor Drive with the MR8 Microcontroller * * ----------------------------------------------------------------------------* * Author : Jorge Zambada * * Email : [email protected] * * Department : Mexico Applications Lab - SPS * * * * Description : The implementation of different motor control algorithms are* * in this document. Also the interrupt handler subroutines are* * here in timer.c * \*****************************************************************************/ #ifndef _TIMER_H #define _TIMER_H #include "main.h" #include "timer.h" #include "tables.h" BLDC Motor Control Board for Industrial and Appliance Applications MOTOROLA Source Code For More Information On This Product, Go to: www.freescale.com DRM007 127 Freescale Semiconductor, Inc. Source Code #include "MR8IO.h" #include "lcd.h" #endif #pragma DATA_SEG DATA_ZEROPAGE Freescale Semiconductor, Inc... SINT16 newPWM = PWMOFF, /* variable that indicates the duty cycle of the BLDC motor windings, and the output of the speed controller */ _newPWM = PWMOFF,/* Negative value of newPWM for complementary mode */ P_Portion = 0, /* Proportional portion of the controller*/ I_Portion = 0, /* Integral portion of the controller */ I_PortionK_1 = 0, /* Integral portion in last control action */ ControllerOutput = 0; /* Output of the controller */ SBYTE Speed = MINSPEED, RefSpeed = MINSPEED, ControlDifference = 0; UBYTE Required_Direction = CW,/* Required direction of motor rotation */ Actual_Direction = CW, /* Actual direction of motor rotation */ Time_Out = 0,/* Used for detecting motor stalled condition*/ TempHalls = 0, /* Used for temporal storage of Hall sensors */ P_Gain = 24, /* Proportional parameter of the controller */ I_Gain = 3, /* Integral parameter of the controller */ SPINTable_Index = 0, /* Index used for SPIN process table */ WASHTable_Index = 0, /* Index used for WASH process table */ Milli_Counter = 0;/* Counter of milliseconds to change reference speed value in the two processes of the washing machine */ UINT16 Past_Capture = 0, Actual_Capture = 0, Dif_Capture = 0; /* Actual Speed of the motor */ /* Reference Speed of the motor */ /* Error signal of the controller */ /* Past value of the capture value in one of the timer channels */ /* Actual value of the capture value in one of the timer channels */ /* Actual period between captures for speed calculation */ /*****************************************************************************\ * void Init_Motor(UBYTE Commanded_Operation): This subroutine is called from * * main to perform one of the three washing machine processes. The * * process is selected by the parameter value, Commanded_Operation. * * * * Parameters: Commanded_Operation. * * BLDCWASH. Wash process of the washing machine. * * BLDCSPIN. Spin process. * * * * Return: None. * \*****************************************************************************/ DRM007 128 BLDC Motor Control Board for Industrial and Appliance Applications Source Code For More Information On This Product, Go to: www.freescale.com MOTOROLA Freescale Semiconductor, Inc. Source Code Source Code Files Freescale Semiconductor, Inc... void InitMotor(UBYTE Commanded_Operation) { extern UBYTE BLDCState; BLDCState = Commanded_Operation; /* Initialize Reference speed and pointers to tables */ if (BLDCState == BLDCWASH) { WASHTable_Index = 0; RefSpeed = WASHTable[WASHTable_Index++]; } else { SPINTable_Index = 0; RefSpeed = SPINTable[SPINTable_Index++]; if (Required_Direction == CCW) RefSpeed = -RefSpeed; } /* Initialize variables used for motor control and speed calculation */ Actual_Capture = MAXPERIOD; Past_Capture = 0; I_PortionK_1 = 0; Milli_Counter = 0; Time_Out = 0; /* Charge bootstrap capacitors*/ #ifdef MOS_3_COM PVAL1 = PWMOFF; PVAL3 = PWMOFF; PVAL5 = PWMOFF; PCTL1 |= LDOK; Turn_On_Low_Side_MOSFETs(); WaitMs(10); PWMOUT = 0x00; #endif #ifdef MOS_2_COM PVAL1 = PWMON; PVAL3 = PWMON; PVAL5 = PWMON; PVAL2 = PWMON; PVAL4 = PWMON; PVAL6 = PWMON; PCTL1 |= LDOK; WaitMs(10); PVAL2 PVAL4 PVAL6 PCTL1 = PWMOFF; = PWMOFF; = PWMOFF; |= LDOK; BLDC Motor Control Board for Industrial and Appliance Applications MOTOROLA Source Code For More Information On This Product, Go to: www.freescale.com DRM007 129 Freescale Semiconductor, Inc. Source Code #endif /* Initialize timers for capture operation and interrupt every 1 ms */ InitTimerB(); InitTimerA(); ResumeTimerB(); ResumeTimerA(); newPWM = ZEROPWM; Freescale Semiconductor, Inc... return; } /*****************************************************************************\ * void InitTimerA (void): This subroutine is called from main and from the * * subroutine for executing any washing machine process. * * Its function is to initialize timer A. * * * * Parameters: None. * * * * Return: None. * \*****************************************************************************/ void InitTimerA (void) { /* Used for: 1 Speed control 2 Commutation */ TASC; TASC = TOIE | TSTOP | TRST | Prescaler_by_64; TAMOD = _1milli; TASC1 = CHIE | IC_any_Edge; // HALL A return; } /*****************************************************************************\ * void InitTimerB (void): This subroutine is called from main and from the * * subroutine for executing any washing machine process. * * Its function is to initialize timer A. * * * * Parameters: None. * * * * Return: None. * \*****************************************************************************/ DRM007 130 BLDC Motor Control Board for Industrial and Appliance Applications Source Code For More Information On This Product, Go to: www.freescale.com MOTOROLA Freescale Semiconductor, Inc. Source Code Source Code Files void InitTimerB (void) { Freescale Semiconductor, Inc... /* Used for: 1 Speed Calculation 2 Commutation */ TBSC; TBSC TBMOD TBSC0 TBSC1 = = = = TSTOP | TRST | Prescaler_by_64; 0xFFFF; CHIE | IC_any_Edge; // HALL B CHIE | IC_any_Edge; // HALL C return; } /*****************************************************************************\ * interrupt void TIMA_OV_ISR (void): Interrupt handler subroutine for motor * * control, motor stalled protection and application * * management. This interrupt occurs every millisecond. * * * * Parameters: None. * * * * Return: None. * \*****************************************************************************/ interrupt void TimerAOverflow_ISR (void) { extern UBYTE BLDCState; // 519 max, 403 typ TASC; TASC &= ~TOF; Dif_Capture = Actual_Capture - Past_Capture; if (Dif_Capture > MAXPERIOD) Speed = MINSPEED; else if (Dif_Capture < MINPERIOD) Speed = MAXSPEED; else { /* 1665 Speed = -----------------(Dif_Capture / 18) */ asm{ TXA BLDC Motor Control Board for Industrial and Appliance Applications MOTOROLA Source Code For More Information On This Product, Go to: www.freescale.com DRM007 131 Freescale Semiconductor, Inc. Source Code LDX DIV LDHX PSHA TXA PULX DIV STA #0x12 #0x0681 Speed } Freescale Semiconductor, Inc... } if (Actual_Direction == CCW) Speed = -Speed; ControllerOutput = PIController(); if (ControllerOutput < 0) { ControllerOutput = -ControllerOutput; Required_Direction = CCW; } else Required_Direction = CW; /* ControllerOutput newPWM = ---------------- + 128 256 */ newPWM = (UBYTE)((UBYTE)(ControllerOutput >> 8) + 0x80); MotorStalledProtection(); Milli_Counter++; /* Enters if Milli_Counter > 10 milliseconds */ if (Milli_Counter > 10) { Milli_Counter = 0; /* Wash Process */ if (BLDCState == BLDCWASH) RefSpeed = WASHTable[WASHTable_Index++]; /* Spin Process */ else if (SPINTable_Index != 0) { RefSpeed = SPINTable[SPINTable_Index++]; if (Required_Direction == CCW) RefSpeed = -RefSpeed; } } return; } DRM007 132 BLDC Motor Control Board for Industrial and Appliance Applications Source Code For More Information On This Product, Go to: www.freescale.com MOTOROLA Freescale Semiconductor, Inc. Source Code Source Code Files /*****************************************************************************\ * SINT16 PI_Controller (void): This subroutines contains the PI controller * * implementation. * * * * Parameters: None. * * * * Return: SINT16. Controller output. * \*****************************************************************************/ Freescale Semiconductor, Inc... /* R(K) U(K) ---| | Mp(K) ---------| Kp |-------| | | | --| ---| ---------------| + | E(K) | --| + | M(K) | | | |--------| | |---------| Plant |-------| - | | --| + | | | | | --| ---------| --------| | | | Ki | | | | -------|----------|---| | |1 - Z^(-1)| Mi(K) | | ---------| | | ----------------------------------------------------------------------- E(K) = R(K) - U(K) Mp(K) = E(K) * Kp Mi(K) = Mi(K - 1) + E(K) * Ki M(K) = Mp(K) + Mi(K) where: Symbol E(K): R(K): U(K): Mp(K): Mi(K): Mi(K - 1): M(K): Kp: Ki: Variable Name ControlDifference RefSpeed Speed P_Portion I_Portion I_PortionK_1 ControllerOutput P_Gain I_Gain BLDC Motor Control Board for Industrial and Appliance Applications MOTOROLA Source Code For More Information On This Product, Go to: www.freescale.com DRM007 133 Freescale Semiconductor, Inc. Source Code */ SINT16 PIController (void) // 171 max, 152 typ { Freescale Semiconductor, Inc... ControlDifference = RefSpeed - Speed; if (ControlDifference >= 0) { P_Portion = (SINT16)((UBYTE)(ControlDifference) * I_Portion = (SINT16)((UBYTE)(ControlDifference) * } else { ControlDifference = -ControlDifference; P_Portion = (SINT16)(-((UBYTE)(ControlDifference) I_Portion = (SINT16)(-((UBYTE)(ControlDifference) } (UBYTE)(P_Gain)); (UBYTE)(I_Gain)); * (UBYTE)(P_Gain))); * (UBYTE)(I_Gain))); if (I_PortionK_1 > MAXINTEGRAL) I_PortionK_1 = MAXINTEGRAL; else if (I_PortionK_1 < MININTEGRAL) I_PortionK_1 = MININTEGRAL; I_PortionK_1 = I_PortionK_1 + I_Portion; return (I_PortionK_1 + P_Portion); } /*****************************************************************************\ * void Motor_Stalled_Protection (void): This subroutines doesn't let the * * motor to stop. It calls NextSequence if a period of * * time has passed and no hall sensor changes have * * arrived. If a longer period of time has passed with * * no hall sensor changes, the motor is stopped. * * * * Parameters: None. * * * * Return: None. * \*****************************************************************************/ void MotorStalledProtection(void) // 140 max, 43 typ { extern UBYTE FAULTState; Time_Out++; /* If no hall sensor interrupt has occured in a timeframe of 250 milli second, stop the motor and quit process execution */ if (Time_Out > 250) DRM007 134 BLDC Motor Control Board for Industrial and Appliance Applications Source Code For More Information On This Product, Go to: www.freescale.com MOTOROLA Freescale Semiconductor, Inc. Source Code Source Code Files { StopMotor(); FAULTState = MOTOR_STALLED; } else Freescale Semiconductor, Inc... { /* If 8 timeout has completed, a motor stalled protection action is taken, calling subroutine NextSequence instead of being called from a Hall Effect Sensor Interrupt */ if ((Time_Out & 0x07) == 0) { TempHalls = HallSensorInputs(); NextSequence(); } } return; } /*****************************************************************************\ * interrupt void HALL_A_ISR(void): Interrupt handler subroutine for driving * * Hall A input signal. in this interrupts * * is called NextSequence Subroutine for * * commuting the BLDC motor * * * * Parameters: None. * * * * Return: None. * \*****************************************************************************/ interrupt void HallA_ISR (void) // 160 max, 148 typ { TASC1; TASC1 &= ~CHF; TempHalls = HallSensorInputs(); /* Compute actual rotor direction from hall effect sensor changes */ if ( (TempHalls == (HALL_C)) || (TempHalls == (HALL_A | HALL_B)) ) Actual_Direction = CW; else Actual_Direction = CCW; Time_Out = 0; NextSequence(); return; } BLDC Motor Control Board for Industrial and Appliance Applications MOTOROLA Source Code For More Information On This Product, Go to: www.freescale.com DRM007 135 Freescale Semiconductor, Inc. Source Code Freescale Semiconductor, Inc... /*****************************************************************************\ * interrupt void HALL_B_ISR(void): Interrupt handler subroutine for driving * * Hall B input signal. in this interrupts * * is called NextSequence Subroutine for * * commuting the BLDC motor * * * * Parameters: None. * * * * Return: None. * \*****************************************************************************/ interrupt void HallB_ISR (void) // 160 max, 148 typ { TBSC0; TBSC0 &= ~CHF; TempHalls = HallSensorInputs(); /* Compute actual rotor direction from hall effect sensor changes */ if ( (TempHalls == (HALL_A)) || (TempHalls == (HALL_B | HALL_C)) ) Actual_Direction = CW; else Actual_Direction = CCW; Time_Out = 0; NextSequence(); return; } /*****************************************************************************\ * interrupt void HALL_C_ISR(void): Interrupt handler subroutine for driving * * Hall C input signal. in this interrupts * * is called NextSequence Subroutine for * * commuting the BLDC motor. Othe function * * of this interrupt handler is to provide * * to the overflow interrupt two consecutive * * periods of hall changes, to calculate * * actual speed. * * * * Parameters: None. * * * * Return: None. * \*****************************************************************************/ interrupt void HallC_ISR (void) // 189 max, 177 typ { TBSC1; TBSC1 &= ~CHF; DRM007 136 BLDC Motor Control Board for Industrial and Appliance Applications Source Code For More Information On This Product, Go to: www.freescale.com MOTOROLA Freescale Semiconductor, Inc. Source Code Source Code Files /* This hall effect sensor is used as a period feedback for control input of the speed of the motor */ Past_Capture = Actual_Capture; Actual_Capture = TBCH1; TempHalls = HallSensorInputs(); Freescale Semiconductor, Inc... /* Compute actual rotor direction from hall effect sensor changes */ if ( (TempHalls == (HALL_B)) || (TempHalls == (HALL_A | HALL_C)) ) Actual_Direction = CW; else Actual_Direction = CCW; Time_Out = 0; NextSequence(); return; } /*****************************************************************************\ * void NextSequence (void): This subroutine has all the posible combinations * * of hall effect sensor inputs and direction of the * * motor, to properly commutate it. * * * * Parameters: None. * * * * Return: None. * \*****************************************************************************/ void NextSequence(void) //108 max, 96 typ { #ifdef MOS_3_COM _newPWM = PWMFREQ - newPWM; #endif #ifdef MOS_2_COM #pragma DATA_SEG DATA_ZEROPAGE static SINT16 backupnewPWM; backupnewPWM = newPWM; _newPWM = newPWM; newPWM = PWMFREQ - newPWM; #endif /* This commutation truth table is based on "Commutate truth table.xls"*/ if (Required_Direction == CW) { if (TempHalls == (HALL_A)) BLDC Motor Control Board for Industrial and Appliance Applications MOTOROLA Source Code For More Information On This Product, Go to: www.freescale.com DRM007 137 Freescale Semiconductor, Inc. Source Code { #ifdef MOS_3_COM PVAL1 = newPWM; PVAL3 = _newPWM; PVAL5 = newPWM; #endif #ifdef MOS_2_COM PVAL1 = newPWM; PVAL2 = PVAL1 - DEADTIME; Freescale Semiconductor, Inc... PVAL3 = _newPWM; PVAL4 = PVAL3 - DEADTIME; PVAL5 = PWMON; PVAL6 = PWMOFF; #endif } else if (TempHalls == (HALL_A | HALL_C)) { #ifdef MOS_3_COM PVAL1 = _newPWM; PVAL3 = _newPWM; PVAL5 = newPWM; #endif #ifdef MOS_2_COM PVAL1 = PWMON; PVAL2 = PWMOFF; PVAL3 = _newPWM; PVAL4 = PVAL3 - DEADTIME; PVAL5 = newPWM; PVAL6 = PVAL5 - DEADTIME; #endif } else if (TempHalls == (HALL_C)) { #ifdef MOS_3_COM PVAL1 = _newPWM; PVAL3 = newPWM; PVAL5 = newPWM; #endif #ifdef MOS_2_COM PVAL1 = _newPWM; PVAL2 = PVAL1 - DEADTIME; PVAL3 = PWMON; PVAL4 = PWMOFF; DRM007 138 BLDC Motor Control Board for Industrial and Appliance Applications Source Code For More Information On This Product, Go to: www.freescale.com MOTOROLA Freescale Semiconductor, Inc. Source Code Source Code Files PVAL5 = newPWM; PVAL6 = PVAL5 - DEADTIME; Freescale Semiconductor, Inc... #endif } else if (TempHalls == (HALL_B | HALL_C)) { #ifdef MOS_3_COM PVAL1 = _newPWM; PVAL3 = newPWM; PVAL5 = _newPWM; #endif #ifdef MOS_2_COM PVAL1 = _newPWM; PVAL2 = PVAL1 - DEADTIME; PVAL3 = newPWM; PVAL4 = PVAL3 - DEADTIME; PVAL5 = PWMON; PVAL6 = PWMOFF; #endif } else if (TempHalls == (HALL_B)) { #ifdef MOS_3_COM PVAL1 = newPWM; PVAL3 = newPWM; PVAL5 = _newPWM; #endif #ifdef MOS_2_COM PVAL1 = PWMON; PVAL2 = PWMOFF; PVAL3 = newPWM; PVAL4 = PVAL3 - DEADTIME; PVAL5 = _newPWM; PVAL6 = PVAL5 - DEADTIME; #endif } else if (TempHalls == (HALL_A | HALL_B)) { #ifdef MOS_3_COM PVAL1 = newPWM; PVAL3 = _newPWM; PVAL5 = _newPWM; #endif BLDC Motor Control Board for Industrial and Appliance Applications MOTOROLA Source Code For More Information On This Product, Go to: www.freescale.com DRM007 139 Freescale Semiconductor, Inc. Source Code #ifdef MOS_2_COM PVAL1 = newPWM; PVAL2 = PVAL1 - DEADTIME; PVAL3 = PWMON; PVAL4 = PWMOFF; PVAL5 = _newPWM; PVAL6 = PVAL5 - DEADTIME; #endif } Freescale Semiconductor, Inc... } else { if (TempHalls == (HALL_A)) { #ifdef MOS_3_COM PVAL1 = _newPWM; PVAL3 = newPWM; PVAL5 = newPWM; #endif #ifdef MOS_2_COM PVAL1 = _newPWM; PVAL2 = PVAL1 - DEADTIME; PVAL3 = newPWM; PVAL4 = PVAL3 - DEADTIME; PVAL5 = PWMON; PVAL6 = PWMOFF; #endif } else if (TempHalls == (HALL_A | HALL_C)) { #ifdef MOS_3_COM PVAL1 = _newPWM; PVAL3 = newPWM; PVAL5 = _newPWM; #endif #ifdef MOS_2_COM PVAL1 = PWMON; PVAL2 = PWMOFF; PVAL3 = newPWM; PVAL4 = PVAL3 - DEADTIME; PVAL5 = _newPWM; PVAL6 = PVAL5 - DEADTIME; #endif DRM007 140 BLDC Motor Control Board for Industrial and Appliance Applications Source Code For More Information On This Product, Go to: www.freescale.com MOTOROLA Freescale Semiconductor, Inc. Source Code Source Code Files } else if (TempHalls == (HALL_C)) { #ifdef MOS_3_COM PVAL1 = newPWM; PVAL3 = newPWM; PVAL5 = _newPWM; #endif Freescale Semiconductor, Inc... #ifdef MOS_2_COM PVAL1 = newPWM; PVAL2 = PVAL1 - DEADTIME; PVAL3 = PWMON; PVAL4 = PWMOFF; PVAL5 = _newPWM; PVAL6 = PVAL5 - DEADTIME; #endif } else if (TempHalls == (HALL_B | HALL_C)) { #ifdef MOS_3_COM PVAL1 = newPWM; PVAL3 = _newPWM; PVAL5 = _newPWM; #endif #ifdef MOS_2_COM PVAL1 = newPWM; PVAL2 = PVAL1 - DEADTIME; PVAL3 = _newPWM; PVAL4 = PVAL3 - DEADTIME; PVAL5 = PWMON; PVAL6 = PWMOFF; #endif } else if (TempHalls == (HALL_B)) { #ifdef MOS_3_COM PVAL1 = newPWM; PVAL3 = _newPWM; PVAL5 = newPWM; #endif #ifdef MOS_2_COM PVAL1 = PWMON; PVAL2 = PWMOFF; BLDC Motor Control Board for Industrial and Appliance Applications MOTOROLA Source Code For More Information On This Product, Go to: www.freescale.com DRM007 141 Freescale Semiconductor, Inc. Source Code PVAL3 = _newPWM; PVAL4 = PVAL3 - DEADTIME; Freescale Semiconductor, Inc... PVAL5 = newPWM; PVAL6 = PVAL5 - DEADTIME; #endif } else if (TempHalls == (HALL_A | HALL_B)) { #ifdef MOS_3_COM PVAL1 = _newPWM; PVAL3 = _newPWM; PVAL5 = newPWM; #endif #ifdef MOS_2_COM PVAL1 = _newPWM; PVAL2 = PVAL1 - DEADTIME; PVAL3 = PWMON; PVAL4 = PWMOFF; PVAL5 = newPWM; PVAL6 = PVAL5 - DEADTIME; #endif } } PCTL1 |= LDOK; #ifdef MOS_2_COM newPWM = backupnewPWM; #endif return; } /*****************************************************************************\ * void init_PWMMC (void):Initialization of the PWM module is implemented * * in this subrouine and the frequency is set to * * 15.625 kHz. * * * * Parameters: None. * * * Return: None. * \*****************************************************************************/ DRM007 142 BLDC Motor Control Board for Industrial and Appliance Applications Source Code For More Information On This Product, Go to: www.freescale.com MOTOROLA Freescale Semiconductor, Inc. Source Code Source Code Files void InitPWMMC(void) { PMOD = PWMFREQ; // Frequency of 15.625 KHz Freescale Semiconductor, Inc... #ifdef MOS_3_COM PVAL1 = PWMOFF; PVAL3 = PWMOFF; PVAL5 = PWMOFF; DEADTM = DEADTIME; #endif #ifdef MOS_2_COM PVAL1 = PWMON; PVAL3 = PWMON; PVAL5 = PWMON; PVAL2 = PWMOFF; PVAL4 = PWMOFF; PVAL6 = PWMOFF; #endif PCTL2 = RELOAD_1; /* Reload every 4 PWM cycle. Fop=Fbus=8000000 Hz. PWMFreq = 8MHz / (2*256) = 15.625 kHz Reload Freq = 15.625 kHz / 4 = 3.90625 kHz */ PCTL1 = PWMEN; // Turn on PWM module PCTL1 |= LDOK; return; } /*****************************************************************************\ * void stop_motor (void): The motor is stopped in this subroutine, either * * for user command or motor stalled. * * * * Parameters: None. * * * * Return: None. * \*****************************************************************************/ void StopMotor(void) { extern UBYTE BLDCState; InitTimerA(); InitTimerB(); BLDCState = BLDCSTOP; #ifdef MOS_3_COM BLDC Motor Control Board for Industrial and Appliance Applications MOTOROLA Source Code For More Information On This Product, Go to: www.freescale.com DRM007 143 Freescale Semiconductor, Inc. Source Code TurnOffAllPWMOutputs(); PVAL1 = PWMOFF; PVAL3 = PWMOFF; PVAL5 = PWMOFF; Freescale Semiconductor, Inc... #endif #ifdef MOS_2_COM PVAL1 = PWMON; PVAL3 = PWMON; PVAL5 = PWMON; PVAL2 = PWMOFF; PVAL4 = PWMOFF; PVAL6 = PWMOFF; #endif PCTL1 |= LDOK; return; } /*****************************************************************************\ * void init_PLL (void): PLL is initialized to run at 8 MHz of Bus frequency * * * * Parameters: None. * * * * Return: None. * \*****************************************************************************/ void InitPLL(void) // Fbus = 8000000 +/- 2% Hz { PCTL &= ~BCS; // select external reference as base clock PCTL &= ~PLLON; // turn off PLL PPG = 0x86; // program N and L PBWC |= AUTO; // enable automatic bandwidth control PCTL |= PLLON; // turn on PLL while((PBWC & LOCK)==0); // wait for PLL to lock PCTL |= BCS; return; } /*****************************************************************************\ * interrupt void Fault1_ISR(void): Interrupt handler subroutine for Fault1. * * The motor is stopped when a FAULT occurs. * * The FAULT is asserted when the current * * limit or voltage limit has been reached by * * the power stage. * * * * Parameters: None. * * * * Return: None. * \*****************************************************************************/ DRM007 144 BLDC Motor Control Board for Industrial and Appliance Applications Source Code For More Information On This Product, Go to: www.freescale.com MOTOROLA Freescale Semiconductor, Inc. Source Code Source Code Files Freescale Semiconductor, Inc... interrupt void Fault1_ISR (void) { extern UBYTE FAULTState; StopMotor(); FTAC |= FTACK1; FAULTState = FAULT_OCCURED; return; } interrupt void Error_Trap (void) { return; } /*****************************************************************************\ * End timer.c * ******************************************************************************/ ; 7.3.4 LCD.C ; /*****************************************************************************\ * Copyright (c) 2002, Motorola Inc. * * Motorola Confidential Proprietary * * ----------------------------------------------------------------------------* * File name : lcd.c * * Project name: Brushless DC Motor Drive with the MR8 Microcontroller * * ----------------------------------------------------------------------------* * Author : Jorge Zambada * * Email : [email protected] * * Department : Mexico Applications Lab - SPS * * * * Description : The LCD interface and delay subroutines are implemented in * * this file. * \*****************************************************************************/ #ifndef _LCD_H #define _LCD_H #include "main.h" #include "MR8IO.h" #include "lcd.h" #endif BLDC Motor Control Board for Industrial and Appliance Applications MOTOROLA Source Code For More Information On This Product, Go to: www.freescale.com DRM007 145 Freescale Semiconductor, Inc. Source Code /*****************************************************************************\ * void init_LCD(void): Subroutine to initialize the LCD character display for * * 4-bit operation, blink off, display on. * * * * Parameters: None. * * * * Return: None. * \*****************************************************************************/ Freescale Semiconductor, Inc... void InitLCD(void) { /* Sequence followed for LCD initialization */ // In 8 bit operation mode WaitMs(15); Ctrl8LCD(0x03); // Set 8 WaitMs(5); Ctrl8LCD(0x03); // Set 8 WaitMs(1); Ctrl8LCD(0x03); // Set 8 Ctrl8LCD(0x02); // Set 4 bit operation bit operation bit operation bit operation // In 4 bit operation mode CtrlLCD(0x28); // 4 bit operation with 2 line display CtrlLCD(0x06); // No display shift and move right CtrlLCD(0x01); // Clear display and return home position CtrlLCD(0x0C); // Display on, cursor off and blink off return; } /*****************************************************************************\ * void ctrl_LCD(void): Subroutine for sending control bytes to the LCD. This * * routine send the 8 bit value in two parts, since this * * function is called in 4 bit operation mode. * * * * Parameters: ctrl. An 8 bit value for different control of the LCD, such as * * number of lines, blink on or off, etc. * * * * Return: None. * \*****************************************************************************/ void CtrlLCD(UBYTE ctrl) { // Upper Nibble PORTA &= 0xF0; // puting pin states of the LCD in PORTA pins PORTA |= (ctrl >> 4) & 0x0F; Set_E(); Clear_E(); DRM007 146 BLDC Motor Control Board for Industrial and Appliance Applications Source Code For More Information On This Product, Go to: www.freescale.com MOTOROLA Freescale Semiconductor, Inc. Source Code Source Code Files Wait40us(); // Lower Nibble PORTA &= 0xF0; PORTA |= ctrl & 0x0F; Set_E(); Clear_E(); // puting pin states of the LCD in PORTA pins Freescale Semiconductor, Inc... if ((ctrl==0x01) || (ctrl==0x02)) WaitMs(2); Wait40us(); return; } /*****************************************************************************\ * void ctrl8LCD(void): Subroutine for sending control bytes to the LCD in 8 * * bit mode. use this function only to enter 4-bit mode, * * since the other 4 data pins have no connection * * * * Parameters: ctrl. An 8 bit value for different control of the LCD, such as * * number of lines, blink on or off, etc. * * * * Return: None. * \*****************************************************************************/ void Ctrl8LCD(UBYTE ctrl) { PORTA &= 0xF0; PORTA |= ctrl & 0x0F; Set_E(); Clear_E(); // puting pin states of the LCD in PORTA pins Wait40us(); return; } /*****************************************************************************\ * void mov_cursor_LCD(UBYTE places, UBYTE dir): subroutine to move the LCD * * cursor to RIGHT or LEFT the * * the number of places the user * * wants specyfied in 'places' * * * * Parameters: places. Number of places wanted to move the LCD cursor without * * affecting any LCD actual message. * * dir. Direction in which the cursor is to be moved. RIGHT or * * LEFT. * * * * Return: None. * \*****************************************************************************/ BLDC Motor Control Board for Industrial and Appliance Applications MOTOROLA Source Code For More Information On This Product, Go to: www.freescale.com DRM007 147 Freescale Semiconductor, Inc. Source Code void MovCursorLCD(UBYTE places, UBYTE dir) { UBYTE ctrl_byte = 0x10 | dir; do { CtrlLCD(ctrl_byte); }while((--places)>0); return; Freescale Semiconductor, Inc... } /*****************************************************************************\ * void data_LCD(UBYTE data): ASCII symbol to be displayed in the LCD in the * * current cursor position. * * * * Parameters: data. 8-bit value representing the ASCII code of the symbol * * to be displayed in the LCD at current position * * * * Return: None. * \*****************************************************************************/ void DataLCD(UBYTE data) { // Upper Nibble PORTA &= 0xF0; // puting pin states of the LCD in PORTA pins PORTA |= (data >> 4) & 0x0F; Set_RS(); Set_E(); Clear_E(); // Lower Nibble PORTA &= 0xF0; PORTA |= data & 0x0F; Set_E(); Clear_E(); // puting pin states of the LCD in PORTA pins Wait40us(); Clear_RS(); return; } DRM007 148 BLDC Motor Control Board for Industrial and Appliance Applications Source Code For More Information On This Product, Go to: www.freescale.com MOTOROLA Freescale Semiconductor, Inc. Freescale Semiconductor, Inc... Source Code Source Code Files /*****************************************************************************\ * void string_LCD(UBYTE *msgLCD): A function that displays a string in the LCD* * at current cursor position. If a '&' cha* * racter is present in the string, a new line * * is commanded in the LCD. the function send * * all the bytes in the string until a presense* * of a EndOfString, EOS or 0x00 byte. * * * * Parameters: *msgLCD. Pointer to the string to be displayed in the LCD * * * * Return: None. * \*****************************************************************************/ void StringLCD(UBYTE *msgLCD) { while(*msgLCD != EOS) { if(*msgLCD == EOL) MovCursorLCD(29,RIGHT); else DataLCD(*msgLCD); msgLCD++; } return; } // new line /*****************************************************************************\ * void wait_ms(UBYTE milis): Delay routine that waits for a number of milli- * * seconds send in the parameter milis. the delay * * is calculated for a 8 MHz Fbus operation. * * * * Parameters: milis. A 8 bit value representing the number of milliseconds the* * delay will wait. * * * * Return: None. * \*****************************************************************************/ void WaitMs(UBYTE milis) { UBYTE wait40usCount = 0; // used for counting wait40us delay do{ for(wait40usCount = 0; wait40usCount < 24; wait40usCount++) Wait40us(); }while((--milis) != 0); return; } BLDC Motor Control Board for Industrial and Appliance Applications MOTOROLA Source Code For More Information On This Product, Go to: www.freescale.com DRM007 149 Freescale Semiconductor, Inc. Source Code /*****************************************************************************\ * void wait40us(void): An instant of time of which the wait_ms() subroutine is* * based on. * * * * Parameters: None * * * * * * Return: None. * \*****************************************************************************/ Freescale Semiconductor, Inc... void Wait40us(void) { UBYTE count = 103; // Value for 40us delay at Fbus = 8 MHz do{ }while(--count); return; } /*****************************************************************************\ * End lcd.c * ******************************************************************************/ ; DRM007 150 BLDC Motor Control Board for Industrial and Appliance Applications Source Code For More Information On This Product, Go to: www.freescale.com MOTOROLA Freescale Semiconductor, Inc... Freescale Semiconductor, Inc. For More Information On This Product, Go to: www.freescale.com Freescale Semiconductor, Inc. HOW TO REACH US: USA/EUROPE/LOCATIONS NOT LISTED: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217 1-303-675-2140 or 1-800-441-2447 JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center, 3-20-1, Minami-Azabu Minato-ku, Tokyo 106-8573 Japan 81-3-3440-3569 Freescale Semiconductor, Inc... ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong 852-26668334 Information in this document is provided solely to enable system and software implementers to use Motorola products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. TECHNICAL INFORMATION CENTER: Motorola reserves the right to make changes without further notice to any products 1-800-521-6274 herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any HOME PAGE: http://motorola.com/semiconductors liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and the Stylized M Logo are registered in the U.S. Patent and Trademark Office. digital dna is a trademark of Motorola, Inc. All other product or service names are the property of their respective owners. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer. © Motorola, Inc. 2003 DRM007/D Rev. 0 2/2003 For More Information On This Product, Go to: www.freescale.com